
Vlad Khononov
Foreword by Julie Lerman

Learning
Domain-Driven
Design
Aligning Software Architecture
and Business Strategy

Praise for Learning Domain-Driven Design

“Vladik Khononov is a unique thinker who has been applying DDD to solve real business
problems for years. His ideas constantly move the whole DDD community forward, and

this book will inspire beginning DDD practitioners.”
—Nick Tune, Technology Consultant

“Reflecting on my readings of drafts of this book, the thing that comes to mind, with a
great deal of joy at the thought, is that it delivers on its title! It is an inviting and

informative practice guide, covering the scope of DDD from strategy to technical design.
I’ve gained new insight and understanding in areas where I have experience and filled in

concepts and practices I’d had less exposure to. Vlad is a wonderful teacher!”
—Ruth Malan, Architecture Consultant

at Bredemeyer Consulting

“Vlad has a lot of hard-won experience as a DDD practitioner working on some deeply
complex projects and has been generous in sharing that knowledge. In this book, he tells

the story of DDD in a unique way providing a great perspective for learning. This book is
aimed at newcomers, yet as a longtime DDD practitioner who also writes and speaks

about DDD, I found that I learned so much from his perspective.”
—Julie Lerman, Software Coach, O’Reilly Author,

and Serial DDD Advocate

Vlad Khononov

Learning Domain-Driven Design
Aligning Software Architecture

and Business Strategy

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

Learning Domain-Driven Design
by Vlad Khononov

Copyright © 2022 Vladislav Khononov. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield
Development Editor: Jill Leonard
Production Editor: Katherine Tozer
Copyeditor: Audrey Doyle
Proofreader: James Fraleigh

Indexer: Sue Klefstad
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

October 2021: First Edition

Revision History for the First Edition
2021-10-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098100131 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Domain-Driven Design, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-098-10013-1

[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098100131

Table of Contents

Foreword. xiii

Preface. xv

Introduction. xxiii

Part I. Strategic Design

1. Analyzing Business Domains. 3
What Is a Business Domain? 3
What Is a Subdomain? 4

Types of Subdomains 4
Comparing Subdomains 7
Identifying Subdomain Boundaries 11

Domain Analysis Examples 14
Gigmaster 14
BusVNext 15

Who Are the Domain Experts? 17
Conclusion 18
Exercises 18

2. Discovering Domain Knowledge. 21
Business Problems 21
Knowledge Discovery 22
Communication 22
What Is a Ubiquitous Language? 24
Language of the Business 25

v

Scenarios 25
Consistency 26

Model of the Business Domain 27
What Is a Model? 27
Effective Modeling 28
Modeling the Business Domain 28
Continuous Effort 29
Tools 29
Challenges 30

Conclusion 31
Exercises 32

3. Managing Domain Complexity. 33
Inconsistent Models 33
What Is a Bounded Context? 35

Model Boundaries 36
Ubiquitous Language Refined 37
Scope of a Bounded Context 37

Bounded Contexts Versus Subdomains 38
Subdomains 39
Bounded Contexts 39
The Interplay Between Subdomains and Bounded Contexts 39

Boundaries 41
Physical Boundaries 41
Ownership Boundaries 42

Bounded Contexts in Real Life 42
Semantic Domains 43
Science 43
Buying a Refrigerator 44

Conclusion 46
Exercises 46

4. Integrating Bounded Contexts. 49
Cooperation 50

Partnership 50
Shared Kernel 50

Customer–Supplier 53
Conformist 53
Anticorruption Layer 54
Open-Host Service 55

Separate Ways 56
Communication Issues 56

vi | Table of Contents

Generic Subdomains 56
Model Differences 56

Context Map 57
Maintenance 58
Limitations 58

Conclusion 59
Exercises 59

Part II. Tactical Design

5. Implementing Simple Business Logic. 63
Transaction Script 63

Implementation 64
It’s Not That Easy! 64
When to Use Transaction Script 68

Active Record 69
Implementation 70
When to Use Active Record 71

Be Pragmatic 72
Conclusion 72
Exercises 72

6. Tackling Complex Business Logic. 75
History 75
Domain Model 76

Implementation 77
Building Blocks 77
Managing Complexity 94

Conclusion 95
Exercises 96

7. Modeling the Dimension of Time. 99
Event Sourcing 99

Search 104
Analysis 105
Source of Truth 107
Event Store 107

Event-Sourced Domain Model 108
Advantages 110
Disadvantages 111

Frequently Asked Questions 112

Table of Contents | vii

Performance 112
Deleting Data 114
Why Can’t I Just…? 114

Conclusion 115
Exercises 116

8. Architectural Patterns. 117
Business Logic Versus Architectural Patterns 117
Layered Architecture 118

Presentation Layer 118
Business Logic Layer 119
Data Access Layer 119
Communication Between Layers 120
Variation 121
When to Use Layered Architecture 124

Ports & Adapters 125
Terminology 126
Dependency Inversion Principle 126
Integration of Infrastructural Components 127
Variants 128
When to Use Ports & Adapters 128

Command-Query Responsibility Segregation 128
Polyglot Modeling 129
Implementation 129
Projecting Read Models 130
Challenges 132
Model Segregation 133
When to Use CQRS 133

Scope 134
Conclusion 135
Exercises 135

9. Communication Patterns. 137
Model Translation 137

Stateless Model Translation 138
Stateful Model Translation 141

Integrating Aggregates 143
Outbox 145
Saga 147
Process Manager 150

Conclusion 154
Exercises 154

viii | Table of Contents

Part III. Applying Domain-Driven Design in Practice

10. Design Heuristics. 159
Heuristic 159
Bounded Contexts 160
Business Logic Implementation Patterns 161
Architectural Patterns 163
Testing Strategy 164

Testing Pyramid 165
Testing Diamond 165
Reversed Testing Pyramid 165

Tactical Design Decision Tree 166
Conclusion 167
Exercises 167

11. Evolving Design Decisions. 169
Changes in Domains 169

Core to Generic 170
Generic to Core 170
Supporting to Generic 171
Supporting to Core 171
Core to Supporting 172
Generic to Supporting 172

Strategic Design Concerns 172
Tactical Design Concerns 173

Transaction Script to Active Record 174
Active Record to Domain Model 174
Domain Model to Event-Sourced Domain Model 176
Generating Past Transitions 176
Modeling Migration Events 177

Organizational Changes 178
Partnership to Customer–Supplier 179
Customer–Supplier to Separate Ways 179

Domain Knowledge 179
Growth 180

Subdomains 180
Bounded Contexts 181
Aggregates 182

Conclusion 182
Exercises 183

Table of Contents | ix

12. EventStorming. 185
What Is EventStorming? 185
Who Should Participate in EventStorming? 186
What Do You Need for EventStorming? 186
The EventStorming Process 187

Step 1: Unstructured Exploration 187
Step 2: Timelines 188
Step 3: Pain Points 189
Step 4: Pivotal Events 190
Step 5: Commands 190
Step 6: Policies 191
Step 7: Read Models 192
Step 8: External Systems 193
Step 9: Aggregates 194
Step 10: Bounded Contexts 194

Variants 195
When to Use EventStorming 196
Facilitation Tips 196

Watch the Dynamics 197
Remote EventStorming 197

Conclusion 198
Exercises 198

13. Domain-Driven Design in the Real World. 201
Strategic Analysis 202

Understand the Business Domain 202
Explore the Current Design 203

Modernization Strategy 204
Strategic Modernization 205
Tactical Modernization 207
Cultivate a Ubiquitous Language 207

Pragmatic Domain-Driven Design 210
Selling Domain-Driven Design 211

Undercover Domain-Driven Design 211
Conclusion 213
Exercises 214

Part IV. Relationships to Other Methodologies and Patterns

14. Microservices. 217
What Is a Service? 217

x | Table of Contents

What Is a Microservice? 218
Method as a Service: Perfect Microservices? 219
Design Goal 220
System Complexity 221
Microservices as Deep Services 222
Microservices as Deep Modules 223

Domain-Driven Design and Microservices’ Boundaries 225
Bounded Contexts 225
Aggregates 227
Subdomains 228

Compressing Microservices’ Public Interfaces 229
Open-Host Service 229
Anticorruption Layer 230

Conclusion 231
Exercises 232

15. Event-Driven Architecture. 233
Event-Driven Architecture 233
Events 234

Events, Commands, and Messages 234
Structure 235
Types of Events 236

Designing Event-Driven Integration 241
Distributed Big Ball of Mud 241
Temporal Coupling 242
Functional Coupling 243
Implementation Coupling 243
Refactoring the Event-Driven Integration 243
Event-Driven Design Heuristics 245

Conclusion 246
Exercises 247

16. Data Mesh. 249
Analytical Data Model Versus Transactional Data Model 249

Fact Table 250
Dimension Table 252
Analytical Models 253

Analytical Data Management Platforms 254
Data Warehouse 254
Data Lake 257
Challenges of Data Warehouse and Data Lake Architectures 258

Data Mesh 259

Table of Contents | xi

Decompose Data Around Domains 259
Data as a Product 261
Enable Autonomy 262
Build an Ecosystem 262
Combining Data Mesh and Domain-Driven Design 263

Conclusion 264
Exercises 265

Closing Words. 267

A. Applying DDD: A Case Study. 273

B. Answers to Exercise Questions. 289

References. 297

Index. 299

xii | Table of Contents

Foreword

Domain-driven design provides a set of practices for a collaborative approach to
building software from the perspective of the business—that is, the domain, and its
problems that you are targeting. It was originally coined by Eric Evans in 2003 with
the publication of what is fondly known in the DDD community as “The Blue Book.”
The book’s title is Domain-Driven Design: Tackling Complexity in the Heart of
Software.

While tackling complexity and providing a path to clarity is the goal of domain-
driven design, there are so many great ideas that can be applied to even less compli‐
cated software projects. DDD reminds us that software developers are not the only
people involved in building software. The domain experts, for whom the software is
being built, bring critical understanding of the problems being solved. We create a
partnership throughout the stages of creation as we first apply “strategic design” to
understand the business problem, a.k.a. the domain, and break the problem down
into smaller, solvable, interconnected problems. The partnership with the domain
experts also drives us to communicate in the language of the domain, rather than
forcing those on the business side to learn the technical language of software.

The second stage of a DDD-based project is “tactical design,” where we transform the
discoveries of strategic design into software architecture and implementation. Again,
DDD provides guidance and patterns for organizing these domains and avoiding fur‐
ther complexity. Tactical design continues the partnership with the domain experts
who will recognize their domain language even as they look at the code built by the
software teams.

Over the years since the publication of “The Blue Book,” not only have many organi‐
zations benefited from the ideas, but a community of experienced DDD practitioners
has evolved. And the collaborative nature of DDD has resulted in this community
sharing their experiences and perspective and creating tools to help teams embrace
and benefit from these ideas. In a keynote at Explore DDD in 2019, Eric Evans

xiii

encouraged the community to continue to evolve DDD—not only its practices but in
finding ways to more effectively share its ideas.

And this brings me to why I am such a fan of Learning Domain-Driven Design. I was
already a fan of Vlad through his conference speaking and other writings. He has a
lot of hard-won experience as a DDD practitioner working on some deeply complex
projects and has been generous in sharing that knowledge. In this book, he tells the
“story” of DDD (not its history, but its concepts) in a unique way, providing a great
perspective for learning. This book is aimed at newcomers, yet as a longtime DDD
practitioner who also writes and speaks about DDD, I found that I learned so much
from his perspective. I was eager to reference his book in my DDD Fundamentals
course on Pluralsight before the book was even published and have already been
sharing some of this perspective in conversations with clients.

Getting started with DDD can be confusing. Just as we use DDD to reduce the com‐
plexity of projects, Vlad presents DDD in a way that reduces the complexity of the
topic itself. And he does more than explain the principles of DDD. The latter portion
of the book shares some important practices that have evolved from DDD, such as
EventStorming, addresses the problem of evolving the business focus or organization
and how this might affect the software, and discusses how DDD aligns with microser‐
vices and how you can integrate it with a slew of well-known software patterns. I
think Learning Domain-Driven Design will be an excellent introduction to DDD for
newcomers, and a very worthy read for experienced practitioners as well.

— Julie Lerman
Software Coach, O’Reilly Author,

and Serial DDD Advocate

xiv | Foreword

Preface

I vividly remember the day I started my first real software engineering job. I was both
ecstatic and terrified. After hacking software for local businesses during my high
school years, I was eager to become a “real programmer” and write some code for one
of the country’s largest outsourcing companies.

In my first days there, my new colleagues were showing me the ropes. After setting up
the corporate email and going through the time-tracking system, we finally moved on
to the interesting stuff: the company’s coding style and standards. I was told that
“here, we always write well-designed code and use the layered architecture.” We went
through the definition of each of the three layers—the data access, business logic, and
presentation layers—and then discussed the technologies and frameworks for
addressing the layers’ needs. Back then, the accepted solution for storing data was
Microsoft SQL Server 2000, and it was integrated using ADO.NET in the data access
layer. The presentation layer rocked either WinForms for desktop applications or
ASP.NET WebForms for the web. We spent quite some time on these two layers, so I
was puzzled when the business logic layer didn’t get any attention:

“But what about the business logic layer?”
“That one is straightforward. Here is where you implement the business logic.”
“But what is business logic?”
“Oh, business logic is all the loops and ‘if-else’ statements you need in order to imple‐
ment the requirements.”

That day I began my journey to find out what exactly business logic is and how on
earth it should be implemented in well-designed code. It took me more than three
years to finally find the answer.

The answer was in Eric Evans’s seminal book, Domain-Driven Design: Tackling Com‐
plexity in the Heart of Software. It turned out that I wasn’t wrong. Business logic is
indeed important: it is the heart of software! Unfortunately, however, it took me

xv

another three years to understand the wisdom Eric shared. The book is very
advanced, and the fact that English is my third language didn’t help.

Eventually, though, everything fell into place, and I made peace with the domain-
driven design (DDD) methodology. I learned the principles and patterns of DDD, the
intricacies of modeling and implementing the business logic, and how to tackle the
complexity in the heart of the software that I was building. Despite the obstacles, it
definitely was worth it. Getting into domain-driven design was a career-changing
experience for me.

Why I Wrote This Book
Over the past 10 years, I have introduced domain-driven design to my colleagues at
different companies, conducted in-person classes, and taught online courses. The
teaching perspective not only helped me deepen my knowledge, but also allowed me
to optimize the way I explain the principles and patterns of domain-driven design.

As often happens, teaching is even more challenging than learning. I’m a huge fan of
Eliyahu M. Goldratt’s work and teachings. Eliyahu used to say that even the most
complex systems are inherently simple when viewed from the right angle. During my
years of teaching DDD, I was looking for a model of the methodology that would
uncover the inherent simplicity of domain-driven design.

This book is the result of my efforts. Its goal is to democratize domain-driven design;
make it easier to understand and more accessible to employ. I believe that the DDD
methodology is absolutely invaluable, especially when designing modern software
systems. This book will give you just enough tools to start applying domain-driven
design in your day-to-day work.

Who Should Read This Book
I believe that knowledge of domain-driven design principles and patterns will be use‐
ful for software engineers at all levels: junior, senior, staff, and principal. Not only
does DDD provide tools and techniques for modeling and effectively implementing
software, it also illuminates an often-overlooked aspect of software engineering: the
context. Equipped with the knowledge of the system’s business problem, you will be
much more effective at choosing the appropriate solution. A solution that is not
under- or over-engineered, but addresses business needs and goals.

Domain-driven design is even more important for software architects, and even more
so for aspiring software architects. Its strategic design decision tools will help you
decompose a large system into components—services, microservices, or
subsystems—and design how the components are integrated with one another to
form a system.

xvi | Preface

https://oreil.ly/ZZdXf

Ultimately, in this book we will discuss not only how to design software, but also how
to co-evolve the design with changes in its business context. That crucial aspect of
software engineering will help you keep the system’s design “in shape” over time and
prevent its degradation into a big ball of mud.

Navigating the Book
This book is divided into four parts: strategic design, tactical design, DDD in practice,
and DDD’s relationships to other methodologies and patterns. In Part I, we cover
tools and techniques for making large-scale software design decisions. In Part II, we
focus on the code: the different ways to implement a system’s business logic. Part III
discusses techniques and strategies for applying DDD in real-life projects. Part IV
continues the discussion of domain-driven design, but this time in the context of
other methodologies and patterns.

Here is a short summary of what you will find in each chapter:

• Chapter 1 establishes the context of a software engineering project: the business
domain, its goals, and how the software is intended to support them.

• Chapter 2 introduces the notion of a “ubiquitous language”: domain-driven
design’s practice for effective communication and knowledge sharing.

• Chapter 3 discusses how to tackle the complexity of business domains and design
the system’s high-level architectural components: bounded contexts.

• Chapter 4 explores the different patterns of organizing the communication and
integration between the bounded contexts.

• Chapter 5 starts the discussion of business logic implementation patterns with
two patterns addressing the cases of simple business logic.

• Chapter 6 advances from simple to complex business logic and introduces the
domain model pattern for tackling its complexity.

• Chapter 7 adds the perspective of time and introduces an even more advanced
way to model and implement business logic: the event-sourced domain model.

• Chapter 8 shifts the focus to a higher level and describes three architectural pat‐
terns for structuring components.

• Chapter 9 provides the patterns needed to orchestrate the work of the system’s
components.

• Chapter 10 ties together the patterns discussed in the earlier chapters into a num‐
ber of simple rules of thumb that streamline the process of making design
decisions.

• Chapter 11 explores software design from the perspective of time and how it is
supposed to change and evolve through its lifespan.

Preface | xvii

• Chapter 12 introduces EventStorming: a low-tech workshop for effectively shar‐
ing knowledge, building shared understanding, and designing software.

• Chapter 13 addresses the difficulties you may face when introducing domain-
driven design to brownfield projects.

• Chapter 14 discusses the relationship between the microservices architectural
style and domain-driven design: where they differ and where they complement
each other.

• Chapter 15 explores domain-driven design patterns and tools in the context of
the event-driven architecture.

• Chapter 16 shifts the discussion from operational systems to analytical data man‐
agement systems and discusses the interplay between domain-driven design and
the data mesh architecture.

All of these chapters end with a number of exercise questions to reinforce the learn‐
ing. Some of the questions use the fictional company “WolfDesk” to demonstrate the
various aspects of domain-driven design. Please read the following description of
WolfDesk, and return to it when you answer relevant exercise questions.

Example Domain: WolfDesk
WolfDesk provides a help desk tickets management system as a service. If your start-
up company needs to provide support to your customers, with WolfDesk’s solution
you can get up and running in no time.

WolfDesk uses a different payment model than its competitors. Instead of charging a
fee per user, it allows the tenants to set up as many users as needed, and the tenants
are charged for the number of support tickets opened per charging period. There is
no minimum fee, and there are automatic volume discounts for certain thresholds of
monthly tickets: 10% for opening more than 500 tickets, 20% for opening more than
750 tickets, and 30% for opening more than 1,000 tickets per month.

To prevent tenants from abusing the business model, WolfDesk’s ticket lifecycle algo‐
rithm ensures that inactive tickets are closed automatically, encouraging customers to
open new tickets when further support is needed. Moreover, WolfDesk implements a
fraud detection system that analyzes messages and detects cases of unrelated topics
being discussed in the same ticket.

To help its tenants streamline the support-related work, WolfDesk has implemented a
“support autopilot” feature. The autopilot analyzes new tickets and tries to automati‐
cally find a matching solution from the tenant’s ticket history. The functionality
allows for further reducing the tickets’ lifespans, encouraging customers to open new
tickets for further questions.

xviii | Preface

WolfDesk incorporates all the security standards and measures to authenticate and
authorize its tenants’ users and also allows tenants to configure a single sign-on (SSO)
with their existing user management systems.

The administration interface allows tenants to configure the possible values for the
tickets’ categories, as well as a list of the tenant’s products that it supports.

To be able to route new tickets to the tenant’s support agents only during their work‐
ing hours, WolfDesk allows the entry of each agent’s shift schedule.

Since WolfDesk provides its service with no minimal fee, it has to optimize its infra‐
structure in a way that minimizes the costs of onboarding a new tenant. To do that,
WolfDesk leverages serverless computing, which allows it to elastically scale its com‐
pute resources based on the operations on active tickets.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://learning-ddd.com.

All the code samples presented in the book are implemented in the C# language.
Generally, the code samples you see in the chapters are excerpts demonstrating the
discussed concepts.

Of course, the concepts and techniques discussed in the book are not limited to the
C# language or to the object-oriented programming approach. Everything is relevant
for other languages and other programming paradigms. As a result, feel free to

Preface | xix

https://learning-ddd.com

implement the book’s samples in your favorite language and share them with me. I’ll
be happy to add them to the book’s website.

If you have a technical question or a problem using the code examples, please email
bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Learning Domain-
Driven Design by Vlad Khononov (O’Reilly). Copyright 2022 Vladislav Khononov,
978-1-098-10013-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

xx | Preface

mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

1 Whenever I mention a group of people, the list is in alphabetical order by last name.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/lddd.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
Originally, this book was titled “What Is Domain-Driven Design?” and was published
as a report in 2019. Learning Domain-Driven Design would not have seen the light of
day without the report, and I’m obliged to thank those who made “What Is Domain-
Driven Design?” possible: Chris Guzikowski, Ryan Shaw, and Alicia Young.1

This book also wouldn’t have been possible without O’Reilly’s Content Director and
Diversity Talent Lead, Melissa Duffield, who championed the project and made it
happen. Thank you, Melissa, for all your help!

Jill Leonard was the book’s development editor, project manager, and head coach. Jill’s
role in this work cannot be overstated. Jill, thank you so much for all your hard work
and help! Extra thanks for keeping me motivated, even when I considered changing
my name and hiding in a foreign country.

Preface | xxi

https://oreil.ly/lddd
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

A huge thanks to the production team for making the book not only writable but
readable: Kristen Brown, Audrey Doyle, Kate Dullea, Robert Romano, and Katherine
Tozer. For that matter, I want to thank the whole O’Reilly team for the great work you
do. It’s a dream come true to be working with you!

Thanks to all the people I interviewed and consulted with: Zsofia Herendi, Scott Hir‐
leman, Trond Hjorteland, Mark Lisker, Chris Richardson, Vaughn Vernon, and Ivan
Zakrevsky. Thank you for your wisdom and for being there when I needed help!

Special thanks to the team of reviewers who read through the early drafts and helped
me shape the final book: Julie Lerman, Ruth Malan, Diana Montalion, Andrew
Padilla, Rodion Promyshlennikov, Viktor Pshenitsyn, Alexei Torunov, Nick Tune,
Vasiliy Vasilyuk, and Rebecca Wirfs-Brock. Your support, feedback, and critique hel‐
ped immensely. Thank you!

I also want to thank Kenny Baas-Schwegler, Alberto Brandolini, Eric Evans, Marco
Heimeshoff, Paul Rayner, Mathias Verraes, and the rest of the amazing domain-
driven design community. You know who you are. You are my teachers and mentors.
Thank you for sharing your knowledge on social media, blogs, and conferences!

I’m most indebted to my dear wife, Vera, for always supporting me in my crazy
projects and trying to guard me from things that could distract me from writing. I
promise to finally declutter the basement. It is going to happen soon!

Finally, I want to dedicate this book to our beloved Galina Ivanovna Tyumentseva,
who supported me so much in this project and whom we sadly lost during the writing
of this book. We will always remember you.

#AdoptDontShop

xxii | Preface

1 “Software Engineering.” Report on a conference sponsored by the NATO Science Committee, Garmisch, Ger‐
many, October 7–11, 1968.

Introduction

Software engineering is hard. To be successful at it, we have to learn continuously,
whether it’s trying new languages, exploring new technologies, or keeping up with
new popular frameworks. However, learning a new JavaScript framework every week
is not the hardest aspect of our job. Making sense of new business domains can be far
more challenging.

Throughout our careers, it’s not uncommon for us to have to develop software for a
diverse range of business domains: financial systems, medical software, online retail‐
ers, marketing, and many others. In a sense, that is what differentiates our job from
most other professions. People working in other fields are often surprised when they
find out how much learning is involved in software engineering, especially when
changing workplaces.

Failure to grasp the business domain results in suboptimal implementation of the
business software. Unfortunately, that’s quite common. According to studies, approxi‐
mately 70% of software projects are not delivered on time, on budget, or according to
the client’s requirements. In other words, the vast majority of software projects fail.
This issue is so deep and widespread that we even have a term for it: software crisis.

The term software crisis was introduced all the way back in 1968.1 One would assume
that things would have improved in the intervening 50 years. During those years,
numerous approaches, methodologies, and disciplines were introduced to make soft‐
ware engineering more effective: Agile Manifesto, extreme programming, test-driven
development, high-level languages, DevOps, and others. Unfortunately, things didn’t
change much. Projects are still failing quite often and the software crisis is still here.

xxiii

2 See, for example, Kaur, Rupinder, and Dr. Jyotsna Sengupta (2013), “Software Process Models and Analysis on
Failure of Software Development Projects,” https://arxiv.org/ftp/arxiv/papers/1306/1306.1068.pdf. See also
Sudhakar, Goparaju Purna (2012), “A Model of Critical Success Factors for Software Projects.” Journal of
Enterprise Information Management 25(6), 537–558.

Many studies have been conducted to investigate the reasons for the common project
failures.2 Although researchers have not been able to pinpoint a single cause, most of
their findings share a common theme: communication. Communication issues
thwarting projects can manifest themselves in different ways; for example, unclear
requirements, uncertain project goals, or ineffective coordination of effort between
teams. Yet again, over the years, we have tried to improve inter- and intrateam com‐
munication by introducing new communication opportunities, processes, and medi‐
ums. Unfortunately, the success rates of our projects still didn’t change much.

Domain-driven design (DDD) proposes to attack the root cause for failed software
projects from a different angle. Effective communication is the central theme of the
domain-driven design tools and practices you are about to learn in this book. DDD
can be divided into two parts: strategic and tactical.

The strategic tools of DDD are used to analyze business domains and strategy, and to
foster a shared understanding of the business between the different stakeholders. We
will also use this knowledge of the business domain to drive high-level design deci‐
sions: decomposing systems into components and defining their integration patterns.

Domain-driven design’s tactical tools address a different aspect of communication
issues. DDD’s tactical patterns allow us to write code in a way that reflects the busi‐
ness domain, addresses its goals, and speaks the language of the business.

Both the strategic and tactical patterns and practices of DDD align software design
with its business domain. That’s where the name comes from: (business) domain-
driven (software) design.

Domain-driven design won’t make it possible to install the knowledge of new Java‐
Script libraries directly into your brain, like in The Matrix. However, it will make you
a more effective software engineer by alleviating the process of making sense of busi‐
ness domains and guiding the design decisions according to the business strategy. As
you will learn in the book’s later chapters, the tighter the connection between the soft‐
ware design and its business strategy is, the easier it will be to maintain and evolve the
system to meet the future needs of the business, ultimately leading to more successful
software projects.

Let’s start our DDD journey by exploring the strategic patterns and practices.

xxiv | Introduction

https://arxiv.org/ftp/arxiv/papers/1306/1306.1068.pdf

1 Goldratt-Ashlag, E. (2010). “The Layers of Resistance—The Buy-In Process According to TOC.”

PART I

Strategic Design

There is no sense in talking about the solution before we agree on the problem, and no sense
talking about the implementation steps before we agree on the solution.

—Efrat Goldratt-Ashlag1

The domain-driven design (DDD) methodology can be divided into two main parts:
strategic design and tactical design. The strategic aspect of DDD deals with answering
the questions of “what?” and “why?”—what software we are building and why we are
building it. The tactical part is all about the “how”—how each component is
implemented.

We will begin our journey by exploring domain-driven design patterns and principles
of strategic design:

• In Chapter 1, you will learn to analyze a company’s business strategy: what value
it provides to its consumers and how it competes with other companies in the
industry. We will identify finer-grained business building blocks, evaluate their
strategic value, and analyze how they affect different software design decisions.

• Chapter 2 introduces domain-driven design’s essential practice for gaining an
understanding of the business domain: the ubiquitous language. You will learn
how to cultivate a ubiquitous language and use it to foster a shared understand‐
ing among all project-related stakeholders.

• Chapter 3 discusses another domain-driven design core tool: the bounded context
pattern. You will learn why this tool is essential for cultivating a ubiquitous lan‐
guage and how to use it to transform discovered knowledge into a model of the
business domain. Ultimately, we will leverage bounded contexts to design coarse-
grained components of the software system.

• In Chapter 4, you will learn technical and social constraints that affect how sys‐
tem components can be integrated, and integration patterns that address differ‐
ent situations and limitations. We will discuss how each pattern influences
collaboration among software development teams and the design of the compo‐
nents’ APIs.
The chapter closes by introducing the context map: a graphical notation that plots
communication between the system’s bounded contexts and provides a bird’s-eye
view of the project’s integration and collaboration landscapes.

CHAPTER 1

Analyzing Business Domains

If you are anything like me, you love writing code: solving complex problems, coming
up with elegant solutions, and constructing whole new worlds by carefully crafting
their rules, structures, and behavior. I believe that’s what interested you in domain-
driven design (DDD): you want to be better at your craft. This chapter, however, has
nothing to do with writing code. In this chapter, you will learn how companies work:
why they exist, what goals they are pursuing, and their strategies for achieving their
goals.

When I teach this material in my domain-driven design classes, many students
actually ask, “Do we need to know this material? We are writing software, not run‐
ning businesses.” The answer to their question is a resounding “yes.” To design and
build an effective solution, you have to understand the problem. The problem, in our
context, is the software system we have to build. To understand the problem, you
have to understand the context within which it exists—the organization’s business
strategy, and what value it seeks to gain by building the software.

In this chapter, you will learn domain-driven design tools for analyzing a company’s
business domain and its structure: its core, supporting, and generic subdomains. This
material is the groundwork for designing software. In the remaining chapters, you
will learn the different ways these concepts affect software design.

What Is a Business Domain?
A business domain defines a company’s main area of activity. Generally speaking, it’s
the service the company provides to its clients. For example:

• FedEx provides courier delivery.
• Starbucks is best known for its coffee.

3

• Walmart is one of the most widely recognized retail establishments.

A company can operate in multiple business domains. For example, Amazon pro‐
vides both retail and cloud computing services. Uber is a rideshare company that also
provides food delivery and bicycle-sharing services.

It’s important to note that companies may change their business domains often. A
canonical example of this is Nokia, which over the years has operated in fields as
diverse as wood processing, rubber manufacturing, telecommunications, and mobile
communications.

What Is a Subdomain?
To achieve its business domain’s goals and targets, a company has to operate in multi‐
ple subdomains. A subdomain is a fine-grained area of business activity. All of a com‐
pany’s subdomains form its business domain: the service it provides to its customers.
Implementing a single subdomain is not enough for a company to succeed; it’s just
one building block in the overarching system. The subdomains have to interact with
each other to achieve the company’s goals in its business domain. For example, Star‐
bucks may be most recognized for its coffee, but building a successful coffeehouse
chain requires more than just knowing how to make great coffee. You also have to
buy or rent real estate at effective locations, hire personnel, and manage finances,
among other activities. None of these subdomains on its own will make a profitable
company. All of them together are necessary for a company to be able to compete in
its business domain(s).

Types of Subdomains
Just as a software system comprises various architectural components—databases,
frontend applications, backend services, and others—subdomains bear different stra‐
tegic/business values. Domain-driven design distinguishes between three types of
subdomains: core, generic, and supporting. Let’s see how they differ from a company
strategy point of view.

Core subdomains
A core subdomain is what a company does differently from its competitors. This may
involve inventing new products or services or reducing costs by optimizing existing
processes.

Let’s take Uber as an example. Initially, the company provided a novel form of trans‐
portation: ridesharing. As its competitors caught up, Uber found ways to optimize
and evolve its core business: for example, reducing costs by matching riders heading
in the same direction.

4 | Chapter 1: Analyzing Business Domains

Uber’s core subdomains affect its bottom line. This is how the company differentiates
itself from its competitors. This is the company’s strategy for providing better service
to its customers and/or maximizing its profitability. To maintain a competitive
advantage, core subdomains involve inventions, smart optimizations, business know-
how, or other intellectual property.

