
Mehdi Medjaoui, Erik Wilde,
Ronnie Mitra & Mike Amundsen

Continuous
 API Management
Making the Right Decisions
in an Evolving Landscape

 API Management

2nd Edition

Mehdi Medjaoui, Erik Wilde,
Ronnie Mitra & Mike Amundsen

in an Evolving Landscape

SOF T WARE ENGINEERING

“This book will be your
guide to implementing
and managing
a pervasive API
landscape.”

—Gregor Hohpe
 Author of The Software Architect Elevator

Continuous API Management

ISBN: 978-1-098-10352-1

US $59.99 CAN $79.99

Twitter: @oreillymedia
facebook.com/oreilly

A lot of work is required to release an API, but the effort
doesn’t always pay off. Overplanning before an API matures
is a wasted investment, while underplanning can lead to
disaster. The second edition of this book provides maturity
models for individual APIs and multi-API landscapes to help
you invest the right human and company resources for the
right maturity level at the right time.

How do you balance the desire for agility and speed with the
need for robust and scalable operations? Four API experts
show software architects, program directors, and product
owners how to maximize the value of their APIs by managing
them as products through a continuous lifecycle.

• Learn which API decisions you need to govern

• Design, deploy, and manage APIs using an API-as-a-product
(AaaP) approach

• Examine 10 pillars that form the foundation of API product
work

• Learn how the continuous improvement model governs
changes throughout an API’s lifetime

• Explore the � ve stages of a complete API product lifecycle

• Delve into team roles needed to design, build, and maintain
your APIs

• Learn how to manage APIs published by your organization

Mehdi Medjaoui is an entrepreneur
and advocate of the API mindset. He’s
the founder of the apidays conferences
series, OAuth.io, and ALIAS, the data
protection API platform.

Erik Wilde focuses on API technology
and strategy and helps organizations
to use APIs effectively. He writes and
creates articles, books, and videos
and is a long-term contributor to API
standardization efforts.

Ronnie Mitra is a strategy consultant
at Publicis Sapient, where he helps
technology leaders realize the potential
of their people and technology
investments.

Mike Amundsen is an internationally
known author and speaker. He
consults with organizations around the
world on network architecture, web
development, and the intersection of
technology and society.

Praise for Continuous API Management

Impressively, the authors have managed to make this a book about APIs in general,
as opposed to being about specific technologies. Regardless of your API technology of

choice, you’ll definitely get valuable guidance from this book.
—Stefan Tilkov, CEO and principal consultant at INNOQ

APIs are the fabric of the modern enterprise. This book will be your
guide to implementing and managing a pervasive API landscape, covering

architecture, team structure, and evolution.
—Gregor Hohpe, author of The Software Architect Elevator

Continuous API Management offers an excellent guide for those responsible for
establishing and scaling their API program. From practical advice to deep dives into

all aspects of delivering an API program, this is an essential resource for everyone from
executives to API practitioners.

—James Higginbotham, executive API consultant and author of
Principles of Web API Design

Copious print details the intimates of web API creation. However, the CAM book
stands alone as a holistic guide through the API creation landscape. This reference is

mandatory insight for technology leaders (and leaders-in-training).
—Matthew Reinbold, author of the Net API Notes newsletter

and director of API ecosystems and digital transformation at Postman

Mike, Mehdi, Ronnie, and Erik created a far-reaching, insightful book that
captures what is needed to create, evolve, and manage complex API systems

that thrive in the connected world.
—Hibri Marzook, principal consultant at Contino

Continuous API Management is the most comprehensive book out there when it comes
to managing API products. It is full of practical guidance, and I have seen numerous

organizations use its lessons to help advance their digital strategies using APIs.
—Matt McLarty, global leader for API strategy at

MuleSoft, a Salesforce company

Mehdi Medjaoui, Erik Wilde,
Ronnie Mitra, and Mike Amundsen

Continuous API Management
Making the Right Decisions

in an Evolving Landscape

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-10352-1

[LSI]

Continuous API Management
by Mehdi Medjaoui, Erik Wilde, Ronnie Mitra, and Mike Amundsen

Copyright © 2022 Mehdi Medjaoui, Build Digital GmbH, Kudo & Leap Ltd., and Amundsen.com, Inc. All
rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield
Development Editor: Gary O’Brien
Production Editor: Kate Galloway
Copyeditor: Kim Wimpsett
Proofreader: Piper Editorial Consulting, LLC

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

November 2018: First Edition
October 2021: Second Edition

Revision History for the Second Edition
2021-10-18: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098103521 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Continuous API Management, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and NGINX. See our statement of editorial
independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098103521
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

To those who coached me during the book writing, to my fellow partners who helped me
to be useful in the industry, to Kin Lane who shared with me his passion for APIs, and to
all the API practitioners who shared their API practices with me that inspired this book.

To my parents.

—Mehdi Medjaoui

To all the people in my life who made this book possible. It’s been quite a ride!

—Erik Wilde

To Kairav, for helping me write this dedication.

—Ronnie Mitra

To all the companies that invited us to come share what we’ve learned and, in the
process, taught us so much that we had to try to capture it in this book.

—Mike Amundsen

Table of Contents

Foreword to the First Edition. xi

Preface. xiii

1. The Challenge and Promise of API Management. 1
What Is API Management? 3

The Business of APIs 3
What Is an API? 4
More Than Just the API 7
API Maturity Stages 7
More Than a Single API 8

Why Is API Management Difficult? 8
Scope 9
Scale 10
Standards 11

Managing the API Landscape 12
Technology 12
Teams 13
Governance 14

Summary 15

2. API Governance. 17
Understanding API Governance 18

Decisions 18
Decision Management 19
Governing Complex Systems 20

Governing Decisions 22
Centralization and Decentralization 23

v

The Elements of a Decision 28
Decision Mapping 33
Decision Design in Practice 35

Designing Your Governance System 36
Governance Pattern #1: Design Authority 38
Governance Pattern #2: Embedded Centralized Experts 39
Governance Pattern #3: Influenced Self-Governance 40

Implementing Governance Patterns 41
Evolving Your Solution 42
Observability and Visibility 43
Operating Models 44
Develop a Strategy for Standards Management 44

Summary 45

3. The API as a Product. 47
The Programmable Economy Is API-Led 48

Price, Promotion, Product, Place → Everywhere 49
Design Thinking 50

Match People’s Needs 51
Viable Business Strategy 52
The Bezos Mandate 52
Applying Design Thinking to APIs 54

Customer Onboarding 55
Time to Wow! 56
Onboarding for Your APIs 57

Developer Experience 59
Knowing Your Audience 60
Making It Safe and Easy 65
Why Are Developers So Important in the API Economy? 68
Developer Relations for APIs as a Product 69
API-as-a-Product Monetization and Pricing 78

Summary 81

4. The Pillars of an API Product. 83
Introducing the Pillars 84

Strategy 84
Design 88
Documentation 91
Development 94
Testing 98
Deployment 101
Security 104

vi | Table of Contents

Monitoring 108
Discovery 110
Change Management 112

Using the Pillars Together 114
Applying Pillars When Performing Planning 114
Using the Pillars for Creation 117
Using the Pillars to Operate and Run 120

Summary 124

5. Continuous API Improvement. 125
Managing Change Continuously 126

Incremental Improvement 127
API Change Velocity 131

Changing an API 133
The API Release Lifecycle 133
Changing the Interface Model 135
Changing the Implementation 137
Changing the Instance 138
Changing the Supporting Assets 138

Improving API Changeability 139
Effort Costs 139
Opportunity Costs 140
Coupling Costs 141
Isn’t All This Just BDUF? 142

Summary 143

6. API Styles. 145
APIs Are Languages 146
The Five API Styles 147

Tunnel Style 148
Resource Style 150
Hypermedia Style 151
Query Style 153
Event-Based Style 155
How to Decide on API Style and Technology 156

Avoid Painting Yourself into a Style Corner 158
Summary 159

7. The API Product Lifecycle. 161
Measurements and Milestones 162

OKRs and KPIs 162
Defining an API Objective 164

Table of Contents | vii

Identifying Measurable Results 165
The API Product Lifecycle 167

Stage 1: Create 168
Stage 2: Publish 171
Stage 3: Realize 175
Methodology: Value Proposition Interface Canvas 176
Stage 4: Maintain 178
Stage 5: Retire 180

Applying the Product Lifecycle to the Pillars 183
Create 184
Publish 187
Realize 190
Maintain 192
Retire 193

Summary 194

8. API Teams. 195
API Roles 196

Business Roles 198
Technical Roles 200

API Teams 202
Teams and API Maturity 202
Scaling Up Your Teams 209
Teams and Roles at Spotify 209
Factors for Your Scaling Approach 211

Culture and Teams 213
Recognizing Conway’s Law 214
Leveraging Dunbar’s Numbers 216
Enabling Alexander’s Cultural Mosaic 218
Supporting Experimentation 220

Summary 221

9. API Landscapes. 223
API Archaeology 225
API Management at Scale 227

The Platform Principle 228
Principles, Protocols, and Patterns 230
API Landscapes as Language Landscapes 232
API the APIs 233

Understanding the Landscape 234
The Eight Vs of API Landscapes 235

Variety 236

viii | Table of Contents

Vocabulary 238
Volume 242
Velocity 242
Vulnerability 244
Visibility 245
Versioning 246
Volatility 247

Summary 248

10. API Landscape Journey. 249
Structuring Guidance in the API Landscape 250
The Lifecycle of Guidance 253
The Center for Enablement 254

C4E Team and Context 256
Maturity and the Eight Vs 258

Variety 259
Vocabulary 261
Volume 264
Velocity 266
Vulnerability 268
Visibility 270
Versioning 273
Volatility 275

Summary 277

11. Managing the API Lifecycle in an Evolving Landscape. 279
Managing an Evolving Landscape in Practice 280

Socialize Your “Red Lines” 280
Platforms Over Projects (Eventually) 281
Design for Consumers, Producers, and Sponsors 282
Test, Measure, and Learn 283

API Products and Lifecycle Pillars 285
API Landscapes 285
Decision Points and Maturity 286

Landscape Aspects and API Lifecycle Pillars 286
Strategy 288
Design 290
Documentation 292
Development 296
Testing 299
Deployment 304
Security 308

Table of Contents | ix

Monitoring 311
Discovery 313
Change Management 317

Summary 320

12. Continuing the Journey. 323
Continuing to Prepare for the Future 324
Continue Managing Every Day 325

Index. 327

x | Table of Contents

Foreword to the First Edition

APIs are a journey for any company, organization, institution, or government agency
learning to properly manage their digital resources across an ever-expanding and
evolving competitive digital landscape. This digital transformation, which has been
building over the last five years, is beginning to result in a shift across the API
landscape, where companies are beginning to stop asking if they should be doing APIs
and have begun seeking more knowledge on how to do APIs properly. Organizations
are realizing that there’s more to APIs than just creating them; a lot goes into deliver‐
ing APIs throughout the entire API lifecycle. The authors behind Continuous API
Management possess a unique understanding of what it takes to move an API from
ideation to realization consistently, at scale, and in a repeatable way—providing the
makings for a pretty unique learning opportunity.

Most API practitioners operate with a view of the API landscape spanning a single
set of APIs. Medjaoui, Wilde, Mitra, and Amundsen, the authors of this book, possess
a unique view of the API landscape at a 250,000-foot level, spanning thousands of
APIs, multiple industries, and some of the largest enterprise organizations out there
today. I can count the top-tier API talent that exists around the globe on both my
hands, and Medjaoui, Wilde, Mitra, and Amundsen are always first to be counted
on my right hand. These authors bring a wealth of experience to the table when it
comes to understanding what you need to move APIs from inception to design, from
development to production, and back again. There just isn’t another team of API
experts out there who have the scope and the breadth of API knowledge that this
team possesses, making this book destined to become that tattered O’Reilly tome that
lives within reach on the corner of your desk—something you read again and again.

I’ve read numerous books on the technical aspects of creating APIs, including books
about hypermedia and everything you need to know about REST and how to deliver
on this vision in a variety of programming languages and platforms. This is the first
API book that I’ve read that holistically approaches the delivery of APIs from start
to finish, addressing not only the technological details but also the critical business
elements of operating APIs—which also includes the critical human side of API

xi

education, realization, and activation across large enterprise organizations. The book
methodically lays out the essential building blocks any enterprise API architect will
need to deliver reliable, secure, and consistent APIs at scale; it will help any API team
quantify their operations and think more critically about how APIs can be improved
upon and evolved, while also establishing and refining a structured yet agile approach
to delivering APIs in a standardized way across teams.

After putting down this book, I felt I had a refreshed look at the modern API
lifecycle—but more importantly, I was left with a wealth of ideas about how I actually
quantify and measure my API operations, and the API lifecycle strategy I am using
to manage my operations. Even with my knowledge of the space, this book forced
me to look at the landscape in some important new ways. I walked away saturated
with information that reinforced some of what I already knew, but also shifted and
moved around some of what I thought I knew, forcing me to evolve in some of my
existing practices. For me, this is what the API journey is all about: continually being
challenged, learning, planning, executing, measuring, and repeating until you find the
desired results. Continuous API Management reflects this reality of delivering APIs,
providing us with a reusable guide to the technology, business, and politics of doing
APIs at scale within the enterprise.

Don’t just read this book once. Read it; then go out and execute on your vision.
Evolve your API strategy, and define a version of the API lifecycle that is all your
own, taking what you’ve learned from Medjaoui, Wilde, Mitra, and Amundsen and
putting it to work. However, every once in a while, pick this book up again and
give it another read. I guarantee there will be little nuggets throughout the book that
you’ll rediscover and see in a new light each time you work through it—something
that will build and improve your understanding of what is happening across the API
landscape and help you more confidently participate (or lead) when it comes to doing
business with APIs across the expanding online economy.

— Kin Lane, The API Evangelist

xii | Foreword to the First Edition

Preface

Welcome to the second edition of Continuous API Management. The opening para‐
graph for the previous edition, released in 2018, stated:

As society and business have grown increasingly digital in nature, the demand for con‐
nected software has exploded. In turn, the application programming interface (API)
has emerged as an important resource for modern organizations because it facilitates
software connections. But managing these APIs effectively has proven to be a new
challenge. Getting the best value from your APIs means learning how to manage their
design, development, deployment, growth, quality, and security while dealing with the
complicating factors of context, time, and scale.

And, in the intervening years, not much has changed when it comes to the growth
and challenges of API management. The good news is that, in the years since our first
edition, more tooling, more training, and more experience has help grow and mature
the API management space. The not-so-good news is that the authors still see lots
of organizations struggling to meet the demands of connecting people, services, and
companies using APIs. This new edition is our chance to provide updates on how
companies are progressing, share some new success stories, and refine some of the
material we first introduced in 2018.

While we’ve added new examples and updated existing ones, we’ve still retained the
same basic approach and outline for this new release. Hopefully these changes will
help you extend your own journey on the road to continuous API management.

Who Should Read This Book
If you are just starting to build an API program and want to understand the work
ahead of you, or if you already have APIs but want to learn how to manage them
better, then this is the book for you.

In this book, we’ve tried to build an API management framework that can be applied
to more than one context. In these pages you’ll find guidance that will help you to

xiii

manage a single API that you want to share with developers around the world, as well
as advice for building a complex set of APIs in a microservice architecture designed
only for internal developers—and everything in between.

We’ve also written this book to be as technologically neutral as possible. The advice
and analysis we provide is applicable to any API-based architecture, including Hyper‐
Text Transfer Protocol (HTTP), Create/Read/Update/Delete (CRUD), REpresenta‐
tional State Transfer (REST), GraphQL, and event-driven styles of interaction. This is
a book for anyone who wants to improve the decisions being made about their APIs.

What’s in This Book
This book contains our collective knowledge from many years spent designing,
developing, and improving APIs—both our own and others’. We’ve distilled all that
experience into this book. We’ve identified two core factors for effective API develop‐
ment: adopting a product perspective and implementing the right kind of team. We’ve
also identified three essential factors for managing that work: governance, product
maturity, and landscape design.

These five elements of API management form a foundation on which you can build a
successful API management program. In this book, we introduce each of these topics
and provide you with guidance on how to shape them to fit your own organizational
context.

The Outline
We’ve organized the book so that the scope of management concerns grows as you
progress through the chapters. We start by introducing the foundational concepts of
decision-based governance and the API as a product. This is followed by a tour of all
the work that must be managed when building an API product.

From this simple view of a single API, we then add the aspect of time as we dive
into what it means to change an API and how the maturity of the API impacts those
change decisions. This is followed by an exploration of the teams and people who do
that change work. Finally, in the last half of the book, we tackle the complexities of
scale and the challenges of managing a landscape of API products.

Here is a short summary of what you’ll find in each chapter:

• Chapter 1, “The Challenge and Promise of API Management” introduces the API•
management domain and explains why it’s so difficult to manage APIs effectively.

• Chapter 2, “API Governance” explores governance from the perspective of•
decision-based work—a foundational concept for API management.

xiv | Preface

• Chapter 3, “The API as a Product” establishes the API-as-a-product perspective•
and why it’s an essential part of any API strategy.

• Chapter 4, “The Pillars of an API Product” outlines the ten essential pillars of•
work in the API product domain. These pillars form a set of decision-making
tasks that must be managed.

• Chapter 5, “Continuous API Improvement” provides insight into what it means•
to change an API continuously. It introduces the need to adopt a continuous
change mentality and provides an understanding of the different types of API
changes (and their impacts) that you’ll encounter.

• Chapter 6, “API Styles” is a new chapter for this edition. It explores the five most•
common API styles we see as we visit with companies around the world and
digs into the strengths and drawbacks of each style to help you select the ones
appropriate for each use case you encounter.

• Chapter 7, “The API Product Lifecycle” introduces the API product lifecycle, a•
framework that will help you manage API work across the ten pillars over the life
of an API product.

• Chapter 8, “API Teams” addresses the people element of an API management•
system by exploring the typical roles, responsibilities, and design patterns for an
API team over the life of an API product.

• Chapter 9, “API Landscapes” adds the perspective of scale to the problem of•
managing APIs. It introduces the eight Vs—variety, vocabulary, volume, velocity,
vulnerability, visibility, versioning, and volatility—that must be addressed when
multiple APIs are changing at the same time.

• Chapter 10, “API Landscape Journey” outlines a continuous landscape design•
approach for managing API changes continuously and at scale.

• Chapter 11, “Managing the API Lifecycle in an Evolving Landscape” maps the•
landscape perspective back to the API-as-a-product perspective and identifies
how API work changes when the landscape evolves around it.

• Chapter 12, “Continuing the Journey” ties together the story of API management•
that has emerged and provides advice on preparing for the future and starting
your journey today.

What’s Not in This Book
The scope of API management is big, and there is a massive amount of variation
in contexts, platforms, and protocols. Given the constraints of time and space when
writing a book, it was impossible for us to address all the specific implementation
practices of API work. This book isn’t a guide for designing a REST API or for

Preface | xv

picking a security gateway product. If you are looking for a prescriptive guide to
writing API code or designing an HTTP API, this isn’t the right book for you.

While we do have examples that talk about specific practices, this isn’t an API
implementation–focused book (the good news is there are plenty of books, blogs,
and videos available already to help you fill that need). Instead, this book tackles a
problem that is rarely addressed: how to effectively manage the work of building APIs
within a complex, continuously changing organizational system.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Indicates program elements such as variable or function names, data types,
statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

xvi | Preface

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/cam-2e.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
Once again, we have many people to thank for all the help and support we received
as we pulled together new material for this second edition. As usual, our first thanks
goes to all the people we consulted with and had the privilege to interview, and all
those who attended our workshops and online webinars. The feedback was great,
and we learned something new with every encounter. Additional thanks goes to the
folks at NGINX who encouraged us to revise this book and who helped sponsor the

Preface | xvii

http://oreilly.com
http://oreilly.com
https://oreil.ly/cam-2e
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

work. Special thanks goes to all those who read early drafts and helped us shape the
final book you see before you. We’d also like to thank James Higginbotham, Hibri
Marzook, Marjukka Niinioja, and Matthew Reinbold for all the time they took to read
and review our work and point out ways we could make it better. And, of course,
none of this would be possible without the support of the folks at O’Reilly Media.
Our thanks go to Melissa Duffield, Gary O’Brien, Kate Galloway, Kim Wimpsett, and
many others who devoted their time and talent to helping us pull everything together.

xviii | Preface

1 Jennifer Thomson and George Mironescu, “APIs: The Determining Agents Between Success or Failure of
Digital Business,” IDC, https://oreil.ly/9yshw.

2 Thomson and Mironescu, “APIs: The Determining Agents Between Success or Failure of Digital Business.”
3 Ibid.

CHAPTER 1

The Challenge and Promise
of API Management

Management is, above all, a practice where art, science, and craft meet.
—Henry Mintzberg

According to an IDC report from 2019, 75% of the companies surveyed expected
to be “digitally transformed” in the next decade and expected that 90% of all new
apps would feature microservice architecture powered by APIs.1 It was also noted
that, for API-focused organizations, up to 30% of revenue was generated via digital
channels. At the same time, these companies identified key barriers to API adoption
as “complexity,” “security,” and “governance.”

Finally, this was one of the key summary findings: “Defining the right app architec‐
ture requires a deep understanding of the challenges related to governing, managing
and orchestrating these foundational technology components.”2 This survey, like the
one from Coleman Parkes we cited in the first edition of this book, contains a mix of
encouragement and caution.

An interesting trend we have seen in the last few years is a widening gap between the
“API haves” and “API have-nots.” For example, when asked the question “Does your
company have an API management platform?” 72% of media and services companies
answered “yes,” while only 46% of companies in the manufacturing sector replied in
the affirmative.3 All indications are that APIs will continue to drive business growth

1

https://oreil.ly/9yshw
https://oreil.ly/pAWGs
https://oreil.ly/pAWGs

going forward, and it is imperative that companies from all segments of the economy
step up to the challenge of digital transformation.

The good news is there are many companies out there successfully managing their
API programs. The not-so-good news is that their experience and expertise is not
easily shared or commonly available. There are several reasons for this. Most of
the time, organizations that are doing well in their API management programs are
simply too busy to share their experiences with others. In a few cases, we’ve talked to
companies that are very careful about how much of their API management expertise
they share with the outside world; they are convinced API skills are a competitive
advantage and are slow to make their findings public. Finally, even when companies
share their experience at public conferences and through articles and blog posts, the
information they share is usually company-specific and difficult to translate to a wide
range of organizations’ API programs.

This book is an attempt to tackle that last problem—translating company-specific
examples into shared experience all organizations can use. To that end, we have
visited with dozens of companies, interviewed many API technologists, and tried to
find the common threads between the examples companies have shared with us and
with the public. There are a small handful of themes that run through this book that
we’ll share here in this introductory chapter.

A key challenge to identify right up front is sorting out just what people mean
when they talk about APIs. First, the term API can be applied to just the interface
(e.g., an HTTP request URL and JSON response). It can also refer to the code and
deployment elements needed to place an accessible service into production (e.g., the
customerOnBoarding API). Finally, we sometimes use API to refer to a single instance
of a running API (e.g., the customerOnBoarding API running in the AWS cloud
versus the customerOnBoarding API running on the Azure cloud).

Another important challenge in managing APIs is the difference between the work of
designing, building, and releasing a single API and supporting and managing many
APIs—what we call an API landscape. We will spend a good deal of time in this
book on both ends of this spectrum. Concepts like API as a product (AaaP) and the
skills needed to create and maintain APIs (what we call API pillars) are examples of
dealing with the challenges of a single API. We will also talk about the role of API
maturity models and the work of dealing with change over time as important aspects
of managing an API.

The other end of that spectrum is the work of managing the API landscape. Your
landscape is the collection of APIs from all business domains, running on all plat‐
forms, managed by all the API teams in your company. There are several aspects
to this landscape challenges, including how scale and scope change the way APIs
are designed and implemented as well as how large ecosystems can introduce added
volatility and vulnerability just because of their size.

2 | Chapter 1: The Challenge and Promise of API Management

Finally, we touch on the process of decision making when managing your API
ecosystem. In our experience, this is the key to creating a successful governance plan
for your API programs. It turns out that the way you make decisions needs to change
along with your landscape; holding on to old governance models can limit your API
program’s success and even introduce more risk into your existing APIs.

Before we dive into the details on how you can learn to deal with both challenges—
your individual APIs and your API landscape—let’s take a look at two important
questions: what is API management, and why is it so hard?

What Is API Management?
As mentioned, API management involves more than just governing the design,
implementation, and release of APIs. It also includes the management of an API
ecosystem, the distribution of decisions within your organization, and even the
process of migrating existing APIs into your growing API landscape. In this section,
we’ll spend time on each of these concepts—but first it is important to talk about the
ultimate reason for APIs, the business of APIs.

The Business of APIs
Beyond the details of creating APIs and managing them, it is important to keep in
mind that all this work is meant to support business goals and objectives. APIs are
more than the technical details of JSON or XML, synchronous or asynchronous, etc.
They are a way to connect business units together to expose important functionality
and knowledge in a way that helps the company be effective. APIs are often a way to
unlock value that is already there in the organization, for example, through creating
new applications, enabling new revenue streams, and initiating new business.

This kind of thinking focuses more on the needs of API consumers instead of those
producing and publishing the APIs. This consumer-centric approach is commonly
referred to as “Jobs to Be Done,” or JTBD. It was introduced by Harvard Business
School’s Clayton Christensen, whose books The Innovator’s Dilemma and The Innova‐
tor’s Solution (Harvard Business Review Press) explore the power of this approach
in depth. For the purposes of launching and managing a successful API program,
it serves as a clear reminder that APIs exist to solve business problems. In our
experience, companies that are good at applying APIs to business problems treat
their APIs as products that are meant to “get a job done” in the same sense that
Christensen’s JTBD framework solves consumer problems.

Access to data
One way APIs can contribute to the business is by making it easy to access
important customer or market data that can be correlated to emerging trends
or unique behaviors in new customer segments. By making this data safely

What Is API Management? | 3

and easily available (properly anonymized and filtered), APIs may enable your
business to discover new opportunities, realize new products/services, or even
start new initiatives at a reduced cost and faster time to market.

Access to products
Another way an API program can help the business is by creating a flexible set
of “tools” (the APIs) to build new solutions without incurring a high cost. For
example, if you have an OnlineSales API that allows key partners to manage
and track their sales activity and a MarketingPromotions API that allows the
marketing team to design and track product promotional campaigns, you have
an opportunity to create a new partner solution: the SalesAndPromotions track‐
ing application.

Access to innovation
In our experience, many companies have internal processes, practices, and pro‐
duction pipelines that—while effective—are less than efficient. Some have been
around for quite a while (in some cases, decades), and we’ve even found cases
where no one can remember when (or why) the organization put a certain
process in place. Changing existing processes is not easy. It can also be costly.
By creating an infrastructure of APIs within your company, you can unleash
the creativity within your organization and, in some cases, bypass gatekeeping
mechanisms and enable improvements and efficiencies within your company.

We cover these important aspects of AaaP in Chapter 3. But, first, let’s explore a short
explanation of what we mean by the term API.

What Is an API?
Sometimes when people use the term API, they are talking about not only the inter‐
face but also the functionality—the code behind the interface. For example, someone
might say, “We need to release the updated Customer API soon so that other teams
can start using the new search functionality we implemented.” Other times, people
may use the term to refer only to the details of the interface itself. For example,
someone on your team might say, “What I’d like to do is design a new JSON API for
the existing SOAP services that support our customer onboarding workflow.” Both
are correct, of course—and it seems pretty clear what is meant in both cases—but it
can be confusing at times.

To try to clear up the distinction and make it easier for us to talk about both the
interface and the functionality, we are going to introduce some additional terms:
interface, implementation, and instance.

4 | Chapter 1: The Challenge and Promise of API Management

Interface, implementation, and instance
The acronym API stands for application programming interface. We use interfaces to
gain access to something running “behind” the API. For example, you may have
an API that exposes tasks for managing user accounts. This interface might allow
developers to:

• Onboard a new account.•
• Edit an existing account profile.•
• Change the status of (suspend or activate) an account.•

This interface is usually expressed using shared protocols such as HTTP, Message
Queuing Telemetry Transport (MQTT), Thrift, Transfer Control Protocol/Internet
Protocol (TCP/IP), etc., and relies on standardized formats like JSON, XML, YAML,
or HTML.

But that’s just the interface. Something else actually needs to perform the reques‐
ted tasks. That something else is what we’ll be referring to as the implementation.
The implementation is the part that provides the actual functionality. Often this
implementation is written in a programming language such as Java, C#, Ruby,
Python, or some other language. Continuing with the example of the user account,
a UserManagement implementation could contain the ability to create, add, edit, and
remove users. This functionality could then be exposed using the interface mentioned
previously.

Decoupling the Interface from the Implementation

Note that the functionality of the implementation described is
a simple set of actions using the Create, Read, Update, Delete
(CRUD) pattern, but the interface we described has three actions
(OnboardAccount, EditAccount, and ChangeAccountStatus). This
seeming “mismatch” between the implementation and the interface
is common and can be powerful; it decouples the exact implemen‐
tation of each service from the interface used to access that service,
making it easier to change over time without disruption.

The third term in our list is instance. An API instance is a combination of the inter‐
face and the implementation. This is a handy way to talk about the actual running
API that has been released into production. We manage instances using metrics to
make sure they are healthy. We register and document instances in order to make it
easy for developers to find and use the API to solve real-world problems. And we
secure the instance to make sure that only authorized users are able to execute the
actions and read/write the data needed to make those actions possible.

What Is API Management? | 5

Figure 1-1 clarifies the relationship between the three elements. Often in this book,
when we write API, we’re talking about the instance of the API: a fully operational
combination of interface and implementation. In cases where we want to highlight
just the interface or only the implementation, we’ll call that out in the text.

Figure 1-1. Three API elements

API Styles
Another important element of APIs is what can be called style. Like styles in other
fields (painting styles, decor, fashion, and physical architecture), API styles are coher‐
ent, identifiable approaches to creating and using APIs. It is important to know
what style of API your client applications want to consume and provide a consistent
implementation of that style when creating your API implementations.

The most common API style today is the REST or RESTful API style. But this is just
one possibility. In fact, we see an ever-growing trend of using non-REST, non-HTTP
APIs within organizations large and small. The rise of event-driven architecture
(EDA) is one example of this new reality for API management.

While there are many styles, each with unique names, in our expe‐
rience, there are five general styles you need to be aware of when
managing your API program. We cover the importance of API
styles and review each of them in Chapter 6.

It is rare that any company can get along relying on only one API style throughout
the company. And it is unlikely that any single style you implement will last forever.
Taking style into account when designing, implementing, and managing your API
ecosystem is a critical element in establishing the success and stability of your API
program.

This multistyle API reality leads to another important aspect of successful API man‐
agement programs: the ability to govern many APIs in a coherent and consistent way.

6 | Chapter 1: The Challenge and Promise of API Management

4 At music streaming service Spotify, they call these cross-cutting groups guilds. See “Scaling Up Your Teams”
on page 209 for more on this topic.

More Than Just the API
The API itself—the technical details of interface and implementation—is just part
of the story. The traditional elements of design-build-deploy are, of course, critical
to the life of your APIs. But actually managing APIs also means testing them, docu‐
menting them, and publishing them to a portal so that the right audience (internal
developers, partners, third-party anonymous app developers, etc.) can find and learn
how to use them properly. You also need to secure your APIs, monitor them at
runtime, and maintain them (including handling changes) over their lifetime. All
these additional elements of an API are what we call API pillars: elements that all
APIs need and all API program managers need to deal with. We’ll dig into pillars in
Chapter 4, where we walk through the list of ten key practices vital to creating and
maintaining healthy APIs.

The good news about these practice areas is that they transcend any single API. For
example, the skill of documenting APIs well is transferable from one API team to the
next. The same goes for learning proper testing skills, security patterns, and so forth.
That also means that even when you have separate teams for each API domain (sales
team, product team, back-office team, etc.), you also have “cross-cutting” interests
that bind people within teams to other people in other teams.4

Another important aspect of managing APIs is enabling and engineering the teams
that build them. We talk more about how this works in different organizations in
Chapter 8.

API Maturity Stages
Understanding the API pillars is not the entire picture. Each API in your program
goes through its own “lifecycle”—a series of predictable and useful stages. Knowing
where you are in the API journey can help you determine how much time and
resources to invest in the API at the moment. Understanding how APIs mature allows
you to recognize the same stages for a wide range of APIs and helps you prepare for
and respond to the varying requirements of time and energy at each stage.

On the surface, it makes sense to consider that all of the API pillars need to be
dealt with when designing, building, and releasing your APIs. But reality is different.
Often, for early-stage APIs it is most important to focus on the design and build
aspects and reduce efforts on documentation, for example. At other stages (e.g., once
a prototype is in the hands of beta testers), spending more time on monitoring the
use of the API and securing it against misuse is more important. Understanding

What Is API Management? | 7

maturity stages will help you determine how to allocate limited resources for maxi‐
mum effect. We’ll walk you through this process in Chapter 7.

More Than a Single API
As many readers may already know, things change when you start managing a lot of
APIs. We have customers with thousands of APIs that they need to build, monitor,
and manage over time. In this situation, you focus less on the details of how a
single API is implemented and more on the details of how these APIs coexist in an
ever-growing, dynamic ecosystem. As mentioned earlier, we call this ecosystem the
API landscape, and we devote several chapters to this concept in the second half of
the book.

Much of the challenge here is how to assure some level of consistency without
causing bottlenecks and slowdowns due to centralized management and review of all
the API details. This is usually accomplished by extending responsibility for those
details to the individual API teams and focusing central management/governance
efforts on normalizing the way APIs interact with one another, ensuring that there
is a core set of shared services or infrastructure (security, monitoring, etc.) in place
and available for all API teams, and generally providing guidance and coaching to
more autonomous teams. That is, it’s often necessary to move away from the usual
centralized command-and-control model.

One of the challenges when working toward distributing decision making and
autonomy deeper in the organization is that it can be easy for those higher up in
the organization to lose visibility into important activities happening at the team
level. Whereas in the past a team might have had to ask permission to take an action,
companies that extend additional autonomy to the individual teams will encourage
them to act without waiting for upper-level review and permission.

Most of the challenges of managing a landscape of APIs have to do with scale and
scope. It turns out that as your API program grows, it doesn’t just get bigger; it also
changes in shape. And that’s what we’ll discuss next.

Why Is API Management Difficult?
As we mentioned at the beginning of this chapter, while most companies have already
launched an API program, some sectors of the economy are more advanced in their
APIs than others. What’s going on here? Why is it that some companies are better
at this than others? What are the common challenges, and how can you help your
company overcome them?

As we visit with companies all over the world, talking about API lifecycle manage‐
ment, a few basic themes emerge:

8 | Chapter 1: The Challenge and Promise of API Management

Scope
Just what is it that central software architecture teams should be focusing upon
when governing APIs over time?

Scale
Often, what works when companies are just starting out on their API journey
doesn’t scale as the program grows from a few small teams to a global initiative.

Standards
As programs mature, management and governance efforts need to move from
detailed advice on API design and implementation to more general standardiza‐
tion of the API landscape, freeing teams to make more of their own decisions at a
detailed level.

Essentially, it is the continued balance of these three elements—scope, scale, and
standards—that powers a healthy, growing API management program. For this rea‐
son, it is worth digging into these a bit more.

Scope
One of the big challenges of operating a healthy API management program is achiev‐
ing the proper level of central control and, to make it even more challenging, the
proper level of changes as the program matures.

Early in the program, it makes sense to focus on the details of designing the API
directly. In cases where APIs are in their infancy, these design details might come
directly from the team creating the API—they look at existing programs “in the wild,”
adopt tooling and libraries that make sense for the style of API they plan to create,
and go ahead and implement that API.

It is at this “first stage” in the life of APIs within your company that detailed recom‐
mendations and clear roles can lead to early success. Chapters 3 and 4 list much of
the material we find helpful for companies just starting out on their API journeys.

In this “early-stage” API program, everything is new; all problems are encountered
(and solved) for the first time. These initial experiences often end up being chroni‐
cled as the company’s “API best practices” or company guidelines, etc. And they make
sense for a small team working on a few APIs for the very first time. However, those
initial guidelines may turn out to be incomplete.

As the number of teams working on APIs at the company grows, so does the
variety of styles, experiences, and points of view. It gets more difficult to maintain
consistency across all the teams—and not just because some teams are not adhering
to the published company guidelines. It may be that a new team is working with
a different set of off-the-shelf products that constrain their ability to follow the
initial guidelines. Maybe they don’t work in an event-streaming environment and are

Why Is API Management Difficult? | 9

supporting XML-based call-and-response-style APIs. They need guidance, of course,
but it needs to fit their domain and fit their customers’ needs.

At this “middle stage” of your API management program, the leadership and guide‐
lines need to shift from specific guidance on how to design and implement APIs to
a more general guidance on the lifecycle of your APIs and the ways in which they
need to interact with one another. Chapters 6 and 7 contain the kinds of things we see
successful organizations doing for middle-stage API programs.

There are certainly some guidelines that all teams need to share, but that guidance
needs to fit their problem domains as well as their API customers’ needs. As your
community widens, your diversity increases, and it is essential that you don’t make
the mistake of trying to eliminate that diversity. This is where your lever of control
needs to move from giving orders (e.g., “All APIs must use the following URL pat‐
terns…”) to giving guidance (e.g., “APIs running over HTTP should use one of the
following URL templates…”).

In this “later-stage” API management, the perspective of governance telescopes out
even further to focus on how APIs interact over time and how your APIs interact
with the APIs of other companies in your market space and industry sector. Chapters
9, 10, and 11 all reflect the kind of “big-picture” thinking needed to maintain a
healthy and stable API ecosystem well into the future.

As you can see, as your program’s scope expands, your collection of guidelines needs
to expand appropriately. This is especially important for global enterprises where
local culture, language, and history play an important role in the way teams think,
create, and solve problems.

And that leads us to the next key element: scale.

Scale
Another big challenge for creating and maintaining a healthy API management
program is dealing with changes in scale over time. As we discussed in the previous
section, growing the number of teams and the number of APIs created by those teams
can be a challenge. The processes needed to monitor and manage the APIs at runtime
will also change as the system matures. The tooling needed to keep track of a handful
of APIs all built by the same team in a single physical location is very different
from the tooling needed to keep track of hundreds or thousands of API entry points
scattered across multiple time zones and countries.

In this book we talk about this aspect of API management as the “landscape.” As your
program scales up, you need to be able to keep an eye on lots of processes by lots of
teams in lots of locations. You’ll rely more on monitoring runtime behavior to get a
sense of how healthy your system is at any one moment. In the second part of this
book (starting with Chapter 9) we’ll explore how the notion of managing the API

10 | Chapter 1: The Challenge and Promise of API Management

landscape can help you figure out which elements deserve your focus and what tools
and processes can help you keep a handle on your growing API platform.

API landscapes pose a new set of challenges. The processes you use to design, imple‐
ment, and maintain a single API are not always the same when you need to scale
your ecosystem. This is basically a game of numbers: the more APIs you have in your
system, the more likely it is that they will interact with one another, and that increases
the likelihood that some of those interactions will result in unexpected behavior (or
“errors”). This is the way large systems work—there are more interactions and more
unexpected results. Trying to remove these unexpected results gets you only part of
the way. You can’t eliminate all the bugs.

And that leads to the third challenge most growing API programs encounter: how
can you reduce unexpected changes by applying the appropriate level of standards
within your API program?

Standards
One of the key shifts that happen when you begin managing at the landscape level
instead of the API level is in the power of standards in providing consistent guidance
for teams designing, implementing, and deploying APIs in your organization.

As groups grow larger—including the group of teams responsible for your organiza‐
tion’s APIs—there is a coordination cost that is incurred (see “Decisions” on page
18). The growing scale requires a change in scope. And a key way to deal with this
challenge is to rely more on general standards instead of specific design constraints.

For example, one of the reasons the World Wide Web has been able to continue
to function well since its inception in 1990 is that its designers decided early on
to rely on general standards that apply to all types of software platforms and lan‐
guages instead of creating tightly focused implementation guidance based on any
single language or framework. This allows creative teams to invent new languages,
architecture patterns, and even runtime frameworks without breaking any existing
implementations.

A common thread that runs through the long-lived standards that have helped the
web continue to be successful is the focus on standardizing the interaction between
components and systems. Instead of standardizing the way components are imple‐
mented internally (e.g., use this library, this data model, etc.), web standards aim to
make it easy for parties to understand one another over the wire. Similarly, as your
API program grows to a more mature level, the guidance you provide to your API
community needs to focus more on general interaction standards instead of specific
implementation details.

Why Is API Management Difficult? | 11

This can be a tough transition to make, but it is essential to moving up the ladder to
a healthy API landscape where it is possible for teams to build APIs that can easily
interact with both the existing and the future APIs in your system.

Managing the API Landscape
As mentioned at the start of this chapter, there are two key challenges in the API
management space: managing the life of a single API and managing the landscape of
all the APIs. In our visits to many companies and our research into API management
in general, we find many versions of the “managing a single API” story. There are
lots of “lifecycles” and “maturity models” out there that provide solid advice on
identifying and mitigating the challenges of designing, building, and deploying an
API. But we have not found much in the way of guidance when it comes to an
ecosystem (we call it a landscape) of APIs.

Landscapes have their own challenges and their own behaviors and tendencies. What
you need to take into account when you design a single API is not the same as what
you must consider when you have to support tens, hundreds, or even thousands of
APIs. There are new challenges at scale that happen in an ecosystem—things that
don’t happen for a single instance or implementation of an API. We dive deep into
the API landscape later in the book, but we want to point out three ways in which
API landscapes present unique challenges for API management here at the start of
the book:

• Scaling technology•
• Scaling teams•
• Scaling governance•

Let’s take a moment to review each of these aspects of API management with regard
to landscapes.

Technology
When you are first starting your API program, there are a series of technical deci‐
sions to make that will affect all your APIs. The fact that “all” your APIs is just a small
set at this point is not important. What is important is that you have a consistent set
of tools and technologies that you can rely upon as you build out your initial API
program. As you’ll see when we get into the details of the API lifecycle (Chapter 7)
and API maturity, API programs are not cheap, and you need to carefully monitor
your investments of time and energy into activities that will have a high impact on
your API’s success without risking lots of capital too early in the process. This usually
means selecting and supporting a small set of tools and providing a clear, often
detailed set of guidance documents to help your API teams design and build APIs

12 | Chapter 1: The Challenge and Promise of API Management

that both solve your business problems and work well together. In other words, you
can gain early wins by limiting your technical scope.

This works well at the start, for all the reasons we’ve mentioned. However, as your
program scales up in volume (see “Volume” on page 242) and its scope widens (e.g.,
more teams building more APIs to serve more business domains in more locations,
etc.), the challenges also change. As you grow your API program, relying on a
limited set of tools and technologies can become one of the key things that slow you
down. While at the beginning, when you had a small set of teams, limiting choices
made things move faster, placing limits on a large set of teams is a costly and risky
enterprise. This is especially true if you start to add teams in geographically distant
locations and/or when you embrace new business units or acquire new companies to
add to your API landscape. At this point, variety (see “Variety” on page 236) becomes
a much more important success driver for your ecosystem.

So, an important part of managing technology for API landscapes is identifying when
the landscape has grown large enough to start increasing the variety of technologies
instead of restricting them. Some of this has to do with the realities of existing
implementations. If your API landscape needs to support your organization’s existing
SOAP-over-TCP/IP services, you can’t require all these services to use the same URL
guidance you created for your greenfield CRUD-over-HTTP APIs. The same goes for
creating services for new event-driven Angular implementations or the legacy remote
procedure call (RPC) implementations.

A wider scope means more technological variety in your landscape.

Teams
Technology is not the only aspect of API management that surfaces a new set of
challenges as the program grows. The makeup of the teams themselves needs to
adjust as the landscape changes, too. Again, at the start of your API program, you can
operate with just a few committed individuals doing—for the most part—everything.
This is when you hear names like “full-stack developer” or “MEAN developer” or
some other variation on the idea of a single developer that has skills for all aspects
of your API program. (MEAN stands for MongoDB, Express.js, Angular.js, Node.js.)
You also may hear a lot of talk about “startup teams” or “self-contained teams.” It all
boils down to having all the skills you need in one team.

This makes sense when your APIs are few and they all are designed and implemented
using the same set of tools (see “Technology” on page 12). But as the scale and scope
of your API program grows, the number of skills required to build and maintain your
APIs grows, too. You can no longer expect each API team to consist of a set number
of people with skills in design, database, backend, frontend, testing, and deployment.
You might have a team whose job is to design and build a data-centric dashboard
interface used by a wide range of other teams. Their skills may, for example, need to

Managing the API Landscape | 13

cover all the data formats used and tools needed to collect that data. Or you might
have a team whose primary job is to build mobile apps that use a single technology
like GraphQL or some other query-centric library. As technological variety grows,
your teams may need to become more specialized. We’ll have a chance to explore this
in detail later, in Chapter 8.

Another way in which teams will need to change as your API landscape grows is the
way in which they participate in day-to-day decision-making processes. When you
have a small number of teams and their experience is not very deep, it can make sense
to centralize the decision making to a single, guiding group. In large organizations,
this is often the Enterprise Architecture group or something with a similar name.
This works at smaller scales and scopes but becomes a big problem as your ecosystem
becomes less homogeneous and more wide-ranging. As tech gets more involved,
a single team is unlikely to be able to keep up with the details of each tool and
framework. And as you add more and more teams, decision making itself needs to
be distributed; a central committee rarely understands the realities of the day-to-day
operations in a global enterprise.

The solution is to break down the decision-making process into what we call deci‐
sion elements (see “The Elements of a Decision” on page 28) and distribute those
elements to the proper levels within your company. A growing ecosystem means
teams need to become more specialized on a technical level and more responsible at
the decision-making level.

Governance
The last area that we want to touch on in regard to the challenge of API landscapes
is the general approach to governance of your API program. Again, as in other cases
mentioned here, it is our observation that the role and levers of governance will
change as your ecosystem grows. New challenges appear, and old methods are not as
effective as they were in the past. In fact, especially at the enterprise level, sticking to
old governance models can slow or even stall the success of your APIs.

Just as in any area of leadership, when the scope and scale are limited, an approach
based on providing direct guidance can be the most effective. This is often true not
just for small teams, but also for new teams. When there is not a lot of operating
experience, the quickest way to success is to provide that experience in the form
of detailed guidance and/or process documents. For example, we find that early
API program governance often takes the form of multipage process documents that
explain specific tasks: how to design the URLs for an API, or which names are valid
for URLs, or where the version number must appear in an HTTP header. Providing
clear guidelines with few options makes it hard for developers to stray from the
approved way of implementing your APIs.

14 | Chapter 1: The Challenge and Promise of API Management

But again, as your program grows, as you add more teams and support more business
domains, the sheer size and scope of the community begin to make it difficult
to maintain a single guidance document that applies to all teams. And while it is
possible to “farm out” the job of writing and maintaining detailed process documents
for the entire enterprise, it is usually not a good idea anyway—as we mentioned
in “Technology” on page 12, technology variety becomes a strength in a large ecosys‐
tem, and attempting to rein it in at the enterprise governance level can slow your
program’s progress.

That’s why as your API landscape expands, your governance documents need to
change in tone from offering direct process instructions to providing general princi‐
ples. For example, instead of writing up details on what constitutes a valid URL for
your company, it is better to point developers to the Internet Engineering Task Force’s
guidelines on URI design and ownership (RFC 7320) and provide general guidance
on how to apply this public standard within your organization. Another great exam‐
ple of this kind of principled guidance can be found in most UI/UX guidelines, such
as the “10 Usability Heuristics for User Interface Design” from the Nielsen Norman
Group. These kinds of documents provide lots of options and rationales for using one
UI pattern over another. They offer developers and designers guidance on why and
when to use something instead of simply setting requirements for them to follow.

Finally, for large organizations, and especially companies that operate in multiple
locations and time zones, governance needs to move from distributing principles
to collecting advice. This essentially reverses the typical central governance model.
Instead of telling teams what to do, the primary role of the central governance com‐
mittee becomes to collect experience information from the field, find correlations,
and echo back guidance that reflects “best practice” within the wider organization.

So, as your API landscape grows, your API governance model needs to move from
providing direct advice to presenting general principles to collecting and sharing
practices from experienced teams within your company. As we’ll see in Chapter 2,
there are a handful of principles and practices you can leverage to create the kind of
governance model that works for your company.

Summary
In this opening chapter, we touched on a number of important aspects of API man‐
agement that appear within this book. We acknowledged that while APIs continue to
be a driving force, barely 50% of companies surveyed are confident of their ability
to properly manage these APIs. We also clarified the many uses of the term API
and how these different uses may make it harder to provide a consistent governance
model for your program.

Summary | 15

https://oreil.ly/qU66X

Most importantly, we introduced the notion that managing “an API” (as in a single
API) is very different from managing your “API landscape.” In the first case, you can
rely on AaaP, API lifecycle, and API maturity models. Change management for APIs
is also very much focused on this “an API” way of thinking. But this is just part of the
story.

Next, we discussed managing your API landscape—the entire API ecosystem within
your organization. Managing a growing landscape of APIs takes a different set of
skills and metrics; these are skills that deal with variety, volume, volatility, vulnera‐
bility, and several other aspects. In fact, these landscape aspects all affect the API
lifecycle, and we’ll review them in detail later in this book.

Finally, we pointed out that even the way you make your decisions about your API
program will need to change over time. As your system grows, you need to distribute
decision making just as you distribute IT elements like data storage, computational
power, security, and other parts of your company’s infrastructure.

With this introduction as a background, let’s start by focusing on the notion of
governance and how you can use decision making and the distribution of decisions as
a primary element in your overall API management approach.

16 | Chapter 1: The Challenge and Promise of API Management

CHAPTER 2

API Governance

Hey, a rule is a rule, and let’s face it, without rules there’s chaos.
—Cosmo Kramer

Governance isn’t the kind of thing people get excited about. It’s also a topic that
carries a bit of emotional baggage. After all, few people want to be governed, and
most people have had bad experiences with poorly designed governance policies and
nonsensical rules. Bad governance (like bad design) makes life harder. But in our
experience, it’s difficult to talk about API management without addressing it.

In fact, we’ll go as far as saying that it’s impossible to manage your APIs without
governing them.

Sometimes, API governance happens in a company, but the term governance is never
used. That’s perfectly fine. Names matter, and in some organizations, governance
implies a desire to be highly centralized and authoritative. That can run counter to a
culture that embraces decentralization and worker empowerment, so it makes sense
that governance is a bad word in those kinds of places. No matter what it’s called,
some form of decision governance is always taking place.

The question “Should you govern your APIs?” isn’t very interesting, because in our
opinion, the answer is always yes. Instead, ask yourself: “Which decisions need to be
governed?” and “Where should that governance happen?” Deciding on the answers
to these types of questions is the work of designing a governance system. Different
styles of governance can produce vastly different working cultures, productivity rates,
product quality, and strategic value. You’ll need to design a system that works for you.
Our goal in this chapter is to give you the building blocks to do that.

We’ll start by exploring the three foundational elements of good API governance:
decisions, management, and complexity. Armed with this understanding, we’ll take
a closer look at how decisions can actually be distributed in your company and how

17

that impacts the work you do. That means taking a closer look at centralization,
decentralization, and the elements of what makes a decision. Finally, we’ll take a look
at what it means to build a governance system and take a tour of three governance
styles.

Governance is a core part of API management, and the concepts we introduce in
this chapter will be built upon throughout the rest of this book. So, it’s worthwhile to
spend some time understanding what API governance really means and how it can
help you build a better API management system.

Understanding API Governance
Technology work is the work of making decisions—lots of decisions, in fact. Some
of those decisions are vitally important, while others are trivial. All this decision
making is the reason that we can say a technology team’s work is knowledge work. The
key skill for a knowledge worker is to make many high-quality decisions, over and
over again in a timely fashion. When that happens, products get delivered, changes
become easier to make, and teams hit their goals.

No matter which technologies you introduce, how you design your architecture,
or which companies you choose to partner with, it’s the decision-making abilities
of everyone involved that dictate the fate of your business. That’s why governance
matters. You need to shape all of those decisions in a way that helps you achieve your
organizational goals.

That’s harder to do than it sounds. To give yourself a better chance of success, you’ll
need a better understanding of the foundational concepts of governance and how
they relate to one another. Let’s start by taking a quick look at API decisions.

Decisions
If you can make better decisions, you’ll produce better results. APIs are primarily
a technology product, but to build better APIs you’ll need to make decisions that
go well beyond writing good code. Consider the following list of choices API teams
often make:

• Should our API’s URI be /payments or /PaymentCollection?•
• Which cloud provider should we host our API in?•
• We have two customer information APIs—which one do we retire?•
• Who’s going to be on the development team?•
• What should I name this Java variable?•

18 | Chapter 2: API Governance

From this short list of decisions, we can make a few observations. First, API manage‐
ment choices span a wide spectrum of concerns and people—making those choices
will require a lot of coordination between people and teams. Second, the individual
choices people make have different levels of impact—the choice of a cloud provider
is likely to affect your API management strategy much more than the name of a Java
variable. Third, small choices can have a big impact at scale—if 10,000 Java variables
are named poorly, the maintainability of your API implementations will suffer greatly.

All of these choices, spanning multiple domains, being made in coordination and at
scale, need to come together to produce the best result. That’s a big and messy job.
Later in this chapter we’ll pick this problem apart and give you some guidance for
shaping your decision system. But first, let’s take a closer look at what it means to
govern these decisions and why governance is so important.

Decision Management
If you’ve ever worked on a small project by yourself, you know that the success or
failure of that work relies solely on you. If you make good decisions consistently, you
can make something good happen. A single, highly skilled programmer can produce
some amazing things. But this way of working doesn’t scale very well. When the thing
you produce starts getting used, the demand for more changes and more features
grows. That means you need to make many more decisions in a shorter space of
time—which means you’ll need more decision makers. Scaling decision making like
this requires care. You can’t afford for the quality of your decisions to drop just
because there are more people making them.

That’s where governance comes in. Governance is the process of managing decision
making and decision implementation. Notice that we aren’t saying that governance
is about control or authority. Governance isn’t about power. It’s about improving the
decision-making quality of your people. In the API domain, high-quality governance
means producing APIs that help your organization succeed. You may need some level
of control and authority to achieve that, but it’s not the goal.

Keep in mind that governance always has a cost. Constraints need to be communica‐
ted, enforced, and maintained. Rewards that shape decision-making behavior need to
be kept valuable and attractive to your audience. Standards, policies, and processes
need to be documented, taught, and kept up-to-date. On top of that, constant infor‐
mation gathering is needed to observe the impact of all of this on the system. You
may even need to hire more people just to support your governance efforts.

Beyond those general costs of maintaining the machinery of governance, there are
also the hidden costs of applying governance to your system. These are the impact
costs that come up when you actually start governing the system. For example, if you
mandate the technology stack that all developers must use, what is the organizational

Understanding API Governance | 19

cost in terms of technological innovation? Also, what will be the cost to employee
happiness? Will it become more difficult to attract good talent?

It turns out that these kinds of costs are difficult to predict. That’s because in reality
you’re governing a complex system of people, processes, and technology. To govern
an API system, you’ll first need to learn what it takes to manage a complex system in
general.

Governing Complex Systems
The good news is that you don’t need to control every single decision in your
organization to get great results. The bad news is that you’ll need to figure out which
decisions you will need to control in order to get those good results. That’s not an
easy problem to solve, because the answer is that “it depends.”

If all you wanted to do was bake a sponge cake, we could give you a pretty definitive
recipe for making one. We’d tell you how much flour and how many eggs you’d need
and what temperature to set your oven at. We could even tell you exactly how to
check if the cake is done. That’s because there is very little variability in modern
baking. The ingredients are reasonably consistent no matter where you purchase
them from. Ovens are designed to cook at specific, standardized temperatures. Most
importantly, the goal is the same—a specific kind of cake.

But you aren’t making a cake, and this isn’t a recipe book. You’ll need to deal with
an incredible amount of variability. For example, the people in your company will
have varying levels of decision-making talent. The regulatory constraints you operate
in will be unique to your industry and location. You’ll also be serving your own
dynamically changing consumer market with its own consumer culture. On top of all
that, your organizational goals and strategy will be entirely unique to you.

All this variability makes it tough to prescribe a single correct “recipe” for API
governance. To make things even harder, there’s also the small problem of knock-on
effects. Every time you introduce a rule, create a new standard, or apply any form
of governance, you’ll have to deal with unintended consequences. That’s because all
the various parts of your organization are intertwined and connected. For example,
to improve the consistency and quality of your API code, you could introduce a
standard technology stack. That new stack might result in bigger code packages as
programmers start adding more libraries and frameworks. And that could result in a
change to the deployment process because the bigger deployment packages can’t be
supported with the existing system.

With the right information, maybe you could predict and prevent that outcome. But
it’s impossible to do that for every possible eventuality, especially within a reasonable
amount of time. Instead, you’ll need to accept the fact that you are working with a

20 | Chapter 2: API Governance

complex adaptive system. As it turns out, this is a feature, not a bug. You’ll just need
to figure out how to use it to your advantage.

Complex adaptive systems
When we say that your organization is a complex adaptive system, we mean:

• It has lots of parts that are interdependent (e.g., people, technologies, process,•
culture).

• Those parts can change their behavior dynamically and adapt to system changes•
(e.g., teams changing deployment practices when containerization is introduced).

The universe is full of these kinds of systems, and the study of complexity has become
an established scientific discipline. Even you yourself are a complex adaptive system.
You might think of yourself as a single unit—a self—but “self ” is just an abstraction.
In reality, you’re a collection of organic cells, albeit a collection of cells that is capable
of amazing feats: thinking, moving, sensing, and reacting to external events as an
emergent whole “being.” At the cellular level, your individual cells are specialized; old,
dying cells are replaced, and groups of cells work together to produce big impacts in
your body. The complexity of the biological system that you are composed of makes
your body highly resilient and adaptable. You’re probably not immortal, but you’re
equally likely to be able to withstand massive amounts of environmental change and
even bodily damage, thanks to your complex biological system.

Usually, when we talk about “systems” in technology, we focus on software systems
and network-based architecture. Those kinds of systems can definitely grow to be
complex. For example, the web is a perfect example of system-level complexity and
emergence. Individual servers in a network run independently, but through their
dependencies and interconnections produce an emergent whole that we call “the
web.” But most of that software isn’t really adaptive.

APIs are no exception. The APIs we write today aren’t very adaptive. If they are any
good, they do exactly what they are programmed to do. Once an API is released, it’s
unlikely to change the way it works, unless someone fixes it. The fundamental truth
about API governance is that governing APIs alone won’t get you very far. Instead,
you need to govern the people in your organization and the decisions they make
about their APIs. The only way to get better APIs is to help your people make better
API decisions.

People are very good at adapting (especially when compared to software). Your API
organization is a complex adaptive system. All of the individual people in your
organization make many local decisions, sometimes collectively and sometimes indi‐
vidually. When all those decisions happen at scale and over time, a system emerges.
Just like your body, that system is capable of adapting to a lot of change.

Understanding API Governance | 21

But managing people’s decisions requires a special kind of approach. It’s difficult to
predict the impact of changes in a complex system—making a change to one part
of your organization can lead to unintended consequences in another part. That’s
because the people in your organization are constantly adapting to the changing
environment. For example, introducing a rule that deploying software in “containers”
is forbidden would have a wide-reaching impact, affecting software design, hiring,
deployment processes, and culture.

All of this means that a big, up-front plan and execution approach to API gover‐
nance is unlikely to work. Instead, you’ll need to “nudge” the system by making
smaller changes and assessing their impact. It requires an approach of continuous
adjustment and improvement, in the same way you might tend to a garden, pruning
branches, planting seeds, and watering while continuously observing and adjusting
your approach. In Chapter 5, we’ll explore the concept of continuous improvement in
more detail.

Governing Decisions
In the previous section, we introduced the concept of governing decisions inside a
complex system. Ideally, that’s helped you to understand a fundamental rule for API
governance: if you want your governance system to be effective, you’ll need to get
better at influencing the decisions that people make. We think one of the best ways
to do that is to focus on where decisions are happening and who is making them. It
turns out that there isn’t a single best way to map out those decisions. For example,
consider how API design governance could be handled in two different fictional
companies:

Company A: Pendant Software
At Pendant Software, all API teams are provided with access to the Pendant
Guidelines for API Design ebook. These guidelines are published quarterly by
Pendant’s API Center of Excellence and Enablement—a small team of API
experts working inside the company. The guidelines contain highly prescriptive
and very specific rules for designing APIs. All teams are expected to adhere to the
guidelines, and APIs are automatically tested for conformance before they can be
published.

As a result of these policies, Pendant has been able to publish a set of industry-
leading, highly consistent APIs that developers rate very favorably. These APIs
have helped Pendant differentiate itself from competitors in the marketplace.

Company B: Vandelay Insurance
At Vandelay, API teams are given the company’s business goals and expected
results for their API products. These goals and results are defined by the execu‐
tive teams and are updated regularly. Each API team has the freedom to address

22 | Chapter 2: API Governance

an overall business goal in the manner they choose, and multiple teams can pur‐
sue the same goal. API teams can design and implement APIs however they like,
but every product must adhere to Vandelay’s enterprise measurement and moni‐
toring standards. The standards are defined by Vandelay’s System Commune, a
group made up of individuals from each of the API teams who join voluntarily
and define the set of standards that everyone needs to follow.

As a result of these policies, Vandelay has been able to build a highly innovative,
adaptive API architecture. This API system has enabled Vandelay to outmaneu‐
ver its competition with innovative business practices that can be delivered very
quickly in its technology platform.

In our fictional case studies, both Pendant and Vandelay were wildly successful in
their management of decision making. But the way they governed their work was
incredibly different. Pendant found success with a highly centralized, authoritative
approach, while Vandelay preferred a results-oriented method. Neither approach is
“correct,” and both styles of governance have merit.

To govern decisions effectively, you’ll need to address three key questions:

• Which decisions should be managed?•
• Where should those decisions be made (and by whom)?•
• How will the system be impacted by your decision management strategy?•

There are lots of decisions to make in an API-enabled system, both
at the API level and at the collective, “landscape” level. We’ll catalog
the breadth of the decisions you need to make and manage in
Chapters 4 and 9, respectively.

For now, we’ll focus on the second question of where in the system the most impor‐
tant decisions should be made. To help you address decision distribution, we are
going to dig deeper into the subject of governing a decision. We’ll tackle the trade-off
between centralized and decentralized decision making, and we’ll take a closer look at
what it means to distribute a decision.

Centralization and Decentralization
Earlier in this chapter, we introduced the concept of a complex adaptive system,
and we used the human body as an example. These kinds of systems abound in
nature, and you are surrounded by them. For example, the ecosystem of a small pond
can be thought of as a complex adaptive system. It continues to survive thanks to
the activities and interdependence of the animals and vegetation that live in it. The

Governing Decisions | 23

ecosystem adapts to changing conditions thanks to the localized decision making of
each of these living things.

But the pond doesn’t have a manager, and there is no evidence that the frogs, snakes,
and fish hold quarterly management meetings. Instead, each agent in the system
makes individual decisions and exhibits individual behaviors. Taken together these
individual decisions and actions form a collective, emergent whole that can survive
even as individual parts of the system change or appear and disappear over time. Like
most of the natural world, the pond system succeeds because system-level decisions
are decentralized and distributed.

As we established earlier, your organization is also a complex adaptive system. It’s a
product of all the collective individual decisions made by your employees. Just like in
a human body or a pond ecosystem, if you were to allow individual workers to have
complete freedom and autonomy, the organization as a whole would become more
resilient and adaptive. You’d have a bossless, decentralized organization that could
find its way thanks to the individual decisions of its employees (see Figure 2-1).

Figure 2-1. A decentralized organization

You could do this, but you might run into some problems, primarily because it’s
difficult to succeed with a free-market organization in the same way that complex
systems succeed in nature. The biosystem of a pond is directed by the hand of natural
selection. Every agent in the system has become optimized for the survival of its
species. There’s no system-level goal beyond survival. On top of that, in nature it’s
normal for systems to fail. For example, if an invasive species is introduced, the entire

24 | Chapter 2: API Governance

pond system might die. In the natural world, that can be OK because something else
might take its place—the system as a whole remains resilient.

However, businesses leaders don’t respond well to this level of uncertainty and lack
of control. Chances are you’ll need to steer your system toward specific goals that go
beyond survival. Also, it’s likely that you aren’t willing to risk letting your company
die for the sake of a better company taking its place. You’ll almost certainly want
to reduce the risk that any individual agent can destroy the whole company because
of a bad decision. That means you’ll need to reduce decision-making freedom for
individuals and introduce some accountability. One way of doing that is to introduce
decision centralization (Figure 2-2).

Figure 2-2. A centralized organization

By this, we mean that decision making is constrained to a particular person or team
in your organization. That centralized team makes a decision that the rest of the
company will need to adhere to. Decentralization is the opposite case: individual
teams can make decisions that only they need to adhere to.

The truth is that there is no perfectly centralized or perfectly decentralized organi‐
zation. Instead, different types of decisions are distributed within the organization
in different ways—some are more centralized, while others are more decentralized.
You’ll need to decide how to distribute the decisions that impact your system the
most. So, which ones should be more centralized, and which ones should be more
decentralized?

Remember, a primary goal of governing decisions is to help your organization suc‐
ceed and survive. What that means is entirely dependent on your business context,
but generally speaking it means that decisions need to be timely enough to enable

Governing Decisions | 25

business agility and of sufficient quality to improve the business (or at the very least
avoid damaging it). There are three factors that impact the ability to make decisions:

Availability and accuracy of information
It’s really difficult to make a good decision if you base it on information that is
incorrect or missing. That could mean being misled about the goal or context of
the decision, but it could also mean not knowing what the decision’s impact will
be on the system. Most of the time, we assume the responsibility for gathering
decision-making information rests at the feet of the decision makers. But for the
purposes of distributing decisions, we also need to think about how centralizing
or decentralizing a decision affects the information that’s available.

Decision-making talent
Generally speaking, decision quality improves if the decision maker is good at
making high-quality decisions. Or, in simpler language—highly talented people
with lots of experience will make better decisions than less-talented people with
no experience. When it comes to distributing decision making, the challenge is to
also distribute your talent in a way that helps you the most.

Coordination costs
Complex decisions can’t be made in a timely manner unless the decision making
is shared. But whenever you share decision-making work, you’ll incur a coordi‐
nation cost. If that coordination cost grows too high, you won’t be able to make
decisions quickly enough. Centralization and decentralization of decisions can
have a big impact on coordination costs.

Thinking about decisions in terms of these factors will help you decide when a
decision should be centralized or decentralized. To help you understand how to do
that, we’ll take a look at it from two perspectives: scope of optimization and scale of
operation. Let’s start by digging into scope and its relationship with decision-making
information.

Scope of optimization
The big difference between a centralized decision and a decentralized decision has to
do with their scope. When you make a centralized decision, you are making it for
the entire organization. So, your scope for the decision includes the whole system,
and your goal is to make a decision that improves that system. Another way of saying
this is that the decision you are making is meant to optimize the system scope. For
example, a centralized team might decide on a development methodology for the
entire company to follow. The same team might also make decisions about which
APIs in the system should be retired. Both of these decisions would be made with the
goal of doing what’s best for the entire system.

26 | Chapter 2: API Governance

Conversely, the primary characteristic of a decentralized decision is that it is opti‐
mized for a local scope. When you are optimizing for the local scope, you are making
a decision that will improve your local context—the set of information that pertains
only to your local situation. While your decision might have an impact on the wider
system, your goal is to improve your local results. For example, an API team can
make a local decision to use a waterfall development process because they’re sharing
the work with an external company that insists on it.

The great thing about decentralized decision making is that it can help you make big
gains in efficiency, innovation, and agility for your business overall. That’s because
decentralized decision makers are able to limit their scope of information to a local
context that they understand. This means they can form a decision based on accurate
information about their own problem space, which helps them produce better deci‐
sions. For any modern business that is trying to succeed with a strategy of agility and
innovation, the decentralized decision pattern should be the default approach.

However, making decisions that focus only on optimizing the local scope can cause
problems, particularly if those decisions have the potential to impact the system
negatively and in irreversible ways. When former Amazon CEO Jeff Bezos talks about
the impact of decisions, he splits them into two types: “type 1” decisions that can
be easily reversed if they are wrong and “type 2” decisions that are near impossible
to recover from. For example, a lot of big companies choose to centralize decisions
about API security configuration to prevent a local optimization from creating a
system vulnerability.

Beyond dangers to the system, there are times when system-level consistency is more
valuable than local optimization. For example, an individual API team might choose
an API style that makes the most sense for their problem domain. But if every API
team chooses a different API style, the job of learning to use each API becomes more
difficult due to a lack of consistency, especially when many APIs need to be used to
accomplish a single task. In this case, optimizing the API style decision for the system
scope might be better.

You’ll need to think about the scope of optimization carefully when you plan where
a decision should happen. If a decision has the potential to impact your system in an
irreversible way, start by centralizing it so that it can be optimized for system scope.
If decision quality could benefit from the local context of information, start by decen‐
tralizing it. If decentralizing a decision could result in unacceptable inconsistency at
the system level, consider centralizing it.

Scale of operation
If you had unlimited resources for making good decisions, you’d only need to think
about scope for decision making. But you don’t. So, in addition to scope, you’ll need
to think about the scale of decisions being made. That’s because if there is a bigger

Governing Decisions | 27

https://oreil.ly/v5Ois

decision demand, there will be more pressure on your decision-making talent supply
and an upward pressure on your coordination costs. If you want your API work
to scale as your organization grows, you’ll need to plan your decision distribution
pattern carefully.

Decentralizing a decision creates a big talent demand when you are operating at scale.
When you decentralize a decision, you are distributing it to more than one team. If
you want all of those decisions to be high quality, you’ll need to fill each of those
teams with talented decision makers. If you can’t afford to do that, you’ll end up
generating lots of bad decisions. So, it’s worthwhile to hire the best decision makers
you can for every decision-making position in your company.

Unfortunately, hiring good people isn’t an industry secret. There are a limited num‐
ber of talented and experienced people available and a lot of companies competing to
hire them. Some companies are willing to spend whatever it takes to make sure that
they get the best talent in the world. If you are lucky enough to be in that situation,
you can decentralize more of your decisions because you have the talent to make
them. Otherwise, you’ll need to be more pragmatic with your distribution decisions.

If your supply of top-level, “grade A” decision-making talent is limited, you may
choose to pool that talent together and centralize the most important decisions to that
group of people. That way, you have a greater chance of producing better decisions,
faster. But an increasing scale of decision demand wreaks havoc on this model too,
because as the demand for decision making grows, the centralized team will need to
grow along with it. As the team grows, so too will the cost of coordinated decision
making. No matter how talented the people are, the cost of coordinating a decision
grows as you add more people. Eventually you’ll reach a number that makes it
impossible to reach decisions affordably.

All of this means that decision distribution will involve a lot of trade-offs. If the
decision is highly impactful, like the “type 1” decisions that Jeff Bezos describes,
you’ll need to centralize it and pay the price of lower decision-making throughput.
Conversely, if speed and local optimization are most important, you can decentralize
the decision and either pay for better people or accept the net reduction in quality of
decisions.

That said, there is a way to manage this trade-off in a more nuanced and flexible way.
It involves distributing the parts of the decision instead of the entire decision itself,
and it’s what we are going to focus on in the next section.

The Elements of a Decision
It’s difficult to distribute a decision in the way we’ve described so far because it’s a bit
of an all-or-nothing affair. Do you let your teams decide which development method
they want to use, or do you choose one and make every team use it? Do you let the

28 | Chapter 2: API Governance

teams decide when their API should retire, or do you take the choice away from them
completely? In reality, governance requires more nuance. In this section, we’ll explore
a way of distributing decisions with more flexibility by breaking them up into pieces.

Instead of distributing the entire decision, you can distribute parts of the decision.
That way you can get the benefits of system-level optimization along with highly
contextual local optimization at the same time. Some parts of a decision can be
centralized, while other parts are decentralized. To help you accomplish distribution
with this kind of precision, we’ve broken down API decisions into the six decision
elements you’ll need to distribute (see Figure 2-3).

Figure 2-3. Decision elements

This isn’t meant to be an authoritative, universal model for decision making. Instead,
it’s a model that we’ve developed to distinguish the parts of a decision that have the
biggest impact on a system when they are either centralized or decentralized. These
parts are based on the various five-, six-, and seven-step models of decision making
that abound in the business management domain. Although the steps we’ll describe
could be applied to a decision made by a single person, they’re most useful when we
are talking about decisions made in coordination between a group of people.

Let’s start by taking a look at how distributing the inception of a decision impacts
your system.

Inception
Every decision happens because someone thinks that decision needed to be made. It
means that someone has identified that a problem or opportunity exists with more
than one possible solution. Sometimes this is obvious, but in many cases spotting a
decision-making opportunity requires talent and expertise. You’ll need to think about
which decisions will naturally ignite on their own and which ones will need special
handling to make sure that they happen.

Kicking off decisions about API work happens naturally in the course of day-to-day
problem solving. For example, choosing which database to use for storing persistent
data would be a difficult decision for a typical implementer to ignore. The decision
happens because the work can’t continue without it. But there will also be situations
where you’ll need to force inception to happen. This is usually for one of two reasons:

Governing Decisions | 29

Habitualized decision making
Over time, if a team makes the same decision over and over, the decision may
disappear. That is, the possibilities are no longer considered, and instead an
assumption is made that work will continue in the same way it always has.
For example, if every API implementation is written in the Java programming
language, it may not occur to anyone to consider a different choice of language.

Decision blindness
Sometimes, teams will miss opportunities to make impactful decisions. This can
happen because of habit but also because of limited information, experience, or
talent. For example, a team may focus on the choice of which database to use for
storage but fail to identify that the API could be designed in a way that doesn’t
require persistent storage.

Not every decision needs to happen, and it’s perfectly fine for decisions to be missed
or for a cultural habit to make them implicit. It’s only a problem if not making a
decision negatively impacts the results you are getting from your APIs. Arbitrarily
demanding that more decisions happen could have a nightmarish impact on produc‐
tivity. Instead, the role of API governance is to generate more of the decisions that
will lead to optimal results and less of the decisions that will provide little value.

Choice generation
It’s hard to choose if you don’t know your options, and that’s what this element is all
about. Choice generation is the work of identifying the choices to choose from.

If you’re making a decision in a domain you have a lot of experience in, generating
choices can be pretty easy. But if there are lots of unknowns, you’ll need to spend
more time identifying the possibilities. For example, an experienced C programmer
already has a good idea of their options when they are deciding on a loop structure,
but a beginner will probably need to do some investigation to learn that they can use
a for loop or a while loop and the differences between the two.

Even if you know a domain fairly well, you’ll probably spend more time on choice
generation if the cost and impact of the decision are very high. For example, you may
have intimate knowledge of the different cloud hosting environments, but will still
perform your due diligence of research when it comes time to sign a contract with
one of them. Are there new vendors available that you didn’t know about? Are the
prices and terms still the same as you remember?

From a governance perspective, choice generation is important because it’s where the
boundaries of decision making are set. This is especially useful when the people com‐
ing up with the list of choices are not the same as the people making the selection.
For example, you could standardize a list of possible API description formats but let
individual teams decide which format they like best. If you take this approach, you’ll

30 | Chapter 2: API Governance

need to be careful about the quality of the “menu” you are providing. If the choices
are overly restrictive or of poor quality, you’ll run into problems.

Selection
Selection is the act of choosing from the list of possible options. Selection is the heart
of decision making, and it’s the step most people focus on, but the importance of
the selection element depends a lot on the scope of choices that have been made
available. If that scope is very wide, then the selection process is integral to the quality
of the decision. But if that scope has been constrained to safe choices with little
differentiating them, the selection step can be quick and less impactful.

Let’s walk through an example of this in action. Suppose you’re responsible for
configuring Transport Layer Security (TLS) for your HTTP API. Part of that work
includes a decision on which cipher suites (sets of cryptography algorithms) the
server should support. It’s an important decision because some cipher suites have
become vulnerable with age, so picking the wrong ones can make your API less
secure. Also, if you choose cipher suites that your users’ client software doesn’t
understand, nobody will be able to use your API.

In one scenario, you might be given a list of all the known cipher suites and asked
to select the ones that the server should support. In this case, selection would need
special care. You’d probably do a lot of research and only feel comfortable making a
selection once you’d gathered as much information as possible. In fact, if you didn’t
have a good amount of experience securing servers, you’d probably look for someone
who did and ask them to make a selection for you.

But what if instead of being given the set of all possible cipher suites, you were given
a curated list of them? The list of options might also include relevant information
about how well supported each cipher suite is and what the known vulnerabilities are.
Armed with this information, you could probably make a faster choice. Equally, your
choice is likely to be safer because your decision scope is limited to choices that have
been deemed safe enough to use. In this case, you’d make a decision based on what
you know about the clients using the API and the sensitivity and business importance
of the API.

Finally, you might be given only one choice: a single cipher suite that you must use. A
single-choice decision makes selection a trivial affair—the decision has been made for
you. In this case, the quality of the decision is entirely dependent on the people who
generated that choice. Ideally it’s a good fit for the specific requirements you have.

So, the importance of selection depends a lot on the scope of the choices offered.
There’s a bit of a trade-off at work here. If you push more of the decision-making
investment into choice generation, you’ll spend less time on selection, and vice versa.
That has implications for how you distribute decision elements and who should

Governing Decisions | 31

be responsible for them. Whichever decision element becomes more important will
require a suitably talented decision maker to make it.

It also means you can combine system scope and local scope by distributing choice
generation and choice selection. For example, you can centralize the generation of
development method choices based on the system context while still allowing indi‐
vidual teams to choose their preferred method using their local context. This happens
to be a particularly useful pattern for governing large API landscapes at scale and
preserving both safety and speed of change.

Authorization
Just because a choice has been selected doesn’t mean the decision is done. The
selection needs to be authorized before it can be realized. Authorization is the work
of deciding on the validity of the selected choice. Was the right selection made? Is it
implementable? Is it safe? Does it make sense in the context of other decisions that
have been made?

Authorization can be implicit or explicit. When authorization is explicit, it means
that someone or some team must expressly authorize the decision before it can go
forward. It becomes an approval step in the decision-making process. We’re sure
you’ve been involved in many decisions that required some kind of approval. For
example, in many companies, workers can select their holiday time from a list of
work dates, but it’s up to their manager to make the final approval decision on the
schedule.

Implicit authorization means that authorization happens automatically when some
set of criteria has been met. Examples of this are the role of the person making the
selection, the cost of the selection that was made, or adherence to a specific policy. In
particular, authorization can become implicit when the person making the selection is
also the person authorizing the selection. In effect, they become their own approver.

Explicit authorization is useful because it can further improve the safety of the
decision. But if there are lots of decisions being made and all of them are being
centrally authorized, then there is likely to be a reduction in decision speed. Lots of
people will end up waiting for their approvals. Implicit authorization greatly increases
the speed of decision making by empowering selection, but comes with greater risk.

How authorization should be distributed will be an important decision for you to
make in your governance design. You’ll need to consider the quality of decision
makers, the business impact of bad decisions, and the amount of risk built into the
choices offered. For highly sensitive decisions, you’ll probably want more explicit
authorization. For time-sensitive, large-scale decisions, you’ll need to figure out how
to introduce an implicit authorization system.

32 | Chapter 2: API Governance

Implementation
The decision-making process doesn’t end when the choice is authorized. A decision
isn’t realized until someone does the work of executing or implementing the choice
that has been made. Implementation is an important part of API management work.
If the implementation of decisions is too slow or of poor quality, then all of your
decision making is for naught.

Oftentimes a decision isn’t implemented by the people who made the selection.
In these cases it’s important to understand what that means for the availability of
accurate information gathering. For example, you might choose to introduce the
hypermedia style of APIs into your landscape, but if the implementation of hyper‐
media APIs turns out to be too difficult for the designers and developers, you’ll
need to reevaluate your decision. A good governance design will have to take these
practicalities into account. It’s no good managing decisions in a way that makes them
only theoretically better. When you are determining the quality of decision making,
you’ll need to include the implementability of the decision you are managing.