Consider another example: Google Search’s ranking algorithm. At the time of this
writing, Google’s advertising platform accounts for the majority of its profits. That
said, Google Ads is not a subdomain, but rather a separate business domain with sub‐
domains comprising it, among its cloud computing service (Google Cloud Platform),
productivity and collaboration tools (Google Workspaces), and other fields in which
Alphabet, Google’s parent company, operates. But what about Google Search and its
ranking algorithm? Although the search engine is not a paid service, it serves as the
largest display platform for Google Ads. Its ability to provide excellent search results
is what drives traffic, and subsequently, it is an important component of the Ads plat‐
form. Serving suboptimal search results due to a bug in the algorithm or a competitor
coming up with an even better search service will hurt the ad business’s revenue. So,
for Google, the ranking algorithm is a core subdomain.

Complexity. A core subdomain that is simple to implement can only provide a short-
lived competitive advantage. Therefore, core subdomains are naturally complex.
Continuing with the Uber example, the company not only created a new marketspace
with ridesharing, it disrupted a decades-old monolithic architecture, the taxi indus‐
try, through targeted use of technology. By understanding its business domain, Uber
was able to design a more reliable and transparent method of transportation. There
should be high entry barriers for a company’s core business; it should be hard for
competitors to copy or imitate the company’s solution.

Sources of competitive advantage. It’s important to note that core subdomains are not
necessarily technical. Not all business problems are solved through algorithms or
other technical solutions. A company’s competitive advantage can come from various
sources.

Consider, for example, a jewelry maker selling its products online. The online shop is
important, but it’s not a core subdomain. The jewelry design is. The company can use
an existing off-the-shelf online shop engine, but it cannot outsource the design of its
jewelry. The design is the reason customers buy the jewelry maker’s products and
remember the brand.

As a more intricate example, imagine a company that specializes in manual fraud
detection. The company trains its analysts to go over questionable documents and
flag potential fraud cases. You are building the software system the analysts are work‐
ing with. Is it a core subdomain? No. The core subdomain is the work the analysts are

What Is a Subdomain? | 5

doing. The system you are building has nothing to do with fraud analysis, it just dis‐
plays the documents and tracks the analysts’ comments.

Core Subdomain Versus Core Domain
Core subdomains are also called core domains. For example, in the original domain-
driven design book, Eric Evans uses “core subdomain” and “core domain” inter‐
changeably. Although the term “core domain” is used often, I prefer to use “core
subdomain” for a number of reasons. First, it is a subdomain, and I prefer to avoid
confusion with business domains. Second, as you will learn in Chapter 11, it’s not
uncommon for subdomains to evolve over time and change their types. For example,
a core subdomain can turn into a generic subdomain. Hence, saying that “a generic
subdomain has evolved into a core subdomain” is more straightforward than saying “a
generic subdomain has evolved into a core domain.”

Generic subdomains
Generic subdomains are business activities that all companies are performing in the
same way. Like core subdomains, generic subdomains are generally complex and
hard to implement. However, generic subdomains do not provide any competitive
edge for the company. There is no need for innovation or optimization here: battle-
tested implementations are widely available, and all companies use them.

For example, most systems need to authenticate and authorize their users. Instead of
inventing a proprietary authentication mechanism, it makes more sense to use an
existing solution. Such a solution is likely to be more reliable and secure since it has
already been tested by many other companies that have the same needs.

Going back to the example of a jewelry maker selling its products online, jewelry
design is a core subdomain, but the online shop is a generic subdomain. Using the
same online retail platform—the same generic solution—as its competitors would not
impact the jewelry maker’s competitive advantage.

Supporting subdomains
As the name suggests, supporting subdomains support the company’s business. How‐
ever, contrary to core subdomains, supporting subdomains do not provide any com‐
petitive advantage.

For example, consider an online advertising company whose core subdomains
include matching ads to visitors, optimizing the ads’ effectiveness, and minimizing
the cost of ad space. However, to achieve success in these areas, the company needs to
catalog its creative materials. The way the company stores and indexes its physical
creative materials, such as banners and landing pages, does not impact its profits.
There is nothing to invent or optimize in that area. On the other hand, the creative

6 | Chapter 1: Analyzing Business Domains

catalog is essential for implementing the company’s advertising management and
serving systems. That makes the content cataloging solution one of the company’s
supporting subdomains.

The distinctive characteristic of supporting subdomains is the complexity of the solu‐
tion’s business logic. Supporting subdomains are simple. Their business logic resem‐
bles mostly data entry screens and ETL (extract, transform, load) operations; that is,
the so-called CRUD (create, read, update, and delete) interfaces. These activity areas
do not provide any competitive advantage for the company, and therefore do not
require high entry barriers.

Comparing Subdomains
Now that we have a greater understanding of the three types of business subdomains,
let’s explore their differences from additional angles and see how they affect strategic
software design decisions.

Competitive advantage
Only core subdomains provide a competitive advantage to a company. Core subdo‐
mains are the company’s strategy for differentiating itself from its competitors.

Generic subdomains, by definition, cannot be a source for any competitive advan‐
tage. These are generic solutions—the same solutions used by the company and its
competitors.

Supporting subdomains have low entry barriers and cannot provide a competitive
advantage either. Usually, a company wouldn’t mind its competitors copying its sup‐
porting subdomains—this won’t affect its competitiveness in the industry. On the
contrary, strategically the company would prefer its supporting subdomains to be
generic, ready-made solutions, thus eliminating the need to design and build their
implementation. You will learn in detail about such cases of supporting subdomains
turning into generic subdomains, as well as other possible permutations, in Chap‐
ter 11. A real-life case study of such a scenario will be outlined in Appendix A.

The more complex the problems a company is able to tackle, the more business value
it can provide. The complex problems are not limited to delivering services to con‐
sumers. A complex problem can be, for example, making the business more opti‐
mized and efficient. For example, providing the same level of service as competitors
do, but at lower operational costs, is a competitive advantage as well.

Complexity
From a more technical perspective, it’s important to identify the organization’s subdo‐
mains, because the different types of subdomains have different levels of complexity.
When designing software, we have to choose tools and techniques that accommodate

What Is a Subdomain? | 7

the complexity of the business requirements. Therefore, identifying subdomains is
essential for designing a sound software solution.

Supporting subdomains’ business logic is simple. These are basic ETL operations and
CRUD interfaces, and the business logic is obvious. Often, it doesn’t go beyond vali‐
dating inputs or converting data from one structure to another.

Generic subdomains are much more complicated. There should be a good reason
why others have already invested time and effort in solving these problems. These
solutions are neither simple nor trivial. Consider, for example, encryption algorithms
or authentication mechanisms.

From a knowledge availability perspective, generic subdomains are “known
unknowns.” These are the things that you know you don’t know. Furthermore, this
knowledge is readily available. You can either use industry-accepted best practices or,
if needed, hire a consultant specializing in the area to help design a custom solution.

Core subdomains are complex. They should be as hard for competitors to copy as
possible—the company’s profitability depends on it. That’s why strategically, compa‐
nies are looking to solve complex problems as their core subdomains.

At times it may be challenging to differentiate between core and supporting subdo‐
mains. Complexity is a useful guiding principle. Ask whether the subdomain in ques‐
tion can be turned into a side business. Would someone pay for it on its own? If so,
this is a core subdomain. Similar reasoning applies for differentiating supporting and
generic subdomains: would it be simpler and cheaper to hack your own implementa‐
tion, rather than integrating an external one? If so, this is a supporting subdomain.

From a more technical perspective, it’s important to identify the core subdomains
whose complexity will affect software design. As we discussed earlier, a core subdo‐
main is not necessarily related to software. Another useful guiding principle for iden‐
tifying software-related core subdomains is to evaluate the complexity of the business
logic that you will have to model and implement in code. Does the business logic
resemble CRUD interfaces for data entry, or do you have to implement complex algo‐
rithms or business processes orchestrated by complex business rules and invariants?
In the former case, it’s a sign of a supporting subdomain, while the latter is a typical
core subdomain.

The chart in Figure 1-1 represents the interplay between the three types of subdo‐
mains in terms of business differentiation and business logic complexity. The inter‐
section between the supporting and generic subdomains is a gray area: it can go
either way. If a generic solution exists for a supporting subdomain’s functionality, the
resultant subdomain type depends on whether it’s simpler and/or cheaper to integrate
the generic solution than it is to implement the functionality from scratch.

8 | Chapter 1: Analyzing Business Domains

Figure 1-1. The business differentiation and business logic complexity of the three types
of subdomains

Volatility
As mentioned previously, core subdomains can change often. If a problem can be
solved on the first attempt, it’s probably not a good competitive advantage—competi‐
tors will catch up fast. Consequently, solutions for core subdomains are emergent.
Different implementations have to be tried out, refined, and optimized. Moreover, the
work on core subdomains is never done. Companies continuously innovate and
evolve core subdomains. The changes come in the form of adding new features or
optimizing existing functionality. Either way, the constant evolution of its core sub‐
domains is essential for a company to stay ahead of its competitors.

Contrary to the core subdomains, supporting subdomains do not change often. They
do not provide any competitive advantage for the company, and therefore the evolu‐
tion of a supporting subdomain provides a minuscule business value compared to the
same effort invested in a core subdomain.

Despite having existing solutions, generic subdomains can change over time. The
changes can come in the form of security patches, bug fixes, or entirely new solutions
to the generic problems.

What Is a Subdomain? | 9

Solution strategy
Core subdomains provide the company its ability to compete with other players in
the industry. That’s a business-critical responsibility, but does it mean that supporting
and generic subdomains are not important? Of course not. All subdomains are
required for the company to work in its business domain. The subdomains are like
foundational building blocks: take one away and the whole structure may fall down.
That said, we can leverage the inherent properties of the different types of subdo‐
mains to choose implementation strategies to implement each type of subdomain in
the most efficient manner.

Core subdomains have to be implemented in-house. They cannot be bought or adop‐
ted; that would undermine the notion of competitive advantage, as the company’s
competitors would be able to do the same.

It would also be unwise to outsource the implementation of a core subdomain. It is a
strategic investment. Cutting corners on a core subdomain is not only risky in the
short term but can have fatal consequences in the long run: for example, unmaintain‐
able codebases that cannot support the company’s goals and objectives. The organiza‐
tion’s most skilled talent should be assigned to work on its core subdomains.
Furthermore, implementing core subdomains in-house allows the company to make
changes and evolve the solution more quickly, and therefore build the competitive
advantage in less time.

Since core subdomains’ requirements are expected to change often and continuously,
the solution must be maintainable and easy to evolve. Thus, core subdomains require
implementation of the most advanced engineering techniques.

Since generic subdomains are hard but already solved problems, it’s more cost-
effective to buy an off-the-shelf product or adopt an open source solution than invest
time and effort into implementing a generic subdomain in-house.

Lack of competitive advantage makes it reasonable to avoid implementing supporting
subdomains in-house. However, unlike generic subdomains, no ready-made solu‐
tions are available. So, a company has no choice but to implement supporting subdo‐
mains itself. That said, the simplicity of the business logic and infrequency of changes
make it easy to cut corners.

Supporting subdomains do not require elaborate design patterns or other advanced
engineering techniques. A rapid application development framework will suffice to
implement the business logic without introducing accidental complexities.

From a staffing perspective, supporting subdomains do not require highly skilled
technical aptitude and provide a great opportunity to train up-and-coming talent.
Save the engineers on your team who are experienced in tackling complex challenges
for the core subdomains. Finally, the simplicity of the business logic makes support‐
ing subdomains a good candidate for outsourcing.

10 | Chapter 1: Analyzing Business Domains

Table 1-1 summarizes the aspects in which the three types of subdomains differ.

Table 1-1. The differences between the three types of subdomains
Subdomain type Competitive advantage Complexity Volatility Implementation Problem
Core Yes High High In-house Interesting
Generic No High Low Buy/adopt Solved
Supporting No Low Low In-house/outsource Obvious

Identifying Subdomain Boundaries
As you can already see, identifying subdomains and their types can help considerably
in making different design decisions when building software solutions. In later
chapters, you will learn even more ways to leverage subdomains to streamline the
software design process. But how do we actually identify the subdomains and their
boundaries?

The subdomains and their types are defined by the company’s business strategy: its
business domains and how it differentiates itself to compete with other companies in
the same field. In the vast majority of software projects, in one way or another the
subdomains are “already there.” That doesn’t mean, however, that it is always easy and
straightforward to identify their boundaries. If you ask a CEO for a list of their com‐
pany’s subdomains, you will probably receive a blank stare. They are not aware of this
concept. Therefore, you’ll have to do the domain analysis yourself to identify and cat‐
egorize the subdomains at play.

A good starting point is the company’s departments and other organizational units.
For example, an online retail shop might include warehouse, customer service, pick‐
ing, shipping, quality control, and channel management departments, among others.
These, however, are relatively coarse-grained areas of activity. Take, for example, the
customer service department. It’s reasonable to assume that it would be a supporting,
or even a generic subdomain, as this function is often outsourced to third-party ven‐
dors. But is this information enough for us to make sound software design decisions?

Distilling subdomains
Coarse-grained subdomains are a good starting point, but the devil is in the details.
We have to make sure we are not missing important information hidden in the intri‐
cacies of the business function.

Let’s go back to the example of the customer service department. If we investigate its
inner workings, we will see that a typical customer service department is composed of
finer-grained components, such as a help desk system, shift management and sched‐
uling, telephone system, and so on. When viewed as individual subdomains, these
activities can be of different types: while help desk and telephone systems are generic

What Is a Subdomain? | 11

subdomains, shift management is a supporting one, while a company may develop its
ingenious algorithm for routing incidents to agents having success with similar cases
in the past. The routing algorithm requires analyzing incoming cases and identifying
similarities in past experience—both of which are nontrivial tasks. Since the routing
algorithm allows the company to provide a better customer experience than its com‐
petitors, the routing algorithm is a core subdomain. This example is demonstrated in
Figure 1-2.

Figure 1-2. Analyzing the inner workings of a suspectedly generic subdomain to find the
finer-grained core subdomain, supporting subdomain, and two generic subdomains

On the other hand, we cannot drill down indefinitely, looking for insights at lower
and lower levels of granularity. When should you stop?

Subdomains as coherent use cases
From a technical perspective, subdomains resemble sets of interrelated, coherent use
cases. Such sets of use cases usually involve the same actor, the business entities, and
they all manipulate a closely related set of data.

Consider the use case diagram for a credit card payment gateway shown in
Figure 1-3. The use cases are tightly bound by the data they are working with and the
involved actors. Hence, all of the use cases form the credit card payment subdomain.

We can use the definition of “subdomains as a set of coherent use cases” as a guiding
principle for when to stop looking for finer-grained subdomains. These are the most
precise boundaries of the subdomains.

12 | Chapter 1: Analyzing Business Domains

Figure 1-3. Use case diagram of a credit card payment subdomain

Should you always strive to identify such laser-focused subdomain boundaries? It is
definitely necessary for core subdomains. Core subdomains are the most important,
volatile, and complex. It’s essential that we distill them as much as possible since that
will allow us to extract all generic and supporting functionalities and invest the effort
on a much more focused functionality.

The distillation can be somewhat relaxed for supporting and generic subdomains. If
drilling down further doesn’t unveil any new insights that can help you make software
design decisions, it can be a good place to stop. This can happen, for example, when
all of the finer-grained subdomains are of the same type as the original subdomain.

Consider the example in Figure 1-4. Further distillation of the help desk system sub‐
domain is less useful, as it doesn’t reveal any strategic information, and a coarse-
grained, off-the-shelf tool will be used as the solution.

Figure 1-4. Distilling the help desk system subdomain, revealing generic inner
components

Another important question to consider when identifying the subdomains is whether
we need all of them.

What Is a Subdomain? | 13

Focus on the essentials
Subdomains are a tool that alleviates the process of making software design decisions.
All organizations likely have quite a few business functionalities that drive their com‐
petitive advantage but have nothing to do with software. The jewelry maker we dis‐
cussed earlier in this chapter is but one example.

When looking for subdomains, it’s important to identify business functions that are
not related to software, acknowledge them as such, and focus on aspects of the busi‐
ness that are relevant to the software system you are working on.

Domain Analysis Examples
Let’s see how we can apply the notion of subdomains in practice and use it for making
a number of strategic design decisions. I’m going to describe two fictitious compa‐
nies: Gigmaster and BusVNext. As an exercise, while you are reading, analyze the
companies’ business domains. Try to identify the three types of subdomains for each
company. Remember that, as in real life, some of the business requirements are
implicit.

Disclaimer: of course, we cannot identify all the subdomains involved in each busi‐
ness domain by reading such a short description. That said, it is enough to train you
to identify and categorize the available subdomains.

Gigmaster
Gigmaster is a ticket sales and distribution company. Its mobile app analyzes users’
music libraries, streaming service accounts, and social media profiles to identify
nearby shows that its users would be interested in attending.

Gigmaster’s users are conscious of their privacy. Hence, all users’ personal informa‐
tion is encrypted. Moreover, to ensure that users’ guilty pleasures won’t leak out
under any circumstances, the company’s recommendation algorithm works exclu‐
sively on anonymized data.

To improve the app’s recommendations, a new module was implemented. It allows
users to log gigs they attended in the past, even if the tickets weren’t purchased
through Gigmaster.

Business domain and subdomains
Gigmaster’s business domain is ticket sales. That’s the service it provides to its
customers.

14 | Chapter 1: Analyzing Business Domains

Core subdomains. Gigmaster’s main competitive advantage is its recommendation
engine. The company also takes its users’ privacy seriously and works only on anony‐
mized data. Finally, although not mentioned explicitly, we can infer that the mobile
app’s user experience is crucial as well. As such, Gigmaster’s core subdomains are:

• Recommendation engine
• Data anonymization
• Mobile app

Generic subdomains. We can identify and infer the following generic subdomains:
• Encryption, for encrypting all data
• Accounting, since the company is in the sales business
• Clearing, for charging its customers
• Authentication and authorization, for identifying its users

Supporting subdomains. Finally, the following are the supporting subdomains. Here
the business logic is simple and resembles ETL processes or CRUD interfaces:

• Integration with music streaming services
• Integration with social networks
• Attended-gigs module

Design decisions
Knowing the subdomains at play and the differences between their types, we can
already make several strategic design decisions:

• The recommendation engine, data anonymization, and mobile app have to be
implemented in-house using the most advanced engineering tools and techni‐
ques. These modules are going to change the most often.

• Off-the-shelf or open source solutions should be used for data encryption,
accounting, clearing, and authentication.

• Integration with streaming services and social networks, as well as the module
for attended gigs, can be outsourced.

BusVNext
BusVNext is a public transportation company. It aims to provide its customers with
bus rides that are comfortable, like catching a cab. The company manages fleets of
buses in major cities.

Domain Analysis Examples | 15

A BusVNext customer can order a ride through the mobile app. At the scheduled
departure time, a nearby bus’s route will be adjusted on the fly to pick up the cus‐
tomer at the specified departure time.

The company’s major challenge was implementing the routing algorithm. Its require‐
ments are a variant of the “travelling salesman problem”. The routing logic is continu‐
ously adjusted and optimized. For example, statistics show the primary reason for
canceled rides is the long wait time for a bus to arrive. So, the company adjusted the
routing algorithm to prioritize fast pickups, even if that means delayed drop-offs. To
optimize the routing even more, BusVNext integrates with third-party providers for
traffic conditions and real-time alerts.

From time to time, BusVNext issues special discounts, both to attract new customers
and to level the demand for rides over peak and off-peak hours.

Business domain and subdomains
BusVNext provides optimized bus rides to its customers. The business domain is
public transportation.

Core subdomains. BusVNext’s primary competitive advantage is its routing algorithm
that takes a stab at solving a complex problem (“travelling salesman”) while prioritiz‐
ing different business goals: for example, decreasing pickup times, even if it will
increase overall ride lengths.

We also saw that the rides data is continuously analyzed for new insights into custom‐
ers’ behaviors. These insights allow the company to increase its profits by optimizing
the routing algorithm. Finally, BusVNext’s applications for its customers and its driv‐
ers have to be easy to use and provide a convenient user interface.

Managing a fleet is not trivial. Buses may experience technical issues or require main‐
tenance. Ignoring these may result in financial losses and a reduced level of service.

Hence, BusVNext’s core subdomains are:

• Routing
• Analysis
• Mobile app user experience
• Fleet management

Generic subdomains. The routing algorithm also uses traffic data and alerts provided
by third-party companies—a generic subdomain. Moreover, BusVNext accepts pay‐
ments from its customers, so it has to implement accounting and clearing functional‐
ities. BusVNext’s generic subdomains are:

16 | Chapter 1: Analyzing Business Domains

https://oreil.ly/LLHij

• Traffic conditions
• Accounting
• Billing
• Authorization

Supporting subdomains. The module for managing promos and discounts supports
the company’s core business. That said, it’s not a core subdomain by itself. Its man‐
agement interface resembles a simple CRUD interface for managing active coupon
codes. Therefore, this is a typical supporting subdomain.

Design decisions
Knowing the subdomains at play and the differences between their types, we can
already make a number of strategic design decisions:

• The routing algorithm, data analysis, fleet management, and app usability have to
be implemented in-house using the most elaborate technical tools and patterns.

• Implementation of the promotions management module can be outsourced.
• Identifying traffic conditions, authorizing users, and managing financial records

and transactions can be offloaded to external service providers.

Who Are the Domain Experts?
Now that we have a clear understanding of business domains and subdomains, let’s
take a look at another DDD term that we will use often in the following chapters:
domain experts. Domain experts are subject matter experts who know all the intrica‐
cies of the business that we are going to model and implement in code. In other
words, domain experts are knowledge authorities in the software’s business domain.

The domain experts are neither the analysts gathering the requirements nor the engi‐
neers designing the system. Domain experts represent the business. They are the peo‐
ple who identified the business problem in the first place and from whom all business
knowledge originates. Systems analysts and engineers are transforming their mental
models of the business domain into software requirements and source code.

As a rule of thumb, domain experts are either the people coming up with require‐
ments or the software’s end users. The software is supposed to solve their problems.

The domain experts’ expertise can have different scopes. Some subject matter experts
will have a detailed understanding of how the entire business domain operates, while
others will specialize in particular subdomains. For example, in an online advertising
agency, the domain experts would be campaign managers, media buyers, analysts,
and other business stakeholders.

Who Are the Domain Experts? | 17

Conclusion
In this chapter, we covered domain-driven design tools for making sense of a compa‐
ny’s business activity. As you’ve seen, it all starts with the business domain: the area
the business operates in and the service it provides to its clients.

You also learned about the different building blocks required to achieve success in a
business domain and differentiate the company from its competitors:

Core subdomains
The interesting problems. These are the activities the company is performing dif‐
ferently from its competitors and from which it gains its competitive advantage.

Generic subdomains
The solved problems. These are the things all companies are doing in the same
way. There is no room or need for innovation here; rather than creating in-house
implementations, it’s more cost-effective to use existing solutions.

Supporting subdomains
The problems with obvious solutions. These are the activities the company likely
has to implement in-house, but that do not provide any competitive advantage.

Finally, you learned that domain experts are the business’s subject matter experts.
They have in-depth knowledge of the company’s business domain or one or more of
its subdomains and are critical to a project’s success.

Exercises
1. Which of the subdomains provide(s) no competitive advantage?

a. Core
b. Generic
c. Supporting
d. B and C

2. For which subdomain might all competitors use the same solutions?
a. Core.
b. Generic.
c. Supporting.
d. None of the above. The company should always differentiate itself from its

competitors.

18 | Chapter 1: Analyzing Business Domains

3. Which subdomain is expected to change the most often?
a. Core.
b. Generic.
c. Supporting.
d. There is no difference in volatility of the different subdomain types.

Consider the description of WolfDesk (see the Preface), a company that provides a
help desk ticket management system:

4. What is WolfDesk’s business domain?
5. What is/are WolfDesk’s core subdomain(s)?
6. What is/are WolfDesk’s supporting subdomain(s)?
7. What is/are WolfDesk’s generic subdomain(s)?

Exercises | 19

CHAPTER 2

Discovering Domain Knowledge

It’s developers’ (mis)understanding, not domain experts’ knowledge, that gets released in
production.

—Alberto Brandolini

In the previous chapter, we started exploring business domains. You learned how to
identify a company’s business domains, or areas of activity, and analyze its strategy to
compete in them; that is, its business subdomains’ boundaries and types.

This chapter continues the topic of business domain analysis but in a different
dimension: depth. It focuses on what happens inside a subdomain: its business func‐
tion and logic. You will learn the domain-driven design tool for effective communica‐
tion and knowledge sharing: the ubiquitous language. Here we will use it to learn the
intricacies of business domains. Later in the book we will use it to model and imple‐
ment their business logic in software.

Business Problems
The software systems we are building are solutions to business problems. In this con‐
text, the word problem doesn’t resemble a mathematical problem or a riddle that you
can solve and be done with. In the context of business domains, “problem” has a
broader meaning. A business problem can be challenges associated with optimizing
workflows and processes, minimizing manual labor, managing resources, supporting
decisions, managing data, and so on.

Business problems appear both at the business domain and subdomain levels. A com‐
pany’s goal is to provide a solution for its customers’ problems. Going back to the
FedEx example in Chapter 1, that company’s customers need to ship packages in limi‐
ted time frames, so it optimizes the shipping process.

21

1 Brandolini, Alberto. (n.d.). Introducing EventStorming. Leanpub.

Subdomains are finer-grained problem domains whose goal is to provide solutions
for specific business capabilities. A knowledge management subdomain optimizes the
process of storing and retrieving information. A clearing subdomain optimizes the
process of executing financial transactions. An accounting subdomain keeps track of
the company’s funds.

Knowledge Discovery
To design an effective software solution, we have to grasp at least the basic knowledge
of the business domain. As we discussed in Chapter 1, this knowledge belongs to
domain experts: it’s their job to specialize in and comprehend all the intricacies of the
business domain. By no means should we, nor can we, become domain experts. That
said, it’s crucial for us to understand domain experts and to use the same business
terminology they use.

To be effective, the software has to mimic the domain experts’ way of thinking about
the problem—their mental models. Without an understanding of the business prob‐
lem and the reasoning behind the requirements, our solutions will be limited to
“translating” business requirements into source code. What if the requirements miss a
crucial edge case? Or fail to describe a business concept, limiting our ability to imple‐
ment a model that will support future requirements?

As Alberto Brandolini1 says, software development is a learning process; working
code is a side effect. A software project’s success depends on the effectiveness of
knowledge sharing between domain experts and software engineers. We have to
understand the problem in order to solve it.

Effective knowledge sharing between domain experts and software engineers requires
effective communication. Let’s take a look at the common impediments to effective
communication in software projects.

Communication
It’s safe to say that almost all software projects require the collaboration of stakehold‐
ers in different roles: domain experts, product owners, engineers, UI and UX design‐
ers, project managers, testers, analysts, and others. As in any collaborative effort, the
outcome depends on how well all those parties can work together. For example, do all
stakeholders agree on what problem is being solved? What about the solution they
are building—do they hold any conflicting assumptions about its functional and non‐
functional requirements? Agreement and alignment on all project-related matters are
essential to a project’s success.

22 | Chapter 2: Discovering Domain Knowledge

https://www.eventstorming.com/book

2 Sudhakar, Goparaju Purna. (2012). “A Model of Critical Success Factors for Software Projects.” Journal of
Enterprise Information Management, 25(6), 537–558.

Research into why software projects fail has shown that effective communication is
essential for knowledge sharing and project success.2 Yet, despite its importance,
effective communication is rarely observed in software projects. Often, businesspeo‐
ple and engineers have no direct interaction with one another. Instead, domain
knowledge is pushed down from domain experts to engineers. It is delivered through
people playing the role of mediators, or “translators,” systems/business analysts, prod‐
uct owners, and project managers. Such common knowledge sharing flow is illustra‐
ted in Figure 2-1.

Figure 2-1. Knowledge sharing flow in a software project

During the traditional software development lifecycle, the domain knowledge is
“translated” into an engineer-friendly form known as an analysis model, which is a
description of the system’s requirements rather than an understanding of the business
domain behind it. While the intentions may be good, such mediation is hazardous to
knowledge sharing. In any translation, information is lost; in this case, domain
knowledge that is essential for solving business problems gets lost on its way to the
software engineers. This is not the only such translation on a typical software project.
The analysis model is translated into the software design model (a software design
document, which is translated into an implementation model or the source code
itself). As often happens, documents go out of date quickly. The source code is used
to communicate business domain knowledge to software engineers who will maintain
the project later. Figure 2-2 illustrates the different translations needed for domain
knowledge to be implemented in code.

Communication | 23

3 Players form a line, and the first player comes up with a message and whispers it into the ear of the second
player. The second player repeats the message to the third player, and so on. The last player announces the
message they heard to the entire group. The first player then compares the original message with the final
version. Although the objective is to communicate the same message, it usually gets garbled and the last
player receives a message that is significantly different from the original one.

Figure 2-2. Model transformations

Such a software development process resembles the children’s game Telephone:3 the
message, or domain knowledge, often becomes distorted. The information leads to
software engineers implementing the wrong solution, or the right solution but to the
wrong problems. In either case, the outcome is the same: a failed software project.

Domain-driven design proposes a better way to get the knowledge from domain
experts to software engineers: by using a ubiquitous language.

What Is a Ubiquitous Language?
Using a ubiquitous language is the cornerstone practice of domain-driven design.
The idea is simple and straightforward: if parties need to communicate efficiently,
instead of relying on translations, they have to speak the same language.

Although this notion is borderline common sense, as Voltaire said, “common sense is
not so common.” The traditional software development lifecycle implies the following
translations:

• Domain knowledge into an analysis model
• Analysis model into requirements
• Requirements into system design
• System design into source code

24 | Chapter 2: Discovering Domain Knowledge

Instead of continuously translating domain knowledge, domain-driven design calls
for cultivating a single language for describing the business domain: the ubiquitous
language.

All project-related stakeholders—software engineers, product owners, domain
experts, UI/UX designers—should use the ubiquitous language when describing the
business domain. Most importantly, domain experts must be comfortable using the
ubiquitous language when reasoning about the business domain; this language will
represent both the business domain and the domain experts’ mental models.

Only through the continuous use of the ubiquitous language and its terms can a
shared understanding among all of the project’s stakeholders be cultivated.

Language of the Business
It’s crucial to emphasize that the ubiquitous language is the language of the business.
As such, it should consist of business domain–related terms only. No technical jar‐
gon! Teaching business domain experts about singletons and abstract factories is not
your goal. The ubiquitous language aims to frame the domain experts’ understanding
and mental models of the business domain in terms that are easy to understand.

Scenarios
Let’s say we are working on an advertising campaign management system. Consider
the following statements:

• An advertising campaign can display different creative materials.
• A campaign can be published only if at least one of its placements is active.
• Sales commissions are accounted for after transactions are approved.

All of these statements are formulated in the language of the business. That is, they
reflect the domain experts’ view of the business domain.

On the other hand, the following statements are strictly technical and thus do not fit
the notion of the ubiquitous language:

• The advertisement iframe displays an HTML file.
• A campaign can be published only if it has at least one associated record in the

active-placements table.
• Sales commissions are based on correlated records from the transactions and

approved-sales tables.

These latter statements are purely technical and will be unclear to domain experts.
Suppose engineers are only familiar with this technical, solution-oriented view of the

Language of the Business | 25

business domain. In that case, they won’t be able to completely understand the busi‐
ness logic or why it operates the way it does, which will limit their ability to model
and implement an effective solution.

Consistency
The ubiquitous language must be precise and consistent. It should eliminate the need
for assumptions and should make the business domain’s logic explicit.

Since ambiguity hinders communication, each term of the ubiquitous language
should have one and only one meaning. Let’s look at a few examples of unclear termi‐
nology and how it can be improved.

Ambiguous terms
Let’s say that in some business domain, the term policy has multiple meanings: it can
mean a regulatory rule or an insurance contract. The exact meaning can be worked
out in human-to-human interaction, depending on the context. Software, however,
doesn’t cope well with ambiguity, and it can be cumbersome and challenging to
model the “policy” entity in code.

Ubiquitous language demands a single meaning for each term, so “policy” should be
modeled explicitly using the two terms regulatory rule and insurance contract.

Synonymous terms
Two terms cannot be used interchangeably in a ubiquitous language. For example,
many systems use the term user. However, a careful examination of the domain
experts’ lingo may reveal that user and other terms are used interchangeably: for
example, user, visitor, administrator, account, etc.

Synonymous terms can seem harmless at first. However, in most cases, they denote
different concepts. In this example, both visitor and account technically refer to the
system’s users; however, in most systems, unregistered and registered users represent
different roles and have different behaviors. For example, the “visitors” data is used
mainly for analysis purposes, whereas “accounts” actually uses the system and its
functionality.

It is preferable to use each term explicitly in its specific context. Understanding the
differences between the terms in use allows for building simpler and clearer models
and implementations of the business domain’s entities.

26 | Chapter 2: Discovering Domain Knowledge

Model of the Business Domain
Now let’s look at the ubiquitous language from a different perspective: modeling.

What Is a Model?
A model is a simplified representation of a thing or phenomenon that intentionally emphasi‐
zes certain aspects while ignoring others. Abstraction with a specific use in mind.

—Rebecca Wirfs-Brock

A model is not a copy of the real world but a human construct that helps us make
sense of real-world systems.

A canonical example of a model is a map. Any map is a model, including navigation
maps, terrain maps, world maps, subway maps, and others, as shown in Figure 2-3.

Figure 2-3. Different types of maps displaying different models of the earth: roads, time
zones, nautical navigation, terrain, aeronautical navigation, and subway routes.

None of these maps represents all the details of our planet. Instead, each map con‐
tains just enough data to support its particular purpose: the problem it is supposed to
solve.

Model of the Business Domain | 27

4 Edsger W. Dijkstra, “The Humble Programmer”.

Effective Modeling
All models have a purpose, and an effective model contains only the details needed to
fulfill its purpose. For example, you won’t see subway stops on a world map. On the
other hand, you cannot use a subway map to estimate distances. Each map contains
just the information it is supposed to provide.

This point is worth reiterating: a useful model is not a copy of the real world. Instead,
a model is intended to solve a problem, and it should provide just enough informa‐
tion for that purpose. Or, as statistician George Box put it, “All models are wrong, but
some are useful.”

In its essence, a model is an abstraction. The notion of abstraction allows us to handle
complexity by omitting unnecessary details and leaving only what’s needed for solv‐
ing the problem at hand. On the other hand, an ineffective abstraction removes nec‐
essary information or produces noise by leaving what’s not required. As noted by
Edsger W. Dijkstra in his paper “The Humble Programmer,”4 the purpose of abstract‐
ing is not to be vague but to create a new semantic level in which one can be abso‐
lutely precise.

Modeling the Business Domain
When cultivating a ubiquitous language, we are effectively building a model of the
business domain. The model is supposed to capture the domain experts’ mental mod‐
els—their thought processes about how the business works to implement its function.
The model has to reflect the involved business entities and their behavior, cause and
effect relationships, and invariants.

The ubiquitous language we use is not supposed to cover every possible detail of the
domain. That would be equivalent to making every stakeholder a domain expert.
Instead, the model is supposed to include just enough aspects of the business domain
to make it possible to implement the required system; that is, to address the specific
problem the software is intended to solve. In the following chapters, you will see how
the ubiquitous language can drive low-level design and implementation decisions.

Effective communication between engineering teams and domain experts is vital. The
importance of this communication grows with the complexity of the business
domain. The more complex the business domain is, the harder it is to model and
implement its business logic in code. Even a slight misunderstanding of a compli‐
cated business domain, or its underlying principles, will inadvertently lead to an
implementation prone to severe bugs. The only reliable way to verify a business

28 | Chapter 2: Discovering Domain Knowledge

https://oreil.ly/LXd4W

domain’s understanding is to converse with domain experts and do it in the language
they understand: the language of the business.

Continuous Effort
Formulation of a ubiquitous language requires interaction with its natural holders,
the domain experts. Only interactions with actual domain experts can uncover inac‐
curacies, wrong assumptions, or an overall flawed understanding of the business
domain.

All stakeholders should consistently use the ubiquitous language in all project-related
communications to spread knowledge about and foster a shared understanding of the
business domain. The language should be continuously reinforced throughout the
project: requirements, tests, documentation, and even the source code itself should
use this language.

Most importantly, cultivation of a ubiquitous language is an ongoing process. It
should be constantly validated and evolved. Everyday use of the language will, over
time, reveal deeper insights into the business domain. When such breakthroughs
happen, the ubiquitous language must evolve to keep pace with the newly acquired
domain knowledge.

Tools
There are tools and technologies that can alleviate the processes of capturing and
managing a ubiquitous language.

For example, a wiki can be used as a glossary to capture and document the ubiquitous
language. Such a glossary alleviates the onboarding process of new team members, as
it serves as a go-to place for information about the business domain’s terminology.

It’s important to make glossary maintenance a shared effort. When a ubiquitous lan‐
guage is changed, all team members should be encouraged to go ahead and update
the glossary. That’s contrary to a centralized approach, in which only team leaders or
architects are in charge of maintaining the glossary.

Despite the obvious advantages of maintaining a glossary of project-related terminol‐
ogy, it has an inherent limitation. Glossaries work best for “nouns”: names of entities,
processes, roles, and so on. Although nouns are important, capturing the behavior is
crucial. The behavior is not a mere list of verbs associated with nouns, but the actual
business logic, with its rules, assumptions, and invariants. Such concepts are much
harder to document in a glossary. Hence, glossaries are best used in tandem with
other tools that are better suited to capture the behavior; for example, use cases or
Gherkin tests.

Model of the Business Domain | 29

5 But please don’t fall into the trap of thinking that domain experts will write Gherkin tests.

Automated tests written in the Gherkin language are not only great tools for captur‐
ing the ubiquitous language but also act as an additional tool for bridging the gap
between domain experts and software engineers. Domain experts can read the tests
and verify the system’s expected behavior.5 For example, see the following test written
in the Gherkin language:

Scenario: Notify the agent about a new support case
 Given Vincent Jules submits a new support case saying:
 """
 I need help configuring AWS Infinidash
 """
 When the ticket is assigned to Mr. Wolf
 Then the agent receives a notification about the new ticket

Managing a Gherkin-based test suite can be challenging at times, especially at the
early stages of a project. However, it is definitely worth it for complex business
domains.

Finally, there are even static code analysis tools that can verify the usage of a ubiqui‐
tous language’s terms. A notable example for such a tool is NDepend.

While these tools are useful, they are secondary to the actual use of a ubiquitous lan‐
guage in day-to-day interactions. Use the tools to support the management of the
ubiquitous language, but don’t expect the documentation to replace the actual usage.
As the Agile Manifesto says, “Individuals and interactions over processes and tools.”

Challenges
In theory, cultivating a ubiquitous language sounds like a simple, straightforward
process. In practice, it isn’t. The only reliable way to gather domain knowledge is to
converse with domain experts. Quite often, the most important knowledge is tacit. It’s
not documented or codified but resides only in the minds of domain experts. The
only way to access it is to ask questions.

As you gain experience in this practice, you will notice that frequently, this process
involves not merely discovering knowledge that is already there, but rather co-
creating the model in tandem with domain experts. There may be ambiguities and
even white spots in domain experts’ own understanding of the business domain; for
example, defining only the “happy path” scenarios but not considering edge cases that
challenge the accepted assumptions. Furthermore, you may encounter business
domain concepts that lack explicit definitions. Asking questions about the nature of
the business domain often makes such implicit conflicts and white spots explicit. This
is especially common for core subdomains. In such a case, the learning process is
mutual—you are helping the domain experts better understand their field.

30 | Chapter 2: Discovering Domain Knowledge

https://oreil.ly/WJw3C
https://agilemanifesto.org

When introducing domain-driven design practices to a brownfield project, you will
notice that there is already a formed language for describing the business domain,
and that the stakeholders use it. However, since DDD principles do not drive that lan‐
guage, it won’t necessarily reflect the business domain effectively. For example, it may
use technical terms, such as database table names. Changing a language that is
already being used in an organization is not easy. The essential tool in such a situation
is patience. You need to make sure the correct language is used where it’s easy to con‐
trol it: in the documentation and source code.

Finally, the question about the ubiquitous language that I am asked often at conferen‐
ces is what language should we use if the company is not in an English-speaking
country. My advice is to at least use English nouns for naming the business domain’s
entities. This will alleviate using the same terminology in code.

Conclusion
Effective communication and knowledge sharing are crucial for a successful software
project. Software engineers have to understand the business domain in order to
design and build a software solution.

Domain-driven design’s ubiquitous language is an effective tool for bridging the
knowledge gap between domain experts and software engineers. It fosters communi‐
cation and knowledge sharing by cultivating a shared language that can be used by all
the stakeholders throughout the project: in conversations, documentation, tests, dia‐
grams, source code, and so on.

To ensure effective communication, the ubiquitous language has to eliminate ambi‐
guities and implicit assumptions. All of a language’s terms have to be consistent—no
ambiguous terms and no synonymous terms.

Cultivating a ubiquitous language is a continuous process. As the project evolves,
more domain knowledge will be discovered. It’s important for such insights to be
reflected in the ubiquitous language.

Tools such as wiki-based glossaries and Gherkin tests can greatly alleviate the process
of documenting and maintaining a ubiquitous language. However, the main prereq‐
uisite for an effective ubiquitous language is usage: the language has to be used con‐
sistently in all project-related communications.

Conclusion | 31

Exercises
1. Who should be able to contribute to the definition of a ubiquitous language?

a. Domain experts
b. Software engineers
c. End users
d. All of the project’s stakeholders

2. Where should a ubiquitous language be used?
a. In-person conversations
b. Documentation
c. Code
d. All of the above

3. Please review the description of the fictional WolfDesk company in the Preface.
What business domain terminology can you spot in the description?

4. Consider a software project you are working on at the moment or worked on in
the past:
a. Try to come up with concepts of the business domain that you could use in

conversations with domain experts.
b. Try to identify examples of inconsistent terms: business domain concepts that

have either different meanings or identical concepts represented by different
terms.

c. Have you encountered software development inefficiencies that resulted from
poor communication?

5. Assume you are working on a project and you notice that domain experts from
different organizational units use the same term, for example, policy, to describe
unrelated concepts of the business domain.
The resultant ubiquitous language is based on domain experts’ mental models
but fails to fulfill the requirement of a term having a single meaning.
Before you continue to the next chapter, how would you address such a
conundrum?

32 | Chapter 2: Discovering Domain Knowledge

CHAPTER 3

Managing Domain Complexity

As you saw in the previous chapter, to ensure a project’s success it’s crucial that you
develop a ubiquitous language that can be used for communication by all stakehold‐
ers, from software engineers to domain experts. The language should reflect the
domain experts’ mental models of the business domain’s inner workings and underly‐
ing principles.

Since our goal is to use ubiquitous language to drive software design decisions, the
language must be clear and consistent. It should be free of ambiguity, implicit
assumptions, and extraneous details. However, on an organizational scale, the
domain experts’ mental models can be inconsistent themselves. Different domain
experts can use different models of the same business domain. Let’s take a look at an
example.

Inconsistent Models
Let’s go back to the example of a telemarketing company from Chapter 2. The compa‐
ny’s marketing department generates leads through online advertisements. Its sales
department is in charge of soliciting prospective customers to buy its products or
services, a chain that is shown in Figure 3-1.

Figure 3-1. Example business domain: telemarketing company

33

An examination of the domain experts’ language reveals a peculiar observation. The
term lead has different meanings in the marketing and sales departments:

Marketing department
For the marketing people, a lead represents a notification that somebody is inter‐
ested in one of the products. The event of receiving the prospective customer’s
contact details is considered a lead.

Sales department
In the context of the sales department, a lead is a much more complex entity. It
represents the entire lifecycle of the sales process. It’s not a mere event, but a
long-running process.

How do we formulate a ubiquitous language in the case of this telemarketing
company?

On the one hand, we know the ubiquitous language has to be consistent—each term
should have one meaning. On the other hand, we know the ubiquitous language has
to reflect the domain experts’ mental models. In this case, the mental model of the
“lead” is inconsistent among the domain experts in the sales and marketing
departments.

This ambiguity doesn’t present that much of a challenge in person-to-person commu‐
nications. Indeed, communication can be more challenging among people from dif‐
ferent departments, but it’s easy enough for humans to infer the exact meaning from
the interaction’s context.

However, it is more difficult to represent such a divergent model of the business
domain in software. Source code doesn’t cope well with ambiguity. If we were to bring
the sales department’s complicated model into marketing, it would introduce com‐
plexity where it’s not needed— far more detail and behavior than marketing people
need for optimizing advertising campaigns. But if we were to try to simplify the sales
model according to the marketing world view, it wouldn’t fit the sales subdomain’s
needs, because it’s too simplistic for managing and optimizing the sales process. We’d
have an overengineered solution in the first case and an under-engineered one in the
second.

How do we solve this catch-22?

The traditional solution to this problem is to design a single model that can be used
for all kinds of problems. Such models result in enormous entity relationship dia‐
grams (ERDs) spanning whole office walls. Is Figure 3-2 an effective model?

34 | Chapter 3: Managing Domain Complexity

Figure 3-2. Enterprise-wide entity relationship diagram

As the saying goes, “jack of all trades, master of none.” Such models are supposed to
be suitable for everything but eventually are effective for nothing. No matter what
you do, you are always facing complexity: the complexity of filtering out extraneous
details, the complexity of finding what you do need, and most importantly, the com‐
plexity of keeping the data in a consistent state.

Another solution would be to prefix the problematic term with a definition of the
context: “marketing lead” and “sales lead.” That would allow the implementation of
the two models in code. However, this approach has two main disadvantages. First, it
induces cognitive load. When should each model be used? The closer the implemen‐
tations of the conflicting models are, the easier it is to make a mistake. Second, the
implementation of the model won’t be aligned with the ubiquitous language. No one
would use the prefixes in conversations. People don’t need this extra information;
they can rely on the conversation’s context.

Let’s turn to the domain-driven design pattern for tackling such scenarios: the boun‐
ded context pattern.

What Is a Bounded Context?
The solution in domain-driven design is trivial: divide the ubiquitous language into
multiple smaller languages, then assign each one to the explicit context in which it
can be applied: its bounded context.

What Is a Bounded Context? | 35

In the preceding example, we can identify two bounded contexts: marketing and
sales. The term lead exists in both bounded contexts, as shown in Figure 3-3. As long
as it bears a single meaning in each bounded context, each fine-grained ubiquitous
language is consistent and follows the domain experts’ mental models.

Figure 3-3. Tackling inconsistencies in the ubiquitous language by splitting it into boun‐
ded contexts

In a sense, terminology conflicts and implicit contexts are an inherent part of any
decent-sized business. With the bounded context pattern, the contexts are modeled as
an explicit and integral part of the business domain.

Model Boundaries
As we discussed in the previous chapter, a model is not a copy of the real world but a
construct that helps us make sense of a complex system. The problem it is supposed
to solve is an inherent part of a model—its purpose. A model cannot exist without a
boundary; it will expand to become a copy of the real world. That makes defining a
model’s boundary—its bounded contexts—an intrinsic part of the modeling process.

Let’s go back to the example of maps as models. We saw that each map has its specific
context—aerial, nautical, terrain, subway, and so on. A map is useful and consistent
only within the scope of its specific purpose.

Just as a subway map is useless for nautical navigation, a ubiquitous language in one
bounded context can be completely irrelevant to the scope of another bounded con‐
text. Bounded contexts define the applicability of a ubiquitous language and of the
model it represents. They allow defining distinct models according to different prob‐
lem domains. In other words, bounded contexts are the consistency boundaries of
ubiquitous languages. A language’s terminology, principles, and business rules are
only consistent inside its bounded context.

36 | Chapter 3: Managing Domain Complexity

Ubiquitous Language Refined
Bounded contexts allow us to complete the definition of a ubiquitous language. A
ubiquitous language is not “ubiquitous” in the sense that it should be used and
applied “ubiquitously” throughout the organization. A ubiquitous language is not
universal.

Instead, a ubiquitous language is ubiquitous only in the boundaries of its bounded
context. The language is focused on describing only the model that is encompassed
by the bounded context. As a model cannot exist without a problem it is supposed to
address, a ubiquitous language cannot be defined or used without an explicit context
of its applicability.

Scope of a Bounded Context
The example at the beginning of the chapter demonstrated an inherent boundary of
the business domain. Different domain experts held conflicting mental models of the
same business entity. To model the business domain, we had to divide the model and
define a strict applicability context for each fine-grained model—its bounded context.

The consistency of the ubiquitous language only helps to identify the widest bound‐
ary of that language. It cannot be any larger, because then there will be inconsistent
models and terminology. However, we can still further decompose the models into
even smaller bounded contexts, as shown in Figure 3-4.

Figure 3-4. Smaller bounded contexts

Defining the scope of a ubiquitous language—its bounded context—is a strategic
design decision. Boundaries can be wide, following the business domain’s inherent

What Is a Bounded Context? | 37

contexts, or narrow, further dividing the business domain into smaller problem
domains.

A bounded context’s size, by itself, is not a deciding factor. Models shouldn’t necessar‐
ily be big or small. Models need to be useful. The wider the boundary of the ubiqui‐
tous language is, the harder it is to keep it consistent. It may be beneficial to divide a
large ubiquitous language into smaller, more manageable problem domains, but
striving for small bounded contexts can backfire too. The smaller they are, the more
integration overhead the design induces.

Hence, the decision for how big your bounded contexts should depend on the spe‐
cific problem domain. Sometimes, using a wide boundary will be clearer, while at
other times, decomposing it further will make more sense.

The reasons for extracting finer-grained bounded contexts out of a larger one include
constituting new software engineering teams or addressing some of the system’s non‐
functional requirements; for example, when you need to separate the development
lifecycles of some of the components originally residing in a single bounded context.
Another common reason for extracting one functionality is the ability to scale it inde‐
pendently from the rest of the bounded context’s functionalities.

Therefore, keep your models useful and align the bounded contexts’ sizes with your
business needs and organizational constraints. One thing to beware of is splitting a
coherent functionality into multiple bounded contexts. Such division will hinder the
ability to evolve each context independently. Instead, the same business requirements
and changes will simultaneously affect the bounded contexts and require simultane‐
ous deployment of the changes. To avoid such ineffective decomposition, use the rule
of thumb we discussed in Chapter 1 to find subdomains: identify sets of coherent use
cases that operate on the same data and avoid decomposing them into multiple boun‐
ded contexts.

We’ll discuss the topic of continuously optimizing the bounded contexts’ boundaries
further in Chapters 8 and 10.

Bounded Contexts Versus Subdomains
In Chapter 2, we saw that a business domain consists of multiple subdomains. So far
in this chapter, we explored the notion of decomposing a business domain into a set
of fine-grained problem domains or bounded contexts. At first, the two methods of
decomposing business domains might seem redundant. However, that’s not the case.
Let’s examine why we need both boundaries.

38 | Chapter 3: Managing Domain Complexity

Subdomains
To comprehend a company’s business strategy, we have to analyze its business
domain. According to domain-driven design methodology, the analysis phase
involves identifying the different subdomains (core, supporting, and generic). That’s
how the organization works and plans its competitive strategy.

As you learned in Chapter 1, a subdomain resembles a set of interrelated use cases.
The use cases are defined by the business domain and the system’s requirements. As
software engineers, we do not define the requirements; that’s the responsibility of the
business. Instead, we are analyzing the business domain to identify the subdomains.

Bounded Contexts
Bounded contexts, on the other hand, are designed. Choosing models’ boundaries is a
strategic design decision. We decide how to divide the business domain into smaller,
manageable problem domains.

The Interplay Between Subdomains and Bounded Contexts
Theoretically, though impractically, a single model could span the entire business
domain. This strategy could work for a small system, as shown in Figure 3-5.

Figure 3-5. Monolithic bounded context

When conflicting models arise, we can follow the domain experts’ mental models and
decompose the systems into bounded contexts, as shown in Figure 3-6.

Bounded Contexts Versus Subdomains | 39

Figure 3-6. Bounded contexts driven by the consistency of the ubiquitous language

If the models are still large and hard to maintain, we can decompose them into even
smaller bounded contexts; for example, by having a bounded context for each subdo‐
main, as shown in Figure 3-7.

Figure 3-7. Bounded contexts aligned with subdomains’ boundaries

Either way, this is a design decision. We design those boundaries as a part of the
solution.

Having a one-to-one relationship between bounded contexts and subdomains can be
perfectly reasonable in some scenarios. In others, however, different decomposition
strategies can be more suitable.

40 | Chapter 3: Managing Domain Complexity

1 There is an exception here that is worth mentioning. Depending on the organization you are working in, you
may be wearing two hats and be in charge of both software engineering and business development. As a
result, you have the ability to affect both the software design (bounded contexts) and the business strategy
(subdomains). Therefore, in the (bounded) context of our discussion here, we are focusing only on software
engineering.

2 Bredemeyer Consulting, “What Is Software Architecture.” Retrieved September 22, 2021, https://www.brede
meyer.com/who.htm

It’s crucial to remember that subdomains are discovered and bounded contexts are
designed.1 The subdomains are defined by the business strategy. However, we can
design the software solution and its bounded contexts to address the specific project’s
context and constraints.

Finally, as you learned in Chapter 1, a model is intended to solve a specific problem.
In some cases, it can be beneficial to use multiple models of the same concept simul‐
taneously to solve different problems. As different types of maps provide different
types of information about our planet, it may be reasonable to use different models of
the same subdomain to solve different problems. Limiting the design to one-to-one
relationships between bounded contexts would inhibit this flexibility and force us to
use a single model of a subdomain in its bounded context.

Boundaries
As Ruth Malan says, architectural design is inherently about boundaries:

Architectural design is system design. System design is contextual design—it is inher‐
ently about boundaries (what’s in, what’s out, what spans, what moves between), and
about trade-offs. It reshapes what is outside, just as it shapes what is inside.2

The bounded context pattern is the domain-driven design tool for defining physical
and ownership boundaries.

Physical Boundaries
Bounded contexts serve not only as model boundaries but also as physical boundaries
of the systems implementing them. Each bounded context should be implemented as
an individual service/project, meaning it is implemented, evolved, and versioned
independently of other bounded contexts.

Clear physical boundaries between bounded contexts allow us to implement each
bounded context with the technology stack that best fits its needs.

As we discussed earlier, a bounded context can contain multiple subdomains. In such
a case, the bounded context is a physical boundary, while each of its subdomains is a
logical boundary. Logical boundaries bear different names in different programming
languages: namespaces, modules, or packages.

Boundaries | 41

https://www.bredemeyer.com/who.htm
https://www.bredemeyer.com/who.htm

Ownership Boundaries
Studies show that good fences do indeed make good neighbors. In software projects,
we can leverage model boundaries—bounded contexts—for the peaceful coexistence
of teams. The division of work between teams is another strategic decision that can be
made using the bounded context pattern.

A bounded context should be implemented, evolved, and maintained by one team
only. No two teams can work on the same bounded context. This segregation elimi‐
nates implicit assumptions that teams might make about one another’s models.
Instead, they have to define communication protocols for integrating their models
and systems explicitly.

It’s important to note that the relationship between teams and bounded contexts is
one-directional: a bounded context should be owned by only one team. However, a
single team can own multiple bounded contexts, as Figure 3-8 illustrates.

Figure 3-8. Team 1 working on the Marketing and Optimization bounded contexts,
while Team 2 works on the Sales bounded context

Bounded Contexts in Real Life
In one of my domain driven-design classes, a participant once noted: “You said that
DDD is about aligning software design with business domains. But where are the
bounded contexts in real life? There are no bounded contexts in business domains.”

Indeed, bounded contexts are not as evident as business domains and subdomains,
but they are there, as domain experts’ mental models are. You just have to be

42 | Chapter 3: Managing Domain Complexity

conscious about how domain experts think about the different business entities and
processes.

I want to close this chapter by discussing examples demonstrating that not only are
bounded contexts there when we are modeling business domains in software, but the
notion of using different models in different contexts is widespread in life in general.

Semantic Domains
It can be said that domain-driven design’s bounded contexts are based on the lexico‐
graphical notion of semantic domains. A semantic domain is defined as an area of
meaning and the words used to talk about it. For example, the words monitor, port,
and processor have different meanings in the software and hardware engineering
semantic domains.

A rather peculiar example of different semantic domains is the meaning of the word
tomato.

According to the botanic definition, a fruit is the plant’s way of spreading its seeds. A
fruit should grow from the plant’s flower, and bear at least one seed. A vegetable, on
the other hand, is a general term encompassing all other edible parts of a plant: roots,
stems, and leaves. Based on this definition, the tomato is a fruit.

That definition, however, is of little use in the context of the culinary arts. In this con‐
text, fruits and vegetables are defined based on their flavor profiles. A fruit has a soft
texture, is either sweet or sour, and can be enjoyed in its raw form, whereas a vegeta‐
ble has a tougher texture, tastes blander, and often requires cooking. According to
this definition, the tomato is a vegetable.

Hence, in the bounded context of botany, the tomato is a fruit, while in the bounded
context of the culinary arts, it’s a vegetable. But that’s not all.

In 1883 the United States established a 10% tax on imported vegetables, but not fruits.
The botanic definition of the tomato as a fruit allowed the importation of tomatoes to
the United States without paying the import tax. To close the loophole, in 1893 the
United States Supreme Court made the decision to classify the tomato as a vegetable.
Therefore, in the bounded context of taxation, the tomato is a vegetable.

Furthermore, as my friend Romeu Moura says, in the bounded context of theatrical
performances, the tomato is a feedback mechanism.

Science
As historian Yuval Noah Harari puts it, “Scientists generally agree that no theory is
100 percent correct. Thus, the real test of knowledge is not the truth, but utility.” In
other words, no scientific theory is correct in all cases. Different theories are useful in
different contexts.

Bounded Contexts in Real Life | 43

https://oreil.ly/ugv75

This notion can be demonstrated by the different models of gravity introduced by Sir
Isaac Newton and Albert Einstein. According to Newton’s laws of motion, space and
time are absolute. They are the stage on which the motion of objects happens. In Ein‐
stein’s theory of relativity, space and time are no longer absolute but different for dif‐
ferent observers.

Even though the two models can be seen as contradictory, both are useful in their
suitable (bounded) contexts.

Buying a Refrigerator
Finally, let’s see a more earthbound example of real-life bounded contexts. What do
you see in Figure 3-9?

Figure 3-9. A piece of cardboard

Is it just a piece of cardboard? No, it’s a model. It’s a model of the Siemens
KG86NAI31L refrigerator. If you look it up, you may say the piece of cardboard
doesn’t look anything like that fridge. It has no doors, and even its color is different.

Although that’s true, it’s not relevant. As we’ve discussed, a model is not supposed to
copy a real-world entity. Instead, it should have a purpose—a problem it is supposed
to solve. Hence, the correct question to ask about the cardboard is, what problem
does this model solve?

44 | Chapter 3: Managing Domain Complexity

In our apartment, we do not have a standard entry into the kitchen. The cardboard
was cut precisely to the size of the fridge’s width and depth. The problem it solves is
checking whether the refrigerator can fit through the kitchen door (see Figure 3-10).

Figure 3-10. The cardboard model in the kitchen doorway

Despite the cardboard not looking anything like the fridge, it proved extremely useful
when we had to decide whether to buy this model or opt for a smaller one. Again, all
models are wrong, but some are useful. Building a 3D model of the fridge would defi‐
nitely be a fun project. But would it solve the problem any more efficiently than the
cardboard? No. If the cardboard fits, the 3D model would fit as well, and vice versa.
In software engineering terms, building a 3D model of the fridge would be gross
overengineering.

But what about the refrigerator’s height? What if the base fits, but it’s too tall to fit in
the doorway? Would that justify gluing together a 3D model of the fridge? No. The
problem can be solved much more quickly and easily by using a simple tape measure
to check the doorway’s height. What is a tape measure in this case? Another simple
model.

So, we ended up with two models of the same fridge. Using two models, each opti‐
mized for its specific task, reflects the DDD approach to modeling business domains.
Each model has its strict bounded context: the cardboard verifying that the refrigera‐
tor’s base can make it through the kitchen’s entry, and the tape measure verifying that
it’s not too tall. A model should omit the extraneous information irrelevant to the task at

Bounded Contexts in Real Life | 45

hand. Also, there’s no need to design a complex jack-of-all-trades model if multiple,
much simpler models can effectively solve each problem individually.

A few days after I published this story on Twitter, I received a reply saying that
instead of fiddling with cardboard, I could have just used a mobile phone with a
LiDAR scanner and an augmented reality (AR) application. Let’s analyze this sugges‐
tion from the domain-driven design perspective.

The author of the comment says this is a problem that others have already solved, and
the solution is readily available. Needless to say, both the scanning technology and the
AR application are complex. In DDD lingo, that makes the problem of checking
whether the refrigerator will fit through the doorway a generic subdomain.

Conclusion
Whenever we stumble upon an inherent conflict in the domain experts’ mental mod‐
els, we have to decompose the ubiquitous language into multiple bounded contexts. A
ubiquitous language should be consistent within the scope of its bounded context.
However, across bounded contexts, the same terms can have different meanings.

While subdomains are discovered, bounded contexts are designed. The division of
the domain into bounded contexts is a strategic design decision.

A bounded context and its ubiquitous language can be implemented and maintained
by one team. No two teams can share the work on the same bounded context. How‐
ever, one team can work on multiple bounded contexts.

Bounded contexts decompose a system into physical components—services, subsys‐
tems, and so on. Each bounded context’s lifecycle is decoupled from the rest. Each
bounded context can evolve independently from the rest of the system. However, the
bounded contexts have to work together to form a system. Some of the changes will
inadvertently affect another bounded context. In the next chapter, we’ll talk about the
different patterns for integrating bounded contexts that can be used to protect them
from cascading changes.

Exercises
1. What is the difference between subdomains and bounded contexts?

a. Subdomains are designed, while bounded contexts are discovered.
b. Bounded contexts are designed, while subdomains are discovered.
c. Bounded contexts and subdomains are essentially the same.
d. None of the above is true.

46 | Chapter 3: Managing Domain Complexity

https://oreil.ly/rqnEy

2. A bounded context is a boundary of:
a. A model
b. A lifecycle
c. Ownership
d. All of the above

3. Which of the following is true regarding the size of a bounded context?
The smaller the bounded context is, the more flexible the system is.
a. Bounded contexts should always be aligned with the boundaries of subdo‐

mains.
b. The wider the bounded context is, the better.
c. It depends.

4. Which of the following is true regarding team ownership of a bounded context?
a. Multiple teams can work on the same bounded context.
b. A single team can own multiple bounded contexts.
c. A bounded context can be owned by one team only.
d. B and C are correct.

5. Review the example of the WolfDesk company in the Preface and try to identify
functionalities of the system that may require different models of a support
ticket.

6. Try to find examples of real-life bounded contexts, in addition to those described
in this chapter.

Exercises | 47

CHAPTER 4

Integrating Bounded Contexts

Not only does the bounded context pattern protect the consistency of a ubiquitous
language, it also enables modeling. You cannot build a model without specifying its
purpose—its boundary. The boundary divides the responsibility of languages. A lan‐
guage in one bounded context can model the business domain to solve a particular
problem. Another bounded context can represent the same business entities but
model them to solve a different problem.

Moreover, models in different bounded contexts can be evolved and implemented
independently. That said, bounded contexts themselves are not independent. Just as a
system cannot be built out of independent components—the components have to
interact with one another to achieve the system’s overarching goals—so, too, do the
implementations in bounded contexts. Although they can evolve independently, they
have to integrate with one another. As a result, there will always be touchpoints
between bounded contexts. These are called contracts.

The need for contracts results from differences in bounded contexts’ models and lan‐
guages. Since each contract affects more than one party, they need to be defined and
coordinated. Also, by definition, two bounded contexts are using different ubiquitous
languages. Which language will be used for integration purposes? These integration
concerns should be evaluated and addressed by the solution’s design.

In this chapter, you will learn about domain-driven design patterns for defining rela‐
tionships and integrations between bounded contexts. These patterns are driven by
the nature of collaboration between teams working on bounded contexts. We will
divide the patterns into three groups, each representing a type of team collaboration:
cooperation, customer–supplier, and separate ways.

49

Cooperation
Cooperation patterns relate to bounded contexts implemented by teams with well-
established communication.