Challenge
Decisions aren’t immutable, and each decision you make for your API management
system should be open to being challenged. Oftentimes we don’t consider how the
decisions we make may need to be revisited, altered, or even reversed in the future.
Defining a challenge element allows us to plan for continuous change at the decision-
making level.

For example, if you’ve defined a “menu” of choices for API teams to choose from,
it’s wise to also define a process to go “off-menu.” That way you can sustain a decent
level of innovation and prevent bad decisions from being made. But if everyone
can challenge the decision to constrain these choices, then there aren’t really any
constraints. So, you’ll need to identify who can challenge the decision and in what
circumstances.

It’s also important to allow decisions to be challenged over time. As business strate‐
gies and context change, so too should the decisions of your system. To plan for that
kind of adaptability, you’ll need to build the challenge function into your system.
That means you’ll need to think about who in your organization will have the ability
to “pull the cord” and challenge an existing decision.

Decision Mapping
We now know that decisions are composed of a number of elements. Understanding
that decisions have atomic elements allows us to distribute the pieces of a decision
rather than the entire decision process. This turns out to be a powerful feature of
organizational design and will allow you to exert greater influence over the balance of
efficiency and thoroughness.

Governing Decisions | 33

For example, a decision about the style a new API should have is an important
one. In the clumsy, binary centralization versus decentralization discussion, the API
management designer might consider whether the members of the API team should
own the API style decision (decentralized) or a central body should maintain control
of it (centralized). The advantage of distributing the decision-making power to the
API teams is that each team can make the decision within a local context. The
advantages of centralizing the decision within a single strategic team are that the
variation in API styles is reduced, and control over the quality of the style choice is
maintained and controlled.

This is a difficult trade-off to make. But, if instead you distribute the elements of the
decision, it’s possible to design an API management system that lives somewhere in
between these two binary options. For example, you might decide that for an API
style decision, the elements of research and choice generation should be owned by a
centralized, strategic API management team, while the elements of choice selection,
authorization, and implementation are owned by the API teams themselves. In this
way, you choose to sacrifice some of the innovation that comes from distributing
choice generation in order to gain the benefits of a known set of API styles within the
company. At the same time, distribution of the API style selection and authorization
elements allows the API teams to continue to operate at speed (i.e., they do not need
to ask permission in order to choose a suitable style).

To get the most out of decision mapping, you’ll need to distribute decisions based on
your context and goals. Let’s take a look at two fairly common decision scenarios to
see how decision mapping can be a useful tool.

Decision mapping example: Choosing a programming language
You’ve identified that the decision of which programming language to choose for API
implementation is highly impactful, and you’d like to govern it. Your organization
has adopted a microservices style of architecture, and freedom to choose the pro‐
gramming language for implementation has been raised as a requirement. But after
running a few experiments, you’ve noticed that variation in programming languages
makes it harder for developers to move between teams and harder for security and
operations teams to support applications.

As a result, you’ve decided to try the decision distribution in Table 2-1 for deciding
on a programming language.

Table 2-1. Programming language decision map

Inception Choice generation Choice selection Authorization Implementation Challenge
Centralized Centralized Decentralized Decentralized Decentralized Decentralized

34 | Chapter 2: API Governance

This way you constrain the programming languages to a set of choices that are
optimized for the system as a whole but allow the individual teams to optimize
for their local contexts within those constraints. You’ve also allowed API teams to
challenge the decision so that you can accommodate new language choices and
changing situations.

Decision mapping example: Tool selection
Your chief technical officer (CTO) is trying to improve the level of agility and innova‐
tion of your software platform. As part of this initiative, they have decided to allow
API teams to choose their own software stacks for implementations, including the
use of open source software. However, your procurement and legal teams have raised
concerns based on legal risks and risks to supplier relationships. To get started with
this cultural transition, you’ve decided to implement the decision map in Table 2-2
for the software stack decision on a trial basis.

Table 2-2. Tool selection decision map

Inception Choice generation Choice selection Authorization Implementation Challenge
Decentralized Decentralized Decentralized Centralized Decentralized Centralized

Local optimization is one of the keys to your CTO’s strategy, so you choose to com‐
pletely decentralize inception, choice generation, and selection. However, to reduce
the system-level risk of a choice, you’ve mapped the authorization element to the
centralized procurement and legal teams. This should work for now, but you are also
aware that over time and at scale this has the potential to be a big bottleneck in your
system, so you make a note to keep measuring the process and tune it accordingly.

Decision Design in Practice
In our own API management work, we’ve rarely documented decisions using the
decision-mapping structure we’ve defined in this section. That’s because a decision
map isn’t a great way to communicate how work should be done or how a team can
achieve their goal. Think of the decision map as a useful mental model that you can
keep in your API management “toolbox.”

In practice, the decision map isn’t a great way of describing how people should work
or how teams should communicate with one another to get work done. That’s because
the decision map is a high-level abstraction: it focuses purely on the elements of a
decision. Instead, you’ll need to communicate your design in a language that fits your
context.

For example, in the enterprise management space, you might realize the decision
design by creating a target operating model (TOM). The TOM describes organiza‐
tional structures, process models, and the tools that teams will need to succeed. If

Governing Decisions | 35

you’re working in the world of technology and architecture, you could use Team
Topologies and draw a coordination model that can be translated into a software
architecture. Ultimately, you’ll need to express your target state in the language of the
work, decisions, and concepts that your people will understand.

Team Topologies

Team Topologies is a book that outlines a design approach by the
same name created by Matthew Skelton and Manuel Pais. It pro‐
vides a useful model and language for designing software by first
focusing on teams and the way they work together.

Understanding that the decision-making process can be broken up into distributa‐
ble parts is important because it encourages more precision in your governance
approach. It will help you get better results when it comes time to design the
important parts of your governance system. You’ll be able to consider which parts
of your organization should own the individual elements of key decisions. With that
understanding, you’ll be able to start applying solutions to focus on introducing
constraints and changing behaviors for those teams and people.

Designing Your Governance System
We’ve spent a lot of time going into the details of decision distribution because we
think it’s a foundational concept for a governance system. But it’s not the only thing
you’ll need to pay attention to if you want to introduce effective API governance. A
good API governance system should have the following features:

• Decision distribution based on impact, scope, and scale•
• Enforcement of system constraints and validation of implementation (from cen‐•

tralized decisions)
• Incentivization to shape decision making (for decentralized decisions)•
• Adaptiveness through impact measurement and continuous improvement•

It’s difficult to get the advantages of decision centralization if the rest of the organiza‐
tion doesn’t conform to the decision. That’s why enforcement and validation needs
to be a feature of an API governance system. We’ve purposefully steered away from
the authoritative parts of governance so far, but ultimately you’ll need to build at least
some constraints into your system. Even the most decentralized organizations have
rules that need to be followed. Of course, validation and enforcement will require
some level of obedience. If the centralized decision-making team has no authority, the
decisions will carry no weight.

36 | Chapter 2: API Governance

https://oreil.ly/wmJZY

If you don’t have authority, you can use incentivization instead of enforcement. This
is especially useful when you’ve decided to decentralize decisions but still want to
shape the selections that are being made. For example, an architecture team could
alter a deployment process so that deployment of immutable containers is made
much cheaper and easier than any other type of deployment. The goal here would
be to incentivize API teams who have authority over their own implementation
decisions to choose containerization more often.

In truth, neither the “carrot” of incentivization nor the “stick” of enforcement is
enough to steer your system on its own—you’ll need to use both. Generally speaking,
if a decision’s authorization element has been decentralized, you’ll have to use incen‐
tivization if you want to shape it. If selection and authorization have been centralized
and implementation is decentralized, you’ll need to make sure you’ve instituted some
level of enforcement or validation. Table 2-3 highlights when you should enforce or
incentivize a decision based on your decision-mapping design.

Table 2-3. When to enforce and when to incentivize

Enforce or incentivize? Choice generation Choice selection Authorization
Enforce Centralized Centralized or decentralized Centralized or decentralized

Incentivize Decentralized Decentralized Decentralized

No matter how you distribute your decisions or change decision-making behavior,
it’s crucial that you measure the impact you are having on the system itself. Ideally,
your organization should have some existing process indicators and measurements
that you can use to assess the impact of your changes. If there isn’t anything like that,
instituting organizational measurements should be one of your first priorities. Later,
in Chapter 7, we’ll talk about product measurement patterns for APIs. Although we’ll
be focusing on API product measurement specifically, you can still use that section as
an introductory guide for designing governance measurements for your system.

To help tie all this together, let’s take a look at three API governance patterns. These
patterns capture different approaches to API governance, but all of them use the core
principles of decision distribution, enforcement, incentivization, and measurement.
Keep in mind, we aren’t offering you a menu—you aren’t supposed to choose one of
these to be your governance system. We are offering you these patterns as a way of
illustrating how an API governance system can be implemented at a conceptual level.

For each governance pattern described, we’ll identify a few key decisions and how
they are mapped, how desired behaviors are enforced and incentivized, how talent is
distributed, and the costs, benefits, and measures for the approach.

Designing Your Governance System | 37

1 Thomas Bush, “PayPal’s Four-Step Process for Building Governance-Friendly APIs,” Nordic APIs (blog), June
9, 2020, https://oreil.ly/H6Ahj.

Governance Pattern #1: Design Authority
A design authority acts as a gatekeeper, ensuring that the outputs of API teams
conform to a minimum level of quality. Design authorities are centralized teams
that provide assurance for the quality of decision making in the organization. They
can be implemented as formal review boards that meet on a regular basis or as an
on-demand review service. Mature design authorities may even provide self-service
tooling to make the work of conformance testing cheap and easy.

PayPal’s Central Design Team
At PayPal, a central design authority team validates all new API designs using a
four-step process.1 They begin by examining proposals for new APIs to make sure
they are a good fit for the business and don’t already exist. Next, they test API designs
to make sure that they conform to PayPal’s published standards. After the API is
developed, the design team runs a set of tests to make sure that the implementation
matches the design contract. Finally, the published API is checked to make sure that it
meets PayPal’s security requirements.

Enforcement and incentivization
Design authorities are most effective when they have the power to prevent low-
quality, high-risk decisions from being made. That usually means they have the
authority to stop a change from being deployed if their quality requirements are
not met. In some companies, design authorities must function without authority.
Instead, these teams issue audit notes that highlight risks. In these cases, decision-
making quality relies on a team’s desire to address the notes that the design
authority has made. Whether this works or not depends a lot on the culture
of the organization and the people involved. To be effective, a design authority
should be more than a gate-keeping team, even when they have the authority
to be one. The team should endeavor to both validate that good decisions have
been made as well as inform teams on how to meet their quality requirements.
That means they’ll need to provide consumable information and guidance to
help teams avoid an endless cycle of conformance validation.

Talent distribution
In this pattern, a small number of expert decision makers are centralized in
the design authority team. But, they must be supported by API teams that
have competent decision makers who can make decisions that conform to the
design authority’s requirements. Otherwise, the system becomes bogged down by

38 | Chapter 2: API Governance

https://oreil.ly/H6Ahj

low-quality designs that need continuous help. In this pattern, it’s common for
the talent level of API teams to increase over time as they go through the design
and review process.

Costs and benefits
The primary benefit of this pattern is that all APIs are run through the same team
for quality control. This gives the organization maximum assurance that the right
decisions have been made and risks have been addressed. This kind of thorough‐
ness is crucial for decisions that could adversely impact a business. For example,
in large companies, API designs are almost always validated to make sure they
implement security and access controls correctly. But, the design authority’s
strength is also its greatest weakness. Running all API changes through a single
centralized team is a bottleneck waiting to happen. In the early stages of an
API-enabled company, a design authority can help immensely, but over time it
can become an enormous problem, causing API projects to stall as they wait to
get time with the team.

Governance Pattern #2: Embedded Centralized Experts
In this pattern, instead of validating the outputs of an API team, experts are embed‐
ded into the team to help with decision making. A typical implementation of this
pattern is an internal consulting model, in which a central pool of API experts are
distributed to API teams. These experts either enable key decisions or are given the
authority to make decisions on behalf of the team. But, the key characteristic of this
pattern is that the experts become part of the API team, investing their time to help
produce better outputs.

The Embedded Expert pattern relies on a central team of API experts who can be
distributed to work in API teams. Counterintuitively, this means that the research
and choice selection parts of decisions are centralized (even though they are executed
within federated teams). This works when the central team of experts have a shared
understanding of the “right” decisions for the company. Think of it like a distributed
version of the design authority. But, the actual authorization and implementation of
those choices are usually still owned by the teams themselves, leaving those elements
decentralized. We’ll discuss this type of centralized team structure later in “The
Center for Enablement” on page 254.

Designing Your Governance System | 39

HSBC’s API Champions
HSBC is a globally diverse and distributed organization, with many different teams
building APIs for their clients to use. To help their teams build better APIs, they’ve
created a network of API champions who understand and apply HSBC API standards
for local project teams. This helps them distribute API expertise across the organiza‐
tion at scale.

Enforcement and incentivization
Embedding experts in a project team is the ultimate form of enforcement. That’s
because the embedded experts either own or directly inform the decision-making
process. If your experts make decisions aligned with your central objectives, so
will the teams they are embedded within.

Talent distribution
A big challenge of running a consulting team is finding and maintaining a group
of experts. For this pattern to work, you’ll need a pool of API subject-matter
experts that can be distributed to project and product teams. That talent can be
centrally funded but is distributed decentrally to API teams and will need to scale
to meet the demand for API work in the system.

Costs and benefits
Being at the “coalface” of API work has several distinct advantages. First, it
ensures that better decisions are made early due to the involvement of a central
team’s experts in the work. Second, experts are able to bring back experiences
and knowledge from the work to ensure that central guidance is continually
improved to meet the needs of product and project teams. However, there are
severe operational challenges to this pattern. It requires an adequately large team
of experts to help every team. Depending on the scale of your organization,
this can be a challenge. Finally, it takes a concerted effort to maintain a shared
system-level optimization view among experts who are facing the day-to-day
challenges of delivering API products. Over time, this can result in a fully decen‐
tralized decision model with little consistency or management.

Governance Pattern #3: Influenced Self-Governance
We’ve noticed a trend in modern organizations toward less central control and more
team autonomy, within reason. As the business and technology world continues to
strive for more innovation and faster speed of change, there is less appetite for central
teams that control decision making with absolute authority. That’s given rise to a
third kind of governance pattern that relies heavily on influence rather than control.

40 | Chapter 2: API Governance

https://oreil.ly/Gezig

In this pattern, API teams have autonomy in a decision space. They have decision-
making agency and own all elements of the decision-making process. Their decisions
are “governed” by influencing the decisions that they make. A common way of
phrasing this is to make it difficult to do the wrong things and easier to do the right
things.

Spotify’s Golden Path
Spotify has embraced a platform approach called the Golden Path that provides a cat‐
alog of tools and services to Spotify engineering teams. These are the recommended
tools within the Spotify system. It’s easier for Spotify teams to use these tools because
they know that they are “blessed” by the platform team and are supported. However,
if needed, a team can go off-menu and use a tool of their choice.

Enforcement and incentivization
This pattern relies completely on incentivization to influence decision making.
This pattern embodies the Netflix principle of Freedom and Responsibility.
Teams are provided with a “Golden Path” of recommended decisions, driven
by a central team. Teams have the freedom to make a different decision; however,
they are also responsible for the success of their products. Ideally, this balance
drives teams to make decisions that conform to the central team’s offering.

Talent distribution
For this type of pattern to work, teams must be capable of making good decisions
independently. That means that talent must be distributed so that every team
has at least one expert who can guide API decision making properly. In organiza‐
tions where this scale of talent distribution is not possible, this pattern is often
combined with a design authority (“Governance Pattern #1: Design Authority”
on page 38) as a safeguard.

Costs and benefits
The key benefit of this pattern is speed. Teams can move very fast when they
are given autonomy over their decisions. But, that speed comes with the risk that
decisions will be inconsistent and or inadequate. In addition, local teams may
over-optimize for their local context to the detriment of the system. In practice,
self-governance is often combined with a centrally driven governance pattern to
balance these factors.

Implementing Governance Patterns
As we mentioned earlier in this chapter, if your API organization is a complex
adaptive system, it needs a lot of “nudges” to get good results. We’ve also introduced
a set of patterns that can help you distribute experts and tools to guide decisions in

Implementing Governance Patterns | 41

https://oreil.ly/chT9y
https://oreil.ly/DdTxl

the right direction. In this section, we’ll detail some strategies for implementing and
introducing these decision-guiding patterns in a practical manner.

We’ll outline the high-level parts of a governance solution that you’ll need to tackle,
including how to get started, how to get information, and how to produce tools
and assets. Later in this book, we’ll dive into specific aspects of management and
governance in more detail. For example, in Chapter 9 we’ll cover considerations when
forming a central team and the concept of a “platform.”

Evolving Your Solution
A central tenet of this book is that API management must be continuous to be
successful. That means that you’ll need to continuously adapt and evolve your gover‐
nance implementation as your organization grows and changes. The truth is that you
won’t create a perfect governance system on day one.

But, we still need to strive to start with a governance solution that works as well as
possible immediately. We also need to ensure that we don’t introduce a solution that
will be costly to change. With that in mind, we provide the following practices when
implementing a new governance solution:

Embed early
When embarking on a new governance solution, try to start by implementing
the pattern covered in “Governance Pattern #2: Embedded Centralized Experts”
on page 39 with a small set of indicative products or projects. This isn’t always
possible to do, especially when there is a large backlog of APIs that need to be
validated quickly. But, if you can afford to do it, starting with embedding gives
you a chance to test and learn your standards before you ratify and communicate
them to the organization. It’s usually easier to change a design decision in a
project than it is to change a published standard that the company has adopted
en masse. Another benefit of starting this way is that your team of experts can
build a network of relationships with product teams and experiences from the
front lines. If you plan to move to a centralized design authority (as covered
in “Governance Pattern #1: Design Authority” on page 38), this can help to coun‐
teract the “ivory tower,” out-of-touch syndrome that often develops in highly
centralized teams.

Implement observability early
You’ll never succeed at improving your system if you can’t observe what is
happening. In our experience, it’s worth investing in observability and visibility
early in the life of your governance solution. The more information you can get,
the better. From a practical perspective, it makes sense to start by focusing on
data collection. You can improve your insight and observability features as your
solution matures.

42 | Chapter 2: API Governance

Automate after
When it comes to API governance, automation provides a massive benefit. Tools
and automation reduce operational costs, provide more data to collect, and
make it easier for everyone to conform to your quality standards. But, you
don’t get automation for free. It takes effort and investment to implement an
automation solution. Changes to the solution can also come at high cost. This
change cost can result in organizations not wanting to change their governance
advice because they are limited by the tools they’ve chosen. In our experience,
automation and tooling are ideal for the more established decision areas of
your API system. For example, we recommend that you use a human review
process for API designs first before you establish a linting tool to automate design
validation. This ensures that you have the flexibility to establish the right checks
before you land on a tool-based solution.

Create centralized teams cautiously
As the number of APIs (and API teams) grows in your company, there will inevi‐
tably be pressure to create central teams to help manage the decision-making
work. In fact, central teams are an essential part of scaling all of the governance
patterns we defined earlier. However, be cautious when starting a new centralized
team. Unlike standards and tools, teams are often difficult to downsize or dis‐
band. In some cases, a central team may start to make its own existence its goal.
Once the genie is out of the bottle, it can be difficult to put back in. Creating
these teams cautiously may mean starting with a pool of borrowed resources
from other teams or keeping the team small and lean until demand necessitates
growth. Another approach we’ve heard of is to make the dissolution of the central
team a key goal. Ultimately, the central team serves a strong and necessary
purpose: optimizing APIs for system concerns. The challenge is to strike the
balance between meeting that need and creating an unnecessary overhead.

Observability and Visibility
As we’ve mentioned, getting data early is an important factor in implementing a good
governance solution. At a minimum, you should focus on gathering information
across these data points when you get started:

• All APIs that have been released and are currently running in production systems•
• Ownership and funding of APIs in the organization•
• Runtime traffic per API•
• Adoption (or conformance) levels of your standards and tools for each API•

The difficulty of gathering this information will depend greatly on the size of your
organization and its investment in APIs. In fact, in large enterprises, this kind of

Implementing Governance Patterns | 43

data collection can be a project in its own right. We’ll get into this in more detail in
“Understanding the Landscape” on page 234.

But, achieving adequate observability will require more than a data collection project.
You’ll need to influence API decisions so that API teams provide you with the data
you need. You can also use infrastructure and tooling to automate the gathering of
data at runtime. Our recommendation is to focus on these aspects of your system
early.

Operating Models
If you’re implementing a design authority (covered in “Governance Pattern #1:
Design Authority” on page 38) for some of your decision space, you’ll need to
set up formal meetings, checkpoints, or forums for reviews. But, even if you don’t
implement this pattern, you’ll still need to think about how you’ll gather and share
information across your organization. This requires you to think about how your
teams will operate on a day-to-day basis and how they will coordinate with one
another.

This is actually an essential part of your governance design and implementation.
Your operating or coordination model will have the biggest impact on the autonomy
and speed of your API teams as well as the quality of the decisions that they make.
The way that you share information and make decisions will depend a lot on your
organizational culture. We’ll talk a bit more about team designs and coordination
models later in the book in Chapter 8. For now, keep in mind that this is a key
ingredient for the solution you develop.

Develop a Strategy for Standards Management
We’ve yet to meet an API team that doesn’t work with some kind of standard for
their API development. In rare cases, those standards aren’t written down and shared
through a spoken history of how “things are done.” But, most of the time API
standards are documented in written form.

Standards are useful because they document a constrained set of choices for a deci‐
sion space. So, it’s worth spending some time thinking about how you’ll capture,
manage, and share the standards for your system. But, keep in mind that every
standard you write comes with its own management and operational costs. Sadly,
we’ve seen many examples of companies that start with a small set of useful standards,
only to have them balloon into an unmanageable, difficult-to-consume (and often
out-of-date) mess of documentation.

Ideally, standards should be managed like a product or a platform. At a minimum,
you should define how they should be created, how they will be edited, how they will
be distributed, and how they will be maintained. For example, you could open up

44 | Chapter 2: API Governance

standards authoring to anyone in the organization but have a design authority deter‐
mine which standards get published. You could also follow an IETF-like process that
provides a transparent, community-based review process for standards acceptance.

Standards management and processes aren’t unique to the API domain. But, due to
the variability of solutions in the API space, standards are an inevitability. Make sure
that you do the work to evolve a standards process that makes sense for your teams
and goals.

Summary
In this chapter we gave you our definition of governance: managing decision making
and decision implementation. From that definition, we took a closer look at what it
means to make a decision and what it means to govern a decision. You learned that
API decisions can be small (“What should my next line of code be?”) or big (“Which
supplier should we partner with?”) and can range massively in scope. Most impor‐
tantly, you learned that the system you are trying to govern is a complex adaptive
system, which means it’s difficult to predict the results of any decision management
strategy you apply.

Next, we took a closer look at decision distribution and compared centralization
and decentralization. To help you understand the differences, we compared them in
terms of the scope of optimization and scale of operation. Then we discussed how
you can break decisions down into their essential elements of inception, choice
generation, selection, authorization, implementation, and challenge. By putting all of
these concepts together, along with some enforcement and incentivization, you can
build an effective API governance system.

Governance is at the heart of API management, so it’s not a big surprise that it’s a core
concept for this book. Our goal in this chapter was to introduce the major concepts
and levers of governance. In the rest of the book, we’ll dive deeper into the domain
of API governance by tackling the specific challenges of which decisions matter the
most, how to manage the people involved, and what to do as APIs mature and the
scale of the APIs grows. In the next chapter, we’ll start that journey by investigating
how product thinking can help you identify the API work decisions that matter the
most.

Summary | 45

https://oreil.ly/UA97h

CHAPTER 3

The API as a Product

Anything humans create—be it product, communication, or system—is a result of making
inspiration real.

—Maggie Macnab

The phrase “API as a product” (AaaP) is something we often hear when talking to
companies that have built and maintained successful API programs. It’s a play on the
<Something> as a Service monikers that are often used in technical circles (software
as a service, platform as a service, etc.) and is usually meant to indicate an important
point of view when designing, implementing, and releasing APIs: that the API is a
product fully deserving of proper design thinking, prototyping, customer research,
and testing, as well as long-term monitoring and maintenance. “We treat our APIs
just like any other product we offer” is the common meaning of the phrase.

In this chapter, we’ll explore the AaaP approach and how you can use it to better
design, deploy, and manage your APIs. As you may have gathered from Chapter 2,
the AaaP approach involves understanding which decisions are critical for the success
of your APIs and where within your organization those decisions should be made.
It can help you think about what work needs to be centralized and what you can
successfully decentralize, where enforcement and incentives are best applied, and
how you can measure the impact of these decisions in order to quickly adapt your
products (your APIs) when needed.

There are lots of decisions to make when creating new products for your customers.
This is true whether you are creating a portable music player, a laptop computer, or
a message queuing API. In each of these cases, you need to: (1) know your audience,
(2) understand and solve their most pressing problems, and (3) pay attention to
customers when they give you feedback on how you can improve your product.
These three necessities can be encapsulated in three key lessons, which we will focus
on in this chapter:

47

• Design thinking as a way to make sure you know your audience and understand•
their problems

• Customer onboarding as a way to quickly show customers how they can succeed•
with your product

• Developer experience as a way to manage the post-release lifecycle of your•
product and to gain insights for future modifications

Along the way, we’ll learn from companies like Apple about the power of design
thinking and customer onboarding. We will also see how Jeff Bezos helped the Ama‐
zon Web Services (AWS) division create an implementation mandate that establishes
a clear, predictable developer experience. Most companies we talk to understand the
notion of AaaP, but not all of them are able to turn this understanding into tangible
action. However, the organizations that have a good track record for designing and
releasing successful API products have all figured out how to leverage the three key
lessons we’ve just mentioned—the first of which has to do with how your teams think
about the API products they are creating.

The Programmable Economy Is API-Led
APIs are the interface for enabling the programmable economy, but to do so, they
must be designed in such a way that they are discoverable, scalable, and fulfill the
capabilities they claim to provide to solve developers’ problems. For that, companies
will need to manage their developer communities’ expectations and aspirations with
the right approach. This is where developer relations come into play. It establishes
the link between what each of your APIs can provide and the skilled people who
will integrate them into other applications: the developers. In the following sections,
we’ll explore how APIs are changing the game in the programmable economy, by
providing greater reach, scalability, and ubiquity, and we’ll also look at the role of
developer relations in the context of API management, advocacy, and evangelism.

To talk about the importance of APIs, we need to understand why they are so
important to a business strategy. In 2011, one of the most renowned investors in
Silicon Valley and the founder of Netscape, Marc Andreessen, quipped “Software is
eating the world.” Before then, information technology (IT) capabilities were integra‐
ted within organizations to support the business. However, with the emergence of
network and infrastructure technologies that enabled the “as-a-service model” where
software could be executed from someone else’s infrastructure (SaaS, PaaS, Iaas),
IT became the business, where third parties could offer self-service, automated, pro‐
grammable, and traceable functionalities while allowing the business to maintain full
control and maintenance. And the key that enabled these third-party organizations to
deliver as-a-service capabilities to others? That’s open APIs.

48 | Chapter 3: The API as a Product

1 Brian Balfour, “Growth Wins,” Reforge (blog post), last modified July 25, 2018, https://oreil.ly/UJDIU.
2 Paul Rohan, “Driving Business Growth and Brand Strategy in the Api-Powered Age of Assistance," APIdays

London, 2019, https://oreil.ly/IcxbV.
3 Simon Torrance, “Embedded Finance: A Game-Changing Opportunity For Incumbents,” August 10, 2020,

https://oreil.ly/L6I3n.

These programmable interfaces enable companies and their applications to open
their businesses to third parties and to grow beyond their own walls and development
capabilities. There are more developers, resources, ideas, market knowledge, enthusi‐
asm, innovation, and capital outside the organization than inside. So when it makes
sense, why not open assets and capabilities to a larger number of economic and
societal actors that can be involved in value creation?

Competition used to be product versus product, but this has shifted to platform
versus platform and will then evolve to ecosystems versus ecosystems. APIs are the
programmable interfaces that lead from one form to the other.

Price, Promotion, Product, Place → Everywhere
Classic marketing managers know the 4Ps from marketing guru Michael Porter:
Price, Promotion, Product, Place are the four variables that you manage and control
in a product marketing strategy. But in the digital world where APIs are eating
software, to quote Andrew Bosworth, head of growth at Facebook, “It is not the best
product which wins, it is the one everybody uses.”1 This is the same for your API
products, which means that sometimes the experience of the product that is delivered
can have more importance for the customer compared to some extra features on the
product you may want to add. As such, the developer experience you give to your
API users will make the competitive difference.

In a digital world where IT capabilities are delivered as a service via APIs, the goal
is not to be at the right place but to be everywhere. It is not about the place you
can control; it is about all the places possible, in any applications. For instance, the
banking and finance industry is being disrupted by APIs that are enabling embedded
finance. Paul Rohan, author and Open Banking API expert, explains that the future
of banking is not “in the bank” but everywhere where banking is needed: embedded
in third-party customer experiences, on real estate platforms, in wedding planning
applications, in car dealer website widgets, in ecommerce websites—everywhere.2

Thanks to APIs, banks could be in every customer experience they don’t own but
still able to deliver banking value propositions. In a 2020 blog post, platform thought
leader and industry consultant Simon Torrance estimated that within five years,
embedded finance will represent a $7.2 billion opportunity: twice the total market
value of current banking and finance.3 When you are everywhere, your new reach

The Programmable Economy Is API-Led | 49

https://oreil.ly/UJDIU
https://oreil.ly/IcxbV
https://oreil.ly/L6I3n

4 Scott Meade, “Steve Jobs: Mac OS, Designed by a Bunch of Amateurs,” Synap Software, LLC (blog), June 16,
2007, https://oreil.ly/jRURa.

5 Daniel Turner, “The Secret of Apple Design,” MIT Technology Review, May 1, 2007, https://oreil.ly/ehrgv.

enables you to deliver value in unprecedented and untackled places, enlarging the size
of your market.

Consider how this has evolved over the last 20 years. In 2000, you had to have
a website to distribute your value digitally. In 2010, you had to have a mobile
application. In 2020, you need an API. Indeed, the new way to conquer the digital
experience is to be integrated into other people’s websites and applications. It is no
longer about controlling only one or two channels but about being integrated into
as many channels as possible, where your users are. As Chris Anderson describes in
his book, The Long Tail (Hachette), while the first distribution channels (web and
mobile) represented a significant part of the total traffic, the long tail of all the other
smallest niches and channels actually represented increasing traffic over time, which
in some cases became even bigger than traditional channels. Some applications, like
Salesforce or eBay, get the major part of their traffic via third-party platforms, more
than via their own website or mobile applications. More than 50% of their traffic
is directly from APIs. The only problem for companies is that it was too hard and
too costly to address them all at once, but now with APIs, it is possible to address
multiple channels with the same application programming interfaces.

Now APIs are the product of our programmable world, and we will see in the
following chapter how to treat them like products, from inquisitive onboarding and
initial steps to delightful developer experiences and successful integrations.

Design Thinking
One of the things that Apple is known for in product design circles is its ability
to engage in design thinking. For example, when describing the work that went
into Apple’s Mac OS X, one of the key software architects, Cordell Ratzlaff, said,
“We focused on what we thought people would need and want, and how they
would interact with their computer.”4 And this focus played out in real and tangible
ways. “There were three evaluations required at the inception of a product idea:
a marketing requirement document, an engineering requirement document, and a
user-experience document,” explained one-time Apple vice president (and one of
the people credited with founding the field of human–computer interaction design)
Donald Norman.5

50 | Chapter 3: The API as a Product

https://oreil.ly/jRURa
https://oreil.ly/ehrgv

6 Tim Brown, “Design Thinking,” Harvard Business Review, June 2008, https://oreil.ly/VRA7Y.
7 “Jobs to Be Done,” Christiansen Institute, last modified October 13, 2017, https://oreil.ly/l1s63.

This attention to meeting people’s needs definitely resulted in creating viable busi‐
ness for Apple. A continuing string of products over multiple decades contributed
to Apple’s reputation for defining new trends in technology and helped it capture
greater market share more than once.

Tim Brown, CEO of the California-based design and consulting firm IDEO, defines
the term design thinking as:6

A design discipline that uses the designer’s sensibility and methods to match people’s
needs with what is technologically feasible and what a viable business strategy can
convert into customer value and market opportunity.

There is a lot to unpack in that definition. For our purposes, we’ll focus on the ideas
of “match people’s needs” and a “viable business strategy.”

Match People’s Needs
One of the key reasons to build an API at all is to solve a problem. Discovering
problems to solve and deciding which problems have priority is just part of the
challenge of the AaaP approach—this is the what of APIs. An even more fundamental
element is knowing the who. Who are the people you are serving with this API?
Correctly identifying the audience and their problem can go a long way toward
ensuring you build the right product: one that works well and is used often by your
target audience.

Harvard Business School’s Clayton Christensen calls this work of understanding the
needs of your audience the theory of Jobs to Be Done. He says, “People don’t simply
buy products or services, they ‘hire’ them to make progress in specific circumstan‐
ces.”7 People (your customers) want to make progress (solve problems), and they will
use (or hire) whatever products or services they find will help them do that.

Should You Apply AaaP to Both Internal and External APIs?
Yes. Maybe not with the same level of investment of time and resources—we will
cover that in the next section—but this is one of the lessons Jeff Bezos taught us in
“The Bezos Mandate” on page 52 that led Amazon to open the initially internal AWS
platform for use as a revenue-generating external API. Because Amazon adopted
AaaP from the start, not only was it possible (e.g., safe) to start to offer the same
internal API to external users, but it was also profitable.

Design Thinking | 51

https://oreil.ly/VRA7Y
https://oreil.ly/l1s63

In most companies, the IT department is in the business of helping others (cus‐
tomers) solve problems. Most of the time, these customers are fellow employees
within the same company (private internal developers). Sometimes the customers
are important business partners or even anonymous public developers of third-party
applications (external developers). Each of these developer audiences (private, part‐
ner, and public) has its own set of problems to solve and its own way of thinking
about (and resolving) those problems. Design thinking encourages teams to get to
know their audience before starting the process of creating APIs as a solution. We’ll
explore this topic in “Knowing Your Audience” on page 60.

Viable Business Strategy
Another important part of design thinking is determining a viable business strategy
for your API product. It doesn’t make sense to invest a lot of time and money in
an API product that has little to no return value. Even when you do a good job of
designing the right product for the right audience, you need to make sure you spend
an appropriate amount of time and money and that you have a clear idea of what the
payback will be when the API is up and running.

For most companies, there is only a finite amount of time, money, and energy that
can be devoted to creating APIs to solve problems. That means that deciding which
problems get solved is of critical importance. Sometimes we encounter companies
where the APIs that were built don’t solve important business problems. Instead, they
solve known problems in the IT department: things like exposing database tables
or automating internal department processes. These are usually important problems
to solve, but they might not be solutions that have a big impact on the day-to-day
business operations or “move the needle” when it comes to meeting the company’s
annual sales or product goals.

Figuring out which problems matter for the business can be tricky. It might be diffi‐
cult for leadership to communicate company goals in ways that the IT department
can easily understand. And even when the IT team has a grasp of what problems
could make a difference to the company, the department may not have good meas‐
ures and metrics to confirm their assumptions and track their progress. For these
reasons, it is important to have a standardized way to communicate key business
objectives and relevant performance indicators. We’ll talk more about this aspect of
assessing your API’s success in “Measurements and Milestones” on page 162.

The Bezos Mandate
No matter how old or new your company is, launching a successful API program—
one that will transform your company—is not a simple task. One of the most well-
respected companies that worked through this process (and continues to transform
itself more than a decade later) is Amazon, with its AWS platform. First created in

52 | Chapter 3: The API as a Product

8 Ron Miller, “How AWS Came to Be,” TechCrunch, July 2, 2016, https://oreil.ly/OtRyN.
9 “Stevey’s Google Platforms Rant,” GitHub Gist, October 11, 2011, https://oreil.ly/jxohc.

the early 2000s, the platform is widely regarded as a brilliant master stroke executed
cleanly by a savvy team of IT and business executives. Although the AWS platform
has become a huge success, it was born out of an internal need: a deep frustration
with the amount of time needed for Amazon’s IT programs to act upon and deliver
the business team’s requests. The AWS team was too slow to act, and what they
eventually created was less than adequate at both the technical (scaling) and business
(product quality) level.

As current AWS CEO Andy Jassy tells it, the AWS team (along with Amazon CEO
Jeff Bezos and others) spent time identifying just what it was they were good at
and what it would take to design and build out a core set of shared services on an
interoperable platform.8 Their plan took more than three years to develop, but in
the end formed the basis for Amazon’s ability to offer its now famous infrastructure-
as-a-service (IaaS) platform. This now $45 billion business ($13.5 billion profit in
February 2021) happened only because of careful attention to detail and relentless
iterations to improve upon the original idea. Much the same way as Apple has
transformed the way consumers thought of handheld devices, AWS has transformed
the way that businesses think of servers and other infrastructure.

One of the important ways in which AWS was able to change the point of view
internally was through what is now known as the Bezos mandate. Steve Yegge, former
senior manager of software development at Amazon, describes the mandate in his
“Google Platforms Rant”.9 One of the key points in the blog post is that Bezos issued
a mandate that all teams must expose their functionality through APIs and that the
only way to consume other teams’ functionality must be through APIs. In other
words, APIs are the only way to get things done. He also required that all APIs be
designed and built as if they would be exposed outside the company boundaries. This
idea that “APIs must be externalizable” was another key constraint that affected the
way the APIs were designed, built, and managed.

So, design thinking is about matching the needs of your audience and committing to
supporting viable business strategies when deciding which APIs are worthy of your
limited resources and attention. What does that look like in real terms? How can you
apply these product lessons to your API management efforts in order to express the
API-as-a-product approach?

Design Thinking | 53

https://oreil.ly/OtRyN
https://oreil.ly/jxohc

Applying Design Thinking to APIs
You can elevate your APIs from utilities to products by applying the principles of
design thinking to your design and creation process. Several companies we’ve talked
to in the last few years are doing just that. They have made the decision that their
APIs, even the APIs that are just used within the organization, deserve the same
level of care, study, and design sense as any product or service that company already
provides. For many companies, this means teaching their API developers and others
in the IT department the principles of design thinking directly. For others, it means
creating a “bridge” between the product design teams and the API teams within the
same organization. In a few organizations we’ve worked with, we’ve seen both activi‐
ties at the same time: teaching design thinking to the developers and strengthening
the bridge between the product teams and the developer teams.

The actual content of a design-thinking curriculum is out of scope for this book.
However, most design-thinking courses provide a mix of topics like the ones we’ve
already mentioned in this chapter, such as:

• Design thinking skills•
• Understanding the customer•
• Service/workflow design•
• Prototyping and testing•
• Business considerations•
• Measurement and assessment•

If your company already has staff dedicated to product design, they can be a great
resource for teaching your developer teams how to start thinking and acting like
product designers. Even if your company doesn’t have dedicated design staff, you can
usually find product design classes on offer at a local college or university. Many of
these institutions will offer to customize a course for delivery on-site. Finally, even
if you’re a small company or just a single individual interested in the topic, you’ll be
able to find online courses in design thinking.

One company we talked to (a large consumer bank) decided to create its own internal
design thinking course, with the product design staff delivering the sessions to API
teams at various company locations. These trainers then became important resources
that the API teams could call upon when they needed advice on how to improve their
API designs. The goal was not to turn all their developers and software architects into
skilled designers. What they were aiming to do was simply improve the API teams’
understanding of the design process and teach them how to apply these skills to their
own work.

54 | Chapter 3: The API as a Product

10 Jamie Condliffe, “Apple’s Packaging Is So Good Because It Employs a Dedicated Box Opener,” Gizmodo,
January 25, 2012, https://oreil.ly/JrY6S.

11 Stefan H. Thomke and Barbara Feinberg, “Design Thinking and Innovation at Apple,” revised May 2012,
https://oreil.ly/wY4IA.

It is important to remember that the results of design thinking are more than just
improved usability or aesthetic appeal of your APIs. It can result in better under‐
standing of the target audience (customers), a focus on creating APIs that meet viable
business goals, and a more reliable process for measuring the success of the APIs into
the ecosystem.

As important as design is in the overall AaaP approach, it is just the start. It is also
important to pay attention to the initial customer experience once the API is released
and available for use. And that’s what we’ll cover in the next section.

Customer Onboarding
Anyone who’s purchased anything from Apple in recent years knows that unboxing
its products can be a memorable experience. And that is not by coincidence. For
years, Apple has had a dedicated team whose only job is to focus on delivering the
best “unboxing experience.”

According to Adam Lashinsky, author of Inside Apple (Business Plus), “For months,
a packaging designer was holed up in this room performing the most mundane of
tasks—opening boxes.”10 He continues:

Apple always wants to use the box that elicits the perfect emotional response on open‐
ing…One after another, the designer created and tested an endless series of arrows,
colors, and tapes for a tiny tab designed to show the consumer where to pull back the
invisible, full-bleed sticker adhered to the top of the clear iPod box. Getting it just right
was this particular designer’s obsession.

And this attention to detail went well beyond just opening the box and taking out
the device. Apple made sure the battery was fully charged, that customers could
be “up and running” within seconds, and that the overall experience was pleasant
and seamless. Apple’s product teams wanted customers to love their product from
the very start: as Stefan Thomke and Barbara Feinberg wrote in a Harvard Business
School case, “Helping people ‘love’ their equipment and the experience of using it
animated—and continues to motivate—how Apple products were and are designed
today.”11

Customer Onboarding | 55

https://oreil.ly/JrY6S
https://oreil.ly/wY4IA

12 Ingrid Lunden, “Stripe Closes $600M Round at a $95B Valuation,” TechCrunch, March 14, 2021, https://
oreil.ly/60fbh.

13 David Skok, “Growth Hacking: Creating a Wow Moment,” For Entreprenuers (blog), 2013, https://oreil.ly/
YyVlI.

When the API Is Your Only Product
Stripe is a successful payment service delivered via a great API that developers really
love. The startup’s recent 2021 valuation was about $95 billion with fewer than 4,000
employees.12 The founders’ entire business strategy was to deliver their payment
services via APIs. For this reason, they decided to invest in design thinking and the
API-as-a-product approach from the very beginning. For Stripe, the API was their
only product. Treating their API as a product helped them meet both their technical
and business goals.

This same attention to the initial experience of product customers applies to APIs.
Making it possible for developers to love them may seem a far-fetched notion, but
it has long-reaching implications. If your API is difficult to understand in the begin‐
ning, developers will struggle with it, and if it takes “too long” to get started, they
will just walk away in frustration. In the API world, the time it takes to “get things
working” is often referred to as “Time to first Hello, World.” In the online application
space this is sometimes called “Time to Wow!” (TTW).

Time to Wow!
In his article “Growth Hacking: Creating a Wow Moment,” David Skok, part of the
equity investment firm Matrix Partners, describes the importance of a customer’s
“Wow!” moment as a key hurdle to cross in any customer relationship: “Wow! is
the moment…where your buyer suddenly sees the benefit they get from using your
product, and says to themselves ‘Wow! This is great!’”13 And while Skok is talking
directly to people designing and selling apps and online services to consumers, the
same principles apply to people designing and deploying APIs.

A key element to the TTW approach is understanding not just the problem to solve
(see “Design Thinking” on page 50) but also the time and work required to get to
“Wow!” The effort it takes to reach a point where the API consumer understands how
to use the API and learns that it will solve their important problems is the hurdle
each and every API must cross in order to win over the consumer. Skok’s approach is
to map out the steps needed to experience the “Wow!” moment and work to reduce
friction and effort along the way.

56 | Chapter 3: The API as a Product

https://oreil.ly/60fbh
https://oreil.ly/60fbh
https://oreil.ly/YyVlI
https://oreil.ly/YyVlI

For example, consider the process of using an API that returns a list of hot leads for
your company’s key product, WidgetA. A typical process flow might look like this:

1. Send a login request to get an access_token.1.
2. Retrieve the access_token and store it.2.
3. Compose and send a request for the product_list using the access_token.3.
4. From the returned list, find the item where name="WidgetA" and get that record’s4.

sales_lead_url.
5. Use that sales_lead_url to send a request for all the sales leads where5.

status="hot" (using the access_token).
6. You now have a list of hot sales leads for the WidgetA product.6.

That’s a lot of steps, but we’ve seen workflows with many more than this. And each
step along the way is an opportunity for the API consumer to make a mistake (e.g.,
send a malformed request) and for the API provider to return an error (e.g., a
timeout for a data request). There are three possible request/response failures here
(login, product_list, and sales_leads). The TTW will be limited to how long it
takes a new developer to figure out the API and get it working. The longer it takes,
the less likely they are to ever get their “Wow!” moment or to keep using the API.

There are a number of ways to improve the TTW for this example. First, we
could adjust the design by offering a direct call to get the list of hot leads (e.g.,
GET /hot-leads-by-product-name?name=WidgetA). We might also spend time writ‐
ing “scenario” documentation that shows new users exactly how to solve this particu‐
lar problem. We could even offer a sandbox environment for testing examples like
this one that allows users to skip the authentication work while they learn the API.

API Pillars

Design, documentation, and testing are what we call API pillars.
Those and others are covered in detail in Chapter 4.

Anything you can do to reduce the time it takes to get to “Wow!” will improve the
API consumer’s opinion of your API and increase the chances that the API will be
used by more developers both inside and outside your organization.

Onboarding for Your APIs
Just as Apple spends time on its “unboxing” experience, companies that are good at
adopting the AaaP approach spend time making sure the “onboarding” experience
for their APIs is as smooth and rewarding as possible. And just as Apple makes sure

Customer Onboarding | 57

14 Rob Spectre, “Introducing Rob Spectre, An Evangelist With A Story To Tell,” Twilio (blog), September 15,
2011, https://oreil.ly/daUWP.

the battery is already charged up when you open your new mobile phone, APIs can
be “fully charged” at first use, making it easy for developers to get started and make
an impact within minutes of trying a new API.

Early in our work on APIs and API management, we used to tell our customers
they needed to get a new user from the initial view of their API’s landing page to a
live working example in about 30 minutes. Anything more than that risked losing a
potential user and wasting all the time and money put into designing and deploying
the API. However, after one of us completed a presentation on API onboarding, a
representative of Twilio, the SMS API company, came up to us and told us they aim
for an initial onboarding experience of 15 minutes or less.

Twilio’s field (SMS APIs) is notoriously fiddly and confusing. Imagine trying to
design a single API that works with dozens of different SMS gateways and companies
and is easy to use and understand. Not an easy task. One of the keys to achieving their
15-minute onboarding goal is the copious use of measurements and metrics in their
tutorials to identify bottlenecks—points where API users “drop out”—and determine
just how long it takes for them to complete the tasks.

Twilio’s Neo Moment
In 2011, Twilio’s API evangelist Rob Spectre wrote a blog post relating his experiences
teaching others how to use Twilio’s SMS API. He tells the story of helping a developer
to use the API for the first time:14

In fifteen minutes we worked through a Twilio quickstart guide for outgoing calls
and after navigating a few speedbumps, his Nokia feature handset lit up as his code
executed. He looked up at me, looked back at his screen, answered his phone and
heard his code say, “Hello world.”
“Whoa dude,” he said, stunned. “I just did that.”
And that is pure magic.

Spectre calls this the “Neo moment” (referring to the character Neo from the Matrix
movies) and says it can be a “powerful inspiration” for developers.

Twilio has worked diligently to engineer its API and onboarding experience to maxi‐
mize these inspirational moments.

So, a great onboarding experience is more than just the result of a good design pro‐
cess. It includes well-crafted “getting started” and other initial tutorials, and diligent
tracking of API consumers’ use of these tutorials. Gathering data helps provide you

58 | Chapter 3: The API as a Product

https://oreil.ly/daUWP

15 Shana Lebowitz, “Apple Employees Take on Any Projects That Will Improve User Experience,” Business
Insider, July 5, 2018, https://read.bi/2JbmgDb.

with the information you need to improve the experience. Just as you design the API,
you need to design the onboarding experience, too. And improving the onboarding
experience means acting on the feedback (both personal and automated) you get
from API users.

But the AaaP approach doesn’t stop with onboarding. Hopefully, you’ve gained a
community of avid API consumers that will stick with you well past the initial
introduction. That means you need to focus on the overall developer experience for
your APIs. This can include signing up, filling out forms, agreeing to the terms of
service, setting up their environment, getting their application credentials, download‐
ing helper libraries, being redirected to the right “getting started” section, reading the
docs: all of these steps need to be as simple and straightforward as possible. If you
are in a company that requires lots of time for validation, for legal or compliance
purposes, you can make the onboarding better by providing a sandbox that replicates
the real API environment while users are waiting for their validation to complete.
Another technique is to ask what stack the developer is using so you can send them
directly to the right SDK in their preferred language. More generally, you should try
to implement every tip and trick you come across to make onboarding as delightful as
possible.

Developer Experience
Customer interactions with a product typically last well beyond the initial unboxing.
Even though it is important to make sure the product “works right out of the box,”
it is also important to keep in mind that the customer will (ideally) continue to use
the product for quite a while. And, over time, customers’ expectations change. They
want to try new things. They get bored with some things they loved at the beginning.
They start to explore options and even come up with unique ways to use the product
and its features to solve new problems not initially covered by the product release.
This continuing relationship between consumer and product is typically called the
user experience (UX).

Apple pays attention to this ongoing relationship, too. Tai Tran, CEO and founder
of social app Blue and former Apple employee, put it this way: “Whenever there’s
a question about whether we should do something or not we always come back to
the question of, ‘How would this impact the customer experience?’”15 Like any good
product company, Apple tells its employees that the customer is king and to pay close
attention to the way they interact with Apple products. And they’re not worried about
making lots of changes if that means making meaningful improvements along the
way. For instance, between 1992 and 1997, Apple created more than 70 models of its

Developer Experience | 59

https://read.bi/2JbmgDb
https://oreil.ly/3bKkZ

16 Conner Forrest, “Decoding the Genius Bar: A Former Employee Shares Insider Secrets for Getting Help at the
Apple Store,” TechRepublic, April 3, 2014, https://tek.io/2ykZrJl.

Performa desktop computer (some of which were never even released to the public),
each an attempt to take advantage of what it had learned from customer experience
feedback on previous releases.

But probably the best example of managing the UX of its products is Apple’s
approach to customer service: the Genius Bar. As Van Baker of Gartner Research
says, “The Genius Bar is a real differentiator for the stores and the fact that it is free
really sets the stores apart from the other offerings in the industry.”16 By offering
customers a place to go with all their questions and problems, Apple illustrates the
importance of the continuing relationship between customer and product.

All these UX elements—acknowledging an ongoing relationship, dedication to mak‐
ing small improvements, and offering easy access to support—are key to creating
successful API products and experiences.

Knowing Your Audience
A big part of creating a successful AaaP is to make sure you target the right audience.
That means knowing who is using your API and what problems they are trying to
solve. We covered this in “Design Thinking” on page 50, and it is also an important
part of the ongoing developer relationship. By focusing on the who and what of your
API, you not only gain insight into what is important, but you can also think more
creatively about the how of your API: what it is your API has to do in order to help
your audience solve their problems.

We talked earlier in this chapter about the concept to match people’s needs when
working through the design process. This same work needs to continue after your
API is released. Gathering feedback, confirming your user stories, and paying close
attention to how the APIs are used (or not used) is all part of the ongoing developer
experience. Three important elements are:

• API discovery•
• Error reporting•
• API usage tracking•

These three (and others) will be covered in depth in Chapter 4, so we’ll just highlight
some aspects of them that are important to the overall developer experience (DX) of
your AaaP strategy.

60 | Chapter 3: The API as a Product

https://tek.io/2ykZrJl

API discovery
The way internal or external developers discover your APIs and the value they
provide is key in starting your relationship with them. How do developers find your
APIs? Since there is no search engine for APIs yet, the discovery mechanism for APIs
is often described, as Bruno Pedro, cofounder of HithHQ, used to say, as “word of
mouth and a little luck.”

Of course, for external APIs, your communication will help a lot with search engine
optimization (SEO), along with exhibiting at developer conferences, online content
marketing, online advertising, and corporate events. However, discovery is still quite
rudimentary and cannot really be planned in a way where the best always wins. You
will need to develop your own influence network, and this is where word of mouth
will be really powerful. When a CTO or a developer asks on forums, mailing lists, or
social networks, “What is the best API to do something?” your API needs to be in
the response provided by others. Next, when developers find you, they still need to
understand the value your API provides. You will need to set up a developer portal
that clearly describes the value of your API. For instance, Twilio used to market their
SMS API using the slogan “We make your application talk.” On its first website, Stripe
declared, “Payment processing. Done right.” Funnily enough, the original website was
devpayments.com.

For internal APIs in large organizations, one of the challenges of the API program
is, even when an appropriate API is available, developers end up creating their own
APIs—sometimes many times over throughout the organization. While sometimes
seen as a kind of rebellion inside the company (“They won’t use the APIs we give
them!”), this explosion of duplicate functionality is more often simply evidence that
developers cannot find the API they need when they need it. The API discovery is
often a combination of word of mouth, asking colleagues who have this legacy knowl‐
edge, and a catalog or a developer portal. The industry calls these knowledgeable
employees the API librarians as they know where the API is in the system, who the
owner is, and where the docs are.

API Discovery

We cover the role of this key pillar in supporting your API in
“Discovery” on page 110 and how the role of discovery changes in
large API landscapes in “Discovery” on page 313.

Having a central catalog for your APIs can help solve this problem. Establishing an
API search hub or a portal where documentation, examples, and other important
information can be accessed is another good way to improve the discoverability of
your existing APIs.

Developer Experience | 61

Searching for APIs
At the time of the release of this book, there is no single, commonly used public
search engine for APIs. One reason for this is that it is hard to index services on the
web since most of them don’t expose crawlable links and they rarely include links to
other dependent services. Another problem is that most of the APIs in use today are
behind private firewalls and gateways, which makes them “invisible” to any publicly
operated API search crawlers.

There are some open source projects and formats working to make API crawlers pos‐
sible, including {API}Search, the API description format, and the Application-Level
Profile Semantics (ALPS) service description format. These and others offer the
possibility of a future API search engine available to all. In the meantime, individual
organizations can use these standards internally to start the process of creating a
searchable API landscape.

At least one company we talked to made publishing to a central discovery catalog a
required step in the build pipeline. That meant the developers building an API could
not actually release it into production until they’d added it to the company’s API
catalog and ensured all important APIs within the organization would be findable
in one location—a big step toward improving the discovery quotient of their API
program.

Error reporting
Errors happen all the time. They’re part of the “landscape” of APIs. While you can use
good design to try to reduce user errors and testing to try to eliminate development
bugs in your own code, you will never get rid of all the errors. Instead of trying to
do the impossible (eliminate all errors), a better tactic is to monitor your APIs closely
so you can record and report the errors that do occur. This act of recording and
reporting will give you important insight into the way your target audience is using
your APIs—and that can lead to improving the developer experience.

API Monitoring

Error reporting and API usage tracking (discussed next) fall under
the API pillar of monitoring. We’ll explore that API-level skill in
“Monitoring” on page 108. We’ll also look at how monitoring
changes as you grow your API program in “Monitoring” on page
311.

One of the challenges encountered when creating and releasing a physical product
(whether it be clothing, furniture, office supplies, or something else) is that it can
be difficult to see errors when they occur during use. Unless you are standing right

62 | Chapter 3: The API as a Product

https://apis.io
http://apisjson.org
http://alps.io
http://alps.io

17 Kin Lane, “Your API Should Reflect A Business Objective Not A Backend System,” API Evangelist (blog),
April 17, 2017, https://oreil.ly/XCOTT.

next to the person while they use your product, you’re likely to miss details and
lose out on valuable feedback. For this reason, most product companies engage in
extensive prototyping and in-person monitored testing. The good news is, in the
age of electronics and virtual products, you can build in error reporting and collect
important feedback even after the product has been released and is in the hands of
users.

You can implement error reporting at a number of key touchpoints along the way for
your APIs. For example:

End-user error reporting
You can add an error-reporting feature to your application. This prompts the
user for permission to send detailed information if and when an error occurs.
In this way you can capture unexpected conditions on the user’s end of the
transaction.

Gateway error reporting
You can add error reporting at the API router or gateway. This allows you to
collect the state of the request when it first arrives “on your doorstep” and can
help you discover malformed API requests or other network-related problems.

Service error reporting
You can add error reporting within the service being called by your API. This
helps you discover errors in coding the service and some component-level prob‐
lems, such as issues with dependencies or internal issues due to changes within
your organization’s ecosystem.

Error reporting is a great way to get important feedback on how your API is being
used and where problems occur. But it is only half of the tracking story. It is also
important to track successful API usage.

API usage tracking
API usage tracking covers more than errors. It means tracking all requests and,
eventually, analyzing the tracking information to find patterns. As we mentioned in
“Viable Business Strategy” on page 52, a big reason for creating and deploying APIs
is to support your business. As the well-known API evangelist Kin Lane puts it,
“Understanding [how] APIs will (or won’t) assist [the] organization to better reach
their audience is what the API(s) are all about.”17

The data needed to determine whether your API is helping your organization to
better reach your target audience is usually expressed as OKRs (objectives and key

Developer Experience | 63

https://oreil.ly/XCOTT

results) and KPIs (key performance indicators). We’ll dig deeper into these in “OKRs
and KPIs” on page 162, but for now it is important to recognize that in order to meet
your goals, you need to know just how your APIs are doing along these lines. That
means tracking not just the errors that occur, as described in the previous section, but
also the successes.

For example, you’ll want to collect data on which applications are making which API
calls and whether those applications are effectively meeting the needs of their users,
and if they match your business goals. Tracking has the added benefit of helping you
to see patterns over a wide range of users—patterns that individual users may not be
able to notice. For example, you might discover that applications continue to make
the same series of API calls over and over again, such as:

GET http://api.mycompany.org/customers/?last-order=90days
GET http://api.mycompany.org/promotions/?flyer=90daypromo
POST http://api.mycompany.org/mailing/
customerid=1&content="It has been more than 90 days since...."
POST http://api.mycompany.org/mailing/
customerid=2&content="It has been more than 90 days since...."
...
POST http://api.mycompany.org/mailing/
customerid=99&content="It has been more than 90 days since...."

This pattern might indicate the need for a new, more efficient way for your target
audience to send out mailings to key customer groups—a single call from the appli‐
cation that will combine the target customer group with the selected promotional
content. For example:

POST http://api.mycompany.org/bulk-mailing/
customer-filter=last-order-90days&content-flyer=90daypromo

This call creates less client/server traffic, reduces the number of possible network
failures, and is easier to use for API consumers. And it was “suggested” not by a
customer, but by paying attention to the API usage tracking information.

Drink Your Own Champagne
In 2017, when coauthor Medjaoui was working as a consultant, a European national
railway company decided to organize some hackathons for its developer communi‐
ties: one for external developers and another for internal developers.

The external event was coordinated by the communications and product manage‐
ment leadership. They arranged to have the IT department produce some static data
available for external use and helped the IT teams design a set of simple, task-focused
APIs for accessing things like station locations and departure schedules. These were
implemented quickly and viewed by the IT department as “less powerful” than its
own “full-featured” internal APIs. The event went quite well.

64 | Chapter 3: The API as a Product

Six months later, the IT department arranged its own hackathon using the “official”
internal APIs. After a while, the hackathon organizers realized the internal developer
teams had switched from using the “full-featured” internal APIs to the easier, more
task-focused external APIs. And the teams were more effective and productive, too.

There are a few lessons to be learned from this experience. First, the task-focused
APIs were preferred by all developers. Second, creating these “simpler” APIs did
not take much time or resources. Third, it is always best for IT departments to
pay attention to which APIs are popular and used more often. A last lesson can
be summed up by the common phrase “Drinking your own champagne” (some say
“Eating your own dog food,” too). With APIs, as with any other product, it is often
best for internal teams to be using the same product external teams are using.

This leads us to one more important area of developer experience (DX): making it
safe and easy for developers to “do the right thing” with your API.

Making It Safe and Easy
Along with facilitating straightforward API discovery and accurate tracking of both
errors and general API usage, it is important to provide easy access to ongoing
support and training to your API consumers. In fact, it is the experience that occurs
after you’ve successfully onboarded the developers consuming your APIs that will
ensure a long-term positive relationship. We saw an example of this kind of attention
to the ongoing relationship earlier in this section, with Apple’s use of the Genius Bar
as a source of support for existing customers. Your APIs need their own Genius Bar,
too.

Another important aspect of support for developers is making your product safe for
use. In other words, it should be somewhat difficult to misuse the product in ways
that result in some sort of harm. For example, it should be hard to delete important
data, remove the only admin account, and so forth. Paying attention to how your API
consumers (that is, developers) use the product can help you identify areas where
some added safety efforts can pay off.

It takes a mix of both these elements—ease and safety—to create a powerful and
ongoing connection with the developers consuming your APIs.

Making APIs safe to use
There are a number of elements of an API that can represent risk from the developer’s
point of view. Sometimes certain API calls can do dangerous things, like deleting all
customer records or changing all service prices to zero. Sometimes even connecting to
an API server can represent some risk. For example, setting up a connection string
to a data API might make it too easy to expose usernames and passwords in URLs

Developer Experience | 65

or unencrypted message bodies. We’ve seen lots of these types of safety issues in our
reviews of APIs.

Often risks can be designed out of the API. That is, you can make changes in the
design that make encountering a particular risk less likely. For example, you can
design an API that deletes critical data to also support an “undo” API call. That way,
if someone mistakenly deletes important data, they can also invoke the undo call to
reverse it. Or you can require elevated access rights to execute certain operations,
such as requiring an extra data field (such as a passcode) to be sent with calls that
update critical information.

However, sometimes it can be difficult to mitigate the risk through API design
elements. There may be some cases where executing an API call is simply inherently
risky. Any API call that deletes data is risky, no matter how many design changes
you make to it. Some API calls might always take a long time to execute, possibly
consuming lots of server-side resources. Other APIs might execute quickly and result
in quite a lot of data in return. For example, a filter query might potentially return
hundreds of thousands of records.

In cases where API calls represent unavoidable risk, you can reduce negative impacts
by adding warnings to the API documentation itself. In this way, you can make it
easier for API consumers to recognize potential dangers ahead of time and possibly
avoid making critical mistakes. There are lots of ways you can format documentation
to help point out possible dangers. Highlighted text telling the user of the problem
(“Warning: This API call may return over a million records, depending on your filter
settings”) is one way to do it. Another way to warn API users is to adopt a kind of
labeling method using symbols. This way, there is no need to add lots of text to your
documentation: readers can just recognize the warning label instead.

Physical products use information and warning symbols quite often (see Figure 3-1).

Figure 3-1. Examples of household product labels

You can adopt a similar approach for your APIs, too (see Figure 3-2).

66 | Chapter 3: The API as a Product

Figure 3-2. Examples of API labels

Easy-to-read warning symbols combined with design changes to make it more
unlikely for API users to make regrettable mistakes are good practices for increasing
the safety of your API product.

Making APIs easy to use
It is also important to make your API relatively easy to use for your API consumers. If
it takes too many steps to accomplish a task, if the names and numbers of arguments
API developers need to pass are confusing or complicated, or if the names of the
API calls themselves don’t make much sense to consumers, your API can run into
problems. Not only will developers be unhappy using your API, but they might make
more errors, too.

You can design in ease of use by adopting naming patterns that fit your developers’
Jobs-to-Be-Done vocabulary. This goes back to understanding your audience (“Match
People’s Needs” on page 51) and solving their problems (“Viable Business Strategy”
on page 52). But even when you do that, if your API is large (e.g., lots of URLs or
actions) or just plain complicated (lots of options to deal with), you can’t always rely
on design to solve your problem. Instead, you may need to make it easier for API
consumers to ask the right questions and find appropriate answers. Your API needs a
kind of “Genius Bar” for developers.

Probably the easiest way to provide your developers an API Genius Bar is through
the documentation. By adding more than simple reference documentation (e.g., API
name, methods, arguments, and return values), you can elevate your API docs to
“genius” level. For example, you can add a Frequently Asked Questions (FAQ) section
where you provide answers (or pointers) to the most common consumer questions.
You can expand your FAQ support by adding a “How Do I…?” section that gives
short step-by-step examples on how to accomplish common tasks. You can even
provide fully functional examples that developers can use as starter material for their
own projects.

Developer Experience | 67

Documentation

We’ll talk more about this API skill of documentation in “Docu‐
mentation” on page 91 and discuss how your needs in this area
may change as your API landscape grows in “Documentation” on
page 292.

The next level up from enhanced documentation is an active online support form
or chat channel. Support forums provide an ongoing conversation space where devel‐
opers can ask questions to a larger group and share solutions. In the case of large
API communities, these forums can even become a source of important bug fixes
and feature requests. Forums can also become a valuable repository of knowledge
accumulated over time, especially when you have a robust search mechanism.

Chat channels offer an even more immediate means of providing Genius Bar support
for your API consumers. Chats often happen in real time and can add an additional
level of personalization to your developer experience. This is also another great place
to leverage and grow community knowledge about your API product.

Finally, for large API communities and/or large organizations, it can make sense to
provide in-person support for your product in the form of API evangelists, trainers,
or troubleshooters. Your company can arrange meetups or hack events where API
users come together to work on projects or test new features. This works whether
your primary API community is internal (e.g., company employees) or external (e.g.,
partners or public API users). The more personal you can make your connection to
your developers, the more likely you are to be able to learn from them and improve
the ease of use of your API.

Taking the time to make your APIs safer to use and easy to work with can go a
long way toward establishing a positive relationship with your API consumers and, in
turn, improving your overall developer experience.

Why Are Developers So Important in the API Economy?
How does your product evolve into a platform and, subsequently, an ecosystem? By
making people work and invest in your product, instead of you working for them or
investing your money and development efforts on their product. This is where APIs
are a key element of value accumulation. By lowering the cost of leveraging the value
that your solution provides, you incentivize people and companies to spend the time
and funds to integrate your API. Instead of integrating with everybody, everybody
will integrate with you, and that is a unique way to accumulate value over time. When
Apple reached one million applications, those were one million applications that
Apple did not have to build, which span thousands of market niches that Apple could
not address due to the sheer quantity and because Apple can’t hire all the necessary

68 | Chapter 3: The API as a Product

product managers to analyze all the market needs. By accumulating the work and the
investment of others, you transform your products into platforms and ecosystems.

Readers living in Silicon Valley may remember the Twilio advertisement with ad
panels on the 101 Highway and in the main streets of San Francisco, in full Twilio-red
background stating, “Ask Your Developer.” Twilio has been one of the first API
companies to push really hard on developer evangelism because they knew before
others that the doers of the programmable economy will soon be the angular stone of
the corporate adoption of APIs. They understood that whether a decision maker or
prescriber, the developer is a key influencer in an application economy.

By having the skills to develop applications, developers are a central stakeholder for
an API strategy. Every integration and every application will pass through the hands
of developers. In a marketplace strategy, they will be the first to use your API and the
first to build applications on your platform. Developers will show the path to follow
to other developers and help you benefit from marketplace traction. Internally in
bigger corporations, they will be your internal API champions and will recommend
the use of an API over another because they know it better and because it is safer to
use, better designed, and/or better documented compared to another. In that context,
we are shifting from business to consumer (B2C) and business to business (B2B) to
business to developer (B2D) models.

In other words, in the 21st century, APIs are the new goods: the new products created
and stored in servers, distributed on information highways through the network,
transported by developers into applications, and promoted in digital supermarkets
(aka application stores), where end users will come to download (for an app) or
consume APIs.

For AaaPs to enable programmable business models and accumulate value at integra‐
tion scale, a team must be dedicated to support that integration growth, always listen‐
ing to the needs of developers and delivering them the best experience possible, both
on the technical side and the human side of IT. That is the overall role of developer
relations for APIs. As a result, some in the industry argue that in the programmable
economy where every company will provide core competencies to others via APIs
and consume core competencies of others via APIs, the role of developer relations
will be more and more important, to the point that all companies will need to have a
developer relations department, like they have a marketing department.

Developer Relations for APIs as a Product
As coauthor Medjaoui wrote in the third edition of Developer Marketing and Rela‐
tions: The Essential Guide, there is a clear and important relationship between API
strategies and developer engagement, internally or externally. It consists of under‐
standing the relationship between community, code, and content; understanding the
difference between AaaPs and product APIs; and also adopting the right metrics

Developer Experience | 69

to measure developer engagement by developers. Finally, it is important to also
spend some time discussing internal or external API monetization strategies. We will
address all of these in this section.

Community, code, content
The role of developer relations when talking about APIs should be built around
three blocks that the SendGrid developer relations team used to call the three Cs:
community, code, and content.

Developer relations is firstly about the community. As long as humans still integrate
APIs, at least until machines can do it for us, the concept of a community will remain
an important part of developer relations. Being where developers are, engaging with
them, listening to their feedback and ideas, inspiring them, and putting a face on the
API are all part of the community’s mission in developer relations.

The community aspect is important as a soft-power to enable more word of mouth.
As Tim Falls from SendGrid used to say, “A personal connection is worth more than
a click,” and sometimes he found that developers were recommending the use of
SendGrid even if they had never used it, because they knew the SendGrid team was
caring.

Community is also about attending developer events or API conferences to keep in
contact with the community, and participating in speaking engagements that are not
directly involved with what your API does. Sometimes topics might be about a cool
hack someone made thanks to your API, an open source package released for the
community, or sometimes even more societal topics.

The second block is code. Integrating APIs is about code, and a developer’s job is to
produce code that delivers value. If they can leverage code that is already provided,
they can focus on implementing the business logic faster. Then, the role of the devel‐
oper relations team is to provide this as code samples, SDKs, prototype applications,
or API definitions (specifications) that developers will be able to use directly. Code, to
the members of the developer relations team, also means writing code themselves to
maintain the developer platform and the API, with a nice developer experience that
we will talk more about in a subsequent section.

The third block is content. Developers love transparent and honest communications
and useful content. Content is one of the best ways to attract developers and maintain
them as a loyal audience of your blog and ecosystem.

Content exists in many different forms. It can be just a technical update about recent
changes, it can be a blog or email about a cool customer use case, it can be more of
an engineering post about a specific way to build some features, or it can be a best
practice explained in detail. It can also be broader, like the recent Stripe booklet and
blog post series about how to make a company and its applications carbon neutral.

70 | Chapter 3: The API as a Product

Content is the important part of your relationship with developers that makes your
company and its APIs discoverable through SEO or social media sharing.

In summary, community, code, and content are the three pillars of developer rela‐
tions that you should strive to fulfill.

AaaPs versus product APIs
There is a clear distinction to make when talking about developer relations and APIs.
You need to consider whether your API is the product or if your API feeds and
supports a product. You can then categorize it as either an AaaP or a product API,
respectively. For instance, Stripe, Twilio, Mailjet, and Avalara are all AaaPs. They offer
standalone capabilities for a specific purpose such as payments, SMS, email, and tax
validation.

On the other hand, Salesforce APIs, Facebook APIs, eBay APIs, YouTube APIs, and
Twitter APIs are product APIs, or said differently, APIs for a product. They exist to
support and customize an existing platform. They often represent more than 50% of
the total traffic to the platform and product, a considerable chunk. As much as they
are critical for the business, they are often free to use because their use increases the
value of the underlying business.

The role of developer relations is different for AaaPs and product APIs.

For AaaPs, the end goal of developer relations is to evangelize, advocate, and build
relations that will directly augment the top-line business with the consumption of the
API. As APIs are the product to be integrated and sold, the goal will be to maximize
the number of valuable integrations according to the business model. In the case
where developers are not the decision makers but just the prescribers, the goal of
developer relations will be to have developers trained and acculturated about the
benefits of the APIs. They can propose it inside their organization at an enterprise
level, leading to enterprise integrations and the high revenues that follow.

On the other hand, developer relations for product APIs are mostly to inspire devel‐
opers to build applications that will directly augment the value of the platform but
not necessarily its direct revenues. When Facebook opened its platform APIs, it was
free of charge for developers to build applications or games, and the rich portfolio of
applications that resulted demonstrated that the Facebook platform was here to stay,
always aggregating more application from developers.

In the end, users will stay not only because of the social network but for the full
ecosystem of applications that is around it and powers it. This is similar for the
Salesforce AppExchange, which has more than 5,000 business applications in 2021.
In that context, Salesforce is not just customer relationship management (CRM)
software anymore, but a full ecosystem of business applications powered by and
around a CRM that fits many use cases across many industries. For product APIs, the

Developer Experience | 71

18 Jason Costa, “A Tale of 2 API Platforms,” Medium, October 25, 2016, https://oreil.ly/ZzAlj.

role of developer relations is to nurture that ecosystem; this then scales the value and
sales of the product among end users.

The story of Twitter API versus Slack API
Aligning KPIs with APIs is important and can completely change the future of the
platform you are building. As Jason Costa from GGV Capital said in his article, “A
Tale of 2 API Platforms,” both Twitter and Slack had great developer traction because
of their important user base and their openness to build valuable applications.18

Twitter finally decided that its business model was not based on being a monetized
application ecosystem but was to be a media platform making revenue through
advertising. With this clearer identity, all the previous APIs published suddenly
represented the complete opposite mindset of the platform, and this was the reason
why Twitter highly restricted its API to third parties, hurting its developer ecosystem.
Years later, it worked hard to rebuild relationships with developers, with a manifesto
from Jack Dorsey himself, and hiring great developer advocates like Romain Huet,
but trust in using the APIs by developers never completely recovered.

On the other hand, the Slack model was based on making an application ecosystem
to enrich the value of the main Slack product. More business applications increased
the value of the Slack communication platform, so the business KPIs were aligned
with the APIs. To this day, the Slack API has never suffered from tensions within
the developer community, which partly explains why developers love building bots
on Slack. These two stories are the perfect reflection of how aligning your KPIs with
APIs, and then your APIs with your KPIs, makes the difference for how you manage
your developer relations strategy and APIs in the long term.

The DevRel ROI cheat sheet: Tracking success in developer relations
Evaluating the quality and potential of your developer community is a key element
of your developer relations strategy. Many companies have tried to develop an inter‐
nal tool to better understand their developer community. Many API management
vendors have built what they call internally developer relation management software,
like a CRM solution but for developers. This offers a way to better communicate,
track, and differentiate developers with the most potential ROI, based on your API
strategy goals, which could include reach, application ecosystem, or revenues. Also,
identifying and engaging developers who are on your platform is a way to reactivate
them and reinspire them to build with your API.

72 | Chapter 3: The API as a Product

https://oreil.ly/ZzAlj

19 “AARRR Pirate Metrics Framework,” ProductPlan, https://oreil.ly/GiDgb.

For that, you will need what Mike Swift, founder and CEO of Major League Hacking,
calls “the nuts and bolts” of developer relations. It is a mix between developer rela‐
tions practices and metrics to invest and track effectively. It is split into two parts: the
API usage tracking and the developer tracking.

“If you can’t measure it, you can’t improve it,” Admiral Lord Nelson used to say. On
the other side, as the Goodhart law states, “When a measure becomes a target, it
ceases to be a good measure.” How do you find the right balance between metrics and
the goals of your developer relations strategy? You just have to match your APIs with
your KPIs.

There are all sorts of KPIs for APIs, and we have provided some here to help you get
started. To get the most from each, you should couple them with the Pirate Funnel
inspired by Dave McCLure, founder of famous startup accelerator 500 Startups,
better known as the AARRR model: awareness, acquisition, activation, retention,
revenue, and referrals.19

API awareness. API awareness is the metric that tells us how people are becoming
aware of your API—how they discover your product:

Number of visits to the developer portal’s home page and API docs
There are many ways, both paid and organic, to attract developers to your home
page. To attract developers to use your API, first they need to discover your value
proposition and the capabilities you offer. Attracting the maximum number of
developers is your main awareness metric.

Number of blog articles views and reads
Content is key in a developer relations strategy, so everything you publish must
be tracked. Be sure to always put a link to the page of your developer portal that
can track referrals from your articles, and monitor your engagement analytics.

Number of developers registered to written communication channels
Ask readers to register to your newsletter to get notified about new articles
and API updates. This number is a key element to track how many community
members want to keep receiving news from you and to compare it with the
current developers registered to the API.

Number of public speaking engagements
Awareness comes from offline discussions and in real life (IRL) events. Conferen‐
ces, meetups, and all public or private events where you can raise awareness of
your API are important to activate a key element that is not measurable but that
works well: word of mouth. This also serves as the foundation for kickstarting

Developer Experience | 73

https://oreil.ly/GiDgb

the viral referral phase, something that we will talk about later. For that, you
can track the number of talks, the average audience size, and so on, to calculate
audience reach. Also, if you have a booth at an event, you can add in the number
of people you had interactions with.

Open source stars and contributions for API tooling
Providing useful tools or releasing valuable software under an open source
license can deliver a lot of awareness for your company and API. This recently
provided developer success to Strapi, which released a tool to build an API-
driven CMS with GraphQL, and Hugging Face API, which released its natural
language processing technology as open source. Through open source, these
companies attracted developers, scaled their businesses, and raised a lot of money
from investors—$10 million and $15 million, respectively—based on the success
of developer relations in managing the developer community around the open
source project of the company.

API acquisition. API acquisition is the metric that tells us how developers are engag‐
ing in our API onboarding process:

Number of registered developers
An important acquisition metric is the number of registered developers. But it
is useful only at the start! Don’t depend on it as an important metric in the
long term because it loses potency when the maturity of your developer relations
program evolves. This metric enables you to know if there is a match between
the developer community and the perceived value of the API you provide and its
associated capabilities.

Number of applications and applications/developer
Most of the time, one developer account is linked to one application, but when
you gain popularity or, for instance, when your API has an intrinsic value that
can be reused in other applications easily (i.e., it’s a transactional or Business-
Process-as-a-Service API), you will see two or more applications per developer
account. That is important to track because these developers are probably your
best word-of-mouth ambassadors since they understand the value of your prod‐
uct enough to reuse it multiple times. Tracking the total number of applications
and the median of developers who have at least two applications can be a good
metric in the acquisition phase.

Number of total API calls
In the beginning, the total number of API calls can be a good metric, enabling
your API developer relations team to focus on increasing the use of the API
and being innovative in their marketing strategy. The developer relations team
will focus on inspiring developers into different usages, according to different
common use cases. It should be tracked because it ceases to be a good metric

74 | Chapter 3: The API as a Product

really fast, unless your strategy and/or business model is attached to a number
of API calls, for instance, affiliation, pay-as-you go, or indirect models like
advertisement of third-party pages.

Number of third-party integrations onto other platforms
Another way to scale the reach and acquisition of your developer relations
is to work with existing companies that already have developer communities
and build a plug-in, add-on, or integration on their marketplace to scale. For
instance, Typeform, a platform to make survey forms with an API, was based
on integrating a use case into third-party marketplaces to leverage their existing
developer communities. Now that it has grown, Typeform can attract applica‐
tions on its platform and reverse the API integration scheme of “I spend time and
money to integrate with you” into “You spend time and money to integrate with
me.”

API activation. The API activation metrics help us understand the level of engage‐
ment our APIs are generating, especially early in the onboarding lifecycle:

Time to first Hello World (TTFHW)
An important conversion metric is how to transition an interested developer
into an active developer. For that, you need to track the TTFHW, which is
the time between when a developer registers on your platform to when they
successfully invoke your API. As Twilio developer relations suggest, no more
than 15 minutes is the perfect DX timing to enable developers to be successful
with your API. Of course, not all internal validations and processes are possible
in every organization to reach that sort of time, but reducing it to its minimum
will have a direct impact on your developer activation ratio.

Number of active applications/developers
You already track the number of applications and developers as we saw earlier,
but identifying the difference between developers, who are just using your API
for small projects and your power developers who are integrating it into business
projects can help you identify where to invest more resources, or when you
need to be more reactive to a support ticket, for instance. The limit between
the two needs to be defined by the API product manager, but it is important to
track in order to understand the difference. This difference will also help you to
define your pricing plans and help you put fair limits on your free plan, where
developers have sufficiently grown their applications to become “activated” as a
customer.

API retention. The API retention metrics tell us how we are doing in maintining an
acrtive relationship with the develoipers we have already onboarded:

Developer Experience | 75

Number of “valuable” applications
As for the difference between acquired and activated, the difference between acti‐
vated and valuable needs to be defined by the API product manager, according to
the API strategy. A valuable application can be an application that provides lots
of visibility into your application ecosystem, an application that attracts lots of
users, or one that generates significant and growing revenues.

Number of active end-user tokens
A more specific metric in the retention phase is to track the retention of end-user
tokens as the users of your API consumer applications. Applications that tend
to grow their user base have less tendency to change their stack and switch API
providers to focus on customers. This is why companies like Stripe can still
charge high fees for their APIs, because payment capability is probably the last
thing you want to change when you are growing. This metric can be really useful
if you target an application ecosystem for your strategy like the Facebook and
Slack APIs do.

API revenue. The API revenue metric lets us track the actual revenue generated by the
developer activity on our APIs:

Direct revenues generated by the API
This kind of metric is pretty straightforward if your business model is directly
attached to payment. Tracking revenues can also help influence an organization’s
internal decision makers and C-level staff on the need to continue investment in
developer relations to monetize the API.

Indirect revenues generated by the API
This metric is harder to define because it requires a subjective approach, but the
exercise to link indirect API metrics with business KPIs will encourage internal
support for developer relations. Developer relations pays off in the mid and long
term, so some managers may want to demonstrate faster rewards internally to
executives. Giving them a vision about the value created by developer relations,
by translating API metrics into business KPIs, even indirectly, can help the
developer relations team to continue to get support. For instance, if your API
enables your application ecosystem to grow and this ecosystem increases the
valuation of the company by 100% to investors and to the market, the value of
developer relations needs to be linked to the market cap of the company.

API referrals. With referrals, the idea is to leverage your existing happy API users as
ambassadors who foster interest in using your APIs among their networks. Here is a
set of metrics to analyze that:

76 | Chapter 3: The API as a Product

Conversation activity
Conversation activity is important to monitor because your developer relations
team can engage developers and product managers who are actually discussing
or debating “What is the best API for that?” or where to find capabilities and
business processes that have been encapsulated by an API. These discussions can
happen where developers are, such as on Discourse, Twitter, Medium, Hacker
News, Reddit, and public Slack forums.

Mentions from others
You can source speakers and developers who are referencing your API and its
value in their talks or articles and transform them into ambassadors. For that,
you must track these mentions, either in conferences or developer blogs, and
begin to engage them. This is what companies like Auth0 did with its ambassador
program, or Docker with its Docker Captain program, which identified its best
community advocates.

API presence and use in cool hacks and at hackathons
You can only track this manually, by monitoring social networks or mentions and
search engine alerts, but knowing that your API is being used by others, where it
happens, and who is doing it are all an important part of your developer relations
strategy. Your goal is to be sure they reach out to you next time, before they
actually start making their cool tool.

Funding API Consumers with Capital
An original strategy currently in place is to create an investment fund for API con‐
sumers and developers. This strategy has been used by major API-driven companies
in the ecosystem like Mailchimp, Twilio, SendGrid, Slack, and Stripe. At some point,
they all created investment funds especially for developer companies using their APIs.
With that fund, they can directly take ownership of a stake in their API consumer
companies and align their interest with their application ecosystem. This has many
benefits, but mainly it offers the potential for developers to profit from building on
your platform. Even if the number of investments per year is low, it enables you to
keep developers loyal to your platform instead of your competitors by showing a path
to monetization and/or funding.

In another venture-friendly strategy, Salesforce encouraged developers to build on
their Salesforce AppExchange over iOS because the average revenue for an app on
AppExchange at the time was $450,000, instead of $3,000 for an app on iOS at the
time (2015). Even a bank in France, Credit Agricole, proposed that developers be paid
based on the traction of their app, with a monthly revenue based on active users of
their applications using their public APIs.

Developer Experience | 77

https://oreil.ly/DwVx3

API-as-a-Product Monetization and Pricing
Lots of companies want to monetize APIs, to generate revenue, and to demonstrate
value for customers and the ecosystem. It is often hard to maximize value retention
and at the same time spread and expand traction through the ecosystem. We help you
define all the different variables in an AaaP monetization and pricing strategy.

Infrastructure pricing versus SaaS pricing for APIs
An API represents access to your capabilities as a service. But you will have to
position yourself around how you want customers to rely on you, and your mindset
around how you want to deliver these APIs. Two main patterns are present in the
industry: the infrastructure mindset and the SaaS mindset.

An infrastructure mindset often sets the same pricing for the same service, without
a gatekeeper, as we see with Amazon Web Services and other cloud vendors. The
pricing is always public, matched with usage, and not correlated with the value the
user creates. Whether you can generate $1 or $1 million with an Amazon Bucket,
the pricing is the same. At the scale they operate, the AWS product team cannot
differentiate all the customers, so the pricing is open, transparent, and matched with
usage levels.

With a SaaS mindset, you may try to design different tiers of API customers matched
to the potential value expected to be generated, always trying to capture the maxi‐
mum value whenever possible. For instance, when a user jumps from a few thousand
API calls per day to tens of thousands, it may seem that they are now in production
(and have a viable business of their own with their own paying customer base), so
they can pay a lot more than when just starting out and testing their product in
the market. Or when they require a service level agreement (SLA), that can indicate
that this is “money” time for them, and you can make them pay a lot more for
the same access to your capabilities (with penalties if you don’t maintain service
performance and therefore impact their business value chain). Some companies even
use API management to decide the threshold for selecting API consumer pricing
tiers. They look at the median number of API calls for production users and then
set the enterprise pricing plan around that level. This matches the price with the
transition from testing to production and seeks to capture the maximum value the
APIs can create for consumers.

You will have to decide on the trade-off between rentability and user acquisition. If
your customers have a flywheel effect that increases the value of the ecosystem, you
may choose to simplify the revenue model to maximize adoption instead of direct
and short-term revenues. For instance, the Facebook business model is based on
usage with ads, so the Facebook API needs to maximize third-party applications that
encourage users to spend more time on Facebook. The API is free (up to 100 million

78 | Chapter 3: The API as a Product

requests per day). We have gathered a list of API pricing dimensions to consider
when applying pricing for APIs.

Freshness: old versus new
If the API gives access to resources that get old and obsolete with time (like com‐
pany information data), you can set tiered pricing dependent on the freshness of
the data. Some financial APIs give you access for free for one-day-old data, but
fresh data access needs to be paid.

Precision: blurry versus accurate
If the API gives access to resources that have different levels of value at different
levels of precision, you can apply tiered pricing dependent on the level of preci‐
sion. A weather prediction API can set a low price point for a one-day prediction
but set access to three-to-five-day predictions at a larger price point. A credit
score API could give a precise credit score for a higher fee but a generalized
(blurry) representation of that score (for example, by applying a traffic light red,
amber, green scoring) for a smaller fee.

Consumability: transactional versus process
Do you provide granular APIs that the customers integrate one by one and pay
individually for a small fee, or do you gather complex business processes and
encapsulate them into one API that you sell at a high price? For instance, the
Checkr API does a background check in one API call that helps companies like
Netflix answer one question: can we hire that person? The Checkr API gathers
many API calls from different public services and legal sources and produces
a result that is of higher value to API consumers than them making and assem‐
bling all the different API calls themselves.

Scope: reduced versus all
The API can give access to all your internal resources or to a smaller suite of
functionalities. The tiered API pricing can then be based on how you define
the scope of the API access. This could be per year, per geographic region, per
datatype…you decide, as long as you know your customers well and understand
what they really value in your proposition.

Quantity: few versus many
Another way to tier API plans is to decide the quantity of data or the number of
requests allowed. The more API calls you want to make, the more you pay. Some
businesses rely heavily on data when they deal with important customers, so if
you know the quantity of data they need, you can set the pricing tier at volume
levels.

Developer Experience | 79

Performance: fast versus slow
SLAs are an important part of the delivery value of an API. Guaranteeing fast and
reliable access versus not guaranteeing it can be a strong differentiator for API
pricing plans.

Maintenance: managed versus delegated
APIs need to be maintained across versions. Lots of companies version APIs to
make them evolve over time. API consumers need to maintain their applications
and update them with the new version. By making companies pay to maintain
older versions, you can set different level of maintenance fees for the APIs.

Support: full versus limited
Supporting API customers can also be a differential factor for tiering API plans.
Some customers are willing to pay fees for the stability of 24/7, multiregional,
and guaranteed responses within an hour or less for API technical issues. This
can be monetized at a higher price. For lower pricing points, or free plans,
support can be offered via redirecting customers to the public forums or by
providing support only via email.

License: all rights reserved versus open
Your API may give access to resources that may not be available for all uses. You
can limit the potential uses of the API for low-paying customers and open greater
access for higher-paying API customers.

Branding: white label versus “powered by”
Some API providers prefer adoption and awareness among developer communi‐
ties over smaller revenue amounts as they are keen to keep the focus on targeting
big enterprises. One solution is to give access to your API for free or at a really
low price point with accreditation requirements to provide a mention such as
“Service provided by…” in their products and applications. Customers could
pay a higher amount to remove this obligation to label their use. Some scoring
companies oblige you to mention in any online or mobile publications where the
score comes from and forbid you to create a new score that includes their scoring
algorithm as a variable, unless you pay a premium plan for white labeling.

Of course, there are other variables that can be applied to set API pricing strategies,
but these are the most common ones.

It is important to know that the API and the as-a-service economy favor simple pric‐
ing and business models for adoption. Complex models that try to capture maximum
value are less self-service and need more sales support to acquire customers than flat,
open, and transparent pricing that enables easier self-service onboarding and that
give a better estimation of the final price, even if they capture less value per customer
on average.

80 | Chapter 3: The API as a Product

Summary
In this chapter, we introduced the AaaP approach and discussed how you can use
it to better design, deploy, and manage your APIs. Adopting this approach means
knowing your audience, understanding and solving their problems, and acting on
API users’ feedback.

The three key concepts we explored in the AaaP space were:

• Using design thinking to make sure you know your audience and understand•
their problems

• Focusing on customer onboarding as a way to quickly show customers how they•
can succeed with your product

• Investing in providing a developer experience that manages the post-release•
lifecycle of your product and gains insights for future modifications

Along the way, we learned how dedication to AaaP principles helped companies like
Apple, Amazon, Twilio, and others build not just successful products but also loyal
customers. And, regardless of whether your API program is targeting only internal
users or both internal and external developers, a loyal user community is critical to
the long-term health and success of your APIs.

Now that you have a grasp of the foundational principles of AaaP, we can turn to
that common set of skills that we find all successful API programs use to nurture and
grow. We call these the “API pillars,” and that’s what we’ll cover in the next chapter.

Summary | 81

CHAPTER 4

The Pillars of an API Product

When it’s done well, it does look easy. People have no idea how complicated and difficult
it really is. When you think of a movie, most people imagine a two-hour finished, polished
product. But to get to that two-hour product, it can take hundreds or thousands of people
many months of full-time work.

—George Kennedy

In the previous chapter, we established the perspective of treating the API as a
product. Now let’s take a look at the work you’ll need to do to build and maintain
your product. The truth is that it takes a lot of hard work to develop a good API.
In Chapter 1, you learned that APIs have three different parts: interfaces, implemen‐
tations, and instances. To create your API, you’ll need to put time and effort into
managing all three of those aspects. On top of that, you’ll need to keep everything
up-to-date as your product continually matures and changes. To help you understand
and manage all of that complexity, we’ve divided this body of work into a set of 10
pillars.

We call them pillars because of the way they support your API product. If you don’t
invest in any pillars, your product is doomed to fall and fail. But that doesn’t mean all
the pillars need maximum investment for your API to succeed. In this chapter, we’ve
identified 10 pillars. The nice thing about having 10 is that they don’t all have to carry
the same amount of weight. Some pillars can be stronger than others, and you can
even decide that some pillars don’t need much investment at all. The important thing
is that the combined strength of these pillars raises your API, even as it evolves and
changes over time.

83

Introducing the Pillars
Each of the API pillars forms a boundary for a work domain. Or, putting it another
way, each pillar bounds a set of API-related decisions. In reality, your work effort can’t
be categorized this precisely, and some of the pillars will overlap with one another.
But that’s OK. Our intent isn’t to define an irrefutable truth about API work; instead,
it’s to develop a useful model for examining and talking about the work that goes into
producing API products. We’ll be building upon this foundational concept of pillars
throughout the book as we develop more advanced models for team organization,
product maturity, and landscape aspects in future chapters.

The 10 pillars we’ve defined for API work are as follows:

• Strategy•
• Design•
• Documentation•
• Development•
• Testing•
• Deployment•
• Security•
• Monitoring•
• Discovery•
• Change management•

In this chapter, we’ll introduce each of these pillars and examine what they are and
why they are important for the success of an API product. We’ll also describe the
decision space for each pillar along with some general guidance on how to strengthen
it. We won’t be giving you any specific guidance on how to implement any of the
pillars in this chapter—after all, a complete discussion of each of these areas of work
could fill a book on its own, and we still have many more API management concepts
to tackle. However, we’ll call out some of the most important decisions in each area
from a governance perspective. Let’s start by taking a look at the first pillar of an API
product: strategy.

Strategy
Great products start with a great strategy, and API products are no different. The
API strategy pillar includes two key decision areas: why you want to build your
API (the goal) and how an API will help you to achieve that goal (the tactics). It’s
important to understand that your strategic goal for the API can’t exist in a vacuum.
Whatever goal you come up with for your API product needs to bring value to the

84 | Chapter 4: The Pillars of an API Product

organization that owns it. Of course, that means you’ll need to have some idea of your
organization’s strategy or business model in the first place. If you’re in the dark about
your organizational goals, figure that out before you start spinning up new APIs.

Powering your business with APIs
The amount of impact that your API product has on your organizational strategy
depends a lot on the context of your business. If your company’s main revenue source
is selling API access to third-party developers (for example, Twilio’s communication
APIs or Stripe’s payments API), then your API product strategy will be heavily inter‐
twined with your company strategy. If the API does well, the company profits; if the
API suffers, the company fails. The API product becomes the primary value channel
for your organization, and its architecture and business model will be implicitly
aligned with the objectives of the company.

However, most organizations have preexisting, “traditional” businesses that the APIs
will support. In these cases, an API will not become the new primary revenue source
unless the company makes a major change to its strategy. For example, a bank that
has been operating for hundreds of years may open an API to external developers
in support of an “open banking” initiative. Narrowly focusing only on the API’s
business model might lead to adopting a revenue model for the API—one that
charges developers for access to API-based banking functions. But thinking about the
bigger picture for the bank, this API strategy would be detrimental because it creates
a barrier to usage. Instead, the banking API can be offered for free (at a loss) in the
hopes of increasing the bank’s digital reach, leading to an increase in sales of the core
banking products.

API strategy isn’t just for APIs that are being offered to the outside world; this is also
an important pillar for your internal APIs. That means you’ll need to define a product
strategy for them as well. The only real difference between internal API strategy and
external API strategy is in the users they serve. For both types of APIs, the work of
understanding why the API needs to exist and how it can fulfill that need remains
the same. No matter what the context is for your API, it’s worthwhile to develop a
strategic goal for the API that will bring value to your organization.

Once you have a strategic goal for your API product, you’ll need to develop a set of
tactics that will help you achieve it.

Defining tactics
Achieving a strategic API goal will require you to create a plan for your product that
leads you there. You’ll need to develop a set of tactics for your work that gives you
the best chance of success. Essentially, your strategy guides all of the decision-based
work you’ll make in the other nine pillars. The challenge is in understanding the link
between each of those decision work domains and your goal.

Introducing the Pillars | 85

Let’s take a look at a few examples:

Goal: increase business-aligned capabilities in your platform
If the focus is on building up a bigger set of business-aligned APIs, your tactics
should include some changes to how you design and create your API in the first
place. For example, you’ll probably want to involve the business stakeholders
early in the design stage of your API to make sure that the right capabilities
are being exposed through your interface. You’ll also probably take their lead in
understanding who the primary users are and what the boundaries of the API
should be.

Goal: monetize internal assets
A monetization focus requires a set of tactics that help you bring your product
to a user community that finds it valuable. It also usually means that you’ll be
operating in a competitive market, so the developer experience (DX) of using
your API becomes very important. Tactically, that means a heavier investment
in the design, documentation, and discovery pillars of work. It also means you’ll
need to do some market research to identify the right audience for your API and
make sure you have the right type of product for them.

Goal: harvest business ideas
If the goal is to find innovative ideas from outside your company, you’ll need
to develop a set of tactics that fosters the use of your API in innovative ways.
That will mean marketing the API to the outside world and designing it to be
appealing to a user community that provides the most potential innovative value.
It also makes sense to invest heavily in the discovery pillar to make sure that you
can drive usage as high as possible in order to harvest as many ideas as possible.
Equally, you’ll need a clear tactic for identifying the best ideas and developing
them further.

As we can see from these three examples, you’ll need to do the following to develop
strong tactics for your API:

• Identify which pillars are essential to success.•
• Identify which user communities will drive success.•
• Gather contextual data to drive your decision-making work.•

Adapting your strategy
While it’s important to develop good tactics when you begin building your API, it’s
also essential that your strategy remains fluid and ready to change. It’s no good setting
your strategic goal and tactical plan once and then walking away. Instead, you’ll need
to adjust your strategy based on the results you get from your product. If you aren’t

86 | Chapter 4: The Pillars of an API Product

making any progress, you’ll need to make some changes to your tactics, perhaps
adjusting your goal or even scrapping the API and starting again.

Charting your strategic progress means you’ll need to have a way of measuring your
API results. In fact, it’s essential that you have a set of measures for your strategic
objectives—otherwise you’ll never know how well you are doing. We’ll talk more
about objectives and measurements for APIs in Chapter 7 when we introduce OKRs
and KPIs for APIs. Measurement also depends on having a way of gathering data
about the API, so you’ll also need to make an investment in the monitoring pillar.

You should also be ready to change your strategy if the context of your API changes:
for example, if your organization changes its strategic goal, a new competitor shows
up in your market, or the government introduces a new type of regulation. In each of
these cases, being quick to adapt can greatly increase the value your API provides. But
strategic change is limited by the changeability of your API, so the pillar of change
management (discussed later in this chapter) is an essential investment.

Key decisions for strategy governance

What is the API’s goal and tactical plan?
Defining a goal and a plan to achieve it is a core of strategy work. It’s important
to consider carefully how this decision work should be distributed. You can
allow individual teams to define their own goals and tactics to take advantage
of local optimization, or you can centralize goal planning to improve system
optimization. If you choose to decentralize API strategy work, you’ll need to
build incentives and controls to prevent any single API from causing irreparable
harm. For example, centralizing the authorization step of a goal-setting decision
may slow the process down but can prevent unexpected problems.

How is the strategic impact measured?
The API’s goal is a local definition, but you’ll also need to govern how well that
goal aligns with the organization’s interests. That measurement can be decentral‐
ized and left to your API teams, or it can be centralized and standardized. For
example, you can introduce a consistent process with standardized metrics that
teams need to follow for API reports. This gives you the benefit of consistent data
for system-level analysis.

When does the strategy change?
Sometimes goals need to change, but who is allowed to make that decision? The
trouble with changing an API’s goal is that it tends to be highly impactful, both
to the API itself and to the people who depend on it. While you might give your
teams the freedom to set the goal of a new API, you’ll need to introduce more
controls for goal changes, especially once the API has entered a stage of heavy
usage.

Introducing the Pillars | 87

Design
Design work happens when you make decisions about how something you are creat‐
ing will look, feel, and be used. Everything you create or change involves design deci‐
sions. In fact, all of the decision-making work we describe in the different sections of
this chapter can also be thought of as design work. But the pillar of API design we
are describing here is special. It’s constrained to a specific type of design work: the
decisions you make when you are designing the API’s interface.

We’ve called out interface design as its own pillar because it has such a big impact
on your API. Although it’s only one part of what makes an API, the interface is all
that your users see when they want to use your product. For them, the interface
is the API. Because of that, whatever interface design you come up with has a big
impact on the decisions you’ll make in the other pillars. For example, deciding that
your API should have an event-based interface radically changes the implementation,
deployment, monitoring, and documentation work you’ll need to do.

You’ll have lots of decisions to make when you are designing your interface. Here are
a few of the important things you’ll need to consider:

Vocabularies
What are the words and terms that your users will need to understand? What
special characters will they need to know about?

Styles
What protocols, message patterns, and interface styles will the interface adopt?
For example, will your API use the CRUD pattern? Or will it use an event style?
Or something like the GraphQL query style?

Interactions
How will your API allow users to meet their needs? For example, what calls
will they have to make to achieve their goals? How will the status of calls be
communicated to them? What kind of controls, filters, and usage hints will you
provide to them in the interface?

Safety
What design features will help your users avoid making mistakes? How will you
convey errors and problems?

Consistency
What level of familiarity will you provide to your users? Will the API be consis‐
tent in terms of other APIs in your organizations or your industry? Will the
interface design be similar to other APIs that your users may have used, or will it
surprise them with its innovation? Will you adopt ratified industry standards in
your design?

88 | Chapter 4: The Pillars of an API Product

That’s not an exhaustive list, but as you can see, there is a lot of decision-making
ground for you to cover. Designing a good interface is difficult work. But let’s be more
precise about what the goal is. What is good design for an API’s interface, and how do
you make better design decisions?

What is good design?
If you’ve done the work of establishing a strategy for your API, then you’ve already
defined a strategic goal for your API. We need to figure out how the design of the
interface can help you get closer to that objective. As we saw in “Strategy” on page
84, you can come up with lots of different goals and tactics for an API. But generally
speaking, all of them boil down to a choice between two common objectives:

• Acquire more API users.•
• Reduce the development costs for API usage.•

In practice, you’ll need a much more nuanced view of strategy if you want to be
effective. But by generalizing the objectives this way, we can make an important
observation: good interface design will help you achieve both of these generalized
goals. If the overall experience of using the API is good, more users will be willing to
use it. Interface design plays a big role in the developer experience of your API, so
good interface design should lead to higher user acquisition. Also, a good interface is
one that makes it harder to do the wrong things and easier to do the things that solve
a user’s problems. That translates to a lower development effort for the software that
you write when you use a well-designed API.

So, good interface design is worth investing in. But there isn’t a concrete set of
decisions that makes an interface a “good” one. The quality of your interface depends
entirely on the goals of your users. Improving usability and experience is impossible
if you don’t know who you are designing for. Thankfully, if you’ve already established
why you are building this API, it should be a fairly straightforward exercise to
figure out who you are designing for. Target that user community and make design
decisions that will improve their experience of using your API.

Developer Experience (DX)
Throughout this chapter and in this book we’ll refer to the developer experience of
your API. DX is really just the user experience that your API provides, but with the
acknowledgment that it is for a very particular type of user—a software developer. An
API’s DX is the sum of all the interactions that the developer will have with your API
product. Interface design is a big part of that, but your documentation, marketing,
and support all contribute to the experience you are creating. Ultimately, DX is a
measure of how happy or (unhappy) your user base is.

Introducing the Pillars | 89

Using a design method
To get the best results from your interface design work, your best bet is to use a
method or process. A big part of creating a design is making guesses or assumptions
about what you think will work. You have to start somewhere, so you might start
by copying an API interface that you like or by following some guidance in a blog
post. That’s perfectly fine. But if you want to maximize the value that your design
interface provides, you’ll need a way of testing those assumptions and making sure
the decisions you’ve made are the best ones.

For example, we could decide to adopt the following lightweight process:

1. Come up with a prototype for the interface.1.
2. Write our own client that uses the prototype.2.
3. Update the prototype based on what we’ve learned and try it once more.3.

A heavier-duty process might look like this:

1. Have an early design meeting with all stakeholders (i.e., users, supporters, and1.
implementers).

2. Codesign a vocabulary for the interface.2.
3. Conduct surveys with the user community.3.
4. Create a prototype.4.
5. Test the prototype with target user communities.5.
6. Validate the prototype with implementers.6.
7. Iterate as necessary.7.

The big difference between these two examples is the amount of investment you’d
need to make and the amount of information you’d gather. Deciding how heavily
to invest in the design process is a strategic decision. For example, you’ll probably
scrutinize the interface of an external API being sold in a competitive market more
than you would an internal API being used by your own development team. But
remember that even a lightweight design process can pay big dividends.

90 | Chapter 4: The Pillars of an API Product

API Description Formats
You can make your design work easier by using a machine-readable interface descrip‐
tion to describe it. Not every style of API has an established standard format, but
some of the more common ones do. For example, if you are designing SOAP APIs,
you can use the WSDL format; if you are designing a CRUD-style HTTP API, you
can use the OpenAPI Specification; or if you are designing gRPC APIs, you can use
Protocol Buffers. Each of these description formats makes it easier for you to generate
prototypes with tooling and persist and share the interface description internally as a
file.

Key decisions for design governance

What are the design boundaries?
An API team with no design constraints can create an interface model that max‐
imizes usability and the experience for their users. But usability is user-centric
and comes at the cost of flexibility for users in general. That means there is a
system impact to this kind of local optimization. If you are producing many APIs
and users will need to use more than one of them, you’ll need to introduce some
constraints around design decisions. That means you’ll need to either centralize
the design work or centralize the selection of choices designers have. Some
centralized teams publish a “style guide” to document these kinds of design con‐
straints; it can include the vocabularies, styles, and interactions that are officially
allowed.

How are interface models shared?
Deciding how the model of an interface should be shared means deciding how
the work of API design should be persisted. For example, if you centralize this
decision completely, you can decide that all API teams need to provide designs in
the OpenAPI description format. This has the drawback of limiting all possible
design choices to the options available in the OpenAPI Specification but also
makes it easier to share work between teams and use consistent tooling and
automation across the system.

Documentation
No matter how well you design the interface of your API, your users won’t be able
to get started without a little help. For example, you may need to teach users where
the API is located on the network, what the vocabulary of the messages and interface
is, and in what order they should make calls. The pillar of API documentation
captures the work of creating this API learning experience. We call this pillar “API

Introducing the Pillars | 91

https://oreil.ly/YZ97v
https://oreil.ly/qJqEt
https://oreil.ly/oI7gG

documentation” instead of “API learning” because the most popular API learning
experiences are delivered in the form of human-readable documentation.

It’s worth providing good documentation for the same reason it’s worth designing
a good interface: a better developer experience translates into more strategic value.
If you don’t have good documentation, the API will be more difficult to learn and
understand. If it’s too difficult to learn how to use, fewer people will use it. If they are
forced to use it, the software they write will take longer to develop and is more likely
to have bugs. Developing good documentation turns out to be a big part of creating a
good developer experience.

Documentation methods
You can deliver API documentation in a lot of different ways: you can provide an
encyclopedia-like reference to the resources of your API, you can provide tutorials
and conceptual content, and you can even provide highly documented, complex
sample applications for users to copy and learn from. There is an incredible amount
of variety in the styles, formats, and strategies of technical documentation. To make
things easier, we’ll split API documentation into two broad, fundamental practices:
the teach don’t tell method and the tell don’t teach method. In our experience, you’ll
need to adopt both approaches if you want to create the best learning experience for
your users.

The tell don’t teach approach to documentation focuses on communicating facts
about your API that will help users to use it. Documenting the list of your API’s error
codes and providing a list of message body schemas it uses are both examples of this
fact-based approach. This type of documentation gives your users a reference guide
for your interface. Because it is highly factual, it is fairly easy to design and develop.
In fact, you may be able to use tooling to produce this style of documentation very
quickly, especially if the interface design has been serialized in a machine-readable
format (see “API Description Formats” on page 91). Overall, this type of factual
reporting of interface details and behavior requires less design effort and decision
making from your team. The key decisions have to do with choosing which parts of
the API need to be documented, rather than how to convey that information in the
best way.

Conversely, the teach don’t tell approach to documentation focuses on designing a
learning experience. Instead of just laying out the facts for readers to sift through,
this approach provides a tailored learning experience to users. The goal is to help
your API users achieve their usability goals while learning how to use your API in a
focused, targeted manner. For example, if you own a mapping API, you could write a
six-step tutorial that teaches your users how to retrieve GPS information for a street
address. This way you can help them accomplish a fairly typical task with a minimum
level of effort.

92 | Chapter 4: The Pillars of an API Product

But documentation doesn’t have to be passive. References, guides, and tutorials are all
helpful to read, but you can also deploy tooling that will help your users learn about
your API in a more interactive way. For example, you can provide a web-based API
explorer tool that allows your users to send requests to your API in real time. A good
API explorer tool is more than a “dumb” network request tool; it guides the learning
experience by providing a list of activities, vocabularies, suggestions, and corrections
to the user. The big advantage of interactive tooling is that it shortens the feedback
loop for users: the cycle of learning something, trying to apply what has been learned,
and learning from the results. Without tooling, your users will need to spend time
writing code or finding and using external tools, which can result in a much longer
loop.

The Developer Portal

In the world of APIs, a developer portal is the place (usually a web‐
site) where all the supplementary resources for an API are hosted.
You don’t have to have a developer portal, but it can really help
improve the developer experience for your API by giving users a
convenient way to learn about and interact with your product.

Investing in documentation
If you are providing only one type of API documentation, chances are that you are
underserving your user community. Different users have different needs, and you’ll
need to cater to each of them if you care about their learning experience. For exam‐
ple, new users can benefit a lot from the teach don’t tell approach to documentation
because it’s prescriptive and easy to follow, but users who are experienced with your
API will appreciate your tell don’t teach documentation because they can quickly
navigate to the facts that they need. Similarly, interactive tools can appeal to users
who enjoy a live experience, but won’t be great for users who prefer to understand
and plan—or just have a preference for reading.

In practice, providing all of this documentation for your API can be costly. After all,
someone has to design and write all of it—and not just once but over the lifetime of
your API. In fact, one of the difficulties of API documentation work is in keeping
it synchronized with interface and implementation changes. If the docs are wrong,
users can become very unhappy very quickly. So, you’ll need to make smart decisions
about how much of a documentation effort is sustainable for your API product.

The key factor in making your documentation investment decision should be the
value of improving the API’s learning experience to your organization. For example,
good documentation can help differentiate a public API product from its competi‐
tors. It can also be a big help for an internal API that is used by developers who aren’t
familiar with the API owner’s system, business, or industry. The level of documenta‐
tion investment for a public API operating in a competitive market will usually be

Introducing the Pillars | 93

higher than for an internal one, and that’s OK. Ultimately, you’ll need to decide how
much documentation is good enough for your API. The good news is that it’s always
possible to increase that investment as your API grows.

Key decisions for documentation governance

How should the learning experience be designed?
Decisions around learning experience design are often governed separately from
the design, implementation, and deployment of an API. If you have lots of APIs,
your users will appreciate having a single, consistent learning experience for all of
them. But, centralizing this decision carries the usual costs: less innovation and
more constraints for API teams as well as a potential bottleneck of centralized
technical writing. You’ll need to balance the need for consistency against the
amount of variety and innovation you need to support. One option is to intro‐
duce a hybrid model where most of the APIs have centralized documentation,
but teams are allowed to create their own learning experiences if they are trying
something new.

When should documentation be written?
There is a surprising amount of variability for when a team should start writing
their documentation. Writing early is more expensive because of the likelihood
of design and implementation changes, but it can expose usability problems
early on, making it worthwhile. You’ll need to decide if this is a decision that
can be safely decentralized or one that needs more centralized management. For
example, does every API regardless of its intended use need to have written doc‐
umentation before it can be released? Or should teams use their best judgment to
make that decision?

Development
The pillar of API development includes all of the decisions that you make when
you bring your API to “life.” This is the hard work of developing your API’s imple‐
mentation in a way that stays true to its interface design. The development pillar
has an overwhelmingly large decision space. You’ll need to decide which technology
products and frameworks you want to use to implement the API, what the architec‐
ture of the implementation should look like, which programming and configuration
languages need to be used, and how the API should behave at runtime. In other
words, you’ll need to design and develop the software of your API.

The truth is that your API’s users don’t care how you implement your API. All
your implementation decisions about programming languages, tools, databases, and
software design are meaningless to them; only the final product matters. As long as
the API does what it is supposed to do in the way that it is supposed to do it, your

94 | Chapter 4: The Pillars of an API Product

users will be happy. The fact that you do that with a particular database or framework
is just a triviality to your users.

But just because your users don’t care about your choices doesn’t mean that your
development decisions aren’t important. In fact, development decisions matter a lot,
especially for the people who have to build, maintain, and change the API over its
lifetime. If you choose technologies that are difficult to use, or esoteric languages that
no one in your company understands, the API will be more difficult to maintain.
Similarly, if you choose tooling that is too stifling or languages that are just painful to
program in, the API will be difficult to change.

When you think about the API development pillar, it’s easy to focus just on the
choices you’ll make to build the first release of the product. That’s important, but it’s
only a small part of the challenge. The more important goal is to make development
decisions that improve the quality, scalability, changeability, and maintainability of
your API over its entire lifetime. It takes experience and skill to develop software with
that perspective, so you’ll need to make good investments in people and tools. After
all, anyone can write a computer program after a few programming classes, but it
takes a real professional to write programs that work at scale, in concurrent use, and
that handle all the edge cases that come up in real life while remaining maintainable
and changeable by other developers.

There aren’t any concrete rules for how you should design and architect your API
software, just as there aren’t any concrete rules for designing software in general. But
there is, of course, plenty of guidance, philosophy, and advice on how you should
design your software. Generally, you can apply any good practices for server-based
development to the API development space. The only thing that is particular to
APIs is the healthy ecosystem of API-specific frameworks and tooling for developing
instances. Let’s take a look at the types of options you have for taking advantage of
these helpers.

Using frameworks and tools
A large variety of tools are used in any typical development process, but for API
development, we’re interested in a specific category of tooling—the kind that helps
you offload the API-related decisions and development effort involved in creating a
new API release. This includes frameworks that make the job of writing API code
easier as well as standalone tools that offer “no-code” or “low-code” implementation.

One tool that is particularly popular in the API management space is the API gate‐
way. An API gateway is a server-based tool that is designed to reduce the cost of
deploying APIs within a network. They are typically designed to be highly scalable,
reliable, and secure—in fact, improving the security of an API implementation is
often the primary motivation for introducing a gateway into a system architecture.

Introducing the Pillars | 95

They are useful because they can greatly reduce the cost of developing an API
instance.

The cost of development goes down when you use a tool like a gateway because it’s
built to solve most of your problems. In fact, in most cases, these tools require very
little programming effort. For example, a decent HTTP API gateway should be ready
to listen for requests on an HTTPS port, parse JSON request bodies, and interact with
a database right out of the box with only a little bit of configuration required to make
it run. Of course, all of this doesn’t happen by magic; someone had to program this
tool to do all these things. In the end, you’re shifting the cost of API development to
an outside agency.

When tools work well, they are a godsend. But the cost of using tools like API
gateways is that they can do only what they are designed to do. Just like with any piece
of machinery, your flexibility is limited to the functions that the machine provides.
So, choosing the right tool becomes an important development decision. If your API
strategy and interface design take you in a direction of doing lots of nonstandard
things, you may need to take on more of the development effort yourself.

The interface and implementation relationship
Supporting the strategy and interface design of your API is really the primary goal
for your development work. No matter how great your architecture is and how
maintainable your code is, if the API doesn’t do what the interface design says it
should, you’ve failed. We can draw two conclusions from this statement:

• Conforming to your published interface design is an important quality metric for•
your implementation.

• You’ll have to keep your implementation updated whenever you change the•
interface.

That means you can’t develop your API until you have an interface design. It also
means that the people who are doing your development work need a reliable way of
understanding what the interface looks like and when it changes. A big risk for your
API product is if the design team decides on an interface design that is impractical or
impossible to implement properly. If the interface designer and the implementation
developer are the same person or on the same team, it’s not such a big deal, but if
that’s not the case, make sure that having the implementation team vet the interface is
part of your API design method.

96 | Chapter 4: The Pillars of an API Product

Using API Descriptions Close to the Code
One way to improve your chances of keeping the implementation and interface
synchronized is to integrate the interface description into your implementation. For
example, if you have an API description format that represents the interface design,
you can keep that file in your code repository or even develop an automated test that
verifies your adherence to the interface. Taking this further, you can even generate a
code skeleton based on the description format—although that’s really only effective
for the first release.

You can also take the opposite approach: instead of receiving an interface description
and using it with your code, you can embed the interface description by hand directly
into your code. For example, some frameworks allow you to use annotations that
describe an API interface. The combination of your code and the interface annota‐
tions can become the “source of truth” for your interface, and you can even use it
to generate API documentation. Any of these approaches can be useful in helping to
ensure that your implementation doesn’t break a promise that your interface design
makes.

Key decision for development governance

What can be used for the implementation?
This is the central governance question for implementation. It’s a broad question
and includes a lot of decisions within it: which databases, programming lan‐
guages, and system components can you choose from? Which libraries, frame‐
works, and tools can be used to support the work? Which vendors do you have to
work with? Are you allowed to use open source code?

At the time of this writing, there’s been a lot of interest in decentralizing these
kinds of decisions to improve local optimization. We’ve heard from lots of com‐
panies who’ve found that their APIs are more efficient, easier to build, and easier
to maintain when teams are given more implementation freedom. But decentral‐
ization comes with the usual costs: less consistency and fewer opportunities for
system optimization. In practice, this means that it can be harder for people to
move between teams, and there’s less opportunity to gain economies of scale and
less visibility over the implementation in general.

In our experience, providing more implementation freedom is worth doing, but
you’ll need to consider how much decision freedom your system can afford.
One way to make it easier to support decentralized implementation decisions
is to centralize the selection element, which means centralizing the technology
options while decentralizing the team’s selection and authority over them.

Introducing the Pillars | 97

Testing
If you care at all about the quality of your API, you’ll need to expend some effort on
testing it. In the pillar of API testing, you’ll need to make decisions about both what
you need to test and how you’ll test it. In general, API testing is not very different
from the typical quality assurance (QA) work that you’d do for a software project.
You should be able to apply good software quality practices to the implementation,
interface, and instances of your API just like you would for a traditional software
application. But as with the development pillar, it’s the ecosystem of tools, libraries,
and helpers that makes the API domain slightly different from the general testing
space.

What needs to be tested?
The primary goal of testing your API is to make sure it can deliver on the strategic
goal you should have defined during its creation. But as we’ve seen throughout this
chapter, that strategic goal is enabled by the decision-based work of the 10 pillars.
Therefore, the secondary goal of API testing is to ensure that all of the work you’ve
done across our pillars is of sufficient quality to support the strategy. For example, if
the usability and learnability of your API are very low, that could impact a strategic
goal of acquiring more API users. That means you need to define specific tests to
assess the quality of the interface. You also need to test that the work you’ve done
is internally consistent. For example, you’ll need to check that the implementation
you’ve developed is consistent with the interface you’ve designed.

Here is a typical list of test categories that API owners use:

Usability and UX testing
Identify usability bugs in the interface, documentation, and discovery. For exam‐
ple: provide the API documentation to developers and perform “over the shoul‐
der” observation testing while they try writing client code using it.

Unit testing
Identify bugs within the implementation at a granular level. For example: run a
JUnit test against a Java method in the API implementation’s code on every build.

Integration testing
Identify implementation and interface bugs by making API calls against an
instance. For example: run a test script that makes API calls against a running
instance of the API in a development environment.

Performance and load testing
Identify nonfunctional bugs in deployed API instances and instance environ‐
ments. For example: run a performance test script that simulates a production-
level load against a running instance of the API in a production-like test
environment.

98 | Chapter 4: The Pillars of an API Product

Security testing
Identify security vulnerabilities in the interface, implementation, and instance of
the API. For example: hire a “tiger team” to find vulnerabilities in a running
instance of the API in a secure test environment.

Production testing
Identify usability, functionality, and performance bugs after the API product
has been published in the production environment. For example: perform a
multivariate test using the API documentation in which different users are served
slightly different versions of content, and improve the usability of the documen‐
tation based on the results.

This certainly isn’t an exhaustive list, and there are lots of other tests you could
do. In fact, even the tests we’ve described here could be exploded into many more
subcategories. The big strategic decision you’ll need to make in the testing pillar is
how much testing is good enough. Ideally, your API strategy can help guide this
decision. If quality and consistency are a high priority, you may find you’ll need to
spend a lot of time and money testing your API before it can be released. But if your
API is experimental, you can adopt a risk-tolerant approach and perform a minimum
level of testing. For example, we’d expect the testing policy for an established bank’s
payments API and a startup’s social networking API to be very different in scope.

API testing tools
Testing can be expensive, so it’s helpful to adopt process improvements that make
it easier to improve your product’s quality. For example, some organizations have
had success with a “test-driven” method, where tests are written before the implemen‐
tation or interface is created. The goal of this type of approach is to change the culture
of a team to be test-centric so that all design decisions result in a more test-friendly
implementation. When it works, the net result is an API that is of higher quality
because of its implicit testability.

In addition to process and cultural improvements, you can use tooling and automa‐
tion to reduce the cost of performing tests. The most useful tools in the API testing
arsenal are simulators and test doubles, or mocks. That’s because the connected
nature of API software makes it difficult to test things in isolation, so you’ll need
some way of simulating other components. In particular, you’ll probably need tools to
simulate each of these components:

Client
When you are testing your API, you’ll need something that can simulate the
requests that will come from your API clients. There are lots of tools available
that can do this for you. The good ones will give you enough configurability and
variability to come very close to the types of messages and traffic patterns you’ll
receive in production.

Introducing the Pillars | 99

Backend
Chances are your API will have some dependencies of its own. That could be a
set of internal APIs, a database, or a third-party, external resource. To perform
integration testing, performance testing, and security testing, you’ll probably
need some way of simulating those dependencies.

Environment
You’ll also need some way to simulate your production environment when
you are running preproduction tests. Years ago that could mean maintaining
and operating a scheduled environment just for that purpose. Nowadays, many
organizations use virtualization tools to make it cheaper to re-create environ‐
ments for testing.

API
Sometimes you’ll even need to simulate your own API. That can be the case
when you want to test one of your supporting components—for example, an API
explorer in a development portal that makes calls against the API—but a simula‐
ted version of your API is also a valuable resource that you can give to your
API’s users. This kind of simulated API is often called a sandbox, presumably
because it’s a place where developers can play with your API and data without
any consequences. It’s a bit of an investment to make, but it can greatly improve
the developer experience for your API.

Make Your Sandbox Feel Like Production

When you release a sandbox for your API’s users, make sure that
your sandbox reproduces the production environment as closely
as possible. You’ll have a much happier set of users if the only
change they need to make when they finish writing code is to
point it at your production instance. Nothing is more frustrating
than spending a lot of time and energy troubleshooting an API
integration only to find out that the production instance looks and
behaves differently.

Key decisions for testing governance

Where should testing happen?
Over the years, testing processes have become more and more decentralized.
The big governance decision is to determine how much you want to centralize
or decentralize for each of the types of API test stages we’ve described. Central‐
izing a testing process gives you more control but comes with the cost of a
potential bottleneck. Some of that can be alleviated with automation, but you’ll
then need to decide who configures and maintains the automated system. Most
organizations employ both centralized and decentralized systems. Our advice is
to decentralize early test stages for speed and centralize the later stages for safety.

100 | Chapter 4: The Pillars of an API Product

How much testing is enough?
Even if you decide that individual teams can run their own tests, you might want
to centralize the decision of the minimum level of testing they need to do. For
example, some companies use code coverage tools that provide reports on how
much of the code has been tested. In terms of metrics and quality, coverage isn’t
perfect, but it’s quantifiable, and it allows you to set a minimum threshold that all
teams need to meet. If you have the right people, you can also decentralize this
decision and leave it up to individual API teams to do what’s right for their APIs.

Deployment
The implementation of an API is what brings the interface to life, but that imple‐
mentation needs to be deployed properly in order to be useful. The pillar of API
deployment includes all the work of moving the implementation of an API into
an environment where your target users can use it. The deployed API is called an
instance, and you may need to manage several of these instances to keep your API
running properly. The challenge of API deployment work is in making sure that all
your instances behave consistently, remain available to your users, and are as easy to
change as possible.

The work involved in software deployment is a lot more complicated today than
it was in the past. That’s mostly because our software architectures have grown
increasingly complex, with more interconnected dependencies than ever before. On
top of that, companies have pretty high expectations when it comes to the availability
and reliability of systems—they expect things to work all the time and every time. Oh,
and don’t forget, they’ll want changes to be released immediately. You’ll need to make
good decisions about your API deployment system to meet all of those expectations.

Dealing with uncertainty
Improving the quality of an API deployment means making sure that your API
instances behave the way users expect them to. Obviously, a lot of the work that goes
into making that happen occurs outside the pillar of deployment. You’ll need to write
good, clean implementation code and test it rigorously if you want to have fewer
bugs in production. But sometimes, even when you take all those precautions, bad
things happen in production. That’s because there is a high level of uncertainty and
unpredictability to deal with for a published API.

For example, what happens if there is a sudden spike in demand for your API
product? Will your API instances be able to handle the load? Or what if an operator
inadvertently deploys an older version of an API instance, or a third-party service
your API depends on suddenly becomes unavailable? Uncertainty can pop up in lots
of different places: from your users, from human error, from your hardware, and
from external dependencies. Increasing deployment safety requires you to take two

Introducing the Pillars | 101

opposite approaches at the same time: eliminating uncertainty while at the same time
accepting it.

A popular method for eliminating uncertainty in API deployments is to apply the
principle of immutability. Immutability is the quality of being unable to change—in
other words, being “read-only.” You can apply immutability in lots of ways. For
example, if you never allow your operators to change a server’s environment vari‐
ables or install software packages manually, you could say you have an immutable
infrastructure. Similarly, you could create immutable API deployment packages—that
is, a deployable package that can’t be modified, only replaced. The principle of
immutability improves safety because it helps drive out the uncertainty introduced by
human intervention.

However, you’ll never be able to eliminate uncertainty completely. You can’t predict
every eventuality, and you can’t test every possibility. So, a big part of your decision
work will be in figuring out how to keep your system safe even when the unexpected
happens. Some of this work happens at the API implementation level (e.g., writing
defensive code), and some of it happens at the landscape level (e.g., designing resilient
system architecture), but a lot of work needs to happen at the deployment and
operations level. For example, if you can continually monitor the health of your API
instances and system resources, you can find problems and fix them before they
impact your users.

Designing Resilient Software

One of our favorite resources for improving the safety of a
deployed API is Michael Nygard’s book Release It! (Pragmatic
Bookshelf). If you haven’t read it yet, make sure you do. It’s a
treasure trove of implementation and deployment patterns for
improving the safety and resiliency of your API product.

One kind of uncertainty that you’ll be forced to accept comes in the form of changes
to the API. While it would be nice to freeze all changes once you’ve got your API
working reliably, change is an inevitability that you’ll need to prepare for. In fact,
deploying changes as quickly as possible should be a goal for your deployment work.

Deployment automation
There are really only two ways to make your deployments happen faster: doing
less work and doing work more quickly. Sometimes you can do this by making
changes to the way you work—for example, by adopting a different way of working or
introducing a new type of culture. It’s hard, but it can really help. We’ll dive into this
topic in more detail later, when we talk about people and teams in Chapter 8.

102 | Chapter 4: The Pillars of an API Product

Another way to get faster is to replace human deployment tasks with automation. For
example, if you automate the process of testing, building, and deploying your API
code, you’ll be able to perform releases at the push of a button.

Deployment tooling and automation can be a quick win, but be aware of the long-
term costs. Introducing automation in your workflow is like introducing machinery
into a factory—it improves efficiency, but it limits your flexibility. Automation also
comes with startup and maintenance costs. It’s unlikely that it will work right out
of the box, and it’s unlikely it will adapt on its own to your changing requirements
and context. So, when you improve your system with automation, be prepared to pay
those costs over time—that means the costs of maintaining that machinery as well as
eventually replacing it.

APIOps: DevOps for APIs

A lot of what we’ve described in this section fits in well with
the philosophy of DevOps culture. In fact, there’s even an emerg‐
ing term for applying DevOps practices to API specifically called
APIOps. We think that DevOps is a good fit for the API domain
and worth learning from, no matter what you want to call it.

Key decisions for deployment governance

Who decides when a release can happen?
The question of who gets to release is central to deployment governance. If you
have talented people you can trust, an architecture that is fault tolerant, and a
business domain that can excuse the occasional failure, you could completely
decentralize the decision. Otherwise, you’ll need to figure out which parts of this
decision need to be centralized. Distribution of this decision is usually nuanced.
For example, you could enable “push to release” for trusted team members, or
release to a test environment where a centralized team can make a “go/no-go”
decision. Distribute in a way that fits your constraints and enables the most
speed, with the right level of safety at scale.

How are deployments packaged?
In recent years, the question of how software is packaged and delivered has
become enormously important. It’s turned out to be the kind of decision that can
gradually shift an entire system in another direction. For example, the growing
popularity of containerized deployment has made it cheaper and easier to build
immutable, cloud-friendly deployments. You’ll need to consider who should be
making this important decision for your organization. A decentralized, locally
optimized decision maker may not understand the impacts to security, compati‐
bility, and scale, but a purely centralized decision maker may not have a solution

Introducing the Pillars | 103

that fits the variety of implementations and software being deployed. As usual,
some type of choice constraint and distribution of the decision is useful.

Beyond just the question of centralization and decentralization, you’ll also need
to consider which team is best placed to make the highest-quality decision.
Should the operations and middleware teams define packaging options? An
architecture team? Or should the implementation teams make the decision?
Talent distribution is a key factor here: which teams have the people who can
make the best assessments?

Security
APIs make it easier to connect software together, but they also introduce new prob‐
lems. The openness of APIs makes them a potential target and presents a new kind
of attack surface. There are more doors to enter, and the treasure is bigger! So, you’ll
need to spend some time improving the security of your API. The pillar of API
security focuses on the decisions you’ll need to make to accomplish the following
security goals:

• Protecting your system, API clients, and end users from threats•
• Keeping your API up and running for legitimate use by legitimate users•
• Protecting the privacy of data and resources•

These three simple goals hide an enormously complex subject area. In fact, a big
mistake that API product owners make is in assuming that securing an API simply
means making a few technology decisions. Now, we don’t mean to say that technol‐
ogy decisions about security aren’t important—of course they are! But if you really
want to strengthen your API security pillar, you’ll need to broaden the context of
security-based decision making.

Taking a holistic approach
To truly improve the security of your API, you’ll need to make it part of the decision-
making process for all of the pillars we’ve described in this chapter. A big part of
doing that is the work of implementing security features at runtime. For a start, you’ll
need to extract identities, authenticate clients and end users, authorize usage, and
implement rate limits. You can write a lot of this yourself, or you can take the safer
and faster approach of implementing tooling and libraries that do it for you.

But API security includes a lot of things that happen outside of the client–API soft‐
ware interaction. Cultural changes can improve security by instilling a security-first
mentality in engineers and designers. Processes can be implemented to prevent inse‐
cure changes from making it to production or staying in production. Documentation
can be reviewed to make sure that it doesn’t leak information inadvertently. Sales and

104 | Chapter 4: The Pillars of an API Product

support staff can be trained to not inadvertently provide private data or assist in a
social engineering attack.

Of course, what we’ve just described is much bigger than the traditional domain of
API security. But the truth is that API security can’t exist on its own. It’s part of
an interconnected system and needs to be considered as one element of a holistic
security approach for your company. It doesn’t do any good to pretend that it’s an
island on its own with no connection to your bigger security strategy. The people who
want to exploit your system certainly won’t be treating it that way.

So, you’ll need to make decisions about how to integrate your API work with the
security strategy within your company. Sometimes that’s pretty easy to do, and other
times it’s more difficult. One of the big challenges for APIs is in balancing the desire
for openness and usability with the desire to lock things down. How far you go either
way should be a product of your organizational strategy and the strategic goals of
your API.

Key decisions for security governance

Which decisions need to be authorized?
All of the decisions that people make in your organization have the potential to
introduce a security vulnerability, but it’s impossible to scrutinize every decision
that’s being made. You’ll need to determine which decisions have the biggest
impact to the security of your API and make sure those decisions are the best
ones. That’s going to depend a lot on your context. Are there “trusted” zones
in your architecture that need to have secure “edges”? Are designers and imple‐
menters already experienced in good security practice? Is all the work happening
in-house or are you working with third-party implementers? All of these contex‐
tual factors can change your decision authorization focus.

How much security does an API need?
A big part of the apparatus of security is the standardization of work decisions to
protect the system and its users. For example, you might have rules about where
files can be stored or which encryption algorithms should be used. Increased
standardization decreases the freedom for teams and people to innovate. In the
case of the security context, this is usually justified by the impact of making a
single bad decision, but not all APIs necessarily need the same level of scrutiny
and protection. For example, an API that is used by external developers for
financial transactions will need more of a security investment than an API used
for logging performance data. But who makes that decision?

As usual, context, talent, and strategy are the key considerations. Centralizing
this decision allows a security team to make a blanket assessment based on their
understanding of the system context. However, sometimes these kinds of gener‐
alized rules make it possible for things to slip between the cracks—especially

Introducing the Pillars | 105

when API teams are doing new and innovative things that the centralized team
couldn’t have accounted for. If the decision is distributed, the teams themselves
can make an assessment decision, but this requires a decent level of security
knowledge within the team itself. Finally, if you are operating in a domain that
prioritized security and risk mitigation, you might end up forcing the highest
level of security upon everything, regardless of the local context and impact to
speed.

The OWASP API Security Project
The OWASP API Security Project is a fantastic resource for checking that you’ve
done due diligence to secure your API. The Open Web Application Security Project
(OWASP) is a nonprofit, community-based foundation that provides guidance on
security web applications. In recent years, they’ve been supporting the community
with API-specific material to help address the most common threats that API owners
face. If you want to produce better decisions about your API’s security, make sure that
your team has read and understood the OWASP API security advice before design
and development begins.

12 API security principles
Derived from Yuri Subach’s security checklist applied to APIs, the following is a
checklist of the 12 main principles of API security that you can use to guide your
team toward safe and secure APIs:

API confidentiality
Limiting access to the information is the first rule of API security. The resource
accessible via the API must be available for authorized users only, and protected
from unintended recipients during transit, processing, or at rest.

API integrity
Information rendered by the API must always be trustworthy and accurate. The
resource must be protected from intentional and unintentional alterations, modi‐
fications, or deletions, and unwanted changes must be detected automatically.

API availability
Availability is a guarantee of reliable access to the information by authorized peo‐
ple. Availability comes with its requirements, to the infrastructure and applica‐
tion levels, combined with appropriate engineering processes in the organization.

Economy of mechanism
API design and implementation of the system must be kept as simple as pos‐
sible. Complex APIs are difficult to inspect and improve, and they are more

106 | Chapter 4: The Pillars of an API Product

https://oreil.ly/Vn5YA

error-prone. From the security and usability standpoint, minimalism is a good
thing.

Fail-safe API defaults
Access to any API endpoint/resource should be denied by default, and access
should be granted only in case of specific permission. A good API security
follows the protection scheme “when access should be granted” and does not
follow the protection scheme “when access should be restricted.”

Complete mediation
Access to all resources of an API should always be validated. Every endpoint
must be equipped with an authorization mechanism. This principle brings secu‐
rity considerations to a system-wide level.

Open API design
Good API security design should not be a secret and must be documented and
based on defined security standards and open protocols. API security involves all
stakeholders of the organization and can also include partners or consumers.

Least API privilege
Every API consumer of the system should operate with minimal API permissions
required to do the job. This limits the damage caused by an accident or error
related to this specific API consumer.

Psychological acceptability
Effective API security implementation should protect a system but not hamper
users of the system to use it properly or discourage them to follow all security
requirements. The API security level must be matched to the level of threat. A
heavy API security mechanism for nonsensitive resources can be disproportion‐
ate in term of efforts for consumers.

Minimize API attack surface area
Limiting surface attack area for an API is the minimization of what can be
exploited by malicious users. To reduce the API surface attack area, you can
expose only what is needed and limit area damage by limiting scope and rate,
throttling the number of API calls before further user validation, and doing due
diligence on the use cases.

API defense in depth
Multiple layers of control make it harder to exploit an API. You can limit access
to the server to several known IP addresses (white labeling), impose two-factor
authentication, and implement many other techniques that increase the depth of
your API security practice.

Introducing the Pillars | 107

Zero-trust policy
The zero-trust policy means to consider third-party API providers and third-
party API consumers unsafe by default, whether external or internal. That means
implementing all relevant API security measures for internal and external APIs
as if they were all external and nontrustable by default.

Fail APIs securely
All APIs often fail to process transactions due to incorrect input, overload of
requests, or other reasons. Any failure inside the API instance should not over‐
ride security mechanisms and must deny access in case of failure.

Fix API security issues correctly
Once an API security issue has been identified, focus on fixing it properly and
avoid “quick fixes” that may do the job in the short term but still don’t fix the real
cause of the problem. Developers and API security experts need to understand
the root cause of the issue, create a test for it, and fix it with a minimal impact
to the system. Once the fix is done, the system should be tested in all supported
environments and on all platforms. Often API security breaches occur on failures
that were identified by the API team but not fixed correctly.

Monitoring
Fostering the quality of observability in your API product is important. You can’t
properly manage your API unless you have accurate and up-to-date information
about how it is performing and how it is being used. The pillar of API monitoring
is all about the work you need to do to make that information available, accessible,
and useful. Over time and at scale, monitoring API instances turns out to be just as
essential to API management as the design of the interface or development of the
implementation—if you’re in the dark, you can’t help but stumble and fall.

There are plenty of things that can be monitored in an API instance:

• Problems (e.g., errors, failures, warnings, and crashes)•
• System health (e.g., CPU, memory, I/O, container health)•
• API health (e.g., API uptime, API state, and total messages processed)•
• Message logs (e.g., request and response message bodies, message headers, and•

metadata)
• Usage data (e.g., number of requests, endpoint/resource usage, and requests per•

consumer)

108 | Chapter 4: The Pillars of an API Product

Learning More About Monitoring

With the exception of API and usage monitoring, the types of
measurements we’ve described aren’t unique to API-based software
components. If you’re looking for a good guide to monitoring
network-based software components, we encourage you to read
Google’s Site Reliability Engineering (O’Reilly). It’s a great introduc‐
tion to designing software systems and includes a pretty compre‐
hensive list of the types of things you should be monitoring.
Another good resource to take a look at is Weaveworks’s RED
Method, which identifies three categories of metrics for a microser‐
vice: rate, errors, and duration.

Each of these groups of metrics will help your API in different ways. Health and
problem data will help you detect and deal with faults, ideally reducing the impact of
any problems that arise. Message processing data can help you troubleshoot API and
system-level issues. Usage metrics can help you improve your API product by helping
you understand how your users are actually using your API. But first, you’ll need to
put in the work of making that data available. Of course, you’ll also need to make sure
you have a reliable way of gathering all that data and presenting it in a usable way.

The more data you can produce, the more opportunities you’ll have to learn and
improve your product. So, ideally you’d produce a never-ending stream of data for
your API. The costs of data production, harvesting, storage, and analysis can really
add up, though, and sometimes those costs are just unbearable; for example, if the
round-trip time of your API doubles because it needs to log data, you’ll need to pare
down some of your logging or find a better way to do it. One of the more important
decisions you’ll need to make is what you can afford to monitor given the known
costs.

Another important decision is how consistent your API monitoring will be. If the
way that your API provides monitoring data is consistent with other tools, industry
standards, or organizational conventions, it will be much easier to use. Designing the
monitoring system is a lot like designing an interface. If your monitoring interface is
completely unique, it will take longer to learn how to use it and gather data. That’s
OK when you have a single API and you are the only one monitoring it, but at the
scale of tens or hundreds of APIs, you’ll need to reduce that monitoring cost. We’ll
explore this idea more in Chapter 7.

Key decisions for monitoring governance

What should be monitored?
The decision of what to monitor is a big one. You can leave it up to individual
teams in the beginning, but at scale, you’ll benefit if you have consistency in your
API monitoring. Consistent data will improve your ability to observe system

Introducing the Pillars | 109

https://oreil.ly/Il6Iu
https://oreil.ly/qJKtI
https://oreil.ly/qJKtI

impacts and system behavior. That means you’ll need to centralize some of this
decision making.

How is data collected, analyzed, and communicated?
Centralizing the decisions on monitoring implementation will make it easier to
work with API data, but it can inhibit the freedom of API teams. You’ll need
to decide how much of this decision should be centralized and how much of it
should be distributed and decentralized. This becomes especially important when
sensitive data is involved that needs to be protected.

Discovery
An API is valuable only if it is being used, but to be used, it first needs to be found.
The pillar of API discovery is all about the work it takes to make your APIs easier to
find for your target users. This means helping users to easily understand what your
API does, how it can help them, how they can get started, and how they can invoke
it. Discovery is an important quality of your API’s developer experience. It requires
good design, documentation, and implementation choices, but you’ll also need to do
some additional discovery-specific work to really improve the findability of your API
product.

In the API world, there are two major types of discovery: design time and runtime.
Design-time discovery focuses on making it easier for API users to learn about your
API product. That includes learning about its existence, its functionality, and the use
cases that it can solve. Conversely, runtime discovery happens after your API has
been deployed. It helps software clients find the network location of your API based
on some set of filters or parameters. Design-time discovery targets human users and
is primarily a promotion and marketing exercise. Runtime discovery targets machine
clients and relies on tooling and automation. Let’s take a look at each of them.

Runtime discovery
Runtime discovery is a way of improving the changeability of your API landscape.
If you have a good runtime discovery system, then you can change the location
of your API instances with very little impact to the API’s clients. This is especially
useful if there are lots of API instances running at the same time—for example,
microservices-style architectures often support runtime discovery to make finding
services easier. Most of the work you’ll need to do to make this happen is in the
development and deployment pillars of an API.

Runtime discovery is a useful pattern for you to know about and is worth implement‐
ing if you are managing a complex system of APIs. We won’t have time to go into
the implementation details of how to make it work, but it does require a technology
investment at the landscape, API, and consumer levels. For the most part, when we
talk about the discovery pillar in this book, we’re talking about design-time discovery.

110 | Chapter 4: The Pillars of an API Product

Design-time discovery
To help people learn about your API at design time, you’ll have to make sure you
have the right kind of API documentation available. Documentation about what your
API does and which problems it solves should be easily available to users who are
looking for it. This kind of product marketing “copy” is an essential part of discovery,
but it’s not the only thing that matters. Helping your users find that information in
the first place turns out to be a critical part of this pillar. You’ll need to engage with
your user community and market to them to be successful. How you do that depends
a lot on the context of your user base:

External APIs
If your API is primarily being used by people who don’t work in your group or
organization, you’ll need to invest in getting your message to them. This means
marketing your API product in much the same way you’d market a piece of soft‐
ware: search engine optimization, event sponsorship, community engagement,
and advertising. Your goal is to make sure that all of your API’s potential users
understand how your product can help them address their needs. Of course, the
specific marketing actions you take will depend a lot on your context, the nature
of the API, and the users you are targeting.

For example, if you are developing an SMS API product and competing for
developer-users, then you’ll advertise in the places you expect your potential
users to be: web developer conferences, blogs about two-factor authentication,
and telecom conferences. If you are targeting independent developers, you might
rely on digital advertising, but if you’re aiming for large enterprises, you might
invest in a team of salespeople and their network of relationships. If you are
competing in a crowded market, you’ll probably need to expend a lot of effort to
differentiate yourself, but if your product is unique, you may need only a little bit
of search engine optimization magic to get people in the door. When it comes to
product marketing, context is king.

Internal APIs
If your API is being used by your own developers, you probably have a captive
audience. But that doesn’t mean you can ignore discoverability for your API. An
internal API has to be discovered to be used, and over time if it’s too difficult to
find, you’ll run into problems. If internal developers don’t know about it, they
won’t be able to use it and might even waste time making another API that does
the same thing as yours. A competitive market of APIs internally is usually a
healthy sign, and reusability is often overvalued in enterprises. But if people in
your company are duplicating perfectly good APIs only because they don’t know
about them, it’s a drain on resources.

Internal APIs can be marketed in much the same way as external APIs. Only
the marketing ecosystem is different. While you’ll probably target the Google

Introducing the Pillars | 111

search engine with an external API, for an internal API you may just need to
get on the corporate spreadsheet that lists the company’s APIs. Sponsoring a
developer conference can be effective for an external API, but a better strategy
for an internal API might be to just visit all the dev teams in the company and
teach them about your API.

A big challenge for marketing internal APIs is often the lack of maturity and stand‐
ardization in the organization. In truth, if you are marketing your APIs in a large
enterprise, there is a very good chance that there is more than one API list floating
around. To do a good job, you’ll need to make sure that your API is on all of the
various lists and registries that matter. Similarly, learning about and getting time with
all of the development teams in your company may be difficult in practice, but if
usage of your API matters to you, it’s worth making the investment.

Key decisions for discovery governance

What will the discovery experience look like?
You’ll need to design a good discovery experience for your API’s users. That
means deciding on discovery tools, user experience, and a target audience. At
scale, you’ll also need to decide how consistent this experience should be—if you
need high consistency, you may need to centralize the design decisions.

When and how are APIs advertised?
Marketing an API has a time and effort cost, so you’ll need to decide who should
decide when to market an API. You can leave it up to individual API teams,
or you can make that decision centrally. If you’re distributing the decision to
your teams, you’ll need to make sure that any centralized discovery tools and
processes don’t inhibit them from their discovery goals.

How is the quality of the discovery experience maintained?
Over time, as APIs change, the information in any discovery system becomes less
accurate. Whose job is it to ensure that the discovery system is accurate? Who
will make sure that the user experience doesn’t degrade at scale and over time?

Change Management
If you never had to change your API, the job of managing an API would be pretty
easy. But APIs need to be fixed, updated, and improved, and you’ll always need to be
ready to change yours. The pillar of change management includes all the planning
and management decisions you’ll need to make when dealing with change. It’s a
vitally important and complex domain—in fact, the pillar of change management is
what this book is really about.

Generally speaking, there are three goals for change management:

112 | Chapter 4: The Pillars of an API Product

• Choosing the best changes to make•
• Implementing those changes as fast as possible•
• Making those changes without breaking anything•

Choosing the best changes means making changes that enable your API’s strategic
goals. But it also means learning how to prioritize and schedule change based on
costs, contexts, and constraints. That’s really the work of managing a product, and it’s
one of the reasons we introduced the concept of the API as a product in the previous
chapter. If you set clear strategic goals and identify your target user community,
you can make better decisions about which changes are the most valuable. As you
learn more about the work in each of the other nine pillars, you’ll get better at
understanding the costs. Armed with good information about cost and value, you’ll
be able to make smart product decisions for your API.

Balancing change safety with change speed is a difficult proposition, but it’s what
you’ll need to do. Each of the decisions you make in the pillars of an API product has
an impact on the speed or safety of change. The trick is to try to make decisions that
maximize one with a minimum cost to the other. In Chapters 5, 7, and 8, we’ll explore
this idea further from the perspective of change costs, changes made over time, and
the impact of organizations and culture on change. Then, in the last chapters of
this book we’ll introduce an added complexity: scale. Chapters 9, 10, and 11 address
change management for a landscape of APIs instead of just one.

Implementing changes is only half the work of change management. The other half
is letting people know that they have more work to do because you’ve changed
something. For example, if you change an interface model, you’ll probably need to let
your designers, developers, and operations teams know that there is some new work
headed their way. Depending on the nature of the change, you’ll likely need to let
your users know that they may need to update their client software too. The usual
way of doing this is by versioning your API. How you version depends a lot on the
style of your API and the protocols, formats, and technologies you are using; we’ll
talk about this more in “Versioning” on page 292.

Key decisions for change management governance

Which releases need to be fast, and which need to be safe?
An important governance decision is how to treat different types of change.
If you centralize this decision, you can create a consistent rule that allows for
different release processes depending on their impact. Some people call this
approach “bimodal” or “two-speed,” but we believe there are more than two
speeds in a complex organization. You can also decentralize this decision and let
individual teams assess impact on their own. The danger of decentralizing is that

Introducing the Pillars | 113

your teams may not be able to accurately assess the impact on the system, so
you’ll need to make sure you have a system architecture that is resilient.

Using the Pillars Together
The pillars we’ve defined in this chapter catalog an enormous expanse of decisions
and effort. But we haven’t numbered them, prioritized them, or put them in sequence,
and that’s on purpose. There is massive variation in project and product delivery
methods across organizations. So, we wanted to give you a structured way of defining
the key decisions and work you’ll need to address in a way that’s useful to whatever
software development method you like to use.

But, one of the problems with compartmentalizing decisions and work into pillars
is that they can start to feel like distinct and independent categories of work. In
practice, that is almost never the case. In this section, we’ll explore some of the most
common ways that the API pillars can be used together to accomplish the goals
of API product development. We’ll take a look at the ways that particular pillars
influence one another and the holistic perspective you’ll need to adopt when you use
them. Later, in Chapter 7, we’ll take a look at how investment across pillars changes
over the life of an API.

Let’s start by taking a look at how API pillars are used together to tackle the chal‐
lenges of planning and designing an API.

Applying Pillars When Performing Planning
In recent years, the stages of planning and design have gotten a bit of a bad name.
Many implementers worry about falling into the trap of “Big Design Up Front”
(BDUF), where a team spends a disproportionate amount of time in a design phase,
completely disconnected from the practical realities of implementation. As our indus‐
try continues to embrace Agile principles, Scrum methods, and Kanban management,
there has been a greater emphasis on “doing” and a test and learn approach. We think
this is a good thing.

But, we also know that there is immense value in having a clear goal, a coherent
strategy, and an articulate blueprint that drives delivery. The need for planning and
design is especially important in an API product. That’s because changes to any
interface always come with a cost. We’ve all experienced the frustration of having to
relearn how to do something when an application changes its user interface. Changes
to APIs can be especially costly, because they can easily impact someone else’s code or
even their entire business model.

That’s why, regardless of your delivery methodology, it’s worth starting with a clear
plan for your API. In our experience, even highly Agile-oriented API teams can
benefit from a bit of up-front planning. For API products, it’s important to start in

114 | Chapter 4: The Pillars of an API Product

https://oreil.ly/0tDY1
https://oreil.ly/0tDY1

1 Jason Costa, “A Tale of 2 API Platforms,” Medium, October 25, 2016, https://oreil.ly/ZzAlj.

the right direction and align the work across pillars with that direction. In particular,
we’ve identified three areas that need focus: design alignment, prototyping, and
boundary definition.

Test your strategy and design alignment
As we mentioned in “Design” on page 88, it’s important to align your strategy and
design work. The work of bringing an API to life across design (“Design” on page 88)
and development (“Development” on page 94) involves an incredibly broad number
of decisions. We’ve seen many practitioners struggle when they don’t have a clearly
defined goal or target to drive toward.

To improve your alignment, it’s important to continuously test your design against
your strategy. As you make design and implementation decisions, it’s easy to lose the
strategic perspective of your work. You’ll need to recalibrate by testing the decisions
against your strategic goals. If you’ve managed to define KPIs or OKRs, testing your
decisions will be much easier.

Comparing Two Strategies: Twitter and Slack
A comparison of the communication applications Twitter and Slack can help illumi‐
nate how the decisions we make in strategy can impact all of the decisions we make
in other pillars. In “A Tale of 2 API Platforms,” Jason Costa emphasizes the impact
that a strategic direction (or lack of one) can have on an API product’s development.
In particular, he highlights how Slack has made purposeful design, development,
and change management decisions to fuel their strategic goals.1 He contrasts this
approach with the more organic, volatile strategic direction that Twitter took, which
Costa says has resulted in a potentially unrecoverable rift with developers who used
their APIs.

His case study highlights an important consideration for any API creator: the deci‐
sions we make within a strategic pillar are likely to have an earth-shattering impact on
all the other pillars we work within.

Prototype early
Modern software delivery methods emphasize the importance of iterations, sprints,
and smaller batches of change. In our experience, this is an essential element to
succeeding with an API product. Whenever possible, realize your strategy as soon
as possible so you can test its implementability. That means performing work across

Using the Pillars Together | 115

https://oreil.ly/ZzAlj

development (“Development” on page 94) and testing (“Testing” on page 98) even as
your strategy is developing.

There are many names for this kind of test and learn activity: proof of concepts,
pilots, “steel threads,” MVPs, etc. Whatever you call it, the value of early realization
is immense. In fact, this idea of continuous improvement is a key theme throughout
this book.

API Prototyping Tools
Years ago, prototyping an API meant engaging an engineer to write custom code. But,
today there are a wealth of tools that can help. These include frameworks like Spring
Boot that accelerate the work discussed in “Development” on page 94, allowing teams
to quickly spin up prototyped, testable APIs. Teams can also use interface design tools
to quickly bring the documentation pillar (“Documentation” on page 91) work to life.
There is a growing ecosystem of web-based and IDE plug-ins that can help you create
an API specification quickly. Some tools even allow teams to quickly create APIs from
an existing dataset or database. We recommend that you find a tool that helps you
focus on the design and usage aspects of your API as early as possible in the design
and planning stages.

Defining boundaries
In practice, your API product may actually consist of a collection of individual
components. This is especially evident in the “microservice” style of architecture that
has become increasingly popular for API implementations. As a result, it’s become
increasingly important to plan the boundaries for components early so that you can
realize your API product strategy.

What Is a Microservice?
There isn’t an official, agreed-upon definition for a microservice. Instead, it reflects
a style of API-based architecture that has evolved in the 2010s as technologies and
organizations have changed. Almost all microservice implementations can be charac‐
terized by a decomposition of applications into a set of API-enabled components that
are the “right size” to provide value to a business.

In practice, this means that part of your design work for a single API has become
defining how that API can be split into multiple pieces. The hard part about getting
this right is defining the right set of boundaries for your components. Teams are
increasingly doing their initial boundary definition work early so that they can build
components that are better aligned with their strategy.

116 | Chapter 4: The Pillars of an API Product

Using the Pillars for Creation
To bring the API strategy to life, we’ll need to implement the API product. In
Chapter 7, we’ll explore what it means to realize an API product from a lifecycle
perspective. But, before we do that, it’s worth considering how the actual work will
get done. So far, we’ve introduced four pillars that are really important when it comes
to building an API: design, documentation, development, and testing. Now, we need
to explore how you can use those pillars together in a valuable way.

If you have any software development experience, you’ll know that the pillars we’ve
defined for building an API aren’t exactly new or novel. All of the software we write
nowadays—API or not—goes through the classic stages of designing, developing,
documenting, and testing. There are also plenty of software development methodolo‐
gies that you can use to manage the work across these pillars. For example, Kanban,
Scrum, and the Scaled Agile Framework are all enjoying adoption among practition‐
ers as a way of applying Agile principles to product delivery. We’re confident that
your organization has an established way of building software and that you’ll be able
to apply it to your API engineering work.

But, one of the unique things about building APIs is that they encapsulate a lot of
different concepts into a single deliverable product. We touched on this earlier in
the book, when we introduced the challenge of understanding interfaces, implemen‐
tation, and instances (“Interface, implementation, and instance” on page 5). You’ll
need to figure out how to apply the creational pillars of API work in a way that brings
those parts together. How do you design, develop, document, and test an API so that
the interface and the implementation provide the most strategic value?

We’re sorry to say there isn’t a single silver-bullet approach to unlock that value. But,
the good news is that we’ve managed to identify three approaches that practitioners
have been using to succeed: documentation-first, code-first, and test-first. Let’s take a
look at each of them and understand when they make the most sense.

Documentation-first
When we get into the engineering aspects of APIs, we often focus on their technology
elements: the code and configuration that drives the runtime behavior. But, none of
that runtime activity happens without a human developer working on the client code
that uses the API. That’s why some teams take a “documentation-first” approach to
their API execution method.

Documentation-first means that the team prioritizes the design of the API’s human
interface—the documentation. Instead of starting by thinking about the technicali‐
ties of implementation in Go, Java, NodeJS, or any other language, they focus on
documenting the API before it exists. For example, when building a payments API,

Using the Pillars Together | 117

https://oreil.ly/lTAEJ

we might start by applying the decisions and work in the documentation pillar
(“Documentation” on page 91) before we write any code.

One advantage of doing this is that we can test the human interface of the API before
we invest in any of the implementation work that goes along with it. For example,
if we wrote up a usage and example guide for our new payments API, we could test
it with a group of potential developers. Changing the documentation based on their
feedback will be much easier than changing an actual API implementation.

But, documentation-first doesn’t mean documentation-only. In practice, starting the
activities of “Development” on page 94 and “Testing” on page 98 while the specifica‐
tion is being finalized makes sense. You can take this a step further by developing
prototypes or “mocks” of the documented API so you can offer a live, invokable
product for early testing.

The key to the documentation-first approach is that we key our implementation
decisions on the learnability, consumability, and comprehensibility of the API. It’s
a good technique to use if you want to ensure that your team puts the consumer
developer first in the building phase. It’s also a nice way to provide early deliverables
and assets to nontechnical stakeholders and sponsors.

One of the challenges with the documentation-first approach is that it can lead
to products that over-promise and under-deliver. You need to make sure that the
interfaces being documented on paper can be realized by the engineering teams
that need to build them. In some cases, you may be building on a complex set of
downstream capabilities that can’t be changed. When the aspirational target state that
is documented is significantly different from the reality of the implementer, the cost
of building the API can be overwhelming.

Code-first
The code-first approach focuses on the complexity of implementing the internals of
the API first. That means the team prioritizes the activities of “Development” on
page 94 and “Testing” on page 98 so that they can quickly and efficiently deliver a
first release of an API product. This doesn’t mean that the team will not provide any
API documentation, but it does mean that the documented design will adhere to the
decisions made during implementation, rather than the other way around.

The code-first approach is most useful when release speed outweighs consumability
and usability for the API. For example, teams building microservices often prioritize
engineering work because they don’t plan to share their microservice with other
teams. In this case, their focus may be on making the code easy to change and release,
rather than on consumption.

This approach can also be useful to quickly research and test the implementabilty
of an API product as a “proof of concept” or a “technology spike” to check all

118 | Chapter 4: The Pillars of an API Product

high-risk elements have been identified or mitigated. For example, an API team may
start writing code for a hypermedia or GraphQL API as a first step because they are
unfamiliar with that particular API style and need to assess the practicalities of the
design.

Code-first teams can (and should) still produce documentation for their interface.
Depending on the nature of the project, that documentation may be lighter in nature
than a documentation-first team. For example, code-first teams typically document
their APIs with machine-readable API description languages such as OpenAPI rather
than producing human-readable guides. In some extreme cases, the team will claim
that the code is the documentation. But, the key aspect of the code-first approach is
that the documentation work is focused solely on communicating design decisions
that have been made during the coding phase.

As you’d expect, a code-first approach can easily project technical and implementa‐
tion aspects into the interface design. Making a code-first API easier to consume for
outsiders will often require changes to the code or the creation of another API that
sits on top of it. It is important to note that if you go beyond immediate team or
organization, in a controlled environment, this approach is hard to keep on the long
term.

Test-first
A modern variation of the code-first and documentation-first approach is a test-first
implementation. In this type of API development, the testability of the API is pri‐
oritized above its documentability or implementability. This is an application of
Test-Driven Development (TDD) to the API domain.

Test-Driven Development
The concept of Test-Driven Development was popularized by Kent Beck in his book
Test-Driven Development by Example. In practice, TDD is implemented both formally
and informally in a number of ways. But, the key ingredient is that production-bound
code is designed and engineered so that it can be tested.

A test-first approach means that the API team begins by creating test cases that
conform to a desired target state, followed by the work of implementation to make
the test case pass. For development (see “Development” on page 94), that usually
means writing tests that call the API before the API is written. For example, when
developing a payments API, we would write a test case to make a payment via an
HTTP request before writing the code to handle and fulfill the request.