In the simplest case, these are bounded contexts implemented by a single team. This
also applies to teams with dependent goals, where one team’s success depends on the
success of the other, and vice versa. Again, the main criterion here is the quality of the
teams’ communication and collaboration.

Let’s look at two DDD patterns suitable for cooperating teams: the partnership and
shared kernel patterns.

Partnership
In the partnership model, the integration between bounded contexts is coordinated in
an ad hoc manner. One team can notify a second team about a change in the API,
and the second team will cooperate and adapt—no drama or conflicts (see
Figure 4-1).

Figure 4-1. The partnership model

The coordination of integration here is two-way. No one team dictates the language
that is used for defining the contracts. The teams can work out the differences and
choose the most appropriate solution. Also, both sides cooperate in solving any inte‐
gration issues that might come up. Neither team is interested in blocking the other
one.

Well-established collaboration practices, high levels of commitment, and frequent
synchronizations between teams are required for successful integration in this man‐
ner. From a technical perspective, continuous integration of the changes applied by
both teams is needed to further minimize the integration feedback loop.

This pattern might not be a good fit for geographically distributed teams since it may
present synchronization and communication challenges.

Shared Kernel
Despite bounded contexts being model boundaries, there still can be cases when the
same model of a subdomain, or a part of it, will be implemented in multiple bounded

50 | Chapter 4: Integrating Bounded Contexts

contexts. It’s crucial to stress that the shared model is designed according to the needs
of all of the bounded contexts. Moreover, the shared model has to be consistent
across all of the bounded contexts that are using it.

As an example, consider an enterprise system that uses a tailor-made model for man‐
aging users’ permissions. Each user can have their permissions granted directly or
inherited from one of the organizational units they belong to. Moreover, each boun‐
ded context can modify the authorization model, and the changes each bounded con‐
text applies have to affect all the other bounded contexts using the model (see
Figure 4-2).

Figure 4-2. Shared kernel

Shared scope
The overlapping model couples the lifecycles of the participating bounded contexts.
A change made to the shared model has an immediate effect on all the bounded con‐
texts. Hence, to minimize the cascading effects of changes, the overlapping model
should be limited, exposing only that part of the model that has to be implemented by
both bounded contexts. Ideally, the shared kernel will consist only of integration con‐
tracts and data structures that are intended to be passed across the bounded contexts’
boundaries.

Implementation
The shared kernel is implemented so that any modification to its source code is
immediately reflected in all the bounded contexts using it.

If the organization uses the mono-repository approach, these can be the same source
files referenced by multiple bounded contexts. If using a shared repository is not pos‐
sible, the shared kernel can be extracted into a dedicated project and referenced in the
bounded contexts as a linked library. Either way, each change to the shared kernel
must trigger integration tests for all the affected bounded contexts.

Cooperation | 51

The continuous integration of changes is required because the shared kernel belongs
to multiple bounded contexts. Not propagating shared kernel changes to all related
bounded contexts leads to inconsistencies in a model: bounded contexts may rely on
stale implementations of the shared kernel, leading to data corruption and/or run‐
time issues.

When to use shared kernel
The overarching applicability criterion for the shared kernel pattern is the cost of
duplication versus the cost of coordination. Since the pattern introduces a strong
dependency between the participating bounded contexts, it should be applied only
when the cost of duplication is higher than the cost of coordination—in other words,
only when integrating changes applied to the shared model by both bounded contexts
will require more effort than coordinating the changes in the shared codebase.

The difference between the integration and duplication costs depends on the volatil‐
ity of the model. The more frequently it changes, the higher the integration costs will
be. Therefore, the shared kernel will naturally be applied for the subdomains that
change the most: the core subdomains.

In a sense, the shared kernel pattern contradicts the principles of bounded contexts
introduced in the previous chapter. If the participating bounded contexts are not
implemented by the same team, introducing a shared kernel contradicts the principle
that a single team should own a bounded context. The overlapping model—the
shared kernel—is, in effect, being developed by multiple teams.

That’s the reason why the use of a shared kernel has to be justified. It’s a pragmatic
exception that should be considered carefully. A common use case for implementing
a shared kernel is when communication or collaboration issues prevent implementing
the partnership pattern—for example, because of geographical constraints or organi‐
zational politics. Implementing a closely related functionality without proper coordi‐
nation will result in integration issues, desynchronized models, and arguments about
which model is better designed. Minimizing the shared kernel’s scope controls the
scope of cascading changes, and triggering integration tests for each change is a way
to enforce early detection of integration issues.

Another common use case for applying the shared kernel pattern, albeit a temporary
one, is the gradual modernization of a legacy system. In such a scenario, the shared
codebase can be a pragmatic intermediate solution for gradually decomposing the
system into bounded contexts.

Finally, a shared kernel can be a good fit for integrating bounded contexts owned and
implemented by the same team. In such a case, an ad hoc integration of the bounded
contexts—a partnership—can “wash out” the contexts’ boundaries over time. A
shared kernel can be used for explicitly defining the bounded contexts’ integration
contracts.

52 | Chapter 4: Integrating Bounded Contexts

Customer–Supplier
The second group of collaboration patterns we’ll examine is the customer–supplier
patterns. As shown in Figure 4-3, one of the bounded contexts—the supplier—pro‐
vides a service for its customers. The service provider is “upstream” and the customer
or consumer is “downstream.”

Figure 4-3. Customer–supplier relationship

Unlike in the cooperation case, both teams (upstream and downstream) can succeed
independently. Consequently, in most cases we have an imbalance of power: either
the upstream or the downstream team can dictate the integration contract.

This section will discuss three patterns addressing such power differences: the con‐
formist, anticorruption layer, and open-host service patterns.

Conformist
In some cases, the balance of power favors the upstream team, which has no real
motivation to support its clients’ needs. Instead, it just provides the integration con‐
tract, defined according to its own model—take it or leave it. Such power imbalances
can be caused by integration with service providers that are external to the organiza‐
tion or simply by organizational politics.

If the downstream team can accept the upstream team’s model, the bounded contexts’
relationship is called conformist. The downstream conforms to the upstream bounded
context’s model, as shown in Figure 4-4.

Figure 4-4. Conformist relationship

Customer–Supplier | 53

The downstream team’s decision to give up some of its autonomy can be justified in
multiple ways. For example, the contract exposed by the upstream team may be an
industry-standard, well-established model, or it may just be good enough for the
downstream team’s needs.

The next pattern addresses the case in which a consumer is not willing to accept the
supplier’s model.

Anticorruption Layer
As in the conformist pattern, the balance of power in this relationship is still skewed
toward the upstream service. However, in this case, the downstream bounded context
is not willing to conform. Instead, it can translate the upstream bounded context’s
model into a model tailored to its own needs via an anticorruption layer, as shown in
Figure 4-5.

Figure 4-5. Integration through an anticorruption layer

The anticorruption layer pattern addresses scenarios in which it is not desirable or
worth the effort to conform to the supplier’s model, such as the following:

When the downstream bounded context contains a core subdomain
A core subdomain’s model requires extra attention, and adhering to the supplier’s
model might impede the modeling of the problem domain.

When the upstream model is inefficient or inconvenient for the consumer’s needs
If a bounded context conforms to a mess, it risks becoming a mess itself. That is
often the case when integrating with legacy systems.

When the supplier’s contract changes often
The consumer wants to protect its model from frequent changes. With an anti‐
corruption layer, the changes in the supplier’s model only affect the translation
mechanism.

From a modeling perspective, the translation of the supplier’s model isolates the
downstream consumer from foreign concepts that are not relevant to its bounded
context. Hence, it simplifies the consumer’s ubiquitous language and model.

54 | Chapter 4: Integrating Bounded Contexts

In Chapter 9, we will explore the different ways to implement an anticorruption layer.

Open-Host Service
This pattern addresses cases in which the power is skewed toward the consumers.
The supplier is interested in protecting its consumers and providing the best service
possible.

To protect the consumers from changes in its implementation model, the upstream
supplier decouples the implementation model from the public interface. This decou‐
pling allows the supplier to evolve its implementation and public models at different
rates, as shown in Figure 4-6.

Figure 4-6. Integration through an open-host service

The supplier’s public interface is not intended to conform to its ubiquitous language.
Instead, it is intended to expose a protocol convenient for the consumers, expressed
in an integration-oriented language. As such, the public protocol is called the pub‐
lished language.

In a sense, the open-host service pattern is a reversal of the anticorruption layer pat‐
tern: instead of the consumer, the supplier implements the translation of its internal
model.

Decoupling the bounded context’s implementation and integration models gives the
upstream bounded context the freedom to evolve its implementation without affect‐
ing the downstream contexts. Of course, that’s only possible if the modified imple‐
mentation model can be translated into the published language the consumers are
already using.

Furthermore, the integration model’s decoupling allows the upstream bounded con‐
text to simultaneously expose multiple versions of the published language, allowing
the consumer to migrate to the new version gradually (see Figure 4-7).

Customer–Supplier | 55

Figure 4-7. Open-host service exposing multiple versions of the published language

Separate Ways
The last collaboration option is not to collaborate at all. This pattern can arise for dif‐
ferent reasons, in cases where the teams are unwilling or unable to collaborate. We’ll
look at a few of them here.

Communication Issues
A common reason for avoiding collaboration is communication difficulties driven by
the organization’s size or internal politics. When teams have a hard time collaborating
and agreeing, it may be more cost-effective to go their separate ways and duplicate
functionality in multiple bounded contexts.

Generic Subdomains
The nature of the duplicated subdomain can also be a reason for teams to go their
separate ways. When the subdomain in question is generic, and if the generic solution
is easy to integrate, it may be more cost-effective to integrate it locally in each boun‐
ded context. An example is a logging framework; it would make little sense for one of
the bounded contexts to expose it as a service. The added complexity of integrating
such a solution would outweigh the benefit of not duplicating the functionality in
multiple contexts. Duplicating the functionality would be less expensive than
collaborating.

Model Differences
Differences in the bounded contexts’ models can also be a reason to go with a sepa‐
rate ways collaboration. The models may be so different that a conformist relation‐
ship is impossible, and implementing an anticorruption layer would be more

56 | Chapter 4: Integrating Bounded Contexts

expensive than duplicating the functionality. In such a case, it is again more cost-
effective for the teams to go their separate ways.

The separate ways pattern should be avoided when integrating core
subdomains. Duplicating the implementation of such subdomains
would defy the company’s strategy to implement them in the most
effective and optimized way.

Context Map
After analyzing the integration patterns between a system’s bounded contexts, we can
plot them on a context map, as shown in Figure 4-8.

Figure 4-8. Context map

The context map is a visual representation of the system’s bounded contexts and the
integrations between them. This visual notation gives valuable strategic insight on
multiple levels:

High-level design
A context map provides an overview of the system’s components and the models
they implement.

Communication patterns
A context map depicts the communication patterns among teams—for example,
which teams are collaborating and which prefer “less intimate” integration pat‐
terns, such as the anticorruption layer and separate ways patterns.

Organizational issues
A context map can give insight into organizational issues. For example, what
does it mean if a certain upstream team’s downstream consumers all resort to

Context Map | 57

implementing an anticorruption layer, or if all implementations of the separate
ways pattern are concentrated around the same team?

Maintenance
Ideally, a context map should be introduced into a project right from the get-go, and
be updated to reflect additions of new bounded contexts and modifications to the
existing one.

Since the context map potentially contains information originating from the work of
multiple teams, it’s best to define the maintenance of the context map as a shared
effort: each team is responsible for updating its own integrations with other bounded
contexts.

A context map can be managed and maintained as code, using a tool like Context
Mapper.

Limitations
It’s important to note that charting a context map can be a challenging task. When a
system’s bounded contexts encompass multiple subdomains, there can be multiple
integration patterns at play. For example, in Figure 4-9, you can see two bounded
contexts with two integration patterns: partnership and anticorruption layer.

Figure 4-9. Complicated context map

Moreover, even if bounded contexts are limited to a single subdomain, there still can
be multiple integration patterns at play—for example, if the subdomains’ modules
require different integration strategies.

58 | Chapter 4: Integrating Bounded Contexts

https://contextmapper.org
https://contextmapper.org

Conclusion
Bounded contexts are not independent. They have to interact with one another. The
following patterns define different ways bounded contexts can be integrated:

Partnership
Bounded contexts are integrated in an ad hoc manner.

Shared kernel
Two or more bounded contexts are integrated by sharing a limited overlapping
model that belongs to all participating bounded contexts.

Conformist
The consumer conforms to the service provider’s model.

Anticorruption layer
The consumer translates the service provider’s model into a model that fits the
consumer’s needs.

Open-host service
The service provider implements a published language—a model optimized for
its consumers’ needs.

Separate ways
It’s less expensive to duplicate particular functionality than to collaborate and
integrate it.

The integrations among the bounded contexts can be plotted on a context map. This
tool gives insight into the system’s high-level design, communication patterns, and
organizational issues.

Now that you have learned about the domain-driven design tools and techniques for
analyzing and modeling business domains, we will shift our perspective from strategy
to tactics. In Part II, you’ll learn different ways to implement domain logic, organize
high-level architecture, and coordinate communication between a system’s
components.

Exercises
1. Which integration pattern should never be used for a core subdomain?

a. Shared kernel
b. Open-host service
c. Anticorruption layer
d. Separate ways

Conclusion | 59

2. Which downstream subdomain is more likely to implement an anticorruption
layer?
a. Core subdomain
b. Supporting subdomain
c. Generic subdomain
d. B and C

3. Which upstream subdomain is more likely to implement an open-host service?
a. Core subdomain
b. Supporting subdomain
c. Generic subdomain
d. A and B

4. Which integration pattern, in a sense, violates bounded contexts’ ownership
boundaries?
a. Partnership.
b. Shared kernel.
c. Separate ways.
d. No integration pattern should ever break the bounded contexts’ ownership

boundaries.

60 | Chapter 4: Integrating Bounded Contexts

PART II

Tactical Design

In Part I, we discussed the “what” and “why” of software: you learned to analyze busi‐
ness domains, identify subdomains and their strategic value, and turn the knowledge
of business domains into the design of bounded contexts—software components
implementing different models of the business domain.

In this part of the book, we will turn from strategy to tactics: the “how” of software
design:

• In Chapters 5 through 7, you will learn business logic implementation patterns
that allow the code to speak the ubiquitous language of its bounded context.
Chapter 5 introduces two patterns that accommodate a relatively simple business
logic: transaction script and active record. Chapter 6 moves to more challenging
cases and presents the domain model pattern: DDD’s way of implementing com‐
plex business logic. In Chapter 7, you will learn to expand the domain model pat‐
tern by modeling the dimension of time.

• In Chapter 8, we will explore the different ways to organize a bounded context’s
architecture: the layered architecture, ports & adapters, and CQRS patterns. You
will learn the essence of each architectural pattern and in which cases each pat‐
tern should be used.

• Chapter 9 will discuss technical concerns and implementation strategies for
orchestrating the interactions among components of a system. You will learn pat‐
terns supporting the implementation of bounded context integration patterns,
how to implement reliable publishing of messages, and patterns for defining
complex, cross-component workflows.

1 Fowler, M. (2002). Patterns of Enterprise Application Architecture. Boston: Addison-Wesley.

CHAPTER 5

Implementing Simple Business Logic

Business logic is the most important part of software. It’s the reason the software is
being implemented in the first place. A system’s user interface can be sexy and its
database can be blazing fast and scalable. But if the software is not useful for the busi‐
ness, it’s nothing but an expensive technology demo.

As we saw in Chapter 2, not all business subdomains are created equal. Different sub‐
domains have different levels of strategic importance and complexity. This chapter
begins our exploration of the different ways to model and implement business logic
code. We will start with two patterns suited for rather simple business logic: transac‐
tion script and active record.

Transaction Script
Organizes business logic by procedures where each procedure handles a single request from
the presentation.

—Martin Fowler1

A system’s public interface can be seen as a collection of business transactions that
consumers can execute, as shown in Figure 5-1. These transactions can retrieve infor‐
mation managed by the system, modify it, or both. The pattern organizes the system’s
business logic based on procedures, where each procedure implements an operation
that is executed by the system’s consumer via its public interface. In effect, the sys‐
tem’s public operations are used as encapsulation boundaries.

63

Figure 5-1. Transaction script interface

Implementation
Each procedure is implemented as a simple, straightforward procedural script. It can
use a thin abstraction layer for integrating with storage mechanisms, but it is also free
to access the databases directly.

The only requirement procedures have to fulfill is transactional behavior. Each opera‐
tion should either succeed or fail but can never result in an invalid state. Even if execu‐
tion of a transaction script fails at the most inconvenient moment, the system should
remain consistent—either by rolling back any changes it has made up until the failure
or by executing compensating actions. The transactional behavior is reflected in the
pattern’s name: transaction script.

Here is an example of a transaction script that converts batches of JSON files into
XML files:

DB.StartTransaction();

var job = DB.LoadNextJob();
var json = LoadFile(job.Source);
var xml = ConvertJsonToXml(json);
WriteFile(job.Destination, xml.ToString();
DB.MarkJobAsCompleted(job);

DB.Commit()

It’s Not That Easy!
When I introduce the transaction script pattern in my domain-driven design classes,
my students often raise their eyebrows, and some even ask, “Is it worth our time?
Aren’t we here for the more advanced patterns and techniques?”

The thing is, the transaction script pattern is a foundation for the more advanced
business logic implementation patterns you will learn in the forthcoming chapters.
Furthermore, despite its apparent simplicity, it is the easiest pattern to get wrong. A
considerable number of production issues I have helped to debug and fix, in one way
or another, often boiled down to a misimplementation of the transactional behavior
of the system’s business logic.

64 | Chapter 5: Implementing Simple Business Logic

Let’s take a look at three common, real-life examples of data corruption that results
from failing to correctly implement a transaction script.

Lack of transactional behavior
A trivial example of failing to implement transactional behavior is to issue multiple
updates without an overarching transaction. Consider the following method that
updates a record in the Users table and inserts a record into the VisitsLog table:

01 public class LogVisit
02 {
03 ...
04
05 public void Execute(Guid userId, DataTime visitedOn)
06 {
07 _db.Execute("UPDATE Users SET last_visit=@p1 WHERE user_id=@p2",
08 visitedOn, userId);
09 _db.Execute(@"INSERT INTO VisitsLog(user_id, visit_date)
10 VALUES(@p1, @p2)", userId, visitedOn);
11 }
12 }

If any issue occurs after the record in the Users table was updated (line 7) but before
appending the log record on line 9 succeeds, the system will end up in an inconsistent
state. The Users table will be updated but no corresponding record will be written to
the VisitsLog table. The issue can be due to anything from a network outage to a data‐
base timeout or deadlock, or even a crash of the server executing the process.

This can be fixed by introducing a proper transaction encompassing both data
changes:

public class LogVisit
{
 ...

 public void Execute(Guid userId, DataTime visitedOn)
 {
 try
 {
 _db.StartTransaction();

 _db.Execute(@"UPDATE Users SET last_visit=@p1
 WHERE user_id=@p2",
 visitedOn, userId);

 _db.Execute(@"INSERT INTO VisitsLog(user_id, visit_date)
 VALUES(@p1, @p2)",
 userId, visitedOn);

 _db.Commit();
 } catch {

Transaction Script | 65

 _db.Rollback();
 throw;
 }
 }
}

The fix is easy to implement due to relational databases’ native support of transac‐
tions spanning multiple records. Things get more complicated when you have to
issue multiple updates in a database that doesn’t support multirecord transactions, or
when you are working with multiple storage mechanisms that are impossible to unite
in a distributed transaction. Let’s see an example of the latter case.

Distributed transactions
In modern distributed systems, it’s a common practice to make changes to the data in
a database and then notify other components of the system about the changes by
publishing messages into a message bus. Consider that in the previous example,
instead of logging a visit in a table, we have to publish it to a message bus:

01 public class LogVisit
02 {
03 ...
04
05 public void Execute(Guid userId, DataTime visitedOn)
06 {
07 _db.Execute("UPDATE Users SET last_visit=@p1 WHERE user_id=@p2",
08 visitedOn,userId);
09 _messageBus.Publish("VISITS_TOPIC",
10 new { UserId = userId, VisitDate = visitedOn });
11 }
12 }

As in the previous example, any failure occurring after line 7 but before line 9 suc‐
ceeds will corrupt the system’s state. The Users table will be updated but the other
components won’t be notified as publishing to the message bus has failed.

Unfortunately, fixing the issue is not as easy as in the previous example. Distributed
transactions spanning multiple storage mechanisms are complex, hard to scale, error
prone, and therefore are usually avoided. In Chapter 8, you will learn how to use the
CQRS architectural pattern to populate multiple storage mechanisms. In addition,
Chapter 9 will introduce the outbox pattern, which enables reliable publishing of
messages after committing changes to another database.

Let’s see a more intricate example of improper implementation of transactional
behavior.

Implicit distributed transactions
Consider the following deceptively simple method:

66 | Chapter 5: Implementing Simple Business Logic

public class LogVisit
{
 ...

 public void Execute(Guid userId)
 {
 _db.Execute("UPDATE Users SET visits=visits+1 WHERE user_id=@p1",
 userId);
 }
}

Instead of tracking the last visit date as in the previous examples, this method main‐
tains a counter of visits for each user. Calling the method increases the corresponding
counter’s value by 1. All the method does is update one value, in one table, residing in
one database. Yet this is still a distributed transaction that can potentially lead to
inconsistent state.

This example constitutes a distributed transaction because it communicates informa‐
tion to the databases and the external process that called the method, as demon‐
strated in Figure 5-2.

Figure 5-2. The LogVisit operation updating the data and notifying the caller of the
operation’s success or failure

Although the execute method is of type void, that is, it doesn’t return any data, it still
communicates whether the operation has succeeded or failed: if it failed, the caller
will get an exception. What if the method succeeds, but the communication of the
result to the caller fails? For example:

• If LogVisit is part of a REST service and there is a network outage; or
• If both LogVisit and the caller are running in the same process, but the process

fails before the caller gets to track successful execution of the LogVisit action?

In both cases, the consumer will assume failure and try calling LogVisit again. Exe‐
cuting the LogVisit logic again will result in an incorrect increase of the counter’s
value. Overall, it will be increased by 2 instead of 1. As in the previous two examples,
the code fails to implement the transaction script pattern correctly, and inadvertently
leads to corrupting the system’s state.

Transaction Script | 67

As in the previous example, there is no simple fix for this issue. It all depends on the
business domain and its needs. In this specific example, one way to ensure transac‐
tional behavior is to make the operation idempotent: that is, leading to the same result
even if the operation repeated multiple times.

For example, we can ask the consumer to pass the value of the counter. To supply the
counter’s value, the caller will have to read the current value first, increase it locally,
and then provide the updated value as a parameter. Even if the operation will be exe‐
cuted multiple times, it won’t change the end result:

public class LogVisit
{
 ...

 public void Execute(Guid userId, long visits)
 {
 _db.Execute("UPDATE Users SET visits = @p1 WHERE user_id=@p2",
 visits, userId);
 }
}

Another way to address such an issue is to use optimistic concurrency control: prior
to calling the LogVisit operation, the caller has read the counter’s current value and
passed it to LogVisit as a parameter. LogVisit will update the counter’s value only if
it equals the one initially read by the caller:

public class LogVisit
{
...

 public void Execute(Guid userId, long expectedVisits)
 {
 _db.Execute(@"UPDATE Users SET visits=visits+1
 WHERE user_id=@p1 and visits = @p2",
 userId, visits);
 }
}

Subsequent executions of LogVisit with the same input parameters won’t change the
data, as the WHERE...visits = @prm2 condition won’t be fulfilled.

When to Use Transaction Script
The transaction script pattern is well adapted to the most straightforward problem
domains in which the business logic resembles simple procedural operations. For
example, in extract-transform-load (ETL) operations, each operation extracts data
from a source, applies transformation logic to convert it into another form, and loads
the result into the destination store. This process is shown in Figure 5-3.

68 | Chapter 5: Implementing Simple Business Logic

2 Fowler, M. (2002). Patterns of Enterprise Application Architecture. Boston: Addison-Wesley.

Figure 5-3. Extract-transform-load data flow

The transaction script pattern naturally fits supporting subdomains where, by defini‐
tion, the business logic is simple. It can also be used as an adapter for integration with
external systems—for example, generic subdomains, or as a part of an anticorruption
layer (more on that in Chapter 9).

The main advantage of the transaction script pattern is its simplicity. It introduces
minimal abstractions and minimizes the overhead both in runtime performance and
in understanding the business logic. That said, this simplicity is also the pattern’s dis‐
advantage. The more complex the business logic gets, the more it’s prone to duplicate
business logic across transactions, and consequently, to result in inconsistent behav‐
ior—when the duplicated code goes out of sync. As a result, transaction script should
never be used for core subdomains, as this pattern won’t cope with the high complex‐
ity of a core subdomain’s business logic.

This simplicity earned the transaction script a dubious reputation. Sometimes the
pattern is even treated as an antipattern. After all, if complex business logic is imple‐
mented as a transaction script, sooner rather than later it’s going to turn into an
unmaintainable, big ball of mud. It should be noted, however, that despite the sim‐
plicity, the transaction script pattern is ubiquitous in software development. All the
business logic implementation patterns that we will discuss in this and the following
chapters, in one way or another, are based on the transaction script pattern.

Active Record
An object that wraps a row in a database table or view, encapsulates the database access, and
adds domain logic on that data.

—Martin Fowler2

Like the transaction script pattern, active record supports cases where the business
logic is simple. Here, however, the business logic may operate on more complex data
structures. For example, instead of flat records, we can have more complicated object
trees and hierarchies, as shown in Figure 5-4.

Active Record | 69

Figure 5-4. A more complicated data model with one-to-many and many-to-many
relationships

Operating on such data structures via a simple transaction script would result in lots
of repetitive code. The mapping of the data to an in-memory representation would be
duplicated all over.

Implementation
Consequently, this pattern uses dedicated objects, known as active records, to repre‐
sent complicated data structures. Apart from the data structure, these objects also
implement data access methods for creating, reading, updating, and deleting
records—the so-called CRUD operations. As a result, the active record objects are
coupled to an object-relational mapping (ORM) or some other data access frame‐
work. The pattern’s name is derived from the fact that each data structure is “active”;
that is, it implements data access logic.

As in the previous pattern, the system’s business logic is organized in a transaction
script. The difference between the two patterns is that in this case, instead of access‐
ing the database directly, the transaction script manipulates active record objects.
When it completes, the operation has to either complete or fail as an atomic
transaction:

public class CreateUser
{
 ...

 public void Execute(userDetails)
 {
 try
 {
 _db.StartTransaction();

 var user = new User();
 user.Name = userDetails.Name;
 user.Email = userDetails.Email;
 user.Save();

70 | Chapter 5: Implementing Simple Business Logic

 _db.Commit();
 } catch {
 _db.Rollback();
 throw;
 }
 }
}

The pattern’s goal is to encapsulate the complexity of mapping the in-memory object
to the database’s schema. In addition to being responsible for persistence, the active
record objects can contain business logic; for example, validating new values assigned
to the fields, or even implementing business-related procedures that manipulate an
object’s data. That said, the distinctive feature of an active record object is the separa‐
tion of data structures and behavior (business logic). Usually, an active record’s fields
have public getters and setters that allow external procedures to modify its state.

When to Use Active Record
Because an active record is essentially a transaction script that optimizes access to
databases, this pattern can only support relatively simple business logic, such as
CRUD operations, which, at most, validate the user’s input.

Accordingly, as in the case of the transaction script pattern, the active record pattern
lends itself to supporting subdomains, integration of external solutions for generic
subdomains, or model transformation tasks. The difference between the patterns is
that active record addresses the complexity of mapping complicated data structures
to a database’s schema.

The active record pattern is also known as an anemic domain model antipattern; in
other words, an improperly designed domain model. I prefer to restrain from the
negative connotation of the words anemic and antipattern. This pattern is a tool. Like
any tool, it can solve problems, but it can potentially introduce more harm than good
when applied in the wrong context. There is nothing wrong with using active records
when the business logic is simple. Furthermore, using a more elaborate pattern when
implementing simple business logic will also result in harm by introducing accidental
complexity. In the next chapter, you will learn what a domain model is and how it
differs from an active record pattern.

It’s important to stress that in this context, active record refers to the
design pattern, not the Active Record framework. The pattern
name was coined in Patterns of Enterprise Application Architecture
by Martin Fowler. The framework came later as one way to imple‐
ment the pattern. In our context, we are talking about the design
pattern and the concepts behind it, not a specific implementation.

Active Record | 71

Be Pragmatic
Although business data is important and the code we design and build should protect
its integrity, there are cases in which a pragmatic approach is more desirable.

Especially at high levels of scale, there are cases when data consistency guarantees can
be relaxed. Check whether corrupting the state of one record out of 1 million is really
a showstopper for the business and whether it can negatively affect the performance
and profitability of the business. For example, let’s assume you are building a system
that ingests billions of events per day from IoT devices. Is it a big deal if 0.001% of the
events will be duplicated or lost?

As always, there are no universal laws. It all depends on the business domain you are
working in. It’s OK to “cut corners” where possible; just make sure you evaluate the
risks and business implications.

Conclusion
In this chapter, we covered two patterns for implementing business logic:

Transaction script
This pattern organizes the system’s operations as simple, straightforward proce‐
dural scripts. The procedures ensure that each operation is transactional—either
it succeeds or it fails. The transaction script pattern lends itself to supporting
subdomains, with business logic resembling simple, ETL-like operations.

Active record
When the business logic is simple but operates on complicated data structures,
you can implement those data structures as active records. An active record
object is a data structure that provides simple CRUD data access methods.

The two patterns discussed in this chapter are oriented toward cases of rather simple
business logic. In the next chapter, we will turn to more complex business logic and
discuss how to tackle the complexity using the domain model pattern.

Exercises
1. Which of the discussed patterns should be used for implementing a core subdo‐

main’s business logic?
a. Transaction script.
b. Active record.
c. Neither of these patterns can be used to implement a core subdomain.
d. Both can be used to implement a core subdomain.

72 | Chapter 5: Implementing Simple Business Logic

2. Consider the following code:
public void CreateTicket(TicketData data)
{
 var agent = FindLeastBusyAgent();

 agent.ActiveTickets = agent.ActiveTickets + 1;
 agent.Save();

 var ticket = new Ticket();
 ticket.Id = Guid.New();
 ticket.Data = data;
 ticket.AssignedAgent = agent;
 ticket.Save();

 _alerts.Send(agent, "You have a new ticket!");
}

Assuming there is no high-level transaction mechanism, what potential data con‐
sistency issues can you spot here?
a. On receiving a new ticket, the assigned agent’s counter of active tickets can be

increased by more than 1.
b. An agent’s counter of active tickets can be increased by 1 but the agent won’t

get assigned any new tickets.
c. An agent can get a new ticket but won’t be notified about it.
d. All of the above issues are possible.

3. In the preceding code, there is at least one more possible edge case that can cor‐
rupt the system’s state. Can you spot it?

4. Going back to the example of WolfDesk in the book’s Preface, what parts of the
system could potentially be implemented as a transaction script or an active
record?

Exercises | 73

CHAPTER 6

Tackling Complex Business Logic

The previous chapter discussed two patterns addressing cases of relatively simple
business logic: transaction script and active record. This chapter continues the topic
of implementing business logic and introduces a pattern oriented for complicated
business logic: the domain model pattern.

History
As with both the transaction script and active record patterns, the domain model pat‐
tern was introduced initially in Martin Fowler’s book Patterns of Enterprise Applica‐
tion Architecture. Fowler concluded his discussion of the pattern by saying, “Eric
Evans is currently writing a book on building Domain Models.” The referenced book
is Evans’s seminal work, Domain-Driven Design: Tackling Complexity in the Heart of
Software.

In his book, Evans presents a set of patterns aimed at tightly relating the code to the
underlying model of the business domain: aggregate, value objects, repositories, and
others. These patterns closely follow where Fowler left off in his book and resemble
an effective set of tools for implementing the domain model pattern.

The patterns that Evans introduced are often referred to as tactical domain-driven
design. To eliminate the confusion of thinking that implementing domain-driven
design necessarily entails the use of these patterns to implement business logic, I pre‐
fer to stick with Fowler’s original terminology. The pattern is “domain model,” and
the aggregates and value objects are its building blocks.

75

Domain Model
The domain model pattern is intended to cope with cases of complex business logic.
Here, instead of CRUD interfaces, we deal with complicated state transitions, busi‐
ness rules, and invariants: rules that have to be protected at all times.

Let’s assume we are implementing a help desk system. Consider the following excerpt
from the requirements that describes the logic controlling the lifecycles of support
tickets:

• Customers open support tickets describing issues they are facing.
• Both the customer and the support agent append messages, and all the corre‐

spondence is tracked by the support ticket.
• Each ticket has a priority: low, medium, high, or urgent.
• An agent should offer a solution within a set time limit (SLA) that is based on the

ticket’s priority.
• If the agent doesn’t reply within the SLA, the customer can escalate the ticket to

the agent’s manager.
• Escalation reduces the agent’s response time limit by 33%.
• If the agent didn’t open an escalated ticket within 50% of the response time limit,

it is automatically reassigned to a different agent.
• Tickets are automatically closed if the customer doesn’t reply to the agent’s ques‐

tions within seven days.
• Escalated tickets cannot be closed automatically or by the agent, only by the cus‐

tomer or the agent’s manager.
• A customer can reopen a closed ticket only if it was closed in the past seven days.

These requirements form an entangled net of dependencies among the different
rules, all affecting the support ticket’s lifecycle management logic. This is not a CRUD
data entry screen, as we discussed in the previous chapter. Attempting to implement
this logic using active record objects will make it easy to duplicate the logic and cor‐
rupt the system’s state by misimplementing some of the business rules.

76 | Chapter 6: Tackling Complex Business Logic

1 Fowler, M. (2002). Patterns of Enterprise Application Architecture. Boston: Addison-Wesley.
2 All the code samples in this chapter will use an object-oriented programming language. However, the dis‐

cussed concepts are not limited to OOP and are as relevant for the functional programming paradigm.
3 POCOs in .NET, POJOs in Java, POPOs in Python, etc.

Implementation
A domain model is an object model of the domain that incorporates both behavior
and data.1 DDD’s tactical patterns—aggregates, value objects, domain events, and
domain services—are the building blocks of such an object model.2

All of these patterns share a common theme: they put the business logic first. Let’s see
how the domain model addresses different design concerns.

Complexity
The domain’s business logic is already inherently complex, so the objects used for
modeling it should not introduce any additional accidental complexities. The model
should be devoid of any infrastructural or technological concerns, such as imple‐
menting calls to databases or other external components of the system. This restric‐
tion requires the model’s objects to be plain old objects, objects implementing
business logic without relying on or directly incorporating any infrastructural com‐
ponents or frameworks.3

Ubiquitous language
The emphasis on business logic instead of technical concerns makes it easier for the
domain model’s objects to follow the terminology of the bounded context’s ubiqui‐
tous language. In other words, this pattern allows the code to “speak” the ubiquitous
language and to follow the domain experts’ mental models.

Building Blocks
Let’s look at the central domain model building blocks, or tactical patterns, offered by
DDD: value objects, aggregates, and domain services.

Value object
A value object is an object that can be identified by the composition of its values. For
example, consider a color object:

class Color
{
 int _red;
 int _green;

Domain Model | 77

4 “Primitive Obsession.” (n.d.) Retrieved June 13, 2021, from https://wiki.c2.com/?PrimitiveObsession.

 int _blue;
}

The composition of the values of the three fields red, green, and blue defines a color.
Changing the value of one of the fields will result in a new color. No two colors can
have the same values. Also, two instances of the same color must have the same val‐
ues. Therefore, no explicit identification field is needed to identify colors.

The ColorId field shown in Figure 6-1 is not only redundant, but actually creates an
opening for bugs. You could create two rows with the same values of red, green, and
blue, but comparing the values of ColorId would not reflect that this is the same
color.

Figure 6-1. Redundant ColorId field, making it possible to have two rows with the same
values

Ubiquitous language. Relying exclusively on the language’s standard library’s primitive
data types—such as strings, integers, or dictionaries—to represent concepts of the
business domain is known as the primitive obsession4 code smell. For example, con‐
sider the following class:

class Person
{
 private int _id;
 private string _firstName;
 private string _lastName;
 private string _landlinePhone;
 private string _mobilePhone;
 private string _email;
 private int _heightMetric;
 private string _countryCode;

 public Person(...) {...}

78 | Chapter 6: Tackling Complex Business Logic

}

static void Main(string[] args)
{
 var dave = new Person(
 id: 30217,
 firstName: "Dave",
 lastName: "Ancelovici",
 landlinePhone: "023745001",
 mobilePhone: "0873712503",
 email: "dave@learning-ddd.com",
 heightMetric: 180,
 countryCode: "BG");
}

In the preceding implementation of the Person class, most of the values are of type
String and they are assigned based on convention. For example, the input to the
landlinePhone should be a valid landline phone number, and the countryCode
should be a valid, two-letter, uppercased country code. Of course, the system cannot
trust the user to always supply correct values, and as a result, the class has to validate
all input fields.

This approach presents multiple design risks. First, the validation logic tends to be
duplicated. Second, it’s hard to enforce calling the validation logic before the values
are used. It will become even more challenging in the future, when the codebase will
be evolved by other engineers.

Compare the following alternative design of the same object, this time leveraging
value objects:

class Person {
 private PersonId _id;
 private Name _name;
 private PhoneNumber _landline;
 private PhoneNumber _mobile;
 private EmailAddress _email;
 private Height _height;
 private CountryCode _country;

 public Person(...) { ... }
}

static void Main(string[] args)
{
 var dave = new Person(
 id: new PersonId(30217),
 name: new Name("Dave", "Ancelovici"),
 landline: PhoneNumber.Parse("023745001"),
 mobile: PhoneNumber.Parse("0873712503"),
 email: Email.Parse("dave@learning-ddd.com"),
 height: Height.FromMetric(180),

Domain Model | 79

 country: CountryCode.Parse("BG"));
}

First, notice the increased clarity. Take, for example, the country variable. There is no
need to elaborately call it “countryCode” to communicate the intent of it holding a
country code and not, for example, a full country name. The value object makes the
intent clear, even with shorter variable names.

Second, there is no need to validate the values before the assignment, as the validation
logic resides in the value objects themselves. However, a value object’s behavior is not
limited to mere validation. Value objects shine brightest when they centralize the
business logic that manipulates the values. The cohesive logic is implemented in one
place and is easy to test. Most importantly, value objects express the business
domain’s concepts: they make the code speak the ubiquitous language.

Let’s see how representing the concepts of height, phone numbers, and colors as value
objects makes the resultant type system rich and intuitive to use.

Compared to an integer-based value, the Height value object both makes the intent
clear and decouples the measurement from a specific measurement unit. For exam‐
ple, the Height value object can be initialized using both metric and imperial units,
making it easy to convert from one unit to another, generating string representation,
and comparing values of different units:

var heightMetric = Height.Metric(180);
var heightImperial = Height.Imperial(5, 3);

var string1 = heightMetric.ToString(); // "180cm"
var string2 = heightImperial.ToString(); // "5 feet 3 inches"
var string3 = heightMetric.ToImperial().ToString(); // "5 feet 11 inches"

var firstIsHigher = heightMetric > heightImperial; // true

The PhoneNumber value object can encapsulate the logic of parsing a string value, vali‐
dating it, and extracting different attributes of the phone number; for example, the
country it belongs to and the phone number’s type—landline or mobile:

var phone = PhoneNumber.Parse("+359877123503");
var country = phone.Country; // "BG"
var phoneType = phone.PhoneType; // "MOBILE"
var isValid = PhoneNumber.IsValid("+972120266680"); // false

The following example demonstrates the power of a value object when it encapsulates
all of the business logic that manipulates the data and produces new instances of the
value object:

var red = Color.FromRGB(255, 0, 0);
var green = Color.Green;
var yellow = red.MixWith(green);
var yellowString = yellow.ToString(); // "#FFFF00"

80 | Chapter 6: Tackling Complex Business Logic

5 In C# 9.0, the new type record implements value-based equality and thus doesn’t require overriding the
equality operators.

As you can see in the preceding examples, value objects eliminate the need for con‐
ventions—for example, the need to keep in mind that this string is an email and the
other string is a phone number—and instead makes using the object model less error
prone and more intuitive.

Implementation. Since a change to any of the fields of a value object results in a dif‐
ferent value, value objects are implemented as immutable objects. A change to one of
the value object’s fields conceptually creates a different value—a different instance of
a value object. Therefore, when an executed action results in a new value, as in the
following case, which uses the MixWith method, it doesn’t modify the original
instance but instantiates and returns a new one:

public class Color
{
 public readonly byte Red;
 public readonly byte Green;
 public readonly byte Blue;

 public Color(byte r, byte g, byte b)
 {
 this.Red = r;
 this.Green = g;
 this.Blue = b;
 }

 public Color MixWith(Color other)
 {
 return new Color(
 r: (byte) Math.Min(this.Red + other.Red, 255),
 g: (byte) Math.Min(this.Green + other.Green, 255),
 b: (byte) Math.Min(this.Blue + other.Blue, 255)
);
 }

 ...
}

Since the equality of value objects is based on their values rather than on an id field
or reference, it’s important to override and properly implement the equality checks.
For example, in C#:5

public class Color
{
 ...

 public override bool Equals(object obj)

Domain Model | 81

 {
 var other = obj as Color;
 return other != null &&
 this.Red == other.Red &&
 this.Green == other.Green &&
 this.Blue == other.Blue;
 }

 public static bool operator == (Color lhs, Color rhs)
 {
 if (Object.ReferenceEquals(lhs, null)) {
 return Object.ReferenceEquals(rhs, null);
 }
 return lhs.Equals(rhs);
 }

 public static bool operator != (Color lhs, Color rhs)
 {
 return !(lhs == rhs);
 }

 public override int GetHashCode()
 {
 return ToString().GetHashCode();
 }

 ...
}

Although using a core library’s Strings to represent domain-specific values contra‐
dicts the notion of value objects, in .NET, Java, and other languages the string type is
implemented exactly as a value object. Strings are immutable, as all operations result
in a new instance. Moreover, the string type encapsulates a rich behavior that creates
new instances by manipulating the values of one or more strings: trim, concatenate
multiple strings, replace characters, substring, and other methods.

When to use value objects. The simple answer is, whenever you can. Not only do value
objects make the code more expressive and encapsulate business logic that tends to
spread apart, but the pattern makes the code safer. Since value objects are immutable,
the value objects’ behavior is free of side effects and is thread safe.

From a business domain perspective, a useful rule of thumb is to use value objects for
the domain’s elements that describe properties of other objects. This namely applies
to properties of entities, which are discussed in the next section. The examples you
saw earlier used value objects to describe a person, including their ID, name, phone
numbers, email, and so on. Other examples of using value objects include various sta‐
tuses, passwords, and more business domain–specific concepts that can be identified
by their values and thus do not require an explicit identification field. An especially
important opportunity to introduce a value object is when modeling money and

82 | Chapter 6: Tackling Complex Business Logic

other monetary values. Relying on primitive types to represent money not only limits
your ability to encapsulate all money-related business logic in one place, but also
often leads to dangerous bugs, such as rounding errors and other precision-related
issues.

Entities
An entity is the opposite of a value object. It requires an explicit identification field to
distinguish between the different instances of the entity. A trivial example of an entity
is a person. Consider the following class:

class Person
{
 public Name Name { get; set; }

 public Person(Name name)
 {
 this.Name = name;
 }
}

The class contains only one field: name (a value object). This design, however, is sub‐
optimal because different people can be namesakes and can have exactly the same
names. That, of course, doesn’t make them the same person. Hence, an identification
field is needed to properly identify people:

class Person
{
 public readonly PersonId Id;
 public Name Name { get; set; }

 public Person(PersonId id, Name name)
 {
 this.Id = id;
 this.Name = name;
 }
}

In the preceding code, we introduced the identification field Id of type PersonId.
PersonId is a value object, and it can use any underlying data types that fit the busi‐
ness domain’s needs. For example, the Id can be a GUID, a number, a string, or a
domain-specific value such as a Social Security number.

The central requirement for the identification field is that it should be unique for
each instance of the entity: for each person, in our case (Figure 6-2). Furthermore,
except for very rare exceptions, the value of an entity’s identification field should
remain immutable throughout the entity’s lifecycle. This brings us to the second con‐
ceptual difference between value objects and entities.

Domain Model | 83

Figure 6-2. Introducing an explicit identification field, allowing differentiating instances
of the object even if the values of all other fields are identical

Contrary to value objects, entities are not immutable and are expected to change.
Another difference between entities and value objects is that value objects describe an
entity’s properties. Earlier in the chapter, you saw an example of the entity Person and
it had two value objects describing each instance: PersonId and Name.

Entities are an essential building block of any business domain. That said, you may
have noticed that earlier in the chapter I didn’t include “entity” in the list of the
domain model’s building blocks. That’s not a mistake. The reason “entity” was omit‐
ted is because we don’t implement entities independently, but only in the context of
the aggregate pattern.

Aggregates
An aggregate is an entity: it requires an explicit identification field and its state is
expected to change during an instance’s lifecycle. However, it is much more than just
an entity. The goal of the pattern is to protect the consistency of its data. Since an
aggregate’s data is mutable, there are implications and challenges that the pattern has
to address to keep its state consistent at all times.

Consistency enforcement. Since an aggregate’s state can be mutated, it creates an open‐
ing for multiple ways in which its data can become corrupted. To enforce consistency
of the data, the aggregate pattern draws a clear boundary between the aggregate and
its outer scope: the aggregate is a consistency enforcement boundary. The aggregate’s
logic has to validate all incoming modifications and ensure that the changes do not
contradict its business rules.

From an implementation perspective, the consistency is enforced by allowing only
the aggregate’s business logic to modify its state. All processes or objects external to
the aggregate are only allowed to read the aggregate’s state. Its state can only be muta‐
ted by executing corresponding methods of the aggregate’s public interface.

84 | Chapter 6: Tackling Complex Business Logic

The state-modifying methods exposed as an aggregate’s public interface are often
referred to as commands, as in “a command to do something.” A command can be
implemented in two ways. First, it can be implemented as a plain public method of
the aggregate object:

public class Ticket
{
 ...

 public void AddMessage(UserId from, string body)
 {
 var message = new Message(from, body);
 _messages.Append(message);
 }

 ...
}

Alternatively, a command can be represented as a parameter object that encapsulates
all the input required for executing the command:

public class Ticket
{
 ...

 public void Execute(AddMessage cmd)
 {
 var message = new Message(cmd.from, cmd.body);
 _messages.Append(message);
 }

 ...
}

How commands are expressed in an aggregate’s code is a matter of preference. I pre‐
fer the more explicit way of defining command structures and passing them poly‐
morphically to the relevant Execute method.

An aggregate’s public interface is responsible for validating the input and enforcing all
of the relevant business rules and invariants. This strict boundary also ensures that all
business logic related to the aggregate is implemented in one place: the aggregate
itself.

Domain Model | 85

https://oreil.ly/4hNtn

6 Also known as a service layer, the part of the system that forwards public API actions to the domain model.
7 In essence, the application layer’s operations implement the transaction script pattern. It has to orchestrate the

operation as an atomic transaction. The changes to the whole aggregate either succeed or fail, but never com‐
mit a partially updated state.

8 Recall that the application layer is a collection of transaction scripts, and as we discussed in Chapter 5, con‐
currency management is essential to prevent competing updates from corrupting the system’s data.

This makes the application layer6 that orchestrates operations on aggregates rather
simple:7 all it has to do is load the aggregate’s current state, execute the required
action, persist the modified state, and return the operation’s result to the caller:

01 public ExecutionResult Escalate(TicketId id, EscalationReason reason)
02 {
03 try
04 {
05 var ticket = _ticketRepository.Load(id);
06 var cmd = new Escalate(reason);
07 ticket.Execute(cmd);
08 _ticketRepository.Save(ticket);
09 return ExecutionResult.Success();
10 }
11 catch (ConcurrencyException ex)
12 {
13 return ExecutionResult.Error(ex);
14 }
15 }

Pay attention to the concurrency check in the preceding code (line 11). It’s vital to
protect the consistency of an aggregate’s state.8 If multiple processes are concurrently
updating the same aggregate, we have to prevent the latter transaction from blindly
overwriting the changes committed by the first one. In such a case, the second pro‐
cess has to be notified that the state on which it had based its decisions is out of date,
and it has to retry the operation.

Hence, the database used for storing aggregates has to support concurrency manage‐
ment. In its simplest form, an aggregate should hold a version field that will be incre‐
mented after each update:

class Ticket
{
 TicketId _id;
 int _version;

 ...
}

When committing a change to the database, we have to ensure that the version that is
being overwritten matches the one that was originally read. For example, in SQL:

86 | Chapter 6: Tackling Complex Business Logic

01 UPDATE tickets
02 SET ticket_status = @new_status,
03 agg_version = agg_version + 1
04 WHERE ticket_id=@id and agg_version=@expected_version;

This SQL statement applies changes made to the aggregate instance’s state (line 2),
and increases its version counter (line 3) but only if the current version equals the
one that was read prior to applying changes to the aggregate’s state (line 4).

Of course, concurrency management can be implemented elsewhere besides a rela‐
tional database. Furthermore, document databases lend themselves more toward
working with aggregates. That said, it’s crucial to ensure that the database used for
storing an aggregate’s data supports concurrency management.

Transaction boundary. Since an aggregate’s state can only be modified by its own busi‐
ness logic, the aggregate also acts as a transactional boundary. All changes to the
aggregate’s state should be committed transactionally as one atomic operation. If an
aggregate’s state is modified, either all the changes are committed or none of them is.

Furthermore, no system operation can assume a multi-aggregate transaction. A
change to an aggregate’s state can only be committed individually, one aggregate per
database transaction.

The one aggregate instance per transaction forces us to carefully design an aggregate’s
boundaries, ensuring that the design addresses the business domain’s invariants and
rules. The need to commit changes in multiple aggregates signals a wrong transaction
boundary, and hence, wrong aggregate boundaries.

This seems to impose a modeling limitation. What if we need to modify multiple
objects in the same transaction? Let’s see how the pattern addresses such situations.

Hierarchy of entities. As we discussed earlier in the chapter, we don’t use entities as an
independent pattern, only as part of an aggregate. Let’s see the fundamental difference
between entities and aggregates, and why entities are a building block of an aggregate
rather than of the overarching domain model.

There are business scenarios in which multiple objects should share a transactional
boundary; for example, when both can be modified simultaneously or the business
rules of one object depend on the state of another object.

DDD prescribes that a system’s design should be driven by its business domain.
Aggregates are no exception. To support changes to multiple objects that have to be
applied in one atomic transaction, the aggregate pattern resembles a hierarchy of
entities, all sharing transactional consistency, as shown in Figure 6-3.

Domain Model | 87

Figure 6-3. Aggregate as a hierarchy of entities

The hierarchy contains both entities and value objects, and all of them belong to the
same aggregate if they are bound by the domain’s business logic.

That’s why the pattern is named “aggregate”: it aggregates business entities and value
objects that belong to the same transaction boundary.

The following code sample demonstrates a business rule that spans multiple entities
belonging to the aggregate’s boundary—“If an agent didn’t open an escalated ticket
within 50% of the response time limit, it is automatically reassigned to a different
agent”:

01 public class Ticket
02 {
03 ...
04 List<Message> _messages;
05 ...
06
07 public void Execute(EvaluateAutomaticActions cmd)
08 {
09 if (this.IsEscalated && this.RemainingTimePercentage < 0.5 &&
10 GetUnreadMessagesCount(for: AssignedAgent) > 0)
11 {
12 _agent = AssignNewAgent();
13 }
14 }
15
16 public int GetUnreadMessagesCount(UserId id)
17 {
18 return _messages.Where(x => x.To == id && !x.WasRead).Count();
19 }
20
21 ...
22 }

The method checks the ticket’s values to see whether it is escalated and whether the
remaining processing time is less than the defined threshold of 50% (line 9). Further‐
more, it checks for messages that were not yet read by the current agent (line 10). If
all conditions are met, the ticket is requested to be reassigned to a different agent.

88 | Chapter 6: Tackling Complex Business Logic

The aggregate ensures that all the conditions are checked against strongly consistent
data, and it won’t change after the checks are completed by ensuring that all changes
to the aggregate’s data are performed as one atomic transaction.

Referencing other aggregates. Since all objects contained by an aggregate share the
same transactional boundary, performance and scalability issues may arise if an
aggregate grows too large.

The consistency of the data can be a convenient guiding principle for designing an
aggregate’s boundaries. Only the information that is required by the aggregate’s busi‐
ness logic to be strongly consistent should be a part of the aggregate. All information
that can be eventually consistent should reside outside of the aggregate’s boundary;
for example, as a part of another aggregate, as shown in Figure 6-4.

Figure 6-4. Aggregate as consistency boundary

The rule of thumb is to keep the aggregates as small as possible and include only
objects that are required to be in a strongly consistent state by the aggregate’s business
logic:

public class Ticket
{
 private UserId _customer;
 private List<ProductId> _products;
 private UserId _assignedAgent;
 private List<Message> _messages;

 ...
}

Domain Model | 89

In the preceding example, the Ticket aggregate references a collection of messages,
which belong to the aggregate’s boundary. On the other hand, the customer, the col‐
lection of products that are relevant to the ticket, and the assigned agent do not
belong to the aggregate and therefore are referenced by its ID.

The reasoning behind referencing external aggregates by ID is to reify that these
objects do not belong to the aggregate’s boundary, and to ensure that each aggregate
has its own transactional boundary.

To decide whether an entity belongs to an aggregate or not, examine whether the
aggregate contains business logic that can lead to an invalid system state if it will work
on eventually consistent data. Let’s go back to the previous example of reassigning the
ticket if the current agent didn’t read the new messages within 50% of the response
time limit. What if the information about read/unread messages would be eventually
consistent? In other words, it would be reasonable to receive reading acknowledg‐
ment after a certain delay. In that case, it’s safe to expect a considerable number of
tickets to be unnecessarily reassigned. That, of course, would corrupt the system’s
state. Therefore, the data in the messages belongs to the aggregate’s boundary.

The aggregate root. We saw earlier that an aggregate’s state can only be modified by
executing one of its commands. Since an aggregate represents a hierarchy of entities,
only one of them should be designated as the aggregate’s public interface—the aggre‐
gate root, as shown in Figure 6-5.

Figure 6-5. Aggregate root

Consider the following excerpt of the Ticket aggregate:

public class Ticket
{
 ...
 List<Message> _messages;
 ...

90 | Chapter 6: Tackling Complex Business Logic

 public void Execute(AcknowledgeMessage cmd)
 {
 var message = _messages.Where(x => x.Id == cmd.id).First();
 message.WasRead = true;
 }
 ...
}

In this example, the aggregate exposes a command that allows marking a specific
message as read. Although the operation modifies an instance of the Message entity, it
is accessible only through its aggregate root: Ticket.

In addition to the aggregate root’s public interface, there is another mechanism
through which the outer world can communicate with aggregates: domain events.

Domain events. A domain event is a message describing a significant event that has
occurred in the business domain. For example:

• Ticket assigned
• Ticket escalated
• Message received

Since domain events describe something that has already happened, their names
should be formulated in the past tense.

The goal of a domain event is to describe what has happened in the business domain
and provide all the necessary data related to the event. For example, the following
domain event communicates that the specific ticket was escalated, at what time, and
for what reason:

{
 "ticket-id": "c9d286ff-3bca-4f57-94d4-4d4e490867d1",
 "event-id": 146,
 "event-type": "ticket-escalated",
 "escalation-reason": "missed-sla",
 "escalation-time": 1628970815
}

As with almost everything in software engineering, naming is important. Make sure
the names of the domain events succinctly reflect exactly what has happened in the
business domain.

Domain events are part of an aggregate’s public interface. An aggregate publishes its
domain events. Other processes, aggregates, or even external systems can subscribe to
and execute their own logic in response to the domain events, as shown in Figure 6-6.

Domain Model | 91

Figure 6-6. Domain events publishing flow

In the following excerpt from the Ticket aggregate, a new domain event is instanti‐
ated (line 12) and appended to the collection of the ticket’s domain events (line 13):

01 public class Ticket
02 {
03 ...
04 private List<DomainEvent> _domainEvents;
05 ...
06
07 public void Execute(RequestEscalation cmd)
08 {
09 if (!this.IsEscalated && this.RemainingTimePercentage <= 0)
10 {
11 this.IsEscalated = true;
12 var escalatedEvent = new TicketEscalated(_id, cmd.Reason);
13 _domainEvents.Append(escalatedEvent);
14 }
15 }
16
17 ...
18 }

In Chapter 9, we will discuss how domain events can be reliably published to interes‐
ted subscribers.

Ubiquitous language. Last but not least, aggregates should reflect the ubiquitous lan‐
guage. The terminology that is used for the aggregate’s name, its data members, its
actions, and its domain events all should be formulated in the bounded context’s
ubiquitous language. As Eric Evans put it, the code must be based on the same lan‐
guage the developers use when they speak with one another and with domain experts.
This is especially important for implementing complex business logic.

Now let’s take a look at the third and final building block of a domain model.

Domain services
Sooner or later, you may encounter business logic that either doesn’t belong to any
aggregate or value object, or that seems to be relevant to multiple aggregates. In such
cases, domain-driven design proposes to implement the logic as a domain service.

92 | Chapter 6: Tackling Complex Business Logic

A domain service is a stateless object that implements the business logic. In the vast
majority of cases, such logic orchestrates calls to various components of the system to
perform some calculation or analysis.

Let’s go back to the example of the ticket aggregate. Recall that the assigned agent has
a limited time frame in which to propose a solution to the customer. The time frame
depends not only on the ticket’s data (its priority and escalation status), but also on
the agent’s department policy regarding the SLAs for each priority and the agent’s
work schedule (shifts)—we can’t expect the agent to respond during off-hours.

The response time frame calculation logic requires information from multiple sour‐
ces: the ticket, the assigned agent’s department, and the work schedule. That makes it
an ideal candidate to be implemented as a domain service:

public class ResponseTimeFrameCalculationService
{
 ...

 public ResponseTimeframe CalculateAgentResponseDeadline(UserId agentId,
 Priority priority, bool escalated, DateTime startTime)
 {
 var policy = _departmentRepository.GetDepartmentPolicy(agentId);
 var maxProcTime = policy.GetMaxResponseTimeFor(priority);

 if (escalated) {
 maxProcTime = maxProcTime * policy.EscalationFactor;
 }

 var shifts = _departmentRepository.GetUpcomingShifts(agentId,
 startTime, startTime.Add(policy.MaxAgentResponseTime));

 return CalculateTargetTime(maxProcTime, shifts);
 }

 ...
}

Domain services make it easy to coordinate the work of multiple aggregates. How‐
ever, it is important to always keep in mind the aggregate pattern’s limitation of modi‐
fying only one instance of an aggregate in one database transaction. Domain services
are not a loophole around this limitation. The rule of one instance per transaction
still holds true. Instead, domain services lend themselves to implementing calculation
logic that requires reading the data of multiple aggregates.

It is also important to point out that domain services have nothing to do with micro‐
services, service-oriented architecture, or almost any other use of the word service in
software engineering. It is just a stateless object used to host business logic.

Domain Model | 93

Managing Complexity
As noted in this chapter’s introduction, the aggregate and value object patterns were
introduced as a means for tackling complexity in the implementation of business
logic. Let’s see the reasoning behind this.

In his book The Choice, business management guru Eliyahu M. Goldratt outlines a
succinct yet powerful definition of system complexity. According to Goldratt, when
discussing the complexity of a system we are interested in evaluating the difficulty of
controlling and predicting the system’s behavior. These two aspects are reflected by
the system’s degrees of freedom.

A system’s degrees of freedom are the data points needed to describe its state. Con‐
sider the following two classes:

public class ClassA
{
 public int A { get; set; }
 public int B { get; set; }
 public int C { get; set; }
 public int D { get; set; }
 public int E { get; set; }
}

public class ClassB
{
 private int _a, _d;

 public int A
 {
 get => _a;
 set {
 _a = value;
 B = value / 2;
 C = value / 3;
 }
 }

 public int B { get; private set; }

 public int C { get; private set; }

 public int D
 {
 get => _d;
 set {
 _d = value;
 E = value * 2
 }
 }

94 | Chapter 6: Tackling Complex Business Logic

 public int E { get; private set; }
}

At first glance, it seems that ClassB is much more complex than ClassA. It has the
same number of variables, but on top of that, it implements additional calculations. Is
it more complex than ClassA?

Let’s analyze both classes from the degrees-of-freedom perspective. How many data
elements do you need to describe the state of ClassA? The answer is five: its five vari‐
ables. Hence, ClassA has five degrees of freedom.

How many data elements do you need to describe the state of ClassB? If you look at
the assignment logic for properties A and D, you will notice that the values of B, C, and
E are functions of the values of A and D. If you know what A and D are, then you can
deduce the values of the rest of the variables. Therefore, ClassB has only two degrees
of freedom. You need only two values to describe its state.

Going back to the original question, which class is more difficult in terms of control‐
ling and predicting its behavior? The answer is the one with more degrees of free‐
dom, or ClassA. The invariants introduced in ClassB reduce its complexity. That’s
what both aggregate and value object patterns do: encapsulate invariants and thus
reduce complexity.

All the business logic related to the state of a value object is located in its boundaries.
The same is true for aggregates. An aggregate can only be modified by its own meth‐
ods. Its business logic encapsulates and protects business invariants, thus reducing the
degrees of freedom.

Since the domain model pattern is applied only for subdomains with complex busi‐
ness logic, it’s safe to assume that these are core subdomains—the heart of the
software.

Conclusion
The domain model pattern is aimed at cases of complex business logic. It consists of
three main building blocks:

Value objects
Concepts of the business domain that can be identified exclusively by their values
and thus do not require an explicit ID field. Since a change in one of the fields
semantically creates a new value, value objects are immutable.

Value objects model not only data, but behavior as well: methods manipulating
the values and thus initializing new value objects.

Conclusion | 95

Aggregates
A hierarchy of entities sharing a transactional boundary. All of the data included
in an aggregate’s boundary has to be strongly consistent to implement its business
logic.

The state of the aggregate, and its internal objects, can only be modified through
its public interface, by executing the aggregate’s commands. The data fields are
read-only for external components for the sake of ensuring that all the business
logic related to the aggregate resides in its boundaries.

The aggregate acts as a transactional boundary. All of its data, including all of its
internal objects, has to be committed to the database as one atomic transaction.

An aggregate can communicate with external entities by publishing domain
events—messages describing important business events in the aggregate’s lifecy‐
cle. Other components can subscribe to the events and use them to trigger the
execution of business logic.

Domain services
A stateless object that hosts business logic that naturally doesn’t belong to any of
the domain model’s aggregates or value objects.

The domain model’s building blocks tackle the complexity of the business logic by
encapsulating it in the boundaries of value objects and aggregates. The inability to
modify the objects’ state externally ensures that all the relevant business logic is
implemented in the boundaries of aggregates and value objects and won’t be duplica‐
ted in the application layer.

In the next chapter, you will learn the advanced way to implement the domain model
pattern, this time making the dimension of time an inherent part of the model.

Exercises
1. Which of the following statements is true?

a. Value objects can only contain data.
b. Value objects can only contain behavior.
c. Value objects are immutable.
d. Value objects’ state can change.

96 | Chapter 6: Tackling Complex Business Logic

2. What is the general guiding principle for designing the boundary of an
aggregate?
a. An aggregate can contain only one entity as only one instance of an aggregate

can be included in a single database transaction.
b. Aggregates should be designed to be as small as possible, as long as the busi‐

ness domain’s data consistency requirements are intact.
c. An aggregate represents a hierarchy of entities. Therefore, to maximize the

consistency of the system’s data, aggregates should be designed to be as wide
as possible.

d. It depends: for some business domains small aggregates are best, while in oth‐
ers it’s more efficient to work with aggregates that are as large as possible.

3. Why can only one instance of an aggregate be committed in one transaction?
a. To ensure that the model can perform under high load.
b. To ensure correct transactional boundaries.
c. There is no such requirement; it depends on the business domain.
d. To make it possible to work with databases that do not support multirecord

transactions, such as key–value and document stores.
4. Which of the following statements best describes the relationships between the

building blocks of a domain model?
a. Value objects describe entities’ properties.
b. Value objects can emit domain events.
c. An aggregate contains one or more entities.
d. A and C.