Things get more interesting when we consider the pillar of documentation (see
“Documentation” on page 91). At the very least, taking a test-driven development

Using the Pillars Together | 119

https://oreil.ly/ZP66W

approach means that the documentation should reflect the test cases that we develop.
In effect, the creation of test cases is the design activity for the interface. But, taking
it further, some teams are experimenting with ways to automatically generate docu‐
mentation and code examples based on the test cases that are being written.

Starting with tests is a fantastic way of improving the testability of an API product.
This leads to safer and more predictable future changes, because the team has confi‐
dence in their ability to test their deliverables. However, test-first comes with an addi‐
tional development cost and can delay the time to a first release. In practice, many
teams adopt a documentation-first approach to their API product and a test-driven
approach to development.

Using the Pillars to Operate and Run
Over the last two decades, there has been an increasing pressure to build software
that can be delivered and changed quickly while still performing in a stable, secure,
and reliable manner. This has led to changes in the way that software is developed
and operated. Organizations are increasingly adopting DevOps cultures, site reliabil‐
ity engineering, and a DevSecOps approach that embeds security within the develop‐
ment process.

Shifting Ops left
Years ago, it was common practice for developers to write an application and then
hand it over to an operations team so that they could run and support it. But, today
there is an increasing interest in developing apps differently. Teams that embody a
DevOps culture bring the worlds of development and operations together so that
applications are designed to be operable from the beginning. In many modern devel‐
opment teams, operations has become a first-class citizen in the development process
rather than an afterthought.

Applying this approach to API development means that the pillars of design, develop‐
ment, testing, deployment, and monitoring need to be aligned. In practice, this means
that teams will need to share the decision making and work that happens across both
the creational and the operational pillars. An API team making decisions about tools
and frameworks needs to consider both the concerns of writing code as well as the
concerns of deployment and run.

In practice, most organizations end up implementing a platform of DevOps automa‐
tion tools that serve the needs of API development teams. The goal of these tools is
to accelerate the time it takes to create and change APIs while also improving their
operability. These tools typically enable standardization and automation of testing,
deployment, and monitoring tasks.

120 | Chapter 4: The Pillars of an API Product

2 Or continuous deployment.

For example, at the time of this writing, an enterprise organization might roll out a
DevOps platform with the following tools:

CI/CD pipelines
A continuous improvement (CI) and continuous delivery2 (CD) tool automates
the process of testing and deploying a software component. In the API space,
CI/CD pipelines are often configured to test that an API will not introduce a
breaking change before it is deployed into a production environment. This kind
of testing and delivery automation can be applied to all deliverables of your API
product, including design assets, documentation, and implementations.

Containerization
Today, APIs are often implemented as containers that can be operated as self-
contained units of deployment. Adopting containerization can fundamentally
change the way that APIs are implemented. Many organizations that start con‐
tainerizing their APIs end up introducing a “microservices” approach where they
break an API product into smaller, independently deployable pieces.

Observability tools
To aid monitoring and troubleshooting, DevOps teams are increasingly imple‐
menting tools that aid in aggregation, visualization, and integration of log and
monitoring data. For API teams, this means that design and development work
needs to adhere to standardized interfaces and formats as determined by DevOps
teams. A special case for API products is that observability tools are often exten‐
ded to external consumers of an API. For example, a developer portal may
offer usage and troubleshooting analytics to third parties using a company’s API
products.

Shifting security left
As we mentioned in the security pillar, APIs present a special kind of attack surface
for potential bad actors. In particular, API implementers need to consider threat
mitigation across documentation portals, interface design, data storage, and imple‐
mentation of code. In recent years, three security patterns have emerged that are
changing the way that work is done in the API space:

DevSecOps automation
In the same way that Ops-focused tooling has impacted the way that APIs are
developed, security-focused tooling is having the same effect. Organizations are
increasingly incorporating vulnerability scanners into their CI/CD pipelines so
that all changes are inspected quickly and efficiently before they are implemented
in production. For example, many enterprise API teams use scanners that check

Using the Pillars Together | 121

API implementations against OWASP threats. Making this vulnerability scan part
of the coding process ensures that teams will address security vulnerabilities early
in the development process.

Automated threat detection
Today, organizations are not only passively checking code when scanners are
triggered but also actively scanning assets to find vulnerabilities and problems.
There is now a healthy ecosystem of tools available to help teams continuously
monitor logs, code repositories, databases, and even live APIs. This kind of
continuous monitoring for threats helps to change the behavior of API teams so
that security concerns are considered early in the development process.

Zero-trust security models
Years ago, most security models depended on creating a secure perimeter so that
systems inside the perimeter could be trusted. But, in recent years, Google has
helped popularize a “zero-trust” model in which no system should be trusted
purely based on its location. This shift is a result of the increasingly decentralized
organizational and deployment models associated with modern software engi‐
neering. For API teams, “zero trust” means that API creators need to consider
how access controls will be enforced as part of their design and development
work.

Runtime platforms
Introducing operations and security work across the pillars of design, development,
and testing turns out to come with a cost. Teams that traditionally focused on writing
code must now understand detailed aspects of operating systems, infrastructure, and
security. However, an emerging set of tools and platforms are helping to reduce some
of these costs.

API teams are becoming increasingly dependent on the runtime platforms that their
software will run on. That’s because modern platforms can handle a lot of the com‐
plexity that arises from applying the concerns of the operate and run pillars. The
specific tools, technologies, and platforms that people use are constantly changing,
but at the time of this writing, three technologies stand out as having a big impact:
Kubernetes, services meshes, and serverless.

Kubernetes. Standardizing the unit of deployment (e.g., as a “shippable” container)
has helped a lot of teams improve the way teams operate and run their APIs. But,
running a container safely and resiliently in a production environment still takes a
lot of careful planning and management. That’s why a lot of teams are incorporating
the Kubernetes container orchestration platform. Kubernetes provides a standardized
way of deploying, scaling, running, and monitoring a container workload. It’s attrac‐
tive because it means that you don’t need to spend time figuring out the best solution

122 | Chapter 4: The Pillars of an API Product

https://kubernetes.io

for accomplishing those tasks—it’s already done for you. But from a pillar perspec‐
tive, it’s important to understand how this Ops and Run decision impacts all of the
other API pillars’ work. When you deploy an API component into Kubernetes, you’ll
need to describe its deployment, routing, and scaling configurations. That means the
team that is making decisions in design, development, and testing must also have a
good understanding of Kubernetes so that it can build software that works. In theory,
making sure that the development team designs and builds for the pillars of operate
and run is a good idea and embraces the spirit of DevOps. But, be warned that in
practice it can be difficult (and expensive) to find people with such a broad base of
knowledge.

Service mesh. Now that the microservices style has been popularized, there is an
increasing number of software products that are composed of smaller, structured
software modules and APIs. But, when you decompose an API into smaller pieces,
you make the job of wiring those pieces together in an operable way more difficult.
There’s just more things to manage. To help manage these costs, some teams are
incorporating a platform concept called a service mesh. A service mesh helps reduce
the operational costs of communication between software components over a net‐
work. Introducing a service mesh often comes with a high initial complexity cost in
the pillars of operate and run because most service mesh tooling is nontrivial to set
up, install, and maintain. But a service mesh can offer big dividends across the pillars
of design and development—giving your API teams the freedom to build smaller
units of deployment in a way that they can be run safely.

Serverless, low-code, and the future. A common thread in runtime platform innova‐
tions for APIs is that they help us build highly scalable and highly resilient software
faster and easier. Most of the innovations we’ve seen do this by both hiding complex‐
ity costs and introducing standardization. This trend is continuing with the emerg‐
ing popularity of “serverless” architectures, hiding all the complexity of running a
platform behind a standardized, event-driven interface. Similarly, the trend toward
“low-code” architectures hides the complexity of an API-enabled architecture behind
a standardized development interface.

The details of serverless, low-code, service meshes, and Kubernetes are beyond the
scope of this book. But, from an API management perspective, it is vital that you
understand how these platform innovations impact the decisions and work you’re
managing across the pillars. For example, embracing a serverless platform greatly
reduces the cost and scope of your development pillar but introduces a need for
serverless expertise in your design, operate, and run pillars.

Using the Pillars Together | 123

Summary
In this chapter, we took a tour of the 10 pillars that form the foundation of API
product work. In each pillar lies the decisions that have an impact on the final API
product. Not all the pillars necessarily require the same amount of work effort, and
you’ll need to decide how important each pillar is depending on the context and
goals for your API. As your landscape of APIs grows, you’ll also need to think about
how the decisions in each of these pillars should be distributed. We’ll say more about
that in Chapter 11. We have also seen that some pillars work in groups, with more
implications and entanglement of the API practice as a whole. Now is the time to
understand how to manage the cost of change of the lifecycle interactions and how to
apply the right level of investment with the right level of maturity for your API.

But before we get there, we’ll need to explore our 10th pillar, change management, in
more detail. What is the cost of making changes to an API? We’ll dive into that in the
next chapter.

124 | Chapter 4: The Pillars of an API Product

CHAPTER 5

Continuous API Improvement

It is not necessary to change. Survival is not mandatory.
—W. Edwards Deming

In the previous chapter we introduced the API lifecycle and defined the pillars of
work that you’ll need to focus on. This lifecycle defines the work that you’ll need to
do for the initial release of your API. The pillars are also important when dealing with
the changes you’ll make during the entire lifetime of your published API. Managing
API change is a critical element of a successful API management strategy.

Changing your API can have a big impact on your software, products, and user
experiences. Shipping a code change that breaks an existing API can have a disastrous
ripple effect on all the components that use it. Even changes that don’t break the
external interface of an API can cause big problems if they alter that API’s behavior
in an unexpected way. Even more to the point, one popular API within your organi‐
zation can produce a long list of dependencies that might be difficult to document
or even see. All this makes change management an important API management
consideration.

If you never had to change them, managing your published APIs would be a pretty
simple task. But of course, change is an inevitable part of an API in active use. At
some point you’ll need to fix a bug, improve the developer experience, or optimize
the implementation code. Performing these tasks requires intrusive changes to your
deployed API.

The job of managing API changes is made more difficult by its large scope. An API
product isn’t just an interface. Instead, it is a collection of many pieces: interfaces,
code, data, documentation, tools, and processes. All these parts of the API product
can change, and they must all be carefully managed.

125

API change management isn’t easy, but it is necessary. It’s also liberating. If you
weren’t allowed to change your deployed API, your initial release would be much
more difficult. You’d have to build your API the way traditional space agencies design
and launch rockets. You’d need BDUF planning and development investment to make
sure the API could run for a long time. You’d also need to account for everything that
could go wrong and build accordingly.

Thankfully, you don’t have to work that way. In fact, embracing changeability as a
feature of your API can pay you big dividends. Cheaper and easier change means that
you can make more changes more often. That gives you the freedom to take more
risks (because you’ve reduced the time it takes to fix problems), which means you can
make more API improvements.

In this chapter we’ll introduce a continuous improvement philosophy for APIs that
embraces change. You’ll learn how a continuous series of small, incremental changes
can be the best thing for improving your API product overall. You’ll also learn why
APIs are difficult to change and what you can do to improve their changeability. To
start, let’s explore what “managing continuous change” means when applied to the
world of APIs.

Managing Change Continuously
While the notion of supporting continuous change for your API may sound like an
appealing goal, it is important to keep in mind the reason for supporting change.
When we apply the AaaP way of thinking from Chapter 3, we can frame change as
an attempt to improve the API rather than just change for the sake of change. That
means that any time we spend on changing the API should be justified. Two key
ways to judge this improvement is to focus on (1) improvement to the developer
experience and (2) a reduction in maintenance cost for the product’s sponsors.

Of course, not every individual change will improve your API product immediately.
For example, you might improve the way your API can scale in order to meet future
demand—a change that won’t pay off until usage grows. A change like this won’t
lead to an immediate measurable improvement in the developer experience, but it
could prevent a degradation of the experience in the future. The point is that any
change should be considered in terms of its ability to improve the product, even if the
gratification for that investment will be delayed.

In this section of the chapter, we’ll focus on two foundational elements for handling
change over time: (1) adopting a model for incremental improvement within your
organization and (2) increasing the velocity of change in general. To start, let’s explore
the notion of incrementalism as a change management technique.

126 | Chapter 5: Continuous API Improvement

Incremental Improvement
If change is the path to improvement of an API product, then a reasonable manage‐
ment goal is to make it as easy as possible to change your API. The best version
of your API will come from a continuous cycle of changes or improvements. Some
of these changes may offer very little immediate improvement—in fact, some of
your attempts at improvement could even cause a temporary degradation to the
developer experience for your API. If this happens, you’ll need to make another
improvement to undo the impact of your failed experiment. Over time, your product
and the developer experience will benefit from these continuous incremental efforts
to improve the API.

Incremental improvement means that you have an idea of the direction you want to
head in but choose to take small steps toward that objective instead of releasing a
“big-bang” change that attempts to meet all your future requirements. Applying a
series of smaller changes gives the API team an opportunity to react to the results of
each change, effectively performing a series of small experiments in order to find the
best path toward a goal post that continues to move.

There are lots of ways to approach incremental improvement, and we’ll highlight
three here: Deming’s Plan-Do-Study-Act model, Boyd’s OODA Loop, and Goldratt’s
Theory of Constraints. They each take a slightly different point of view in the way
they model the process of continuous improvement.

Plan-Do-Study-Act
The concept of continually making small improvements is a well-established change
pattern with foundations in the manufacturing industry. In the 1980s, quality man‐
agement pioneer W. Edwards Deming articulated his version of this idea with a
philosophy he called the “System of Profound Knowledge.” Deming’s system embra‐
ces the complex nature of large organizations of workers and applies a scientific
method for improving the way they produce products. One of the cornerstones
of his approach is the Plan-Do-Study-Act (PDSA) cycle that defines an iterative,
experiment-driven method for improving a process (Figure 5-1).

Figure 5-1. Deming’s PDSA cycle

Managing Change Continuously | 127

The PDSA process defines four steps for applying improvements. First you come
up with a plan—a theory of how you can improve the system in accordance with
a goal, along with the changes you’ll need to make to test that theory. Next, you
do, implementing the changes that you’ve outlined in your plan. Following that, you
study, monitoring and measuring the impact of those changes and comparing the
results to the plan. Finally, armed with this new information you can act by updating
the goal, theory, or change actions to further improve the system.

For example, if you wanted to improve the developer experience of your API, you
might start with a goal of reducing the time it takes for developers to learn how the
interface works. Your plan might be to update the documentation to make it more
developer-friendly. You could then “do” the plan by updating the documentation
asset, followed by a study of the number of errors that are generated by developers
who’ve viewed the new documentation. With these measurements, you could reassess
the type of documentation changes that should be made or even make the decision to
perform a more impactful change to the interface model itself.

The PDSA wheel describes an iterative, experiment-based process to improve a
system: you make small changes, measure the impact of those changes, and use the
knowledge you gain to continue to improve the system. It’s a really effective way of
dealing with systems that are complex—the kind of system where it’s hard to tell
exactly what the results of a small change will be.

Deming’s PDSA works well for companies that have a high tol‐
erance for experimentation and a well-established culture of post-
implementation review and analysis.

Deming’s ideas and his PDSA wheel were originally designed for improving the
processes for quality management in factories and assembly plants, but the pattern
has turned out to be useful wherever there is a need to improve a complex system—
including software systems. Software methodologies like Lean, Kaizen, and Agile all
share this same principle of continuously improving an identified target. Sometimes
that improvement target is a process, other times it’s a product, but in all cases it’s the
continuum of objective-oriented change that leads to agility and success.

Observe-Orient-Decide-Act
Another very popular model for creating a continuous flow of quality decisions is
John Boyd’s OODA Loop. OODA stands for Observe, Orient, Decide, and Act. Like
the PDSA model, the OODA model is interactive—you keep going through the same
steps over and over as you try to continuously improve. In the 1950s, Boyd noticed
that US fighter pilots during the Korean War were consistently winning in air battles
despite that fact that North Korean pilots were flying more advanced aircraft. Boyd

128 | Chapter 5: Continuous API Improvement

https://oreil.ly/M5oeN

claimed his research rationalized this contradiction, showing that US pilots employed
better strategies in air fights—hence the OODA Loop method.

Boyd’s OODA has a colorful backstory and relies on some very
interesting “insider” information on how US pilots behave in a
battle when making decisions “in real time.” In fact, most of Boyd’s
work focuses on warfare and conflict. In our experience, warfare
is not always the proper analogy for IT organizations working to
continuously improve their efforts. But OODA continues to be a
hot topic in some circles. For more on the implications of OODA
Loops in organizations, see Robert Greene’s article “OODA and
You”.

In a nutshell, applying the OODA Loop to your own organization looks like this:

Observe
Select your target issue (scaling, security, some feature set, etc.) and collect as
much information as you can from as many points of view that are available. At
this stage it is important to include lots of data without any filtering, editing, or
analysis.

Orient
This is the step where you apply your experience, knowledge, and data analysis
skills to the data you collected. Now is the time to filter out data that “does not
apply” and narrow the field down to a few likely options.

Decide
Now is the time to weigh your options, consider costs as well as benefits, and
make your best guess about which action to take.

Act
Finally, you execute on the decision by carrying out the planned actions. This, of
course, is not the end of the story. Since this is a loop, the results of your actions
become the topic of observation, and that puts you back at the start of the OODA
Loop.

It is worth pointing out that this model was designed to train pilots who make
decisions in split seconds. They iterate through this loop constantly and quickly. In
fact, one of the key insights from Boyd’s work was that speed matters. If you act
more quickly than your adversary, you can gain the upper hand, even when you’re
outmatched technically. For this reason, OODA is often used in cases where market
competition is high and—in the case of IT shops—where releasing early and often
has a distinct advantage.

Managing Change Continuously | 129

https://oreil.ly/XqZn8
https://oreil.ly/XqZn8

Since the OODA Loop is based on making critical decisions and
acting quickly, this model works well when you need to get ahead
of competition and are already geared for speedy execution based
on a rich set of market feedback.

There are, however, lots of situations where speed is not the most important element.
In these cases, it can be more helpful to focus on one or two particular problems and
solve each one before moving on to the next. One approach that meets this criteria is
Goldratt’s Theory of Constraints.

Theory of Constraints
The Theory of Constraints (TOC) was described in the 1984 book The Goal by
Eliyahu M. Goldratt and Jeff Cox. The book is a fictional account of one manager’s
attempt to “turn around” a failing production plant in 90 days before it is shut
down permanently. Through a series of remote consultations with a close friend, the
protagonist gains insights and skills and learns to apply the TOC in order to improve
the company’s operations.

Goldratt and Cox’s book continues to be a best seller and widely
read. In 2014, a “30th Anniversary Edition” was released. Even
though it was focused on physical plant operations in the 1980s,
many of the lessons in the book still apply to IT organizations
today.

The basics of Goldratt’s TOC center around the notion that the key to success is
to identify bottlenecks (or constraints) in the organization and, through a series of
steps, to “break the bottleneck.” Once this is accomplished, it is time to identify a new
bottleneck and start again.

Here are the steps Goldratt and Cox outline in the book:

1. Identify the system’s bottlenecks (constraints) and target one of them.1.
2. Decide how to exploit the constraint (essentially hack the system).2.
3. Subordinate everything else to the previous decision (laser focus).3.
4. Reduce the bottleneck (fix, replace, or remove the constraint).4.
5. Once the bottleneck has been “broken,” go back to step 1.5.

In TOC, a constraint is anything that prevents the system (your company) from
achieving the goal. For Goldratt and Cox, that goal is making a profit. Also, it is
worth noting that, in TOC, the bottleneck might not be something that is “going
wrong” at all. It could just be some practice this is inefficient, costly, or unreliable.

130 | Chapter 5: Continuous API Improvement

https://oreil.ly/t9Xda
https://oreil.ly/Hl8SS

Even when things are running smoothly, there is likely a bottleneck somewhere that
deserves attention.

In the world of APIs, applying the TOC can be used, for example, to improve
developer experience to speed time to market, create better API designs to meet
product feature demands, implement more effective and efficient backend services to
improve reliability, and so forth.

With its principle of laser focus on a key bottleneck that is prevent‐
ing the organization from reaching its goal, the TOC approach can
be a good fit for companies that are not under a direct threat in
the market and want to apply incremental improvements to their
operation.

So where is all this going?
We’ve highlighted a few established approaches to supporting incremental improve‐
ments in your organization. But these are not the only ways to introduce continuous
improvement, and the ones we have might not fit your company’s culture and values.
They’re provided here as examples and for encouragement as you develop your own
strategies for improvement—ones that fit your organizational style. We’ll leave it up
to you to work out the mechanics, but adopting a continuous cycle of improvements
for your API is a key requirement for delivering an API product that can maintain a
consistently high quality.

API Change Velocity
If you are going to be making lots of small improvements to your API product, you’ll
need to make sure those changes can be applied relatively quickly. Otherwise, the cost
of making continuous changes will become a big problem. No matter your current
pace of change, implementing improvements a bit faster will give your API’s sponsors
a shorter path to innovation and a competitive advantage in the market—but, your
changes need to have a reasonable level of quality or you risk damaging the reliability
and quality of your API product.

Improving both the speed and quality of change is important whether your API is
a public, private, or partner-facing one. If you can’t apply quality changes to your
interfaces quickly enough, you’ll end up slowing down your ability to improve user
experiences, launch new products, and improve business capabilities. Optimizing the
speed and safety of your API change lifecycle contributes to the overall speed of
change for your organization.

Managing Change Continuously | 131

But with a finite amount of people, money, and time available, how can you make
changes to the API in a way that optimizes those resources? As your proposed change
goes through each of the stages of the API release lifecycle, how do you make sure
you are traveling at maximum velocity?

There are three significant ways to improve the velocity of your API lifecycle without
degrading quality: through tools, organizational design, and effort reduction.

Tools and automation
One solution for improving the speed and safety of product changes is to introduce
tooling and automation in the place of human effort. Tooling is an attractive option
because it can reduce the possibilities of human error while reducing the time it takes
to perform a task. For example, CI/CD tools can automate the process of testing and
releasing an API implementation, decreasing the cost of deploying an API change
significantly.

However, the usefulness of a tool is dependent on its quality and the time you are
willing to invest to set it up and configure it. There will always be an up-front initial
cost and risk associated with introducing tooling, so if the API product is already well
established and in active use (this is a phase of an API that we will later refer to as
realization), you’ll want to do this carefully, on an experimental basis.

All types of API changes can be automated with tooling. At the time of writing, there
is a healthy market for API security, documentation, deployment, and configuration
tools that facilitate faster and more reliable change processes.

Organizational design and culture
The work we do when we make changes to an API can be classified as knowledge
work—the type of work that requires a coordinated process of decision making. If
you are building a single API within a small team, the coordination effort is often
very small, but at the scale of a large organization with multiple APIs and software
components, the higher cost of coordinated decision making quickly becomes a drag
on the ability of a single team to perform a change to an API product.

This human element of the change process is usually the biggest bottleneck to ach‐
ieving high velocity, primarily because it’s the most difficult to understand and to
change. You can’t buy an organizational design or culture in the same way you can
buy an API documentation or CI/CD tool.

In Chapter 8, we’ll spend more time diving into the organizational aspects of API
management, including opportunities for building a decision-making platform that
facilitates high-speed, high-quality change.

132 | Chapter 5: Continuous API Improvement

Eliminating wasted effort
Another way to boost the speed and quality of improvements is by expending less
effort on them. If you eliminate the kind of API work that offers the least return
on investment to your product goals, you can substantially improve your speed of
change. Removing wasted effort also removes opportunities for things to go wrong,
resulting in a more reliable net change process.

For example, an API that is built and used by the same development team probably
doesn’t need the same level of investment in documentation as a public API used
by hundreds of third-party developers. There are lots of permutations and variables
to consider here. In Chapter 7, when we talk about the API product lifecycle, we’ll
introduce one set of variables that can give you a starting point for considering the
kinds of investments you want to make.

Changing an API
In Chapter 1 we introduced a distinction between the parts that make up an API
product: the interface, the implementation, and the instance. After your API is
published, you’ll need to manage changes to all of these parts. Sometimes you’ll need
to change all of them together, but you may find yourself changing some of these API
elements independently. In this section we’ll address the impact of changes that occur
in each of these parts. We’ll even add a new type of API element called supporting
assets that includes the parts of the API that are used purely to enhance the developer
experience of the API product.

Applying a philosophy of continuous, incremental improvement to your API product
(at speed) means designing the process of change purposefully for all four types of
API change. These four types of API change will have dependencies on one another,
too. They form a stack of dependent change: a change to the interface model will
have far-reaching impacts, while a change to supporting assets can easily be done
in isolation. You’ll get a better understanding of why these dependencies exist as we
explore each of the types of change.

The API Release Lifecycle
Your software changes when you apply changes to it. The steps you take to make
the right changes, in the shortest time, with the best quality is your release process.
Like software, APIs also have a release process—a set of steps you’ll follow to effect
change. We call this process a lifecycle because of the cyclical nature of changes: as
one gets implemented, another is ready to go. Understanding the release lifecycle is
important because it has a big impact on the changeability of your API.

Every change you apply to your API will need to be deployed. The release lifecycle
is the set of steps that enables this deployment of a change. It defines how a change

Changing an API | 133

that starts with an idea becomes an implemented, maintained part of your system.
The release lifecycle brings all of the pillars we described in Chapter 4 together in a
sequence of coordinated work.

If the release lifecycle is slow, your API’s rate of change will diminish. If the release
lifecycle lacks quality assurance, changing your API will be riskier. If the release
lifecycle deviates from change requirements, your API changes will be less valuable.
Getting the release lifecycle right is important. The good news is that the API release
lifecycle isn’t any different from the software or system delivery lifecycle. That means
you can apply the existing guidance for software releases to the components that
make up your API. Let’s take a quick look at the most popular ones.

One of the most widely known software release lifecycles is the traditional system
development lifecycle (SDLC). This lifecycle has been around in some form or another
since the 1960s, and it defines a set of stages for building and releasing a software
system. The actual number and names of stages used vary, but a typical set of stages is
the following: initiation, analysis, design, construction, testing, implementation, and
maintenance.

If you followed these SDLC steps in sequence, you’d be building software in a water‐
fall style. It’s not actually the waterfall model that Winston Royce invented, but it’s
what people call this type of lifecycle today. It means that each phase of the SDLC has
to be complete before the next stage begins. So, your change falls down from the top
step to each step after it.

One of the drawbacks of the waterfall cycle is that you’ll need to have a lot of certainty
about requirements and the problem domain, because it’s not great for dealing with
lots of changes to the specifications. If that’s a problem, you can use a more iterative
software development process. An iterative approach allows the software team to
perform several iterations of releases for a single set of requirements. Each iteration
delivers a subset of the requirements, with the goal of meeting all the requirements
through consecutive iterations. This iteration model is in line with the approaches we
covered in “Incremental Improvement” on page 127.

You can take the iteration idea further and adopt a spiral SDLC. In this type of release
system, software is designed, constructed, and tested in iterative stages, and each
iteration has the potential to shape the original requirements. The spiraling SDLC
embodies the spirit of Agile and Scrum methods.

Those are three popular forms of the software lifecycle. Each of them has its own
advantages and disadvantages, and you’ll need to choose a release lifecycle that makes
sense for you. We’ve tried to write this book in a way that gives you the freedom
to use whatever style you want. When we talk about change, we’ll refer to your
release lifecycle, but we won’t tell you what sequence your pillar activities should be
in or which software lifecycle you should use. Instead, we’ll focus on the product

134 | Chapter 5: Continuous API Improvement

improvements that a release lifecycle can enable. But before we get into that, let’s talk
a little bit more about the types of API changes your release lifecycle will need to
support.

Changing the Interface Model
Every API has an interface model. This is the information that describes the behavior
of an API from a consumer perspective. It describes a set of abstractions that deter‐
mine how the API will behave and includes details about communication protocols,
messages, and vocabularies. The distinguishing feature of an API model is that it
hasn’t been implemented—the model is an abstraction and can’t actually be used by a
computer system to do anything.

Although an interface model can’t be invoked by a software program, it can be shared
with people. Sharing the model requires it to be persisted or expressed. For example,
you might express an interface model by drawing boxes and lines on a whiteboard.
You can’t invoke the model you’ve drawn, but the model as an abstraction will help
your team collaborate on the API design.

Interface models aren’t limited to being whiteboard drawings and sketches on nap‐
kins. They can also be expressed using model-driven languages or even with applica‐
tion code. For example, the OpenAPI specification is a popular standardized language
for describing interface models. Using a standardized modeling language gives you
the added bonus of inheriting an ecosystem of tooling that can reduce the cost of
implementing your model.

You can draw or compose your model however you like: there aren’t any rules
about the level of detail that a model should provide, or constrains on the format
you need to use to communicate it. But keep in mind that whatever method you
choose for expressing the model will have a big impact on the level of detail and
description you can include. Whiteboards and freehand drawings provide maximum
freedom of thought but are constrained in their physical size and implementability.
API description languages provide a quicker route to implementation but limit your
freedom with heavily defined syntax and vocabularies.

The design pillar of our API lifecycle is focused on producing and changing the
interface model, so most of the work we are describing fits neatly in there. But the
relevance of the interface model isn’t limited to this design work. In fact, most of
the pillars in the lifecycle are dependent on or impacted by the interface model you
define. This is because they are also expressions of your model.

Just as you may have expressed your interface model as a picture on a whiteboard
or in the OpenAPI language, you’ll also express the model in your application code,
API documentation, and data model. When the interface is published and developers
begin to write code that uses it, they will also be expressing your model within

Changing an API | 135

their implementations. All of these expressions of the model imply a dependency
relationship—this is why changes to the model are the most impactful.

Domain-Driven Design

This idea of model-driven software where the implementation
exists as an expression of the model comes to us from Eric Evans’s
domain-driven design (DDD) software design approach. If you
haven’t yet read his book, Domain-Driven Design: Tackling Com‐
plexity in the Heart of Software (Addison-Wesley), you should put it
on your list!

The best API products have interface models that are consistent across the entire sur‐
face. That means developers shouldn’t have to reconcile conflicts that arise between
the documentation and the published API because the models they’ve expressed
differ in some way. This desire for consistency increases the challenge of making
interface model changes, as those changes need to be synchronized across the API
product.

Using a consistent model doesn’t mean that your implementation code and internal
database need to use the same model as your API’s interface. In fact, it’s usually
a bad idea to use the same model for your interface, code, and data—what works
best for your interface users is not necessarily what works best inside your own
implementation. Instead, using a consistent model means that the internal parts of
your API implementation will need to be translated into this consistent interface
model before they reach the surface of the API.

Interface model changes are highly impactful, but these changes are inevitable for
any API product that is in active use. You may need to add support for a new
feature, make a change to improve API usability, or perhaps deprecate part of the
interface because your business model has fundamentally changed. Because of all the
dependencies involved, interface model changes always have the potential to impact
the code that has been written in consuming applications that use the API.

The potential impact of an interface model change to API consumers has a lot to
do with the level of coupling that has been introduced between their code and your
interface. If you design and implement APIs that provide loose coupling as a feature,
you can get away with making bigger interface model changes with less impact. For
example, using event-driven or hypermedia-style APIs has the benefit of less coupling
between the client code and the API. In the case of an event-driven system, you
might be able to change a pattern matching algorithm without making any changes
to the component that sends events. A hypermedia API might let you manipulate the
required properties for an invocation without changing the client code that makes the
call.

136 | Chapter 5: Continuous API Improvement

1 Joshua Bloch, “Joshua Bloch: Bumper-Sticker API Design,” InfoQ, September 22, 2008, https://oreil.ly/ibvwF.

Choosing an appropriate style of interface can help you reduce the cost of interface
model changes. But that increased changeability for APIs doesn’t come for free. You’ll
need to build the appropriate infrastructure and implementations on both the client
and the server side to make them work. Oftentimes the constraints and contexts that
you are working in will limit your choices—for example, the developers who are
writing client software for your API may not have the expertise to write hypermedia
applications. In these cases you’ll just have to accept that interface model changes
have a high cost.

The best way of reducing the external impact of interface model changes is to make
these changes before the interface is shared. As Joshua Bloch, designer of the Java
Collections API, tells us, “Public APIs, like diamonds, are forever.”1 Once you share
that interface for others to use, you’ll have a more difficult time making changes to it.
The wise API product owner front-loads changes to the interface model in the design
stage as much as possible to avoid paying the high price of change after the API is
published.

Changing the Implementation
The implementation of the API is the interface model expressed in the components
that bring the model to life. The implementation is what allows the interface to
actually be used by another software component. An API implementation includes
code, configuration, data, infrastructure, and even protocol choices. These imple‐
mentation components are usually the private parts of the product—the things that
make the API work but whose details we don’t need to share with the consumers who
plan to use it.

Your API can’t be published without an implementation, and you’ll continually need
to change that implementation over the life of the API. Because the implementation
is an expression of the interface model, you’ll find yourself changing the implemen‐
tation whenever the model changes. But sometimes you’ll have an opportunity to
change the implementation independently. For example, you may need to fix a bug
in the implementation code, reduce the latency time of a poorly performing API, or
even completely rewrite the code because you just don’t like it anymore.

In these cases, where the implementation change is independent of the model, the
impact of the change is hidden behind the interface of the API. This means that
consumers won’t have to make any changes to take advantage of the improvements
you are introducing. This doesn’t mean they won’t be impacted—for example, a
performance optimization might have a big effect on the perceived performance for
an end user. But it does mean that you can avoid the work of managing changes

Changing an API | 137

https://oreil.ly/ibvwF

to client software that is dependent on the API. So, implementation changes can be
made well after the API has been published and shared without the same rising cost
of a change to the interface model.

The risk that comes from an independent implementation change is that it deterio‐
rates the reliability, consistency, or availability of an API product. For example, if
a code change breaks a running instance of the API or an implementation behaves
differently from the documentation, your client applications will suffer. Changes
to the implementation have the potential to impact the instance and supporting
assets of the API, so each of these elements has to be updated, tested, and validated
accordingly.

Changing the Instance
As we’ve described earlier, the implementation of an API expresses the model as
an invokable, usable interface. But that implementation can’t really be used until it’s
running on a machine on a network that is accessible to consumer applications. The
instance of an API is a managed, running expression of the interface model that has
been made available for your target consumers to use.

Any change to the interface model or the implementation will require a correspond‐
ing deployment or change to the API’s instances. The API hasn’t really been changed
until you’ve updated the instances that its consumer applications use at runtime.
However, it’s also possible for you to change an API instance independently without
altering the model or implementation. This could be the simple case of changing a
configuration value, or it could be something more complex like cloning and destroy‐
ing a running instance of the API. The impact of these types of changes is limited
to the runtime properties of a system, with availability, observability, reliability, and
perceived performance being the ones that are most often highlighted.

Making independent API instance changes less impactful to the system requires
special consideration for the design of the system architecture. We’ll discuss the
system features and factors that matter the most later in the book when we introduce
the API landscape.

Changing the Supporting Assets
If an API is a product, it needs to be more than some code that expresses a model
running on a server. In Chapter 1 we learned that supporting the work of developers
who have to use our APIs is an important part of the API-as-a-Product philosophy.
Creating a better developer experience almost always requires some supporting assets
that live outside the implementation of the interface. For example, these assets might
include API documentation, developer registration, troubleshooting tools, key mate‐
rial distribution, and even human support staff to help developers resolve problems.

138 | Chapter 5: Continuous API Improvement

Over the life of your API, the material, processes, and people that support the API
product will need to be updated and improved. Oftentimes, this will be a result of
a cascading change made to the interface model, implementation, or instance of the
API; supporting assets that exist further “downstream” will also be affected when you
change any part of your API. This means that the change cost for your API will grow
as you develop more supporting assets for the developer experience.

It’s also possible to make independent changes to supporting assets. For example,
you may want to change the look and feel of your documentation page as part of a
modernization effort. These types of changes can have a big impact on the developer
experience for your API product, but have no impact on the interface model, imple‐
mentation, or instance—except in an indirect way as a result of increased usage of
and interest in the product.

Changes to supporting assets have the least cascading impact, but they can also pro‐
duce the highest change costs because they are the most dependent on the other API
elements. Lowering the cost of changes to supporting assets can pay big dividends in
terms of the overall cost of change for the API product. So, it makes sense to invest in
design, tools, and automation to reduce the change effort for these assets.

Improving API Changeability
We’ve established some good reasons for taking a continuous improvement approach
to the API lifecycle. We’ve shown that performing many small changes at high
velocity is an ideal way to improve an API product, and we’ve delved into the types of
changes and improvements that are necessary to get there. But in practice, it’s difficult
to apply a continuous improvement philosophy to APIs because the cost of change
grows as the interface becomes more complicated and it begins being used by other
teams.

There are three main costs associated with changing an API that might inhibit
changeability: the cost of doing the work, the opportunity cost of a change, and
the cost associated with changing dependent components. If you can minimize
these three change costs, you’ll have more freedom to change the API with greater
frequency. More changes means more opportunities to incrementally improve your
product.

Effort Costs
The most obvious cost of changing the interface model, implementation, instance,
or supporting assets of your API is the time, energy, and money that you’ll need to
spend as you push a change through the API lifecycle. If you can reduce this basic
cost of change, you’ll greatly improve your chances of introducing more improve‐
ments to the API product.

Improving API Changeability | 139

Earlier (see “API Change Velocity” on page 131), we talked about the need for velocity
of change and identified that effort reduction, tooling, and organizational change can
help lower some of this work cost for an API. But in truth, improving the velocity of
change is a complex problem.

The amount of resources required to make an API change is a product of at least
the following factors: the complexity of the problem, the experience and talent of the
people doing the work, the change process design, and the complexity and quality
of the implementation. That’s a substantial list, and it isn’t exhaustive. Fortunately,
reducing work costs is a core goal of professional software development, and there
is a mountain of research, advice, and opinion available to help—and the things that
work for changes to software generally work for API products as well.

Identifying the specific change methodologies, quality management processes, archi‐
tectures, implementations, and automation tools you can use to reduce your work
effort is beyond the scope of this book. We’ve tried to introduce a few core strategies,
patterns, and philosophies that will give you the best chance of achieving velocity
of change, but you’ll need to do the hard work of turning that general advice into
something that works for your organization.

Opportunity Costs
Another kind of cost that might inhibit change is the desire to refrain from changing
the API because you want to gather more information first. Losing the opportunity
to gather more information becomes a cost for changing the API. Tom and Mary
Poppendieck, creators of the Lean software development approach, describe this
activity as waiting until the last responsible moment to make a critical decision.

To make things more complicated, you must also consider the cost of not making a
change and the associated missed opportunities to both improve your product and
gather feedback about the change. In a lot of situations, it’s better to ignore the “last
responsible moment” principle so that you don’t muddy your thinking with the fear
that you should wait until you know more. Making small code changes to a published
software component is an example where you might deem the decision not critical
enough to worry about this type of opportunity cost. This is particularly true if you
have immediate feedback about a mistake and the time to recover from the problem
is small.

A lot of the typical changes to API products fit these characteristics of being
noncritical and easy to recover from. For example, changing the look and feel of
human-readable API documentation provides fast feedback in terms of its successful
implementation and is easy enough to reverse if it turns out to be problematic. But
some types of API changes are difficult to recover from and will require you to tread
carefully—for example, changing the interface model of your API, which can have

140 | Chapter 5: Continuous API Improvement

far-reaching consequences. These types of changes need to be managed appropriately,
and the cost of changing without sufficient information should always be considered.

One way to reduce the opportunity cost of making a change is to do a better job
of gathering information in the first place. In Chapter 9 we’ll introduce the system
quality of visibility, which can greatly reduce the opportunity cost of making API
changes.

Coupling Costs
When it comes to APIs, and especially when it comes to the interface model of an
API, the biggest blocker to free and easy change is the coupling that we create between
the API and its consumers. There are lots of different styles of APIs, but no matter
which one you choose, you’ll always end up introducing some type of dependency
or coupling between the senders and receivers of messages. This coupling has a big
impact on what you can change about the API and when you are free to change it.

APIs are just vessels for communication and conversation between software mod‐
ules. When humans communicate, they use a shared understanding of vocabulary,
gestures, and signals to facilitate a meaningful conversation. Software components
also need to have a shared knowledge in order to have a conversation. For example,
shared knowledge of message vocabularies, interface signatures, and data structures
are all useful in building a meaningful interoperation between two components. The
important changeability factor for APIs is how many of these conversational rules are
hardcoded into the released component’s code. When the semantics of an API are
defined at design time, the cost of changing the interface rises.

This coupling is unavoidable and can exist in all kinds of places in many different
forms. In fact, when you hear people talk about a particular API being “tightly
coupled” or “loosely coupled,” it often takes a bit of detective work to understand
exactly what they mean. Do they mean that the network address of the API has been
hardcoded somewhere? Are they talking about the changeability of the semantics and
vocabulary of messages? Or maybe they are referring to how easily they can create
new API instances without impacting the API consumers.

For example, event-driven architectures (EDAs) are often described as offering loose
coupling between event senders and receivers. But, on closer examination, it turns
out that the loose coupling only pertains to the knowledge that a message sender has
about which components are receiving its messages. In fact, the structure, format,
or vocabulary of event messages can introduce tight coupling and be the source
breakage for message consuming components. See Chapter 6 for more on how API
style choices affect coupling.

Some API styles in particular are very prescriptive in what they define at design
time. If you are building an RPC-style interface, you’ll almost certainly use some

Improving API Changeability | 141

kind of interface definition language that documents the interface model with high
precision. The nice thing about having a highly specific interface model is that the
code becomes easier to write—in fact, RPC-style APIs often have ample tooling to
make it as easy as possible to get started.

The problem with the highly specified interface model becomes apparent when you
want to make changes to that interface. If you adopt a continuous improvement
model, you may find that there are lots of small improvement opportunities for your
interface. However, because the semantics of the API are hardcoded in the client’s
released code, changing the interface model will require a corresponding change in
the code of all the API consumers.

Generally, we want to avoid breaking clients that are dependent on our APIs. But
in practice, you may find that you care less about the reliability of some clients
than others. For example, an API change that will break a little-used, third-party
application is more justifiable than a change that would break your organization’s
customer-facing mobile application.

There isn’t a black-and-white answer to how much coupling is appropriate for your
API and when you should be willing to make changes. If loose coupling was free, we
would all do it, but long-term value comes with short-term costs and building APIs
that handle change very well requires up-front effort. You’ll need to make a decision
pretty early on about the cost of change and what type of API you think you’ll need.

Keep in mind that a low degree of changeability combined with a high cost of
code change means that continuous improvement of the API’s model isn’t a realistic
strategy. In the best case, it means that your continuous improvements will be limited
to interface model changes that don’t break clients. In this scenario, it’s a good idea to
start with a BDUF approach to the interface model before it gets used heavily.

Isn’t All This Just BDUF?
If you are familiar with the Agile Manifesto, you may be wondering if what we’ve
described in this section is an example of the BDUF antipattern that Agile practition‐
ers try to avoid. The short answer is “yes and no.” First, we certainly understand the
value of limiting the planning effort (in time and resources) when you’re engineering
software. As the Agile Manifesto points out, while there is value in “following a plan,”
it makes sense to favor “responding to change.” And that’s the key takeaway here from
a change management point of view: there is value in following a plan.

When it comes to APIs, it can be difficult to introduce changes because of the ripple
effect that change has on the application code that uses it—especially API consumer
code written by teams that are in control of the API service code. A great example
of this is a third-party API that your organization consumes. You don’t have control

142 | Chapter 5: Continuous API Improvement

https://oreil.ly/khE1R

over that API’s design or implementation, and yet you rely on that interface to be
stable and reliable both now and into the future.

It makes sense to consider your own APIs as “third-party APIs” for other teams
within your company. When it is time to change those APIs—interface promises that
you need to keep over time—you need be sure to maintain stability and reliability.
You also need sufficient planning in place to ensure you understand the target
audience of the API, have properly stated its purpose, and have a general idea of the
direction the design needs to follow in order to meet the needs (purpose) of the target
audience. However, as we pointed out in “Incremental Improvement” on page 127,
you do not need to map out all the detail before you begin. You need to keep the
long-term goal in mind while you iterate along the assumed path to reach it.

It is also important to keep in mind that, by reducing the cost of change in general,
you also reduce the need for BDUF practices. Often, the extended “planning” activi‐
ties are focused on quantifying and mitigating the risk of change itself. This effort
to reduce the cost of change can easily overshadow the work of carefully exploring,
documenting, and defining the new features that are the purported subject of the
change. That’s why small iterations are so valuable in your change management
efforts. The smaller the change, the fewer potential risks and the easier it is to “undo”
the change when you run into unexpected problems.

In our experience, the companies that do well are the ones that have a clear and
persistent vision of where they are headed. At the same time, they manage progress
one step at a time and are constantly on the lookout for new evidence that can help
them adjust their short-term expectations. An organization that successfully engages
in continuous change has a set of built-in practices like the ones we’ve called out in
this chapter.

Summary
In this chapter we introduced the continuous improvement model of change and
identified why it’s a good approach to use for your APIs. We also outlined the four
types of API changes: changes to the interface model, implementation, instances, and
supporting assets. To make it all work, we underscored the importance of achieving
change velocity and walked through the main blockers for API changeability, includ‐
ing the coupling between client code and an API.

In the next chapter, we’ll introduce a maturity model that can help you frame your
continuous changes within the context of an ever-evolving API product.

Summary | 143

CHAPTER 6

API Styles

Design depends largely on constraints.
—Charles Eames

APIs are a necessary design element in any infrastructure that interconnects compo‐
nents digitally. APIs allow various components to communicate, and looking at it this
way shows what general pattern APIs actually are. When we say “pattern” here, we
refer to the general communication interactions that APIs support. Note that this is
at a higher abstraction level than specific technologies that define concrete ways of
implementing patterns.

Since APIs are such a general pattern, the question arises whether there is one right
way to design APIs. But unsurprisingly, the world is a little bit more complicated.

A good example is the “REST versus GraphQL” debate, which has been happening
for several years in various forms. If we look past the strange debate that one API
approach is generally better than another, it doesn’t take long to see that this question
compares things on a different level. Let’s briefly look at these levels because they give
us a great way to distinguish patterns (which we call API styles) from technologies.

REST is a pattern, meaning that there is no “REST technology” or “REST protocol.”
HTTP is a useful foundation for implementing that pattern, but it also takes media
types (the web’s term for the payloads being exchanged via APIs) to end up with a
RESTful architecture that can be implemented.

On the other hand, GraphQL is a technology that defines how clients can query into
a data model managed on the server. It defines everything that is necessary to use
GraphQL APIs, which most importantly are exchange formats, and the semantics of
how exchanging them makes a GraphQL API work. GraphQL is not the only way
how the query pattern can be turned into a specific technology, but currently it’s the

145

most visible. Other technologies based on this query pattern are OData in the space
of enterprise IT and SPARQL with a more research-oriented slant.

What this shows us is that it is helpful to distinguish between the general design
pattern that an API is using and a specific technology that is a way to implement
this design pattern. That way, we can have more focused discussions either about the
general design approach that an API is taking, or about a specific technology that is
then used for the concrete API design.

We call these different design approaches API styles. In the following section, we will
look at the five fundamental styles in the API space and what their properties and
typical application areas are. Looking back at the comparison from earlier, these are
based on two out of the five styles; the first once focuses on resources as the most
fundamental API abstraction, while the second one focuses on query capabilities as
an API’s main abstraction.

APIs Are Languages
Before we dive into the styles, let’s take a step back and look at what APIs really
are. They are nothing but a language that defines how various applications can
communicate. Like any other language, API languages need two key elements to
work. API languages need ways for how individual messages can be exchanged (you
can think of this as sentences when you look at human languages). API languages
also need ways of how the exchange of messages turns into a meaningful conversation
(you can think of this as the shared goal of having a meaningful conversation when
you look at human languages).

Figure 6-1. APIs are languages: messages and conversations

Because APIs are languages in the IT space, it also is important to think about the
main abstractions they are based on. These main abstractions manifest themselves
in the communication patterns and in the communicated elements (the exchanged
messages).

146 | Chapter 6: API Styles

In the following discussion of the five API styles, we take a close look at the main
abstraction that an API style is built on (the “first principle” of the API style), and at
the fundamental interaction patterns. In all these cases, we look at how this presents
itself for the API consumer (who “sees” only the API and not the implementation)
and for the API developers (who have to develop the code that implements the API).

Let’s look at two simple real-world examples of how the problem being solved can be
important in determining an appropriate solution.

For an API that allows things to be submitted, such as an order, it can make a lot
of sense to use an API with a rather traditional control flow. If an API supports a
purchase process, there is probably a workflow of requesting product information,
supplying purchasing information, receiving the purchase confirmation, and supply‐
ing shipping information. All of this works well in traditional request/response APIs,
and styles using this pattern may be particularly well suited to representing the act of
purchasing something as a guided process.

For an API that notifies consumers of certain events, it may be useful to look at
an API style with a different interaction pattern. For example, if an API can notify
consumers when a customer’s address has changed, it would be useful if the API
triggered an event, and consumers would be listening for that and get notified when
it happens. This way, consumers don’t have to do any kind of polling, and these
events can be propagated and processed in a fast and efficient way.

It is important to keep in mind that all styles can be used to design and implement
working APIs for both of these scenarios. It is simply that the problem addressed
by an API is an important constraint when it comes to deciding which style and
technology to pick. As the saying goes, “If the only tool you have is a hammer, every
problem looks like a nail.” When you consider styles as being tools in your API
toolbox, then the more APIs you are working with, the more likely it is that having
more than one “style tool” can help you to solve problems in a better way.

There are other important constraints, of course. These include the API landscape,
the expected audience of the API (private/partner/public), knowledge about con‐
sumer preferences, and more. We will discuss these additional constraints in more
detail in “How to Decide on API Style and Technology” on page 156, but first we will
discuss the individual styles.

The Five API Styles
API styles are API interaction patterns, based on the interaction model and the main
abstractions upon which an API is built. Being an interaction pattern means that
the API style will determine how an API is designed and how this design will be
implemented in a specific technology.

The Five API Styles | 147

One of the most important aspects of API styles is that, ideally, an API’s design
constraints, the choice of style, and technology for implementation should be aligned.
If that’s not the case, this misalignment may lead to poor designs (when the design
constraints and the style do not align) or poor implementations (when the style and
the technology are not aligned).

The five styles presented here have been selected based on interaction patterns and
technologies that have been or are popular in the API space. It certainly would be
possible to come up with a different list of styles, but the ones we present here have
worked well for us in our API practice, and they provide a useful framework for
better understanding the many API technologies that are in existence.

For each of the styles, the most important aspects are the interaction model and the
main abstractions, and these are the topics we focus on when describing the styles.
As we will discuss after a description of the styles, none of them is inherently “better”
or “worse” than the other ones; they all have specific histories and motivations. Their
suitability depends on the constraints of a given API design task.

For each of the styles, we show a figure that illustrates the main properties of the style,
i.e., the interaction model and the main abstractions. We also describe how that style
maps into technologies and will give some well-known examples.

Tunnel Style
The tunnel style has its roots in mostly thinking about how to expose existing
capabilities from an IT perspective. It goes back to ideas such as remote procedure
call (RPC), which looks at designing distributed systems in a way that they mostly
“feel” like a local system. The idea is that an API is defined for existing “procedures”
(or whatever the name is that a programming environment is using to call a named
code unit). APIs then become a simple extension of what in a local programming
scenario would be simply calling a named procedure.

The tunnel style is convenient from a developer’s point of view because it can take
very little effort to create APIs. The main abstractions of this style are procedures,
and often they already exist. Tools can be used to expose procedures as APIs, in
which case a lot of the task of “creating the API” can be automated. There still should
be some management layer for securing the APIs, but that can be addressed with
using a component such as an API gateway.

Figure 6-2 shows this simple model: APIs are exposed by implementations, and typi‐
cally each implementation has its one “endpoint” where all exposed procedures are
available as APIs. All calls of these procedures are “tunneled” through that endpoint,
where the style’s name originates. If consumers are using APIs exposed in different
implementations, they have to use their individual endpoints.

148 | Chapter 6: API Styles

Figure 6-2. API styles: tunnel style

One problem is that the “API endpoint” has little to do with the actual API it is
exposing. It is simply a technical access path (the “tunnel”) that all calls have to go
through. This can make it slightly complicated to manage security and other issues at
the network level. Accessing the APIs behind the endpoint looks identical, meaning
that it is harder to manage APIs with components that are not embedded into the
implementation.

While the API management issue may be seen as a purely technical issue, there
is a deeper problem with the tunnel style: it is very much focused on exposing
implementations, meaning that there is no step where an API is first considered
from the consumer perspective, then designed with that perspective in mind, and
eventually implemented so that the API meets the needs of consumers.

The tunnel style was the style of choice for the first wave of “web services” (in the
late 1990s and early 2000s) that used SOAP, an XML-based protocol for remotely
calling procedures. There probably isn’t just a single reason why SOAP did not end
up delivering the promises that most people were looking for. But it certainly did not
help with adoption rates that most SOAP endpoints directly exposed implementation
details that were often hard to understand and use for potential API consumers.

SOAP (and other tunnel-style protocols) use HTTP as a simple transport protocol
to “tunnel” to the endpoint. This was one of the main reasons why the design ended
up this way, because it was relatively easy to add these endpoints to HTTP firewall
configurations, and thus it was assumed that this design would help with adoption.

Another advantage of the “tunnel” approach is that SOAP and similar protocols could
be tunneled through different “transport protocols.” That way, IT and specifically
security teams were able to gradually transition between various transport protocols

The Five API Styles | 149

while they were making sure that the transport protocol was robust and secure to use
as a tunnel.

However, a second wave of “web services” started looking at HTTP in a different way.
They asserted that HTTP was designed to interact with individual resources (on the
web, these would be pages, images, and similar resources) and that an API style more
in line with the web would be a more appropriate way to design and implement APIs.
This is how the resource style came into existence.

Resource Style
In contrast to the tunnel style, the resource style starts with a consumer-oriented
focus. The focus is on which resources to expose to consumers so that they can
interact with these resources. The word resource in this context should be interpreted
loosely and in fact can be assumed to be similar in scope to what you would have
in resources as web pages when designing a web site. There can be resources for per‐
sistent concepts such as products, product categories, and customer information. But
there also can be resources for process-oriented concepts such as ordering products
or selecting a shipping option. In short, everything that is a concept worth identifying
because it is used in interactions between the provider, and the consumer is turned
into a resource.

As shown in Figure 6-3, the general structure is not all that different from the tunnel
style. But that’s really just looking at it from a very high level. The big difference is
how the components in the diagram are created. While the procedures in the tunnel
style are simply exposing what is defined in the implementation, the resources now
create a model that has been derived from a consumer perspective.

Figure 6-3. API styles: resource style

150 | Chapter 6: API Styles

For example, the implementation of an ordering process may have a variety of
resources to work through. These might very well resemble the web pages that
you go through on many shopping websites: make product selections by browsing
products and potentially adding them to your cart, proceed to the checkout, make
your payment, and finally provide your shipping information. Every step along that
path is a resource that you are interacting with, and designing a shopping website to
a large degree means mapping the various aspects of the overall shopping process to
resources.

In a well-designed resource-oriented shopping API, these steps will be represented by
individual resources. They probably need some information to link up the individual
steps (such as a shopping cart identifier and later an order identifier), and we will
discuss in “Hypermedia Style” on page 151 how this can be handled in a more elegant
way. But apart from this, the API consumer will use the API based on how the API’s
function was decomposed in individual resources, much like these processes in real
life also are a sequence of well-defined interactions.

The idea of resources gives us a great way to expose the relevant aspects of an API’s
functionality and at the same time allows us to hide implementation details behind
the resources. However, what this style lacks is the ability to better represent the
fact that, oftentimes, there are workflows across these resources. If all that matters
is exposing resources, then maybe this is not such an issue. But oftentimes there are
processes (or other kinds of relationships) across the resources, and if that’s the case,
then the hypermedia style adds a crucial element to the resource style to address
those concerns.

Hypermedia Style
The hypermedia style takes the resource style and adds the web’s essential ingredi‐
ent: links between resources. Just as on the web, the most important paths across
resources can be navigated by simply using links between them (instead of having to
know each resource individually and enter its URI in the browser’s address bar); the
hypermedia style does the same but for the resources of an API.

This means that on the surface, the hypermedia style looks similar to the resource
style. The main abstractions of a hypermedia API are its linked resources, and the
resources themselves are exposed in a similar way as in the resource style. But as an
essential difference, in the hypermedia style, another fundamental abstraction is that
of links between resources, as shown in Figure 6-4.

The Five API Styles | 151

Figure 6-4. API styles: hypermedia style

Since we mention the web as a well-known example of a hypermedia system, it’s
worth pointing out a crucial difference with APIs: on the web, humans read pages
and then decide which link to follow. For hypermedia APIs, this decision is usually
made by a machine. This means that links need to have machine-readable labels so
that machines can identify the available options and then make a choice. These labels
are conceptually similar to the text of a link that humans click on web pages, but
the labels are represented in the machine-readable representation of resources, which
nowadays in many cases will be JSON.

In the same way as on the web, where you can “navigate” with your browser by using
links, the same can be done in a hypermedia API, where you can “navigate” across
resources using the links between them. To understand the crucial difference to the
resource style, just imagine a web without links: it wouldn’t be the same at all, would
it?

There are two main advantages of hypermedia APIs over resource APIs, and they
both are a direct result of the added links.

Links help with scenarios that have “main workflows,” because consuming the API
then becomes a question of following the right links to get the job done. A well-
designed hypermedia API will always provide all the links necessary to choose the
available next step. Some of these links can depend on context. For example, in a
shopping API, the part of the workflow where shipping information is necessary
might provide different options, depending on the identity of the customer and other
contexts such as ordered goods and shipping destination. Designing these options
into the API results in a good developer experience (DX) because it is immediately
apparent which possible next step a workflow provides.

152 | Chapter 6: API Styles

Links span resources, and it doesn’t matter whether these resources are provided by
one API or several APIs. This means that hypermedia is a great way to provide a
unified and easy-to-use experience across resources, even if these are provided by
various APIs. As we will discuss in Chapter 9, API design and good DX do not just
apply to individual APIs; they also are important across an API landscape. Because
hypermedia can link across APIs, it becomes easier for developers to work with
several APIs when these are providing links interconnecting resources across APIs.

All of this sounds very positive, and it certainly is true that the success of the web as
a very large and very scalable information system indicates that hypermedia may be a
good pattern to follow. Some popular APIs are using the hypermedia style, but it still
is much less frequently used than the resource style.

One reason is that for developers, working with hypermedia can be challenging
initially. As software developers, the traditional mindset is that the code we’re writing
is the control flow and that we’re using functions (“Tunnel Style” on page 148) or
resources (“Resource Style” on page 150) along the way. Being steered by data that we
receive requires a change in mindset and programming practice, and this may be one
reason why the hypermedia style is only slowly gaining momentum.

Like everything in technology, there is no single solution that is best for all prob‐
lems, and the same is true for API styles. While hypermedia does have some useful
attributes, it can also lead to “chatty” APIs that require a number of interactions to
access all required information. If an API consumer from the very beginning just
knows what they want, wouldn’t it be more efficient to let them say what they want?
This is the idea behind the query style covered in the next section, which builds on
a model where the API provides access to a potentially complex set of resources and
allows a consumer to write a query to get exactly what they want.

Query Style
The query style is rather different from the resource and hypermedia styles, because
it provides a single entry point to access a potentially large set of resources. The idea
of the query style is that these resources are managed in a structured form by the
API provider. This structure can be queried, and the response contains the query
results. At some level, this can be seen as similar to how databases work. They have an
underlying data model for the data they store, and a query language that can be used
to select and retrieve parts of that data, as shown in Figure 6-5.

As with databases, the choice of the data model and the query language can differ
based on the technology. But the important aspect is that each API request becomes
a specific query to be interpreted and resolved by the API, and as such the model
is rather different from the resource and hypermedia models where resources have
rather fixed representations that can be retrieved by API requests.

The Five API Styles | 153

Figure 6-5. API styles: query style

One advantage of the query style is that each consumer can request exactly what
they want. This means that with a well-constructed query, it may be possible to
combine results that would have required numerous requests in resource/hypermedia
APIs. However, for this to work, consumers need to have a good understanding of
the underlying data and query models (so that they know how to use the query
API properly and effectively) as well as a good understanding of the API’s domain
model (so that they know what to query for in the potentially complex domain model
provided by the API).

As mentioned earlier, there is no “one best style for an API” without taking con‐
straints around the API into account. Given today’s trends in API technologies, it
seems that query-style APIs are particularly successful when it comes to building
single-page applications (SPAs). These applications use private APIs that are often
just used within the same organization by the backend team and frontend developers,
working on mobile or web apps, for example. In this scenario, shared domain knowl‐
edge is very good, changes to the data model can be coordinated across teams, and
generally speaking the higher efficiency is worth the higher coordination effort.

All styles described so far (in “Tunnel Style” on page 148, “Resource Style” on page
150, “Hypermedia Style” on page 151, and “Query Style” on page 153) share one
fundamental assumption: the API is used in a request/response manner in which
the consumer sends a request and expects a response. This is a useful pattern when
the consumer is the starting point of an interaction, but how about scenarios where
something happens on the server side and the API consumer would like to be
notified? This is a scenario where the fifth and last style, the event-based style, is a
good fit.

154 | Chapter 6: API Styles

Event-Based Style
In contrast to the styles discussed so far, the fundamental idea of the event-based style
is to reverse the interaction pattern. Instead of consumers requesting something from
the provider, the provider creates events that are then delivered to consumers of the
API. This interaction pattern immediately raises the question: how is this delivery
done, and how is it even known that a consumer is interested in receiving certain
types of events?

This fundamental issue can be resolved only by introducing some form of infrastruc‐
ture, which can be done in a variety of ways. Sometimes this infrastructure takes the
form of a Publish/Subscribe (PubSub) pattern, and sometimes it is a more decoupled
layer that manages events by types and then allows events to be produced and
consumed based on these types. In either case, this general pattern is shown in
Figure 6-6.

Figure 6-6. API styles: event-based style

Generally speaking, the idea of the event-based style is that interactions are triggered
by events, and therefore the idea of an API is based on events as the main abstraction.
There are two general cases of how this is being achieved in specific architectures.

One approach is that event consumers (clients in the usual API terminology) are
directly connected to event producers, and the stream of events that these producers
are generating is delivered to the consumers. This sometimes can be as low-level as
getting a stream of measurements from some device, where each event represents a
measurement that the device has taken. In this case, subscription means getting an
event stream from that source.

The Five API Styles | 155

Another approach is that event consumers connect to a delivery fabric (sometimes
referred to as message broker) that decouples them from event producers. The fabric
takes care of managing events, and consumers must subscribe to certain event types
so that the fabric can make sure that events of this type are delivered to subscribers.
In this case, the architecture is much more centered around the delivery fabric, and
all event producers and consumers are connected to this fabric.

As in the other styles, the main abstractions are procedures (“Tunnel Style” on page
148), resources (“Resource Style” on page 150 and “Hypermedia Style” on page 151),
and schemas/queries (“Query Style” on page 153). This means that when using the
event-based style, everything should be driven from events. AsyncAPI is a description
language that focuses on events (which it calls messages) and that has gained some
popularity recently.

One interesting difference of the event-based style is the underlying architecture.
All the other styles are inherently decentralized because they assume synchronous
interactions between consumers and producers. In most cases where the event-based
style is used today, it uses the delivery fabric (the message broker) mentioned earlier
and thus relies on a centralized infrastructure that everybody interacts with. While
modern products such as Kafka are highly scalable and resilient, this is a remarkable
difference when compared to the decentralized approaches that other styles are
based on.

How to Decide on API Style and Technology
After going through these five styles, the question is how to choose among them and
then how to settle on a technology that implements that style. We’ll look at these
questions in the next two sections.

Picking a Style
As is usual in all design and engineering work, there is no “single best style” that
can be picked among the five styles that we have discussed. It all depends on the
constraints, and these constraints can be largely grouped into three categories:

Problem
As discussed in the individual styles, each style has a certain focus and certain
strengths. Thus, it is important to think about the problem that is addressed with
an API. Is it one that’s mostly centered on providing access to structured and
possible complex data? Maybe the query style is a good fit. Is it a problem that
exposes processes that consumers should be able to navigate through? Maybe
the hypermedia style is a good fit. Or is it a problem where things happen that
consumers want to learn about? Maybe the event style is a good fit.

156 | Chapter 6: API Styles

Consumers
Every API is built for consumption, and thus an API’s consumers always should
be an important design aspect. Since APIs ideally are reused, it’s not always
possible to plan for all consumers and their constraints, but it makes sense to
design with at least some consumers in mind and to make assumptions about
others. Consumer input can be in the shape of preferred styles or technologies,
but it also can be a question of how easy an API should be able to understand or
use and what kind of scenarios will drive the adoption of the API.

Context
Most APIs are part of an API landscape. That landscape can have a different
audience and scope, depending on whether the API is meant for private, partner,
or public consumption. But in all of these cases, it is important to take that bigger
context into account. In the end, the goal of an API should be to be a good API in
the context of how it is consumed. For this reason, if an API landscape does favor
a certain style, this definitely is an argument in favor of using that style for a new
API that is designed within that landscape.

In the end, it is important to think about picking a style as one part of the API
process, and “Design Thinking” on page 50 tells us to always be mindful about
consumers. Before jumping into designing the actual API, it is therefore important
to first think whether the style will fit the needs of the consumer, and then of course
pick a technology corresponding with that has to be seen the same way.

Choosing a Technology for a Style
Once you’re done picking a style, the next task is to pick a technology that works well
for the style. As previously mentioned, each of the styles has various choices that you
can make.

For example, for the resource style, there is REST as an architectural pattern, but that
doesn’t mean that REST gives you concrete technologies. For REST, choosing HTTP
as a protocol is a popular choice, and for the representation format it’s probably safe
to say that JSON by far overshadows any other representation (such as the XML that
was popular before JSON).

For the query style, it’s probably fair to say that GraphQL by now is by far the most
popular choice. There are alternatives such as SPARQL, which is typically used in
scenarios that center around technologies that are part of the Resource Description
Framework (RDF) technology stack. The big advantage that GraphQL has is that
it plugs into a JSON-based ecosystem. While GraphQL does not use JSON for
queries, it returns results in JSON that make it easy to process in JSON-focused
environments.

The Five API Styles | 157

For the event-based style, there is currently some momentum behind implementing
all of an organization’s APIs that way. As we’ll discuss in the following section, that’s
not the only way of approaching this, but it is an idea that does have some momen‐
tum, and whenever this approach is discussed, Kafka is often mentioned. While in
that case Kafka often turns into a crucial and central piece of an organization’s API
strategy, it also is possible to treat events more on a per-API basis. In that case,
specific protocols such as Server-Sent Events (SSE) or WebSockets can be used to
send events to browser-based applications, for example.

Avoid Painting Yourself into a Style Corner
Like many things in architecture, there is rarely a single best way of approaching
all problems in a design space. The same is true with API styles. There is no “best”
API style. They all have strengths and weaknesses that depend on the problem that is
being addressed.

In this book, one of the goals we have is to not just look at individual problems
and solutions. This means that we don’t want to focus on looking at just one API
and recommending how to decide which style (and technology) to use for this API.
We always want to “zoom out” and look at the bigger picture, as we’ll discuss in
Chapter 9.

The reality of the bigger picture is that APIs are constantly evolving and changing,
and designing the landscape for change is an important consideration. In the past,
we have seen approaches that were sometimes rather rigid on styles and technologies.
There were SOAP-focused landscapes (based on the tunnel style), HTTP-focused
landascapes (based on the resource style or, less frequently, on the hypermedia
style), and in recent years there has been quite a bit of momentum toward GraphQL-
focused landscapes (based on the query style). The most recent wave seems to be in
the form of EDA, often in conjunction with Kafka, which is using the event-based
style.

One approach to take is to not “pick” one of the styles (and a technology) as the
single design to go with, but instead to embrace diversity and to make sure that the
API landscape has some diversity. This is a topic often discussed in the context of
Chapter 2, where one of the goals is to find a balance between bringing some order
and organization to the API landscape, but without the landscape restricting things
too far. This is a tricky balance to get right and would warrant a whole book in itself.

But, coming back to the styles that we have discussed in this chapter (and to the
opening quote that “design depends largely on constraints”): for large organizations,
it rarely is a good choice to be too restrictive and to try to solve every problem with
one style. Instead, treating API styles (and technologies) as a function of the problem

158 | Chapter 6: API Styles

that an API is addressing will make it easier to cultivate an API landscape with a
better balance of diversity and coherence.

All too often, our classical IT background may lead us down the road of thinking
that in order to achieve interoperability and economies of scale, we must tightly
control technologies. Instead, what can lead to more resilient and flexible landscape
is to acknowledge the fact that there is no best API style and that for now we are
embracing more than one style being used in our API landscape.

Summary
In summary, API styles are a way to look at API design that focuses less on specific
technical details and focuses on general interaction patterns for APIs. We have dis‐
cussed five API styles along with their main abstractions and scenarios where they
tend to be good fits. We also discussed how to pick a style matching your problem
and how to then move on to picking a technology that matches the style.

Finally, we briefly discussed the relationship of API styles and diversity in your
API landscape. If there is one important takeaway from this section, it’s to have a
more nuanced view of the sometimes passionate debates around API technologies.
APIs may be used to expose very different capabilities and may be intended and
designed for very different consumers. Not painting yourself into a style corner is
an important consideration and will only become more important with your API
landscape evolving and growing over time.

Summary | 159

CHAPTER 7

The API Product Lifecycle

Growing old is mandatory; growing up is optional.
—Attributed to Chili Davis

When it comes to API management, understanding the impact of changes is vital. As
we discussed in the previous chapter, there are different types of costs associated with
changes to your API: work costs, opportunity costs, and coupling costs. The overall
cost of change depends upon the part of the API you are changing.

What’s more, the costs of change for an API aren’t static—as the context of the API
changes, so do the costs associated with changing it. For example, the coupling cost of
an unused API is near zero, but the coupling cost for the same API with hundreds of
consumer applications depending on it would be massive by comparison.

In truth, the reality of API change management is even more complex than that
example suggests. What if your API has only a single consumer that happens to be
owned by a major partner of your business? What if you have hundreds of registered
developers, but none of them is driving revenue to your core products? What if you
are managing an API that is profitable but doesn’t fit your business model anymore?
In each of these cases, the cost of change is completely different. In fact, there are
probably thousands of contextual permutations to consider. All this variation makes
it difficult to create a blanket assessment of API maturity for all API products.

Although it’s a challenging prospect, it would still be nice to have a universally
applicable model of API maturity. First, it would give us a generic way of measuring
the success of the API. Second, it could give us a framework for managing an API in
each stage of its life, particularly in terms of its changeability costs. So, we’ll try our
best to come up with a model that works for everyone.

161

In this chapter, we’ll introduce an API product lifecycle that provides you with a
maturity model for APIs. We’ll describe the five stages of maturity that are relevant
to all APIs. To make it fit your context, we’ll also introduce a method for defining
milestones that match your own business and product strategies. Finally, we’ll explore
how each lifecycle stage impacts the pillars of work you perform on your APIs. But
before we dive into the product lifecycle, we need to define a method for measuring
API products.

Measurements and Milestones
The API product lifecycle that we’ve promised to introduce in this chapter has five
stages, each of which is delineated by a milestone. The lifecycle stage’s milestone
defines the entry criteria for an API. As your API matures from creation to value
generation to retirement, it will progress through these milestone gates. To define
your product milestones, you’ll need a way to measure and monitor your API.

In Chapter 4 we introduced the API management pillar of monitoring. Establishing a
data gathering system is an important first step for measuring the progress of an API
product. You can’t chart your progress if you don’t know where you are. Gathering
the data is a technical challenge that can be overcome with good design and good
tooling, but identifying the right set of data for product lifecycle measurements
requires a different type of approach.

You’ll need to define product milestones that make sense for your API, your strategy,
and your business. If you define your own milestones, we can build a generic set of
lifecycle stages that can be applied to your unique context. To build those milestones,
you’ll have to define a set of objectives and measurements that make sense for
your product. In this section, we’ll introduce two tools that can help you with these
definitions: OKRs and KPIs.

OKRs and KPIs
Throughout the book we’ll use the term key performance indicator (KPI) when we
talk about measuring the value or quality of something. A KPI isn’t magic—it’s just a
fancy term for describing a specific kind of data collection. A KPI describes how well
a measured target is performing. The hard part about this is identifying the smallest
number of measurements that provide the most insight. That is why these measures
are called key performance indicators.

KPIs are useful because they represent purposeful measurement. In contrast to
generic data collection, KPI data is carefully selected. KPIs should provide insight for
the management team about a team or product. They provide clarity about the per‐
formance of the thing they are measuring, to aid in optimization. For example, two
KPIs for a call-center team might be the number of abandoned calls and the average

162 | Chapter 7: The API Product Lifecycle

1 “The Management Framework that Propelled LinkedIn to a $20 Billion Company,” First Round Review,
February 7, 2015, https://oreil.ly/yDkkd.

wait time for callers. Frequent evaluation of these call-center metrics, combined with
a desire to improve them, would have a big impact on management decisions.

If management decisions are heavily influenced by performance indicators, then
careful data selection is vital. Poor measures will lead to poor decisions, so selecting
the right set of KPIs is important. This means that someone has to identify the most
critical success factors for the organization and develop metrics accordingly. But how
does this happen?

Some companies use OKRs to identify their objectives and the key results needed to
achieve them. OKRs force management teams to answer “Where do we want to go?”
and “What will it take to get there?” Depending on whom you listen to, OKRs either
have a strong relationship with KPIs or are meant to replace them entirely. Either
way, OKRs are useful because they represent a purposeful attempt to marry cascading
objectives in an organization with the results and performance needed for progress.

OKRs at LinkedIn

Some organizations have found OKRs to be incredibly helpful in
their drive to succeed. For example, LinkedIn CEO Jeff Weiner
credits OKRs as being an important tool for aligning team and
individual strategies with organizational objectives. He holds that
OKRs should be about “something you want to accomplish over
a specific period of time that leans toward a stretch goal rather
than a stated plan. It’s something where you want to create greater
urgency, greater mindshare.”1 For Weiner, OKRs are useful only
when the objectives are thoughtfully crafted and continuously
broadcast, cascaded, and reinforced.

When we use these terms in the book, our intention isn’t to create an OKR or KPI
requirement. You don’t need to hire a KPI or OKR consultant in order to successfully
manage your API. OKRs and KPIs are useful tools, but it’s the culture and perspective
of objective setting and performance measurement that are most important. We
chose to use these specific terms because we know that they represent the keys to a
wealth of information, advice, and tooling for those of you who want to dive deeper.
But the most important thing is to have clear objectives and measurable data to chart
your product’s progress.

Measurements and Milestones | 163

https://oreil.ly/yDkkd

Further Reading

If you want to learn more about KPIs and OKRs, we suggest start‐
ing with Andy Grove’s High Output Management (Vintage), the
book that started the OKR movement. If you want something more
instructive, take a look at Objectives and Key Results (Wiley) by Ben
Lamorte and Paul R. Niven.

Defining an API Objective
The objective that you set for an individual API needs to reflect the strategic goals
of your team and organization. Your API’s objective doesn’t need to be exactly the
same as your organization’s overall goal, but it should be aligned with it. That means
realizing your API’s goal will also help your organization move closer to its goal. If
your API fulfills its promised value, the organization should benefit. This relationship
between your API’s goal and the organization’s goals should be clear and easy to
understand.

Achieving this kind of goal alignment requires that you understand something about
your organization’s strategy. Ideally you do; if not, that should be your first step. In
the OKR world, objectives can be cascaded down, with each part of the company
defining objectives that align with a greater goal. For example, the CEO’s team sets a
strategic objective and identifies the key results, which allows a business unit to create
objectives that foster those results; within the business unit the divisions can create
objectives aligned with the identified results, and so on, down the line. In this way,
OKRs can cascade through various teams and individuals in the company.

OKRs aren’t the only way to achieve this kind of goal alignment. For example, Robert
Kaplan and David Norton’s “balanced scorecard” system has a similar method of
cascading performance objectives; it and other systems like it have been in use since
at least the 1960s. We’ll leave it to you to determine how to align your API objectives
with the wider organization. The most important thing is for the objectives to exist
and for this definition of success to provide value to your company and sponsors.

There are no rules about what can or can’t be a goal for an API, but Table 7-1
provides examples of some common API goal types.

Table 7-1. Examples of API objectives

Goal type Description
API usage Reach a number of invocations per period.

API registration Reach a number of new or total registrations.

Consumer type Attract a specific type of consumer (e.g., a bank).

Impact Produce a positive business impact driven by the API (e.g., % increase of product purchases).

Ideation Harvest a number of new business ideas/models from third-party API users.

164 | Chapter 7: The API Product Lifecycle

https://oreil.ly/HYlns
https://oreil.ly/fp9fA

Goal type Description
Revenue New revenues directly associated with API business models.

App ecosystem Number of applications consuming the API and completing the product.

Internal reuse Number of internal departments or business units reusing an internal API.

You can also mix and match these goals—for example, you may want to set objectives
for both usage and consumer types—but keep in mind that adding more objectives
reduces your ability to optimize the design for a specific goal. The API’s goal drives
the work that you’ll perform for it, but that doesn’t mean it will never change. You’ll
need to reevaluate your objective if the organizational goals change or if it turns out
your goal isn’t providing real value.

Identifying Measurable Results
A goal is useful only if you have an accurate measure for it. Otherwise, it’s not a
good goal; at best it’s an aspiration. Managing an API means establishing a clear set
of measurable goals and adjusting your strategy based on your progress toward them.
Achieving this requires thoughtful design of the measurements or KPIs of the API.

Good measures should enable good objectives. This means that our measurable
results are the results that will enable the objectives we’ve defined already. Defining
clear, measurable objectives makes it much easier to determine the key results or
key progress indicators. But even with this direction, you’ll still need to define those
measurements.

If you are at all interested in defining good data measurements, you should read
Douglas Hubbard’s book How to Measure Anything (Wiley). It’s a great starting point
for understanding the whys and hows of measuring. Hubbard tells us that the goal of
measurement is to aid in decision making in domains of uncertainty. That’s certainly
the sort of thing that we are after—we may know what our objective is but remain
uncertain about our progress toward it or how to measure the desired results.

In his book, Hubbard defines a set of questions that you can ask yourself to figure out
what type of measurement “instrument” you need. Let’s use those questions and apply
them to the API measurement domain:

“What are the parts of the thing we’re uncertain about?”
Most things can be decomposed into smaller pieces. Hubbard tells us that there
is a big benefit to decomposing measurement targets. When the thing you want
to measure has a high level of uncertainty, look for ways to decompose it into
smaller, easier-to-measure pieces. For example, you may want to measure devel‐
oper satisfaction for your API. That is a measure that is full of uncertainty—but
can it be decomposed into smaller, more measurable pieces? It probably can:

Measurements and Milestones | 165

support requests, referrals, and product ratings are all quantifiable measurements
that could be used to determine happiness levels.

“How has this (or its decomposed parts) been measured by others?”
Whenever possible, learn from the measurements done by others. If you are
lucky and the problem domain is the same, you may be able to lift and replicate
those measurements—but even if you can’t do that, seeing how others have
done measurements is highly instructive and will help you with your own. A
good place to start is with API strategist John Musser’s “KPIs for APIs” talk,
but unfortunately there aren’t many API measurement examples in the public
domain.

However, most of the measures that apply to APIs have equivalent measures
in other fields. Any measures for developer experience can draw inspiration
from the general domain of user experience measurement. Measures for business
impact can draw from the OKR and KPI world generally. Measures for registra‐
tion, usage, and activity have parallels in the product management world. So, it
shouldn’t be difficult to find how others have solved similar problems.