5. Which of the following statements is correct about differences between active
records and aggregates?
a. Active records contain only data, whereas aggregates also contain behavior.
b. An aggregate encapsulates all of its business logic, but business logic manipu‐

lating an active record can be located outside of its boundary.
c. Aggregates contain only data, whereas active records contain both data and

behavior.
d. An aggregate contains a set of active records.

Exercises | 97

1 Brooks, F. P. Jr. (1974). The Mythical Man-Month: Essays on Software Engineering. Reading, MA: Addison-
Wesley.

CHAPTER 7

Modeling the Dimension of Time

In the previous chapter, you learned about the domain model pattern: its building
blocks, purpose, and application context. The event-sourced domain model pattern is
based on the same premise as the domain model pattern. Again, the business logic is
complex and belongs to a core subdomain. Moreover, it uses the same tactical pat‐
terns as the domain model: value objects, aggregates, and domain events.

The difference between these implementation patterns lies in the way the aggregates’
state is persisted. The event-sourced domain model uses the event sourcing pattern to
manage the aggregates’ states: instead of persisting an aggregate’s state, the model
generates domain events describing each change and uses them as the source of truth
for the aggregate’s data.

This chapter starts by introducing the notion of event sourcing. Then it covers how
event sourcing can be combined with the domain model pattern, making it an event-
sourced domain model.

Event Sourcing
Show me your flowchart and conceal your tables, and I shall continue to be mystified. Show
me your tables, and I won’t usually need your flowchart; it’ll be obvious.

—Fred Brooks1

Let’s use Fred Brooks’s reasoning to define the event sourcing pattern and understand
how it differs from traditional modeling and persisting of data. Examine Table 7-1
and analyze what you can learn from this data about the system it belongs to.

99

Table 7-1. State-based model

lead-
id

first-name last-
name

status phone-
number

followup-on created-on updated-on

1 Sean Callahan CONVERTED 555-1246 2019-01-31T
10:02:40.32Z

2019-01-31T
10:02:40.32Z

2 Sarah Estrada CLOSED 555-4395 2019-03-29T
22:01:41.44Z

2019-03-29T
22:01:41.44Z

3 Stephanie Brown CLOSED 555-1176 2019-04-15T
23:08:45.59Z

2019-04-15T
23:08:45.59Z

4 Sami Calhoun CLOSED 555-1850 2019-04-25T
05:42:17.07Z

2019-04-25T
05:42:17.07Z

5 William Smith CONVERTED 555-3013 2019-05-14T
04:43:57.51Z

2019-05-14T
04:43:57.51Z

6 Sabri Chan NEW_LEAD 555-2900 2019-06-19T
15:01:49.68Z

2019-06-19T
15:01:49.68Z

7 Samantha Espinosa NEW_LEAD 555-8861 2019-07-17T
13:09:59.32Z

2019-07-17T
13:09:59.32Z

8 Hani Cronin CLOSED 555-3018 2019-10-09T
11:40:17.13Z

2019-10-09T
11:40:17.13Z

9 Sian Espinoza FOLLOWUP_SET 555-6461 2019-12-04T
01:49:08.05Z

2019-12-04T
01:49:08.05Z

2019-12-04T
01:49:08.05Z

10 Sophia Escamilla CLOSED 555-4090 2019-12-06T
09:12:32.56Z

2019-12-06T
09:12:32.56Z

11 William White FOLLOWUP_SET 555-1187 2020-01-23T
00:33:13.88Z

2020-01-23T
00:33:13.88Z

2020-01-23T
00:33:13.88Z

12 Casey Davis CONVERTED 555-8101 2020-05-20T
09:52:55.95Z

2020-05-27T
12:38:44.12Z

13 Walter Connor NEW_LEAD 555-4753 2020-04-20T
06:52:55.95Z

2020-04-20T
06:52:55.95Z

14 Sophie Garcia CONVERTED 555-1284 2020-05-06T
18:47:04.70Z

2020-05-06T
18:47:04.70Z

15 Sally Evans PAYMENT_FAILED 555-3230 2020-06-04T
14:51:06.15Z

2020-06-04T
14:51:06.15Z

16 Scott Chatman NEW_LEAD 555-6953 2020-06-09T
09:07:05.23Z

2020-06-09T
09:07:05.23Z

17 Stephen Pinkman CONVERTED 555-2326 2020-07-20T
00:56:59.94Z

2020-07-20T
00:56:59.94Z

18 Sara Elliott PENDING_PAYMENT 555-2620 2020-08-12T
17:39:43.25Z

2020-08-12T
17:39:43.25Z

19 Sadie Edwards FOLLOWUP_SET 555-8163 2020-10-22T
12:40:03.98Z

2020-10-22T
12:40:03.98Z

2020-10-22T
12:40:03.98Z

20 William Smith PENDING_PAYMENT 555-9273 2020-11-13T
08:14:07.17Z

2020-11-13T
08:14:07.17Z

100 | Chapter 7: Modeling the Dimension of Time

It’s evident that the table is used to manage potential customers, or leads, in a tele‐
marketing system. For each lead, you can see their ID, their first and last names,
when the record was created and updated, their phone number, and the lead’s current
status.

By examining the various statuses, we can also assume the processing cycle each
potential customer goes through:

• The sales flow starts with the potential customer in the NEW_LEAD status.
• A sales call can end with the person not being interested in the offer (the lead is
CLOSED), scheduling a follow-up call (FOLLOWUP_SET), or accepting the offer
(PENDING_PAYMENT).

• If the payment is successful, the lead is CONVERTED into a customer. Conversely,
the payment can fail—PAYMENT_FAILED.

That’s quite a lot of information that we can gather just by analyzing a table’s schema
and the data stored in it. We can even assume what ubiquitous language was used
when modeling the data. But what information is missing from that table?

The table’s data documents the leads’ current states, but it misses the story of how
each lead got to their current state. We can’t analyze what was happening during the
lifecycles of leads. We don’t know how many calls were made before a lead became
CONVERTED. Was a purchase made right away, or was there a lengthy sales journey?
Based on the historical data, is it worth trying to contact a person after multiple
follow-ups, or is it more efficient to close the lead and move to a more promising
prospect? None of that information is there. All we know are the leads’ current states.

These questions reflect business concerns essential for optimizing the sales process.
From a business standpoint, it’s crucial to analyze the data and optimize the process
based on the experience. One of the ways to fill in the missing information is to use
event sourcing.

The event sourcing pattern introduces the dimension of time into the data model.
Instead of the schema reflecting the aggregates’ current state, an event sourcing–
based system persists events documenting every change in an aggregate’s lifecycle.

Consider the CONVERTED customer on line 12 in Table 7-1. The following listing dem‐
onstrates how the person’s data would be represented in an event-sourced system:

{
 "lead-id": 12,
 "event-id": 0,
 "event-type": "lead-initialized",
 "first-name": "Casey",
 "last-name": "David",
 "phone-number": "555-2951",

Event Sourcing | 101

 "timestamp": "2020-05-20T09:52:55.95Z"
},
{
 "lead-id": 12,
 "event-id": 1,
 "event-type": "contacted",
 "timestamp": "2020-05-20T12:32:08.24Z"
},
{
 "lead-id": 12,
 "event-id": 2,
 "event-type": "followup-set",
 "followup-on": "2020-05-27T12:00:00.00Z",
 "timestamp": "2020-05-20T12:32:08.24Z"
},
{
 "lead-id": 12,
 "event-id": 3,
 "event-type": "contact-details-updated",
 "first-name": "Casey",
 "last-name": "Davis",
 "phone-number": "555-8101",
 "timestamp": "2020-05-20T12:32:08.24Z"
},
{
 "lead-id": 12,
 "event-id": 4,
 "event-type": "contacted",
 "timestamp": "2020-05-27T12:02:12.51Z"
},
{
 "lead-id": 12,
 "event-id": 5,
 "event-type": "order-submitted",
 "payment-deadline": "2020-05-30T12:02:12.51Z",
 "timestamp": "2020-05-27T12:02:12.51Z"
},
{
 "lead-id": 12,
 "event-id": 6,
 "event-type": "payment-confirmed",
 "status": "converted",
 "timestamp": "2020-05-27T12:38:44.12Z"
}

The events in the listing tell the customer’s story. The lead was created in the system
(event 0) and was contacted by a sales agent about two hours later (event 1). During
the call, it was agreed that the sales agent would call back a week later (event 2), but to
a different phone number (event 3). The sales agent also fixed a typo in the last name
(event 3). The lead was contacted on the agreed date and time (event 4) and submit‐
ted an order (event 5). The order was to be paid in three days (event 5), but the

102 | Chapter 7: Modeling the Dimension of Time

payment was received about half an hour later (event 6), and the lead was converted
into a new customer.

As we saw earlier, the customer’s state can easily be projected out from these domain
events. All we have to do is apply simple transformation logic sequentially to each
event:

public class LeadSearchModelProjection
{
 public long LeadId { get; private set; }
 public HashSet<string> FirstNames { get; private set; }
 public HashSet<string> LastNames { get; private set; }
 public HashSet<PhoneNumber> PhoneNumbers { get; private set; }
 public int Version { get; private set; }

 public void Apply(LeadInitialized @event)
 {
 LeadId = @event.LeadId;
 FirstNames = new HashSet<string>();
 LastNames = new HashSet<string>();
 PhoneNumbers = new HashSet<PhoneNumber>();
 FirstNames.Add(@event.FirstName);
 LastNames.Add(@event.LastName);
 PhoneNumbers.Add(@event.PhoneNumber);
 Version = 0;
 }

 public void Apply(ContactDetailsChanged @event)
 {
 FirstNames.Add(@event.FirstName);
 LastNames.Add(@event.LastName);
 PhoneNumbers.Add(@event.PhoneNumber);
 Version += 1;
 }

 public void Apply(Contacted @event)
 {
 Version += 1;
 }

 public void Apply(FollowupSet @event)
 {
 Version += 1;
 }

 public void Apply(OrderSubmitted @event)
 {
 Version += 1;
 }

 public void Apply(PaymentConfirmed @event)
 {

Event Sourcing | 103

 Version += 1;
 }
}

Iterating an aggregate’s events and feeding them sequentially into the appropriate
overrides of the Apply method will produce precisely the state representation mod‐
eled in the table in Table 7-1.

Pay attention to the Version field that is incremented after applying each event. Its
value represents the total number of modifications made to the business entity. More‐
over, suppose we apply a subset of events. In that case, we can “travel through time”:
we can project the entity’s state at any point of its lifecycle by applying only the rele‐
vant events. For example, if we need the entity’s state in version 5, we can apply only
the first five events.

Finally, we are not limited to projecting only a single state representation of the
events! Consider the following scenarios.

Search
You have to implement a search. However, since a lead’s contact information can be
updated—first name, last name, and phone number—sales agents may not be aware
of the changes applied by other agents and may want to locate leads using their con‐
tact information, including historical values. We can easily project the historical
information:

public class LeadSearchModelProjection
{
 public long LeadId { get; private set; }
 public HashSet<string> FirstNames { get; private set; }
 public HashSet<string> LastNames { get; private set; }
 public HashSet<PhoneNumber> PhoneNumbers { get; private set; }
 public int Version { get; private set; }

 public void Apply(LeadInitialized @event)
 {
 LeadId = @event.LeadId;
 FirstNames = new HashSet<string>();
 LastNames = new HashSet<string>();
 PhoneNumbers = new HashSet<PhoneNumber>();

 FirstNames.Add(@event.FirstName);
 LastNames.Add(@event.LastName);
 PhoneNumbers.Add(@event.PhoneNumber);

 Version = 0;
 }

 public void Apply(ContactDetailsChanged @event)
 {

104 | Chapter 7: Modeling the Dimension of Time

 FirstNames.Add(@event.FirstName);
 LastNames.Add(@event.LastName);
 PhoneNumbers.Add(@event.PhoneNumber);

 Version += 1;
 }

 public void Apply(Contacted @event)
 {
 Version += 1;
 }

 public void Apply(FollowupSet @event)
 {
 Version += 1;
 }

 public void Apply(OrderSubmitted @event)
 {
 Version += 1;
 }

 public void Apply(PaymentConfirmed @event)
 {
 Version += 1;
 }
}

The projection logic uses the LeadInitialized and ContactDetailsChanged events
to populate the respective sets of the lead’s personal details. Other events are ignored
since they do not affect the specific model’s state.

Applying this projection logic to Casey Davis’s events from the earlier example will
result in the following state:

LeadId: 12
FirstNames: ['Casey']
LastNames: ['David', 'Davis']
PhoneNumbers: ['555-2951', '555-8101']
Version: 6

Analysis
Your business intelligence department asks you to provide a more analysis-friendly
representation of the leads data. For their current research, they want to get the num‐
ber of follow-up calls scheduled for different leads. Later they will filter the converted
and closed leads data and use the model to optimize the sales process. Let’s project the
data they are asking for:

public class AnalysisModelProjection
{

Event Sourcing | 105

 public long LeadId { get; private set; }
 public int Followups { get; private set; }
 public LeadStatus Status { get; private set; }
 public int Version { get; private set; }

 public void Apply(LeadInitialized @event)
 {
 LeadId = @event.LeadId;
 Followups = 0;
 Status = LeadStatus.NEW_LEAD;
 Version = 0;
 }

 public void Apply(Contacted @event)
 {
 Version += 1;
 }

 public void Apply(FollowupSet @event)
 {
 Status = LeadStatus.FOLLOWUP_SET;
 Followups += 1;
 Version += 1;
 }

 public void Apply(ContactDetailsChanged @event)
 {
 Version += 1;
 }

 public void Apply(OrderSubmitted @event)
 {
 Status = LeadStatus.PENDING_PAYMENT;
 Version += 1;
 }

 public void Apply(PaymentConfirmed @event)
 {
 Status = LeadStatus.CONVERTED;
 Version += 1;
 }
}

The preceding logic maintains a counter of the number of times follow-up events
appeared in the lead’s events. If we were to apply this projection to the example of the
aggregate’s events, it would generate the following state:

LeadId: 12
Followups: 1
Status: Converted
Version: 6

106 | Chapter 7: Modeling the Dimension of Time

2 Except for exceptional cases, such as data migration.

The logic implemented in the preceding examples projects the search-optimized and
analysis-optimized models in-memory. However, to actually implement the required
functionality, we have to persist the projected models in a database. In Chapter 8, you
will learn about a pattern that allows us to do that: command-query responsibility
segregation (CQRS).

Source of Truth
For the event sourcing pattern to work, all changes to an object’s state should be rep‐
resented and persisted as events. These events become the system’s source of truth
(hence the name of the pattern). This process is shown in Figure 7-1.

Figure 7-1. Event-sourced aggregate

The database that stores the system’s events is the only strongly consistent storage: the
system’s source of truth. The accepted name for the database that is used for persist‐
ing events is event store.

Event Store
The event store should not allow modifying or deleting the events2 since it’s append-
only storage. To support implementation of the event sourcing pattern, at a minimum
the event store has to support the following functionality: fetch all events belonging
to a specific business entity and append the events. For example:

interface IEventStore
{
 IEnumerable<Event> Fetch(Guid instanceId);
 void Append(Guid instanceId, Event[] newEvents, int expectedVersion);
}

The expectedVersion argument in the Append method is needed to implement opti‐
mistic concurrency management: when you append new events, you also specify the
version of the entity on which you are basing your decisions. If it’s stale, that is, new
events were added after the expected version, the event store should raise a concur‐
rency exception.

Event Sourcing | 107

In most systems, additional endpoints are needed for implementing the CQRS pat‐
tern, as we will discuss in the next chapter.

In essence, the event sourcing pattern is nothing new. The financial
industry uses events to represent changes in a ledger. A ledger is an
append-only log that documents transactions. A current state (e.g.,
account balance) can always be deduced by “projecting” the ledger’s
records.

Event-Sourced Domain Model
The original domain model maintains a state representation of its aggregates and
emits select domain events. The event-sourced domain model uses domain events
exclusively for modeling the aggregates’ lifecycles. All changes to an aggregate’s state
have to be expressed as domain events.

Each operation on an event-sourced aggregate follows this script:

• Load the aggregate’s domain events.
• Reconstitute a state representation—project the events into a state representation

that can be used to make business decisions.
• Execute the aggregate’s command to execute the business logic, and consequently,

produce new domain events.
• Commit the new domain events to the event store.

Going back to the example of the Ticket aggregate from Chapter 6, let’s see how it
would be implemented as an event-sourced aggregate.

The application service follows the script described earlier: it loads the relevant tick‐
et’s events, rehydrates the aggregate instance, calls the relevant command, and persists
changes back to the database:

01 public class TicketAPI
02 {
03 private ITicketsRepository _ticketsRepository;
04 ...
05
06 public void RequestEscalation(TicketId id, EscalationReason reason)
07 {
08 var events = _ticketsRepository.LoadEvents(id);
09 var ticket = new Ticket(events);
10 var originalVersion = ticket.Version;
11 var cmd = new RequestEscalation(reason);
12 ticket.Execute(cmd);
13 _ticketsRepository.CommitChanges(ticket, originalVersion);
14 }

108 | Chapter 7: Modeling the Dimension of Time

15
16 ...
17 }

The Ticket aggregate’s rehydration logic in the constructor (lines 27 through 31)
instantiates an instance of the state projector class, TicketState, and sequentially
calls its AppendEvent method for each of the ticket’s events:

18 public class Ticket
19 {
20 ...
21 private List<DomainEvent> _domainEvents = new List<DomainEvent>();
22 private TicketState _state;
23 ...
24
25 public Ticket(IEnumerable<IDomainEvents> events)
26 {
27 _state = new TicketState();
28 foreach (var e in events)
29 {
30 AppendEvent(e);
31 }
32 }

The AppendEvent passes the incoming events to the TicketState projection logic,
thus generating the in-memory representation of the ticket’s current state:

33 private void AppendEvent(IDomainEvent @event)
34 {
35 _domainEvents.Append(@event);
36 // Dynamically call the correct overload of the "Apply" method.
37 ((dynamic)state).Apply((dynamic)@event);
38 }

Contrary to the implementation we saw in the previous chapter, the event-sourced
aggregate’s RequestEscalation method doesn’t explicitly set the IsEscalated flag to
true. Instead, it instantiates the appropriate event and passes it to the AppendEvent
method (lines 43 and 44):

39 public void Execute(RequestEscalation cmd)
40 {
41 if (!_state.IsEscalated && _state.RemainingTimePercentage <= 0)
42 {
43 var escalatedEvent = new TicketEscalated(_id, cmd.Reason);
44 AppendEvent(escalatedEvent);
45 }
46 }
47
48 ...
49 }

Event-Sourced Domain Model | 109

All events added to the aggregate’s events collection are passed to the state projection
logic in the TicketState class, where the relevant fields’ values are mutated according
to the events’ data:

50 public class TicketState
51 {
52 public TicketId Id { get; private set; }
53 public int Version { get; private set; }
54 public bool IsEscalated { get; private set; }
55 ...
56 public void Apply(TicketInitialized @event)
57 {
58 Id = @event.Id;
59 Version = 0;
60 IsEscalated = false;
61
62 }
63
64 public void Apply(TicketEscalated @event)
65 {
66 IsEscalated = true;
67 Version += 1;
68 }
69
70 ...
71 }

Now let’s look at some of the advantages of leveraging event sourcing when imple‐
menting complex business logic.

Why “Event-Sourced Domain Model”?
I feel obliged to explain why I use the term event-sourced domain model rather than
just event sourcing. Using events to represent state transitions—the event sourcing
pattern—is possible with or without the domain model’s building blocks. Therefore, I
prefer the longer term to explicitly state that we are using event sourcing to represent
changes in the lifecycles of the domain model’s aggregates.

Advantages
Compared to the more traditional model, in which the aggregates’ current states are
persisted in a database, the event-sourced domain model requires more effort to
model the aggregates. However, this approach brings significant advantages that
make the pattern worth considering in many scenarios:

110 | Chapter 7: Modeling the Dimension of Time

Time traveling
Just as the domain events can be used to reconstitute an aggregate’s current state,
they can also be used to restore all past states of the aggregate. In other words,
you can always reconstitute all the past states of an aggregate.

This is often done when analyzing the system’s behavior, inspecting the system’s
decisions, and optimizing the business logic.

Another common use case for reconstituting past states is retroactive debugging:
you can revert the aggregate to the exact state it was in when a bug was observed.

Deep insight
In Part I of this book, we saw that optimizing core subdomains is strategically
important for the business. Event sourcing provides deep insight into the system’s
state and behavior. As you learned earlier in this chapter, event sourcing provides
the flexible model that allows for transforming the events into different state rep‐
resentations—you can always add new projections that will leverage the existing
events’ data to provide additional insights.

Audit log
The persisted domain events represent a strongly consistent audit log of every‐
thing that has happened to the aggregates’ states. Laws oblige some business
domains to implement such audit logs, and event sourcing provides this out of
the box.

This model is especially convenient for systems managing money or monetary
transactions. It allows us to easily trace the system’s decisions and the flow of
funds between accounts.

Advanced optimistic concurrency management
The classic optimistic concurrency model raises an exception when the read data
becomes stale—overwritten by another process—while it is being written.

When using event sourcing, we can gain deeper insight into exactly what has
happened between reading the existing events and writing the new ones. You can
query the exact events that were concurrently appended to the event store and
make a business domain–driven decision as to whether the new events collide
with the attempted operation or the additional events are irrelevant and it’s safe
to proceed.

Disadvantages
So far it may seem that the event-sourced domain model is the ultimate pattern for
implementing business logic and thus should be used as often as possible. Of course,
that would contradict the principle of letting the business domain’s needs drive the
design decisions. So, let’s discuss some of the challenges presented by the pattern:

Event-Sourced Domain Model | 111

Learning curve
The obvious disadvantage of the pattern is its sharp difference from the tradi‐
tional techniques of managing data. Successful implementation of the pattern
demands training of the team and time to get used to the new way of thinking.
Unless the team already has experience implementing event-sourced systems, the
learning curve has to be taken into account.

Evolving the model
Evolving an event-sourced model can be challenging. The strict definition of
event sourcing says that events are immutable. But what if you need to adjust the
event’s schema? The process is not as simple as changing a table’s schema. In fact,
a whole book was written on this subject alone: Versioning in an Event Sourced
System by Greg Young.

Architectural complexity
Implementation of event sources introduces numerous architectural “moving
parts,” making the overall design more complicated. This topic will be covered in
more detail in the next chapter, when we discuss the CQRS architecture.

All of these challenges are even more acute if the task at hand doesn’t justify the use of
the pattern and instead can be addressed by a simpler design. In Chapter 10, you will
learn simple rules of thumb that can help you decide which business logic implemen‐
tation pattern to use.

Frequently Asked Questions
When engineers are introduced to the event sourcing pattern, they often ask several
common questions, so I find it obligatory to address them in this chapter.

Performance
Reconstituting an aggregate’s state from events will negatively affect the system’s perfor‐
mance. It will degrade as events are added. How can this even work?

Projecting events into a state representation indeed requires compute power, and
that need will grow as more events are added to an aggregate’s list.

It’s important to benchmark a projection’s impact on performance: the effect of
working with hundreds or thousands of events. The results should be compared
with the expected lifespan of an aggregate—the number of events expected to be
recorded during an average lifespan.

In most systems, the performance hit will be noticeable only after 10,000+ events
per aggregate. That said, in the vast majority of systems, an aggregate’s average
lifespan won’t go over 100 events.

112 | Chapter 7: Modeling the Dimension of Time

https://leanpub.com/esversioning
https://leanpub.com/esversioning

In the rare cases when projecting states does become a performance issue,
another pattern can be implemented: snapshot. This pattern, shown in
Figure 7-2, implements the following steps:

• A process continuously iterates new events in the event store, generates cor‐
responding projections, and stores them in a cache.

• An in-memory projection is needed to execute an action on the aggregate. In
this case:
— The process fetches the current state projection from the cache.
— The process fetches the events that came after the snapshot version from

the event store.
— The additional events are applied in-memory to the snapshot.

Figure 7-2. Snapshotting an aggregate’s events

It’s worth reiterating that the snapshot pattern is an optimization that has to be
justified. If the aggregates in your system won’t persist 10,000+ events, imple‐
menting the snapshot pattern is just an accidental complexity. But before you go
ahead and implement the snapshot pattern, I recommend that you take a step
back and double-check the aggregate’s boundaries.

Frequently Asked Questions | 113

3 General Data Protection Regulation. (n.d.) Retrieved June 14, 2021, from Wikipedia.

This model generates enormous amounts of data. Can it scale?
The event-sourced model is easy to scale. Since all aggregate-related operations
are done in the context of a single aggregate, the event store can be sharded by
aggregate IDs: all events belonging to an instance of an aggregate should reside in
a single shard (see Figure 7-3).

Figure 7-3. Sharding the event store

Deleting Data
The event store is an append-only database, but what if I do need to delete data physi‐
cally; for example, to comply with GDPR?3

This need can be addressed with the forgettable payload pattern: all sensitive
information is included in the events in encrypted form. The encryption key is
stored in an external key–value store: the key storage, where the key is a specific
aggregate’s ID and the value is the encryption key. When the sensitive data has to
be deleted, the encryption key is deleted from the key storage. As a result, the
sensitive information contained in the events is no longer accessible.

Why Can’t I Just…?
Why can’t I just write logs to a text file and use it as an audit log?

Writing data both to an operational database and to a logfile is an error-prone
operation. In its essence, it’s a transaction against two storage mechanisms: the
database and the file. If the first one fails, the second one has to be rolled back.
For example, if a database transaction fails, no one cares to delete the prior log
messages. Hence, such logs are not consistent, but rather, eventually inconsistent.

114 | Chapter 7: Modeling the Dimension of Time

https://oreil.ly/08px7

Why can’t I keep working with a state-based model, but in the same database transac‐
tion, append logs to a logs table?

From an infrastructural perspective, this approach does provide consistent syn‐
chronization between the state and the log records. However, it is still error
prone. What if the engineer who will be working on the codebase in the future
forgets to append an appropriate log record?

Furthermore, when the state-based representation is used as the source of truth,
the additional log table’s schema usually degrades into chaos quickly. There is no
way to enforce that all required information is written and that it is written in the
correct format.

Why can’t I just keep working with a state-based model but add a database trigger that
will take a snapshot of the record and copy it into a dedicated “history” table?

This approach overcomes the previous one’s drawback: no explicit manual calls
are needed to append records to the log table. That said, the resultant history
only includes the dry facts: what fields were changed. It misses the business con‐
texts: why the fields were changed. The lack of “why” drastically limits the ability
to project additional models.

Conclusion
This chapter explained the event sourcing pattern and its application for modeling
the dimension of time in the domain model’s aggregates.

In an event-sourced domain model, all changes to an aggregate’s state are expressed
as a series of domain events. That’s in contrast to the more traditional approaches in
which a state change just updates a record in the databases. The resultant domain
events can be used to project the aggregate’s current state. Moreover, the event-based
model gives us the flexibility to project the events into multiple representation mod‐
els, each optimized for a specific task.

This pattern fits cases in which it’s crucial to have deep insight into the system’s data,
whether for analysis and optimization or because an audit log is required by law.

This chapter completes our exploration of the different ways to model and implement
business logic. In the next chapter, we will shift our attention to patterns belonging to
a higher scope: architectural patterns.

Conclusion | 115

Exercises
1. Which of the following statements is correct regarding the relationship between

domain events and value objects?
a. Domain events use value objects to describe what has happened in the busi‐

ness domain.
b. When implementing an event-sourced domain model, value objects should be

refactored into event-sourced aggregates.
c. Value objects are relevant for the domain model pattern, and are replaced by

domain events in the event-sourced domain model.
d. All of the statements are incorrect.

2. Which of the following statements is correct regarding the options of projecting
state from a series of events?
a. A single state representation can be projected from an aggregate’s events.
b. Multiple state representations can be projected, but the domain events have to

be modeled in a way that supports multiple projections.
c. Multiple state representations can be projected and you can always add addi‐

tional projections in the future.
d. All of the statements are incorrect.

3. Which of the following statements is correct regarding the difference between
state-based and event-sourced aggregates?
a. An event-sourced aggregate can produce domain events, while a state-based

aggregate cannot produce domain events.
b. Both variants of the aggregate pattern produce domain events, but only event-

sourced aggregates use domain events as the source of truth.
c. Event-sourced aggregates ensure that domain events are generated for every

state transition.
d. Both B and C are correct.

4. Going back to the WolfDesk company described in the book’s Preface, which
functionality of the system lends itself to be implemented as an event-sourced
domain model?

116 | Chapter 7: Modeling the Dimension of Time

CHAPTER 8

Architectural Patterns

The tactical patterns discussed up to this point in the book defined the different ways
to model and implement business logic. In this chapter, we will explore tactical design
decisions in a broader context: the different ways to orchestrate the interactions and
dependencies between a system’s components.

Business Logic Versus Architectural Patterns
Business logic is the most important part of software; however, it is not the only part
of a software system. To implement functional and nonfunctional requirements, the
codebase has to fulfill more responsibilities. It has to interact with users to gather
input and provide output, and it has to use different storage mechanisms to persist
state and integrate with external systems and information providers.

The variety of concerns that a codebase has to take care of makes it easy for its busi‐
ness logic to become diffused among the different components: that is, for some of
the logic to be implemented in the user interface or database, or be duplicated in dif‐
ferent components. Lacking strict organization in implementation concerns makes
the codebase hard to change. When the business logic has to change, it may not be
evident what parts of the codebase have to be affected by the change. The change may
have unexpected effects on seemingly unrelated parts of the system. Conversely, it
may be easy to miss code that has to be modified. All of these issues dramatically
increase the cost of maintaining the codebase.

Architectural patterns introduce organizational principles for the different aspects of
a codebase and present clear boundaries between them: how the business logic is
wired to the system’s input, output, and other infrastructural components. This
affects how these components interact with each other: what knowledge they share
and how the components reference each other.

117

Choosing the appropriate way to organize the codebase, or the correct architectural
pattern, is crucial to support implementation of the business logic in the short term
and alleviate maintenance in the long term. Let’s explore three predominant applica‐
tion architecture patterns and their use cases: layered architecture, ports & adapters,
and CQRS.

Layered Architecture
Layered architecture is one of the most common architectural patterns. It organizes
the codebase into horizontal layers, with each layer addressing one of the following
technical concerns: interaction with the consumers, implementing business logic, and
persisting the data. You can see this represented in Figure 8-1.

Figure 8-1. Layered architecture

In its classic form, the layered architecture consists of three layers: the presentation
layer (PL), the business logic layer (BLL), and the data access layer (DAL).

Presentation Layer
The presentation layer, shown in Figure 8-2, implements the program’s user interface
for interactions with its consumers. In the pattern’s original form, this layer denotes a
graphical interface, such as a web interface or a desktop application.

In modern systems, however, the presentation layer has a broader scope: that is, all
means for triggering the program’s behavior, both synchronous and asynchronous.
For example:

• Graphical user interface (GUI)
• Command-line interface (CLI)

118 | Chapter 8: Architectural Patterns

1 Evans, E. (2003). Domain-Driven Design: Tackling Complexity in the Heart of Software. Boston: Addison-
Wesley.

• API for programmatic integration with other systems
• Subscription to events in a message broker
• Message topics for publishing outgoing events

All of these are the means for the system to receive requests from the external envi‐
ronment and communicate the output. Strictly speaking, the presentation layer is the
program’s public interface.

Figure 8-2. Presentation layer

Business Logic Layer
As the name suggests, this layer is responsible for implementing and encapsulating
the program’s business logic. This is the place where business decisions are imple‐
mented. As Eric Evans says,1 this layer is the heart of software.

This layer is where the business logic patterns described in Chapters 5–7 are imple‐
mented—for example, active records or a domain model (see Figure 8-3).

Figure 8-3. Business logic layer

Data Access Layer
The data access layer provides access to persistence mechanisms. In the pattern’s orig‐
inal form, this referred to the system’s database. However, as in the case of the presen‐
tation layer, the layer’s responsibility is broader for modern systems.

First, ever since the NoSQL revolution broke out, it is common for a system to work
with multiple databases. For example, a document store can act as the operational
database, a search index for dynamic queries, and an in-memory database for
performance-optimized operations.