“How do the observables identified lend themselves to measurement?”
After decomposition and identification of secondary sources, you should have a
better idea of what you want to measure. To answer this question, you’ll need to
determine how you should measure it. For example, measuring support requests
would require you to track all the channels that support requests are made
in: email, social media, telephone, and face-to-face interaction. This is the step
where you begin designing the data gathering system.

“How much do we really need to measure it?”
With an unlimited budget, your data collection system could be perfect. But does
it need to be? Hubbard wants us to consider how important perfect information
is for our API product decision making. Context is king here. How important is
this API to your business? How impactful will the management decisions be to
the organization? For example, if you are developing an API only for yourself to
use, you may care very little about managing it carefully, and your investment in
accurate measurements will be small.

“What are the sources of error?”
At this point you should consider how misleading these measurements might be.
Are there biases and inconsistencies? Does the method of observation influence
the results? The goal here is to identify potential problems and try to address
them. In the API domain, problems can arise from technical challenges (are
the tools reporting data correctly?), missing data (are we tracking all of the
support requests?), and flawed decompositions (are these the right measures for
developer happiness?).

166 | Chapter 7: The API Product Lifecycle

https://oreil.ly/t70nQ

“What instrument do we select?”
When Hubbard talks about an “instrument,” he means a process or system for
continuously gathering measurement data. In our API domain, this means the
type of KPI that should be measured along with the monitoring implementation
that you will have developed for it.

Armed with the answers to these questions, along with examples from secondary
sources, you should be able to define the right measurements. With the measure‐
ments defined and the work we described in Chapter 4 for the monitoring pillar
done, you are ready to build KPIs for the product lifecycle.

The API Product Lifecycle
A general model for understanding the maturity of a product already exists. It’s called
the product lifecycle, and it defines the four stages of development, growth, maturity,
and decline that all products go through from a market demand perspective. We’ve
taken the concept of the product lifecycle and applied it to APIs in order to come up
with an API product lifecycle. It consists of five stages: create, publish, realize, maintain,
and retire (Figure 7-1).

Figure 7-1. The API product lifecycle

The API Product Lifecycle | 167

As we mentioned at the beginning of this chapter, the API product lifecycle is a
model that can help you chart the progress of your API and adapt your management
as it matures.

In Chapter 5 we described the release lifecycle of an API. The product lifecycle is a
superset of those releases. Each stage of the API product lifecycle may contain many
individual releases. Releases or changes don’t cause the API product to reach the next
stage of maturity, but those incremental improvements will indirectly help the API to
mature to the next stage.

In the following sections, we’ll go through each of the product lifecycle stages in
detail. We’ll identify what happens during each stage and the kinds of milestones
you’ll need to define to reach it.

Stage 1: Create
An API in the create stage has the following characteristics:

• It is a new API or a replacement for an API that no longer exists.•
• It has not been deployed in a production environment.•
• It has not been made available for reliable use.•

Every API starts with an inception point—somehow, someone, somewhere in the
organization decides that an API should be published when the right API doesn’t
exist already. There are many reasons to build APIs, but in this stage it’s critical to pin
down exactly what those drivers are. Are you hoping to sell access to the API? Will it
enable faster application development? Is it just a dumb pipe for data access? Getting
a better understanding of why your company needs this particular API is essential to
identifying the goals, values, and audience for it.

When APIs are in this early inception stage, they have a high degree of changeability.
As we learned in Chapter 5, the interface model becomes more difficult to change
when applications are actively using it. When your API is in the create stage, you have
an opportunity to make intensive changes without having to worry too much about
coupling costs. Your effort costs can also be minimized at this early stage, since there
is little impact when bugs or defects are introduced.

A hidden cost of work in the create stage, however, is the rising opportunity cost
of not progressing your API product to the next maturity stage. This can happen
when you avoid publishing your API to users because you want to spend more time
working on design aspects while it is safe to make changes. But if there are other
teams, organizations, or people depending on your API in order to perform their
own work, the absence of that published API can become a real problem. It often
turns out that publishing a good API today is better for your business than publishing
a great API tomorrow.

168 | Chapter 7: The API Product Lifecycle

The length of time your API spends in the create stage becomes an important product
management decision. You’ll need to weigh the value of design freedom and its rising
opportunity cost against the increased coupling and effort costs that are associated
with later product stages. A good rule of thumb is to sort out those parts of the API
that offer the least changeability first. For example, if you are building a CRUD-style
HTTP API, you’ll want to design, test, and improve the interface model as much
as possible in the create stage because, if the model is not robustly designed for
extensibility, which often occurs, the coupling costs grow so high later on.

The create stage of your API product is also the time when you’ll need to put the
team together that will help the API mature. You can always add and remove people
as the product grows in complexity, but designing the initial product team is an
important foundational step for your API. As we’ll discuss in Chapter 8, the size,
quality, and culture of your team will have a big impact on the product you create.
It’s important to get these qualities as correct as possible early on in the life of your
product.

Milestones for the create stage
Every API begins life as a new creation, but you’ll need to decide when exactly that
creation point happens. How do you define the beginning of an API product journey?
Of course, all of this can happen organically. It’s perfectly fine to decentralize the
creation decision and let individual teams create competitive API products. But you
may still want to define some minimum level of diligence before API product work
can begin.

For example, you could decide that every API product needs to have a strategic goal
defined before design and development work can commence. This would require
some form of centralized decision distribution, probably in the form of centralized
authorization. Or you could make a rule that anyone in the organization can invent
an API product, but work can begin only if they find three other people willing to
invest three months of effort.

How you define the creation milestone depends a lot on your context, but it’s impor‐
tant to have a shared understanding of what it takes to kick off an API product
lifecycle. That will help to avoid wasted investment in products that aren’t worth the
effort.

Methodology: Creating APIs including citizen developers
Most of the API design methodologies are tech driven, involving only tech stakehold‐
ers, developers, and architects. But as more and more businesspeople are involved in
API programs and projects, a new concept has emerged in the API design process
to now include not only developers but also the business stakeholders, whom we can
call citizen developers.

The API Product Lifecycle | 169

An interesting methodology has been developed by Arnaud Lauret in his book The
Design Of Web APIs (Manning).

This method involves encouraging all stakeholders in the API design process in the
create phase. It consists of asking questions to all stakeholders and engaging in the
discussion. The business stakeholders define the business needs in plain English in a
pattern that is easy transcribed into technical terms:

Who What How Inputs? (source) Outputs (usage) Goal
Who is the
user?

What can
they do?

How do they
do it?

What do they need? Where
do they come from?

What do they get?
What’s their usage?

What is the end
goal?

By answering the following questions as a team, with all business and technical
stakeholders participating, a richer understanding of the whole API value chain will
be developed:

Who What How Inputs? (source) Outputs (usage) Goal
Banking app
user

Buy a
financial
product

Search for a financial
product to subscribe

Financial product
marketplace

Product (apply to
subscribe)

Search a financial
product by exploring
the marketplace

Internal
developer

Update
products
offer

Add a product in
marketplace

Product description,
features, icon, name
provided by product
manager

Product
description in
marketplace

Add a product in the
marketplace

In this way, business stakeholders can participate in the design specification of the
API and give useful insights for tech stakeholders to align with machine-readable API
specifications.

When you think about it, for REST APIs:

• “What” represents the resource that will be manipulated and its path.•
• “Who” represents the user role and authorization and access management fea‐•

tures of the APIs.
• “How” represents the HTTPs verbs to manipulate the resources (GET, POST,•

PUT, PATCH, DELETE, LINK).
• “Inputs” represents the API fields to send as parameters or body.•
• “Outputs” represents the API response.•
• “Goal” represents the API user story to be featured.•

With this methodology, you will be the able to create APIs and keep developers and
citizen developers in constant communication. Together, team members specifying

170 | Chapter 7: The API Product Lifecycle

the API in business terms and those able to translate this into technical terms work
together to create an API that aligns all goals.

Of course, this is not the only methodology. Other methodologies involve API design
like the APIOps Request and Responses Canvas and its API Design with Events
Canvas, targeted to create event-driven APIs.

Stage 2: Publish
An API in the publish stage has the following characteristics:

• An API instance has been deployed to a production environment.•
• It has been made available to one or more developer communities.•
• The strategic value of the API is not yet being realized.•

Publishing your API is an important product milestone and represents the entry
point into the second stage of API product maturity. Your API has been published
when you’ve made an instance of it available to consumers. This is the point at which
you have officially opened the doors to the API and are welcoming interested users.

Publishing can’t happen without deployment—the act of moving the API implemen‐
tation into one or more instances—but deployment alone doesn’t automatically qual‐
ify as publishing. For example, you can deploy a prototype of your API design in
the create stage without declaring it ready for real use. Publishing happens when
you signal to your API’s user community that the API is open for business and ready
to use.

If you are building a public-facing API for third-party developers, this is the stage at
which you make the API discoverable and usable by developers who have needs that
your API fills. For an internal API, this could be the point at which your interface
is added to an enterprise catalog and made available for other project teams to use.
For an API that supports a single application, this might be the stage where you email
the development team and let them know the API is stable and ready to be used in
their code.

Making the API available to consumer applications is the first step toward realizing
its strategic value. But in the publish stage of an API product, this is only a potential
value, not an actual realized one. Using the metaphor of a shop, it means you’ve
opened up your doors, but you haven’t sold your profitable items yet. You can’t realize
the value of an API without publishing it, but publishing doesn’t guarantee you’ll get
value from the API. Building it doesn’t mean that your target audience will come.

The distance between publishing an API and realizing its value depends on the API’s
strategy. If the realization goal for the API is unrealistic, it will languish in the publish
stage. If the goal is trivial, it might be realized on its first use. Context is also a big

The API Product Lifecycle | 171

factor. If you are developing the API for your own application, you have greater
control over its fate, while a public API developed for third-party developers requires
patience and investment. But no matter the factors, your goal should be to move the
API into the realize stage as soon as possible.

One caveat to the principle of realizing value as quickly as possible is the changea‐
bility impact for a published API product. While you have the potential to impact
dependent consumer applications at this stage, these are consumers who are not yet
returning realization value to your business. This means there will be no short-term
loss of value if you introduce an impactful change. For some organizations this is seen
as an opportunity to perform more experiments, gather data, and take bigger risks.

However, you’ll need to temper your desire to make changes in the publish stage with
awareness of the long-term effects these changes might have. Existing consumers may
have the potential to deliver value with continued use, but too many changes might
drive them away before that can happen. If your API product exists in a competitive
market, it may also hurt your ability to attract the types of consumers who are most
desirable for your realization target.

The API is generally changeable at this point because your primary users have not
been activated. But keep in mind that changing the quality of the API at this stage
can have unintended consequences and prevent you from acquiring the level of
investment you want from your target user base. An API instance that is frequently
out of service or often changes its interface model in ways that break clients will send
a strong (and not positive) signal to a prospective user base.

The degree to which you change your API in the publish stage should be governed
by your APIs, core changeability, the scope of its availability (public, private, or
partner-facing), and the types of users you are trying to reach.

Milestones for the publish stage
The milestones you define for the publish stage should identify when the API is ready
for active usage. You’ll need to decide what kind of trigger constitutes being ready for
real use. Here are some examples:

• The API has been promoted to a production environment.•
• The API website has gone live.•
• The API has been registered in the corporate registry.•
• API availability has been announced by email.•

In addition, you may want to define some measures that indicate if the API is
actually being used. This will help you determine the potential impact of changes

172 | Chapter 7: The API Product Lifecycle

that you want to make early in the publish stage. For example, user registrations, API
invocations, and documentation views may be helpful metrics.

Methodology: API user stories for client application end users
You may be already familiar with the concept of user stories. In agile methodologies,
user stories are a small, self-contained unit of development work, represented by a
simple description of a feature told from the perspective of the person who desires
the new capability, usually a customer of the system. It describes how to accomplish a
specific goal within a product and follows this format: “As [a user persona], I want [to
perform this action] so that [I can accomplish this goal].”

API user stories could take the same approach but focus on API goals, that is, that
they align with more than one end-user story. According to the design outlined in the
create phase, the goal is to achieve a level of minimalism in the number of endpoints.
This ensures a level of simplicity and consistency and makes sure that APIs can
support more than one user story outlined for the client application. A general rule
should be that you have fewer API endpoint user stories than client application user
stories.

Internal APIs. If you consume your own APIs, you will probably know the end-user
client application stories you want to accomplish and have a full list of these. In this
case, the API user stories you publish need to cover all of the needs and features of
the end-user stories for client-consuming applications. This is a good way to know if
the publish phase is meeting the internal usage requirement.

One API user story, one user story. A simple way to write your API user stories would
be to match them with every feature you want to enable in the client applications
consuming them:

API user story User story
As a developer, I want to access users’ LinkedIn accounts
so I can sign them up.

As a user, I want to be able connect with a contact via their
LinkedIn profile details.

As a developer, I want to enable users to upload a photo
so I can display it in the profile UI.

As a user, I want to be able to choose my profile photo so I
am recognizable in the app.

A common problem to watch out for is that your APIs will be too granular and too
coupled with the final UI of the end-user applications. This prevents the opportunity
to cultivate simplicity and the reusability of the APIs.

One API user story, many user stories. The real goal is to keep a simplicity and consis‐
tency of API endpoints, but also to maximize their reuse across all production-ready
internal client applications. While you may start with one API story for each client

The API Product Lifecycle | 173

end-user story, when it is possible, and when it makes sense, aim for one API story to
refer to multiple end-user stories:

API user story User story
As a developer, I want to access a user’s
LinkedIn account so I can ask for authorization
with OAuth2.0.

As a user, I want to be able connect with LinkedIn so I can sign up in two
clicks.

Same as above As a user, I want to be able to import my LinkedIn posts to my profile.

As a developer, I want to enable users to
upload a photo so I can display it in the profile
UI.

As a user, I want to be able to choose my profile photo so I am
recognizable in the app.

Same as above As a user, I want to be able to update my profile photo so I can keep
people in my contacts engaged with my profile.

Open API to third parties. If you already have an internal API that you want to publish
to others or if you are building an open API for access by partners in an ecosystem,
a second step is needed. A new set of client application stories needs to be defined.
Indeed, ecosystem partners, your external API consumers, and third-party develop‐
ers may want to use your API to build different types of features (and different
applications) than your core client application. A new set of ecosystem user stories
will need to be documented for the API. It is only at this publish phase that you will
be able to really dig in and discover these features from the external users (via user
interviews and other outreach activities that gauge the needs in your ecosystem).

The API user stories will often need to be redefined to match these new external
client application stories.

Let’s see an example:

API user story User story
As a developer, I want to access a user’s LinkedIn
account so I can ask for authorization with
OAuth2.0.

As a user, I want to be able connect with LinkedIn so I can sign up in
two clicks.

Same as above As a user, I want to be able to import my LinkedIn posts to my
profile.

As a Developer, I want to enable users to upload a
photo so I can display it in the profile UI.

As a user, I want to be able to choose my profile photo so I am
recognizable in the app.

Same as above As a user, I want to be able to update my profile photo so I can keep
people in my contacts engaged with my profile.

As a third-party fintech app developer, I want
to access the photo of the user for identity
verification.

As a third-party fintech app user, I want to be able to validate my
identity so I can create an account.

As a third-party social network app developer, I
want to access the photo of the user for filling in
profile information.

As a third-party social network app user, I want to be able to validate
my identity so I can create an account faster.

174 | Chapter 7: The API Product Lifecycle

Again, this isn’t the only methodology that can be employed, but it is a grounded,
practical technique you can use to learn about your users in the publish phase, which
will help you mature enough to go on to the next phase.

As an API publisher, you will be able to complete user stories that document user
needs by discovering new features and product ideas from internal and external
sources and unlock, little by little, their value.

Stage 3: Realize
An API in the realize stage has the following characteristics:

• A published API instance exists and is available.•
• It is being used in a way that realizes its objective, business or technical.•
• Its realized value is generally trending upward.•
• Breaking this API will have an impact on users’ operational efficiency.•

Thinking of your API as a product means continually improving it in support of a
business objective. Up until this point, your API product has offered a potential to
provide value. But when the target audience actually begins using the API in a way
that meets your strategic objective, you can finally consider its value to be realized.

Realizing the value of the API is the ultimate goal of operation efficiency. Getting to
the realize stage as quickly as possible and continuing to realize value for as long as
possible is the hallmark of a high-value API. The challenge for the API owner is to
decide what realization means. This is a difficult stage to create a measure for because
it requires the API product owner to have a good understanding of the objectives of
the API.

Properly defining the objectives for an API becomes the critical step in realizing
value—or at least in being able to measure and manage your ability to produce
a valuable API. The visibility and observability of the products you are creating
are essential to managing a group of APIs together, so this realization measure is
important.

For example, a payments API that is being marketed to third-party developers as a
pay-to-use API product may define an objective of processing 10,000 paid payments
per month as a realization goal. From this measure, an API product owner can clearly
identify that even with 6,000 developers registered to use the API, a measure of 5,000
payment requests per month means the value of the API has not been realized.

However, an API that is used only by internal groups in an organization would have a
vastly different realization target. For example, a payments API used internally within
a bank’s software architecture might have a realization goal of processing online
banking payments in production. In this example, as soon as the online banking

The API Product Lifecycle | 175

system begins using the API for payment processing, the API is considered realized,
regardless of the actual volume of requests.

To make things more complicated, not only should the realization goal reflect the
context of the API, but it must also continually be reviewed and revised as that
context changes. For example, the payments API that you release for profit to third-
party developers will need to change its realization target if the underlying business
strategy changes—say, if you decide that long-term sustainability requires you to
market primarily to the enterprise market. The corresponding milestone objective for
realization could then change to something like “handle 500 payment requests for a
Fortune 500 organization.”

Milestones for the realize stage
To build a KPI that identifies when you’ve reached this stage, you’ll need to have a
good idea of who you are building the API for. The audience for your API should be
pretty easy to identify if you’ve been able to define your objectives with a reasonable
level of clarity. That doesn’t mean your target API user will necessarily be a specific
user persona—lots of APIs are launched to be as flexible as possible with the goal of
serving anyone and everyone. The important thing is to be certain about the type of
user access that means you’ve realized the API.

At this point it’s also useful to measure the level of engagement that users have with
your API. In fact, the primary goal for your API at this stage is to build engagement
levels to the point that the API is being used legitimately—whatever that may mean in
your case.

When an API enters the stage of realization, your job isn’t done. The best success
will come from continuing to reap value from this product. That means having a set
of measures that help you track progress and make product management decisions
accordingly. The kinds of OKRs and KPIs we discussed earlier in the chapter have
their greatest applicability for APIs in this stage.

Methodology: Value Proposition Interface Canvas
In their book API Product Management (Leanpub), Andrea Zulian and Amancio
Bouza push the concept of thinking about your API design in terms of its value
proposition rather than as just a technical interface. Inspired by Osterwalder’s Value
Proposition Canvas, they created the Value Proposition Interface Canvas that can
help you to understand if you have achieved your realized value.

It consists of a method of working to define the real value your API is providing, how
it matches the users’ pains, and how it enables users to create gains. In this method
you have two components: the customer profile and the value proposition map.

176 | Chapter 7: The API Product Lifecycle

Customer Profile
The customer profile outlines the jobs that the customer wants to get done as
well as the derived gains and pains that facilitate or hinder getting the job done.

Value Proposition Interface Map
This is the map of your company’s relevant apps, products and services, data,
and business processes. Based on this map, it is possible to derive the pain
relievers and gain creators, which are related to the customer’s pains and gains,
respectively. Pain relievers solve a customer’s pain and gain creators facilitate a
customer’s gain. Generally, the pain relievers and gain creators shape the value
proposition. The interface represents the Value Proposition Interface (VPI),
which is an API. The VPI describes the interface to the value proposition and
how the customer can use them.

By walking through the following two cycles, you will put yourself in the user’s shoes
and evaluate, one at a time, the pain and the gain the API provides. First, you will
answer from the PAIN point of view:

Customer jobs
Describe the jobs the customer needs to get done.

Customer pains
Be clear about why those jobs are painful. Validate those pains with the customer.

Value sources
List relevant data sources, apps, business processes, and other products and
services involved.

Pain relievers
List the features of your API product that will relieve their pain.

Value Proposition Interface
Translate the product features to API features. More precisely, describe the API’s
resources and methods.

Second, answer these same five steps from the GAIN point of view:

Customer jobs
Describe the jobs the customer needs to get done (same as before).

Customer gains
Be clear about what can provide gains. Validate those gains with the customer.

Value sources
List relevant data sources, apps, business processes, and other products and
services involved.

The API Product Lifecycle | 177

Gain creators
List the features of your API product that will create gain.

Value Proposition Interface
Translate the product features to API features. More precisely, describe the API’s
resources and methods.

As Zulian and Bouza explain, it is important to be sure that the gains are not just
the positive side of the pains but are real gains and opportunities provided by the
new API.

This methodology can help you sharpen the value proposition of the API and maxi‐
mize its realized value.

Stage 4: Maintain
An API in the maintain stage has the following characteristics:

• It’s being actively used by one or more consuming applications.•
• Its realized value is stagnant or downward-trending.•
• It is no longer actively being improved.•

While an API is generating realized value, it stays in the realize stage of its lifecycle.
But eventually the pace of growth will subside and the API will enter into a steady
phase, or even experience a decline in value-generating usage. When this happens,
the API is in the maintain stage.

An API in this stage will still need to have a degree of changeability, but the goal
of change in the maintain stage is slightly different from in the realize stage. Now
changes are being made to keep the API in its steady state for as long as possible.
These may include bug fixes, modernization improvements, and changes due to
compliance, but very few changes will be made with the goal of acquiring new users.

Making changes in the maintain stage requires special care, because you’ll need to
ensure that the consumers of the API who are still providing value will not be
negatively impacted by the changes you make. It’s best to be risk averse with regard to
the types of changes that are applied to APIs in this stage. If a large, impactful change
is required, the API may need to transition back to the publish stage and try again to
realize value that has been lost (this is sometimes done by releasing a new version of
the API).

Milestones for the maintain stage
The milestones for the maintain stage will be dependent on the milestones for the
realize stage and are primarily trend-based. For example, if you already have a
measure for user growth defined for the realize stage, a corresponding measure of

178 | Chapter 7: The API Product Lifecycle

growth over the last six months might help for maintenance. If growth stagnates or
declines, this could be an indication that the API has entered into the maintain stage.
You’ll need to define which measures are the key indicators, what the period should
be, and what the threshold for stagnation is.

Methodology for the maintain phase: Self-servicing and automation
At the maintain phase, the API has realized its productized value and is solving user
problems internally or externally. When it is about maintaining this value for as long
as possible, the goal will be to diminish required ongoing costs while maintaining
the value being created from the API product. This is done by empowering more
self-service on the consumer side and integrating as much automation into business
processes as possible.

On the consumer side, the self-service approach will be about maximizing the
autonomy of API consumers. For instance, with a great developer experience, devel‐
opers will be able to sign up, safely share their credentials, read the documentation,
test the API, provision their environment, and follow use-case-based step-by-step
tutorials without the need for a human to assist them. For API companies with the
top developer experience, more than 90% of API users integrate successfully without
any need for one-on-one support.

On the provider side, the goal will be to reduce the operational cost of keeping
the API up and running properly. This can come with mutualization and with
automation. At this stage, the API is now part of a portfolio under the management
of the API owner or API product manager who handles multiple APIs (where in the
realized phase, it is more often one product manager for one API).

Alongside this approach is a growing focus on automating actions. For instance,
by leveraging a DevOps approach for APIs, or an APIOps approach, you can test
the design, documentation, development, and deployment via an automated APIOps
toolchain that reduces the need for manual work to fix bugs, apply security patches,
and install updates.

In the maintenance phase, the goal is to keep the API running at its maximum value/
cost ratio. Self-service on the user side and automating workflows on the provider
side can enable you to stay in that maturity phase as long as possible, before the API’s
maintenance costs are higher than the value being generated. When that inversion
has been reached, it is time for the API to be retired.

The API Product Lifecycle | 179

Stage 5: Retire
An API in the retire stage has the following characteristics:

• A published API instance exists and is available.•
• Its realization value is no longer enough to justify continued maintenance.•
• An end-of-life decision has been made.•

Everything has to end, and chances are that your API product will eventually need to
be retired. There are many reasons why an API might enter the retire stage, including
loss of demand, changes to operational costs, the rise of newer and better alternatives,
and shifts in objectives and goals for the business. All of these scenarios can be
summarized as either an inability to sustain a realized value or a fundamental change
in the objective for the API product.

When an API enters the retire stage of product maturity, it is an indication that it
needs to be removed, not that it is already gone. The API product team must plan and
perform the work of removing the API from the team’s offering of live, available API
products. The product team can decide what retirement for an API actually means,
but the goal is usually to eliminate as much of the cost associated with the product
to be retired as is possible. In some cases, this may mean removing all API instances
from production servers, while in others it may mean simply marking the API as
“deprecated” and refusing to make any further changes or offer any support for it.

This decision about what retirement means is often driven by the cost associated
with the retirement stage, including taking away something useful from the people
who were using the API product. Removing an API that others depend on can be
a difficult decision to execute. For APIs that are used internally within an organiza‐
tion’s technical architecture, the API owner might be forbidden from removing the
instance for fear of the unplanned work that will arise from its removal. In the case of
a public API, an organization may be wary of damage to its brand and its credibility
with the user community if it removes a function that previously existed.

From an API product perspective, retirement of an API should not be deemed a
failure or a mistake. Product retirement is a natural part of the cycle of continuous
improvement in the overall landscape of your APIs.

Milestones for the retire stage
Just like the other stages of API maturity, it is important for the API product team
to define the milestones that would indicate that the API is in the retire stage.
These milestones might be performance-related (for example, the number of API
messages processed over a timespan) or cost-related (for example, the estimated cost
of improving an API to meet some future business objectives).

180 | Chapter 7: The API Product Lifecycle

Google is famous for retiring products and projects that don’t meet specific measura‐
ble targets within a given amount of time. At Google, those targets could be active
user numbers in the hundreds of thousands, and the expectations of user growth can
be quite aggressive. These types of measures make sense for a product strategy that
seeks massive user growth, but wouldn’t be great for an internal user authentication
API.

Milestones for the retire stage represent either a floor or ceiling threshold. For
example, you may set a minimum number of requests that an API in the maintain
stage must serve, or you could set a maximum cost level before the product enters
the retire stage. The cost of retiring a product varies wildly based on the type of
applications it supports and the scale of developer users. So, you’ll need to set these
limits based on your API’s unique situational context.

Methodology: Retiring APIs without breaking applications using API metrics
Breaking changes, sunsetting APIs…anything that means a developer needs to get
back into the code to keep the application running properly is scary. So for your
developer users, retiring an API can definitely cause some dread and anguish. As the
API provider, there are some anxiety-reducing, respectful ways that you can do it.
It is possible to do it without any notice, for whatever reason you need and without
communication, but it is far better to keep the goodwill and trust you have generated
with your users and do it in a way that is respectful. If done well, you can even avoid
breaking any applications that rely on your API.

Deprecation and sunsetting policies. A good practice is to alert your users in advance
about your deprecation policy. What will you do when the API will stop being pro‐
vided? Your API users want to know now. Deprecation means declaring an API not
recommended to use or implement anymore. It happens often when a new API has
been created as a replacement, so we deprecate the one users should not use anymore.
Sunsetting means officially retiring and shutting down an API and its instance.

Often it starts with an announcement that the API will be deprecated on a certain
date, giving valid reasons and explaining how to replace the functionality with a
newer version. This communication gives time for technical and business teams to
know what to do and make their plans. A roadmap is often shared announcing how
the sunsetting will happen.

For instance, a first milestone may be that meeting the SLA will be stopped, or that
customer support for low-tier paying customers will be stopped. A warning banner
will be placed on the API documentation portal to inform visitors that “this API will
be deprecated,” and they will be referred to a resource link with the new version or
replacement solution.

The API Product Lifecycle | 181

A second milestone will be to stop support for all customers. Some companies even
place warning messages directly into API responses in the documentation to be sure
that developers are alerted via their code of what will happen.

Then comes the actual sunsetting milestone: the official shutdown of the API, and the
API is fully retired.

Tracking usage with API metrics for a “write once, run forever policy”. Some companies are
able to promote that they will never break APIs nor retire APIs, like Stripe or Sales‐
force. They call this a “write once, run forever policy” that promises developers that
they will have to write code once and only once to have an application consuming the
API working forever. What can we learn from them about retiring APIs? The main
way to manage this policy is to keep all versions live. And they actually do! But not all
companies can handle the support charge, so there is another option.

Using API management analytics, you are indeed capable of knowing which user
and application is consuming which version of your APIs. With this insight, when
you intend to deprecate an API version, you can anticipate the impact it will have
and for whom. Is it affecting your biggest customers? Is it affecting critical internal
applications?

Once you have mapped these impacts, you can manage the relationship in a human
way. Talk directly to the stakeholders who will be impacted and discuss your roadmap
and the alternatives.

If people are informed well in advance and new versions or replacement solutions
proposed, over time you will see more and more users of the soon-to-be retired API
migrating to your newer version. With a little luck and good enough incentives, by
the sunsetting milestone date, you may not have any API users of the version to be
retired. If you still have some API users who will not upgrade to the new version,
you will have to manage it. Your first solution is that you can continue your retiring
deadline and accept that this will break the applications of these consumers. But that
may not be the most diplomatic option.

For external APIs, an option is to augment the price of support for that API (in a
similar way to how Microsoft used to increase support for older versions of Windows
for corporate customers). This creates financial incentives for companies to migrate
to your newer version.

For internal APIs, this can be done by technical means, such as ending SLA com‐
mitments, or via a managerial decision to impose the upgrade on internal API
consumers.

182 | Chapter 7: The API Product Lifecycle

Applying the Product Lifecycle to the Pillars
The API product lifecycle that we’ve just described is a useful way of understanding
the maturity of your API product. This understanding can be helpful for thinking
about the changeability cost of the API in each stage. The product lifecycle can also
help you manage the work you need to do for your API. In this section, we will
use the ten pillars of API product development that we introduced in Chapter 4
to highlight how your work might change depending on the lifecycle stage of your
product.

The pillars of API management work we’ve defined will have significance in every
lifecycle stage (see Table 7-2). You’ll never be able to unreservedly ignore any of them.
However, some of the pillars hold more importance in certain stages than others.
These are the pillars that deserve more of your focus and possibly more investment
during specific stages of the API product lifecycle.

Table 7-2. Pillar impact by lifecycle stage

Create Publish Realize Maintain Retire
Strategy ✔ ✔
Design ✔ ✔
Development ✔ ✔
Deployment ✔ ✔
Documentation ✔ ✔
Testing ✔ ✔
Security ✔
Monitoring ✔ ✔
Discovery ✔ ✔
Change management ✔ ✔

Working on the Pillars

The pillars that we highlight in these sections aren’t the only aspects
you need to work on. You’ll be making changes and improvements
to your API throughout its lifecycle. Chances are that you’ll be
doing work across all of the pillars in every stage of life for your
API. Our goal is to show you which pillars have the biggest impact
in each stage so you can plan your investment of time and effort
accordingly.

Applying the Product Lifecycle to the Pillars | 183

Create
In the create stage, the focus is on developing the best API model before you take
on active users. That will require a special focus on strategy, design, development,
testing, and security work.

Strategy
The create lifecycle stage is when the strategy needs to be developed in the first place.
Once it’s established, there will be very little real feedback about actual API product
usage, since most of the work in this stage will be design and implementation effort.
This lack of data about the strategy means that you should expect very little change
to the strategy during this stage. One exception to this is when the cost of executing
your strategy is too high. For example, you might find that it’s impractical to create a
design and implementation that aligns well with your strategic goal. If that’s the case,
you’ll need to make some strategic changes.

In the create stage, you:

• Design your initial strategy.•
• Test it for design and implementation practicality.•
• Update your goals and tactics based on feasibility.•

Design
In Chapter 5 we described how API interface models become harder to change when
the API gets actively used. This is why interface model design work is so important in
the early stages of an API product’s lifecycle. If you can come up with the best design
during an API’s create stage, you’ll have the greatest freedom to increment, improve,
and innovate early.

A big challenge to designing in the create stage is that you’ll be making a lot of
assumptions. You’ll be assuming that the design decisions you’ve made for the inter‐
face model are the ones that make sense for developers. You’ll also be assuming that
your design will be practical to implement. Unfortunately, these types of assumptions
are often wrong.

To get the best interface design this early in the life of the product, you’ll end up
having to perform some validation of your model. You’ll need to get feedback from
the implementation team that the design you’ve come up with is feasible—ideally this
validation includes the development of prototypes that can be called. You’ll also need
some feedback from developers who represent your target audience.

184 | Chapter 7: The API Product Lifecycle

In the create stage, you:

• Design the initial interface model.•
• Test the design from a user perspective.•
• Validate the implementability of the interface model.•

Development
In the create stage, development work is focused on implementing an interface model
to be published. As we described earlier, that work can also include prototype devel‐
opment for testing the design. The primary development goal in this first stage of
life is to create an implementation that works and that provides all the functionality
described in the interface model. But to really get long-term value from development,
the implementation should also be designed to reduce the maintenance and changea‐
bility costs of the code, data, and infrastructure.

In the create stage, you:

• Develop prototypes.•
• Test the interface design from an implementation perspective.•
• Develop an initial implementation of the API.•

Testing
In the create stage you’ll need to test the interface design and initial implementation.
This is your chance to expose usability problems and improve the design of the
API early in its life. Like with all quality assurance, the cost of usability testing can
vary. A high-investment version could involve lab-based usability tests, focus groups,
surveys, and interviews. A low-investment version could be as simple as writing code
for your API.

The right investment level will be determined by the value you’ll get from improving
quality. If you are operating in a highly competitive API market and your audience
has many product choices, investing in better usability quality might make sense. If
you are designing the API only for yourself, you’ll probably perform only enough
testing to validate your design assumptions. But in all cases, testing those design
assumptions is necessary to avoid the rising cost of interface model change.

You’ll want to test the implementation too, but in the create stage the implementation
quality isn’t as vital. The API hasn’t been published for use yet, so you can afford to
defer an implementation testing investment to later. That doesn’t mean testing your
code in the create stage is a bad thing. In fact, adopting practices like test-driven
development will probably improve the quality of your implementation in the long

Applying the Product Lifecycle to the Pillars | 185

run. The point here is just that it’s a decision you can make based on your own
context.

In the create stage, you:

• Define and execute a testing strategy for the interface model.•
• Define a testing strategy for the implementation.•

Security
When it comes to security work, the safe play is to invest in it heavily throughout
the life of the API. The amount of actual diligence required will be dependent on
the constraints imposed on you by your industry, government, and competitive
marketplace, but it’s difficult to imagine a scenario where no security work is required
at all. You will always need to do some work to protect yourself, your system, and
your users.

A lot of this work needs to happen before the API is published. It’s no good to open
up the doors to your API instances and only then consider how to keep things safe.
That’s why we’ve identified the create stage as the most significant one for the pillar of
API security. That might seem counterintuitive, but we believe that the security work
you perform during this stage is the most significant and gives you the best chance
of success. Security is most relevant for a live API instance, but the foundations for
security are laid while it is first being designed and implemented.

During the create stage, your security work should be focused on applying security
policies to your proposed design. If your industry or organization doesn’t have any
defined requirements, you’ll need to come up with some yourself. At this stage it
is important to make security a first-class concern within the interface design and
implementation.

The implementation work in the create stage should include designing and building
an appropriately secure infrastructure for your API. That includes access control
functions as well as a design for handling overuse that might take your service away
from legitimate users. No API is too small or unimportant enough to risk being vul‐
nerable. In fact, great exploitation targets in any large system are those components
that were deemed trivial and not worth the investment of a secure implementation.

In the create stage, you:

• Define your security requirements.•
• Validate the interface model against your security requirements.•
• Define a strategy for securing the initial implementation and instances.•

186 | Chapter 7: The API Product Lifecycle

Publish
The publish stage is the “door opening” moment for your API product—it marks the
point where you officially open your API up for use. In this stage, other people will
begin to depend on your API and will write code based on the interface model you’ve
advertised. The pillars that matter the most in this stage are design, development,
deployment, documentation, monitoring, and discovery.

Design
Although most of the design work will happen in the create stage, interface design
work remains important in the publish stage. That’s because this is your opportunity
to improve the design of your interface based on actual usage. When you publish
your API, you’ll find out if the assumptions you made about the design are correct.
Some of that will come out during testing in the create stage, but you’ll learn a lot of
new lessons once users get their hands on your API for real.

In truth, you’ll be making changes to the interface throughout its lifetime. Whenever
you need to add a new feature, enhance an existing operation, or improve usability,
you’ll be changing the interface model. But those changes will be easier to make
during the create and publish stages. The publish stage is your last opportunity to
make invasive design changes with a minimal amount of harm, or at least without
impacting users who are delivering realized value.

In the publish stage, you:

• Analyze the usability of the interface.•
• Test design assumptions you made in the create stage.•
• Improve the interface model based on your findings.•

Development
If you change the interface, you’ll end up having to make changes to the implementa‐
tion. But that’s not the interesting part of the development pillar in the publish stage.
We are highlighting this pillar because the publish stage is the best time to optimize
the implementation independent of the interface model. It’s your chance to improve
the implementation such that it is more performant and easier to change and scale.

You can certainly do this kind of work during the create stage, but the publish stage
gives you the benefit of having real usage to base your optimization on. Unlike the
interface model, you have the freedom to change the implementation in small, itera‐
tive steps. In this way, you can avoid having to do too much big design of the code
up front. Instead, you can optimize it in small pieces as you learn more about what
needs to be improved. In truth, you’ll continue to optimize your implementation

Applying the Product Lifecycle to the Pillars | 187

throughout the life of the API, but the publish stage presents a great opportunity to
do the most with the least risk.

In the publish stage, you:

• Optimize the implementation for scalability and performance.•
• Optimize the implementation for changeability.•
• Make these optimizations based on observed usage.•

Deployment
An API can’t be considered published if an instance hasn’t been deployed. So, deploy‐
ment is a core pillar for the publish stage. At the very least you need to make sure
an instance is available to users, but it’s a good idea to start building a deployment
infrastructure that will support later growth. This is especially important if your
API’s strategic goal involves increased usage. For example, reaching a revenue or
innovation target will probably need a deployment architecture that can handle a lot
of demand.

One aspect of deployment work is to develop a release pipeline that will allow you to
make changes to the API (recall that it’s important to achieve velocity for your API
changes). The work of designing and constructing this pipeline should ideally start
during the create stage of the product, but the publish stage is when it becomes more
urgent to get one in place.

Another aspect of deployment is the work of operationalizing your API instances.
This means building and maintaining a system that will address scale, availability,
and changeability requirements for your product. A good operations system will keep
your API available and performant even as the demand on system resources grows.
Keeping your API instances in good health is an essential part of building a good
developer experience. An API that is frequently unavailable or unreasonably slow will
have trouble moving to the realize stage.

In the publish stage, you:

• Deploy the API instance.•
• Focus on making the API available.•
• Plan and design your deployment for future demand.•

Documentation
You’ll need to perform documentation work throughout the lifecycle of your API,
but the documentation pillar becomes particularly important during the publish and
realize stages of the API product lifecycle. During the publish stage you’ll be trying
to increase the realized value of the API by attracting the right kind of usage. This

188 | Chapter 7: The API Product Lifecycle

is your chance to experiment with the documentation design and come up with
something that helps you get the usage you want.

That means you can start with a low level of documentation maturity and keep
building it up as you learn more about your API’s usage. For example, you might
start by offering only a technical reference, but add tutorials and examples based
on observed usage. In particular, this allows you to focus the documentation on the
trouble spots or learning gaps of your API. You can find those by investing in user
testing during the create stage or in the publish stage from the questions that your
users will ask.

In the publish stage, you:

• Publish documentation.•
• Improve documentation based on actual usage.•

Monitoring
Getting product feedback is most important in the publish and realize stages of
the API lifecycle. In the publish stage, you need good measurements to determine
if you’ve hit your realization milestone. In the realize stage, you’ll need data to
ensure that your API is still trending upward in terms of demand and realized value.
Monitoring is useful throughout the entire product lifecycle, but it’s essential for these
particular stages. You’ll usually use the same metrics in both the publish and realize
stages, so if you invest in good monitoring here, you can reuse that solution later.

In the publish stage, you:

• Design and implement strategic measures for your API.•
• Design and implement system monitoring for your API.•
• Build a monitoring system that can be used during realization.•

Discovery
Discovery is the most situationally dependent of our ten pillars. The work of discov‐
ery is the effort you expend to promote the API product, engage with developers,
and generally increase the traction your API has with your target audience. If you
are developing an API for your own team, discovery can be as simple as sending
an email. If you are building an API for a large enterprise, discovery could mean
following an intake and registration process for new services. If you are building
an API for the general public, it could mean hiring a team of ten people to build
and implement a marketing strategy. That’s quite a wide spectrum of effort and
investment.

Applying the Product Lifecycle to the Pillars | 189

But in all of these cases, regardless of the effort expended, the value of discovery is
highest during the publish stage of the API’s life. This is when you’ll want to maximize
engagement with your API, because you have instances available to use, and the right
usage can help you generate realized value from your product. But as we said earlier,
how you do this discovery and how much you invest is highly dependent on your
context.

In the publish stage, you invest in marketing, engagement, and findability for the
API.

Realize
Getting to the realize stage is the goal of any API product. The main objective now
is to increase the value you get from the API and avoid impacting the users who
are helping you the most. The most impactful pillars in this stage are deployment,
documentation, testing, discovery, and change management.

Deployment
When the value of your API is realized, it’s imperative that you keep the system
available and running for your users. That means that your deployment architecture
becomes very important. While you will have performed your initial deployment
design during the publish stage, in the realize stage you’ll focus on maintaining and
improving it. That means taking the necessary steps to keep your service running
even as the demand profile changes in unexpected ways. Making these kinds of
changes may even require you to redesign the implementation. That’s perfectly fine as
long as you can protect your high-value users from being negatively impacted.

In the realize stage, you:

• Make sure that the API’s instances remain available.•
• Continually improve and optimize the deployment architecture.•
• Improve the implementation as necessary.•

Documentation
The realize stage is your opportunity to continue to improve the developer experience
of your product. In particular that means improving the documentation and learning
experience. While it becomes more difficult to change the interface model at this
point, changing the documentation is much less impactful. Humans are much better
at adapting to change than software is, so you have some freedom to experiment with
new formats, styles, tools, and presentation. The goal here is to continue to drive
realized usage by reducing the learning gap for new users.

In the realize stage, you:

190 | Chapter 7: The API Product Lifecycle

• Continue to improve the documentation.•
• Experiment with additional supporting assets (e.g., API explorers, client libraries,•

books, and videos).
• Drive new usage by reducing the learning gap.•

Testing
In the realize stage, testing work prevents changes to any part of the API from having
a negative impact on users. At this stage, usage of your API is directly contributing
to the value of your product. Changes will be necessary, but you need to mitigate the
risk that changes will cause undesirable effects. The level of investment you make in
this type of testing work should be based on the impact of things going wrong.

Ideally, the kinds of tests you run in the realize stage already should have been created
in the publish and create stages of the API lifestyle. But as your API approaches and
enters the realize stage, your testing strategy should be evaluated to make sure it is
giving you the best levels of risk mitigation. As the API matures into maintenance
and eventually retirement, the demand on testing will decrease. During these stages
you should be able to leverage the assets you’ve already created.

In the realize stage, you:

• Implement a testing strategy for interface, implementation, and instance changes.•
• Continually improve your testing solution.•
• Build a testing solution that can be used in future stages.•

Discovery
Discovery in the realize stage is broadly similar to the discovery work from the
publish stage. The only difference is that the discovery work here can be more
precise. You’ll have a better idea of which user communities provide the most value,
so you can invest more in fostering those.

In the realize stage, you:

• Continue to invest in API marketability, engagement, and findability.•
• Invest more in high-value user communities.•

Change management
The heart of the API product lifecycle is the evolving impact of changes to the API.
In fact, we’ve been describing change management throughout this section, for each
of the other pillars of the API product. But in general, when it comes to change

Applying the Product Lifecycle to the Pillars | 191

management as a work pillar itself, it becomes most important during the realize
stage of a product’s life.

In Chapter 5 we described the four types of changes that you’ll need to manage
with an API product: changes to the interface model, implementation, instances,
and supporting assets. Within each pillar, you’ll find yourself making changes to
many of these API parts, often at the same time. All these changes need to be
managed to reduce their impact, but this impact reduction is most important when
you have active, realized usage. This is when a good change management system and
versioning strategy will provide the most value.

In the realize stage, you:

• Design and implement a change management system.•
• Carefully communicate changes to users, maintainers, and sponsors.•
• Support change activities with a goal of minimizing impact to realized value.•

Maintain
In the maintain stage you aren’t getting new value, but you don’t want to harm the
usage you already have. The goal here is to keep the engine running and maintain it.
There’s a lot of work involved in doing that, but we think the most important is the
work involved in the monitoring pillar.

Monitoring
If your API is in a state of maintenance, your only objective is to keep the status quo.
That means less emphasis on design, development, or change and more emphasis on
support and availability. You may not need to make monitoring improvements at this
point, since a lot of that work will have taken place during the publish and realize
stages. But it’s still the most important pillar in the maintain stage, so you’ll need to
invest some time and energy to make sure you are getting the right kind of system-
and product-level data.

One objective is to have a system that lets you know when something out of the
ordinary happens. That will be an indication that you have some work to do. Another
goal of monitoring in the maintain stage is to keep an eye on the value that your API
is providing. When it drops too low, it may be time for the API to be retired.

In the maintain stage, you:

• Ensure that the monitoring system is operational.•
• Identify patterns that will require special care.•
• Observe metrics that could trigger a retirement decision.•

192 | Chapter 7: The API Product Lifecycle

Retire
While this is the final lifecycle stage, remember that an API in the retire stage
isn’t gone yet. This is the stage where you’ve identified that an API product needs
to be deprecated. The most important pillars in this stage are strategy and change
management.

Strategy
When it’s time to retire your API, you’ll need to address a special set of strategy
issues. How will existing users be supported, compensated, or placated? Is there a new
API that users should be migrated to? What is the timeline and set of steps that will
need to be in place for the API to be retired? How will the impending retirement be
communicated to the user base? Regardless of the scale, context, and constraints of
your API, you’ll need to form some type of retirement strategy, even if it’s a minimal,
informal one.

That means forming new goals, new tactics, and a new set of actions. The original
goal of your API that you have set in the create stage is no longer your target. Instead,
you need a goal that fits the retirement of your product. For example, you may have
a goal to minimize the number of users you’ll lose if you want them to migrate to a
new API. Or your goal might be to eliminate the cost of supporting the API as soon
as possible. These two very different goals will each require a tactical plan and set of
actions to enable them.

In the retire stage, you:

• Define a retirement (or transition) strategy.•
• Identify a new goal, tactical plan, and set of actions.•
• Measure progress toward this retirement goal.•

Change management
Managing change in the retire stage means managing the impact of retiring the
product. This isn’t the time to introduce enhancements or improvements to the API,
so the focus here isn’t on versioning or managing a big rollout. Instead, the work here
involves assessing the impact to your users, brand, and organization of an impending
deprecation and managing that change effectively. This work should align with your
retirement strategy.

In the retire stage, you:

• Assess the impact of retiring your API.•
• Design and implement a plan of communication and deprecation.•
• Manage implementation and instance changes to support that deprecation.•

Applying the Product Lifecycle to the Pillars | 193

Summary
In this chapter we introduced an API product lifecycle that describes the five
life stages of a successful API product. We also described how well-designed objec‐
tives and measures are needed to determine your API’s maturity level. Finally, we
described how the work of managing a single API product is impacted by its lifecycle
stage. In the next chapter, we’ll take a look at the API product lifecycle from the
perspective of the people and teams that do the work.

194 | Chapter 7: The API Product Lifecycle

1 Simon Brown, “Are You a Software Architect?” InfoQ, February 9, 2010, https://oreil.ly/GEznF.

CHAPTER 8

API Teams

Great things in business are never done by one person. They’re done by a team of people.
—Steve Jobs

You may have noticed that we’ve put off discussion about how you create, populate,
and manage teams for your API program. While this is an important topic, it turns
out to be quite a challenge to collect and reflect general information about such
a personal and organization-dependent topic. Each company has its own way of
managing people, its own boundaries within the organization (divisions, products,
services, sections, teams, etc.), and its own way of creating some form of hierarchy to
manage its people. All these variables make it hard for us to come up with just one set
of recommended practices for building successful API teams.

However, by talking with several companies, we have been able to identify some
general patterns and practices that we can share. In our observations, organizations
all use some form of teams, titles, and job roles to describe the work they need to get
done and assign that work to the people responsible for doing it. We don’t find much
consistency in the titles companies use for the members of teams, but what we do find
that is fairly consistent across companies is a set of roles for handling tasks within a
team. In other words, no matter what titles people have, the same kinds of work need
to be done.

This idea of focusing on roles rather than titles is echoed by software architect,
author, and trainer Simon Brown. When referring to software architecture in partic‐
ular, he says, “Becoming a software architect isn’t something that simply happens
overnight or with a promotion. It’s a role, not a rank.”1

195

https://oreil.ly/GEznF

In our experience this sentiment applies to all the roles on an API team. For that
reason, we’ll start this chapter with what we call a common set of API roles. Similar
to the way we presented the API pillars (see Chapter 4), we see these roles as repre‐
senting common tasks and responsibilities—ones that someone in your organization
needs to take on. For that reason, we’ll also spend time discussing how the API pillars
match up to the API roles we define here.

We also find that, in some cases, the exact makeup of the API team can vary based
on the maturity of the API they are working on. For example, in the early create stage
(see “Stage 1: Create” on page 168), you don’t need to focus on testing or DevOps, and
in the maintain stage (see “Stage 4: Maintain” on page 178), there is usually not much
work for frontend or backend developers. So, we’ll review the mix of API roles you
can expect to need as each of your APIs travels through its lifecycle.

Another important aspect to all this is how API teams interact with one another.
Most of the companies we work with offer some coordinating body or “team of
teams” that helps all the teams (no matter where their APIs are in their lifecycle) keep
up with one another, manages interoperability, and encourages collaboration. This
additional process of “engineering the engineers” will be covered in depth in the next
few chapters as we introduce our notion of the API landscape.

Finally, a big part of making teams work well together falls under the name company
culture. This is another area we find successful companies invest time and resources
into managing. As was discussed in Chapter 2, one of the ways to scale up API
governance is to distribute some of the decision making. One way to ensure consis‐
tency in decision making in this distributed environment is to pay close attention
to the company culture and—where needed—learn to nudge that culture in positive
directions. In the last section of this chapter we’ll spend time on some key concepts
we see organizations use to help them identify, monitor, and influence company
culture in order to improve the overall effectiveness of their API programs.

But to start out, let’s identify the set of common roles we find in most API teams and
how these roles can be applied to make sure you cover the API pillars we talked about
in Chapter 4.

API Roles
Just as we showed you a set of common skills for dealing with the aforementioned
API pillars, we have also put together a set of common roles for dealing with APIs.
In this chapter, the roles are presented as a set of job titles. However, our experience
is that titles for API positions are not very standardized across companies. An API
program manager in one company is called the API owner in another company, the
API architect at company B is called the product architect at company Z, and so forth.

196 | Chapter 8: API Teams

For that reason, the titles we’re using here may not correspond to the titles in your
company. However, we’re pretty sure the actual roles do exist somewhere in your
organization—or at least they should. That’s because, just as we stated that the API
pillars were all skills that are common to successful API programs, the roles we’re
describing here are the ones you’ll need to make sure someone on the team is
responsible for.

That means while you are reading this list of API roles (and the titles we gave
them), you can do the work of associating them with their equivalents in your own
organization. That’s a really good exercise, by the way. If you go through your list of
job titles and descriptions and find that one or more of our roles isn’t represented,
that’s a pretty good indication that you have an opportunity to enhance your organi‐
zation’s job descriptions to make sure all the responsibilities we list here are covered
somewhere in your list of API-related jobs.

Scope of Responsibility

It is also important to keep in mind that these roles each represent
a defined scope of responsibility. When someone takes on a role,
they take on the responsibility for all the tasks within the scope of
that role. And most of the tasks involve decision making with a
particular skill set (designing, development, deployment, etc.).

With that explanation as a backdrop, let’s go through our list of API roles to establish
a basic understanding of the kind of responsibilities involved in a healthy API pro‐
gram. You’ll notice that we’ve divided the list up into two parts:

• Business roles•
• Technical roles•

This division may seem a bit arbitrary, and it might not track with the way your
company arranges job titles and responsibilities. But we think it can help to point out
which roles tend to lean more toward meeting business objectives (OKRs) and which
roles tend more toward meeting technical objectives (KPIs). We talked how these two
relate to each other and their use in managing your APIs in “OKRs and KPIs” on page
162.

API Roles | 197

A Reminder About Roles and Titles

Remember, the job titles we list in this book were invented for
the purpose of reinforcing the connection between API roles and
the API pillars from Chapter 4. The roles and job titles within
your own company will likely be different from the ones we use
here; however, the API pillars we covered earlier are all skills
and responsibilities your company will need to cover. How you
associate the pillars with your own job roles and titles is an exercise
we leave to you, the reader.

Business Roles
The first group of roles we’ll review are the ones we call business roles. The people
who take on these roles are primarily focused on the business side of the APIs. They
often have the responsibility of speaking in the customer’s voice, aligning the product
with clear strategic goals (e.g., promoting new products, improving sell-through,
etc.), and matching APIs with company-wide OKRs. Sometimes the people fulfilling
these roles will come from the business or product parts of your company. Other
times, they will come from within the IT ranks. The important difference between
these roles and the technical roles we’ll cover next is that business roles focus first on
business objectives.

We’ve defined five business roles to represent the decision-making responsibilities we
see in healthy API programs:

API product manager
The product manager (PM)—sometimes called the product owner—is the main
point of contact for the API. This is in keeping with the API-as-a-Product (AaaP)
approach we covered in Chapter 3. They are responsible for making sure the API
has clear OKRs and KPIs and that the other members of the team are in place
to support the needed API pillars (Chapter 4). The PM is also responsible for
monitoring the API and shepherding it successfully through the full API lifecycle
(Chapter 7). The API PM role is in charge of defining and describing to the rest
of the team the what of the API (or jobs-to-be-done). It will be the technical
roles on the team that will be responsible for the how. PMs are also responsible
for ensuring that the expected developer experience (design, onboarding, and
ongoing relationship) meets the needs of the API consumers. The PM’s role is to
make sure all the moving parts come together as expected.

API designer
The API designer is responsible for all aspects of the design. This includes
making sure the physical interface is functional, is usable, and offers a positive
experience for developers. The designer also needs to make sure the API helps
the team to achieve the identified business OKRs. In some cases, the designer

198 | Chapter 8: API Teams

will work with the technical roles to make sure the design helps the team meet
the technical KPIs, too. Often the designer is the first line of contact for API
consumers and may be responsible for taking on the “voice of the consumer”
when helping the team make decisions about the look and feel of the API.
Finally, the designer may be called upon to make sure the overall design matches
established company-wide style guidelines.

API technical writer
The API tech writer is responsible for writing the API documentation for all
stakeholders connected with the API product. This includes not just the API
consumers (e.g., the developers using the end product) but also the internal team
members as well as other stakeholders from the business community (e.g., the
CIO, CTO, etc.). Most tech writers will come from a technical background and
have some programming experience, but this is not always the case, nor is it
always required. It is important for tech writers to be effective communicators
as well as effective researchers and interviewers, since they often need to under‐
stand the point of view of both the API providers and the API consumers. For
this reason, tech writers often work closely with the API designer and product
manager to make sure the documentation is accurate, up-to-date, and in keeping
with the company’s design and style guidelines.

API evangelist
The API evangelist is responsible for promoting and supporting the API practice
and culture within the company. This is especially true in large organizations
where internal users do not have easy access to the original API team that created
the product. Evangelists make sure all internal developers using the API under‐
stand it and can accomplish their goals with it. Evangelists are also responsible
for listening to API consumers and passing their feedback on to the rest of the
product team. In some cases, evangelists may be responsible for creating samples,
demos, training materials, and other support activities in order to maximize the
developer experience for those using the product.

Developer relations
The developer relations role, sometimes called the developer advocate or DevRel
role, is usually focused on external use of the API (i.e., outside the company
that created it). Like the API evangelists, DevRel staff are responsible for creating
samples, demos, training materials, and other assets to help promote the use
of the product. And like evangelists, DevRels are often the ones responsible for
listening to API consumers and helping turn their feedback into fixes or features
that the API team can deal with. However, unlike internal evangelists, DevRels
are also often tasked with “selling” the API product to a wider audience, and
as such may participate in customer on-sites, presales activities, and ongoing
product support for key customers. Additional duties can include speaking at
public events, writing blog posts or articles on how to use the product, as well

API Roles | 199

as other brand-awareness activities in order to help the team reach their stated
business goals.

While these five roles are often aligned with business goals and strategies, as you can
see from the descriptions, most of the roles still rely on some level of technical knowl‐
edge and skill in order to meet their objectives. The next set of roles we’ll review are
focused directly on the technical aspects of creating, deploying, and maintaining the
API product.

Technical Roles
The second set of roles we defined are what we call technical roles. These roles are
focused on the technical details of actually implementing the API’s design, testing and
deploying it, and maintaining it in a healthy, usable state throughout its active life.
Typically these roles are responsible for speaking in the voice of the IT department,
including advocating for safe, scalable, and secure implementations that can be prop‐
erly maintained over time. Often, the technical staff are responsible for achieving
important KPIs as well as helping the business staff reach their OKRs.

Even though we’ve divided our list of roles into two distinct groups, there are some
parallels between the business roles and the technical roles. For example, the business
role of product manager has a parallel in the lead API engineer on the technical
side. And both groups of API roles have, as their ultimate goal, the creation and
deployment of a technically stable and economically viable API product.

We’ve defined six technical roles to represent the key decision making involved in the
work of implementing, deploying, and maintaining successful APIs:

Lead API engineer
The lead API engineer is the key point of contact for all the work related to the
development, testing, monitoring, and deployment of the API product. This role
is the technical equivalent of the product manager business role. Just as the PM is
responsible for the what of the API, meaning the design and business goals, the
API lead engineer is responsible for the how of the API, meaning the technical
details of what it takes to build, deploy, and maintain the API. The lead engineer
is the one with the responsibility to coordinate the other technical members of
the team.

API architect
The API architect is responsible for the architectural design details for the API
product itself as well as making sure that the API can easily interact with required
system resources, including APIs from other teams. It is the responsibility of
the API architect to advocate for the overall software and system architecture of
the entire organization. This includes supporting the security considerations, sta‐
bility and reliability metrics, protocol and format selections, and other so-called

200 | Chapter 8: API Teams

nonfunctional elements that have been established for the company’s software
systems.

Frontend developer
The frontend API developer (FE) is responsible for making sure the API offers
a quality consumer experience. That means helping to implement the company’s
API registry, consumer portal, and any other activities related to the frontend or
consumer end of the API. Similar to the designer role on the business side, the
FE has the job of advocating for API consumers, but from the technical point of
view.

Backend developer
The backend developer (BE) is responsible for the details of implementing the
actual interface of the API, implementing data storage, connecting it to any other
services it needs to complete its work, and generally faithfully executing on the
vision of the PM and API designer’s description of what the API should do and
how it should do it. It is the responsibility of the BE to make sure the API is
reliable, stable, and consistent once it is placed into production.

Test/QA engineer
The API test/quality assurance (QA) engineer is responsible for everything
related to validating the API design and testing its functionality, safety, and
stability. Typically the test/QA role is charged with writing (or helping the FE/BE
write) the actual tests and making sure they run effectively and efficiently. Often
this testing goes beyond simple bench tests and behavior testing and includes
making sure there are tests for interoperability, scalability, security, and capacity.
Typically this involves the use of testing frameworks and tooling selected by the
test/QA community within the company.

DevOps engineer
The DevOps role is responsible for every aspect of the building and deployment
of the API. This includes monitoring the API’s performance to make sure it is in
line with the stated technical KPIs and is properly contributing to the business-
level OKRs. This usually means working the delivery pipeline tooling, authoring
build scripts (or teaching others how to do this), managing the release schedule,
archiving the build artifacts, and supporting any rollbacks of broken releases,
if needed. The DevOps role is also responsible for maintaining a dashboard
showing real-time monitoring data as well as storing and, when needed, mining
offline API logs to aid in the review, diagnosis, and repair of any problems
identified while the API is in production. Depending on the company’s produc‐
tion hosting options, DevOps staffs will need to support several environments,
including desktop, build, test, staging, and production. This may include both
on-premise and cloud systems.

API Roles | 201

In this section, we introduced the idea of thinking about the work to be done over
the life of your API as a set of roles, or scopes, of responsibility. To make things a bit
easier for our discussion, we came up with two sets of roles (business and technical)
and gave these roles names that look like typical job titles.

As we mentioned at the start of this section, the roles are just that—they identify areas
of expertise that need to be covered within your API programs. We’ll look at this
aspect of team composition next.

API Teams
In the previous section, we identified 11 roles that represent scopes of responsibility.
Teams need people to fill these roles to cover all the important aspects of managing
APIs throughout their lifecycle. However, a role is different from an actual person
on a team. You might not need every role on the team represented by a unique
person. Some people may be able to cover more than one role. For example, in
many organizations, both the API evangelist and the developer relations role can be
handled by the same person. Another example is that some small teams may rely on a
single person to fulfill both the test/QA and DevOps roles.

People Can Belong to Multiple Teams

Although we are going to describe some specific teams in this
section, it’s up to you to decide how you want to distribute people
among these teams. It’s perfectly fine to fill each API team with
full-time, dedicated members, but it’s also fine to allow people to
be members of multiple teams at the same time. Later in this chap‐
ter, we’ll share the story of Spotify’s “squads, tribes, chapters, and
guilds” model that takes a matrix approach to team membership.

Also, your team may not need to cover all the roles throughout all the API maturity
stages (see Chapter 7). For example, in the maintain phase of the API lifecycle, you
usually do not need much help from frontend and backend developers. And for some
organizations, some of the roles are not hosted directly in the team but are filled by
“floating” staff shared within the company. For example, the role of designer might be
filled by one of the business-side product design people who works in an on-demand
basis for any API team that needs design work.

Teams and API Maturity
In Chapter 7, we described how an API changes over its lifetime. It’s important
to understand how the focus of your team and your team members will change
along with it so that you can plan your teams accordingly. In each stage of the API
product lifecycle, some roles play a primary role, and some play only a secondary

202 | Chapter 8: API Teams

or supporting role. Primary roles are the ones that make the biggest impact with
their decisions. For example, in the create stage, almost everyone on the team has
important responsibilities, but the designer’s decisions about the interface design
strongly influence all of the other work.

Primary roles are also the ones responsible for the work that must be done in an API.
For example, in the publish stage, the API can’t be deployed unless someone takes on
the DevOps role and builds a deployment architecture.

As you can see, team population is greatly affected by the API’s maturity and the roles
needed at any one time. With that in mind, let’s go through the API lifecycle stages
from Chapter 7 and identify the primary and secondary roles in each, along with the
types of activities that each of these roles will be responsible for.

Stage 1: Create

Primary roles
Product manager, designer, API lead

Secondary roles
API evangelist, DevOps, API architect, backend developer

The create stage is your opportunity to come up with a foundational strategy and
the best interface design at a time when you won’t impact real users. To come up
with the best API strategy, you’ll need someone with a good understanding of the
organizational context and the API product domain, as well as the ability to set
the best course of action. That person is usually the product manager. A good API
product manager will have enough experience to identify an API goal that can help
the sponsoring organization as well as the tactical plan that will enable it.

The designer role is a natural fit for the work of designing an interface. A good
API designer will be able to make high-quality decisions about the interface model’s
design based on their experience. That means making decisions about how the model
should look and also decisions about how the design assumptions should be tested
and validated. Most importantly, a good designer will have a sense of how much
design investment is needed based on the context of the situation.

In addition to the work of designing the interface, someone will need to design,
architect, and engineer the implementation of the API. Some of that work will be
experimental and exploratory in nature. This is the implementation that will eventu‐
ally be released to the public in the subsequent publish stage. This development work
involves a team with cross-functional talent but is orchestrated by the API architect
and API lead roles.

Tables 8-1 and 8-2 identify the primary and supplementary activities in the create
stage.

API Teams | 203

Table 8-1. Primary activities in the create stage

Activity Roles
Develop the strategy Product manager

Design the interface model Designer

Engineer the implementation API architect, API lead, developer

Table 8-2. Supplementary activities in the create stage

Activity Roles
Develop prototypes API lead, backend developer

Test the implementability of the design API architect, API lead, backend developer, technical writer

Test the security of the design and implementation API architect, test/QA engineer

Test the marketability of the design API evangelist, DevRel

Test the usability of the design Designer

Plan and execute a testing strategy for the implementation API lead, test/QA engineer

Stage 2: Publish

Primary roles
Product manager, API technical writer, DevOps

Secondary roles
Frontend developer, designer, backend developer, API evangelist, DevRel

Reaching the publish stage means you’re ready to let users have access to your
product. To get this work going, you’ll need people with expertise in deployment,
documentation, and discovery activities. There are also a host of supplementary
activities that you’ll want to cover if the API is valuable and you have the bandwidth
to do it.

Getting an initial set of documentation published is an important piece of work in
this stage, so you’ll need someone who can handle the role of technical writer to do
the work of writing and publishing the docs. The technical writer is a key role in the
publish stage. A good writer will make it easier for prospective users to get started
and for existing users to work faster. That’s something that you’ll definitely want in
this stage because it will help you reach the realize stage faster.

Getting the API published means that instances of the API will need to be deployed.
That’s typically the job of the DevOps engineer role. The DevOps engineer’s responsi‐
bility in this stage includes designing the deployment process, monitoring solutions,
and deploying architecture for the API instance.

Finally, the product manager will need to trigger the publishing event. Publishing
an API will have a special meaning for you and your target audience based on the
context of your product. It could mean registering the API in an internal service

204 | Chapter 8: API Teams

catalog, sending an email to your prospective users, or something else. However it’s
done, it’s the PM’s responsibility to make sure that it happens.

Beyond these primary activities are a set supplementary activities that will improve
the quality of the API product. The documentation and other supporting assets are
going to need to live somewhere, so lots of organizations implement a developer
portal at this stage. Once the API is actively used, you’ll be able to improve the design
and implementation based on the usage data (the monitoring pillar). It’s also a good
idea to continue to drive usage by performing marketing and discovery work.

Tables 8-3 and 8-4 identify the primary and supplementary activities in the publish
stage.

Table 8-3. Primary activities in the publish stage

Activity Roles
Write and publish documentation Technical writer

Design the deployment architecture and deploy instances DevOps

Publish the API (i.e., make it officially discoverable) Product manager

Table 8-4. Supplementary activities in the publish stage

Activity Roles
Design and implement a portal Frontend developer

Market the API API evangelist, DevRel

Gather design feedback from users API evangelist, DevRel

Improve the interface design Designer

Collect usage information from deployed instances API lead, DevOps

Improve and optimize the implementation API lead, backend developer

Test the security of the implementation and deployment API architect, test/QA engineer

Stage 3: Realize

Primary roles
DevOps, product manager

Secondary roles
Designer, test/QA engineer, API architect, API lead, backend developer, frontend
developer, technical writer, DevRel, API evangelist

When the API is realized, the stakes are raised. Now, it’s important to have people
involved who can make sure that the API stays available for your high-value users.
That’s why the primary activities are the management of changes and improvement of
the deployment architecture.

API Teams | 205

Even though the API is realized, there’s still going to be a great deal of change
happening to the interface, implementation, and instances. A good product manager
should be able to manage all of that change in a way that will keep driving realized
value without negatively impacting existing users. How exactly this should be done
depends a lot on the people involved, the strategic priorities, and the culture of the
organization.

While the product manager is managing change, the DevOps engineer is focusing
on improving the resilience, observability, scalability, and performance of the deploy‐
ment architecture. A good DevOps engineer will be able to apply the right set of tools
and practices based on the situational aspects of the API. The goal is to prevent any
diminishment of quality for established, high-value users.

To continue to drive realized value, it makes sense to continue to enhance and market
your offering. That’s why a similar set of analysis, implementation, and discovery
supplementary activities have been defined for this stage as for the previous stage.
You don’t have to do these things, but without constant improvement your API may
pass quickly into the maintain stage before you have a chance to recoup a good return
on any investment you’ve made.

Tables 8-5 and 8-6 identify the primary and supplementary activities in the realize
stage.

Table 8-5. Primary activities in the realize stage

Activity Role
Improve and optimize the deployment architecture DevOps

Manage and prioritize changes Product manager

Table 8-6. Supplementary activities in the realize stage

Activity Roles
Improve the interface design Designer

Improve and optimize tests Test/QA engineer

Improve and optimize the implementation API architect, API lead, backend developer

Test the security of the implementation and deployment API architect, test/QA engineer

Improve and optimize the onboarding and learning experience Frontend developer, technical writer, DevRel

Market the API API evangelist, DevRel

206 | Chapter 8: API Teams

Stage 4: Maintain

Primary roles
DevOps, DevRel, API architect

Secondary roles
Product manager, API lead, backend developer

In the maintain stage, the goal is to keep the API running. That means the key role is
that of the DevOps engineer, who must monitor and maintain the deployed instances.
In addition to this basic maintenance work, it’s important to have an eye on what
may change in the system and how that might create new work for the API team. A
good API architect will be tuned into potentially impactful changes and will be able to
identify the kinds of changes needed in the API to accommodate them and keep the
product running.

You’ll need also to have some level of engagement and support for existing users, even
if the API is no longer being actively shopped around. The DevRel role is best placed
to provide this kind of support and can help the product to continue to deliver value
to new and existing users, even as the rate of realization stagnates.

Finally, to support this maintenance work, the product manager and technical team
will need to be ready to make any necessary changes. Although the rate of enhance‐
ments and improvements will have dropped drastically, there is still a need to make
changes in support of issues that the API architect or DevRel have identified from
their respective domains.

Tables 8-7 and 8-8 identify the primary and supplementary activities in the maintain
stage.

Table 8-7. Primary activities in the maintain stage

Activity Role
Improve and optimize the monitoring system DevOps

Support existing users DevRel

Identify system changes that will deteriorate API quality API architect

Table 8-8. Supplementary activities in the maintain stage

Activity Roles
Plan and schedule implementation changes Product manager

Make required implementation changes API lead, backend developer

Make required deployment changes DevOps, backend developer

API Teams | 207

Stage 5: Retire

Primary role
Product manager

Secondary roles
DevRel, API evangelist, API architect, DevOps, API lead

The primary work of the retirement stage is strategic, so the product manager plays
the key role. A good PM will be able to identify a deprecation strategy that works best
for the given circumstances. In the same way that they have the experience to develop
a tactical plan for a new API, they should have sufficient experience to build one for
retirement.

Enabling this strategy means doing the work of removing the deployed instance from
the deployment architecture and supporting users through the time of transition. The
DevOps engineer is responsible for deprecating the API in the deployment domain,
and the DevRel is responsible for deprecating the API in the user domain.

There also may be a need to form a technical plan to enable the product manager’s
strategic plan. For example, it might make sense to return response messages indicat‐
ing that deprecation is imminent or choose specific response headers that indicate
the retirement state of the API. This plan needs to be developed by someone with
technical expertise, so it is usually handled by the API architect or API lead.

Tables 8-9 and 8-10 identify the primary and supplementary activities in the retire
stage.

Table 8-9. Primary activities in the retire stage

Activity Role
Develop a retirement strategy Product manager

Table 8-10. Supplementary activities in the retire stage

Activity Roles
Communicate the retirement plan and help users transition DevRel, API evangelist, technical writer

Design a technical retirement strategy API architect, API lead

Update the deployment architecture and remove instances gracefully DevOps, API lead

In this section we’ve talked about how the lifecycle stage of any single API product
affects the composition of its team and the primary and secondary roles that make up
that team. We’ve learned that, as an API changes over time, so does the complexion of
the team that owns that API.

Another important aspect of API teams is scaling across teams. In most companies
with a healthy API program there is more than one API team. How do the teams

208 | Chapter 8: API Teams

2 Stanley McChrystal et al., Team of Teams (New York: Portfolio, 2015).

work together? What tactics can you use to make sure teams are not working at
cross purposes or contradicting one another? And how do you ensure consistency
in execution across a collection of teams? These kinds of considerations are the last
thing we’ll cover in this section.

Scaling Up Your Teams
Understanding that roles are the essential building blocks of teams and that team
composition requirements are affected by the maturity stage of the API product
is just the start of the challenges of governing API teams. Another big element is
dealing with many teams. Often each API has a team, but there is more than one API.
Working in a community of teams (a team of teams?) brings a whole new level of
complication.

It is a good idea to treat each API team as an independent group—that means they
can solve their own problems with minimal dependencies on other teams. But reality
is not quite the same as theory. Theoretically, teams don’t need one another. Actually,
teams can’t work well without one another! So how does that work? There is a
constant push/pull between maintaining independence and working well with others.
It is important to build more than a single team strategy. It is also important to have a
larger view of how the various parts (teams) fit together as a whole.

In his book Team of Teams, General Stanley McChrystal talks about a different way
of thinking about how large organizations succeed: “As the world grows faster and
more interdependent, we need to figure out ways to scale the fluidity of teams across
entire organizations.”2 That means understanding how to get teams to work together
without forcing them to become dependent upon one another.

One organization that has built a reputation for being able to scale up its team system
is the digital music company Spotify. Spotify’s 2012 whitepaper on the topic is an
often-quoted reference to thinking about ways to improve the effectiveness of both
individual teams and cross-team communications. Even though the paper is a bit
dated (six years is a long time in internet terms!), we find many other organizations
using similar approaches to those outlined in that Spotify paper—so much so that we
think it is still valuable to understand the key lessons from Spotify and explore how
you can apply them in your company.

Teams and Roles at Spotify
In 2012, Agile coaches Henrik Kniberg and Anders Ivarsson published the paper
“Scaling Agile @ Spotify.” Its opening line acknowledges, “Dealing with multiple
teams in a product development organization is always a challenge!”3 Kniberg and

API Teams | 209

3 Henrik Kniberg and Anders Ivarsson, “Scaling Agile @ Spotify,” October 2012, https://oreil.ly/TcVDp.

Ivarsson then go on to explain how Spotify designed its team management model to
help maximize information sharing without jeopardizing team independence. This
model (or some variation of it) is now something we see at many companies.

The Spotify team model has four key elements or groupings:

• Squad•
• Tribe•
• Chapter•
• Guild•

Squads are small, self-contained teams of five to seven members, similar to a Scrum
team. They are the basic unit of work at Spotify. A squad has all the skills needed
to do its assigned work, from design to deployment, just like the teams we’ve been
talking about here. At Spotify, each squad has a mission or job within a larger
product group. For example, for the Android music player, one squad might “own”
the playback experience, another might own the search experience, and so forth. The
squads get the work done.

In Spotify’s model, the tribe represents a larger product scope, such as the aforemen‐
tioned Android music player, the website, or the backend storage service used by all
other client products. In this way tribes are collections of squads. At Spotify, they try
to keep the total number of people in a tribe to around 100. This is considered large
enough that there is enough diversity in the group to get things done, but not so large
that it gets too hard to maintain healthy relationships.

Dunbar’s Numbers

The maximum squad size (7) and tribe size (100) are based on
the work of British socioanthropologist Robin Dunbar. We’ll cover
Dunbar in more detail in “Leveraging Dunbar’s Numbers” on page
216.

With squads and tribes, Spotify is able to build an effective strategy for creating and
maintaining its products and services. However, that’s only one-half of the challenge.
It is also important to enable some level of efficiency in this community. That means
some kind of inter-squad and inter-team communication to share knowledge and
ensure consistency across teams and products—and that’s where Spotify’s chapters
and guilds come into play.

210 | Chapter 8: API Teams

https://oreil.ly/TcVDp

Since each team is self-contained, each team is likely to have a designer or backend
developer, product manager, etc. Each person fulfilling these roles has their own
challenges and learning experiences. However, often these experiences are similar to
those of others in the same role on other teams. For example, what it takes to be
a good product manager for a squad in the infrastructure tribe is a set of skills all
product managers share, even if their exact approaches are not the same. It therefore
makes sense for product managers in the same tribe to get together once in a while
and share their experiences and knowledge with one another. In the Spotify model,
this is what a chapter is about—people with the same roles within a single tribe (e.g.,
the same product group) getting together and sharing knowledge.

Guilds, on the other hand, are a way to share knowledge across multiple product
groups. For example, getting some of the product managers from all areas of the
company together (from customer-facing products to internal-facing systems) offers
an additional level of knowledge sharing. In your company, a guild might represent a
collection of team leaders from across the globe who get together once a year to share
what they are working on in their various divisions.

The model of squads, tribes, chapters, and guilds provides a mix of self-contained
teams without creating isolated groups of people who don’t talk to one another. This
approach to scaling teams helps Spotify balance independence with cooperation.

Factors for Your Scaling Approach
After Spotify shared their story, many large organizations scrambled to adopt the
Spotify model with the hope of emulating the company’s agility and product culture.
The companies that seemed to succeed in gaining agility were the ones that adapted
and evolved the model to their own context. In practice, simply copying the Spotify
model provides little value, except as a safe, proven starting point. A testament to
this is that “Spotify themselves have continued to improve and evolve” their ways of
working, beyond the point of time that is described in their paper.

The right way to scale your API teams will depend on your organization’s context and
constraints. What works at Spotify may not work at Google. What works in a retail
chain may not work in a government space agency. Context matters.

We’ve identified three factors that have the biggest impact on the scaling model for
your teams: organizational value, prioritized goals, and distribution of talent.

Organizational value
Different organizations do different things—and this has a big impact on how their
teams are scaled. While the technology that drives an API is likely to be similar, the
value that comes from the work is often vastly different. We recommend that you

API Teams | 211

https://oreil.ly/dQJUt

identify the core types of APIs that provide the most value from extra investment.
This will help you understand how your scaling model should work.

On the surface, most private companies have broadly similar goals: increased reve‐
nue, reduced costs, and employee happiness. But, beneath this general approach,
most companies have more opinionated strategies. It’s important that you understand
what your organization prioritizes the most—and what it is willing to de-prioritize to
get there.

For example, a technology company may focus on creating a differentiating set of
APIs that they offer to other developers to purchase and use. This may require a
big investment in infrastructure and engineering to compete with other technology
solutions. Conversely, a retailer might focus on the differentiating value that comes
from changing their customer experience as quickly and often as possible—while
using commoditized technology platforms.

Understanding the type of work that benefits your organization the most should
guide your decision making around the types of teams (and APIs) you’ll need to put
together. This includes shaping the level of investment in roles such as developer
relations, product management, and developer for teams within your organization.

Organizational scale
APIs and their teams can grow pretty quickly once they get started. So, it’s important
that you consider how the decisions that you make in the API world will integrate
within the wider company and its people. In particular, you need to pay attention
to your organization’s size, scale, and complexity. Is it a large, globally distributed
organization? Is it split into multiple divisions? Does it have clear, authoritative
decision makers?

If you want your API teams to move fast in a big company, you’ll need to figure out
how they can stay connected with all of the stakeholders, overseers, and authorities
that they’ll need to interact with. Alternatively, if you’re managing APIs in a small,
fast-moving startup, you’ll need to devise a scaling strategy that doesn’t create a
bottleneck for the organization.

Distribution of expertise
The biggest danger that comes from “copying and pasting” a team scaling approach
is that talent often varies wildly from company to company. This is largely due
to differences in organizational value and organizational scale. A mid-tier bank is
unlikely to have the same quantity of API and technology experts as a large software
company. That’s because that kind of people investment wouldn’t make sense for their
business model or their size.

212 | Chapter 8: API Teams

4 We’ll talk more about this team in “The Center for Enablement” on page 254.

But this has a big impact on how you scale your API teams. If you have fewer people
who can make important decisions, you’ll need to centralize them or find a way to
distribute their expertise.

The Spotify approach to scaling teams represents a decentralized point of view.
Scaling is built into the working model itself. Another way we see companies scaling
their teams is by employing a central team designed to collect information from
all the other teams and share it through whitepapers, standards documents, and
best-practice training.4

These aren’t the only factors you’ll need to consider when you’re scaling your teams,
but we think they are the biggest. Considering your organization in terms of its value,
scale, and expertise will help you adapt a scaling model to your context. And that
leads us to the last section of this chapter, which is about company culture. The way
team members work together and the way teams collaborate with one another is
greatly influenced by the culture and values that already exist within an organization.
For that reason, it is important to invest time in learning about and crafting your own
company’s culture.

Culture and Teams
Company culture can act as an implicit form of governance for your organization.
In Chapter 2, we introduced the idea of centralized and decentralized decisions. To
review, when decisions are centralized, you need to use authority to make sure people
implement them properly. However, when you decentralize a decision, using author‐
ity as a means of compliance and validation does not work. That’s where culture
comes in. Culture is like an invisible hand that shapes decision making within teams
and throughout the company, without the need for extensive authority mechanisms
such as processes, standards, or common tooling. Essentially, with the “right” culture
and people, you can safely decentralize more of your decisions while still maintaining
a consistency of outcomes. That is why investing in crafting company culture can pay
off in big ways. A consistent culture can ensure consistent outcomes, even when you
are working to distribute decision making and scale up responsibility.

The process of making the right decisions involves more than just knowing what
needs to be changed and how to go about distributing the responsibility for making
those changes. Company culture is another important element in all of this. This is an
area some people in the IT space are not comfortable talking about, but the culture of
the organization is a thing that deserves attention.

Culture and Teams | 213

5 Melvin E. Conway, “How Do Committees Invent?” Datamation, April 1968, https://oreil.ly/PXGIt.

The concept of company culture made its first appearance in print in the book The
Changing Culture of a Factory (Psychology Press). Dr. Elliott Jaques defined it as
follows:

The culture of the factory is its customary and traditional way of thinking and doing of
things, which is shared to a greater or lesser degree by all its members, and which new
members must learn.

The acknowledgment that an organization even has a culture leads to the possibility
of actually affecting the existing culture, of steering it in some direction. And that
leads to notions of how to recognize what kind of culture is operating within your
company and what it would take to modify it.

The 1970s and ’80s gave way to a wave of books and theories on how to identify,
categorize, and manage corporate culture. One important book from that era is
Gareth Morgan’s Images of Organization (Sage). Morgan put forward the idea that
corporate culture can be characterized using simple metaphors such as machines,
organisms, brains, and so forth. These metaphors can then help you think about how
your company culture operates and how you can identify ways in which you can
change the organization’s culture.

We won’t try to review the last 70 years of scholarship on corporate culture here,
but we note that many companies we work with are actively working to understand
their company culture and how they can improve and direct corporate culture in
meaningful ways. To that end, we will share three topics that come up often when
we visit with companies working to create and manage APIs and services in an IT
environment. They are:

• Mel Conway’s observations on how group interactions affect output•
• Robin Dunbar’s theories on how team size affects communication•
• Christopher Alexander’s observations about how variety affects productivity•

We’ll also touch on the role of experimentation in company culture and how it affects
teams.

Recognizing Conway’s Law
In the last several years, Mel Conway’s 1967 paper “How Do Committees Invent?” has
become an almost required topic in presentations about microservices as well as APIs
in general. This paper is the source of what Fred Brooks dubbed “Conway’s law” in his
1975 book Mythical Man-Month (Addison-Wesley). Conway’s law states:5

214 | Chapter 8: API Teams

https://oreil.ly/PXGIt

6 Paul Logan, “Conway’s Law: How to Dissolve Communication Barriers in Your API Development Organiza‐
tion,” Medium, August 24, 2018, https://oreil.ly/PassA.

Organizations which design systems…are constrained to produce designs which are
copies of the communication structures of these organizations.

This “law” is an observation about how the way groups are organized affects the
output they produce. An often-cited supporting observation comes from Eric S.
Raymond, author of The Cathedral & the Bazaar (O’Reilly), who states, “If you have
four groups working on a compiler, you’ll get a 4-pass compiler.”6 Boiled down to its
essence, Conway’s law tells us that, when it comes to producing working software, the
organizational boundaries you have will determine the applications you get. This is
both good and bad news.

As we mentioned at the start of this chapter, the software we write is “dumb”—it
does only (and precisely) what humans tell it to do. Conway reminds us that the
way we arrange people into groups—where we place the boundaries between teams—
determines the results. For this reason some IT consultants talk about implementing
a “reverse Conway.” They encourage setting up your teams and boundaries first in
order to get the results you want. This can work to some extent but has its own
problems. In the same 1967 paper, Conway warns us about getting too aggressive
with our organizational scalpels:

[Conway’s law] creates problems because the need to communicate at any time
depends on the system in effect at that time. Because the design which occurs first
is almost never the best possible, the prevailing system may need to change. Therefore,
flexibility of organization is important to effective design.

Essentially, you can’t “out-Conway” Conway’s law! There is a trade-off here. It’s
important to point out that the notion of organizational structure is key to influenc‐
ing company culture. Companies that seem to do well in managing culture have at
least two things in common: they work to make boundaries both clear and flexible
over time.

It is fine to establish clear boundaries between teams early in the project. This
helps sort out responsibilities within teams and delineate interfaces between teams.
However, it is also important to keep Conway’s warning in mind: “The design which
occurs first is almost never the best possible.” Therefore, as you move forward with
your API and component projects, it is important to adjust boundaries based on
real-world discoveries. This is a normal part of the work.

Culture and Teams | 215

https://oreil.ly/PassA
https://oreil.ly/AWytn

7 Robin Dunbar, “Friends to Count On,” Guardian, April 25, 2011, https://oreil.ly/lYNzp.

Model-Driven Design
A useful way to align your team model and your APIs is to embrace a model-driven
design approach as described by Eric Evans in his book Domain-Driven Design.
That means you create and maintain a set of models that are expressed as APIs in
your architecture and as teams in your organizational design. When you update the
model, you update your teams and architecture—and vice versa. This enables you to
continually improve your teams and system design over time.

A good example of this type of approach is Matthew Skelton and Manuel Pais’s
Team Topologies. Their model helps to design teams that are bounded to APIs and
software components. You can use Team Topologies along with domain-driven design
and software architecture models to evolve a design that incorporates Conway’s law,
instead of fighting it.

Just like so many other aspects of the API management space, managing the culture is
continuous. Conway gives us hints on what we can do to effect change (e.g., focus on
the boundaries between teams) and warns us that our first attempts are rarely the best
possible option (“the prevailing system may need to change”). That leads to questions
about how teams and team size can affect the corporate culture. And this leads us to
the work of Robin Dunbar.

Leveraging Dunbar’s Numbers
Conway tells us about how teams and boundaries affect the output of any endeavor.
So, a logical question is what makes up a team and, more directly, what is an optimal
team size? Many of the customers we work with rely on the 1990s research of Dr.
Robin Dunbar for the answer. In popular social science writings, his theories on how
the brain affects group size are best known through what’s called Dunbar’s number,
which posits that we can successfully keep track of and maintain useful relationships
with, at maximum, about 150 people. Any group larger than that taxes most brains’
abilities to lead and manage the group. Essentially, once the group grows past this
number, keeping the members coordinated, on-task, and working together gets much
tougher.

There are many confirmations of the power of 150 when it comes to communicating
with groups. William “Bill” Gore, founder and chairman of the W. L. Gore company
from 1970 to 1986, established a rule that once a single factory contained more than
150 people, the group should be split up and a new building built (sometimes right
next to the existing one).7 Netflix’s Patty McCord calls this the “stand-on-a-chair”

216 | Chapter 8: API Teams

https://oreil.ly/lYNzp
https://oreil.ly/wmJZY
https://oreil.ly/WE3aO

8 Kevin J. Delaney, “Something Weird Happens to Companies when They Hit 150 People,” Quartz, November
29, 2016, https://oreil.ly/Djiz9.

number: once you get past 150, a team leader can’t easily just stand on a chair to
address the entire group.8

While Dunbar’s 150 is an important number, our experience tells us the research
behind that number is more valuable. Dunbar’s theory is that we need to spend
time and energy to successfully communicate in groups and that group size affects
the amount of effort needed to maintain successful connections. In fact, his early
research determined that teams of 150 “would require as much as 42% of the total
time budget to be devoted to social grooming.” In other words, as teams grow larger,
more time needs to be devoted (by everyone) to maintaining group cohesion. In the
modern office setting, “social grooming” takes the form of meetings, emails, phone
calls, instant messaging, daily stand-ups, shift meetings, and so forth. Large teams are
costly when it comes to coordination.

The good news is, Dunbar has more than just one number. He actually identifies
a series of numbers starting with 5, 15, 50, 150, and on up into the 1,000s. At the
lower end of the scale (e.g., 5 and 15), the coordination cost—social grooming—is
very small. In a team of five, everyone knows one another well, everyone knows their
job, and—most likely—everyone knows who, if anyone, is not pulling their weight
in the group. The social grooming time is quite minimal. Even at group sizes up to
15, the communication cost is relatively low. You may notice that the team sizes we
recommended earlier in this book hover around the five-person mark (give or take
two or three).

This small (five- to seven-person) team is what we call a Dunbar Level One team. It is
the size most common for early startups. Dunbar Level Two teams of up to 15 people
are often found in young companies that have gotten past their first angel funding
rounds and are actively building the business. Many of the IT organizations we talk
to work to keep their team sizes at Dunbar Level One and Two in order to minimize
communication costs and maximize the effectiveness of the teams in general. Spotify,
for example, aims for “squads” of about five to seven people each (see “Teams and
Roles at Spotify” on page 209).

Dunbar shows us that team size matters and that communications within smaller
teams can be more efficient. Conway reminds us that the interconnection between
teams determines the ultimate output. The challenge, then, in crafting a successful
API management culture is shepherding lots of teams inside a large organization.
Just as working with a landscape of APIs presents different challenges to working
with a single or a small set of APIs, there are unique aspects to confront when
you are working with a landscape of teams. Some of the work of physical architect
Christopher Alexander can help with this “team of teams” challenge.

Culture and Teams | 217

https://oreil.ly/Djiz9

Enabling Alexander’s Cultural Mosaic
Leading and/or supporting a single team is not an easy task. Getting a group up and
running, as well as helping them find their footing and style and learn to be positive
contributors to the company mission, is hard (but rewarding) work. Those who do
this kind of work often also know that every team is unique. Each team has to travel
through the same general landscape in its own way. The variations from team to team
are key to building diversity and strength into your company. Even though it might
seem that you’d want all teams to look and act the same way, that is not a sign of a
healthy ecosystem.

This “landscape of teams” presents the same kinds of challenges and opportunities
as a landscape of APIs (see Chapter 9), and many of the same landscape aspects we
outline in that chapter apply to the landscape of teams too. As you grow your API
enterprise, you’ll be dealing with more variety, volume, volatility, and other elements
of a healthy ecosystem. In fact, human systems (e.g., teams) typically become better
as variety is introduced. Most of us have experienced cases where adding a new
“outsider” to our teams has resulted in a stronger team. There are all sorts of aphor‐
isms along these lines, including “What doesn’t kill you makes you stronger”—the
notion that unexpected challenges can help us get better. Nassim Taleb’s 2012 book
Antifragile (Random House) is based on this very premise.

Another point of view on the power of “teams of teams” can be found in the writings
of the physical architect and thinker Christopher Alexander. His 1977 book A Pattern
Language (Oxford University Press)—the book credited with launching the patterns
movement in software—includes the concept of a “mosaic of subcultures” as a way to
organize communities in a healthy, sustainable way.

Alexander’s Influence on Software
Although Christopher Alexander is a physical architect, his writing and thinking
have greatly influenced software architecture, too. His book A Pattern Language
introduced the notion of thinking in patterns when constructing large systems and
is cited often as the catalyst for the software patterns movement. The patterns book
is a heavy read, and only one of our team can claim to have gotten through the
entire work. A smaller and more accessible book by Alexander is The Timeless Way
of Building (Oxford University Press). We often recommend Alexander’s writing to
software architects dealing with very large ecosystems.

Alexander’s “mosaic of subcultures” pattern describes three essential ways to deal
with large collections of people and the smaller groups that emerge within the
whole. Alexander’s writing is applied to city-sized collections, but in our experience

218 | Chapter 8: API Teams

https://oreil.ly/SQ7lt

9 Christopher Alexander et al., “Mosaic of Subcultures,” in A Pattern Language (Oxford: Oxford University
Press, 1977), 42–50.

it has important parallels for IT leadership dealing with global and enterprise-level
organizations.

Alexander outlines three approaches to how subgroups appear within large commun‐
ities (his point of view being the city itself):9

Heterogenous
People are mixed together irrespective of their lifestyle or culture, reducing all
lifestyles to a common denominator that turns out to be homogeneous and dull.

Ghetto
People cluster along their most basic and banal forms of differentiation, race
and/or economic status, creating isolated groups that are still homogeneous
within each ghetto.

Mosaic
A number of small areas with clear boundaries of separation form, between
which people can freely move to experience the lifestyles and cultures that inter‐
est and inspire them.

It may take a bit of effort to get past Alexander’s city-planning domain, but our expe‐
rience is that these notions of widespread homogeneity (“We all use the same tools
and processes throughout the company”) versus ghettos (“We’re all data engineers
here; the QA people are in the other building”) versus mosaics (“I joined this group
because I wanted to work on our mobile app”) are prevalent in IT organizations,
too. Every company has its own shared cultural elements and subcultures that grow
up within that organization. Being aware of these subelements of culture is the first
step toward dealing with them and, in most cases, leveraging them in the mission of
growing a healthy and resilient API management culture.

We’ve made the case here that it is not enough to just understand the dynamics of
communication within a single team (e.g., Dunbar). We’ve also highlighted the power
of interteam connections, as described by Mel Conway. Finally, we introduced the
notion of a “landscape of teams” and the importance of paying close attention to the
way in which teams are formed (e.g., Alexander) and the ecosystem in which they
operate. But what is the payoff here? Why spend time on these elements of culture,
especially with regard to managing APIs?

It is your company culture that determines the level of innovation, experimentation,
and creativity that teams and individuals can exercise. Your culture is the key to
success when growing your company.

We’ll touch on this last aspect of culture next.

Culture and Teams | 219

Supporting Experimentation
One important reason for spending time grooming a company’s culture is to help
foster innovation and transformation of the organization’s day-to-day operations. A
big reason for this is expressed in a quote attributed to business management guru
Peter Drucker: “Culture eats strategy for breakfast.”

Essentially, no matter your strategy, it is the prevailing culture that drives the com‐
pany. Therefore, if you want to change the direction of your team, your product
group, or even the entire organization, it is culture on which you need to focus.
This is the message that Conway teaches us, as well: it is the organization and its
boundaries that establish the output of the group.

A key to fostering innovation—the creation of new products, methods, and ideas—is
the ability to experiment safely. Experimenting doesn’t mean launching some half-
thought-through idea into production. Like so many other things we’ve talked about
in this book, experimenting starts small (e.g., within a team) and goes through
repeated rounds of iteration to learn from, winnow down, and identify related ideas
in order to find something valuable, useful, and desirable—something that might be
worth spending precious time and resources on in order to bring to life.

In his 2006 book, Direct from Dell (HarperCollins), businessman and philanthropist
Michael Dell puts it like this: “To encourage people to innovate more, you have to
make it safe for them to fail.” The key point here is that failure should be not just
easy or common, but safe. Teams should be placed in an atmosphere that allows them
ample room to experiment but constrains them from making costly mistakes that
disrupt important company operations. One way to create this kind of ecosystem is
to use the decision elements we outlined earlier in this book (see “The Elements of a
Decision” on page 28). When teams know their boundaries, they have a clearer sense
of what kinds of experiments they can use in order to learn how to improve.

Another big part of supporting experimentation is understanding that lots of teams
running experiments is better than a few teams (or just one team). In “The Center for
Enablement” on page 254, we discuss the power of having a dedicated team, one that
can help establish guidance and guardrails for the enterprise. This is not, however,
the place where all the experiments happen. Just as in other aspects of IT, heavy
centralization and concentration can lead to increased vulnerability and volatility.
On the other hand, distributing activities across a wide range of teams and product
groups improves the chances of successfully generating valuable ideas and reduces the
likelihood of those experiments causing the company real damage along the way.

This last point might be counterintuitive for some IT leaders. It might follow that
more experiments adds to volatility, but this is true only if all the experiments are
happening in a single place—for example, in a Center for Enablement (C4E) or some
other experimentation hub. This concentration of risk is discussed by Nassim Taleb in

220 | Chapter 8: API Teams

his book Skin in the Game (Random House). Author of Black Swan, Antifragile, and
other best-selling books, Taleb reminds his readers, “The probabilities of success
from the collection of people does not apply to [one person].” Put directly, an
ensemble of 100 teams making experiments with new APIs is not the same as one
team making 100 experiments in a row. You can use your knowledge of the decision
elements to reduce risk while you increase experimentation.

And increasing experimentation means more attempts at innovation, which leads to
a continuous API management model (see “The API Product Lifecycle” on page 167)
that can more easily be sustained over time.

To make this all work at a level that is both sustainable and economical (but not
necessarily efficient), you need a diverse community of teams working on projects
that drive their passions. And that is where Alexander’s mosaic comes into play.

Summary
We’ve covered quite a bit in this chapter. First, we defined a set of roles that capture
the decision-making scope and responsibilities needed to design, build, and maintain
an API. We also talked about how these roles can be used to put together a physical
team of people to do the actual work on the API. And we saw that one person might
fulfill multiple roles in the same team, or across several teams.

We also reviewed how the various API lifecycle stages can affect the makeup and
need for different roles in an API product team. It turns out teams are dynamic,
and the roles reflect the number of people involved and the maturity of the API in
question. In addition, we explored the way Spotify has designed a team model that
takes into account the way teams interact with one another at various levels within
the company. We also pointed out that you can take a centralized or decentralized
approach to ensuring efficient knowledge sharing and collaboration across teams
within the company.

Finally, we spent some time exploring the power of company culture when it comes
to enabling teams. Factors such as team size can affect the quality of communications
and the accuracy of the resulting work—and failing to enable cross-team commu‐
nication can result in “technical ghettos” within your organization that can stifle
innovation and creativity.

This last point about the power of culture and enabling cross-team communication
leads us to an important milestone in the book. Up until this point, we’ve been
focusing on the management of a single API and all the things that go into making
sure it meets customers’ needs: understanding the typical skills needed to create and
maintain an API, how to ensure healthy change management throughout its lifecycle,
and the kinds of roles and teams you need to make it all work.

Summary | 221

10 McChrystal et al., Team of Teams.

However, as we’ve mentioned in this chapter, there is another aspect to all of this—
cross-team and cross-product work. In all companies we visit, there is more than a
single API, more than a single team, and more than a single way of working together.
We refer to this world of multiple APIs and multiple teams as your company’s “API
landscape.” And managing a landscape is quite different from managing a single plant
or a single API.

When your scope of responsibility grows beyond a single API or product, you need
to change the way you look at the challenges and the way you come up with solutions
to those challenges. To quote Stanley McChrystal (again):10

The temptation to lead as a chess master, controlling each move of the organization,
must give way to an approach as a gardener, enabling rather than directing. A garden‐
ing approach to leadership is anything but passive. The leader acts as an “Eyes-On,
Hands-Off ” enabler who creates and maintains an ecosystem in which the organiza‐
tion operates.

Learning what it takes to enable the gardening of your company’s API landscape is
what we’ll cover in the next several chapters.

222 | Chapter 8: API Teams

CHAPTER 9

API Landscapes

The theory of evolution by cumulative natural selection is the only theory we know of that is
in principle capable of explaining the existence of organized complexity.

—Richard Dawkins

As the number of APIs grows, it becomes important to manage this evolving set of
APIs in a way that maximizes the utility and value of the overall set of an organization’s
APIs. This is an important balancing act to keep in mind, because what may be the
best (or a sufficiently good) way to expose an individual service through an API may
not be as useful when looking at it through the lens of how easy it is to use that
service as part of the overall landscape.

API Landscape Definition
An API landscape is the complete set of APIs published by an organization (see
Figure 9-1). The APIs in an API landscape can be in different maturity stages
(create/publish/realize/maintain/retire) and can be intended for different audiences
(private/partner/public). The APIs may also differ in other aspects, such as style or
implementation method.

Other terms you might see being used when people talk about API landscapes are API
portfolio, API catalog, or API surface area.

The goal of an API landscape is to provide an environment that helps improve the
effectiveness of designing, implementing, operating, and consuming APIs. The API
landscape should help the organization to meet business goals such as faster product
cycles, easier ways to test and change products, and providing an environment where
business ideas and initiatives get reflected in APIs as quickly as possible.

223

Figure 9-1. The landscape of API products

Modern API landscapes are constantly growing, in terms of API count and the
numbers of APIs that are used by new services. With this increasing number of
dependencies, it is clear that for the developer of a new service, it is useful to not have
to understand and use various completely different API designs. These differences
can be fundamental—for example, whether the APIs are using the resource style or
an event-based style (see Chapter 6)—but even when the style is coherent, there may
be technical differences such as APIs that use JSON representations versus those that
use XML representations.

It also would be useful from the API consumer’s point of view if vocabularies were
aligned. For example, when using multiple APIs that expose customer data in some
shape or form, it makes it easier for a consumer if all these APIs share the same
fundamental customer model (even if it may be represented slightly differently, it
would be useful to have some shared conceptual model across services).

This observation of the usefulness of standardization seems to clearly point us in the
direction that more standardization is better. That is true to some extent, but on the
other hand, it is well known that standardization takes time and effort, typically does
not deliver “the one true and best model” (it simply produces a model everybody can
sort of live with), and thus fundamentally has to be looked at as an investment that
produces gains and risks.

224 | Chapter 9: API Landscapes

For example, it probably would not be a good decision for each API to invent its
own representation format, meaning that it is better to use existing ones such as
JSON or XML. In this case, it seems that what’s gained by reusing existing standards
outweighs the possible benefits of customized representations. On the other hand,
it could potentially be an expensive process to standardize on certain entities that
appear across various services, such as the customer model mentioned earlier; in that
case it may make sense to avoid the overhead of trying to define the one true model
of the customer and simply settle for domain models.

Generally speaking, what we ideally want is for each service to not reinvent the wheel
when it is not necessary and instead to reuse those design elements that reduce the
effort of creating the design, the effort of understanding the design, and the effort of
implementing the design. If we can hit or at least approach that ideal rate of reuse, we
allow service creators to focus on those aspects of their designs they need to focus on,
without being distracted by solving problems for which solutions already exist.

What we see is that an increasing number of organizations are doing exactly this.
The most important aspect of getting this right is to understand and make sure that
the guidelines informing service designers are continuously evolving themselves: new
practices get evaluated and established, established practices get deprecated, and the
main force behind these changes is the always-evolving nature of practices in an
organization.

Because of this inherent dynamic, it is essential to see the API landscape as a fluid
and continuously changing environment. For this to work over time, architecture
needs to follow the same continuous evolution path. This landscape then becomes
similar to a really large-scale system like the web, which on the one hand is always
up and running but on the other hand continuously changes, with new standards and
technologies entering the picture all the time.

API Archaeology
While we do see a fair amount of organizations that are just getting started with their
API programs, it is important to keep in mind that in any organization with some IT
history, it is almost impossible that there aren’t already APIs in place that have been in
use for a long time.

Looking at its definition, an API is any kind of interface that allows two program‐
matic components to interact. When we restrict the definition to today’s focus on
“network/web APIs,” then it is any kind of interface that allows two programmatic
components to interact across a network.

API Archaeology | 225

A Definition of API Archaeology
Archaeology is the practice of unearthing artifacts and understanding them in the
context of their origins in time and location. That exact concept can be applied to
APIs as well. API archaeology thus is the practice of finding integrations, understand‐
ing why and how they were created, and documenting them as a way to better under‐
stand the history and structure of complex IT systems. Practicing API archaeology in
organizations can be extremely valuable in terms of finding out about existing ways in
which IT components interact.

Another term people are sometimes using is that of an API inventory. But in that
case, the coverage is often limited to listing existing APIs, instead of also looking at
non-API ways of how to interconnect components.

In many organizations, these interfaces may not have been called “APIs,” and they
may not have been designed for reuse (remember the story about Jeff Bezos’s famous
“API mandate” that we told in “The Bezos Mandate” on page 52?). But in most
cases, these interfaces are there, even though they have been created and used for
one-to-one integrations (thereby undermining one of the main value propositions
of APIs, which is to be reusable). These interfaces are first indications of a need
to interconnect components, and we’re therefore calling them proto-APIs, using the
Greek word protos (meaning “first”) as a prefix, which, for example, is used in the
word prototype.

Finding and understanding these proto-APIs can be a useful activity because it shows
where integration needs appeared (even if they were addressed in non-API ways).
Not all of these existing proto-APIs may be worth replacing with actual APIs, but
by simply understanding the integration history, one can already gain some insight
into how integration needs were observed and met and where it therefore may not be
unlikely that additional integration needs will materialize.

Proto-APIs
The need for components to interact exists in all complex systems that are made
up of individual components. APIs are one specific way of doing it, but there are
many other ways. From the API perspective, any mechanism that is used to allow
components to interact, and that is not an API, can be considered a proto-API. In an
ideal landscape, all component interactions happen through APIs, with no exception.
With this ideal image in mind, any non-API interaction becomes a candidate for
modernization, to be replaced by an API. This is the reason why any non-API
interaction mechanism between components can be considered a proto-API.

226 | Chapter 9: API Landscapes

1 For an in-depth treatment of the microservice architectural style, see Irakli Nadareishvili, Ronnie Mitra, Matt
McLarty, and Mike Amundsen’s book Microservice Architecture: Aligning Principles, Practices, and Culture
(O’Reilly).

Some organizations, typically those with sizable legacy systems, have dedicated API
librarians, who are people in the organization who own the history of the legacy
architecture, know where services and their APIs are, and know how they work and
how to access them. In short, API librarians practice API archaeology and share the
results because the organization understands that there is value in doing so.

In summary, practicing API archaeology can help you to better understand the
IT landscape, even if there are mostly proto-APIs in it at present. It provides a
starting point for understanding the integration needs of the past and also provides a
foundation to better understand which API investments may be the best candidates
to disentangle a potentially problematic network of many custom integrations. With
practice, over time it becomes easier to replace the pre-API integrations with more
modern API-based models.

API Management at Scale
API management at scale is a balancing act between imposing some sort of
landscape-level design rules and maximizing the freedom of individual API-level
designs. It is the classic complex-system struggle between centralized integration for
coherence and optimization potential and decentralization for agility and evolvability.

Centralized integration is what brought us the typical enterprise IT architectures
of the past. The main driver was to standardize on the delivery of capabilities so
that they could be provided in an optimized and cost-effective way. High levels of
integration do facilitate more potential for optimization, but they also impact the
changeability and evolvability of the resulting system.

Decentralization is the opposite approach, with the web being the most widely
deployed example available. The main driver is to standardize on the accessibility
of capabilities so that capabilities can be delivered in a large and evolving variety of
ways, but they remain accessible because access is based on a shared set of agreements
about how capability interaction works. The main goal of decentralization is to
improve loose coupling, meaning to make it easier to change individual parts of the
overall landscape without needing to change any other parts.

The promise and challenges of API landscape management are to take this issue
into account and to avoid the trap of SOAP. SOAP said that the only thing that
matters is the accessibility of services. That was an important first step, but it failed
to address the aspect of loosely coupling capabilities. APIs and, with a specific focus
on implementation and deployment techniques, microservices1 allow us to reconsider

API Management at Scale | 227

https://oreil.ly/2DDqCDi
https://oreil.ly/GhN2X

what matters in large-scale service ecosystems and how to create landscapes that
avoid the SOAP trap.

Decentralization and Delivery
If we can learn anything from the not-quite-realized promises of the days of SOAP-
based service-oriented architecture (SOA), it is that carefully managing delivery is
a key aspect of realizing the prospects of service orientation. SOAP addressed the
promise of making capabilities accessible, but it failed to address the equally impor‐
tant issue of how capability delivery is managed. This meant that while SOAP did
provide some value (previously inaccessible capabilities were exposed as services), it
did not address the need for increased agility and evolvability of the overall landscape.

The Platform Principle
Many people talk about “platforms” when discussing both APIs and general business
goals. However, they may be referring to rather different things. It is important to
keep in mind that what may be a good idea to design as a platform on the business
level is not always a good indication of how to build it on the technical level.

On the business level, a platform provides a foundation that brings parties together so
that they can exchange value, and it really doesn’t go any deeper than this relatively
abstract way of framing the principle. Often, the attractiveness of the platform is
influenced by two major factors:

What is the reach of the platform?
That is, how many users can I reach when participating on that platform? This is
usually determined by the number of people using or subscribing to the platform.
Often this is the most important metric, either by sheer quantity or through
qualitative factors that identify desirable users that can be reached through the
platform.

What are the capabilities of the platform?
If I am building something on top of the platform, how does it support and/or
constrain me in generating value? Also, how easily can I change the platform to
add new capabilities, ideally without disrupting existing platform users?

While these business metrics are essential, there is a factor that is often overlooked
when it comes to platforms: platforms always force people using them to adhere to
specific constraints, but they can do it in strikingly different ways.

Web applications can be used by anyone and anything that supports basic web stand‐
ards. In the simplest case, that may be a modern browser with scripting support.

228 | Chapter 9: API Landscapes

Anybody can build web applications and make them available, and anybody can use
them; there is no central entity involved that controls making the web platform work.

Native app store applications can be similar in look and feel to web applications but
are provided and used in different ways. They often can only be downloaded from
centralized app stores, meaning that the store owner has the exclusive rights to decide
what can be installed by users. They also can be used only on specific devices. App
store applications are specifically built for the device, meaning that the investment
in building one is constrained exclusively to that platform. For the application to
be used on any other platform (including the web), it needs to be re-created in
a different development environment, and even with a different programming lan‐
guage, meaning that the client side of the application needs to be rebuilt almost from
scratch.

Following this pattern for API landscapes and the idea of “providing an API platform
for applications,” the same thinking can be applied.

Sometimes, an “API platform” is perceived to be a concrete environment in which
APIs are made available. Quickly, this can start looking quite a bit like the traditional
enterprise service bus (ESB), where the “ESB platform” is supposed to provide the
infrastructure, and the APIs made available through it can use this infrastructure.

In other cases, an “API platform” is perceived to be a shared set of principles that
services use and provide, and becoming part of the platform has nothing to do with
where or how the individual services are made available. As long as they follow the
same principles, protocols, and patterns, they are providing their API on the platform
and thus become part of the API landscape.

The second type of “platform” is a more abstract but also a more powerful one. By
decoupling the “what” from the “how” of capabilities, it makes it easier for people
to contribute to the platform. It also allows more avenues of innovation, enabling
applications to experiment with implementation practices without compromising
their ability to contribute to the API landscape.

Once again, we can look to the web for an example. By focusing on APIs only,
the web allows many different things to change over time. For example, the idea
of a content delivery network (CDN) is not something that is built into the web
itself. Instead, the sophistication of web content and the flexibility of a web browser
to render a web page based on many resources retrieved from potentially different
sources made CDNs possible. One could argue that the potential for a CDN was
already present in the principles and protocols of the very first web pages but that the
pattern of the CDN emerged only when it became necessary for them to exist.

This is the exact quality of adapting to new challenges that we want in our API land‐
scapes as well. We are architecting the landscape to be based on open and extensible
principles and protocols, but we are able and willing to change things when the need

API Management at Scale | 229

2 The initial proposal for the World Wide Web (WWW) project was submitted by Tim Berners-Lee in 1989.

arises. We also help applications with supporting patterns that help them to solve
their problems more effectively, and we are willing to evolve those patterns over time
as well.

Principles, Protocols, and Patterns
The main takeaway of the previous section is that a platform should not require one
specific way (how) to do things or one specific place (where) to do them. Instead,
a well-designed platform is designed around principles, protocols, and patterns.
We can illustrate these ideas with the web platform, which has proven to be both
amazingly robust and flexible at the same time. Over the past almost 30 years,2 the
fundamental architecture of the web has not changed, but of course it has evolved
considerably. How is that seeming contradiction possible, while most other systems
seem to face challenges much sooner, and after following less radical trajectories?

One of the major reasons is that nothing in the web platform talks about how a
service is implemented or used. Services can be implemented in any language, and
of course preferences have changed over the years as programming languages and
environments have changed. Services can be provided from any runtime environ‐
ment, which have evolved from servers in basements to hosted servers and now
cloud-based solutions. Services can be consumed by any client, and those too have
radically changed, from simple command-line-based browsers to the sophisticated
graphical browsers on today’s mobile phones. By focusing exclusively on the interface
that determines how information is identified, exchanged, and represented, web
architecture has proved to be superior in terms of handling organic growth to any
other complex IT system architecture we have seen so far. The foundation of this is
surprisingly simple.

Principles are fundamental concepts that are built into the very backbone of the
platform. In the web platform, one of these principles is that resources are identified
by uniform resource identifiers (URIs) and that the URI-identified protocol then
allows interaction with these resources. This means that while we could (at least
theoretically) transition to a post-HTTP web (and in a sense we are, because the web
is shifting toward HTTPS everywhere), it is really hard to think how that would be
possible for a post-resource web. Principles are reflected in API styles because these
have different foundational concepts that they rely on.

Protocols define concrete interaction mechanisms that are based on the fundamental
principles. While the vast majority of interactions on the web these days are via
HTTP, there still is some share of File Transfer Protocol (FTP) traffic, as well as
more specialized protocols such as WebSockets and WebRTC. Agreeing on protocols

230 | Chapter 9: API Landscapes

3 HTTP/2 and HTTP/3 are good examples of how the web platform can transition across technologies, but
they were specifically designed to have few semantic differences to HTTP/1.1; most of the changes and
improvements target more efficient interactions.

4 Browser support for authentication was not very user-friendly, for example, making it hard to log out of
services.

makes interactions possible, and carefully designing the platform allows the protocol
landscape to evolve as well, as we are seeing now with HTTP/2 and HTTP/3.3

Patterns are higher-level constructs; they are how interactions in (possibly multiple)
protocols are combined to achieve application goals. One example for this is the
popular OAuth mechanism, which is an HTTP-based choreography to achieve the
specific goal of three-legged authentication. Patterns are ways common problems get
solved. They may be protocols in their own right (such as OAuth), or they may be
practices (such as the CDN example discussed earlier). But as with protocols, patterns
will evolve over time; new ones will be added, and existing ones may get deprecated
and become historical. Patterns are the shared practice of how to solve problems in
the solution space established by principles and protocols.

Often, patterns evolve over time as a response to changing requirements. For exam‐
ple, browser-based authentication was relatively popular in the early days of the web
because it could be easily controlled through web server configuration and worked
well enough for the relatively simple scenarios of the early web. As the web grew,
however, the limitations of this approach became obvious;4 authentication support
became a standard function in all popular web programming frameworks, and the
greater flexibility of this approach replaced the earlier browser-based practice.

It is important to realize that this feedback loop was instrumental in the success
of the web. Platform architecture starts simple. Applications start to get built, and
some push the boundaries of what the platform supports. With enough demand, new
features and capabilities get added to the platform, allowing more applications using
these new features to be built more easily. The platform architects’ role is to observe
where applications are pushing the boundaries, help application developers to push
and overcome the boundaries more easily, and evolve the platform so that it better
suits these observed needs of application developers.

In API landscapes, the same evolution of practices will happen. Instead of seeing this
as a problem, it should be seen as a feature, because practices can be adjusted and
improved as teams learn and as new patterns and sometimes even protocols emerge.
The secret to a successful API program is to see it as ever-evolving and to design and
manage it so that evolution can run its course.

API Management at Scale | 231

5 This is a good example of complexity versus complication. The complexity of an API landscape is determined
by the features of various APIs and their reflection in the API. Complication is introduced when the same
problem gets solved in different ways in different APIs, introducing language variety that is not necessary
from the functionality point of view.

API Landscapes as Language Landscapes
Every API is a language. It is how service providers and consumers interact when
it comes to exposing and consuming a certain capability. For the purpose of this sec‐
tion, it is important to keep in mind that the term language refers to the interactions
with the API (i.e., to the design of the API) and not the way the API works internally
(i.e., the implementation of the API in a programming language).

Certain aspects of an individual API language are decided on fundamental levels:

• The API style determines basic conversation patterns (for example, synchronous•
request/response or asynchronous event-based) as well as primary conversation
conventions. For example, in tunnel-style APIs, conversations use function calls
as their core abstraction, whereas in resource-style APIs they are based on the
concept of resources.

• The API protocol then decides the basic language mechanisms. For example, in•
HTTP-based APIs, it is clear that HTTP header fields are going to be important
when it comes to managing the conversation basics.

• Within the API protocol, there often are many more technology “sublanguages”•
in the form of extensions of the core technology. For example, there currently
are around 200 HTTP header fields, even though the core standard defines only
a small subset of these. APIs can choose which of these “sublanguages” they
support based on their conversation needs.

• Certain aspects of the API may be cross-domain and can be easily reused across•
various APIs (as discussed in more detail in “Vocabulary” on page 238). As one
example, these reusable parts of APIs may be defined as media types and then
can be easily referenced and reused across APIs to avoid reinventing the wheel.

The main takeaway from this is that language management is an important part of
landscape management. Managing languages is a delicate task. Try to unify things too
much, and people living in the landscape feel stifled and cannot express themselves
as they want to. Make no attempts at encouraging some language sharing, and
landscapes becomes overly varied with the same problem solved in many different
ways, and as a result become overly complicated.5

One pattern that has become increasingly popular for managing API landscapes is to
promote language reuse by carrot rather than by stick.

232 | Chapter 9: API Landscapes

https://oreil.ly/B1PG0

The stick method was characterized by a small team of leaders deciding on the
languages that should be used and then declaring that only those and no others
would be allowed. This usually was a top-down decision and often made it hard to
experiment with new solutions and establish new practices.

The carrot method allows any language to be suggested for reuse, provided it has
associated tools and libraries to make life easier for people using it. This means that
a language has to prove its utility to be among the promoted ones. It also means that
adding to the language repertoire can be done by demonstrating a language’s utility.

With the carrot method, the set of promoted languages will and should evolve over
time. If new languages emerge, so should new ways to show their utility, and if that’s
the case, then those should become new promoted languages.

As a result, languages can fall out of favor, either by being eclipsed by competing,
more successful languages or by people simply moving on to a different way of
doing things. That is what has been happening in the XML/JSON space for a while
now. While there still are many XML services around, the default choice for APIs
nowadays is JSON (and a few years from now, we might see another technology
gradually replacing JSON).

API the APIs
Scaling the practice of APIs means that when the time comes to scale, there is a plan
for how to automate an increasing number of tasks both for individual APIs and in
the API landscape. Automation requires that how information is made available and
can be used and collected is well defined. Come to think of it, this task of making
information available is exactly what APIs are for! This leads to the core mantra of
“API the APIs”:

Everything that you want to say about an API, say it through the API.

What this leads to is the idea that an essential part of managing API landscapes in
a scalable way revolves around the idea of using “infrastructure APIs” (or rather,
an infrastructure part in existing APIs). A simple example of such an infrastructure
API could be a way to expose status information about an API’s health. If each
API follows a standardized pattern (more on that in “Vocabulary” on page 238), it
becomes trivial to automate the task of collecting status information across all APIs.
Simply put, it could look like this:

• Starting from the inventory of currently active service instances, visit each of•
these services every 10 minutes.

• Starting from the services’ home pages, follow the link with the status link•
relation to find their status resources.

API Management at Scale | 233

• Retrieve the status resource for each service and process/visualize/archive it.•

In this scenario, it becomes simple to write machinery that collects this information
on a regular basis and to build tooling and insights on top of that information. This
has become possible because as part of the API, there is a standardized way that
certain aspects of the API are made accessible.

Following this line of thinking, it becomes clear that managing and evolving an API
landscape now in part becomes a matter of evolving the ways in which APIs can be
used for these kinds of automation. By designing for change, this information can be
added over time, and existing services can be retrofitted as needed.

In this example, exposing status information has become a new pattern, and there
is an established practice for what is exposed. This new practice might move from
“experimental” to “implementation,” if the API landscape is using these kinds of
categories for its API design guidance. It might very well also move to “sunset” and
then to “historical,” with some older services still using it, if at some point in time the
landscape moves on to another way of representing API health.

In the last paragraph, we used “experimental,” “implementation,” “sunset,” and “his‐
torical” as possible status values for guidance. We are not proposing that you use this
specific set, but it is important to realize that all guidance evolves over time. What
was once a good way to solve a problem may be replaced by a faster and more robust
way of doing it. Guidance should help teams to make decisions about how to solve a
problem. By tracking guidance status, it becomes easier for teams to understand how
practices evolve, and therefore it is a good idea to keep track of what currently are
good solutions, to start noting what might be upcoming good solutions, and to also
keep a record of what you once thought was a good solution. “Structuring Guidance
in the API Landscape” on page 250 and “The Lifecycle of Guidance” on page 253
discuss the specific ways in which guidance can be structured and evolved in more
detail.

Solving this problem in a way that becomes a design element of an API makes it easier
to manage large API landscapes, because certain design elements are repeated across
APIs, and these elements can be used for automation purposes.

Understanding the Landscape
API landscapes are no different from other landscapes of products or capabilities,
where the goal is to allow these landscapes to evolve easily and with little friction,
and to serve as a solid foundation for building new capabilities, either internally or
externally. In all of these cases, there are trade-offs between optimizing for a single
well-known goal and optimizing for changeability. Optimization for changeability
always requires some trade-offs over fixed goals; the key factors for changeability are

234 | Chapter 9: API Landscapes

to keep the landscape open for evolution and to instrument it in ways that allow
insights into its current state and into its trajectory over time.

The idea discussed in the previous section, that everything that should be said about
an API should be said through the API, plays a key role in this picture. This can be as
simple as providing status information, as mentioned previously, or it could be much
more comprehensive, going as far as requiring that any API documentation must be
part of the API itself, or managing API security aspects through the API itself. In
such an approach, APIs become self-serve products, with as much information made
available through them as is needed for understanding and using them.

This approach in some cases can be costly. When taken to its extreme, where the
idea is to have APIs that potentially millions of developers can use and access, then it
makes economic sense to design these API to be as sophisticated as possible so that it
is as easy as possible for developers to understand and use them. In this case, there is
one product that is designed for the mass market, and thus it is highly optimized for
this use case.

In most API landscapes there will be hundreds or thousands of APIs, and it is neither
possible nor necessary to invest in polishing each of these into perfect mass-market
products. But a little bit of standardization can go a long way, such as making
sure that it is easy to find contact information for the API team, some minimal
documentation, a machine-readable description, and examples to get started with.

And when it seems that APIs need a bit more “polish,” the evolutionary model of
the landscape will help: API teams will start establishing practices for improving the
developer experience, and these can become established and supported practices.
Once again, the key is to observe changing needs, to observe solutions that are
practiced by APIs, and to support whatever is desirable as a landscape-level practice.

The Eight Vs of API Landscapes
Managing API landscapes can be a daunting task. It requires balancing issues of
product velocity and independence with the conflicting issues of coherence and
robustness over time. But before we discuss how API landscapes mature in more
detail, which we will do in Chapter 10, we first provide a qualitative framework for
the issues that matter for the long-term development of API landscapes.

In the following model of the “eight Vs” of API landscapes, we make the assumption
that APIs are getting designed and developed in a variety of ways (and following a
variety of paths through their individual API lifecycles, as discussed in Chapter 7).
These eight Vs are like the controls or dials for your API management system. You’ll
need to observe and tune them to get the best results.

The Eight Vs of API Landscapes | 235

Specifically, the assumption is that the design and execution of the landscape strategy
follows a platform model (as discussed in “The Platform Principle” on page 228)
where adding APIs to a platform means adhering to the principles, protocols, and
patterns of that platform.

With such an open API landscape model in mind, it becomes important to consider
the following eight aspects, which in some shape or form all interact with how
individual APIs get designed and implemented and how the whole API landscape
is organized. Keeping these aspects in mind will also help guide observation of the
landscape, meaning that insight into them will help you to better understand the
continuous evolution of the landscape.

In the following sections, we introduce and describe the eight important aspects
to keep in mind for API landscape management. We will use the same aspects in
Chapter 10 for our landscape maturity model, which uses risks, opportunities, and
potential investments in all these areas as a way to assess and guide the maturity
of an API landscape. We will also use them in Chapter 11 to explain how lifecycle
management at the landscape level can be guided by and help with the lifecycle of
individual APIs.

We have identified these eight Vs—variety, vocabulary, volume, velocity, vulnerability,
visibility, versioning, and volatility—as a way to guide and focus the management of
API landscapes. We discuss each of them in more detail in the following sections.

Variety
Variety refers to the fact that API landscapes often contain APIs designed and devel‐
oped by different teams and on different technology platforms, as well as APIs
designed and developed for different users. The goal of APIs is to allow this variabil‐
ity and to provide more autonomy for teams.

For example, it may make sense to have one design guideline that promotes resource-
style APIs as the default choice for core platform services, because for these, con‐
sumption should be as easy as possible for the largest possible number of consumers.
However, for APIs that are specifically provided to be backends for mobile applica‐
tions, it may make sense to support query-style APIs using a technology such as
GraphQL, because then mobile applications can very specifically get just the data that
they need, in just one interaction.

API landscapes have to balance variety. One goal of API landscape management is to
manage and possibly constrain the variety so that API consumers don’t have to learn
how to interact with too many different API styles. On the other hand, restricting
variety to just one design choice may not be a useful thing to do if there are clusters
of design preferences where different design choices match those scenarios very well,
allowing better products to be delivered to more consumers.

236 | Chapter 9: API Landscapes

Managing variety in API landscapes thus is a balancing act of constraining choices
enough to avoid an unproductive multitude of API flavors, while at the same time
being open to identifying choices that allow the API landscape to deliver higher value.

The most fundamental aspect is to treat “managing variety” as an act of governance
over time: do not build anything into your landscape that makes it fundamentally
hard to evolve your understanding of the variety that you want to support over time.
If one thing is certain, it is that API landscapes in a few years will not look the same as
they do today—so keeping paths open to deal with evolutionary variety is essential to
avoid painting yourself into a corner.

API Preferences over Time
You might have certain preferences for how APIs should be designed, and use those
preferences to inform your governance. You might encourage developers to follow
those preferences, because from the landscape perspective they seem to provide the
best cost/benefit combination.

But you should not place all your bets on that one set of preferences. Something
better might come along that makes you change your mind, or you simply might have
API consumers asking for certain APIs and want to make those consumers happy.

One example of this is GraphQL: regardless of what you think about that specific
technology, if you work on APIs, you may hear strong preferences for GraphQL
from some consumers. Being able to support these “preference clusters” over time
is essential, as they will evolve and will drive the way in which your landscape is
evolving.

Never assume you have found the one best way to do APIs: whatever you do is
contextual with regard to technologies and consumer preferences, and it will change
over time.

Allowing and controlling variety is a long-term activity. Allowing it should be built
into the landscape from the very beginning. Constraining it by encouraging princi‐
ples, protocols, and patterns is a balance of understanding how APIs are being used
and how much value they deliver and making choices to maximize that value. With
increasing maturity of the API landscape (see Chapter 10), it should be possible to
gain better insights into the status, evolutionary path, and usage of the landscape.
Variety can then be controlled by balancing the cost of increased variety (which
reduces coherence across the full landscape) and more specifically designed APIs
(which improves API value for a subset of the APIs in the landscape).

The Eight Vs of API Landscapes | 237

Vocabulary
Every API is a language, as discussed in “API Landscapes as Language Landscapes”
on page 232. It defines how developers can interact with a service, and it defines
these interactions through interaction patterns, underlying protocols, and exchanged
representations. Standardizing on API building blocks through shared vocabularies is
a powerful way to increase coherence across the API landscape.

For some aspects of that language, it might not be necessary to reinvent the wheel
every single time. A simple example is the issue of error messages. Many HTTP-based
REST APIs define their own error messages because they want to expose error mes‐
sages beyond just using the standardized HTTP status codes. It is possible to define
such a format individually, but the “problem details” format of RFC 7807 defines a
standard representation for this (as long as the API is using JSON or XML). Reusing
this “problem report vocabulary” has two advantages.

Teams developing APIs do not need to invent, define, and document a new vocabulary
for error messages. They can simply adapt the existing vocabulary and possibly
extend it to expose specific aspects of their error messages.

Teams consuming APIs do not need to learn a proprietary format and instead will
understand that part of the “API language” after they have encountered that particular
vocabulary for the first time. This makes it easier for developers to understand
aspects of an API that are used in other APIs as well.

The following example is taken from RFC 7807 and shows how such a format can
combine standardized and proprietary vocabularies. In this example, the type, title,
detail, and instance members are defined by RFC 7807, while the balance and
accounts properties are proprietary members defined by a specific API. It is perfectly
possible that in an API landscape you might always use RFC 7807 problem reports,
but the set of properties is actually evolving over time, as APIs are exposing specific
problem details:

{
 "type": "https://example.com/probs/out-of-credit",
 "title": "You do not have enough credit.",
 "detail": "Your current balance is 30, but that costs 50.",
 "instance": "/account/12345/msgs/abc",
 "balance": 30,
 "accounts": ["/account/12345",
 "/account/67890"]
}

In many cases, this kind of vocabulary reuse can be achieved by using standards.
Whether these standards are formal standards on the internet/web level or infor‐
mal/internal standards of an API landscape does not matter all that much. The
important thing is to avoid reinventing the wheel as much as possible.

238 | Chapter 9: API Landscapes

https://oreil.ly/xhg98

In fact, having the ability to treat formal standards and informal standards in the
same way is essential to being able to decide when, for some aspect of the API
language, switching to a standard makes sense.

EIMs and APIs: Perfection Versus Pragmatism
While using official standards is a rather straightforward way of avoiding reinventing
vocabularies, in some cases organizations go beyond this. The most extreme case
is the idea of an enterprise information model (EIM), where the goal is to have a
complete and coherent model of everything that has to be represented in an organi‐
zation. In many cases (and often in larger organizations), the ideal of the EIM has
proven to be elusive: the effort of documenting the complete vocabulary of a complex
organization is substantial, and by the time the exercise is completed, reality and
systems have already changed, turning the EIM into a snapshot of the past.

As the organization evolves, so should the EIM, but it is hard to keep both in
sync. For example, an organization might have a certain model of a customer and
information related to them. That information very likely evolves all the time, and
different products will extend/enhance the customer model in ways that work for
them. Trying to make sure that these extensions and enhancements are always done
in a coherent and coordinated way is likely to slow down service design and delivery.
In practice, this means that the choice often is between having an EIM that reflects
a static model of the organization, or increasing the organization’s ability to change
when needed but giving up on the ideal of a perfectly designed and harmonized
model of everything.

A more realistic approach is to assume that the EIM effectively is the union of all
capabilities that are accessible through APIs. With this way of thinking, it is still up
to the API landscape management to decide how much vocabulary standardization
makes sense. For some clear cross-domain concerns (such as the error messages
mentioned previously), deciding on a standard vocabulary might be an easy decision
to make.

For more domain-specific concepts, the API will expose those concepts in its design,
and this design then is the EIM of that domain. The downside of this approach is that
this does not produce the one highly aligned and uniform model of everything that
EIMs often strive to be. The upside of this approach is that the “domain model” now
is directly actionable (through the API), and by the very definition of this approach,
what is not exposed and/or actionable in the API is not part of the EIM.

Vocabulary management at scale succeeds best if the main focus is on making vocab‐
ularies findable and reusable, instead of creating the one true model of a concept.
If vocabularies can be easily found and reused, developers are interested in reusing

The Eight Vs of API Landscapes | 239

them as long as they fit their purpose, because then they do not have to design their
own.

How to define vocabularies is a tricky subject. Without getting into the weeds of UML
and XML and how to define and document and compose vocabularies, it is important
to keep in mind that one important goal of APIs is to not expose implementation
models but instead create an interface for them, which often will be different from the
internal model of a service or a domain (as described in Chapter 3, one strategy is to
start with that interface model without even considering its implementation initially).

Vocabularies can be managed in a variety of ways, each of them having different
advantages and limitations:

• When used for complete representations of API interactions, vocabularies become•
complete models of the meaning and the serialization of domain concepts.
Typical examples for this might be XML or JSON schemas. How these vocabula‐
ries are identified also differs: in some cases, and for web-based APIs, people
use media types, but in other cases people might use identifiers for schemas
and then associate those identifiers either implicitly or explicitly with an API
representation.

• Vocabularies sometimes also are used as building blocks within representations,•
allowing an API to support representations where certain parts of it follow that
specific vocabulary. XML has a rather sophisticated mechanism for this with
XML namespaces, whereas JSON has no formal way of identifying that a part of
a JSON representation uses a standardized vocabulary. We looked at the example
of RFC 7807, which has a vocabulary of built-in properties but also allows APIs
to add their own properties to the problem detail format.

• Vocabularies may also be essentially shared data types, in which case there often•
is a pattern of defining and supporting an evolving set of values for the data
type through a registry. Registries allow a community to share an evolving set of
well-known values for certain data types, and they are a widely used pattern for
fundamental technologies of the internet and the web. One example is hyperme‐
dia link relations: there is a registry for link relations that makes it possible for
developers to find out about existing relations, or to add new ones if necessary.

Picking the right way to establish and manage vocabularies is important and is a key
determinant of how easy it is for API teams to (partly) assemble their APIs from
existing building blocks, instead of always starting from scratch. But establishing
vocabularies makes sense only if there is a clear model for how they can be easily
found and reused. Tooling is an excellent way to use vocabularies so that designers
have a well-defined set of choices. When designing resource-oriented APIs, for exam‐
ple, HTTP has a set of concepts that are open and evolving vocabularies.

240 | Chapter 9: API Landscapes

As shown in Figure 9-2, HTTP has quite a few vocabularies associated with it (the
figure is a screenshot of Web Concepts, an open repository that makes standardized
and popular values for these vocabularies available). An API landscape would proba‐
bly not encourage HTTP API designers to use all of the approximately 200 existing
HTTP header fields, but API design and implementation tooling could be based on a
subset of these values, thereby establishing the shared practice of which HTTP header
fields to consider within the organization.

Figure 9-2. Web Concepts: HTTP vocabularies

The HTTP vocabularies are an example of a rather technical focus, where it is
important to share a set of practices for how to use a certain technology. On a more
domain-specific note, the very same principles can apply to domain concepts such
as customer types. For example, a company may have an existing vocabulary of five
different customer types, which might grow over time to cover additional customer
types. Managing this domain vocabulary in a registry is a good way to ensure that the
set of shared values is accessible to developers and tooling and can evolve over time.

Another possible way to effectively manage vocabularies is to use industry standards.
While industry standards may not always be a perfect or complete fit for an API, they
may still be useful as a building block. As a simple example, think of something like
how to represent country or language information (there are ISO standards for this).
There also are more complex (and often more verticalized) standards such as Fast
Healthcare Interoperability Resources (FHIR) for the interoperability for electronic
health records.

The Eight Vs of API Landscapes | 241

Volume
Once an organization gets serious about its digital transformation strategy, the vol‐
ume of services that exist (or get exposed through APIs) can grow quickly. One
reason for this is that as more and more of the organization gets reflected through
digital shadows, its “digital footprint,” and thus naturally the number of its APIs,
increases. It can easily reach into the hundreds or even thousands, for organizations
beyond a certain size and with some history of developing APIs. API landscapes must
be able to deal with this scale easily so that it becomes primarily a business decision of
how big the API landscape is going to be.

A second reason is that with the API-as-a-product strategy (Chapter 3), anything
and everything that is done in the organization is conceived with an API-first mind‐
set, because only then can it become part of the network effect of the increasing
API-enablement of the organization. This might very well mean that quite a number
of these API-as-a-product initiatives don’t make it very far, because not only should
APIs enable the organization to combine services more easily and more quickly, but
they also should help the organization to do this more economically so that products
can be built and evaluated (and possibly discontinued) quickly.

When it comes to the volume of APIs in an API landscape, there often is a difference
in preference. Sometimes the approach is to keep the volume down as much as
possible (which can be a very relative term in complex organizations) and to attempt
to have a carefully curated landscape of APIs. In other cases, the focus is more on
making it easy to handle volume, and to gain and provide insights into an API
landscape, so that volume is mostly a management problem and can be handled by
improvements over time, if required.

Either way, it often is natural that volume goes up over time, as the API landscape
matures and new services enter the landscape. This means that it is equally natural
that with growing maturity, handling volume becomes something that is based on
policy and not on fundamental problems of having to deal with a growing volume of
APIs.

Velocity
One important value proposition of digital transformation is that it becomes faster
to design, release, test, and change products, and that is because the organization’s
increasing maturity in managing individual APIs and the API landscape allows it to
move faster than it could without those skills. This also means that the organization
becomes a network of individual but interdependent services: instead of many build‐
ing blocks being stable for a long time and new ones being added relatively slowly,
things can change more quickly and be added faster.

242 | Chapter 9: API Landscapes

6 Earlier, we contrasted this with SOAP, which focused on APIs only, without providing any guidance on how to
manage the growing and changing landscape of SOAP services.

While this added speed is one of the key differentiating aspects that organizations are
able to benefit from, at the same time it becomes important that this can be done
safely. If not, the increased speed comes at the unacceptable cost of threatening the
robustness of operations.

For many organizations, velocity is one of the key motivations to start digital trans‐
formation initiatives: with markets changing faster and the competition becoming
faster, it is essential for organizations to be able to act or at least react quickly. Any
factors that slow down time it takes for ideas to be turned into products, or hinder the
management of the constantly growing and evolving product portfolio, also harm the
organization’s competitiveness.

In API landscapes, velocity is accomplished to a large degree by giving teams more
freedom to design and develop according to their preferences and choices and sched‐
ules. The goal is to minimize all parts of the process that potentially slow down
API delivery. As mentioned earlier, one key lesson from earlier IT approaches is that
decoupling delivery (i.e., the ability to change and deploy individual components inde‐
pendently of others) is essential to decreasing delivery time.6 But allowing individual
capabilities to be added and changed and delivered independently also means that
traditional practices of testing and operations have to be changed.

As discussed in “The Platform Principle” on page 228, one of the common
approaches to avoid coupling and the resulting loss in velocity is to move away from
integration. Using a platform as described means giving up on the idea of integration
and embracing the idea of decentralization. The benefit of this is that the loose
coupling allows higher velocity of individual parts because there is less coordination
effort for making changes. The cost of this approach is that delivery and operations
need to adjust to this new landscape and make sure that the overall ecosystem meets
the standard of robustness that the organization needs.

Taken to the extreme, looking at the web once again is an interesting exercise. The
web changes fast because new services can be deployed, existing ones can be changed,
and users might or might not be affected by these changes. At some level, one
could argue that the web never “works”: something is always broken, with a service
not being available or a user being affected by a service change. But the resulting
velocity of the overall system more than makes up for this inherent brittleness, and by
managing change well and using appropriate methods for deployment and testing, it
is possible to find a good balance of velocity and value in such a system.

The Eight Vs of API Landscapes | 243

Vulnerability
Only organizations that have no IT are not (directly) vulnerable to IT-based attacks.
But with the trend toward more IT, more alignment between business and IT, and
the opening up of IT capabilities through APIs, many vulnerabilities are created, and
these have to be managed. API landscapes must make sure that the risks of a bigger
attack surface are more than compensated by the rewards of increased agility and
speed.

One of the value propositions of the API economy is that businesses can react and
restructure quicker when they use APIs internally, and when they also can outsource
capabilities via APIs. But of course there is a flip side to this, because it creates depen‐
dencies. For example, in June 2018, Twitter acquired anti-abuse technology provider
Smyte. Many companies used Smyte’s services via its APIs, which offered tools to
stop online abuse, harassment, and spam. These companies even had contracts with
Smyte. Directly after the acquisition, and without warning, Twitter closed down
Smyte’s APIs, creating problems for companies relying on these APIs.

The lesson of this and similar cases is to always treat external dependencies as brit‐
tle, to always build resilience into services to handle potential service interruptions
responsibly, and to make this a fundamental development practice. One can even
go one step further and make this a rule for any dependency, not just the external
ones—because as velocity increases, the likelihood increases that there may be prob‐
lems with runtime dependencies, and any nonresilient use of a service is a predictable
potential problem.

Implementing resilience often is not trivial; in some situations dependencies may be
critical, and not much can be done to compensate for them not being available. But
even then it is important to handle the situation responsibly: instead of crashing or
hanging or going into undefined operational states, services should clearly report the
situation so that it can be analyzed and fixed.

Another aspect apart from the technical vulnerability is the fact that more and more
services are made available and thus have APIs as attack surfaces. This can be a prob‐
lem when it comes to malicious attempts to gain access to systems or simply disrupt
operations. It can also be a problem when APIs expose information or capabilities
that for legal, regulatory, or competitive reasons should not have been made available.
This can have a major impact on how organizations are perceived and thus needs as
much attention as the more directly malicious threats.

In summary, vulnerability needs to be addressed by handling APIs safely and
securely. Safety means to treat all dependencies as brittle and to never depend on
the availability or specific behavior of an API. Security means to always make sure
that malicious players cannot gain access to or disrupt the operations of APIs in the
landscape.

244 | Chapter 9: API Landscapes

Visibility
Visibility and scale are almost natural enemies. If there are few things and everybody
designing and developing and using and managing them is in a relatively small team,
then most things are visible, or at least can be discovered using the simple discovery
process of asking the people around you. They will quickly guide you to find what
you are looking for. They also can explain how that thing works. If you need an
overview across all of the things, you can manually inspect them to gain insights.
None of these assumptions is true anymore for larger API landscapes.

In large and decentralized settings, visibility is a much harder goal to accomplish.
However, direct “line of sight” is not a natural requirement for establishing visibility.
Typical patterns for large-scale visibility in real life as well as in IT systems often
combine two aspects (and we’ll look again at the web to explain that in terms of the
biggest visibility scenario there currently is).

Publishing things needs to be done in such a way that they are discoverable. In terms
of the web, being discoverable means having a working web server and publishing
HTML that can be used to crawl and index content. There are mechanisms such as
Sitemaps and Schema.org to improve discoverability, but all these improvements were
invented quite a while after the search engines started operating.

Searching things often is a much more contextual task than just discovering them.
Search often revolves around the context of the search and how “useful” and “less
useful” search results are delivered. Google revolutionized the web with its PageRank
algorithm, by calculating relevance according to popularity. In many cases, search
is treated as an extra service after the initial task of discovering and collecting
information (an activity that is called crawling on the web).

As discussed in “API the APIs” on page 233, the prerequisite for API visibility and use
in the landscape is to expose information about APIs through the APIs. That was the
core of what made the web work: Everything about a web page is in the web page,
and there is a uniform way to access all web pages. The visibility aspect therefore
means keeping track of “how” users could be aided by making APIs more visible;
thinking about whether that is a problem of discoverability (can the APIs even be
located?), representation (is the necessary information accessible through the API?),
or search (are there search services using the exposed information?); and tweaking
those factors of the landscape that are needed to improve visibility.

While visibility of APIs is important, it is equally important to make things visible in
APIs. For example, aspects such as the standard “problem details” format discussed
in “Vocabulary” on page 238 help visibility inside APIs, because now it is possible
to use tooling that understands problem details across APIs. Actually, there is a tight
relationship between vocabularies and visibility: the more vocabularies are shared
across APIs, the easier it becomes to leverage this shared aspect of these APIs. The

The Eight Vs of API Landscapes | 245

https://oreil.ly/xnt6Z
https://oreil.ly/xnt6Z

7 One way to follow patterns for robust extensibility is to use meaningful core semantics, have a well-defined
extensibility model, and have a well-defined processing model of interactions with APIs and possible exten‐
sions work.

“API the APIs” model discussed earlier therefore is one that benefits a lot from
visibility through shared vocabularies: if you want to say something about your API,
say it through your API, and ideally say it in ways that are shared across APIs.

Versioning
One of the challenges when moving from integration to decentralization is that
changes also happen in a more decentralized way. That is good because it allows
the velocity that often is one of the important benefits that API landscapes provide.
But in order to handle changes in the API landscape in a reasonable way, versioning
cannot be handled in the same way as in integrated systems anymore.

One important consideration is to avoid versioning as long as possible, or at least
to avoid it in the sense in which the term is often used: to describe how different
versions are released and then must be used differently by consumers. We can once
again look to the web for examples: few sites release “new versions” where users have
to relearn the way the site works. Instead, the goal is to improve sites in ways that can
be picked up by existing users if they want to use new features, without disrupting
established workflows that users rely on to use the site.

The general goal for versioning in API landscapes should be similar to that of
websites: avoid breaking existing consumers, and design all APIs for extensibility
from the very start so that there is loose coupling between the “version” that users
expect and the “version” that the service provides.7

In such a model, “hard versioning” of the API does not really happen: changes are
treated as an improved/extended version of the API that consumers do not need to
learn about unless they want to use the new capabilities. Incompatible changes break
the API; a new one has to be released, and consumers must migrate from the old to
the new one. In that case, it is a new API, and not a new version of the old API.

So, one might say that versions of the API are not relevant. But the API does
evolve over time, and it is useful to be able to talk about the “snapshot” of an API’s
capabilities at some point in time and possibly also to learn what has changed since
then. Because of this, version numbers still are a useful concept because they help to
identify the evolving capabilities of an API and navigate its history.

246 | Chapter 9: API Landscapes

https://oreil.ly/HTk61

Semantic versioning
Semantic versioning is a simple versioning scheme that is based on using version
numbers in a structured and meaningful way. Semantic version numbers are struc‐
tured according to a MAJOR.MINOR.PATCH pattern. These parts are numeric and have
the following meaning:

• PATCH versions are bug fixes, not affecting any specified interfaces and instead•
correcting incorrect behavior or making any other changes that affect only the
implementation.

• MINOR versions are compatible changes to the interface, meaning that clients can•
continue using it as is without the need to adjust to changes in the interface. This
minimizes the efforts clients have to spend adjusting to new versions: They only
have to change when a new minor version is released when they want to take
advantage of new functionality that has been released with that version.

• MAJOR versions are breaking changes that require clients to update their use of the•
API; they cannot expect to smoothly transition across major version changes.

When using semantic versioning for API products, version numbers effectively
become part of the documentation, because they imply information on what has
changed between versions. Usually, it is good practice to also document what exactly
has changed, but semantic versioning provides a good starting point for clients to
decide whether they want to investigate API updates, or not necessarily.

Volatility
As already discussed for the velocity and versioning aspects, the dynamics of API
landscapes are different from integration approaches, and thus services must keep
those dynamics in mind. Volatility is a fact of life in large decentralized systems:
services can change (avoiding breaking changes can help a lot), services can stop
working (decentralized deployment and operations mean a less centralized model of
availability), and services can disappear (services do not live forever). Responsible
development practices in an API landscape keep those considerations in mind for all
dependencies.

Volatility can be seen as the result of decentralizing implementation and operations,
and accepting that such a move results in a more complex set of failure scenarios
than the binary does versus doesn’t work of integrated monolithic systems. This is the
unavoidable side effect of radically separating components, and there definitely is a
cost to dealing with this added complexity (this is one of the aspects of Jeff Bezos’s
famous “API mandate” and its consequences, as told in “The Bezos Mandate” on page
52).

The Eight Vs of API Landscapes | 247

https://semver.org

For developers, the move from “programming as part of a system” to “developing as
part of an ecosystem” can be challenging. Traditional assumptions about robustness
and availability are not true anymore, and moving to a model where an application
is handling every external dependency as a potential failure point takes development
discipline.

On the other hand, techniques for graceful degradation are well-known. Once again
we can look at the web, where well-designed web apps often do implement graceful
degradation in robust ways. This principle applies to runtime dependencies to other
services, as well as to runtime dependencies for the execution environment (the
browser). Web apps operate in environments that are much harder to control than
traditional runtime environments. Because of this, they need to have robustness built
in or they will fail to work for too many browsers or too many environments.

Similar development thinking is necessary for applications in API landscapes. The
more defensively an application is programmed, the more likely it is to be resilient
against variations in the runtime environment. This is the ultimate goal of appli‐
cations in API landscapes: operating as robustly as possible and not making any
assumptions that depend on the availability of other components.

Summary
In this chapter, we have delved deeper into the idea of API landscapes. We have
looked at how existing integration solutions can be regarded as “proto-APIs,” how
scaling up the API practice introduces more challenges, and what an API platform
should ideally look like.

The most important thing to keep in mind is that for API landscapes to deliver
their main value, it is vital to treat them as continuously changing environments,
where change is triggered by observations of the practices of individual APIs. The
landscape’s role is to distill changing practices into principles, protocols, and patterns
that help API teams to be more productive.

This chapter also introduced the eight Vs of API landscapes, a set of aspects that
are helpful to keep in mind when it comes to considering the specific challenges
of an API landscape. Because managing and fostering an API landscape is always
an evolutionary and gradual process, we will use these landscape aspects in the
following chapter, where we discuss how they can help inform investments in the API
landscape and how that translates into increased maturity for all these aspects.

248 | Chapter 9: API Landscapes

CHAPTER 10

API Landscape Journey

The real problem is that programmers have spent far too much time worrying about effi‐
ciency in the wrong places and at the wrong times; premature optimization is the root of all
evil (or at least most of it) in programming.

—Donald Knuth

In Chapter 9, we looked at API landscapes in depth, focusing on foundations and key
aspects. We will now move on to discuss what it means for API landscapes to become
more mature. As we have done so far, we will consider this a journey rather than a
destination: an API landscape is never “done,” as it will always continue to evolve,
following the evolution of business and technology (as discussed in Chapter 7).

Evoking an analogy that we have used previously, this view of API landscapes is
similar to the ongoing evolution of the web. The web is never “done” either: new
technology developments, new scenarios, and new usage patterns continuously feed
its evolution. While this may seem daunting, it is exactly this continuous evolution
that is the reason for the web’s success over time. Without it, the web would have
become irrelevant at some point, and a different approach would have taken over.

In the same way as the web is continuously evolving, API landscapes must contin‐
uously evolve as well. Landscape architecture itself has to evolve in response to
changing needs and evolving principles, protocols, and patterns.

But even the best architect has to deal with limited resources that can be dedicated
to changing architecture. Furthermore, API teams can deal only with a maximum
rate of change: in the end, as long as the current landscape works well enough as
a platform for API products, it may be more economical to reuse the established
principles, protocols, and patterns, rather than trying to have the perfect platform for
each individual problem.

249

For this reason, understanding maturity at the landscape level means knowing what
to observe in the landscape, and where and how to invest to improve the landscape.
We will again use the “eight Vs” that we introduced in “The Eight Vs of API Land‐
scapes” on page 235. This time, however, we will use these areas to consider the risks
of not improving them and will point out ways to make improvements. To this end, a
number of checkpoints are defined that help you better understand the maturity level
in different areas and where to direct investments to get to a more consistent maturity
level across various areas.

Before we get to discussing these maturity measures and methods, however, we will
first discuss some of the organizational aspects that go along with increasing the
awareness and the proactive management of your API landscape.

Structuring Guidance in the API Landscape
Creating and managing guidance is an important part of API landscape management.
It communicates to everybody why certain things are important, what is done to
address these issues, and how implementations can follow the guidance. The guidance
should be managed as a living document that everybody can read, comment on, and
contribute to. This way, every developer is part of the community establishing and
evolving the document.

A common theme for improving the effectiveness of an API landscape is to strictly
separate the “what” from the “how” when it comes to requirements for APIs, to
always provide a “why” story explaining the rationale, and to provide tools and
support for specific ways that requirements can be satisfied:

“Why” (guidance motivation)
Describes the rationale behind a requirement or a recommendation, making
sure that it is not an opaque rule that has been created with no explanation.
Documenting the rationale also makes it easier to determine, when alternative
ways are being proposed, whether they are targeting the same rationale.

“What” (design guidance)
Explains the approach that is taken to address the “why” so that it becomes clear
what APIs need to do to address these concerns. This should be done by defining
clear requirements for the API itself and not by defining requirements for the
implementation. The most important aspect of describing the “what” is to make
sure that it does not get mixed with “how” to do something, which is explicitly
addressed separately.

“How” (implementation guidance)
Provides specific ways “how” to address the issue so that the guideline can be
implemented. These might use specific tools or technologies, and there can be
various “how” approaches associated with a single “what” that they address. Over

250 | Chapter 10: API Landscape Journey

time, as teams developing APIs discover or invent new ways to solve problems,
new “how” methods may get added to existing “what” approaches, allowing new
solutions to get established over time.

Guidelines should help everybody to be an effective team player in the overall API
landscape. They are established to help the productivity of API teams and to enable
the changing culture and practice of designing and developing APIs to be tracked and
managed.

The following is a concrete example of how this works. It uses the common challenge
of decommissioning APIs, and specifically how upcoming decommissionings can be
communicated to API consumers. The example we are showing has one “why,” two
“whats,” and three “hows”:

“Why” (guidance motivation)
Service users can benefit from learning about the upcoming decommissioning of
an API. APIs should therefore have a mechanism to announce that they are going
out of service.

“What” (design guidance #1)
APIs can use the HTTP Sunset header field to announce their upcoming decom‐
missioning. They should specify which resources will use the header field (a
popular choice is the home resource) and when it will appear (a popular choice is
that it will appear as soon as there is a planned time for decommissioning). APIs
might also specify that the header field will appear at least a certain amount of
time before an upcoming decommissioning (giving API users a guaranteed grace
period to manage mitigation and/or migration).

“How” (implementation guidance #1 for design guidance #1)
One implementation method is to control the HTTP Sunset header field through
configuration. As long as there is no configuration, the header field will not
appear in responses. When the upcoming decommissioning is known, the con‐
figuration is added, and the header field appears for those resources where the
API defines it to be used.

“How” (implementation guidance #2 for design guidance #1)
One implementation method is to add the HTTP Sunset header field through an
API gateway. Instead of the API implementation itself adding the header field, it
is added by the API gateway as soon as such a policy is configured and enabled.
After the policy is configured in the API gateway, the header field appears for
those resources where the API defines it to be used.

“What” (design guidance #2)
APIs that have registered consumers may use a channel outside of the API to
communicate with them and to announce the upcoming decommissioning. This

Structuring Guidance in the API Landscape | 251

guidance applies only when such a consumer list exists and when the associated
communications channel is deemed to be sufficiently reliable.

“How” (implementation guidance #1 for design guidance #2)
One implementation method is to use email messages to communicate with all
registered users of an API. The email ideally references an available resource (the
API change log or part of the API documentation) that contains information
about the upcoming decommissioning. That resource should have a stable URI
so that it can be referenced throughout conversations with users.

Many organizations where APIs play a role in their strategy have some form of API
guidance. Some are even published openly, which allows you to freely browse them;
for example, you can see what organizations like Google, Microsoft, Cisco, Red Hat,
PayPal, Adidas, or the White House are using as their API guidance.

The API Stylebook

The well-known “API Handyman” Arnaud Lauret has compiled
a number of published guidelines in his API Stylebook, sourced
from (typically large) organizations as different as Microsoft and
the White House. It is an interesting resource to explore in terms of
what large organizations have created as their API guidelines.

For these openly available API guidelines, without even looking at the content,
the publication channel chosen already tells an interesting story of document cre‐
ation and management (and the general philosophy behind the guidelines and their
management):

• PDF documents have the clear “smell” of a read-only document. The PDF is•
published from some inaccessible source; it’s a way of compiling, formatting,
and distributing existing content. There is little feeling of “being involved in the
management and evolution of the guidance” in this case.

• HTML often is a bit better because in most cases the published HTML is the•
source, so readers actually look at the source of the document itself, and not
at a formatted and detached product, as in the case of a PDF. But still, the
management of the HTML source is not necessarily obvious, so there still is the
feeling of detachment from the creation and editing stages.

• Many version control systems have some form of publishing feature and thus•
can be used to host and publish guidance content. For example, GitHub has
simple built-in ways of formatting and publishing content (as Markdown files,
in the simplest case), though it’s likely you’ll find that some essential formatting

252 | Chapter 10: API Landscape Journey

https://oreil.ly/x4NwM

1 Markdown content will render directly in the web view of the repository. More ambitious writers/publishers
can use GitHub’s Pages, which is a way to generate a website directly from a repository.

capability is missing.1 GitHub has easily usable features for commenting, raising
issues, and suggesting changes. In addition, these functions are not something
most developers have to learn, because many are already used to GitHub and feel
comfortable using it. Guidance published in the same way as code makes it easy
for others to contribute to it.

There is an additional rule that guidance can follow: there can only be guidance that
is testable (i.e., where there is tooling in place that helps developers to determine
whether they have successfully addressed some guidance). This not only makes
guidance more explicit and following it more objective, but also means that guidance
can be tested for in an automated way. While it may not be worth the investment
(or even be possible) to test all guidance in a fully automated way, this should be at
least seen as an ideal, and therefore we suggest that the more typical “why/what/how”
pattern described previously be extended with a fourth element:

“When” (guidance testing)
“When” describes for everything that needs to be done when it can be said that it
has been done. This means that there is a way to test for it being done properly,
and there potentially is an automated test in the deployment pipeline that will
run this test and make sure that guidance is being followed as intended.

As with everything in a well-managed API landscape, tests can be improved over
time. They may start with simple plausibility tests to give a minimum assurance
and positive feedback that guidance has been addressed. If over time it is seen that
this feedback is not as helpful as it should be, then the tests might get improved to
provide teams with better feedback and thus make it easier for them to validate their
compliance with certain guidance.

The Lifecycle of Guidance
Since guidance is an evolving set of recommendations, it too has a lifecycle: things get
proposed and maybe explored for a while, and they might become recommendations
for what to do or how to do it. But like everything in a landscape, they will eventually
get replaced with newer and different ways of doing things, so these recommenda‐
tions will go through a sunset phase and eventually become historical. The lifecycle
stages of guidance can therefore be defined as follows:

Experimental
This is the phase where guidance is being explored, meaning that it is used in at
least one API product. This is used to better understand whether it makes sense

The Lifecycle of Guidance | 253

as landscape-level guidance. At this point, the guidance is documented, but there
is no investment to make it easier for teams to follow the guidance.

Implementation
When guidance is established at the landscape level, it should be supported (there
is at least one “how”), and it might become something teams have to at least
consider before opting out. For some guidance, there may be no opting out, and
therefore teams have to follow it.

Deprecation
Once newer/better ways of doing something are known, guidance may enter the
deprecation period, where it is still possible to follow it, but where teams ideally
should consider following guidance that is in the implementation stage.

Historical
Eventually, guidance is retired, and it should not be used in new products
anymore. Refactoring existing products to migrate to a more modern way of
doing things may even be considered. Historical guidance is still useful to keep
around for historical reasons and to document the way in which older APIs were
designed and implemented.

These stages are just one way of managing how guidance may evolve, and you should
feel free to define your own. In addition, there might be ways of marking guidance
with different compliance levels, such as marking it as “optional” or “required.”
Complementing such compliance levels, there also might be a process for granting
exceptions so that, for example, required guidance can be skipped when there is
sufficient evidence that following it would create problems.

The important takeaway for the guidance lifecycle is to accept that guidance will be
continuously evolving, so you need to have a way to track this evolution, and a way of
managing it in your organization. This is what we discuss in the next section, which
introduces a popular way that large organizations tackle the challenge of guidance
management.

The Center for Enablement
There are various names that organizations use for teams that manage API guidance
and usually also have the role of driving the API program. One popular name is
Center of Excellence (CoE), but to many, this has negative connotations in the sense
that anybody outside seems to lack excellence. For this reason, a name we like better
is Center for Enablement (C4E), which nicely reflects the changing role of today’s IT
teams.

254 | Chapter 10: API Landscape Journey

Managing guidance may seem like a technical detail, but in practice it can make
a significant difference. The role of the C4E mostly should be that of a collector
and editor, with the individual API teams being the main contributors, or at least
drivers, of the content that goes into the guidance. The C4E is also responsible for
identifying aspects of the guidance that warrant an investment in terms of supporting
infrastructure so that something that was initially a problem that had to be solved by
individual teams can now be solved by available tooling.