Layered Architecture | 119

2 Such as AWS S3 or Google Cloud Storage.
3 In this context, the message bus is used for the system’s internal needs. If it were exposed publicly, it would

belong to the presentation layer.

Second, traditional databases are not the only medium for storing information. For
example, cloud-based object storage2 can be used to store the system’s files, or a mes‐
sage bus can be used to orchestrate communication between the program’s different
functions.3

Finally, this layer also includes integration with the various external information pro‐
viders needed to implement the program’s functionality: APIs provided by external
systems, or cloud vendors’ managed services, such as language translation, stock mar‐
ket data, and audio transcription (see Figure 8-4).

Figure 8-4. Data access layer

Communication Between Layers
The layers are integrated in a top-down communication model: each layer can hold a
dependency only on the layer directly beneath it, as shown in Figure 8-5. This enfor‐
ces decoupling of implementation concerns and reduces the knowledge shared
between the layers. In Figure 8-5, the presentation layer references only the business
logic layer. It has no knowledge of the design decisions made in the data access layer.

Figure 8-5. Layered architecture

120 | Chapter 8: Architectural Patterns

4 Fowler, M. (2002). Patterns of Enterprise Application Architecture. Boston: Addison-Wesley.

Variation
It’s common to see the layered architecture pattern extended with an additional layer:
the service layer.

Service layer

Defines an application’s boundary with a layer of services that establishes a set of available
operations and coordinates the application’s response in each operation.
—Patterns of Enterprise Application Architecture4

The service layer acts as an intermediary between the program’s presentation and
business logic layers. Consider the following code:

namespace MvcApplication.Controllers
{
 public class UserController: Controller
 {
 ...

 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult Create(ContactDetails contactDetails)
 {
 OperationResult result = null;

 try
 {
 _db.StartTransaction();

 var user = new User();
 user.SetContactDetails(contactDetails)
 user.Save();

 _db.Commit();
 result = OperationResult.Success;
 } catch (Exception ex) {
 _db.Rollback();
 result = OperationResult.Exception(ex);
 }

 return View(result);
 }
 }
}

The MVC controller in this example belongs to the presentation layer. It exposes an
endpoint that creates a new user. The endpoint uses the User active record object to

Layered Architecture | 121

create a new instance and save it. Moreover, it orchestrates a database transaction to
ensure that a proper response is generated in case of an error.

To further decouple the presentation layer from the underlying business logic, such
orchestration logic can be moved into a service layer, as shown in Figure 8-6.

Figure 8-6. Service layer

It’s important to note that in the context of the architectural pattern, the service layer
is a logical boundary. It is not a physical service.

The service layer acts as a façade for the business logic layer: it exposes an interface
that corresponds with the public interface’s methods, encapsulating the required
orchestration of the underlying layers. For example:

interface CampaignManagementService
{
 OperationResult CreateCampaign(CampaignDetails details);
 OperationResult Publish(CampaignId id, PublishingSchedule schedule);
 OperationResult Deactivate(CampaignId id);
 OperationResult AddDisplayLocation(CampaignId id, DisplayLocation newLocation);
 ...
}

All of the preceding methods correspond to the system’s public interface. However,
they lack presentation-related implementation details. The presentation layer’s
responsibility becomes limited to providing the required input to the service layer
and communicating its responses back to the caller.

122 | Chapter 8: Architectural Patterns

Let’s refactor the preceding example and extract the orchestration logic into a service
layer:

namespace ServiceLayer
{
 public class UserService
 {
 ...

 public OperationResult Create(ContactDetails contactDetails)
 {
 OperationResult result = null;

 try
 {
 _db.StartTransaction();

 var user = new User();
 user.SetContactDetails(contactDetails)
 user.Save();

 _db.Commit();
 result = OperationResult.Success;
 } catch (Exception ex) {
 _db.Rollback();
 result = OperationResult.Exception(ex);
 }

 return result;
 }

 ...
 }
}

namespace MvcApplication.Controllers
{
 public class UserController: Controller
 {
 ...

 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult Create(ContactDetails contactDetails)
 {
 var result = _userService.Create(contactDetails);
 return View(result);
 }
 }
}

Layered Architecture | 123

Having an explicit service level has a number of advantages:

• We can reuse the same service layer to serve multiple public interfaces; for exam‐
ple, a graphical user interface and an API. No duplication of the orchestration
logic is required.

• It improves modularity by gathering all related methods in one place.
• It further decouples the presentation and business logic layers.
• It makes it easier to test the business functionality.

That said, a service layer is not always necessary. For example, when the business
logic is implemented as a transaction script, it essentially is a service layer, as it
already exposes a set of methods that form the system’s public interface. In such a
case, the service layer’s API would just repeat the transaction scripts’ public interfaces,
without abstracting or encapsulating any complexity. Hence, either a service layer or a
business logic layer will suffice.

On the other hand, the service layer is required if the business logic pattern requires
external orchestration, as in the case of the active record pattern. In this case, the ser‐
vice layer implements the transaction script pattern, while the active records it oper‐
ates on are located in the business logic layer.

Terminology
Elsewhere, you may encounter other terms used for the layered architecture:

• Presentation layer = user interface layer
• Service layer = application layer
• Business logic layer = domain layer = model layer
• Data access layer = infrastructure layer

To eliminate confusion, I present the pattern using the original terminology. That
said, I prefer “user interface layer” and “infrastructure layer” as these terms better
reflect the responsibilities of modern systems and an application layer to avoid confu‐
sion with the physical boundaries of services.

When to Use Layered Architecture
The dependency between the business logic and the data access layers makes this
architectural pattern a good fit for a system with its business logic implemented using
the transaction script or active record pattern.

124 | Chapter 8: Architectural Patterns

However, the pattern makes it challenging to implement a domain model. In a
domain model, the business entities (aggregates and value objects) should have no
dependency and no knowledge of the underlying infrastructure. The layered architec‐
ture’s top-down dependency requires jumping through some hoops to fulfill this
requirement. It is still possible to implement a domain model in a layered architec‐
ture, but the pattern we will discuss next fits much better.

Optional: Layers Versus Tiers
The layers architecture is often confused with the N-Tier architecture, and vice versa.
Despite the similarities between the two patterns, layers and tiers are conceptually
different: a layer is a logical boundary, whereas a tier is a physical boundary. All layers
in the layered architecture are bound by the same lifecycle: they are implemented,
evolved, and deployed as one single unit. On the other hand, a tier is an independ‐
ently deployable service, server, or system. For example, consider the N-Tier system
in Figure 8-7.

Figure 8-7. N-Tier system

The system depicts the integration between physical services involved in a web-based
system. The consumer uses a browser, which can run on a desktop computer or a
mobile device. The browser interacts with a reverse proxy that forwards the requests
to the actual web application. The web application runs on a web server and commu‐
nicates with a database server. All of these components may run on the same physical
server, such as containers, or be distributed among multiple servers. However, since
each component can be deployed and managed independent of the rest, these are
tiers and not layers.

Layers, on the other hand, are logical boundaries inside the web application.

Ports & Adapters
The ports & adapters architecture addresses the shortcomings of the layered architec‐
ture and is a better fit for implementation of more complex business logic. Interest‐
ingly, both patterns are quite similar. Let’s “refactor” the layered architecture into
ports & adapters.

Ports & Adapters | 125

5 Since we are not in the context of the layered architecture, I will take the freedom to use the term application
layer instead of service layer, as it better reflects the purpose.

Terminology
Essentially, both the presentation layer and data access layer represent integration
with external components: databases, external services, and user interface frame‐
works. These technical implementation details do not reflect the system’s business
logic; so, let’s unify all such infrastructural concerns into a single “infrastructure
layer,” as shown in Figure 8-8.

Figure 8-8. Presentation and data access layers combined into an infrastructure layer

Dependency Inversion Principle
The dependency inversion principle (DIP) states that high-level modules, which
implement the business logic, should not depend on low-level modules. However,
that’s precisely what happens in the traditional layered architecture. The business
logic layer depends on the infrastructure layer. To conform with the DIP, let’s reverse
the relationship, as shown in Figure 8-9.

Figure 8-9. Reversed dependencies

Instead of being sandwiched between the technological concerns, now the business
logic layer takes the central role. It doesn’t depend on any of the system’s infrastruc‐
tural components.

Finally, let’s add an application5 layer as a façade for the system’s public interface. As
the service layer in the layered architecture, it describes all the operations exposed by
the system and orchestrates the system’s business logic for executing them. The resul‐
tant architecture is depicted in Figure 8-10.

126 | Chapter 8: Architectural Patterns

Figure 8-10. Traditional layers of the ports & adapters architecture

The architecture depicted in Figure 8-10 is the ports & adapters architectural pattern.
The business logic doesn’t depend on any of the underlying layers, as required for
implementing the domain model and event-sourced domain model patterns.

Why is this pattern called ports & adapters? To answer this question, let’s see how the
infrastructural components are integrated with the business logic.

Integration of Infrastructural Components
The core goal of the ports & adapters architecture is to decouple the system’s business
logic from its infrastructural components.

Instead of referencing and calling the infrastructural components directly, the busi‐
ness logic layer defines “ports” that have to be implemented by the infrastructure
layer. The infrastructure layer implements “adapters”: concrete implementations of
the ports’ interfaces for working with different technologies (see Figure 8-11).

Figure 8-11. Ports & adapters architecture

Ports & Adapters | 127

The abstract ports are resolved into concrete adapters in the infrastructure layer,
either through dependency injection or by bootstrapping.

For example, here is a possible port definition and a concrete adapter for a message
bus:

namespace App.BusinessLogicLayer
{
 public interface IMessaging
 {
 void Publish(Message payload);
 void Subscribe(Message type, Action callback);
 }
}

namespace App.Infrastructure.Adapters
{
 public class SQSBus: IMessaging { ... }
}

Variants
The ports & adapters architecture is also known as hexagonal architecture, onion
architecture, and clean architecture. All of these patterns are based on the same
design principles, have the same components, and have the same relationships
between them, but as in the case of the layered architecture, the terminology may
differ:

• Application layer = service layer = use case layer
• Business logic layer = domain layer = core layer

Despite that, these patterns can be mistakenly treated as conceptually different. That’s
just another example of the importance of a ubiquitous language.

When to Use Ports & Adapters
The decoupling of the business logic from all technological concerns makes the ports
& adapters architecture a perfect fit for business logic implemented with the domain
model pattern.

Command-Query Responsibility Segregation
The command-query responsibility segregation (CQRS) pattern is based on the same
organizational principles for business logic and infrastructural concerns as ports &
adapters. It differs, however, in the way the system’s data is managed. This pattern
enables representation of the system’s data in multiple persistent models.

128 | Chapter 8: Architectural Patterns

6 Polyglot data by Greg Young. (n.d.). Retrieved June 14, 2021, from YouTube.

Let’s see why we might need such a solution and how to implement it.

Polyglot Modeling
In many cases, it may be difficult, if not impossible, to use a single model of the sys‐
tem’s business domain to address all of the system’s needs. For example, as discussed
in Chapter 7, online transaction processing (OLTP) and online analytical processing
(OLAP) may require different representations of the system’s data.

Another reason for working with multiple models may have to do with the notion of
polyglot persistence. There is no perfect database. Or, as Greg Young6 says, all data‐
bases are flawed, each in its own way: we often have to balance the needs for scale,
consistency, or supported querying models. An alternative to finding a perfect data‐
base is the polyglot persistence model: using multiple databases to implement differ‐
ent data-related requirements. For example, a single system might use a document
store as its operational database, a column store for analytics/reporting, and a search
engine for implementing robust search capabilities.

Finally, the CQRS pattern is closely related to event sourcing. Originally, CQRS was
defined to address the limited querying possibilities of an event-sourced model: it is
only possible to query events of one aggregate instance at a time. The CQRS pattern
provides the possibility of materializing projected models into physical databases that
can be used for flexible querying options.

That said, this chapter “decouples” CQRS from event sourcing. I intend to show that
CQRS is useful even if the business logic is implemented using any of the other busi‐
ness logic implementation patterns.

Let’s see how CQRS allows the use of multiple storage mechanisms for representing
different models of the system’s data.

Implementation
As the name suggests, the pattern segregates the responsibilities of the system’s mod‐
els. There are two types of models: the command execution model and the read
models.

Command execution model
CQRS devotes a single model to executing operations that modify the system’s state
(system commands). This model is used to implement the business logic, validate
rules, and enforce invariants.

Command-Query Responsibility Segregation | 129

https://oreil.ly/3CdMw

The command execution model is also the only model representing strongly consis‐
tent data—the system’s source of truth. It should be possible to read the strongly con‐
sistent state of a business entity and have optimistic concurrency support when
updating it.

Read models (projections)
The system can define as many models as needed to present data to users or supply
information to other systems.

A read model is a precached projection. It can reside in a durable database, flat file, or
in-memory cache. Proper implementation of CQRS allows for wiping out all data of a
projection and regenerating it from scratch. This also enables extending the system
with additional projections in the future—models that couldn’t have been foreseen
originally.

Finally, read models are read-only. None of the system’s operations can directly mod‐
ify the read models’ data.

Projecting Read Models
For the read models to work, the system has to project changes from the command
execution model to all its read models. This concept is illustrated in Figure 8-12.

Figure 8-12. CQRS architecture

The projection of read models is similar to the notion of a materialized view in rela‐
tional databases: whenever source tables are updated, the changes have to be reflected
in the precached views.

Next, let’s see two ways to generate projections: synchronously and asynchronously.

Synchronous projections
Synchronous projections fetch changes to the OLTP data through the catch-up sub‐
scription model:

130 | Chapter 8: Architectural Patterns

• The projection engine queries the OLTP database for added or updated records
after the last processed checkpoint.

• The projection engine uses the updated data to regenerate/update the system’s
read models.

• The projection engine stores the checkpoint of the last processed record. This
value will be used during the next iteration for getting records added or modified
after the last processed record.

This process is illustrated in Figure 8-13 and shown as a sequence diagram in
Figure 8-14.

Figure 8-13. Synchronous projection model

Figure 8-14. Synchronous projection of read models through catch-up subscription

For the catch-up subscription to work, the command execution model has to check‐
point all the appended or updated database records. The storage mechanism should
also support the querying of records based on the checkpoint.

The checkpoint can be implemented using the databases’ features. For example, SQL
Server’s “rowversion” column can be used to generate unique, incrementing numbers
upon inserting or updating a row, as illustrated in Figure 8-15. In databases that lack
such functionality, a custom solution can be implemented that increments a running
counter and appends it to each modified record. It’s important to ensure that the
checkpoint-based query returns consistent results. If the last returned record has a

Command-Query Responsibility Segregation | 131

checkpoint value of 10, on the next execution no new requests should have values
lower than 10. Otherwise, these records will be skipped by the projection engine,
which will result in inconsistent models.

Figure 8-15. Auto-generated checkpoint column in a relational database

The synchronous projection method makes it trivial to add new projections and
regenerate existing ones from scratch. In the latter case, all you have to do is reset the
checkpoint to 0; the projection engine will scan the records and rebuild the projec‐
tions from the ground up.

Asynchronous projections
In the asynchronous projection scenario, the command execution model publishes all
committed changes to a message bus. The system’s projection engines can subscribe
to the published messages and use them to update the read models, as shown in
Figure 8-16.

Figure 8-16. Asynchronous projection of read models

Challenges
Despite the apparent scaling and performance advantages of the asynchronous pro‐
jection method, it is more prone to the challenges of distributed computing. If the
messages are processed out of order or duplicated, inconsistent data will be projected
into the read models.

132 | Chapter 8: Architectural Patterns

This method also makes it more challenging to add new projections or regenerate
existing ones.

For these reasons, it’s advisable to always implement synchronous projection and,
optionally, an additional asynchronous projection on top of it.

Model Segregation
In the CQRS architecture, the responsibilities of the system’s models are segregated
according to their type. A command can only operate on the strongly consistent com‐
mand execution model. A query cannot directly modify any of the system’s persisted
state—neither the read models nor the command execution model.

A common misconception about CQRS-based systems is that a command can only
modify data, and data can be fetched for display only through a read model. In other
words, the command executing the methods should never return any data. This is
wrong. This approach produces accidental complexities and leads to a bad user
experience.

A command should always let the caller know whether it has succeeded or failed. If it
has failed, why did it fail? Was there a validation or technical issue? The caller has to
know how to fix the command. Therefore, a command can—and in many cases
should—return data; for example, if the system’s user interface has to reflect the modi‐
fications resulting from the command. Not only does this make it easier for consum‐
ers to work with the system since they immediately receive feedback for their actions,
but the returned values can be used further in the consumers’ workflows, eliminating
the need for unnecessary data round trips.

The only limitation here is that the returned data should originate from the strongly
consistent model—the command execution model—as we cannot expect the projec‐
tions, which will eventually be consistent, to be refreshed immediately.

When to Use CQRS
The CQRS pattern can be useful for applications that need to work with the same
data in multiple models, potentially stored in different kinds of databases. From an
operational perspective, the pattern supports domain-driven design’s core value of
working with the most effective models for the task at hand, and continuously
improving the model of the business domain. From an infrastructural perspective,
CQRS allows for leveraging the strength of the different kinds of databases; for exam‐
ple, using a relational database to store the command execution model, a search index
for full text search, and prerendered flat files for fast data retrieval, with all the storage
mechanisms reliably synchronized.

Command-Query Responsibility Segregation | 133

Moreover, CQRS naturally lends itself to event-sourced domain models. The event-
sourcing model makes it impossible to query records based on the aggregates’ states,
but CQRS enables this by projecting the states into queryable databases.

Scope
The patterns we’ve discussed—layered architecture, ports & adapters architecture,
and CQRS—should not be treated as systemwide organizational principles. These are
not necessarily high-level architecture patterns for a whole bounded context either.

Consider a bounded context encompassing multiple subdomains, as shown in
Figure 8-17. The subdomains can be of different types: core, supporting, or generic.
Even subdomains of the same type may require different business logic and architec‐
tural patterns (that’s the topic of Chapter 10). Enforcing a single, bounded, context‐
wide architecture will inadvertently lead to accidental complexity.

Figure 8-17. Bounded contexts spanning multiple subdomains

Our goal is to drive design decisions according to the actual needs and business strat‐
egy. In addition to the layers that partition the system horizontally, we can introduce
additional vertical partitioning. It’s crucial to define logical boundaries for modules
encapsulating distinct business subdomains and use the appropriate tools for each, as
demonstrated in Figure 8-18.

Appropriate vertical boundaries make a monolithic bounded context a modular one
and help to prevent it from becoming a big ball of mud. As we will discuss in Chap‐
ter 11, these logical boundaries can be refactored later into physical boundaries of
finer-grained bounded contexts.

134 | Chapter 8: Architectural Patterns

Figure 8-18. Architectural slices

Conclusion
The layered architecture decomposes the codebase based on its technological con‐
cerns. Since this pattern couples business logic with data access implementation, it’s a
good fit for active record–based systems.

The ports & adapters architecture inverts the relationships: it puts the business logic
at the center and decouples it from all infrastructural dependencies. This pattern is a
good fit for business logic implemented with the domain model pattern.

The CQRS pattern represents the same data in multiple models. Although this pat‐
tern is obligatory for systems based on the event-sourced domain model, it can also
be used in any systems that need a way of working with multiple persistent models.

The patterns we will discuss in the next chapter address architectural concerns from a
different perspective: how to implement reliable interaction between different com‐
ponents of a system.

Exercises
1. Which of the discussed architectural patterns can be used with business logic

implemented as the active record pattern?
a. Layered architecture
b. Ports & adapters
c. CQRS
d. A and C

Conclusion | 135

2. Which of the discussed architectural patterns decouples the business logic from
infrastructural concerns?
a. Layered architecture
b. Ports & adapters
c. CQRS
d. B and C

3. Assume you are implementing the ports & adapters pattern and need to integrate
a cloud provider’s managed message bus. In which layer should the integration be
implemented?
a. Business logic layer
b. Application layer
c. Infrastructure layer
d. Any layer

4. Which of the following statements is true regarding the CQRS pattern?
a. Asynchronous projections are easier to scale.
b. Either synchronous or asynchronous projection can be used, but not both at

the same time.
c. A command cannot return any information to the caller. The caller should

always use the read models to get the results of the executed actions.
d. A command can return information as long as it originates from a strongly

consistent model.
e. A and D.

5. The CQRS pattern allows for representing the same business objects in multiple
persistent models, and thus allows working with multiple models in the same
bounded context. Does it contradict the bounded context’s notion of being a
model boundary?

136 | Chapter 8: Architectural Patterns

CHAPTER 9

Communication Patterns

Chapters 5–8 presented tactical design patterns that define the different ways to
implement a system’s components: how to model the business logic and how to orga‐
nize the internals of a bounded context architecturally. In this chapter, we will step
beyond the boundaries of a single component and discuss the patterns for organizing
the flow of communication across a system’s elements.

The patterns you will learn about in this chapter facilitate cross-bounded context
communication, address the limitations imposed by aggregate design principles, and
orchestrate business processes spanning multiple system components.

Model Translation
A bounded context is the boundary of a model—a ubiquitous language. As you
learned in Chapter 3, there are different patterns for designing communication across
different bounded contexts. Suppose the teams implementing two bounded contexts
are communicating effectively and willing to collaborate. In this case, the bounded
contexts can be integrated in a partnership: the protocols can be coordinated in an ad
hoc manner, and any integration issues can be effectively addressed through commu‐
nication between the teams. Another cooperation-driven integration method is
shared kernel: the teams extract and co-evolve a limited portion of a model; for exam‐
ple, extracting the bounded contexts’ integration contracts into a co-owned
repository.

In a customer–supplier relationship, the balance of power tips toward either the
upstream (supplier) or the downstream (consumer) bounded context. Suppose the
downstream bounded context cannot conform to the upstream bounded context’s
model. In this case, a more elaborate technical solution is required that can facilitate
communication by translating the bounded contexts’ models.

137

This translation can be handled by one, or sometimes both, sides: the downstream
bounded context can adapt the upstream bounded context’s model to its needs using
an anticorruption layer (ACL), while the upstream bounded context can act as an
open-host service (OHS) and protect its consumers from changes to its implementa‐
tion model by using an integration-specific published language. Since the translation
logic is similar for both the anticorruption layer and the open-host service, this chap‐
ter covers the implementation options without differentiating between the patterns
and mentions the differences only in exceptional cases.

The model’s translation logic can be either stateless or stateful. Stateless translation
happens on the fly, as incoming (OHS) or outgoing (ACL) requests are issued, while
stateful translation involves a more complicated translation logic that requires a data‐
base. Let’s see design patterns for implementing both types of model translation.

Stateless Model Translation
For stateless model translation, the bounded context that owns the translation (OHS
for upstream, ACL for downstream) implements the proxy design pattern to interject
the incoming and outgoing requests and map the source model to the bounded con‐
text’s target model. This is depicted in Figure 9-1.

Figure 9-1. Model translation by a proxy

Implementation of the proxy depends on whether the bounded contexts are commu‐
nicating synchronously or asynchronously.

Synchronous
The typical way to translate models used in synchronous communication is to embed
the transformation logic in the bounded context’s codebase, as shown in Figure 9-2.
In an open-host service, translation to the public language takes place when process‐
ing incoming requests, and in an anticorruption layer, it occurs when calling the
upstream bounded context.

Figure 9-2. Synchronous communication

138 | Chapter 9: Communication Patterns

https://oreil.ly/A1nb2

In some cases, it can be more cost-effective and convenient to offload the translation
logic to an external component such as an API gateway pattern. The API gateway
component can be an open source software-based solution such as Kong or KrakenD,
or it can be a cloud vendor’s managed service such as AWS API Gateway, Google Api‐
gee, or Azure API Management.

For bounded contexts implementing the open-host pattern, the API gateway is
responsible for converting the internal model into the integration-optimized pub‐
lished language. Moreover, having an explicit API gateway can alleviate the process of
managing and serving multiple versions of the bounded context’s API, as depicted in
Figure 9-3.

Figure 9-3. Exposing different versions of the published language

Anticorruption layers implemented using an API gateway can be consumed by multi‐
ple downstream bounded contexts. In such cases, the anticorruption layer acts as an
integration-specific bounded context, as shown in Figure 9-4.

Figure 9-4. Shared anticorruption layer

Such bounded contexts, which are mainly in charge of transforming models for more
convenient consumption by other components, are often referred to as interchange
contexts.

Model Translation | 139

Asynchronous
To translate models used in asynchronous communication you can implement a mes‐
sage proxy: an intermediary component subscribing to messages coming from the
source bounded context. The proxy will apply the required model transformations
and forward the resultant messages to the target subscriber (see Figure 9-5).

Figure 9-5. Translating models in asynchronous communication

In addition to translating the messages’ model, the intercepting component can also
reduce the noise on the target bounded context by filtering out irrelevant messages.

Asynchronous model translation is essential when implementing an open host ser‐
vice. It’s a common mistake to design and expose a published language for the mod‐
el’s objects and allow domain events to be published as they are, thereby exposing the
bounded context’s implementation model. Asynchronous translation can be used to
intercept the domain events and convert them into a published language, thus pro‐
viding better encapsulation of the bounded context’s implementation details (see
Figure 9-6).

Moreover, translating messages to the published language enables differentiating
between private events that are intended for the bounded context’s internal needs and
public events that are designed for integration with other bounded contexts. We’ll
revisit and expand on the topic of private/public events in Chapter 15, where we dis‐
cuss the relationship between domain-driven design and event-driven architecture.

Figure 9-6. Domain events in a published language

140 | Chapter 9: Communication Patterns

Stateful Model Translation
For more significant model transformations—for example, when the translation
mechanism has to aggregate the source data or unify data from multiple sources into
a single model—a stateful translation may be required. Let’s discuss each of these use
cases in detail.

Aggregating incoming data
Let’s say a bounded context is interested in aggregating incoming requests and pro‐
cessing them in batches for performance optimization. In this case, aggregation may
be required both for synchronous and asynchronous requests (see Figure 9-7).

Figure 9-7. Batching requests

Another common use case for aggregation of source data is combining multiple fine-
grained messages into a single message containing the unified data, as depicted in
Figure 9-8.

Figure 9-8. Unifying incoming events

Model Translation | 141

1 Richardson, C. (2019). Microservice Patterns: With Examples in Java. New York: Manning Publications.

Model transformation that aggregates incoming data cannot be implemented using
an API gateway, and thus requires more elaborate, stateful processing. To track the
incoming data and process it accordingly, the translation logic requires its own per‐
sistent storage (see Figure 9-9).

Figure 9-9. Stateful model transformation

In some use cases, you can avoid implementing a custom solution for a stateful trans‐
lation by using off-the-shelf products; for example, a stream-process platform (Kafka,
AWS Kinesis, etc.), or a batching solution (Apache NiFi, AWS Glue, Spark, etc.).

Unifying multiple sources
A bounded context may need to process data aggregates from multiple sources,
including other bounded contexts. A typical example for this is the backend-for-
frontend pattern,1 in which the user interface has to combine data originating from
multiple services.

Another example is a bounded context that must process data from multiple other
contexts and implement complex business logic to process all the data. In this case, it
can be beneficial to decouple the integration and business logic complexities by front‐
ing the bounded context with an anticorruption layer that aggregates data from all
other bounded contexts, as shown in Figure 9-10.

142 | Chapter 9: Communication Patterns

Figure 9-10. Simplifying the integration model using the anticorruption layer pattern

Integrating Aggregates
In Chapter 6, we discussed that one of the ways aggregates communicate with the rest
of the system is by publishing domain events. External components can subscribe to
these domain events and execute their logic. But how are domain events published to
a message bus?

Before we get to the solution, let’s examine a few common mistakes in the event pub‐
lishing process and the consequences of each approach. Consider the following code:

01 public class Campaign
02 {
03 ...
04 List<DomainEvent> _events;
05 IMessageBus _messageBus;
06 ...
07
08 public void Deactivate(string reason)
09 {
10 for (l in _locations.Values())
11 {
12 l.Deactivate();
13 }
14
15 IsActive = false;
16
17 var newEvent = new CampaignDeactivated(_id, reason);
18 _events.Append(newEvent);
19 _messageBus.Publish(newEvent);
20 }
21 }

Integrating Aggregates | 143

On line 17, a new event is instantiated. On the following two lines, it is appended to
the aggregate’s internal list of domain events (line 18), and the event is published to
the message bus (line 19). This implementation of publishing domain events is simple
but wrong. Publishing the domain event right from the aggregate is bad for two rea‐
sons. First, the event will be dispatched before the aggregate’s new state is committed
to the database. A subscriber may receive the notification that the campaign was
deactivated, but it would contradict the campaign’s state. Second, what if the database
transaction fails to commit because of a race condition, subsequent aggregate logic
rendering the operation invalid, or simply a technical issue in the database? Even
though the database transaction is rolled back, the event is already published and
pushed to subscribers, and there is no way to retract it.

Let’s try something else:

01 public class ManagementAPI
02 {
03 ...
04 private readonly IMessageBus _messageBus;
05 private readonly ICampaignRepository _repository;
06 ...
07 public ExecutionResult DeactivateCampaign(CampaignId id, string reason)
08 {
09 try
10 {
11 var campaign = repository.Load(id);
12 campaign.Deactivate(reason);
13 _repository.CommitChanges(campaign);
14
15 var events = campaign.GetUnpublishedEvents();
16 for (IDomainEvent e in events)
17 {
18 _messageBus.publish(e);
19 }
20 campaign.ClearUnpublishedEvents();
21 }
22 catch(Exception ex)
23 {
24 ...
25 }
26 }
27 }

In the preceding listing, the responsibility of publishing new domain events is shifted
to the application layer. On lines 11 through 13, the relevant instance of the Campaign
aggregate is loaded, its Deactivate command is executed, and only after the updated
state is successfully committed to the database, on lines 15 through 20, are the new
domain events published to the message bus. Can we trust this code? No.

144 | Chapter 9: Communication Patterns

In this case, the process running the logic for some reason fails to publish the domain
events. Perhaps the message bus is down. Or the server running the code fails right
after committing the database transaction, but before publishing the events the sys‐
tem will still end in an inconsistent state, which means that the database transaction
is committed, but the domain events will never be published.

These edge cases can be addressed using the outbox pattern.

Outbox
The outbox pattern (Figure 9-11) ensures reliable publishing of domain events using
the following algorithm:

• Both the updated aggregate’s state and the new domain events are committed in
the same atomic transaction.

• A message relay fetches newly committed domain events from the database.
• The relay publishes the domain events to the message bus.
• Upon successful publishing, the relay either marks the events as published in the

database or deletes them completely.

Figure 9-11. Outbox pattern

When using a relational database, it’s convenient to leverage the database’s ability to
commit to two tables atomically and use a dedicated table for storing the messages, as
shown in Figure 9-12.

Integrating Aggregates | 145

Figure 9-12. Outbox table

When using a NoSQL database that doesn’t support multidocument transactions, the
outgoing domain events have to be embedded in the aggregate’s record. For example:

{
 "campaign-id": "364b33c3-2171-446d-b652-8e5a7b2be1af",
 "state": {
 "name": "Autumn 2017",
 "publishing-state": "DEACTIVATED",
 "ad-locations": [
 ...
]
 ...
 },
 "outbox": [
 {
 "campaign-id": "364b33c3-2171-446d-b652-8e5a7b2be1af",
 "type": "campaign-deactivated",
 "reason": "Goals met",
 "published": false
 }
]
}

In this sample, you can see the JSON document’s additional property, outbox, con‐
taining a list of domain events that have to be published.

Fetching unpublished events
The publishing relay can fetch the new domain events in either a pull-based or push-
based manner:

Pull: polling publisher
The relay can continuously query the database for unpublished events. Proper
indexes have to be in place to minimize the load on the database induced by the
constant polling.

146 | Chapter 9: Communication Patterns

Push: transaction log tailing
Here we can leverage the database’s feature set to proactively call the publishing
relay when new events are appended. For example, some relational databases
enable getting notifications about updated/inserted records by tailing the databa‐
se’s transaction log. Some NoSQL databases expose committed changes as
streams of events (e.g., AWS DynamoDB Streams).

It’s important to note that the outbox pattern guarantees delivery of the messages at
least once: if the relay fails right after publishing a message but before marking it as
published in the database, the same message will be published again in the next
iteration.