Another part of the C4E’s role is to ensure that following API guidance does not
create any bottlenecks. The ideal picture is that teams know the guidance, know how
to follow updates, and have enough internal skills and support from the C4E through
tooling that complying with the API guidance does not slow them down. Any bottle‐
necks should be identified and resolved so that the “API” part of developing “API
products” can be implemented with as little friction as possible.

Of course, this all depends on the constraints of the organization. For example, in
some areas, there are regulations or legislation in place requiring organizations to
review and sign off on releases. In this case, these processes have to be followed and
cannot be fully automated through tooling. But these cases are typically the exception
rather than the rule, so most guidance really should be seen as something that should
be followed, and the C4E’s main role is to enable the API teams to effectively and
successfully follow it.

Engineering the Engineers: Chaos Monkey
Another interesting role of the C4E is to determine ways in which nonfunctional
requirements can be transferred into the general design and development culture of
the organization. An example is that of Netflix’s popular Chaos Monkey tool. The
story behind it is that as a general developer practice, in an environment like Netflix’s
complex and interdependent API landscape, services should be maximally resilient so
that problems with individual services affect as few dependent services as possible.

One problem with “resilient code” as a requirement is that it is hard to test. Netflix’s
solution is the ingenious Chaos Monkey, a tool that simulates isolated and controlled
failures in the infrastructure and observes the behavior of services in the light of these
outages. This allows engineers to observe the resilience of services in a controlled way.
This is an example of an approach that we call engineering the engineers: by building
tooling that will identify nonresilient code, the landscape managers ensure that engi‐
neers are more disciplined when it comes to making their code more resilient. If they
fail, there is testing in place that will reveal problems before they become critical,
meaning that developers have this additional “testing in production” safeguard that
makes sure that code behaves in a resilient way.

The Center for Enablement | 255

This approach makes it easier for the C4E to scale the API landscape to more
APIs being designed and deployed. It also makes it easier for individual teams to
understand what the requirements are and gives them (at least partially) automated
ways to test for them. Some review and discussion might still be required for some
of the guidance, but the easier it becomes to focus on those aspects that cannot be
automatically tested, the better the C4E can scale.

In summary, the role of the C4E is to be the steward of guidance at the landscape
level. The goal is twofold: to make it as easy as possible for API teams to create new
products and to make it as easy as possible for API consumers to use APIs across
the landscape. Because the C4E has this role of managing the balance between ease
of production and ease of consumption, its most important tasks are to constantly
gather feedback from producers and consumers and to figure out a way to continu‐
ously evolve the API landscape to best serve both groups.

This constant evolution of the API landscape means that it has to be aware of the
landscape aspects introduced in “The Eight Vs of API Landscapes” on page 235. It
also means the C4E has to decide when to invest in which aspects, by observing for
which of the Vs it is acceptable to not provide sophisticated support and where an
investment makes sense. For example, for the volume aspect, it might be acceptable
that for a little while, not much effort is invested in scaling to hundreds or thousands
of APIs, but once more and more teams are building and using APIs, handling the
volume in a scalable way becomes critical and requires investment.

The main idea of the C4E is that it helps API product teams to be more effective
contributors to the API landscape. We discussed API product teams in Chapter 8.
Complementing this discussion, in the next section, we talk about C4E teams and
how managing APIs and the API landscape translates into putting together a team
that supports individual API product teams in the best way.

C4E Team and Context
One role of the C4E is to be the steward of landscape guidance, and to support
teams to follow that guidance. By interacting with API product teams, the C4E
gathers feedback on which new patterns may be emerging and can learn about how
principles, protocols, and patterns may have to evolve to improve the API landscape.

To do this, the C4E needs to evolve along with the landscape. Initially, it is likely
that it will not even be a physical team with dedicated members but instead that
different API product team members (as discussed in Chapter 8) will take on the
roles described here. Over time, however, it is likely that in large organizations, the
C4E will develop into an actual team with its own staff. Even then, it is important

256 | Chapter 10: API Landscape Journey

2 Kevin Hickey, “The Role of an Enterprise Architect in a Lean Enterprise,” November 30, 2015, https://oreil.ly/
OYmKt.

to always keep in mind that its primary responsibility is to support product teams in
their delivery. As Kevin Hickey puts it:2

Instead of a centralized [Enterprise Architecture] group making decisions for the
development teams, you are now an influencer and aggregator of information. Your
role is no longer to make choices, but to help others make the right choice and then
radiate that information.

The team roles we identified in “API Roles” on page 196 are also relevant for the C4E
in many cases, or at least provide relevant input to the activities happening on the
landscape level. But some roles are added at the landscape level that typically do not
exist at the team level.

One example are roles related to compliance. In many organizations, there are dedi‐
cated roles for making sure that the organization complies with regulations and
legislation, tracking changing compliance needs, and ensuring that the organization
adjusts accordingly. For the API landscape, this often translates to existing guidance
that is mandatory to follow (as discussed earlier in this section). To avoid this becom‐
ing a bottleneck, compliance ideally should be something API teams can test for so
that it can become part of the delivery pipeline. In practice, this often may not be
entirely possible and may not even be allowed (somebody may have to sign off after
performing a review). Whatever the organization’s exact needs are, the important
thing is to think about compliance from the API perspective, identify areas where
compliance needs to be turned into guidance, and support API teams so that it
becomes as easy as possible for them to create products in a compliant way.

Another role that typically is unique to the landscape level is that of providing infra‐
structure and tooling. As introduced in “Structuring Guidance in the API Landscape”
on page 250, typical guidance in an API landscape is structured into “why,” “what,”
and “how.” Our recommendation is that every “why” (guidance motivation) should
have at least one “what” (design guidance) and one “how” (implementation guid‐
ance), as well as possible testing infrastructure and tooling for helping teams to more
easily verify their alignment with existing guidance. For each “how/test,” the role
at the landscape level is to enable teams to address and verify that guidance as effec‐
tively as possible. This may mean providing tooling and/or infrastructure to address
and verify that guidance. Creating and maintaining this tooling/infrastructure then
becomes an important role at the landscape level. The better assistance and tooling
work there is at the landscape level, the more teams can focus on addressing their
business and product needs, instead of having to focus on fitting into the landscape.
Any friction experienced by product teams should be treated as an important signal
that something needs to be addressed with better assistance and tooling.

The Center for Enablement | 257

https://oreil.ly/OYmKt
https://oreil.ly/OYmKt

One example of such tooling is API linting, which is the process of checking API
descriptions (such as OpenAPI or AsyncAPI) against rules that formalize certain
requirements. To make it easier for API designers to follow design guidance, the
C4E can provide linting tools or services that allow for automated testing. This
tooling can be integrated into CI/CD pipelines, further reducing the effort required
by development teams to follow the available guidance.

In the end, the C4E team plays a critical role as supporters and enablers for API
product teams. They make those teams aware of the decisions that are necessary by
providing guidance about relevant decision-making points, and help them by provid‐
ing infrastructure and tools that enable common API tasks to be solved effectively so
that most of the API product teams’ energy can be spent focusing on solving business
problems. In other words, the C4E team is responsible for ensuring each API product
team can move its API through its maturity journey effectively, making the right
decisions along the way, and that this effectiveness can be scaled up to many APIs.

Maturity and the Eight Vs
The eight Vs of API landscapes introduced in Chapter 9 are important areas of
consideration when it comes to planning API landscapes and their evolution. They
can also serve as guidelines when it comes to determining the maturity level in
these areas, reflecting on the motivations and advantages of improving maturity, and
deciding on possible investments in these areas.

It is important to understand that investment in these areas should be evolutionary
and should be driven by the concrete needs of an API landscape. If architected well,
these investments can be done as needed and incrementally and will not require a
rearchitecting of the API landscape. This means that the maturity of an evolving API
landscape itself is ever-evolving, driving improvements as needed, and the landscape
is continuously improved based on feedback from developers and users.

Like any evolution, this continuous improvement is not a process leading to some
finite or even predictable goal. A landscape’s value is determined by how well it
supports the products being developed in it and how well those products serve
consumer needs. Both development practices and consumer needs change over time,
making it inescapable that continuous improvement is a permanent process.

The main goal of landscape architecture is to make this process as simple as possible,
by allowing the landscape to adapt to the changing needs of producers and consum‐
ers. Landscape maturity can be measured by how much support the landscape can
provide. For the eight Vs that we have identified, it is possible to individually look
at how maturity can be framed for them and what a strategy to manage maturity for
each of them can look like.

258 | Chapter 10: API Landscape Journey

3 The famous quote by American psychologist Abraham Maslow is “I suppose it is tempting, if the only tool
you have is a hammer, to treat everything as if it were a nail.”

This idea of a “maturing landscape” is a little different from the maturity cycle of
API products discussed in Chapter 7. Products come and go, and do so in a journey
through their own lifecycle, which has a start and an end. The landscape is there
to support products and should do so by continuously evolving. There is no single
linear path and no end state. Therefore, there are no stages, and we have addressed
this by investigating how the eight Vs we identified can serve as guiding principles
for continuously improving the landscape, developing your landscape strategy, and
deciding what investments to make at the landscape level at different times.

Variety
As described in “Variety” on page 236, the variety of a landscape depends on how
many constraints are put in place when teams want to design and implement APIs,
and how much freedom teams have when it comes to designing API products that
they consider good solutions.

Variety is a tricky thing to deal with because variety in ecosystems is always a
balancing act between promoting some level of coherence and reuse, while at the
same time not overly constraining teams and forcing them to use solutions that are
a bad fit for their problems. For this reason, variety has two “bad extremes” in its
spectrum.

No variety implies that a chosen pattern becomes the proverbial “Maslow’s hammer”
for everything, being the only way a problem can be solved3 (which often ends up
being a bad fit for at least some of the problems).

Too much variety results in “precious snowflakes,” where diversity means that teams
invest effort in solving problems for which adequate solutions already exist. As a
result, users have an unnecessarily hard time understanding APIs because there is no
coherent “look and feel.”

This balancing act is not easy, and there is no “one true solution” for how to pick
a spot on the spectrum between Maslow’s hammer and precious snowflakes. It is
therefore not appropriate to define maturity for variety in terms of how much variety
an API landscape exhibits. In many cases, it may actually be the case that the variety
is accidental, resulting from either inflexibility in allowing diversity (resulting in low
variety) or inability to promote and manage coherence (resulting in high variety).

Maturity and the Eight Vs | 259

https://oreil.ly/QKFSK

Variety Maturity
What does it mean to manage variety with a high degree of maturity?

• Maturity for variety means that variety is consciously managed in an API land‐•
scape. The currently used choices and the reasoning behind them are clearly
documented.

• Those choices should evolve as needed: variety is managed and driven by a•
balance between promoting reuse and allowing new solutions if existing ones are
inadequate.

• Increasing variety can be done without disrupting the landscape. It is possible•
that some tooling and support in the landscape will need to be adjusted, but all
tooling and support infrastructure must be designed so that increasing variety
can be done incrementally and is part of the underlying architecture.

Variety exists for many different concepts in an API landscape, depending on how
the landscape is organized. For example, for landscapes that are HTTP-based and use
resource-style APIs, one variety factor may be the choice of serializations. While most
of those API landscapes nowadays will probably use and allow APIs to support XML
and JSON, those are simply the most popular choices of today and the recent past.

It may very well happen that new serializations appear or are considered by API
designers. The question should be whether the new format is considered to be a
potentially valuable addition to the landscape. It should be possible to start with a few
APIs and see how they do with the new option. These APIs may not be able to benefit
from existing tooling and support, as long as the new format’s use is experimental
(there is no investment at the landscape level at this stage).

Once a new variation is considered productive, it may trigger updates in available
tooling and support. Mature landscapes can handle these updates as incremental
changes that are added as needed, meaning that adding variety is purely a function
of assessing the utility of the added variation and the incremental cost of tooling and
support updates.

The most important consequence of this view is that all tooling and support should
be capable of these kinds of updates. Any tooling and support not capable of handling
increased variety creates limitations that are not driven by the value that variety can
bring to the API landscape. Instead, tooling and support then prevents value from
being added and therefore is problematic from the API landscape perspective.

260 | Chapter 10: API Landscape Journey

One important consequence of a variety strategy is looking at the API capabilities of
tooling and support. As discussed in “API the APIs” on page 233, when everything is
done through APIs, including interactions of tooling and support, then it becomes
easier to extend variety. As long as new variations support the same APIs, they still
can interact with existing tooling and support infrastructure.

Variety Maturity Strategy
When investing in tooling and support, always consider how these investments
translate when variety increases. Try to avoid tooling and support that has no clear
evolution path. Tooling and support should be able to adapt to your choice of the
most productive level of landscape variety instead of dictating it.

Vocabulary
As discussed in “Vocabulary” on page 238, many APIs use vocabularies that deter‐
mine certain aspects of the API’s model. Vocabularies can come into play in many
different ways, and in many cases an API may use a certain vocabulary when it is
initially released, but also foresee that this vocabulary may change over time. In that
case, the vocabulary becomes part of the API’s extension model, and the question
then is how this extensibility is designed and managed.

The fact that vocabularies used in an API landscape do evolve is a result of the fact
that domain models of APIs tend to evolve over time. Vocabulary evolution in the
API simply is a reflection of that reality. Vocabularies often evolve by refining the
understanding of the problem domain: for example, adding social media handles
to a customer model that previously only had basic personal information. The
question then is how to deal with data (existing customer records without social
media handles) and code (applications without built-in handle support) that came to
existence before the customer model evolved. Managing this vocabulary evolution in
a disciplined way is what defines the maturity of how vocabularies are handled in an
API landscape.

Vocabulary Concepts

“Vocabulary” on page 238 discusses which vocabularies may be
used for APIs, such as domain-agnostic concepts (for example,
language codes), domain-specific concepts (the domain reflected in
the API), and the domain of concepts for API design itself (such as
HTTP status codes).

Maturity and the Eight Vs | 261

Vocabulary Maturity
The basic starting point from an individual API point of view is for each API to
identify potential vocabularies where the API may evolve. This goes hand in hand
with identifying extensibility points of the API: if an API team expects a vocabulary
to evolve, then it must identify this in the API itself and provide a processing model
for API users.

Once vocabulary evolution becomes a natural part of APIs, it becomes important
to manage it responsibly. On the one hand, that means responsible versioning on
the API side and documenting versions across time. On the other hand, it means
helping clients to use APIs in a way that handles evolution correctly. What this means
depends largely on how individual APIs decide to implement vocabulary evolution.

It can be left to individual APIs to manage the evolution of their vocabularies.
However, an alternative model is that the API landscape supports this approach and
allows the vocabularies to evolve independently of the APIs. One typical pattern to
do that is through the use of registries, and supporting and managing registries is
something that can become part of an API landscape itself.

This last maturity aspect warrants some additional explanation. There are two differ‐
ent ways vocabulary evolution can be “delegated” (i.e., managed outside of the API
itself). One is by reference to an external authority that is in charge of managing the
vocabulary, and the other is by managing the vocabulary in the API landscape, but in
a way that separates APIs from the evolving vocabularies:

External authority
One typical example for this is the use of language tags (i.e., identifiers for human
languages, such as “English” or even possibly “American English”). In most cases,
APIs probably should not include a static list of these language tags. Instead, it
makes sense to refer to one of the lists managed by the International Organiza‐
tion for Standardization (ISO) in its ISO 639 standard. Using this pattern, an
API can define that a language tag’s value space is whatever the ISO decides are
possible language tags at any point in time. ISO guarantees that language tags
evolve in nonbreaking ways by never removing or redefining existing tags.

API landscape support
Not all concepts have external entities and managers (such as the ISO for the list
of language tags), but it is possible to use the same pattern for other vocabularies
as well. API landscapes can support registries, allowing APIs to decouple the
API definition from the evolving value space of vocabularies. Operating such a
registry is not an extremely complex task but still should not be the responsibility

262 | Chapter 10: API Landscape Journey

https://oreil.ly/VhE3a
https://oreil.ly/a23v2

4 After all, one of the main motivations of a registry is to decouple the management of a list of well-known
values from places where they are used.

5 The IETF’s IANA registry model is a very good one to illustrate how simple and yet effective such an
infrastructure can be. It also is a good demonstration of how, by applying this design pattern systematically
across its many specifications and API definitions, it was possible to make these specifications more stable,
because for many changes only registries need to be updated.

of individual API teams.4 Instead, there should be landscape-level registry support
in the same way as, for example, the Internet Engineering Task Force (IETF)
manages its registries for its specifications in the more than 2,000 registries
managed by the Internet Assigned Numbers Authority (IANA).5

The role of architecture for managing vocabularies is the same as for other aspects
of nurturing a productive and supportive environment for APIs: monitor the needs
and practices of existing APIs, and step in with good practices and support when
vocabulary evolution seems to become a repeating patterns across APIs.

The initial good practice should be to at least identify potentially evolvable vocabula‐
ries in APIs and document them, which can be part of a general extensibility good
practice. If there are repeating occurrences of APIs evolving simply as an unintended
consequence of vocabulary evolution, then this may indicate that API landscape
support for vocabulary evolution could help reduce the need for API updates.

Maturity for the vocabulary aspect might be harder to achieve, because it is not
trivial to come up with ideas of how vocabulary use in APIs can be made observable.
This may be one of the cases where some up-front investment may help to improve
observability. For example, by creating tooling to document vocabularies, it may
become easier to observe their use and evolution across APIs. But that’s assuming that
API teams find such documentation support useful enough to use it, which in turn
might require better observing how teams typically document their APIs. As can be
seen, the maturity journey often is not just a question of landscape-level support and
tooling: it may start with understanding what should be observed and then devising
methods for observation.

Vocabulary Maturity Strategy
Promote good practices that decouple API design from the evolution of vocabularies,
if possible. Start by promoting the reuse of externally defined and managed vocab‐
ularies, such as those defined and managed by standards-defining organizations.
Monitor how many API changes may be (mostly) driven by the need to update
vocabularies, and consider providing support for managing vocabularies in the API
landscape independent of specific APIs by setting up the infrastructure for it.

Maturity and the Eight Vs | 263

Volume
“Volume” on page 242 suggests that having more APIs can be better than having
fewer APIs. This is not necessarily the case, of course, but it hints at the fact that
decisions on whether APIs should be allowed into the landscape or not should not
be driven by considerations that the API landscape simply cannot handle the volume.
More volume isn’t necessarily better, but it also shouldn’t be automatically considered
to be worse.

Instead, the overall goal should be that APIs are always allowed to be created,
changed, and withdrawn. The role of the API landscape is to be able to scale to
whatever level that is, and the ability to handle the volume should ideally never factor
into strategic decisions about landscape size and rate of change.

Managing volume in an API landscape mostly revolves around considerations for
economies of scale. Things that may make sense to not support or automate at a
smaller scale may be reasonable targets once the landscape starts growing. This is
a simple pattern around return on investment (ROI): investing in support or automa‐
tion makes sense past a certain threshold, when the expenditure to solve problems
individually (and over and over again) is higher than the expenditure for support or
automation.

Once volume drives support or automation, some coherence may appear in the
landscape, since more APIs will start to use these supported mechanisms. This will
make them more similar, thus helping landscape users to more easily understand and
consume APIs because they approach certain problems in a certain way.

However, as mentioned in “The Center for Enablement” on page 254, one important
thing to keep in mind is that support or automation (the “how”) should never be the
one and only allowed way to do something. It is something that a C4E should identify
and provide as part of the general API platform support, but it should always be
something that can be replaced with a better way of solving the same problem once a
better solution has been found.

As pointed out earlier, the most important aspect of volume maturity is to not let
volume get in the way of making decisions about whether and how an API landscape
can grow. The best way to do this is to monitor the ongoing evolution of the API
landscape, track what teams are implementing and how they are implementing it, and
invest when it seems that support or automation could step in to help teams be more
productive.

264 | Chapter 10: API Landscape Journey

6 One could also consider the creation of “technical debt” as something that should be taken into account. We’ll
skip over this here, but taking a proactive approach of always considering how hard it will be to move away
from support or automation is an important landscape management aspect as well.

Volume Maturity
• Monitor how API teams are solving the problems associated with designing,•

building, and operating their products, and consider investing in support or
automation as needed (i.e., when it becomes useful from the ROI point of view).

• For all potential support or automation, consider the value created both for•
teams producing the API and for consumers of the API. The overall value
created by support or automation is the sum of these two values.6

• The most important activity from the API landscape point of view is to identify•
repeated design or implementation activities that teams are doing and to explore
possibilities to improve productivity by investing in support or automation.

This approach implies that the API landscape is actively monitored and thus allows
these decisions to be data-driven. One good pattern to enable this in a scalable way is
to follow the “API the APIs” principle described in the previous chapter, by making
sure that APIs themselves expose information about themselves. That way, it becomes
possible to build support and automation into the monitoring of APIs as a way to
decide when to invest in support and automation for the design and development of
APIs.

One good way to evaluate maturity for the volume aspect is to reflect on what
information about the API landscape is readily available to those assessing the land‐
scape. Keep in mind that this information can be collected in any way, as long
as it is available. It can be made available through the APIs themselves (“API the
APIs”), through instrumentation of runtime infrastructure (for example, capturing
data from API gateways), or through instrumentation of design-time/development
infrastructure (for example, collecting data from shared development/deployment
platforms of API products). As long as this information is available, it becomes easier
to understand and manage the trajectory of the landscape.

Maturity and the Eight Vs | 265

Volume Maturity Strategy
Handling volume requires a foundation that can be used to observe APIs in a scalable
way and thus understand the evolution of the API landscape. Observability should
include API information that can be used to make investment decisions based on
trends in the API landscape. Managing volume itself can be scaled up to handle larger
volumes when the information required to understand the API landscape is part of
the APIs themselves. This “API the APIs” approach will evolve over time, changing
the set of observable information that is used to understand the ongoing evolution of
the API landscape.

Velocity
As discussed in “Velocity” on page 242, velocity refers to the fact that API landscapes
are likely to change continuously and at a relatively fast pace. On the one hand, this
is the result of more and more APIs to be created and used, but on the other hand, it
also results from APIs being treated as products, and as a result being observed and
changed in response to user feedback and requirements (as described in Chapter 3).
Also, in most cases this change happens in uncoordinated ways, since one of the
goals of API landscapes is to allow products to evolve individually, instead of having
complex coordinated release processes that allow products to evolve only in highly
interdependent ways.

Handling velocity in a mature way means that API releases and updates can be done
as necessary and that the API landscape is capable of supporting a high rate of
change. Maturity along this axis should be able to evolve itself. While initially an API
landscape may be small enough so that even relatively high rates of changes still mean
a smaller number of API changes, this will change over time. Particularly, the combi‐
nation of increasing volume (as discussed in “Volume” on page 264) and velocity of
API changes means that handling velocity does become increasingly important as an
API landscape grows and matures.

Velocity Maturity
• APIs should always be designed for changeability. Depending on the API style,•

that can mean different things, but asking teams about their extensibility road‐
map is a good first step to make it part of the API design culture to see API
evolution as a natural part of the API lifecycle.

• Evolving APIs mean a change in practice for API consumers as well: API con‐•
sumption needs to be resilient enough to handle API evolution so that the
evolution of the API and of its consumers are decoupled.

266 | Chapter 10: API Landscape Journey

7 In this case, convenience is higher on the consumer side, and the producer has to invest in the operational
effort of running various API versions concurrently.

8 In this case, convenience is higher on the producer side, and the consumers have to invest in making sure that
the ongoing evolution of the API is handled by their applications.

• Increasing the velocity of API changes is possible by making sure that coordina‐•
tion overhead between API implementations is reduced. One way of doing this is
by adopting microservices as a pattern of implementing services.

These considerations also make it clear that velocity has an impact on producers and
consumers. With growing size and popularity of an API landscape (and hence an
increasing number of consumers), handling velocity in a mature way becomes more
important. Having to coordinate updates between an API and all consumers becomes
increasingly expensive and quickly reaches the point where the coordination cost
may cause teams to reconsider product improvements.

As pointed out in “Versioning” on page 246, there can be different strategies for how
to deal with changing APIs. They might change transparently, so users are experienc‐
ing a changing API and these changes are made clear through the API’s semantic
versioning number (see “Semantic versioning” on page 247). Another possibility is
that the promise of stable versions and velocity then translates to an ongoing stream
of new versions being released and made available in parallel. This latter pattern
implies that it should be easy for consumers to learn about new versions and find
information about them, as discussed in “Visibility” on page 245.

While it is important to enable velocity, it is equally important to manage it. With
increased velocity, consumers need to be able to keep up. This can be done in various
ways, such as promising stable APIs that will remain operational for a certain period
of time,7 or continuously evolving APIs and thereby removing the need for keeping
older versions operational.8 Whatever pattern the landscape supports, this is an
area where individual APIs can benefit from landscape-level support, so establishing
practices and supporting them becomes a worthwhile investment.

Velocity Maturity Strategy
Enabling agility (i.e., the ability to change things quickly based on feedback and
requirements) is one of the main driving factors of API landscapes. On the one hand,
designing for change means designing APIs so that they can be changed quickly
and easily by producers. On the other hand, consuming changing APIs means that
there must be a consumption model that allows consumers to handle changing
services. Anything that makes changing things hard should be carefully identified and

Maturity and the Eight Vs | 267

examined. This can be an incremental process where one factor that reduces velocity
is identified and improved, and then this process is repeated as needed.

Vulnerability
As discussed in “Vulnerability” on page 244, increasing vulnerability is a logical
conclusion of a journey toward a bigger API landscape. Having no APIs means
having no potential vulnerabilities through APIs, and any API that gets added from
there on is a potential vulnerability. Being aware of this simple and inescapable fact is
a good first step toward maturity regarding the vulnerability landscape aspect.

Depending on their audience, APIs may just be exposed to internal consumers
(private APIs), or they might be exposed to external consumers as well (partner
and public APIs). As shown in Figure 10-1, in many cases these two or even three
scenarios are secured differently, often even with separate components put in place.

Figure 10-1. Securing APIs with API gateways

From the security point of view, it is understandable that this is implemented in a
relatively centralized way, making it possible to observe and manage (and possibly
interrupt) traffic to better understand usage and potential problems. On the other
hand, this security-driven centralization conflicts with the general decentralization
effort, raising the question of how much control individual API products have
(and should have) over the control and configuration of the centralized security
enforcement point. Balancing speed and safety is a challenge here, but once again it
should mostly be driven by organizational and security needs and not by technical
constraints of the architecture.

Following the general pattern of how we look at the maturity journey, the same
applies to vulnerability: it is important to observe the development of APIs in the
API landscape and to distill common themes and areas where landscape support and
tooling can help. The only exception to this general rule is that vulnerability is a
higher-risk aspect, which means that landscape observation and taking action in a
more prescriptive way may be appropriate.

One example of this is the recent developments around personally identifiable infor‐
mation (PII) being exposed through APIs. The growing popularity of APIs means

268 | Chapter 10: API Landscape Journey

that there is a higher risk of PII being exposed through APIs. Exposing PII is risky for
an organization because of potential legal, regulatory, or reputational consequences.
These risks may not always be immediately visible to the teams creating API prod‐
ucts. In addition, while information being exposed by one API may look sufficiently
anonymized to not be considered PII, the increasing availability of complementary
information through other APIs means that de-anonymization is becoming a risk
that often is better assessed at the landscape level than on the level of individual APIs.

Another issue is the unintended consequences of exposing certain data through APIs.
In 2016, the European Union (EU) enacted the general data protection regulation
(GDPR). This regulation pertains to processing PII and requires all organizations
in the EU to provide information about the PII in their possession and to make it
available on request. This means that creating API products that manage PII has
far-reaching consequences for an organization. Depending on the size and maturity
of the organization, implementing the required processes for GDPR compliance can
be complex.

What these examples show is that even though velocity is beneficial in API landscapes
and one of the reasons why organizations switch to API strategies in the first place,
it still is necessary to manage the risk—and depending on the business sector of the
organization and the APIs being developed (and their intended set of consumers), in
many cases vulnerability considerations and vulnerability management are necessary
for responsible risk management.

Vulnerability Maturity
• APIs by definition expose business capabilities that previously were not (or not•

as easily) available to consumers. Assessing the risk of every single new API is
necessary to avoid scenarios with information leaks or other problems that create
organizational risk.

• API products should document all the information they store and the reason for•
storing it. Information is potentially valuable, but it also can increase risk; man‐
aging information should always be treated as something potentially introducing
legal, regulatory, or reputational risk.

• Securing APIs is essential to a responsible API strategy and should be treated•
as an essential component of the organization’s overall information security
strategy.

When compared to other landscape aspects, vulnerability stands out in the sense that
it introduces greater risk than the others, because of the inherent problems of APIs
providing access to business capabilities and the potential problems arising from that
general perspective.

Maturity and the Eight Vs | 269

9 “Stevey’s Google Platforms Rant,” GitHub Gist, October 11, 2011, https://oreil.ly/jxohc.

Apart from the issues of security against malicious attackers or potential legal, regula‐
tory, or reputational risk, there also is the issue of service stability and testing. As
the quote goes, with great power comes great responsibility—meaning that when API
products have more autonomy in terms of how they are designed, developed, and
deployed, this also has the potential of adding new failure scenarios. In his famous
“Google Platforms Rant,” Steve Yegge says, “Every single one of your peer teams
suddenly becomes a potential DOS attacker. Nobody can make any real forward
progress until very serious quotas and throttling are put in place in every single
service.”9 This quote highlights that robustness and resilience also play a part in the
stability of an API landscape and that it does become vulnerable to failure models
that are introduced by decentralization and could be handled more easily in central‐
ized scenarios.

One of the biggest challenges for the landscape aspect of vulnerability is to adjust to
the new reality of more accessible business capabilities. Since API landscapes have the
explicit goal of making these available, this is simply a reality that has to be managed.
By assessing and managing the vulnerability of every single API, and making it easy
for API products to fit into this architecture, vulnerability management can fit into
the new decentralized view of an API-focused IT landscape.

Vulnerability Maturity Strategy
The transition to API landscapes requires a different way of managing vulnerability.
The traditional model of inside versus outside has to be replaced by a model that
treats all services as individual and potentially externalized components and allows us
to apply the same security models to all of them. The landscape must make it easy
for services to protect themselves from malicious or problematic behavior. There may
be “private/partner/public” services, but switching categories ideally should mean
nothing more than applying different security policies.

Visibility
One of the important aspects of visibility, as discussed in “Visibility” on page 245, is
the observability of APIs. It follows the principle described in “API the APIs” on page
233, which states that “everything to be said about an API should be said through
the API.” Following this principle, everything necessary becomes visible through the
API, making it accessible in the API landscape so that over time, and when needed,
additional services can be built on top of this information.

270 | Chapter 10: API Landscape Journey

https://oreil.ly/jxohc

10 Ironically, this is the original meaning of the term application programming interface, where an API was
conceived as the interface between two colocated software components (often user code and a library). More
recently (and in this book), in most cases people now refer to network interfaces when talking about APIs,
switching the meaning of the term to something that does not cover the traditional “local API” scenarios any
longer.

As with everything in API landscapes, this is an evolutionary and incremental pro‐
cess. Initially there may not be much information about an API that needs to be
exposed through the API. Over time, however, this view might change as increasing
volume and velocity dictate that certain aspects of the API landscape need better
support and automation. If this support and automation can be built on top of APIs,
it becomes part of the API landscape itself, meaning that it does not need non-API
ways to interact with services.

After all, one of the fundamental properties of APIs is to provide encapsulation,
meaning that an API should encapsulate everything about its implementation, making
the API the only interface to interact with. Any path around this, even for “internal”
purposes, thus could be considered a violation of the API landscape approach.

If APIs are an organization’s chosen approach to make all dependencies explicit, well
defined, and therefore visible and manageable, then any practice creating invisible
dependencies undermines this approach. This is the reason why Jeff Bezos’s famous
“API mandate” (discussed in “The Bezos Mandate” on page 52) has the final message
that no practice circumventing the API strategy will be tolerated: “Anyone who
doesn’t do this will be fired.”

One common way dependencies are created without API landscape visibility is
through the use of (potentially shared) libraries.10 While many developers might
think that using libraries is different from creating “API-level dependencies,” it really
is not, in particular when it comes to using libraries that are either shared across API
products or that imply runtime dependencies on other components. This means that
treating libraries in the same way as other APIs can go a long way toward avoiding
scenarios where dependency management problems creep back into the landscape,
and not even at the visible and managed level of APIs.

Visibility Maturity
• One important aspect of visibility is to expose everything about an API that is•

needed to use or manage it in the API landscape. That information will probably
evolve over time, so being able to change the API easily in response to the
changing information needs of users and managers is important.

Maturity and the Eight Vs | 271

11 Exposing dependencies can be done in many different ways: it could be done by developers explicitly listing
dependency information, by using tools that do code inspection of the implementation, or by runtime
observation at the API level.

• Another important aspect of visibility is to expose every dependency through•
APIs so that APIs become an accurate reflection of dependencies and there are
no hidden dependencies that use side channels instead of APIs.

• Once the API landscape grows, API-level visibility needs to be complemented•
with landscape-level visibility, i.e., with the ability to find APIs based on their
visible information.

• Finally, visibility also applies to how easily API information can be used. For•
example, when APIs standardize on certain capabilities such as how to represent
error messages or status information, this information can be more easily used
and aggregated at the landscape level, which will increase the visibility of these
API aspects.

API-level visibility nicely feeds into landscape-level visibility: whatever is made visi‐
ble at the API level can be used at the landscape level to improve the discoverability of
APIs, making them easier to find (and thus more visible) at the landscape level.

For example, if APIs expose their dependencies clearly and visibly at the API level
(taking into account the principle we discussed about all dependencies being treated
as API dependencies),11 then this information can be used to create a dependency
graph and even create higher-level information, such as computing API popularity.

In a feedback loop, visibility needs at the landscape level might feed into visibility
requirements at the API level, and observing the needs of API users and the practices
of API providers will allow the landscape to adapt to new visibility needs.

As visibility matures and gets to the point where APIs are maturing to be better
landscape citizens (by adapting to visibility requirements that were triggered by
visibility issues at the landscape level), it may become a pattern to separate the
“landscape-assisting” parts of an API from its functional aspects. This practice may
have to be accompanied by robust vulnerability practices, if the “landscape-assisting”
part should be restricted to be available to landscape tooling only.

272 | Chapter 10: API Landscape Journey

Visibility Maturity Strategy
For APIs to provide value, they must be useful and findable. To be useful to the
landscape, they may have to improve the visibility of some of their information. Any
problem in the API landscape should trigger the question, “What information would
help with solving that problem?” If there are implications for visibility at the API or
landscape level, this should trigger updated guidance (adding visibility to APIs) or
updated landscape tooling (adding visibility to the landscape).

Versioning
Velocity—the ability for API products to change quickly in response to feedback or
evolving requirements—is an important motivation for moving to an API landscape.
Versioning is an inescapable part of that, because every time an API product changes,
it becomes a new version. As discussed in “Semantic versioning” on page 247, this
might not necessarily mean that a consumer has to do something about it (minor-
level version number increases indicate compatible changes), or even has to know
about it (patch-level version number increases indicate that there are no changes to
the interface). But managing this versioning process to minimize negative impact on
the landscape is essential to make sure that velocity is not compromised more than
necessary.

Versioning applies to APIs of all styles. In the tunnel, resource, and hypermedia
styles, it is concerned with changing the interface of the resource that is used for
interactions (either procedures for tunnel APIs or interactions with resources for
resource/hypermedia APIs). In query-style APIs, versioning is not part of the inter‐
face itself (which is the generic query language), but the discipline of managing the
schema of the data to be queried in such a way that existing queries keep working.
In event-based APIs, versioning applies to the message design, making sure that
consumers of new messages have the robustness to treat new messages like old ones
instead of rejecting them because of changes to the message schema.

Managing versioning for APIs can follow different paths, and these are in part
motivated by different goals for the APIs: promising customers stable APIs that will
never change (like Salesforce does) has value for customers and thus may be a good
investment, but on the other hand, this strategy incurs operational costs in running
many different versions in parallel. Another strategy is to follow the path of Google
and make no promises of complete API stability but implement a disciplined API
change policy. This strategy carries a greater risk of consumers getting it wrong, but
on the other hand, it reduces operational complexity.

Maturity and the Eight Vs | 273

https://oreil.ly/YMIVU

Versioning Maturity
• Making sure that every API has a versioning strategy is a first step toward•

versioning maturity. This might include accepting that APIs make a conscious
choice of not supporting versioning and that any updates will be breaking
changes and essentially new products.

• Versioning models heavily depend on the API style and usage model of APIs and•
the cost/benefit balance of what producers and consumers must invest in these
models.

• Versioning benefits a lot from being treated consistently, if not across the entire•
API landscape, at least for certain classes of APIs and users.

• Depending on the versioning model, API landscape support may be able to help•
API producers and/or consumers to make sure that the landscape’s versioning
model is supported and properly used.

Generic models for versioning are still in their infancy, both in standards and in
tooling. For example, the popular OpenAPI description standard has no model of
“versions” or “differences,” making it hard to use it as a solid foundation for version‐
ing. Instead, the standard encourages code generation from the descriptions, never
addressing the question of how to manage this in scenarios where the API evolves
and thus has a new description. This in turn raises the question of how to change the
consuming code to adapt to the changed API.

It is likely that with increasingly complex and dynamic API landscapes, the impor‐
tance of versioning will increase, and standards and tools will adapt to this develop‐
ment. For now, versioning maturity still requires attention and good management
at the landscape level, and individual APIs will be able to benefit substantially from
guidance and/or tooling provided at this level.

As with everything at the landscape level, versioning should not be addressed under
the assumption that there is one true way of doing it. Having a strategy and support‐
ing it is good, but being open to other models and being able to transition to them is
even more important. Versioning might differ substantially across API styles, certain
classes of APIs, or certain groups of API consumers, so being able to evolve those
strategies and where they apply over time is important.

274 | Chapter 10: API Landscape Journey

Versioning Maturity Strategy
For versioning to be as nondisruptive as possible in API landscapes, hard versioning
should be minimized as much as possible, and soft versioning should be supported
as much as possible. Soft versioning approaches come in a variety of flavors, but
the most important consideration is that versioning is disruptive enough in itself
that a consistent versioning strategy (and possible tooling and support for it at the
landscape level) should be in place as early as possible.

Volatility
Programming models are hard to change, especially in the minds of those doing the
programming. As we saw in “Volatility” on page 247, programming in distributed
systems is particularly challenging because many failure modes exist that would
not exist in a more integrated environment, where failure models are less complex.
Handling the inherent volatility of services in API landscapes requires a change in the
mindset of developers.

When initially moving to an API landscape, it is likely that developers will stick
to their programming models and write applications that make overly optimistic
assumptions about component availability. Particularly in landscapes where there are
many dependencies, this can make it hard to locate the source of problems: when one
application exhibits problems, finding the root cause might require a “trace” through
various services, a different task from the more traditional approach of being able to
instrument and subsequently debug monolithic code.

Ideally, applications will handle all API dependencies and have resiliency built into
them, including approaches such as graceful degradation. To better deal with volatil‐
ity, it also is possible to develop in a style that is more defensive and that attempts
to make the most out of the operational reality of a landscape. Not all dependencies
that an application has may be essential, meaning that it is possible to develop an
application to have reasonable fallback behavior (and still be operational and provide
value) even when some dependencies are not available.

Maturity and the Eight Vs | 275

Volatility Maturity
• Locating error conditions is the most fundamental requirement that must be•

satisfied in an API landscape. The ability to trace traffic and gain insight into the
traces often is an essential part of the ability to locate problems.

• Changing development practices to better accommodate decentralized failure•
modes helps with making sure that individual failures do not necessarily turn
into cascades along the dependency chain.

• The more developers can be helped or nudged toward more resilient develop‐•
ment practices, the more robust the API landscape will be.

While volatility is an inescapable fact of decentralization, it should be kept in mind
that the move from integrated to decentralized models changes the failure model.
With individual services now being able to fail, the reliability of the overall system
gets impacted by individual service reliability in a more complex way, and the
compound effect of these individual failures grows as the API landscape—and the
dependency graph between APIs—grows.

Dealing with the potential increase in the overall failure rate means that it’s necessary
to minimize the propagation of failures. In part, this can be done by making sure that
components are resilient against failures, isolating them instead of propagating them.

Volatility is one of those aspects that you may think you can put off dealing with
for a while, but problems can quickly spiral out of control, in particular when the
dynamics of an API landscape start picking up. And of course, the worst possible
moment for landscape-wide reliability problems to manifest is when the growth and
change rate of the API landscape are increasing. For this reason it is a good idea to
start investing in handling volatility early on and to see it as a necessary first step in
the general API-landscape maturity journey.

Volatility Maturity Strategy
Managing volatility in an API landscape requires a change in developer practices to
write applications that behave responsibly in a distributed system. It also requires
the landscape to provide the tooling that is needed to handle volatility in distributed
systems, such as tracing errors. The impact of not handling volatility in a mature
way will be felt quickly, in particular when the landscape grows quickly and/or when
services in the landscape have different operational stability.

276 | Chapter 10: API Landscape Journey

Summary
In this chapter, we have explored the API landscape maturity journey, using the
landscape aspects (the eight Vs) introduced in Chapter 9 as a way to frame the
journey toward a more mature API landscape. For each of the aspects, we looked
at individual factors that influence maturity. We also looked at how investments in
maturity improvements will manifest themselves on the landscape level. We have
chosen not to show one linear path to “API landscape maturity,” but instead have
used the landscape aspects to show this journey as a multifaceted path. The most
important thing to keep in mind is that all aspects have an impact on the overall
API landscape maturity and that it is therefore always important to keep all of them
in mind when assessing a landscape’s current maturity level and possible paths to
improving it.

In the next chapter, we will connect the dots, looking at how API landscape maturity
interacts with the API product lifecycle as presented in Figure 7-1. After all, the
purpose of API landscapes is to provide good conditions for APIs to be developed,
used, and improved, and thus we need to understand how the practice of building
individual API products is affected by the landscape in which these products get
developed and deployed.

Summary | 277

CHAPTER 11

Managing the API Lifecycle
in an Evolving Landscape

Many drops make a bucket, many buckets make a pond, many ponds make a lake, and many
lakes make an ocean.

—Percy Ross

Ideally, if you’ve been following along in the book up to this point, you’ve noticed that
there are some key differences between managing the lifecycle of a single API and
managing the lifecycle of an entire landscape of APIs. In, fact, it is our experience that
companies that notice—and act according to—this important distinction between
“the one” and “the many” are the companies that have the best chance of long-term
success in their digital transformation efforts.

In this chapter, we’ll touch briefly on these differences and then dive into the lifecycle
pillars we introduced in Chapter 4—this time, we’ll focus on the landscape (the many,
as introduced in Chapter 9) instead of the API (the one). This should give you some
perspective on how the challenges of scope, scale, and standards we discussed in
Chapter 1 come into play when you are growing your API ecosystem.

Along the way, we’ll return to the eight Vs of the API landscape (introduced in
Chapter 9 and refined in Chapter 10) and touch on some of the decision-making
elements to employ (described in Chapter 2). Bringing all these elements together will
help you gain a point of view on how you can best apply these patterns and practices
in your teams, for your products, in a way that fits your company’s culture and values.

But, before we revisit the landscape and API product models, let’s go over some
pragmatic approaches to making API management work at the complex level of the
evolving landscape.

279

Managing an Evolving Landscape in Practice
In any medium- to large-sized organization, you’ll end up with lots of APIs. Each of
those APIs will have their own team dynamics, microcultures, and product lifecycles.
In previous chapters we’ve touched on the properties of the landscape of APIs and the
things you’ll need to think about as it grows.

Later in this chapter, we’ll try to tie together the “macro” model of the landscape that
we’ve built up with the “micro” model of the API product that we established earlier
in the book. But before we get to the unification of our models, we want to explore
three practices that can help you start managing your landscape.

In truth, managing a landscape of API products isn’t easy. We’ve alluded to the
complex nature of the landscape throughout this book. But, that complexity really
hits home when you’re the one who is responsible for making all the APIs in your
organization safer, better, and cheaper.

With that in mind, we’ve outlined a few approaches that have helped us and the
practitioners we’ve spoken to. Let’s start with an important first step in any system
design work: defining your boundaries by establishing your “red lines.”

Socialize Your “Red Lines”
In the natural world, evolution happens because some things work while others don’t.
The things that work stick around in the long-term, while the things that don’t work
die away. Evolution is powerful. But, practically speaking, you probably can’t afford
to have your product, business, or organization “die off ” for the sake of long-term
evolutionary success.

That’s why one of the first practical things you should do is define the “red lines” for
your landscape context. What are the things that are nonnegotiable where you work?
These are the things that you can’t afford to experiment with. That could be because
the risk associated with poor decisions in this area is too high, because it deters you
from a known business goal, or simply because it goes against the company culture.

In our experience, these kinds of boundaries and constraints are often unspoken and
ill-defined in large organizations. This can lead to problems when new people come
in and waste time trying to drive innovation without understanding that a boundary
has been set. It’s useful to express these boundaries in a way that people can learn
from quickly—as principles, policies, or even as “best practices.”

280 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

For example, here are some of the “red lines” that we’ve run into at various
organizations:

• Service outages are unacceptable, and we must achieve 100% uptime of client-•
facing applications at all costs.

• We can’t use tools from company X due to a recent dispute.•
• Team structures need to adhere to human resources’ recently released mandates.•
• Don’t make technical decisions that contradict the founder’s decisions.•
• We can’t store any data for users from Svenborgia.•

Don’t forget that “red lines” are not meant to be challenged. That means you’re
limiting your innovation potential whenever you introduce them. But, on the plus
side, constraints can be a designer’s best friend. They can help you channel the
organization’s energy into areas with massive improvement potential.

Platforms Over Projects (Eventually)
It’s really difficult to get the most out of a landscape of APIs without continuous
improvement. That’s a central theme of this book, and it reflects our real-life experi‐
ences. But the problem is that a lot of organizations aren’t built to work this way.
Continuous improvement can also mean continuous cost, and that can be a big leap
for an organization that hasn’t yet bought into the value of API management.

Another way of saying this is that an organization should adopt a product (or
platform) mindset for API management. That means that an enduring team designs,
builds, and supports the landscape of APIs. They own the decisions and responsibility
to improve the API products that live within it. This is different from a project mind‐
set where an organization funds short-lived teams who fulfill landscape improvement
projects.

Here are some examples of classic project approaches:

• A limited, six-month funding investment to improve API governance•
• Engaging a consulting firm on a fixed-term basis to audit and improve a set of•

APIs
• Using a pool of centrally managed delivery teams for short-term technology•

improvement projects

From an organizational perspective, the project mindset is efficient, measurable,
and manageable. But it also introduces barriers to change, execution, and holistic
decision making. Without an enduring team, landscape features become disconnec‐
ted and conflicting. Without enduring funding, fewer changes or improvements are
introduced because of the overhead costs associated with gaining approvals.

Managing an Evolving Landscape in Practice | 281

If you’re lucky, you’ll be able to create an enduring team that has the trust of the orga‐
nization to curate your landscape on day one. But, in many existing organizations,
there is a need to earn that trust (and funding). To get there, you’ll need to work
harder and adapt a project perspective into a platform perspective by delivering value.
Sometimes that will take a bit of negotiation. Taking the previous examples, you
could try the following tactical approaches:

• Use part of the funding to build a business case for the next funding cycle. Repeat•
and build a case to establish an enduring team.

• Select a firm that will take a landscape perspective of your APIs so that they can•
advise on organizational and operational changes that you’ll need for platform
success.

• Define an API management specialization skill. Then find and use a consistent•
group of people who you can grow into an enduring team.

None of these approaches is perfect. But they highlight that you may need to take a
practical approach to shift your organization to a platform mindset from the bottom
up.

Design for Consumers, Producers, and Sponsors
Whether it’s a product or a platform, success depends on meeting your user’s needs.
In an API landscape, you’ll need to quickly figure out who the key consumers,
producers, and sponsors for your system are.

Serving your consumers
One of your early goals should be to improve the way that the landscape as
we’ve defined it in Chapter 9 can serve the needs of API consumers. How will
you shape the variety, volume, visibility, and other Vs of your landscape so that
they meet the needs of consumers? A good starting point is to identify who your
primary consumers are and the needs that they have. Then you can check the
design and execution decisions you make against those needs. For example, if we
were offering a meeting scheduling service, we’d prioritize the needs of develop‐
ers using our scheduling API, but also the needs of teams who use internal APIs
to fulfill those users’ needs.

Serving your producers
Being consumer-centric makes sense for a product. But, to embrace the platform
perspective as we defined in “The Platform Principle” on page 228, we’ll need
to serve the needs of the teams that build and run APIs as well. How will you
make it easier for API teams to produce APIs that meet the needs of consumers?
Again, it’s worthwhile identifying who your primary API producers will be. That
could mean identifying a few key “archetypes,” communities, or “tribes.” For

282 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

example, you may identify that most of your teams use Java and the Spring
Boot framework. Or you might establish that teams working on externally facing
APIs have different needs than the ones working on internal APIs. However you
define them, the goal is to serve the needs of these producers with the landscape
decisions you make and shape the APIs they eventually output.

Serving your sponsors
Every platform has at least one owner or sponsor. These are the people who
make the decisions about the goals of the system and provide the funding that
is needed to operate, improve, and run it. When we talk about the theory of
a platform, it’s easy to forget about this group. But, anyone who has run an
API management program in a large organization will be acutely aware of the
importance of serving the needs of sponsors. If you don’t think about your
sponsors when you design your platform, it may not last for very long. In large
organizations, it’s a good idea to make your landscape of APIs easier for sponsors
to understand and observe, especially if your platform funding comes from a
nontechnical business team. How easy is it for the business to understand the
API-enabled capabilities that they have? How easily can they map your landscape
structure to their business strategies? Making it easier for your landscape to fit
your sponsor’s needs can help your long-term success.

Designing Platforms
The platform perspective isn’t unique to APIs. In fact, there are already some great
tools and methodologies you can use to help you design holistic solutions that help
you take a needs-based perspective. We’ve had success adopting a service design
approach in our bigger projects. There are also specific tools like the Platform Design
Toolkit that can help guide you in the right direction.

Focusing on the participants in your landscape will help you keep your focus on the
real needs and jobs of your people and your users. That will help you make better
decisions about the landscape and your API products. But you’ll still need to make
bold, speculative decisions. That’s why the spirit of testing, measuring, and learning is
so important.

Test, Measure, and Learn
When it comes to dealing with big, “hairy,” complex problem spaces, the most
common advice you’ll hear is to make small changes and learn from them. This “test
and learn” approach lets you make a small investment in changing a system that
rewards you with information about how to change it better. A landscape of API
products certainly qualifies as a complex system that needs a test and learn approach.

Managing an Evolving Landscape in Practice | 283

https://oreil.ly/XvvdX
https://oreil.ly/XvvdX
https://oreil.ly/rfJsA
https://oreil.ly/rfJsA

We recommend that you develop a strategy for your API management program that
is oriented around this idea.

The real challenge you’ll have is in defining the right steps to take and the best way
to measure your progress as you go. You organizational goals, your “red lines,” and
the technology and people you’re working with will dictate the best way forward.
For example, consider these two very different approaches to launching a landscape
of APIs—one for a new, “greenfield,” cloud-based platform and one for a complex,
existing, “brownfield” platform of APIs:

Organic landscape evolution for a “greenfield”
1. Kick off the development of new API products. Start building before establishing1.

any landscape-level features.
2. Create a cross-product team of API specialists.2.
3. Take the lessons learned and best features of individual APIs and make them3.

landscape-level features.
4. Empower API specialists to bring landscape features back into their API4.

products.

Structured landscape evolution for a “brownfield”
1. Identify candidate APIs that would benefit from improvement (and are safe to1.

change).
2. Establish operational measures and “key performance indicators” to measure2.

progress.
3. Implement landscape-level policies and test them with candidate APIs.3.
4. Observe measurements and make adjustments to the landscape.4.
5. Roll out landscape-level policies to more APIs.5.

We’ve talked a lot in this book about continuous improvement for APIs and API
management. But to bring it to life, you’ll need to get really good at taking small bites
out of this complex problem. It’s OK if you don’t figure it out perfectly on your first
go, but it’s important to adopt a “test, measure, and learn” mentality so that you can
get better as you grow. Defining the right measures and identifying the right steps
isn’t easy. But, the good news is that you can use the eight Vs of the landscape and the
pillars of the API product as a frame to guide you.

Let’s dive into those models and see how they work together.

284 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

API Products and Lifecycle Pillars
As we pointed out in Chapter 3, applying the appropriate level of “product thinking”
to your API efforts helps focus your teams on consumer-centric uses of your inter‐
faces. This is your first-level opportunity to instill Clayton Christensen’s Jobs-to-Be-
Done approach to designing and implementing your APIs. And, at the business level,
teaching your design and architecture teams to ask questions such as “How does
this help us achieve our business goals?” and “What OKRs are we hoping to affect
with this design?” can reduce the chances of your backend teams ending up simply
releasing data-centric interfaces that don’t have a clear user-driven workflow. With
this JTBD and user-driven focus, it is easier for IT leadership to quiz teams on their
contributions and help keep your API initiatives clearly tied to not just IT-centric
KPIs but shared business-level OKRs as well.

Along with the AaaP strategy, we’ve also introduced what we call the API lifecycle
pillars (see Chapter 4). While not true cycles (as in a fixed order that you repeat over
and over again), the lifecycle pillars identify essential elements that support a healthy
API program. You can use the pillars as a guide in creating your APIs. In this way, the
AaaP model and the lifecycle pillars support one another at the single-API level.

However, as you’ve seen in the last couple of chapters that introduce the notion of
the API landscape, companies rarely work in a world where there are just a few
isolated APIs. Instead, most organizations are working to create an ecosystem of
interdependent and interoperable APIs that help expose business value and reduce
the cost and risk of using APIs and services to reach OKRs.

API Landscapes
So far this book has focused on how to continuously manage individual APIs and
how these fit into the bigger picture of the API landscape. The eight Vs described
in Chapters 9 and 10 were used to focus attention on individual aspects of this big
picture, helping you to make sure that you consider everything that’s important while
you manage your growing and ever-evolving API landscape.

In this chapter, our goal is to bring together the perspective of individual API
management and the context of the API landscape they are a part of. We will focus on
our general theme that the interaction between individual APIs and API landscapes
always should be a two-way street. APIs contribute to the landscape and should be
as observable as possible so that the landscape can gain insights into how individual
APIs are being designed and how they evolve. The landscape guides and supports API
product teams by providing insights into the overall picture of principles, protocols,
and practices in the landscape and by providing guidance and support.

The eight Vs (the landscape aspects) can be used to focus attention for the individual
API lifecycle pillars. Our way to bring together the individual API and API landscape

API Products and Lifecycle Pillars | 285

https://oreil.ly/tuyRY
https://oreil.ly/tuyRY

perspectives will be to discuss how the pillars are affected when an API is part
of a landscape, and which landscape aspects are most important to consider when
rethinking that particular pillar (and how to support API product teams relying on
that pillar) in the context of the landscape.

Decision Points and Maturity
In “Decisions” on page 18, we made a point of saying that the code and interfaces
we create today are “dumb”—that our releases just do exactly what they are told to
do, and nothing more. Code can’t decide or explore or experiment; it can only do. The
decisions and creativity come from humans, and those decisions must be translated
into code and APIs at some point in order to be realized.

A big part of decision making is knowing when to decide. It turns out that putting
off a decision is often a smart option when it comes to helping to realize an API
landscape. There are so many interdependent, interoperable elements in a growing
ecosystem that deciding “too soon” can reduce the number of possibilities in the
future and may even eliminate some of the best options for solving your architecture
problems. Tom and Mary Poppendieck, authors of several books including Lean Soft‐
ware Development: An Agile Toolkit (Addison-Wesley), recommend that you “delay
commitment until the last responsible moment, that is, the moment at which failing
to make a decision eliminates an important alternative.”

However, this practice of delaying commitment can be difficult for system-level
IT managers and designers. The common question is when the “last responsible
moment” is. Our goal with this chapter is to help you recognize common changes
in the shape of your API landscape by walking through the pillars and calling out
common challenges related to the different landscape aspects. This should help you
compare the observable aspects within your company (variety, volume, etc.) with the
examples we offer here. Hopefully our examples will give you enough of a guideline
that you’ll be able to identify pillars that need special attention due to your growing
ecosystem.

Landscape Aspects and API Lifecycle Pillars
Just as the lifecycle pillars and the AaaP guidance work together to form a set of
practices to apply to the work of designing, building, and releasing APIs in your
organization, these same pillars can be helpful in managing a growing ecosystem or
API landscape. In fact, we can create a simple matrix (see Table 11-1) that combines
the previously mentioned landscape aspects and the API lifecycle pillars to give you a
sense of the surface area you need to manage in an API ecosystem.

286 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

Table 11-1. API landscape lifecycle pillars and landscape aspects

Variety Volume Vocabulary Velocity Vulnerability Visibility Versioning Volatility
Strategy ✔ ✔ ✔
Design ✔ ✔ ✔
Documentation ✔ ✔ ✔ ✔
Development ✔ ✔ ✔ ✔
Testing ✔ ✔ ✔ ✔
Deployment ✔ ✔ ✔ ✔
Security ✔ ✔ ✔
Monitoring ✔ ✔ ✔
Discovery ✔ ✔ ✔ ✔ ✔
Change
management

✔ ✔ ✔ ✔

Every pillar mentioned in Chapter 4, along with every one of the eight Vs identified
in Chapter 9, deserves attention. As your landscape grows, it does not just “get
bigger.” Instead, your ecosystem changes shape. In a small API landscape (e.g., a
single team working on one related set of APIs), you don’t need to spend much time
creating guidance and standards on API styles or message formats. That is because
everyone is working on the same team, using the same tools, and aiming for the same
results.

However, as your API ecosystem grows, you’ll be adding more teams, with varying
goals. Some of these teams may be in remote locations, using different sets of tools,
with a different history of API styles and guidance. A growing landscape can result in
greater variety, a broader vocabulary, and varying levels of visibility, volume, velocity,
and vulnerability. Growing landscapes change shape over time.

While it is important to review each of the landscape aspects as they apply to the
lifecycle pillars, that would require a much larger book than we can offer you today.
Instead, we’ve decided to focus on select aspects of each of the lifecycle pillars along
with helpful examples and, in some cases, suggested guidance to consider when
tackling the challenges along the way.

Ideally, you’ll be able to use the following reviews as a guide while your landscape
grows in scale and scope and you move through the maturity stages over time, as
discussed in the previous chapter. Since each company’s culture is different, you may
find it useful to create your own blank matrix templates to use as a way to spur
conversation among your teams and drive open discussion that allows everyone in
your organization to contribute examples and guidance along the lines offered here.

Landscape Aspects and API Lifecycle Pillars | 287

With that in mind, let’s take a tour through the API lifecycle pillars and highlight
some of the more common landscape aspects that you will encounter as your ecosys‐
tem grows and changes over time.

Strategy
As a company’s API landscape grows, the tactics and even short-term goals of its
API strategy initiative may undergo changes. In “OKRs and KPIs” on page 162, we
showed how questions about general digital strategy were informed by OKRs and
KPIs, as well as the common uses and audiences for APIs (private, partner, public).
While these continue to be critical as your landscape expands, the details for each of
them will transform.

For example, the KPIs for your initial set of APIs might have focused on reliability,
increased use within the company, and contribution to revenue or cost reduction. As
your program expands to tens, hundreds, or even thousands of APIs, you may need
to adjust your KPIs to focus on considerations unique to large API ecosystems. This
is where you can apply the landscape aspects introduced in Chapter 9 to clarify your
tactics and implementation directives to match your current ecosystem challenges.

Among the landscape aspects that should be considered when adjusting your strategy
as your ecosystem grows, three of them stand out as needing special attention: variety,
volume, and velocity. Let’s review each briefly.

Variety
As you add more product groups, more teams, and more API consumers to your
API landscape, your ability to control and constrain each element of API design and
implementation will become less effective, meaning a natural tendency toward more
variety. It is relatively easy to constrain a single team or small group of colocated
teams to make sure they all follow the same design conventions and use the same
formats, tools, and testing and release practices. However, as you add more locations
(e.g., office halfway around the globe), begin to support APIs from other product
groups (e.g., acquired companies), and work with products using vastly different
technologies (STFP, mainframe systems, etc.), you’ll find that you can no longer
dictate just “how” things get done.

As your landscape grows, its variety naturally increases. Instead of trying to avoid this
healthy diversity, it is important to change your API strategy to embrace differences
and focus on overriding principles all teams share, instead of trying to get everyone to
use the same practices across technology stacks and product groups (see “Principles,
Protocols, and Patterns” on page 230).

Increasing variety is not a bad thing.

288 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

Volume
A large API landscape can also mean increases in varying types of volume—more
APIs, more traffic, more teams, and so forth. However, you may still have limited
resources available for managing this growth. This usually means you need to make
choices about what new initiatives to support, what old ones to deprecate, and what
APIs need to be kept as they are for the near future.

When it comes to making choices, focusing on APIs that are clearly bringing in more
positive business, ones that are easier to update and maintain, and other business-
centric goals can help you manage the increasing volume. You may need to start to
invest in platforms that “scale better” at high traffic volumes. You may also need to
move from on-premise releases to virtual machines in the cloud that are more easily
scaled. You may have some APIs that will perform better in a Function-as-a-Service
(FaaS) environment, and so on. And in some cases, it might make more sense to
bring traffic back into your own local infrastructure to reduce distance and costs.

Volume is one of the most common aspects you’ll need to deal with as your landscape
grows, and there are many ways to address it.

Velocity
The last landscape aspect we’ll call out here is velocity. Several customers tell us
that “things are just getting faster and faster,” and it’s challenging to keep up. While
sometimes this is true, other times it is not just the speed of change but the number of
changes that becomes a problem. Velocity can be experienced in several forms.

As your ecosystem grows, more parts will need to change, and that means you notice
change more often. Your API strategy will need to adjust to make sure changes are
not disruptive (see “Change Management” on page 317) and that they are cheaper
and less risky. Usually this means setting up barriers to large-scale changes (e.g.,
formal proposals, careful reviews, and sign-off) and removing barriers for minor
changes (e.g., small changes in UI layout bug fixes, nonbreaking API changes, etc.).

Velocity can also be experienced as an increase in customer business. If you’ve imple‐
mented successful APIs that bring in more orders, but your back-office teams are
still stuck doing things like credit reviews and customer approvals manually, you’ll
discover overwhelming backlogs and may lose critical revenue. Your API strategy
reaches beyond just the technical details of designing and releasing code—it includes
everyone in the organization.

Velocity is not just experienced as simple speed; it can also cause perceived slow‐
downs in some parts of the company.

Landscape Aspects and API Lifecycle Pillars | 289

Design
As discussed in “Design” on page 88, interface design is an important pillar of API
product work. And new challenges are introduced when APIs are designed in the
context of a landscape. As part of an API landscape, an API is not a standalone
product anymore but instead can be seen as part of a “product family.” How much
that view should influence the design of individual APIs very much depends on the
projected use of an API.

APIs that may see a lot of use, are projected to be highly visible, and will be used
as “single-user touchpoints” still can be designed very much as individual products,
with their design optimized primarily for the API consumers. However, in terms of
implementation (which is not visible to the users of the API), it may still make sense
to harmonize the API with the landscape, allowing developers to take advantage of
support and tooling.

APIs that are more likely to be used as part of the API landscape, for example, in
conjunction with other APIs of that “product family,” should be designed with that
usage pattern in mind. Design familiarity will play a larger role: developers using
and combining various APIs from the same landscape can benefit when there is
harmonization on the API design level.

Looking at these two scenarios, it becomes clear that API design plays an important
role in both cases, but in strikingly different ways. For the former, harmonization is
mostly an issue when it comes to implementation issues, while API design, of course,
still can take design cues from the guidelines when it comes to identifying and solving
API design issues. For the latter, harmonization becomes more important both at the
API design and the implementation levels, meaning that guidelines play a bigger role
in that scenario.

When it comes to considering how design should be approached in the API land‐
scape, the considerations mentioned here can be complemented with the landscape
aspects introduced in Chapter 9. Of these aspects, the design pillar is most impacted
by considerations of variety, vocabulary, and versioning.

Variety
Variety happens as a natural result of an evolving API landscape. One reason for this
is changing design patterns over time so that the same problem naturally gets solved
in different ways, based on the context of established practices at design time. The
second reason is that different products can fulfill different needs and target different
consumers, and there may be no one design practice that is the perfect fit for all these
different consumer groups.

For these reasons, variety should be allowed, instead of trying to constrain the
solution space to one possible design. However, curating the design space through

290 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

1 An example of this is the many attempts in larger organizations to create an enterprise information model
(see “EIMs and APIs: Perfection Versus Pragmatism” on page 239). There are few cases where the enterprise is
slow-changing enough to make this a feasible undertaking, and even in those cases, these EIM initiatives are
rarely reported as successful undertakings.

design guidance managed by a C4E (as discussed in “The Center for Enablement” on
page 254) helps to constrain it in a way that helps designers, who have a set of design
options in front of them and can make informed decisions based on which options
are practiced in which way and supported by which tooling.

One of the antipatterns of variety shows up in design when the same problem is
being solved in different ways in different APIs, without a good reason. This not
only wastes team resources by inventing new solutions instead of using existing ones,
but also negatively impacts consumer productivity because every API needs to be
relearned. This is often referred to as individual APIs being treated like “precious
snowflakes,” each of them unique and different in their most intricate details, instead
of promoting and supporting reuse where it makes sense.

In summary, design variety makes sense and should be embraced when there is a
product-driven reason behind it. Otherwise, it is more economical and benefits the
landscape when design uses established patterns.

Vocabulary
Aligning design vocabularies across an organization can help to create a more coher‐
ent design practice, and it can also help to avoid repeated (and in the worst case
conflicting) attempts to create models for the same domain. On the other hand,
defining and harmonizing vocabularies comes at a certain cost, so simply choosing
the path of trying to harmonize everything across an organization may not be the
most economical option.1

As a general rule, domain concepts that can be safely encapsulated in a service (i.e.,
that do not show up in the service’s API) do not need to be harmonized at all. These
are implementation details of the service, and making them visible outside the service
would directly contradict the principle of encapsulation.

For concepts that are relevant for a service’s API, we can distinguish two cases.

Domain-independent vocabularies should be easy to find in an organization. A simple
example would be something like a list of countries or a list of languages. Any API
using vocabularies should try to separate the API and the vocabulary and then list all
vocabularies so that vocabulary use becomes observable.

Domain-specific vocabularies may need to be set up (instead of just being referenced)
as part of the API design. Depending on the maturity of this aspect (as discussed

Landscape Aspects and API Lifecycle Pillars | 291

in “Vocabulary” on page 261), the landscape may provide support for this so that
defining and populating a new vocabulary can be done easily by API product teams.

Generally speaking, managing vocabularies for API design follows the idea that
vocabulary harmonization is good and that observation and support can help with
that. APIs listing their vocabulary use helps landscape managers to observe vocabu‐
lary usage and evolution, which in turn can lead to simplifying API design by reusing
established vocabularies instead of reinventing them.

Versioning
One of the main goals of an advanced API strategy is to decouple the evolution of
services so that they can individually evolve at the velocity that is best for them.
This evolution means that the service implementation may change, and the API may
change as well. From a design point of view, the former is still important as it may
indicate that the product team has chosen to solve a problem in a new way.

To understand the rate of change in the API landscape, it is important to keep track
of versions, as discussed in “Versioning” on page 273. Following the “API the APIs”
principle (see “API the APIs” on page 233), this means that APIs should expose their
versions so that changes in their implementation and design become visible.

Managing versions also becomes important from the client’s perspective, as discussed
in more detail in “Change Management” on page 317. An important part of API
design, therefore, is to follow design principles that make it easy for consumers to
handle new versions, ideally in a way that consumers can always learn about new
versions being made available, but only have to do something about that when they
decide that they want to take advantage of new features, for example.

In summary, design in API landscapes should always take into account that services
will evolve continuously. Designing for change then means to make it easy both
for landscape management and for service consumers to learn about new versions,
while at the same time practicing design that requires as little effort as possible by
consumers to adapt to new versions.

Documentation
As introduced in “Documentation” on page 91, documentation is heavily influenced
by API maturity, even though some basic documentation is always a good idea—and,
in the case of the AaaP approach (see Chapter 3), is even what API products get
started with.

Documentation is a pillar that has a particularly wide range. For example, minimal
reference documentation can be generated from technical artifacts such as OpenAPI
descriptions. Documentation can be enriched with comments, examples, tutorials,
and usage guides. It can even be integrated into the API itself so that the API is

292 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

self-describing, optimizing the developer experience to the point where almost all
friction of using the API is removed, and the API becomes a highly optimized
self-serve product.

However, this final step of investing in documentation can be rather expensive and
in all likelihood is a good investment only when the effort of creating highly refined
documentation is offset by the number of developers benefitting from it.

The level of investment in documentation for individual APIs mostly will be a
function of API maturity and the projected consumer community, as discussed in
Chapter 7. However, the landscape should provide guidance and support once that
investment decision has been made. Of the landscape aspects, the four that are
most important in helping make the landscape support the documentation pillar of
individual APIs are variety, vocabulary, versions, and visibility.

Variety
Allowing and managing a variety of documentation styles helps ensure that each
team can pick the best style for the API they are developing and evolving. This choice
will depend both on the API style and on the maturity and intended audience of the
individual APIs.

Enabling teams to choose the documentation tooling and depth that fits their API
design, its maturity stage, and its audience will help them to publish the documenta‐
tion that fits their current needs.

If there are “clusters” of documentation requirements, then it’s useful to have specific
guidance and tooling as well as validation tooling that allows teams to integrate docu‐
mentation checks into their delivery pipeline. In most cases, it will not be possible to
check all aspects of documentation in an automated fashion, but often at least some
sanity checks (“Are there sections about extensibility and about versioning, and are
they called out and marked explicitly?”) can be included so that teams know a bit
better what the expectations are.

It is likely that documentation variety will evolve over time. Some styles of documen‐
tation may become historical, while new ones may get adopted. Ideally, variety in
documentation styles should be decoupled from documentation content so that, for
example, some important principles (such as the guidance about extensibility and
versioning sections in the documentation) can be carried across specific documenta‐
tion styles.

Landscape Aspects and API Lifecycle Pillars | 293

2 The webby way mentioned first is called transclusion, meaning that it is made accessible via the API docu‐
mentation but retains its identity as the documentation of the vocabulary.

Vocabulary
As discussed in “Vocabulary” on page 261, one sign of maturity in API landscapes is
to manage vocabularies across APIs so that it becomes easier for API producers to
find and reuse existing vocabularies and for API consumers to use their understand‐
ing of vocabularies across APIs.

Managing vocabularies for better documentation means managing documentation for
these vocabularies so that any API using a given vocabulary can reuse this existing
documentation. Depending on how documentation is managed, this reuse can be
“webby” and simply involve linking to existing documentation that is available else‐
where. Or, if the documentation style is a little less webby and more about creating
self-contained documentation per API, then reusing documentation might mean
including it in the API documentation.2

It is important to keep in mind that managing documentation vocabularies is also
extremely valuable from the observation point of view: if APIs document the vocab‐
ularies they use in a way that is supported by the landscape, or at the very least
observable for the landscape, then it becomes much easier to understand vocabulary
use across APIs, suggest and focus on emerging vocabularies, and understand which
ones are not used as widely anymore. Once again, observing APIs to better support
the landscape and supporting APIs in a way that makes things observable are the two
sides of the coin that provide the best way to combine benefits for individual APIs
and for the API landscape.

Versioning
One of the main goals of APIs and API landscapes is to decouple implementations so
that individual products can be evolved individually. This increase in product velocity
naturally leads to an increase in product versions, as discussed in “Versioning” on
page 273. While ideally the majority of versions should be nonbreaking from the API
point of view, each version that results in changes of the minor version when using
a semantic versioning scheme should still be documented. This helps consumers
understand the changes that may have happened and allows producers to make their
documentation useful across versions.

As discussed in “API the APIs” on page 233, documentation (like everything else
about the API) should be part of the API. Following this principle, it also means
that documentation history should be part of the API, allowing API consumers to
understand the evolution of an API by traversing its documentation history.3

294 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

3 This is at least true for nonbreaking changes to the API. For breaking changes (major version changes in a
semantic versioning scheme), a different scheme may work better, such as archiving the documentation of old
versions (which in itself could be become a service provided by the API landscape).

Guidance about versions can help make APIs easier to use and can help consumers
stay updated about API versions and better decide when and how they want to adjust
to API updates. Providing API product teams with guidance on how to produce
and publish documentation across versions makes it easier for them to follow these
practices. The landscape can provide support and tooling for testing so that API
developers get more immediate feedback about how they document their APIs across
versions.

For API landscapes using semantic versioning and following webby principles, one
possible landscape guidance is to recommend that all API documentation should
make all versions navigable using RFC 5829 links. This scheme includes a navigable
version documentation history, as well as interlinked documentation of individual
versions. Testing for the presence of these links could be done when APIs and their
documentation get deployed, making it possible to validate at least the schematic part
of the documentation practice.

In summary, documentation in API landscapes naturally will involve the versioning
aspect, and by providing guidance and support for documenting versions in an
observable way, landscape management can get some insight into API versions and
their documentation.

Visibility
Documentation can potentially be a rather complex resource in itself, with quite a
bit of content and structure to it. As discussed so far, it helps if there is existing
tooling and support around documentation so that API teams may rely on certain
production pipelines for their documentation instead of having to choose or build
their own.

It is important to keep in mind, though, as discussed in “Variety” on page 293, that
the main goal of guiding and supporting documentation should not be to tell teams
“how” to produce it, but “what” they should be producing. There can be supported
toolchains, allowing them to easily satisfy the “what” by following a supported “how,”
but separating the toolchain from what it is supposed to produce is important.

API documentation should always be visible, and with it, all the aspects that are
important from the landscape point of view. This is important both for consumers
of the documentation and for the landscape itself, which can then use this visibility
as an important way to gain detailed insights into APIs and to provide deep links
into documentation when required. This means that it is important for landscape

Landscape Aspects and API Lifecycle Pillars | 295

https://oreil.ly/byW2L

guidance to address what needs to be observable from the landscape perspective and
to add these aspects to guidance and tooling.

Development
On the surface (and what a nice pun that is!), development does not play such a big
role for API landscapes. After all, the role of APIs is to encapsulate implementations,
and thus how they are developed is out of scope from the pure API point of view.
However, there clearly are no APIs without somebody developing an implementation,
so the development pillar (as discussed in “Development” on page 94) is an essential
part of API landscapes. Increasing the overall effectiveness of the API landscape is
one of the main goals of managing API landscapes, so looking into how development
fits into the landscape perspective is important.

Once again, looking at the web as the biggest known API landscape there is can be
informative. It probably would have been the kiss of death for the web early on if
somehow somebody had declared and enforced the constraint that all applications
for the web must be programmed using the same language and development tools.
After all, one of the main winning recipes of the web, in particular when compared to
competing approaches in its early days, was that it gave development teams complete
freedom in how to develop their solutions, as long as what they released worked as an
application that could be used with a browser.

On the other hand, while it was essential for the web’s success that development
languages and tools were not mandated by web architecture, with web-based applica‐
tions becoming mainstream, development support became a major factor of making
web application development more effective. Web-oriented languages and frame‐
works such as PHP, ASP, JSP, JSF, Django, Flask, Ruby on Rails, Node.js, and many
others have shaped the way web applications were and are developed. But they also
go through a lifecycle themselves, and it is safe to say that the web not only has
already outlived many of the languages and tools that have been used for web-based
applications but will outlive the rest too, and any new ones that appear.

The lesson from this view of development practices and support on the web directly
applies to API landscapes: it helps productivity and helps with certain protocols and
patterns a lot when there are languages and tools for supporting the development of
individual products. However, it is important to keep in mind that as protocols and
patterns change, so will the languages and tools. And even without protocols and
patterns changing, there still will be a steady stream of languages and tools claiming
to be better solutions to existing problems.

Not looking at the development pillar from the landscape perspective, therefore,
will cause you to miss important opportunities to leverage economies of scale, to
establish and share development practices across teams, and to evaluate and adopt
new languages and tools as they become available. For the landscape to support and

296 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

realize these opportunities, the most important landscape aspects to keep in mind are
variety, velocity, versioning, and volatility.

Variety
Looking from the API-as-a-Product standpoint (as discussed in Chapter 3), the initial
stages of API conception are not concerned with implementation details or how
to develop the API product. Everything is about the design and about discussing
prototypes and seeing how early feedback might impact these early design stages.

After it is clear what the API product should look like, in this idealized picture the
next task is to consider the best way to actually build the product. This decision
should be based on the product design (making sure to pick the right tool for the
job) and on the product team (making sure the team feels comfortable with the tool
selection).

Since different APIs serve different purposes, target different consumer groups, and
are developed by different API product teams, it is likely that there is no such thing
as the single best development language and tool suite to use to develop every single
API. Therefore, it is important to support variety in the landscape and to allow teams
to experiment with new approaches when they feel the need to do so.

Balancing variety with the need to not create a landscape of implementations is
not an easy task. One of the main considerations should be the goal to have some
continuity regarding the variety aspect: it is acceptable to use a variety of languages
and tooling, but it is advisable to limit these choices so that there is some continuity
in the choices, so investments and education become worthwhile through economies
of scale, and so there is always some “critical mass” around development choices.
If there are more than a given number of API products using particular develop‐
ment languages or tools, then these might move from being “experimental” to being
“implementation” choices.

Velocity
For individual APIs, velocity captures how quickly a first API product can be
released and how quickly it can be changed and adapted to changing requirements.
When it comes to development, velocity is impacted by the whole development and
deployment pipeline, as discussed here and in “Deployment” on page 304. While it’s
important to use languages and tools that are good solutions for the implementation
problem, the landscape can help by providing support and tools to make the develop‐
ment and deployment process smoother and faster.

Velocity is also impacted by the size of the developer community: the more teams are
using languages and tools, the quicker they evolve, and the quicker issues with them
are likely to be addressed and resolved. This means that velocity is not just a question
of choosing languages and tools that are appropriate for solving a problem; it’s also a

Landscape Aspects and API Lifecycle Pillars | 297

question of how variety (discussed in the previous section) gets managed. If variety
makes sure that there is always a critical mass to identify, address, and resolve issues,
then managing velocity can be described as “picking the best solution for the given
problem where there is critical mass at the organization level.”

Versioning
The practices around versioning have a clear impact on the development practices for
APIs. As we discussed in “Versioning” on page 246, versioning is an important aspect
of API landscapes, and responsible versioning becomes essential as the complexity
of an API landscape grows in terms of landscape size, service dependencies, and the
number of changes that are made throughout the landscape.

From the consumer point of view, versioning can be highly beneficial (when APIs
are improved to provide services that consumers are interested in) or unnecessarily
disruptive (when APIs change but the consumers are not interested in changing
their consumption of the service). As discussed in “Velocity” on page 266, having a
development process that allows the velocity required to quickly deploy changes, but
also follows design practices that minimize the negative impact of new versions, will
maximize the overall value that service agility can produce.

At the landscape level, it is important to make sure that development velocity is
observable so that it is possible to observe the rate of change and to possibly provide
ways to make information about various versions visible and accessible. Using stan‐
dardized ways of meaningfully identifying (as discussed in “Semantic versioning” on
page 247) and exposing version numbers is a good way to start and already can
provide deep insights into the dynamics of the overall API landscape.

Volatility
The volatility of services in API landscapes, discussed in “Volatility” on page 247,
introduces some challenges for existing development practices. The main issue is
that by definition API landscapes are distributed systems, bringing with them all
the fundamental challenges created by a decentralized model. Handling the volatility
of API landscapes responsibly takes a different approach to programming in more
tightly coupled settings, and when it’s ignored, the overall stability of the landscape
can suffer (for example, through cascading failures).

When it comes to handling volatility well, development languages and tools, as well
as practices, make a big impact. As such, the role of the landscape is to specifically
identify and nurture development that is well suited for the volatility inherent in API
landscapes. This may not be necessary for all scenarios, but it’s a good way to make
sure that volatility is treated properly.

298 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

GraphQL and API Availability
Volatility may also be isolated in certain ways, meaning that some teams have to deal
with it responsibly, and others not so much. For example, when following the Back‐
end for Frontends (BFF) pattern, there will be one backend application serving as
the “aggregator” of various APIs, and this backend then exposes one API to frontend
apps, possibly in a flexible query-based API model such as GraphQL. In this scenario,
the frontend has a very simple API availability model: either GraphQL is available, or
it is not. However, the backend might have a much more complex model to deal with.
When translating a GraphQL query into various API requests, these APIs all should
be considered volatile. A well-written GraphQL resolver would be able to deal with
partial outages of the underlying APIs, responding with partial GraphQL responses.
In this scenario, managing volatility at the API level has been delegated to the BFF
backend, whereas the BFF frontend only has to deal with volatility at the data level
(assuming the scenario of partial GraphQL responses), making handling it quite a bit
easier for the development team.

Managing the inherent volatility of API landscapes as part of the API development
process can have a significant impact on the quality of API products, and on the
overall stability of the API landscape. Making sure that development languages and
tools, as well as development practices, take this aspect into account will make a
difference in how well products behave in the inherently volatile environment of the
API landscape.

Testing
In “Testing” on page 98, we covered the importance of testing. We also set a rather
high bar, saying, “No API should go into production without being tested.” As your
API landscape grows, this may become challenging. Since time and deadlines are
always a factor in software, you may experience pressure to not just speed up the
testing process, but also to short-circuit the process by skipping steps or reducing the
depth or thoroughness of your testing. This is always a bad idea. However, as you’ll
see here, the way you test will need to evolve as your landscape grows.

Another challenge you’re likely to encounter as you scale up your API landscape is
that the cost of testing will go up—not only the actual cost of doing the tests (in time
and effort) but also the cost of not doing the tests (e.g., the cost of failing to catch
issues through tests). In other words, the cost of failure in general goes up. This can
be particularly worrisome for system-level architects since system failures are usually
very visible and can, if not handled well, be very costly for the business.

The good news is this problem has been faced many times before by experienced
companies, and there are available solutions for meeting the API landscape testing

Landscape Aspects and API Lifecycle Pillars | 299

https://oreil.ly/qoyqo
https://oreil.ly/qoyqo

challenge. We’ll highlight some of the common ones here and, in the process, hope
to give you some ideas on how you can start looking at your testing challenges and
coming up with solutions that work for your company. With regard to testing, the
four landscape aspects that are most important are volume, velocity, vulnerability,
and volatility.

Volume
A common challenge as your API landscape grows is that the sheer number of tests
needed for “coverage” starts to climb rapidly. And because most API ecosystems rely
on calling other APIs, the number of tests grows nonlinearly. Adding one new API
endpoint that is used by 12 other APIs doesn’t just add one more set of tests—it
requires a modification of 12 more sets of tests! If your testing practice relies pri‐
marily on human-driven test suites (e.g., people typing on screens and recording
results), the demands of testing a growing API landscape can easily overrun your QA
department’s ability to respond.

The nonlinear growth of API testing is one of the big reasons to increase your
company’s reliance on automated testing. It is much easier to scale up automated tests
(e.g., by adding more test instances to run in parallel) than it is to add more people
to your QA team, train them, and supervise them as they run manual tests. Of course,
introducing automated tests has its own up-front costs, but these can pay off quickly
as your system grows.

Another volume-related challenge for testing is the amount of traffic your tests
need in order to produce reliable results. In the early days of your API adventure,
simulating 100 requests per second (RPS) may be reflective of your production
traffic. However, as you add more teams authoring their own APIs and these APIs
start calling each other more often, the sheer volume of traffic can balloon quickly.
When production traffic runs at 1,000 RPS, passing tests at 100 RPS is no longer a
good predictor of success once the component is released. It is important that you
keep close track of production request levels and make sure your test environment
continues to reflect production demands as your ecosystem expands.

Velocity
As we’ve mentioned, test velocity—the ability to complete tests in a reasonable
amount of time—can become an issue as your ecosystem grows. A good rule of
thumb is that unit or bench tests should complete in a few seconds, behavior or
business tests should complete in less than 30 seconds, integration tests should
complete in less than 5 minutes, and scale/capacity tests should complete in less
than 30 minutes. If your testing platform can’t keep up with this pace and your
development teams are producing continuous-change-style updates, you’ll run into a
major backlog in the test/QA area again.

300 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

There are several ways to tackle this kind of volume challenge. We’ll highlight three
here:

• Parallel testing•
• Virtualization•
• Canary builds•

One way to improve the velocity of your testing is to employ parallels. The most
direct way to do this is to spread your automated tests across a set of machines and
run them all at the same time. For example, if you have 35 tests to run after each build
of a component, you could run all 35 tests in sequence on a single machine instance,
or you could run all 35 tests in parallel on 35 machine instances. Assuming each test
runs in 10 seconds or less, with the latter approach, you’ll go from a test run that
takes just over 5 minutes to one that takes less than 10 seconds. That’s velocity. Of
course, this assumes all tests can be run in parallel—that is, there are no dependencies
on the order of tests (test 13 must be run before test 14, etc.)—which, by the way, is
also a good practice. Parallel testing helps improve your testing velocity before you
release into production.

While parallels can aid in dealing with velocity at the unit and behavior test levels, the
challenge of increasing velocity for interop- and capacity-level testing can be handled
with the introduction of virtualization elements. It can be both costly and risky to
run interoperability testing of a new component against other services. What if the
new component mishandles production data? What if the test target interacts with
existing components in an unexpected and damaging way? In small ecosystems, the
use of mock services as stand-ins for production components can scale well. However,
as the landscape grows, mocks may have a difficult time keeping up with the velocity
of change in the ecosystem.

A powerful solution to improving velocity in testing while maintaining safety is
to use virtualized services, typically via a general virtualization platform that can
consume production traffic and then replay it on demand in a protected test envi‐
ronment. This allows developers to reduce their efforts to keep mock services in
sync with production features and functionality while they increase their delivery
of the actual production components. As an added benefit, good virtualization plat‐
forms will allow developers to create synthetic traffic that does more than mimic
well-behaving production services; it can also virtualize malformed or even malicious
network interactions and allow developers to test their APIs and services in scenarios
that are less than ideal. This helps deal with the vulnerability and volatility aspects
covered next.

Another way you can improve your testing velocity is to run some of your tests after
you release the service into production. This is sometimes called canary testing or
canary release. In this case, after basic bench and behavior testing, you release the new

Landscape Aspects and API Lifecycle Pillars | 301

https://oreil.ly/DZKNC

service to a select set of accounts (which may have volunteered to be beta testers).
After this partial release, you monitor the results (see “Monitoring” on page 311) and,
if all goes well, roll the update out to a wider production audience over time.

The canary solution makes a handful of important assumptions:

• You still run basic tests to validate the component.•
• You have the ability to perform a partial release of a subsection of your ecosys‐•

tem.
• You have the proper monitoring in place to be able to assess the impact of the•

partial release.
• You have the ability to back out the change quickly (e.g., within a few seconds)•

and can revert to the previous production build without damaging functionality
or data storage along the way.

Vulnerability
As the scope of your API landscape increases (e.g., more endpoints) and the scale
goes up (e.g., more teams using those endpoints), your ecosystem becomes more
vulnerable. We’ll cover more of this in “Security” on page 308, but for now it is
important to focus on how growing API landscapes mean increasing vulnerability,
and ways to address that.

We’ve already mentioned that scaling up tests means making sure the traffic volume
used in your tests matches that of production. This also holds true for cases where
there is an increase in the number of teams or the number of other services that will
be using a particular API. Your testing regime needs to account for many different
API consumers making requests at the same time. For example, there might be
cases where some type of consumer-driven state is passed between components. That
means the cost of state handling can go up dramatically when you roll an API out to
a wide consumer audience. It also means you may need more testing to validate that
the state remains isolated between API consumers at the provider point, that large
amounts of state don’t overrun working memory as the number of API consumers
increases, etc. Vulnerability can shoot up due to more use.

Vulnerability can also increase as the type of users of the API changes over time.
The key here is that, at some point, your API users may not be just internal teams
but key external partners or even third-party developers over whom you have very
little control. Your tests need to reflect this possible change in the ecosystem and
be designed to protect your system (and your data) from any mistaken or malicious
activity by external users.

Much has been made in recent years of the “mandate” in which Jeff Bezos told
his teams (among other things) that “all service interfaces, without exception, must

302 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

4 John Kim, “The API Manifesto Success Story,” ProFocus (blog), updated September 26, 2019, https://oreil.ly/
AAmSO.

5 Chris Williams, “How One Developer Just Broke Node, Babel and Thousands of Projects in 11 Lines of
JavaScript,” The Register, March 23, 2016, https://oreil.ly/5OnKJ.

be designed from the ground up to be externalizable.”4 While our experience with
maturity models tells us you may not need to do this from day zero in your API plan,
you do need to be prepared to deal with it as your landscape grows over time.

Finally, it is worth mentioning here that one of the most effective ways to improve
your testing results is to write your code and your API contracts in ways that reduce
the likelihood of test failures in the first place. For this reason, we find that many
of the companies we work with that are able to properly respond to the increased
scale and scope of testing are putting test experts on the development teams. In
other words, they are “shifting left” when it comes to testing. By adding test skills to
the teams writing the code and designing the APIs, it is possible to avoid mistakes
that result in creating involved tests that take a lot of time to run and may not
accurately reflect the conditions that exist in production. Consider reducing your
system’s vulnerability by improving the test expertise of your development teams.

Volatility
Lastly, as we’ve already mentioned, a growing API landscape means an increase in
complexity—not just a larger ecosystem. What was a minor runtime bug when your
company’s API world contained just a handful of endpoints managed by a single team
has the potential to render most of your system inoperative if it turns out all your API
services depend on one single service running on a single machine at some faraway
location.

A larger API landscape runs the risk of becoming a more volatile landscape. One way
in which growing ecosystems become more volatile is that things like fatal dependen‐
cies creep into the system unseen. A simple example of this can be found in the 2016
“left-pad crisis” in the Node.js community. Without getting into the messy details (see
the linked article if you’re curious), a small library was, over a small period of time,
included in thousands of Node.js projects. A dispute with the author of this library
led them to remove the library from circulation, and almost immediately thousands
of builds crashed—including the build for Node.js itself! While it took less than an
hour to find and fix the problem, it was a stark reminder of how large systems can
become more volatile over time.5

And this kind of volatility isn’t limited to cases where components “go missing” or are
in some way unavailable. It is also possible that some API or component upon which
your system depends will change in a way that breaks critical functionality in your
ecosystem. You can train your own teams to reduce this likelihood when they update

Landscape Aspects and API Lifecycle Pillars | 303

https://oreil.ly/AAmSO
https://oreil.ly/AAmSO
https://oreil.ly/5OnKJ
https://oreil.ly/5OnKJ

6 Jez Humble, “What Is Continuous Delivery?” https://oreil.ly/KVxP8.

their code, but you will not have any control over third-party libraries or frameworks
that make their way into your ecosystem. As your landscape grows, you’re more likely
to increase your use of external APIs, and they will increase the volatility of your
landscape.

That means it is important to add tests that expose fatal dependencies and highlight
the cost of critical failures of key components. The best place for this is in the
interoperability or capacity test phase, where links to other APIs and services are
exercised. As we mentioned in the previous section, a direct way to reduce vulner‐
ability is to add testing expertise to your design and development teams so these
kinds of problems can be addressed before a component or API workflow ends up in
production.

In larger systems, even small bugs can have wide-ranging effects. Be sure to test for,
and code around, cases where key components go missing or change in ways that
make them unusable for others in the ecosystem.

Deployment
One of the major pillars of any API program is deployment. No matter what design
or build process you use, it is not a “real thing” until the API or component has
been published (see “Stage 2: Publish” on page 171), and deployment is how you get
something published. At the start of your API program, you can focus on a clean,
simple pipeline for releasing your APIs into production. Many organizations even
use manual release processes (e.g., point-and-click in release tools, human-driven
selection and execution of scripts, etc.) at the start of their API program. However,
as your API landscape begins to grow, manual releases are difficult to scale and
introduce a new level of needless volatility into your ecosystem.

The most common tactic for scaling deployment is to automate as much of it as
possible. This is the one of the key lessons of the DevOps and continuous delivery
movement. Jez Humble, coauthor of the book Continuous Delivery (Addison-Wesley),
has been quoted as saying, “[The] goal is to make deployments—whether of a large-
scale distributed system, a complex production environment, an embedded system,
or an app—predictable, routine affairs that can be performed on demand.”6

There are a number of advantages to automating deployment, especially when it
comes to scaling deployment for your API landscape. We’ll focus on four of the
landscape aspects here: variety, velocity, versioning, and volatility.

304 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

https://oreil.ly/KVxP8

Variety
In most of this book, we’ve emphasized the value of supporting variety as your eco‐
system grows. However, when it comes to the build and deployment process, variety
can be a real threat to your landscape’s health and stability. Running a process that
results in a production deployment should be consistent, deterministic, and repeat‐
able. If your team executes the installOnboardingAPIs process today, it should
produce the exact same results if that process is run several days later. Deployments
should be nonvariant.

That means driving variability out of the system. The build and deployment processes
are a great place to implement approaches like Six Sigma, Kaizen, Lean production,
etc. That means focusing on eliminating minor variations in the release and making
sure to build up deployment technology that collects all the release artifacts (code,
configuration, etc.) in one place for easy publishing. It also means tracking the
operating system and other supporting dependencies carefully and making sure these
are the same for each repetition of that same deployment. Good CI/CD platforms
will give you the opportunity to design and implement a reliable and repeatable
deployment process.

Six Sigma, Lean, Kaizen
There are a number of models aimed at continuous improvement and driving out
variability while increasing quality. Six Sigma, Lean, and Kaizen are probably the
best-known of these models, but there are others. And even each of these three has
several variations (e.g., Lean Six Sigma, etc.). If your company doesn’t already have a
program along these lines, we recommend you look into it. There is a decent article
on Formaspace comparing the top three that might be a good place to start.

While driving out variability in your deployments is critical, you may still need to
support a variety of CI/CD toolchains. It is not a requirement that all parts of your
organization (from mainframe to handheld) across the globe use the exact same
platform for deployment. However, we advise constraining your platform variants
as much as possible, since most of these deployment platforms represent a large
investment of time and money.

Velocity
Speeding up the deployment process is often mentioned as a prime goal when com‐
panies work to transform their IT processes. There are two aspects of deployment
velocity to consider as your landscape expands. The first we call type 1: shortening
the time between releases for a single API/component. The second we call type 2:
increasing the overall speed of all release cycles in your IT group.

Landscape Aspects and API Lifecycle Pillars | 305

https://oreil.ly/DAmop
https://oreil.ly/DAmop

The first case (type 1) is the one most people think of when they think about
deployment velocity. And it is an important one. We often talk to our customers
about reducing the “feedback-to-feature” loop or, for new projects, getting from “idea
to install” faster. Speedier deployment can reduce the risk and cost of experimenting
with a new product or service, and that can improve your company’s ability to learn
and to innovate over time. Again, automated, deterministic deployments can help
you increase your release speed.

The second case (type 2) is something quite different. In this instance, you need to
release more things into production over the same time period. That means more
teams doing releases, more releases landing in production, and more changes to your
landscape. If you are relying on a single central release team for all your production
deployments, it will be difficult to gain this type 2 deployment velocity. There are
limits to scaling a single release team.

A better approach is to start distributing the responsibility for releases to a wider
community. This is another reason that automating as much of the release process
as possible is valuable. The more automation you have in place, the more humans
can focus on edge cases and expectations in order to get things working properly
and consistently. Just as in other pillars that we’ve covered here in this chapter, you
can more safely speed up the process by distributing it and/or running parallel pro‐
cesses. This results in more releases overall without necessarily speeding up individual
release cycles for everyone.

Distributed Release Management at Etsy

Mike Brittain, engineering director at Etsy, has created a very nice
set of slides and video presentation on Etsy’s version of distributed
releases called “Distributed Release Management”. If you’re interes‐
ted in pursuing this idea, Brittain’s presentation is a good place to
start.

When speeding up deployments, be sure to take into account the value of velocity
type 1 and velocity type 2.

Versioning
We spent some time discussing versioning in general in Chapter 9 (see “Versioning”
on page 246). While we made the case that design and implementations should
avoid versioning the API’s public interface, the story is different when it comes to
the internal interface. API consumers should not be bothered with bug fixes or
minor (nonbreaking) changes; they should be alerted only when the interface breaks
and/or when new features are available. But internal users (the developers, designers,
architects, etc.) should be able to see every minor tweak and change of the release
package—even small things such as changes to supporting assets like logos, etc.

306 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

https://oreil.ly/ixT3G

7 Randolph’s talk is sadly no longer available on the web.

One way to make sure you expose small changes in the deployment packages is to
version the release using the semantic versioning pattern (see “Semantic versioning”
on page 247) of MAJOR (breaking change), MINOR (backward-compatible new feature),
and PATCH (no interface change, bug fix). We’ve also seen customers include an
additional level: RELEASE (i.e., MAJOR.MINOR.PATCH.RELEASE). With this added value,
it is easier to track every build and/or release cycle down to the smallest change. And
that can be important when a production release acts in some unexpected way. The
ability to trace the package using the RELEASE number can be helpful in determining
what is different in the package.

Most release tools will also allow you to assign an independent build number to
each release. That way, you don’t need to amend the semantic versioning pattern
and you still get detailed tracking on every build and production package. Whatever
you decide to do, remember that internal releases get detailed identifiers and external
interface identifiers need to change only when there is a breaking change.

Volatility
As you might expect, increasing the velocity of deployment—both type 1 and type
2 (see “Velocity” on page 305)—runs the risk of increasing the overall volatility of
your system. For this reason, many organizations attempt to slow the pace of release.
However, this is usually not a good idea. Instead, there are three things you can do
to make sure your deployment pillar doesn’t introduce unexpected volatility into your
ecosystem:

• Ensure nonbreaking changes in releases•
• Maintain deterministic, nonvariant deployment packages•
• Support instant reversibility of installs•

As mentioned in “Versioning” on page 246, deployments should—whenever possi‐
ble—avoid versioning in the sense that most of us think about it. Our experience is
that you can make meaningful changes to a running system without having to “break
it” each time. Jason Randolph of GitHub calls this evolutionary design and explains
the value of this kind of design work this way:7

When people are building on top of our API, we’re really asking them to trust us with
the time they’re investing in building their applications. And to earn that trust, we can’t
make changes [to the API] that would cause their code to break.

Rudolph goes on to explain that you can leverage design elements to make it easier to
introduce nonbreaking changes. You can also create tests (see “Testing” on page 98)
that check for breaking changes and include them in your build pipeline to reduce

Landscape Aspects and API Lifecycle Pillars | 307

the chances of disrupting production. Taking the “no breaking changes pledge” can
limit the possibility of added volatility as you scale up your deployments.

Another key to reducing volatility for deployments is ensuring each release package
is fully self-contained and, as we mentioned earlier in this chapter, deterministic (see
“Variety” on page 305). When you can safely predict the results of a deployment
(e.g., when you are confident which elements in production will be affected by the
release), you can reduce the likelihood of surprises in the production update. Also,
anyone responsible for placing a package into production should be able to execute
the release in production, or some other environment (on a dev machine, on a test
server, etc.), and get the same results. This is critical for testing the release and for
uncovering interoperability bugs and other extra-package errors that might occur in
production.

Finally, an important aspect of deployment volatility has to do with reversibility. As
we mentioned when discussing velocity (see “Velocity” on page 305), type 2 velocity
(more overall releases) can threaten stability by increasing volatility. Ensuring non‐
breaking changes and nonvariant deployment can certainly help reduce disruption
in production, but it cannot prevent it 100%. In cases where unexpected bugs creep
into releases, it is essential to be able to instantly reverse a change; to back it out
within seconds. This is a kind of worst-case-scenario solution. Furthermore, backing
out the change means doing it without damaging any collected/stored data. In other
words, all your deployments need to account for reversibility of any data schema/
model changes. This will mean changes to the way your teams design and implement
production updates.

Security
In “Security” on page 104 we talked about the importance of basic security elements
(identification, authentication, and authorization). We also discussed ways to reduce
the overall attack surface and add resilience and isolation to each component and/or
API released into production (see “Vulnerability” on page 244). As you might imag‐
ine, each of these elements becomes more important as your landscape grows. And,
true to form, they become more challenging, too. Security is a wide-ranging and
complex subject—one that we won’t be able to get into in depth here. However, we’ll
highlight three of the most relevant landscape aspects here and discuss how they
affect overall system security.

Velocity
A big challenge to maintaining proper security in an expanding API ecosystem is
the velocity of change to the landscape itself. More components are added, usually at
a faster pace, and more interconnections are added for more users. Many of our cus‐
tomers operate security infrastructure that requires explicit access control definitions

308 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

before a component or interface can be released into production. This works when
the pace of change and breadth of the ecosystem are relatively limited. However, as
the landscape increases in scale and scope, up-front access control definitions can
become a bottleneck. They can hold up production releases and slow feature and bug
fix rollouts.

A common way to deal with the velocity problem for the security pillar is to make
sure components are designed and built to operate in a secure manner even when
access control profiles are not yet in place.

Another way to maintain security while speeding up the release process is to intro‐
duce automated security testing. Scripting security tests is not a perfect solution (it is
hard to test for malicious attempts in scripts), but it can help; running security tests
during the build cycle can help you catch problems early, reduce the cost of fixing
them, and decrease the likelihood of experiencing runtime damage.

Vulnerability
A growing API landscape means an increased surface area and a resulting increase
in vulnerability. Having lots of teams releasing lots of components and doing it all
quickly makes it tough to keep up with the possible vulnerabilities introduced into
your system. As we just mentioned, adding security tests during the build phase can
help, but it is not the only thing you can do to tackle a growing vulnerability aspect in
your API landscape.

When each component release is treated as a “one-off ” security event, it can be
incredibly difficult to monitor, validate, and track your vulnerability space. An
important way to deal with this increase in both scope and scale is to 1) rely on
blanket policies as a starter for component-level security profiles and 2) push respon‐
sibility for the work of tracking and reporting security-related activity as close to the
team level as possible.

Relying on policy-driven security implementations (rather than code-specific imple‐
mentations) has several benefits. First, declarative policies are easier to read and
debug than imperative code. Second, most security proxies allow you to treat each
policy as a reusable unit (a kind of micro-policy) and then combine these policies
into a strong profile package that you can more easily monitor and track. Finally,
many security platforms allow you to manage policies via scripting and/or command-
line tools that are compatible with CI/CD systems so that you can make your security
policy a release package element that all teams must learn to deal with.

And that leads to the second part of the approach: pushing tracking and reporting
responsibility toward the developer teams. It is not likely that a single security team
(especially one hosted at the corporate level for a global enterprise) can sufficiently
closely monitor and respond to component-level security events. Instead, it is much
more reasonable to expect the team that developed and released that component or

Landscape Aspects and API Lifecycle Pillars | 309

API to keep an eye on things. However, they can do that well only with adequate
tooling and support. As your ecosystem grows, it is important to convert central
expertise into distributed tools and practice. You can do this by moving some of your
company’s security expertise into developer teams (as we recommended for testing).
Another way to scale your security skills is to create tools such as design-level practi‐
ces, build-level testing, and production-level dashboarding. By investing in tools to
help scale out your existing security knowledge, you can successfully broaden the
scope of your reach and improve the overall safety of your API landscape.

Visibility
And that leads to the last aspect to highlight here: visibility. In the world of security,
it is the things you don’t know that can hurt you. And you can’t anticipate all possibil‐
ities. Instead, along with adopting practices like “zero trust,” policy-driven security
rules, and build-time security tests, you can also add increased visibility through the
use of logging and dashboarding.

Dashboards are important because they offer a real-time view of network activity.
This gives teams from all areas of the company a chance to watch their interfaces
and components in action. And that includes the security teams. The initial value
of dashboards is to simply “make visible” the common traffic on your network. As
time goes on, teams can fashion filters to focus on traffic that they have learned is an
important indicator of system health (or lack thereof).

Often the data points that appear on dashboards are the kinds of KPIs and OKRs
(see “OKRs and KPIs” on page 162) we’ve discussed earlier in this book. It is up
to security teams to identify key values worth monitoring and make it easy for all
developer teams to supply this real-time information. Most often this information
can be pulled from gateways and proxies used throughout the ecosystem, but some‐
times individual components will need to be coded to collect and emit important
metrics on requests for authentication, validation, access grants/denials, and more.
By providing development teams with the data points and patterns security experts
expect to see and ensuring component-level compliance during prerelease testing,
you ensure that your security operations can properly respond to the added scale and
scope of your company’s growing API landscape.

Typically, logs can be used as part of an “after-action” exercise that helps you and your
security team understand what happened and (ideally) gives clues on how to prevent
a repeat of the same problems in the future. Instituting a robust and reliable logging
practice for all your development teams is key to making sure this information is
captured for possible use in a security postmortem discussion. But just collecting the
information in the form of logs is not enough. You also need to make sure to store the
information in a form that enables easy data access, filtering, and correlating so you
can find and inspect just the records you need. A good way to do this is to adopt a

310 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

practice of distributed collection (e.g., each team is responsible for collecting tracking
information) and centralized storage (e.g., a single platform where all logs get sent for
later filtering and review). Central security guidance can also provide recommended
and required tracking data points and actions, and you can write build-level tests
to ensure all teams comply with the guidance before their work gets released into
production.

Monitoring
Monitoring has several useful purposes, including identifying bottlenecks, tracking
internal KPIs and external OKRs, and alerting teams to performance anomalies such
as unusual traffic spikes, unexpected access grants, and more. In the early days of
your API program, monitoring can be handled with relatively small, focused tools
and a few simple dashboards and log inspection practices. However, as with many
of the other API pillars, as your API landscape grows, the challenges of volume, visi‐
bility, and volatility can overrun your existing tooling. We’ll call out some common
challenges and possible solutions here.

Volume
A common challenge to the monitoring pillar as your API landscape expands is that
the sheer volume of monitoring information starts to overwhelm your ability to deal
with it. This usually happens when the organization has a centralized monitoring
management model, where a small group of people with monitoring skills are tasked
with collecting, managing, and interpreting the incoming real-time and historical log
data. At some point the volume gets beyond what a single team can handle—and
expanding the central team does not make this better. Instead, as we suggested in
“Vulnerability” on page 309, a better strategy is to push the monitoring expertise
closer to the teams developing the APIs and components. Distributing the work
of collecting and managing the tracking data is the first step. Once teams own
their tracking data, they can start developing filters and correlations that result in
meaningful insights about that data.

However, single-component or single-API monitoring is only part of the challenge.
As your landscape grows, the interplay between these components needs to be moni‐
tored, too. A good tactic to meet this new challenge is to create a central repository
of tracking data that can be focused on correlations across the various APIs in your
organization. In this case, the central data store is often a filtered, correlated subset
(often time-compressed) of the actual tracking data owned by the component/API
teams. This centralized data is a selective, abbreviated view of the entire operation—
one that can be used to spot patterns and anomalies. When they are identified, the
teams can then find pointers into the tracking details to help root out problems and
confirm insights.

Landscape Aspects and API Lifecycle Pillars | 311

Note that the practice here is:

• Get teams to collect and manage their tracking details.•
• Stand up a central repository that pulls selective, filtered data from team tracking•

stores.
• As trends/problems emerge at the central level, rely on the details at the team•

level to confirm/resolve any issues.

Visibility
The practice of creating a central repository for filtered/correlated data is a key
element in maintaining and even improving monitoring visibility. As a corollary to
the point we made in “Security” on page 308 about how you can’t anticipate all
possible problems, for the monitoring pillar it is important to remember that you
can’t anticipate all possible data points to track. For that reason, early efforts at
logging and monitoring often include lots of values that have no known relation to
the current state of your network. They do have a relation, just not one that humans
might know at any point in time. This can lead to teams truncating data collection by
dropping “unrelated” values from the logging streams. This is not usually a good idea.

Instead, it is smart to log everything and monitor only a selective set of data points.
This follows our earlier guidance encouraging teams to own their own data collection
and storage while allowing central monitoring entities to pull filtered, correlated
versions of that data into a shared set of dashboards for everyone to see. While teams
keep an eye on a more detailed (but limited) view of the system, central monitoring
operations can keep a wider (but less detailed) view of the same system. This is a
down-to-earth instance of Heisenberg’s Uncertainty Principle.

Heisenberg’s Uncertainty Principle
In 1927, Werner Heisenberg published a physics paper that contained the observation
that the more precisely the position of some particle is determined, the less precisely
its momentum can be known, and vice versa. In the IT world, this usually is com‐
monly experienced as the trade-off between detailed understanding of a small part of
the system and knowing how that small part of the system affects the whole system.
Attempts to gain both a detailed understanding of each part and a full understanding
of how the parts interact—at the same time—are less and less reliable as ecosystems
grow. That is why we share the guidance that teams maintain a detailed view and the
central monitoring operation maintains a broader, less detailed view.

Another important aspect of visibility for monitoring systems is the related quality
of observability. As landscapes grow, it becomes harder to observe their behavior.
You can use monitoring, or more specifically the publishing of monitoring data, as a

312 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

8 Melvin E. Conway, “How Do Committees Invent?” Datamation, April 1968, https://oreil.ly/PXGIt.

way to improve overall observability. Unexpected results, bugs, and other confusing
phenomena often occur because humans can’t see how a system works and/or how
components of the system are related to each other. Our experience is that, upon
uncovering an odd (“edge case”) bug in a complex system, people are apt to say
something like, “Huh, I didn’t know that was possible” or “I didn’t think it worked
like that.” Improved monitoring and dashboarding may not prevent something from
going wrong, but it can help reduce the likelihood of a surprise when something
doesn’t go as planned.

Volatility
Finally, again to echo what was stated in “Security” on page 308, it is our experience
that larger systems are more likely to experience a higher degree of volatility than
smaller systems. This observation was expressed by computer scientist Mel Conway
in his 1967 paper: “The structures of large systems tend to disintegrate…qualitatively
more so than with small systems.”8

While his observation dealt primarily with the development phase of large projects,
we see the same kind of behavior at runtime in large systems. One small bug has
the potential to crash the entire system, and as the system grows, that crash becomes
more and more costly. This can lead companies to assume the quality of their
ecosystem is degrading over time, but the truth is these kinds of bugs were most
likely always there. It’s just that now that the overall system is larger, their reach—
their risk—is higher than before. You can reduce the risk of a single bug disrupting
your entire landscape and gain a better perspective on the overall system quality by
maintaining a solid monitoring program.

Discovery
As discussed in “Discovery” on page 110, the discovery and promotion pillar of the
API lifecycle consists of all activities that help to make an API findable and usable.
For individual APIs, this often means understanding the context in which it should
be discoverable and potentially helping make it easier to find and use.

In complex and constantly growing API landscapes, discovery follows the same
general trajectory witnessed over time for websites and pages on the web. Initially,
it was sufficient to have a curated list of sites and pages that were compiled into
categories in an attempt to make them findable. This approach was practiced by
Yahoo! as the initial primary discovery mechanism on the web and worked well as
long as the number of sites and pages was relatively small, the rate of change was
small, and it was appropriate to have one categorization scheme for all content on
the web.

Landscape Aspects and API Lifecycle Pillars | 313

https://oreil.ly/PXGIt

This approach clearly did not scale well, though, and was rapidly outgrown by the
enormous growth, change frequency, and diversity of content on the web. Starting
in 1996, Google (which was initially called BackRub and a Stanford-only campus-
provided service) radically altered discovery by introducing two major changes:

• Search by content replaced search by category, meaning that instead of relying on•
a categorization scheme created by a third party, search was now directly driven
by full-text search of the actual content.

• Ranking by popularity replaced manual ranking, replacing third-party decisions•
of how to sort content by computing content relevance as a function of popular‐
ity on the web (as given by inbound links).

There is, of course, a lot more to the story of how discovery evolved on the web, but
it is important to have the general trajectory in mind. While this approach does have
some side effects (making popular sites even more popular and making it harder to
find less popular sites), it generally worked well enough for users to find it useful, and
therefore most discovery tasks on the web today are driven by this general model.

In the world of APIs, content has a different meaning, as APIs are not so much
content by themselves but instead are service descriptions. Popularity, however, is a
concept that can translate relatively easily into the world of APIs, where it is not too
far-fetched to conceive of an API dependency graph as the equivalent of the web’s link
structure.

So far, there is no clear sign of who will become the “Google of the APIs.” And
since many API landscapes contain mostly APIs that are in the private/partner space,
rather than being public, it is not quite clear whether the same trajectory of discovery
will be seen for APIs as was seen on the web. However, for discovery and promotion
to be scalable, it is important for relevant information to be made available in a way
that it can be used for automation and tooling. The major landscape aspects playing
into this are variety, volume, vocabulary, visibility, and versioning.

Variety
API documentation can be produced in many forms, and the form it is produced
in is dictated by the investment decisions in this lifecycle pillar. Investment is driven
by API maturity, as well as by the intended audience for an API. Investment is also
driven by the support and tooling that may be made available at the landscape level.

With the increasing popularity and importance of APIs, sophisticated solutions for
API documentation and discovery are available. Often these are integrated suites,
combining aspects of documentation, discovery, code generation, and other DX
factors. While these suites are definitely valuable, it should be kept in mind that they
necessarily have built-in bias (such as preferred API styles) and like all tooling should
be used in such a way that they can be augmented or replaced when necessary.

314 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

The ideal solution for making sure that discovery can be assisted by tooling, while
remaining open and declarative at its core, is to expose all information necessary for
discovery in the API itself (see “API the APIs” on page 233 for the principle) and
then let support and tooling pick up this information and use it for landscape-assisted
discovery. This follows the general principle of exposing everything relevant in the
API itself and is discussed in greater detail in “Vocabulary” on page 315.

Volume
As the API landscape grows in volume, it is important to build up discoverability as
an aspect that can not only help find APIs, but also rank them. Finding is necessary
but not sufficient, as everybody who has ever used a web search engine that reports
millions of hits for a given search term knows.

Discovery thus requires more than just ways to find APIs; it also requires ways to
better understand and thus rank them. It is likely that the understanding of “useful
ranking” will evolve over time in any given API landscape. Initially, ranking might
not even be necessary since there aren’t that many APIs. Then it might become a
necessity because of the increasing volume of APIs. Useful ways to perform ranking
might change over time too, as volume grows and as the definition of “best matches
for a given search” evolves over time.

To be able to grow along this axis of continuously changing and improving discovery,
it is important to keep in mind that APIs should make as much information available
about themselves as seems useful at any given point in time and that this set of
information can continually evolve as the landscape and the discovery needs for APIs
change over time.

From the landscape point of view, it is important to provide support and tooling that
makes it easy to become easily discoverable in the API landscape. Depending on the
discovery model, this set of tasks might look surprisingly similar to SEO on the web,
where there is a balance between the information that can be harvested and used by
discovery services and the level of cooperation that individual providers are willing to
invest.

Vocabulary
Discovery means making APIs easier to find, and while the general principle dis‐
cussed here follows the pattern of how large-scale discovery on the web moved
from Yahoo!’s categorization model to Google’s full-text search and popularity-based
ranking model, it is helpful to consider some other developments on the web.

In 2011, Schema.org was started as a collaboration between the major search engines
Bing, Google, and Yahoo! in an effort to create a single schema across a wide range of
topics that included people, places, events, products, offers, and so on. The main goal
of the project is to allow web publishers to mark up their content as they see fit and to

Landscape Aspects and API Lifecycle Pillars | 315

https://oreil.ly/NIcHO

allow search engines to use this markup as another input to their search and ranking
algorithms.

It is worth noting that this specifically applies to web content, and not to APIs. But
the principle is what matters most: Schema.org keeps evolving as a vocabulary of
terms on the web that publishers can use to mark up their content. This is possible
because the vocabulary itself and its use by vocabulary users and consumers are
decoupled. As the vocabulary evolves, content can be marked in more sophisticated
ways, and the production and consumption of vocabulary terms are loosely coupled.

For API landscapes, similar principles can be established. The landscape can support
and promote the usage of terms to increase discoverability, and it can provide sup‐
port for producing marked-up content (e.g., in documentation and/or API home
documents) as well as for validating it. Deployment pipelines can even automate tests
for the presence of some terms: for example, testing for “API style” and, if no such
term is found, raising a warning and asking the API team to include this information
and make it discoverable.

Visibility
As discussed in “Volume” on page 315, one of the primary aspects to keep in mind
when thinking about discovery in API landscapes is volume. And as we saw in that
section, the main way to manage volume is to make as much information about the
API visible in the API as is necessary. The set of “necessary” information will evolve
over time, of course, so the main thing to keep in mind for visibility is to be able to
start small and to have a plan for how that can be continuously evolved into a bigger
set of information exposed in individual APIs.

By keeping the aspect of visibility in mind and keeping in mind that the set of visible
information is likely to evolve over time, discovery can be continuously evolved in
the API landscape in the same way as it continuously evolves on the web. Discovera‐
bility is never “finished,” and the way it is approached is to evolve the information
that is available to discoverability tooling and to observe the landscape’s evolution
and consider what changes would best help improve discovery.

Versioning
APIs in an API landscape tend to change, and making that easy is one of the goals
of having an API landscape in the first place. Enabling change without breaking all
consumers with every new release is also a goal that is inherent in many APIs and
API landscapes. With good change management practices, it is possible to better
decouple API producers and consumers and to allow them to evolve independently.

Ideally, API teams can evolve their products and release new versions at their own
speed. However, while this makes it easy for the API teams, it makes it harder for

316 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

API consumers to keep track of versions and to be able to find older versions and
explanations of changes between versions.

One possible way for landscapes to make it easier to see and understand APIs and
their versions is to require APIs to document all versions. By making the version
history available through the API, it can be more easily made discoverable, allowing
consumers to discover information about an API’s version and possibly to under‐
stand its evolution throughout the history of the product.

This aspect can become trickier for breaking changes of the API, where the API
implementation may have changed completely and it is harder to keep documenta‐
tion and versions discoverable at all times. In these cases, it may be helpful to provide
support so that API teams do not have to spend additional effort keeping legacy
versions around and instead can rely on the landscape either still making some
information available or informing consumers that an old version is still known, but
that detailed information is not available anymore.

Change Management
One important pillar of the API lifecycle is change management, as discussed in
“Change Management” on page 112. Part of the general API journey should be to
minimize disruptions of the API ecosystem as an API evolves. Often, one way to
help with that is to follow change management principles that may revolve around
extensibility models and only make safe changes according to these models; another
approach may be to never change released APIs and instead have an operational
model that makes it feasible to run many different versions in parallel.

Planning for change is one of the central issues of API landscapes and their ongoing
evolution, and thus change management is a pillar that is very much dependent on
how the API landscape supports API changes with guidance and tooling. To help
individual APIs with their change management, the aspects of vocabulary, velocity,
visibility, and versioning are the most relevant ones and are discussed in the following
sections.

Vocabulary
One important aspect to keep in mind when considering change management for
APIs is the impact of vocabulary evolution on API evolution. Vocabularies are a
common and well-known aspect of API design, and designing a vocabulary into an
API always means that vocabulary updates result in API updates. While with the right
extension model these updates can be nonbreaking, they still trigger the whole chain
of updating the API and its associated resources, and possibly similar activities for
API consumers.

Landscape Aspects and API Lifecycle Pillars | 317

Vocabulary management also can be decoupled from an API, turning the vocabulary
itself into a resource that can evolve and thus allowing the API to remain stable
even when the vocabulary changes. As discussed in “Vocabulary” on page 261, one
popular way of doing this is by referring to a registry, either managed by some
external authority or possibly managed and hosted as part of the landscape. In this
model, vocabulary changes do not necessarily trigger API changes, and there is the
added benefit of better vocabulary sharing across APIs.

For these reasons, thinking about vocabularies at the landscape level makes a lot of
sense and can support and simplify the design and evolution work of individual API
product teams. At some level, the idea of vocabulary support at the landscape level
is related to the concept of a data dictionary, but that term most often is related
to specific aspects of database schemas, whereas the idea of vocabularies is to be
independent of implementation and essentially just be data types that are managed by
themselves and can be reused across various APIs.

Velocity
Making changes should primarily be driven by product planning and iteration, based
on feedback and feature rollout. Change management is necessary to make this easy,
and first and foremost should not get in the way of making changes. Velocity (as
discussed in “Velocity” on page 266) is one of the main goals of moving to APIs
and API landscapes, and understanding how velocity is assisted or hampered by the
landscape is an important ongoing activity.

API product teams should be encouraged to provide feedback about how they feel
their velocity has been helped or hindered, and this feedback is important to keep in
mind when creating guidance about how to improve change management and when
building up support and tooling at the landscape level. Change management is one of
the pillars that should always be taken seriously, and one reason for that is its direct
link with velocity.

However, once again it is important for API products to consider the context of their
change management efforts, possibly delaying more sophisticated ways of managing
change in later API maturity stages. The answer to the question “If an API changes in
the landscape, does anybody care?” varies based on who is depending on this API.

If nobody uses the API (so far), it could be argued that any change management is
wasted effort and therefore impacting velocity. On the other hand, if usage picks up,
there is the conundrum that with broader usage, better change management helps
with keeping up velocity, but now that there are users, changing the API to support
better change management itself has become more complicated. This means that
to maintain velocity, in particular through advanced stages of the maturity journey,
considering change management from the beginning is a good investment, and one
that should be supported well at the landscape level early on.

318 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

Versioning
Generally speaking, APIs should follow the model of semantic versioning (as
described in “Semantic versioning” on page 247). They don’t have to use the exact
same scheme, but the distinction of change “levels” is useful:

• For patch versions, there is no observable change at the API level, so this kind•
of change is only interesting for consumers to possibly check whether an imple‐
mentation has been changed to address a bug.

• For minor versions, which are by definition backward-compatible, consumers•
might be interested to learn about the changes, but they might also choose to
ignore them if the service is sufficient for them.

• For major versions, consumers must take action, as these introduce breaking•
changes. Consumers must be notified when major versions are rolled out, and
should also be notified about how much time remains before the version they
currently depend on is removed from use.

There are many different ways in which these mechanisms can be managed by
individual APIs. Since change management and dependency management are central
to the robustness of an API landscape, a good guidance is to have some coherence
about these issues so that it becomes easier for API consumers to deal with the
velocity of changes in the API landscape.

After all, having the ability to change and update APIs at high velocity is a good thing,
as long as the negative side effects are kept in check.

Visibility
Managing visibility is a tricky balance when it comes to change management in
API landscapes. Generally speaking, API consumers would like to use an API as
undisturbed as possible, unless they learn of new features that they want to use,
in which case they are willing to invest in adapting their API consumption to the
changed API. Making change management visible and therefore allowing consumers
to write code that can react to this information helps to improve the resilience of an
API landscape.

As mentioned in the previous section, it is important to build change management
into the API landscape so that the velocity of changes does not disrupt services more
than necessary. One of the main considerations just discussed is what to make visible.
It is recommended to use a model that reflects the semantic versioning scheme of
patch, minor, and major versions.

From a security point of view, it may be advisable to not expose patch versions to the
public, or even to partners. After all, these changes are not supposed to change the
API or its behavior, other than potentially resolving implementation problems.

Landscape Aspects and API Lifecycle Pillars | 319

Minor versions should be made visible, as this helps consumers to understand their
availability. Consumers should always have a way to inspect the version history, and
ideally what has changed between minor versions should always be documented.
Major versions, of course, must always be visible because they introduce breaking
changes.

Making versions visible in a unified way helps API consumers adapt to that model
of change management in the API landscape and can even allow them to use and
reuse tooling to react to it. For this reason, treating versioning in a way that is
consistent across APIs adds considerable value (in the form of better stability) to
an API landscape. Providing guidance about what to do, providing support for how
to do it, and having tools to verify that APIs actually follow the guidance will help
to make change management less challenging for API producers, while allowing
API consumers to benefit from robust change management practices throughout the
landscape.

Summary
In this chapter, we set out to combine the lifecycle pillars introduced in Chapter 4
with the landscape aspects (the eight Vs) introduced in Chapter 9. The most impor‐
tant goal of this exercise was to highlight the move from focusing on one API to
focusing on many APIs so that on the one hand individual APIs can flourish in
the API landscape, and on the other hand the API landscape as the constraining
and supporting fabric around APIs can continuously evolve. The main factors in
this evolution are feedback by observation, allowing the landscape to understand the
evolution of API practices, and support through guidance and tooling, allowing the
landscape to turn the observations into actionable ways to facilitate change over time.

The landscape/lifecycle matrix (see “Landscape Aspects and API Lifecycle Pillars” on
page 286) is a way to show the relationship between landscape aspects and lifecycle
pillars. The way we addressed the complexity of the resulting grid was by focusing
on those combinations of landscape aspects and lifecycle pillars that deserve special
attention.

Our general model of relating landscape aspects and lifecycle pillars is to look at
observability in individual APIs so that from the landscape perspective, it becomes
possible to observe how individual APIs behave. This follows the general “API the
APIs” principle. The second step, then, is to use these observations to identify areas
in which API development could be best guided and supported by investing in pillars.
We always apply the “why/what/how” model (see “The Center for Enablement” on
page 254) to make sure that API guidance and implementation guidance are cleanly
separated. This allows API and implementation practices to evolve independently,
meaning more continuity in the API landscape because implementations can change
without changing API-level practices.

320 | Chapter 11: Managing the API Lifecycle in an Evolving Landscape

Finally, this chapter was an opportunity to bring together several elements discussed
elsewhere in the book. We touched on the notion of maturity as an indicator of
when the shape of your landscape is changing, and we mentioned the process of
distributed decision making as a tool for sharing responsibility and guiding actions
throughout a growing organization. Each company has its own culture, common
practice, and levels of expectation. Ideally, the material here will give you some ideas
on how to develop your own unique landscape/lifecycle matrix and learn to use your
company’s internal decision-making process to continuously improve your ecosystem
as it matures over time.

Summary | 321

CHAPTER 12

Continuing the Journey

We demand rigidly defined areas of doubt and uncertainty!
—Douglas Adams

API management is a complex subject, and we’ve had to cover a lot of ground in
this book to explore it. After a brief discussion of the challenge and promise of API
programs (Chapter 1), we examined the foundational concept of API governance
(Chapter 2) and what it means to do decision-based work. Focusing on decisions led
us to a model of decision making with elements we could distribute or map. Mapping
decisions gave us a powerful, nuanced way of managing API work.

With this focus on decision-making as a foundation, we started our API journey
in earnest by introducing the first important API management factor: a product
perspective (Chapter 3). Treating the API as a product that solves a problem for a
target audience gives you a guiding light for deciding which decisions matter the
most. We started with this product approach by focusing on the work of creating a
single API product. Our experience tells us that the context of local optimization for
an identified use case (such as Clayton Christensen’s “Jobs to Be Done”) is important.
Starting from a single use case is also easier to grasp than starting by tackling the
complex landscape that inevitably comes as you add more and more APIs to your
system.

In this first set of chapters, we also explored the local context of an API by taking a
tour of the API pillars (Chapter 4), learned about API styles (Chapter 6), and worked
through the stages of your API product lifecycle (Chapter 7). With these tools, you
can establish a solid foundation of API practice that can result in consistent, coherent
APIs built in a way that supports tracking and managing the flow of work from the
create step through to the retirement phase of your APIs.

323

The next important API management factor we covered was that of your company’s
overall organization and culture. This topic is much too broad (and important) to
be left to just a couple of chapters here, but we want to be sure to highlight two
fundamental organizational elements we all deal with when it comes to introducing
and maintaining a healthy API program. The first of these is nurturing a company-
wide ethos of continuous improvement (Chapter 5). Creating an organization-wide
environment that has the right levels of psychological safety and a relentless striving
to experiment to make things better is a tough job. And it is an essential element
for a successful API program over the long term. But company-level efforts are only
the start. You also need to create similar levels of trust and experimentation at the
team level. For that reason we also devoted a chapter to the concept of API teams
(Chapter 8). Here we discussed roles within a team and the larger task of designing
and maintaining the teams themselves. By leading with an overall dedication to
continuous improvement backed up by a concentrated effort to support effective
teams, you can—over time—grow a strong, healthy culture in your company that
leads to high-quality APIs.

Finally, we added the third factor of API management: scale. We introduced you to
the API landscape and the 10,000-foot view of the complex system. The last section
of the book focused on the concept of system optimization and the decisions that
go along with it. We introduced the notion of API landscapes (Chapter 9) and how
your API landscape affects the API lifecycle (Chapter 11). Working at this landscape
level can be quite challenging. Here, all the elements we covered earlier—governance,
products, culture, and scale—come together in a complex mix of interactions. Our
hope in these last couple of chapters was to give you some guidelines and share some
advice on what kinds of challenges to expect as you create your company’s unique
blend of APIs that make up your organization’s singular system-level landscape.

That’s a lot of information, frameworks, and models—but at the heart of API man‐
agement are those four fundamental parts: governance, products, culture, and scale.
No matter what kind of APIs you have, what industry you are operating in, or the size
of your company, you’ll need to manage APIs from all of those perspectives. Ideally,
we’ve given you a set of tools in this book to help you start doing that today.

Continuing to Prepare for the Future
It’s hard to say what the future will look like, but we’re certain that the connectedness
of software isn’t a passing trend. As architectures become more reliant on compo‐
nents being interoperable or integrated, the demand for API management will grow,
even as the protocols, formats, styles, and languages that underpin it change and
evolve. Indeed, since we released the first edition of this book just a few short years
ago, there has been a surge of interest in managing multiple APIs (what we call

324 | Chapter 12: Continuing the Journey

landscapes). There has also been a growing attention paid to lowering the barriers to
use, reuse, and integration—all things we discussed in 2019.

We’ve tried to write this book in a way that will be useful for you regardless of the
specific technology choices you face. The core concepts of governance, product, cul‐
ture, and scale are essential and timeless for API management. So, even as everything
changes around you, you’ll have a set of concepts and frameworks that will help you
make sense of it.

You can use the API-as-a-Product approach to help drive your design and implemen‐
tation choices. This will give you the freedom to create APIs that fit your users’
long-term needs instead of finding yourself at the mercy of short-term industry
trends and hype cycles. You can also distribute API decision-making based on the
goals, talent, and context of your organization instead of trying to clone the working
culture of the latest successful startup.

Above all, we encourage you to embrace the complexity of the system you are
managing rather than fight it. Get an understanding of how time and scale change
the work that needs to happen. Use the API product lifecycle and the landscape
journey to frame your working context. Play the “what if?” game with the landscape
variables to assess your system: What if the variety increases? What if velocity stops
being important? Your answers to these questions might not be prescient, but they’ll
definitely be enlightening. And they most assuredly will lead you to opportunities to
continually improve your system.

Continue Managing Every Day
When you’re faced with a big problem in a complex, complicated domain, it’s easy
to feel overwhelmed. At the beginning of this book, we talked about decision quality.
One of the most important elements of making a good decision is the information
you have available to you. That includes learning how other people have solved
similar problems, understanding your current context, and gaining more certainty
about the future impact of any decision you make.

It is important to spend time gathering that kind of information about API manage‐
ment in order to make better decisions. At the same time, if you spend too much
time gathering information, you’ll never get a chance to learn by doing. When you’re
dealing with the uncertainty of a complex adaptive system, the reasonable way to
move forward is to take small bites out of your problem. Tackle one small thing, learn
from it, and move on to the next thing.

In our experience, the best way to do that is to apply techniques like Deming’s PDSA
cycle, introduced in “Incremental Improvement” on page 127. Use the data you have
today and come up with a theory. Take that theory and plan an experiment. Find
a safe place in your organization to try the experiment. Measure the results, and

Continue Managing Every Day | 325

start again. You don’t need Agile processes, Lean methods, Kanban boards, DevOps
tooling, or a microservice architecture to start managing your APIs. All those things
are useful and have their place, but you don’t need them to get started. All you need
is a theory, a good measurement, and a willingness to execute and experiment safely
and consistently.

When it comes to a complex domain like API management, this is the best way
to move forward—and the good news is you can start doing that right now. Find
something in your API system that you think can be improved, and use what you’ve
learned in this book to perform an experiment. Learn as you go, and grow as you
learn. Before you know it, you’ll have an API management system that works for you
as much as you’ve worked to build it.

Even better news is that you can continue this cycle of tackling small problems for
as long as you want. This is the continuous part of Continuous API Management. The
challenges will always be different, and the solutions will evolve over time along with
technology and experience. But the general approach will stay that same.

It’s a long journey. But our experience, and that of most of the companies we’ve
talked to, tells us that it doesn’t have to be a difficult one. If you’re armed with the
API management knowledge that we’ve gathered in this book and have a willingness
to search for a solution that fits your company’s unique needs, you’ll have a big
advantage. Your path will be clearer, and you’ll have a much better chance of making
progress.

The more progress we make, the closer we can get to reaching our goals. And
continuing that is a good thing for everyone.

326 | Chapter 12: Continuing the Journey

Index

Symbols
10 pillars (see pillars of API products)
12 API security principles, 106
3 necessities of API creation, 47
4Ps (Price, Promotion, Product, Place), 49
8 Vs of API landscapes, 235-248, 258-276 (see

also landscape/lifecycle matrix)

A
AaaP (see API as a product (AaaP))
AARRR (awareness, acquisition, activation,

retention, revenues, referral), 73
Agile development, 114, 117, 128, 142, 173, 209
Alexander’s cultural mosaic, 218
Amazon, 27, 51-53, 78
Amazon Web Services (AWS), 52, 78
API acquisition, 74
API activation, 75
API archaeology, 225-227
API architect role, 200
API as a product (AaaP)

introduction to
customer onboarding, 55-59
design thinking, 50-55
developer experience, 59-80
programmable economy, 48-50

lifecycle of
create stage, 168-171, 184-186
introduction to, 167
maintain stage, 178, 192
managing change continuously, 133-135
measurements and milestones, 162-167
pillar impact by lifecycle stage, 183
publish stage, 171-175, 187-189

realize stage, 175, 190-192
retire stage, 180-182, 193

necessities of API creation, 47, 117-120
pillars of work in API product domain

change management, 112
deployment, 101-104
design, 88-91
development, 94-97
discovery and promotion, 110-112
documentation, 91-94
introduction to, 84
monitoring, 108
security, 104-108
strategy, 84-87
testing, 98-101
using pillars together, 114-123

API awareness, 73
API champions, 40
API discovery

as an API pillar, 110
applying to publish stage, 189
applying to realize stage, 191
design-time discovery, 111
knowing your audience, 61
managing growing ecosystems, 313-317
runtime discovery, 110

API evangelists, 199
API gateways, 95
API governance (see governance)
API guidance, 250-254
API landscape, 2, 223 (see also landscape man‐

agement)
API language, 232
API librarians, 227

327

API linting tools, 258
API management (see also API as a prod‐

uct (AaaP); landscape management; land‐
scape/lifecycle matrix)
approach to learning, xiii-xvi
challenges and promises of, 1-3, 8-12
continuous nature of, 42, 325
introduction to

API maturity stages, 7
API styles, 6
managing multiple APIs, 8
practice areas involved, 7
role of APIs in business, 3
use of term, 4-6

landscape management, 12-15
preparing for the future, 324

API metrics, 182
API objectives, 164, 175
API pillars (see pillars of API products)
API protocols, 232
API referrals, 76
API retention, 76
API revenue, 76
API usage tracking, 63-65
APIOps, 103, 179
APIs (application programming interfaces)

AaaP versus APIs, 71
applying design thinking to, 54
description formats for, 91, 97
internal versus external, 51, 111, 173
making APIs safe and easy to use, 65-68
necessities of API creation, 47, 117-120
security principles, 106
styles of

API styles as interaction patterns, 147,
232

APIs as languages, 146, 232
consistent implementation of, 6
event-based style, 155
hypermedia style, 151-153
patterns versus technologies, 145
query style, 153
resource style, 150
selecting style and technology, 156-159
tunnel style, 148-150

use of term, 2, 4-6
Apple, 50, 55, 59, 68
application programming interfaces (see APIs

(application programming interfaces))

archaeology, 225-227
architect role, 200
audience

decision management and, 19
design thinking and, 54
knowing your audience, 47, 60-65
matching people's needs, 51, 282
role in API management, 7

authorization, 32
automation

automated threat detection, 122
DevSecOps automation, 121
during maintain stage, 179
improving API change velocity, 132
timing of, 43

availability, 106
AWS (Amazon Web Services), 52, 78

B
B2D (business to developer), 69
backend developer (BE) role, 201
Backend for Frontends (BFF) pattern, 299
“balanced scorecard” system, 164
Bezos mandate, 52
Big Design Up Front (BDUF) antipattern, 142
breaking changes, 181, 247, 308, 320
business roles, 198
business strategy, determining viable, 52
business to developer (B2D), 69

C
Center for Enablement (C4E), 254-258
centralization, 23-28, 227
centralized storage, 311
challenge element, 33
change management

applying to realize stage, 191
applying to retire stage, 193
avoiding breaking changes, 181, 308
changing APIs, 133-139
continuous API improvement, 125
goals for, 112
improving API change velocity, 131-133
improving API changeability, 139-143
managing change continuously, 126-131
managing growing ecosystems, 317-320

changeability, 126, 139-143
Chaos Monkey, 255
chat channels, 68

328 | Index

choice generation, 30
choice selection, 31
CI/CD pipelines, 121
citizen developers, 169
clients, 155
code, role in developer relations, 70
code-first approach, 118
comments and questions, xvii
community, role in developer relations, 70
company culture

as form of governance, 213
Dunbar's numbers and, 216
enabling Alexander’s cultural mosaic, 218
role of Conway's law, 214
supporting experimentation, 220

complete mediation, 107
complex adaptive systems, 21-22
complex systems, 20-21
confidentiality, 106
consumer-centric approach, 282
consumers, 155 (see also audience)
containerization, 121
content, role in developer relations, 70
continuous delivery, 121, 304
continuous improvement

adopting mindset for API management, 281
challenges of managing change, 125
changing APIs, 133-139
CI/CD pipelines, 121
designing governance systems, 36
improving changeability, 139-143
managing change continuously, 126-133

Conway's law, 214
coupling costs, 141
create stage (API lifecycle)

applying API pillars to, 184-186
characteristics of, 168
methodology for, 169
milestones for, 169
team roles during, 203

culture (see company culture)
customer onboarding, 55-59

D
DDD (domain-driven design), 136
decentralization, 23-28, 227
decision blindness, 30
decision elements, 14
decision-based work

common choices API teams make, 18
decision management, 19
governing decisions

approaches to, 22
centralization and decentralization,

23-28
decision design in practice, 35
decision mapping, 33-35
elements of decisions, 28-33

defense in depth, 107
deployment

applying to publish stage, 188
applying to realize stage, 190
as an API pillar, 101-104
managing growing ecosystems, 304-308

deprecation policies, 181
design authority pattern, 38
design guidance, 250
design thinking, 50-55
design work

applying to create stage, 184
applying to publish stage, 187
as an API pillar, 88-91
changing interface models, 135
domain-driven design, 136
during planning, 115
managing growing ecosystems, 290-292
model-driven design, 216

design-time discovery, 111
designer role, 198
developer experience (DX)

AaaP monetization and pricing, 78-80
API style and, 152
citizen developers, 169
developer portals, 93
developer relations for AaaP

AaaP versus APIs, 71
API acquisition, 74
API activation, 75
API awareness, 73
API referrals, 76
API retention, 76
API revenue, 76
community, code, and content, 70
tracking success in, 72
Twitter API versus Slack API, 72

interface design, 89
knowing your audience, 60-65
making APIs safe and easy to use, 65-68

Index | 329

managing API change, 126
role of developers in API economy, 68
versus user experience, 59

developer portals, 93
developer relation management software, 72
developer relations (DevRel) role, 199
development work

applying to create stage, 185
applying to publish stage, 187
as an API pillar, 94-97
managing growing ecosystems, 296-299

DevOps engineer role, 201, 204
DevOps practices, 103, 120-123, 179, 304
DevRel (developer relations) role, 199
DevSecOps automation, 121
discovery and promotion (see API discovery)
distributed collection, 311
distributed releases, 306
documentation

adding warnings to, 66
as an API pillar, 91
applying to publish stage, 188
applying to realize stage, 190
approaches to, 92
enhanced for developers, 67
investing in, 93
key decisions for governance, 94
managing growing ecosystems, 292-296

documentation-first approach, 117
domain-driven design (DDD), 136
Dunbar's numbers, 210, 216
DX (see developer experience (DX))

E
ease of use, 67
economy of mechanism, 106
EDAs (event-driven architectures), 141, 155
effort costs, 139
eight Vs of API landscapes (see also land‐

scape/lifecycle matrix)
maturity and, 258
variety, 236, 259
velocity, 242, 266-268
versioning, 246, 273-275
visibility, 245, 270-273
vocabulary, 238-241, 261-263
volatility, 247, 275
volume, 242, 264-266
vulnerability, 244, 268-270

EIM (enterprise information model), 239
embedded centralized experts pattern, 39
end-user error reporting, 63
enforcement, 36
enterprise information models (EIMs), 239
enterprise service bus (ESB), 229
error reporting, 62
ESB (enterprise service bus), 229
Etsy, 306
evangelist role, 199
event-driven architectures (EDAs), 141, 155
evolutionary design, 307
experimentation, supporting, 220
external APIs, 51, 111
external dependencies, 244

F
fail-safe defaults, 107
frameworks and tools, 95, 132
frontend developer (FE) role, 201

G
gateway error reporting, 63
general data protection regulation (GDPR), 269
Genius Bar, 60, 65, 67
GitHub, 252, 307
golden path platform, 41
governance

of API pillars
change management, 113
deployment, 103
design, 91
development, 97
discovery, 112
documentation, 94
monitoring, 109
security, 105
strategy, 87
testing, 100

company culture and, 213
designing governance systems, 36-41
foundational concepts

decision management, 19
decisions, 18
governing complex systems, 20-22

governing decisions
approaches to, 22
centralization and decentralization,

23-28

330 | Index

decision design in practice, 35
decision mapping, 33-35
elements of decisions, 28-33

implementing governance patterns, 41-45
role in API management, 17
scaling, 14

GraphQL, 145, 157, 236, 237, 299
guidance motivation, 250
guilds, 211

H
habitualized decision making, 30
Heisenberg’s uncertainty principle, 312
HSBC, 40
hypermedia API style, 151-153

I
IaaS (infrastructure-as-a-service) platform, 53
immutability, 102
impact measurement, 36
implementation

deciding what can be used for, 97
of decisions, 33
of governance patterns, 41
managing change continuously, 137
staying true to interface design, 94, 96
synchronizing changes with documentation,

93
implementation guidance, 250
incentivization, 36
inception element, 29, 168
incremental improvement, 127
influenced self-governance pattern, 40
infrastructure APIs, 233
infrastructure-as-a-service (IaaS) platform, 53
innovation, fostering, 220
instances, managing change continuously, 138
integration testing, 98
integrity, 106
interface design

changing interface models, 135-137
relationship to implementation, 94, 96

internal APIs, 51, 111, 173
iterative release approach, 134

J
JTBD (jobs to be done) framework, 3, 51, 285

K
Kaizen, 305
key performance indicators (KPIs), 162
Kubernetes, 122

L
landscape management (see also landscape/life‐

cycle matrix)
API archaeology, 225-227
challenges of, 12-15, 223
continuous approach to

Center for Enablement (C4E), 254-258
evolution of API landscapes, 249
maturity and the eight Vs, 258-276
structuring guidance, 250-253

eight Vs of API landscapes
variety, 236
velocity, 242
versioning, 246
visibility, 245
vocabulary, 238-241
volatility, 247
volume, 242
vulnerability, 244

at scale
centralized integration versus decentrali‐

zation, 227
landscapes as language landscapes, 232
making information available, 233
platform principle, 228, 281-283
principles, protocols, and patterns, 230

understanding the landscape, 234
“landscape of teams”, 218
landscape/lifecycle matrix

API products and lifecycle pillars, 285-286
landscape aspects and lifecycle pillars

change management, 317-320
deployment, 304-308
design, 290-292
development, 296-299
discovery, 313-317
documentation, 292-296
managing growing ecosystems, 286
monitoring, 311-313
security, 308-311
strategy, 288-289
testing, 299-304

managing evolving landscapes
challenges of, 280

Index | 331

defining boundaries and constraints, 280
designing for consumers, producers, and

sponsors, 282
platforms over projects, 281
test and learn approach, 283

language management, 232
lead API engineer role, 200
Lean software development, 128, 140, 286, 305
learning experience, 92-94
least privilege, 107
lifecycles (see also landscape management)

API guidance lifecycle, 253
API product lifecycle

create stage, 168-171, 184-186
introduction to, 167
maintain stage, 178, 192
pillar impact by lifecycle stage, 183
publish stage, 171-175, 187-189
realize stage, 175, 190-192
retire stage, 180-182, 193

measurements and milestones, 162-167
release lifecycle, 133, 306

LinkedIn, 163
linting tools, 258
load testing, 98
loose coupling, 136, 141, 227, 243

M
maintain stage (API lifecycle)

applying API pillars to, 192
characteristics of, 178
team roles during, 207

maturity (see API product lifecycle)
measurements and milestones

for create stage, 169
defining API objectives, 164
identifying measurable results, 165
for maintain stage, 178
OKRs and KPIs, 162
for publish stage, 172
for realize stage, 176
for retire stage, 180
test and learn approach, 283

message brokers, 156
metrics, 182
microservices, 116
model-driven design, 216
monetization, 78-80
monitoring

as an API pillar, 108
applying to maintain stage, 192
applying to publish stage, 189
data gathering systems, 162
error reporting, 62
managing growing ecosystems, 311-313

“mosaic of subcultures pattern”, 218

N
native app store applications, 229
needs, matching people's, 51, 282
“Neo moment”, 58
Netflix, 41, 79, 216, 255
Netscape, 48
non-breaking changes, 181, 308

O
objectives and key results (OKRs), 163
objectives, defining, 164, 175
observability

benefits of implementing early, 42
DevOps practices, 121
getting started with, 43
managing growing ecosystems, 312

Observe-Orient-Decide-Act (OODA) model,
128-130

OKRs (objectives and key results), 163
onboarding experience, 55-59
online support forms, 68
OODA (Observe-Orient-Decide-Act) model

(see Observe-Orient-Decide-Act (OODA)
model)

open design, 107
Open Web Application Security Project

(OWASP), 106
OpenAPI Specification, 91
operating models, 44, 120
opportunity costs, 140
optimization, 26
Osterwalder’s Value Proposition Canvas, 176
OWASP API Security Project, 106

P
PAIN point of view, 176
patterns, 231
PayPal, 38
PDSA (Plan-Do-Study-Act) cycle, 127
performance testing, 98

332 | Index

personally identifiable information (PII), 268
pillars of API products

applying to product lifecycle, 183-193
change management, 112
deployment, 101-104
design, 88-91
development, 94-97
discovery and promotion, 110-112
documentation, 91-94
introduction to, 84
monitoring, 108
security, 104-108
strategy, 84-87
testing, 98-101
using pillars together, 114-123

Plan-Do-Study-Act (PDSA) cycle, 127
planning, using API pillars when, 114-123
platform principle, 228, 281-283
pricing, 78-80
principled guidance, 15, 250-254
principles, 230
product lifecycle, 167
product manager (PM) role, 198
product perspective (see API as a product

(AaaP))
production testing, 99
promotion, 110-112
proto-APIs, 226
Protocol Buffers, 91
protocols, 230, 232
prototyping, 115
psychological acceptability, 107
publish stage (API lifecycle)

applying API pillars to, 187-189
characteristics of, 171-175
milestones for, 172
team roles during, 204

Q
QA (test/quality assurance) engineer role, 201
query API style, 153
questions and comments, xvii

R
realize stage (API lifecycle)

characteristics of, 175
most impactful pillars during, 190-192
team roles during, 205

"red lines" (boundaries and constraints), 280

release lifecycle, 133, 306 (see also lifecycles)
resource API style, 150
retire stage (API lifecycle)

characteristics of, 180-182
most important pillars in, 193
team roles during, 208

reversibility, 308
risks, mitigating, 65-68
runtime discovery, 110
runtime platforms, 122

S
safety, 65-67
sandboxes, 100
scale

challenges of managing, 10
of operation, 27
scaling up teams, 209-213
unique challenges for API management,

12-15
scope

challenges of managing, 9
of optimization, 26

SDLC (system development lifecycle), 134
secure failure policy, 108
security

as an API pillar, 104
applying to create stage, 186
DevOps practices, 121
holistic approach to, 104
key decisions for governance, 105
managing growing ecosystems, 308-311
principles of, 106

security testing, 99
self-servicing, 179
semantic versioning, 247
serverless architectures, 123
service error reporting, 63
service mesh, 123
single-page applications (SPAs), 154
Six Sigma, 305
Slack, 72, 115
software lifecycles, 133 (see also lifecycles)
SPAs (single-page applications), 154
spiral SDLC release approach, 134
sponsors, serving needs of, 283
Spotify, 41, 209
squads, 210
“stand-on-a-chair” number, 216

Index | 333

standards
automated information collection through,

233
challenges of managing, 11
developing strategy for managing, 44
usefulness of, 224

strategy
applying to create stage, 184
applying to retire stage, 193
as an API pillar, 84-87
during planning, 115
managing growing ecosystems, 288-289

Stripe, 56, 61, 70, 77, 85, 182
sunsetting policies, 181
support assets, managing change in, 138
surface attack areas, minimizing, 107
system development lifecycle (SDLC), 134

T
tactics, 85
TDD (Test-Driven Development), 119
teach don't tell approach, 92
teams

C4E team, 256
centralized versus decentralized, 43
common choices API teams make, 18
company culture and

as form of governance, 213
Dunbar's numbers and, 216
enabling Alexander’s cultural mosaic,

218
role of Conway's law, 214
supporting experimentation, 220

implementing the right kind, 195
makeup of

filling multiple roles, 202
impact of API maturity on, 202-209

managing change continuously, 132
roles for dealing with APIs

business roles, 198
overview of, 196
technical roles, 200

scaling, 13, 209-213
serving needs of, 282

technical roles, 200
technical writer role, 199
tell don’t teach approach, 92
Test-Driven Development (TDD), 119
test-first approach, 119

test/quality assurance (QA) engineer role, 201
testing

applying to create stage, 185
applying to realize stage, 191
as an API pillar, 98-101
managing growing ecosystems, 299-304
test and learn approach, 283

Theory of Constraints (TOC), 130
tight coupling, 141
“Time to Wow!” (TTW), 56
TOC (Theory of Constraints), 130
tools and frameworks, 95, 132
tribes, 210
TTW (“Time to Wow!”), 56
tunnel API style, 148-150
Twilio, 58, 69, 75, 77, 85
Twitter, 72, 115

U
uncertainty principle, 312
unit testing, 98
usability testing, 98
usage tracking, 63-65
user experience (UX), 59, 98
user stories, 173-175

V
validation, 36
Value Proposition Interface Canvas, 176
variety

in API deployment, 305
in API design, 290
in API development work, 297
in API discovery, 314
in API documentation, 293
in API strategy, 288
balancing, 236
product maturity and, 259

velocity
in API deployment, 305
in API development work, 297
in API security, 308
in API strategy, 289
in API testing, 300
in change management, 318
product maturity and, 266-268
safely using speed, 242

versioning
in API deployment, 306

334 | Index

in API design, 292
in API development work, 298
in API discovery, 316
in API documentation, 294
in change management, 319
general goal for, 246
product maturity and, 273-275

visibility
in API discovery, 316
in API documentation, 295
in API monitoring, 312
in API security, 310
in change management, 319
patterns for large-scale visibility, 245
product maturity and, 270-273

vocabulary
in API design, 291
in API discovery, 315
in API documentation, 294
in change management, 317
defining and standardizing, 238-241
product maturity and, 261-263

volatility
in API deployment, 307
in API development work, 298
in API monitoring, 313
in API testing, 303

product maturity and, 275
resulting from decentralization, 247

volume
in API discovery, 315
in API monitoring, 311
in API strategy, 289
in API testing, 300
approaches to handling, 242
product maturity and, 264-266

vulnerability
in API security, 309
in API testing, 302
implementing resilience, 244
product maturity and, 268-270

W
warning messages, 66
wasted effort, eliminating, 133
waterfall release style, 134
web applications, 228
“Wow!” moment, 56
“write once, run forever policy”, 182
WSDL format, 91

Z
zero-trust policy, 108, 122

Index | 335

About the Authors
Mehdi Medjaoui is an entrepreneur in the API industry, cofounder of OAuth.io, and
creator of APIDays conferences, the main worldwide series of API conferences held
every year in seven countries. As a lead API economist, Mehdi advises API decision
makers about the impact of API adoption in their digital transformation strategies
at the micro and macro levels. He designed the API Industry Landscape, has been
a coauthor of the Banking APIs: State of the Market industry report since 2015,
and serves as a European Commission expert on the APIs for Digital Government
(APIs4DGov) project. He also lectures on entrepreneurship in the digital age at HEC
Paris MBA and is a board advisor at several API tooling startups.

An expert in protocol design and structured data, Erik Wilde helps organizations to
get the most out of APIs by helping them with their API strategy and program. Erik
has been involved in the development of innovative technologies since the advent of
the web and is active in the IETF and W3C communities. He obtained his PhD from
ETH Zurich and taught at ETH Zurich and UC Berkeley before working at EMC,
Siemens, CA Technologies, and, most recently, Axway.

Ronnie Mitra works as a consultant helping technology and business leaders with
large-scale digital transformation. He’s also a coauthor of the books Microservices: Up
& Running and Microservice Architecture.

An internationally known author and speaker, Mike Amundsen consults with organ‐
izations around the world on network architecture, web development, and the inter‐
section of technology and society. He works with companies large and small to help
them capitalize on the opportunities in APIs, microservices, and digital transforma‐
tion present for both consumers and the enterprise.

Colophon
The animal on the cover of Continuous API Management is the Welsh shepherd
(Welsh: Ci Defaid Cymreig), a collie-type breed of domestic herding dog native to
Wales. Appearing in black-and-white, red-and-white, and tricolor varieties, with a
high incidence of merle markings, Welsh shepherds have longer limbs and a broader
chest and muzzle than the border collie.

Welsh shepherds are extremely strong-willed and energetic dogs, and they function
mostly independently of human direction once trained in herding duties. However,
they lack the low posture and strong eye contact of the border collie (lupine predation
traits that allow a dog to manage a herd with less effort), making them less popular
candidates for modern livestock supervision.

Due to a combination of breeding for behavioral characteristics rather than features,
and dilution due to cross-breeding with the border collie, the Welsh shepherd is not

recognized as a standardized breed by any major kennel organization. In recent years,
efforts have been made to preserve the breed, mostly for domestic purposes.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover image is from J. G. Wood’s Animate Creation. The cover fonts are Gilroy
Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Foreword to the First Edition
	Preface
	Who Should Read This Book
	What’s in This Book
	The Outline

	What’s Not in This Book
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. The Challenge and Promise
of API Management
	What Is API Management?
	The Business of APIs
	What Is an API?
	More Than Just the API
	API Maturity Stages
	More Than a Single API

	Why Is API Management Difficult?
	Scope
	Scale
	Standards

	Managing the API Landscape
	Technology
	Teams
	Governance

	Summary

	Chapter 2. API Governance
	Understanding API Governance
	Decisions
	Decision Management
	Governing Complex Systems

	Governing Decisions
	Centralization and Decentralization
	The Elements of a Decision
	Decision Mapping
	Decision Design in Practice

	Designing Your Governance System
	Governance Pattern #1: Design Authority
	Governance Pattern #2: Embedded Centralized Experts
	Governance Pattern #3: Influenced Self-Governance

	Implementing Governance Patterns
	Evolving Your Solution
	Observability and Visibility
	Operating Models
	Develop a Strategy for Standards Management

	Summary

	Chapter 3. The API as a Product
	The Programmable Economy Is API-Led
	Price, Promotion, Product, Place → Everywhere

	Design Thinking
	Match People’s Needs
	Viable Business Strategy
	The Bezos Mandate
	Applying Design Thinking to APIs

	Customer Onboarding
	Time to Wow!
	Onboarding for Your APIs

	Developer Experience
	Knowing Your Audience
	Making It Safe and Easy
	Why Are Developers So Important in the API Economy?
	Developer Relations for APIs as a Product
	API-as-a-Product Monetization and Pricing

	Summary

	Chapter 4. The Pillars of an API Product
	Introducing the Pillars
	Strategy
	Design
	Documentation
	Development
	Testing
	Deployment
	Security
	Monitoring
	Discovery
	Change Management

	Using the Pillars Together
	Applying Pillars When Performing Planning
	Using the Pillars for Creation
	Using the Pillars to Operate and Run

	Summary

	Chapter 5. Continuous API Improvement
	Managing Change Continuously
	Incremental Improvement
	API Change Velocity

	Changing an API
	The API Release Lifecycle
	Changing the Interface Model
	Changing the Implementation
	Changing the Instance
	Changing the Supporting Assets

	Improving API Changeability
	Effort Costs
	Opportunity Costs
	Coupling Costs
	Isn’t All This Just BDUF?

	Summary

	Chapter 6. API Styles
	APIs Are Languages
	The Five API Styles
	Tunnel Style
	Resource Style
	Hypermedia Style
	Query Style
	Event-Based Style
	How to Decide on API Style and Technology

	Avoid Painting Yourself into a Style Corner
	Summary

	Chapter 7. The API Product Lifecycle
	Measurements and Milestones
	OKRs and KPIs
	Defining an API Objective
	Identifying Measurable Results

	The API Product Lifecycle
	Stage 1: Create
	Stage 2: Publish
	Stage 3: Realize
	Methodology: Value Proposition Interface Canvas
	Stage 4: Maintain
	Stage 5: Retire

	Applying the Product Lifecycle to the Pillars
	Create
	Publish
	Realize
	Maintain
	Retire

	Summary

	Chapter 8. API Teams
	API Roles
	Business Roles
	Technical Roles

	API Teams
	Teams and API Maturity
	Scaling Up Your Teams
	Teams and Roles at Spotify
	Factors for Your Scaling Approach

	Culture and Teams
	Recognizing Conway’s Law
	Leveraging Dunbar’s Numbers
	Enabling Alexander’s Cultural Mosaic
	Supporting Experimentation

	Summary

	Chapter 9. API Landscapes
	API Archaeology
	API Management at Scale
	The Platform Principle
	Principles, Protocols, and Patterns
	API Landscapes as Language Landscapes
	API the APIs

	Understanding the Landscape
	The Eight Vs of API Landscapes
	Variety
	Vocabulary
	Volume
	Velocity
	Vulnerability
	Visibility
	Versioning
	Volatility

	Summary

	Chapter 10. API Landscape Journey
	Structuring Guidance in the API Landscape
	The Lifecycle of Guidance
	The Center for Enablement
	C4E Team and Context

	Maturity and the Eight Vs
	Variety
	Vocabulary
	Volume
	Velocity
	Vulnerability
	Visibility
	Versioning
	Volatility

	Summary

	Chapter 11. Managing the API Lifecycle
in an Evolving Landscape
	Managing an Evolving Landscape in Practice
	Socialize Your “Red Lines”
	Platforms Over Projects (Eventually)
	Design for Consumers, Producers, and Sponsors
	Test, Measure, and Learn

	API Products and Lifecycle Pillars
	API Landscapes
	Decision Points and Maturity

	Landscape Aspects and API Lifecycle Pillars
	Strategy
	Design
	Documentation
	Development
	Testing
	Deployment
	Security
	Monitoring
	Discovery
	Change Management

	Summary

	Chapter 12. Continuing the Journey
	Continuing to Prepare for the Future
	Continue Managing Every Day

	Index
	About the Authors
	Colophon