Next, we’ll take a look at how we can leverage the reliable publishing of domain
events to overcome some of the limitations imposed by aggregate design principles.

Saga
One of the core aggregate design principles is to limit each transaction to a single
instance of an aggregate. This ensures that an aggregate’s boundaries are carefully
considered and encapsulate a coherent set of business functionality. But there are
cases when you have to implement a business process that spans multiple aggregates.

Consider the following example: when an advertising campaign is activated, it should
automatically submit the campaign’s advertising materials to its publisher. Upon
receiving the confirmation from the publisher, the campaign’s publishing state should
change to Published. In the case of rejection by the publisher, the campaign should
be marked as Rejected.

This flow spans two business entities: advertising campaign and publisher. Co-
locating the entities in the same aggregate boundary would definitely be overkill, as
these are clearly different business entities that have different responsibilities and may
belong to different bounded contexts. Instead, this flow can be implemented as a saga.

A saga is a long-running business process. It’s long running not necessarily in terms
of time, as sagas can run from seconds to years, but rather in terms of transactions: a
business process that spans multiple transactions. The transactions can be handled
not only by aggregates but by any component emitting domain events and respond‐
ing to commands. The saga listens to the events emitted by the relevant components
and issues subsequent commands to the other components. If one of the execution
steps fails, the saga is in charge of issuing relevant compensating actions to ensure the
system state remains consistent.

Let’s see how the advertising campaign publishing flow from the preceding example
can be implemented as a saga, as shown in Figure 9-13.

Integrating Aggregates | 147

Figure 9-13. Saga

To implement the publishing process, the saga has to listen to the Campaign Act
ivated event from the Campaign aggregate and the PublishingConfirmed and Pub
lishingRejected events from the AdPublishing bounded context. The saga has to
execute the Submit Advertisement command on AdPublishing, and the Track Pub
lishingConfirmation and TrackPublishingRejection commands on the Campaign
aggregate. In this example, the TrackPublishingRejection command acts as a com‐
pensation action that will ensure that the advertising campaign is not listed as active.
Here is the code:

public class CampaignPublishingSaga
{
 private readonly ICampaignRepository _repository;
 private readonly IPublishingServiceClient _publishingService;
 ...

 public void Process(CampaignActivated @event)
 {
 var campaign = _repository.Load(@event.CampaignId);
 var advertisingMaterials = campaign.GenerateAdvertisingMaterials();
 _publishingService.SubmitAdvertisement(@event.CampaignId,
 advertisingMaterials);
 }

 public void Process(PublishingConfirmed @event)
 {
 var campaign = _repository.Load(@event.CampaignId);
 campaign.TrackPublishingConfirmation(@event.ConfirmationId);
 _repository.CommitChanges(campaign);
 }

 public void Process(PublishingRejected @event)
 {
 var campaign = _repository.Load(@event.CampaignId);
 campaign.TrackPublishingRejection(@event.RejectionReason);

148 | Chapter 9: Communication Patterns

 _repository.CommitChanges(campaign);
 }
}

The preceding example relies on the messaging infrastructure to deliver the relevant
events, and it reacts to the events by executing the relevant commands. This is an
example of a relatively simple saga: it has no state. You will encounter sagas that do
require state management; for example, to track the executed operations so that rele‐
vant compensating actions can be issued in case of a failure. In such a situation, the
saga can be implemented as an event-sourced aggregate, persisting the complete his‐
tory of received events and issued commands. However, the command execution
logic should be moved out of the saga itself and executed asynchronously, similar to
the way domain events are dispatched in the outbox pattern:

public class CampaignPublishingSaga
{
 private readonly ICampaignRepository _repository;
 private readonly IList<IDomainEvent> _events;
 ...

 public void Process(CampaignActivated activated)
 {
 var campaign = _repository.Load(activated.CampaignId);
 var advertisingMaterials = campaign.GenerateAdvertisingMaterials();
 var commandIssuedEvent = new CommandIssuedEvent(
 target: Target.PublishingService,
 command: new SubmitAdvertisementCommand(activated.CampaignId,
 advertisingMaterials));

 _events.Append(activated);
 _events.Append(commandIssuedEvent);
 }

 public void Process(PublishingConfirmed confirmed)
 {
 var commandIssuedEvent = new CommandIssuedEvent(
 target: Target.CampaignAggregate,
 command: new TrackConfirmation(confirmed.CampaignId,
 confirmed.ConfirmationId));

 _events.Append(confirmed);
 _events.Append(commandIssuedEvent);
 }

 public void Process(PublishingRejected rejected)
 {
 var commandIssuedEvent = new CommandIssuedEvent(
 target: Target.CampaignAggregate,
 command: new TrackRejection(rejected.CampaignId,
 rejected.RejectionReason));

Integrating Aggregates | 149

 _events.Append(rejected);
 _events.Append(commandIssuedEvent);
 }
}

In this example, the outbox relay will have to execute the commands on relevant end‐
points for each instance of CommandIssuedEvent. As in the case of publishing domain
events, separating the transition of the saga’s state from the execution of commands
ensures that the commands will be executed reliably, even if the process fails at any
stage.

Consistency
Although the saga pattern orchestrates a multicomponent transaction, the states of
the involved components are eventually consistent. And although the saga will even‐
tually execute the relevant commands, no two transactions can be considered atomic.
This correlates with another aggregate design principle:

Only the data within an aggregate’s boundaries can be considered strongly consistent.
Everything outside is eventually consistent.

Use this as a guiding principle to make sure you are not abusing sagas to compensate
for improper aggregate boundaries. Business operations that have to belong to the
same aggregate require strongly consistent data.

The saga pattern is often confused with another pattern: process manager. Although
the implementation is similar, these are different patterns. In the next section, we’ll
discuss the purpose of the process manager pattern and how it differs from the saga
pattern.

Process Manager
The saga pattern manages simple, linear flow. Strictly speaking, a saga matches events
to the corresponding commands. In the examples we used to demonstrate saga
implementations, we actually implemented simple matching of events to commands:

• CampaignActivated event to PublishingService.SubmitAdvertisement

command
• PublishingConfirmed event to Campaign.TrackConfirmation command
• PublishingRejected event to Campaign.TrackRejection command

150 | Chapter 9: Communication Patterns

2 Hohpe, G., & Woolf, B. (2003). Enterprise Integration Patterns: Designing, Building, and Deploying Messaging
Solutions. Boston: Addison-Wesley.

The process manager pattern, shown in Figure 9-14, is intended to implement a
business-logic-based process. It is defined as a central processing unit that maintains
the state of the sequence and determines the next processing steps.2

Figure 9-14. Process manager

As a simple rule of thumb, if a saga contains if-else statements to choose the correct
course of action, it is probably a process manager.

Another difference between a process manager and a saga is that a saga is instantiated
implicitly when a particular event is observed, as in CampaignActivated in the pre‐
ceding examples. A process manager, on the other hand, cannot be bound to a single
source event. Instead, it’s a coherent business process consisting of multiple steps.
Hence, a process manager has to be instantiated explicitly. Consider the following
example:

Booking a business trip starts with the routing algorithm choosing the most cost-
effective flight route and asking the employee to approve it. In case the employee pre‐
fers a different route, their direct manager needs to approve it. After the flight is
booked, one of the preapproved hotels has to be booked for the appropriate dates. If
no hotels are available, the flight tickets have to be canceled.

In this example, there is no central entity to trigger the trip booking process. The trip
booking is the process and it has to be implemented as a process manager (see
Figure 9-15).

Integrating Aggregates | 151

Figure 9-15. Trip booking process manager

From an implementation perspective, process managers are often implemented as
aggregates, either state based or event sourced. For example:

public class BookingProcessManager
{
 private readonly IList<IDomainEvent> _events;
 private BookingId _id;
 private Destination _destination;
 private TripDefinition _parameters;
 private EmployeeId _traveler;
 private Route _route;
 private IList<Route> _rejectedRoutes;
 private IRoutingService _routing;
 ...

 public void Initialize(Destination destination,
 TripDefinition parameters,
 EmployeeId traveler)
 {
 _destination = destination;
 _parameters = parameters;
 _traveler = traveler;
 _route = _routing.Calculate(destination, parameters);

 var routeGenerated = new RouteGeneratedEvent(
 BookingId: _id,
 Route: _route);

 var commandIssuedEvent = new CommandIssuedEvent(
 command: new RequestEmployeeApproval(_traveler, _route)
);

 _events.Append(routeGenerated);

152 | Chapter 9: Communication Patterns

 _events.Append(commandIssuedEvent);
 }

 public void Process(RouteConfirmed confirmed)
 {
 var commandIssuedEvent = new CommandIssuedEvent(
 command: new BookFlights(_route, _parameters)
);

 _events.Append(confirmed);
 _events.Append(commandIssuedEvent);
 }

 public void Process(RouteRejected rejected)
 {
 var commandIssuedEvent = new CommandIssuedEvent(
 command: new RequestRerouting(_traveler, _route)
);

 _events.Append(rejected);
 _events.Append(commandIssuedEvent);
 }

 public void Process(ReroutingConfirmed confirmed)
 {
 _rejectedRoutes.Append(route);
 _route = _routing.CalculateAltRoute(destination,
 parameters, rejectedRoutes);
 var routeGenerated = new RouteGeneratedEvent(
 BookingId: _id,
 Route: _route);

 var commandIssuedEvent = new CommandIssuedEvent(
 command: new RequestEmployeeApproval(_traveler, _route)
);

 _events.Append(confirmed);
 _events.Append(routeGenerated);
 _events.Append(commandIssuedEvent);
 }

 public void Process(FlightBooked booked)
 {
 var commandIssuedEvent = new CommandIssuedEvent(
 command: new BookHotel(_destination, _parameters)
);

 _events.Append(booked);
 _events.Append(commandIssuedEvent);
 }

Integrating Aggregates | 153

 ...
}

In this example, the process manager has its explicit ID and persistent state, describ‐
ing the trip that has to be booked. As in the earlier example of a saga pattern, the pro‐
cess manager subscribes to events that control the workflow (RouteConfirmed,
RouteRejected, ReroutingConfirmed, etc.), and it instantiates events of type Command
Issued Event that will be processed by an outbox relay to execute the actual
commands.

Conclusion
In this chapter, you learned the different patterns for integrating a system’s compo‐
nents. The chapter began by exploring patterns for model translations that can be
used to implement anticorruption layers or open-host services. We saw that transla‐
tions can be handled on the fly or can follow a more complex logic, requiring state
tracking.

The outbox pattern is a reliable way to publish aggregates’ domain events. It ensures
that domain events are always going to be published, even in the face of different pro‐
cess failures.

The saga pattern can be used to implement simple cross-component business pro‐
cesses. More complex business processes can be implemented using the process man‐
ager pattern. Both patterns rely on asynchronous reactions to domain events and the
issuing of commands.

Exercises
1. Which bounded context integration pattern requires implementation of model

transformation logic?
a. Conformist
b. Anticorruption layer
c. Open-host service
d. B and C

2. What is the goal of the outbox pattern?
a. Decouple messaging infrastructure from the system’s business logic layer
b. Reliably publish messages
c. Support implementation of the event-sourced domain model pattern
d. A and C

154 | Chapter 9: Communication Patterns

3. Apart from publishing messages to a message bus, what are other possible use
cases for the outbox pattern?

4. What are the differences between the saga and process manager patterns?
a. A process manager requires explicit instantiation, while a saga is executed

when a relevant domain event is published.
b. Contrary to a process manager, a saga never requires persistence of its execu‐

tion state.
c. A saga requires the components it manipulates to implement the event sourc‐

ing pattern, while a process manager doesn’t.
d. The process manager pattern is suitable for complex business workflows.
e. A and D are correct.

Exercises | 155

PART III

Applying Domain-Driven
Design in Practice

In Parts I and II, we discussed domain-driven design tools for making strategic and
tactical design decisions. In this part of the book, we move from theory to practice.
You will learn to apply domain-driven design in real-life projects.

• Chapter 10 merges what we discussed about strategic and tactical design into
simple rules of thumb that streamline the process of making design decisions.
You will learn to quickly identify patterns that match the business domain’s com‐
plexity and needs.

• In Chapter 11, we will look at domain-driven design from a different perspective.
Designing a great solution is important, but not enough. We have to keep it in
shape as the project evolves through time. In this chapter, you will learn to apply
domain-driven design tools to maintain and evolve software design decisions
over time.

• Chapter 12 introduces EventStorming: a hands-on activity that streamlines the
process of discovering domain knowledge and building a ubiquitous language.

• Chapter 13 concludes Part III with a selection of tips and tricks for “gently” intro‐
ducing and incorporating domain-driven design patterns and practices in
brownfield projects—the kinds of projects we work on the most.

1 Gigerenzer, G., Todd, P. M., & ABC Research Group (Research Group, Max Planck Institute, Germany).
(1999). Simple Heuristics That Make Us Smart. New York: Oxford University Press.

CHAPTER 10

Design Heuristics

“It depends” is the correct answer to almost any question in software engineering, but
not really practical. In this chapter, we will explore what “it” depends on.

In Part I of the book, you learned domain-driven design tools for analyzing business
domains and making strategic design decisions. In Part II, we explored tactical design
patterns: the different ways to implement business logic, organize system architec‐
ture, and establish communication between a system’s components. This chapter
bridges Parts I and II. You will learn heuristics for applying analysis tools to drive var‐
ious software design decisions: that is, (business) domain-driven (software) design.

But first, since this chapter is about design heuristics, let’s start by defining the term
heuristic.

Heuristic
A heuristic is not a hard rule that is guaranteed and mathematically proven to be cor‐
rect in 100% of cases. Rather, it’s a rule of thumb: not guaranteed to be perfect, yet
sufficient for one’s immediate goals. In other words, using heuristics is an effective
problem-solving approach that ignores the noise inherent in many cues, focusing
instead on the “swamping forces” reflected in the most important cues.1

The heuristics presented in this chapter focus on the essential properties of the differ‐
ent business domains and on the essence of the problems addressed by the various
design decisions.

159

2 Chapter 11 is dedicated to the interplay between bounded contexts and microservices.

Bounded Contexts
As you’ll recall from Chapter 3, both wide and narrow boundaries could fit the defi‐
nition of a valid bounded context encompassing a consistent ubiquitous language.
But still, what is the optimal size of a bounded context? This question is especially
important in light of the frequent equation of bounded contexts with microservices.2

Should we always strive for the smallest possible bounded contexts? As my friend
Nick Tune says:

There are many useful and revealing heuristics for defining the boundaries of a service.
Size is one of the least useful.

Rather than making the model a function of the desired size—optimizing for small
bounded contexts—it’s much more effective to do the opposite: treat the bounded
context’s size as a function of the model it encompasses.

Software changes affecting multiple bounded contexts are expensive and require lots
of coordination, especially if the affected bounded contexts are implemented by dif‐
ferent teams. Such changes that are not encapsulated in a single bounded context sig‐
nal ineffective design of the contexts’ boundaries. Unfortunately, refactoring bounded
context boundaries is an expensive undertaking, and in many cases, the ineffective
boundaries remain unattended and end up accumulating technical debt (see
Figure 10-1).

Figure 10-1. A change affecting multiple bounded contexts

Changes that invalidate the bounded contexts’ boundaries typically occur when the
business domain is not well known or the business requirements change frequently.
As you learned in Chapter 1, both volatility and uncertainty are the properties of core

160 | Chapter 10: Design Heuristics

subdomains, especially at the early stages of implementation. We can use it as a heu‐
ristic for designing bounded context boundaries.

Broad bounded context boundaries, or those that encompass multiple subdomains,
make it safer to be wrong about the boundaries or the models of the included subdo‐
mains. Refactoring logical boundaries is considerably less expensive than refactoring
physical boundaries. Hence, when designing bounded contexts, start with wider
boundaries. If required, decompose the wide boundaries into smaller ones as you
gain domain knowledge.

This heuristic applies mainly to bounded contexts encompassing core subdomains, as
both generic and supporting subdomains are more formularized and much less vola‐
tile. When creating a bounded context that contains a core subdomain, you can pro‐
tect yourself against unforeseen changes by including other subdomains that the core
subdomain interacts with most often. This can be other core subdomains, or even
supporting and generic subdomains, as shown in Figure 10-2.

Figure 10-2. Wide bounded context boundaries

Business Logic Implementation Patterns
In Chapters 5–7, where we discussed business logic in detail, you learned four differ‐
ent ways to model business logic: the transaction script, active record, domain model,
and event-sourced domain model patterns.

Both the transaction script and active record patterns are better suited for subdo‐
mains with simple business logic: supporting subdomains or integrating a third-party
solution for a generic subdomain, for example. The difference between the two pat‐
terns is the complexity of the data structures. The transaction script pattern can be

Business Logic Implementation Patterns | 161

used for simple data structures, while the active record pattern helps to encapsulate
the mapping of complex data structures to the underlying database.

The domain model and its variant, the event-sourced domain model, lend themselves
to subdomains that have complex business logic: core subdomains. Core subdomains
that deal with monetary transactions, are obligated by law to provide an audit log, or
require deep analytics of the system’s behavior are better addressed by the event-
sourced domain model.

With all of this in mind, an effective heuristic for choosing the appropriate business
logic implementation pattern is to ask the following questions:

• Does the subdomain track money or other monetary transactions or have to pro‐
vide a consistent audit log, or is deep analysis of its behavior required by the
business? If so, use the event-sourced domain model. Otherwise...

• Is the subdomain’s business logic complex? If so, implement a domain model.
Otherwise...

• Does the subdomain include complex data structures? If so, use the active record
pattern. Otherwise...

• Implement a transaction script.

Since there is a strong relationship between a subdomain’s complexity and its type, we
can visualize the heuristics using a domain-driven decision tree, as shown in
Figure 10-3.

Figure 10-3. Decision tree for business logic implementation pattern

We can use another heuristic to define the difference between complex and simple
business logic. The line between these two types of business logic is not terribly sharp,
but it’s useful. In general, complex business logic includes complicated business rules,

162 | Chapter 10: Design Heuristics

invariants, and algorithms. A simple approach mainly revolves around validating the
inputs. Another heuristic for evaluating complexity concerns the complexity of the
ubiquitous language itself. Is it mainly describing CRUD operations, or is it describ‐
ing more complicated business processes and rules?

Deciding on the business logic implementation pattern according to the complexity
of the business logic and its data structures is a way to validate your assumptions
about the subdomain type. Suppose you consider it to be a core subdomain, but the
best pattern is active record or transaction script. Or suppose what you believe is a
supporting subdomain requires a domain model or an event-sourced domain model;
in this case, it’s an excellent opportunity to revisit your assumptions about the subdo‐
main and business domain in general. Remember, a core subdomain’s competitive
advantage is not necessarily technical.

Architectural Patterns
In Chapter 8, you learned about the three architectural patterns: layered architecture,
ports & adapters, and CQRS.

Knowing the intended business logic implementation pattern makes choosing an
architectural pattern straightforward:

• The event-sourced domain model requires CQRS. Otherwise, the system will be
extremely limited in its data querying options, fetching a single instance by its ID
only.

• The domain model requires the ports & adapters architecture. Otherwise, the
layered architecture makes it hard to make aggregates and value objects ignorant
of persistence.

• The Active record pattern is best accompanied by a layered architecture with the
additional application (service) layer. This is for the logic controlling the active
records.

• The transaction script pattern can be implemented with a minimal layered archi‐
tecture, consisting of only three layers.

The only exception to the preceding heuristics is the CQRS pattern. CQRS can be
beneficial not only for the event-sourced domain model, but also for any other pat‐
tern if the subdomain requires representing its data in multiple persistent models.

Figure 10-4 shows a decision tree for choosing an architectural pattern based on these
heuristics.

Architectural Patterns | 163

Figure 10-4. Architectural pattern decision tree

Testing Strategy
The knowledge of both the business logic implementation pattern and the architec‐
tural pattern can be used as a heuristic for choosing a testing strategy for the code‐
base. Take a look at the three testing strategies shown in Figure 10-5.

Figure 10-5. Testing strategies

164 | Chapter 10: Design Heuristics

The difference between the testing strategies in the figure is their emphasis on the dif‐
ferent types of tests: unit, integration, and end-to-end. Let’s analyze each strategy and
the context in which each pattern should be used.

Testing Pyramid
The classic testing pyramid emphasizes unit tests, fewer integration tests, and even
fewer end-to-end tests. Both variants of the domain model patterns are best
addressed with the testing pyramid. Aggregates and value objects make perfect units
for effectively testing the business logic.

Testing Diamond
The testing diamond focuses the most on integration tests. When the active record
pattern is used, the system’s business logic is, by definition, spread across both the
service and business logic layers. Therefore, to focus on integrating the two layers, the
testing pyramid is the more effective choice.

Reversed Testing Pyramid
The reversed testing pyramid attributes the most attention to end-to-end tests: verify‐
ing the application’s workflow from beginning to end. Such an approach best fits
codebases implementing the transaction script pattern: the business logic is simple
and the number of layers is minimal, making it more effective to verify the end-to-
end flow of the system.

Figure 10-6 shows the testing strategy decision tree.

Figure 10-6. Testing strategy decision tree

Testing Strategy | 165

Tactical Design Decision Tree
The business logic patterns, architectural patterns, and testing strategy heuristics can
be unified and summarized with a tactical design decision tree, as depicted in
Figure 10-7.

Figure 10-7. Tactical design decision tree

As you can see, identifying subdomains types and following the decision tree gives
you a solid starting point for making the essential design decisions. That said, it’s
important to reiterate that these are heuristics, not hard rules. There is an exception
to every rule, let alone heuristics, that by definition are not intended to be correct in
100% of the cases.

166 | Chapter 10: Design Heuristics

The decision tree is based on my preference to use the simple tools, and resort to the
advanced patterns—domain model, event-sourced domain model, CQRS, and so
on—only when absolutely necessary. On the other hand, I’ve met teams that have a
lot of experience implementing the event-sourced domain model and therefore use it
for all their subdomains. For them it’s simpler than using different patterns. Can I
recommend this approach to everyone? Of course not. In the companies I have
worked for or consulted, the heuristics-based approach was more efficient than using
the same solution for every problem.

At the end of the day, it depends on your specific context. Use the decision tree illus‐
trated in Figure 10-7, and the design heuristics it is based on, as guiding principles,
but not as a replacement for critical thinking. If you find that alternative heuristics fit
you better, feel free to alter the guiding principles or build your own decision tree
altogether.

Conclusion
This chapter connected Parts I and II of the book to a heuristic-based decision frame‐
work. You learned how to apply the knowledge of the business domain and its subdo‐
mains to drive technical decisions: choosing safe bounded context boundaries,
modeling the application’s business logic, and determining the architectural pattern
needed to orchestrate the interactions of each bounded context’s internal compo‐
nents. Finally, we took a detour into a different topic that is often a subject of passion‐
ate arguments—what kind of test is more important—and used the same framework
to prioritize the different tests according to the business domain.

Making design decisions is important, but even more so is to verify the decisions’ val‐
idity over time. In the next chapter, we will shift our discussion to the next phase of
the software design lifecycle: the evolution of design decisions.

Exercises
1. Assume you are implementing WolfDesk’s (see Preface) ticket lifecycle manage‐

ment system. It’s a core subdomain that requires deep analysis of its behavior so
that the algorithm can be further optimized over time. What would be your ini‐
tial strategy implementing the business logic and the component’s architecture?
What would be your testing strategy?

2. What would be your design decisions for WolfDesk’s support agents’ shift man‐
agement module?

3. To ease the process of managing agents’ shifts, you want to use an external pro‐
vider of public holidays for different geographical regions. The process works by
periodically calling the external provider and fetching the dates and names of

Conclusion | 167

forthcoming public holidays. What business logic and architectural patterns
would you use to implement the integration? How would you test it?

4. Based on your experience, what other aspects of the software development pro‐
cess can be included in the heuristics-based decision tree presented in this
chapter?

168 | Chapter 10: Design Heuristics

CHAPTER 11

Evolving Design Decisions

In the modern, fast-paced world we inhabit, companies cannot afford to be lethargic.
To keep up with the competition, they have to continually change, evolve, and even
reinvent themselves over time. We cannot ignore this fact when designing systems,
especially if we intend to design software that’s well adapted to the requirements of its
business domain. When changes are not managed properly, even the most sophistica‐
ted and thoughtful design will eventually become a nightmare to maintain and
evolve. This chapter discusses how changes in a software project’s environment can
affect design decisions and how to evolve the design accordingly. We will examine the
four most common vectors of change: business domain, organizational structure,
domain knowledge, and growth.

Changes in Domains
In Chapter 2, you’ve learned the three types of business subdomains and how they are
different from one another:

Core
Activities the company is performing differently from its competitors to gain a
competitive advantage

Supporting
Things the company is doing differently from its competitors, but that do not
provide a competitive edge

Generic
Things all companies do in the same way

169

In the previous chapters, you saw that the type of subdomain at play affects strategic
and tactical design decisions:

• How to design the bounded contexts’ boundaries
• How to orchestrate integration between the contexts
• Which design patterns to use to accommodate the complexity of the business

logic

To design software that is driven by the business domain’s needs, it’s crucial to iden‐
tify the business subdomains and their types. However, that’s not the whole story. It’s
equally important to be alert to the evolution of the subdomains. As an organization
grows and evolves, it’s not unusual for some of its subdomains to morph from one
type to another. Let’s look at some examples of such changes.

Core to Generic
Imagine that an online retail company called BuyIT has been implementing its own
order delivery solution. It developed an innovative algorithm to optimize its couriers’
delivery routes and thus is able to charge lower delivery fees than its competitors.

One day, another company—DeliverIT—disrupts the delivery industry. It claims it
has solved the “traveling salesman” problem and provides path optimization as a ser‐
vice. Not only is DeliverIT’s optimization more advanced, it is offered at a fraction of
the price that it costs BuyIT to perform the same task.

From BuyIT’s perspective, once DeliverIT’s solution became available as an off-the-
shelf product, its core subdomain turned into a generic subdomain. As a result, the
optimal solution became available to all of BuyIT’s competitors. Without massive
investments in research and development, BuyIT can no longer gain a competitive
advantage in the path optimization subdomain. What was previously considered a
competitive advantage for BuyIT has become a commodity available to all of its
competitors.

Generic to Core
Since its inception, BuyIT has been using an off-the-shelf solution to manage its
inventory. However, its business intelligence reports are continuously showing inade‐
quate predictions of its customers’ demands. Consequently, BuyIT fails to replenish
its stock of the most popular products and is wasting warehouse real estate on the
unpopular products. After evaluating a few alternative inventory management solu‐
tions, BuyIT’s management team makes the strategic decision to invest in designing
and building an in-house system. This in-house solution will consider the intricacies
of the products BuyIT sells and make better predictions of customers’ demands.

170 | Chapter 11: Evolving Design Decisions

BuyIT’s decision to replace the off-the-shelf solution with its own implementation has
turned inventory management from a generic subdomain into a core subdomain:
successful implementation of the functionality will provide BuyIT additional compet‐
itive advantage over its competitors—the competitors will remain “stuck” with the
generic solution and will not be able to use the advanced demand prediction algo‐
rithms invented and developed by BuyIT.

A real-life textbook example of a company turning a generic subdomain into a core
subdomain is Amazon. Like all service providers, Amazon needed an infrastructure
on which to run its services. The company was able to “reinvent” the way it managed
its physical infrastructure and later even turned it into a profitable business: Amazon
Web Services.

Supporting to Generic
BuyIT’s marketing department implements a system for managing the vendors it
works with and their contracts. There is nothing special or complex about the
system—it’s just some CRUD user interfaces for entering data. In other words, it is a
typical supporting subdomain.

However, a few years after BuyIT began implementing the in-house solution, an open
source contracts management solution came out. The open source project imple‐
ments the same functionality as the existing solution and has more advanced features,
like OCR and full-text search. These additional features had been on BuyIT’s backlog
for a long time but were never prioritized because of their low business impact.
Hence, the company decides to ditch the in-house solution in favor of integrating the
open source solution. In doing so, the document management subdomain turns from
a supporting into a generic subdomain.

Supporting to Core
A supporting subdomain can also turn into a core subdomain—for example, if a
company finds a way to optimize the supporting logic in such a way that it either
reduces costs or generates additional profits.

The typical symptom of such a transformation is the increasing complexity of the
supporting subdomain’s business logic. Supporting subdomains, by definition, are
simple, mainly resembling CRUD interfaces or ETL processes. However, if the busi‐
ness logic becomes more complicated over time, there should be a reason for the
additional complexity. If it doesn’t affect the company’s profits, why would it become
more complicated? That’s accidental business complexity. On the other hand, if it
enhances the company’s profitability, it’s a sign of a supporting subdomain becoming
a core subdomain.

Changes in Domains | 171

Core to Supporting
A core subdomain can, over time, become a supporting subdomain. This can happen
when the subdomain’s complexity isn’t justified. In other words, it’s not profitable. In
such cases, the organization may decide to cut the extraneous complexity, leaving the
minimum logic needed to support implementation of other subdomains.

Generic to Supporting
Finally, for the same reason as a core subdomain, a generic subdomain can turn into a
supporting one. Going back to the example of BuyIT’s document management sys‐
tem, assume the company has decided that the complexity of integrating the open
source solution doesn’t justify the benefits and has resorted back to the in-house sys‐
tem. As a result, the generic subdomain has turned into a supporting subdomain.

The changes in subdomains we just discussed are demonstrated in Figure 11-1.

Figure 11-1. Subdomain type change factors

Strategic Design Concerns
A change in a subdomain’s type directly affects its bounded context and, conse‐
quently, corresponding strategic design decisions. As you learned in Chapter 4, differ‐
ent bounded context integration patterns accommodate the different subdomain
types. The core subdomains have to protect their models by using anticorruption lay‐
ers and have to protect consumers from frequent changes in the implementation
models by using published languages (OHS).

172 | Chapter 11: Evolving Design Decisions

Another integration pattern that is affected by such changes is the separate ways pat‐
tern. As you saw earlier, teams can use this pattern for supporting and generic subdo‐
mains. If the subdomain morphs into a core subdomain, duplicating its functionality
by multiple teams is no longer acceptable. Hence, the teams have no choice but to
integrate their implementations. The customer–supplier relationship will make the
most sense in this case, since the core subdomain will only be implemented by one
team.

From an implementation strategy standpoint, core and supporting subdomains differ
in how they can be implemented. Supporting subdomains can be outsourced or used
as “training wheels” for new hires. Core subdomains must be implemented in-house,
as close as possible to the sources of domain knowledge. Therefore, when a support‐
ing subdomain turns into a core subdomain, its implementation should be moved in-
house. The same logic works the other way around. If a core subdomain turns into a
supporting subdomain, it’s possible to outsource the implementation to let the in-
house R&D teams concentrate on the core subdomains.

Tactical Design Concerns
The main indicator of a change in a subdomain’s type is the inability of the existing
technical design to support current business needs.

Let’s go back to the example of a supporting subdomain becoming a core subdomain.
Supporting subdomains are implemented with relatively simple design patterns for
modeling the business logic: namely, the transaction script or active record pattern.
As you saw in Chapter 5, these patterns are not a good fit for business logic involving
complex rules and invariants.

If complicated rules and invariants are added to the business logic over time, the
codebase will become increasingly complex as well. It will be painful to add the new
functionality, as the design won’t support the new level of complexity. This “pain” is
an important signal. Use it as a call to reassess the business domain and design
choices.

The need for change in the implementation strategy is nothing to fear. It’s normal. We
cannot foresee how a business will evolve down the road. We also cannot apply the
most elaborate design patterns for all types of subdomains; that would be wasteful
and ineffective. We have to choose the most appropriate design and evolve it when
needed.

If the decision for how to model the business logic is made consciously, and you are
aware of all the possible design choices and the differences between them, migrating
from one design pattern to another is not that troublesome. The following subsec‐
tions highlight a few examples.

Tactical Design Concerns | 173

Transaction Script to Active Record
At their core, both the transaction script and active record patterns are based on the
same principle: the business logic is implemented as a procedural script. The differ‐
ence between them is how the data structures are modeled: the active record pattern
introduces the data structures to encapsulate the complexity of mapping them to the
storage mechanism.

As a result, when working with data becomes challenging in a transaction script,
refactor it into the active record pattern. Look for complicated data structures and
encapsulate them in active record objects. Instead of accessing the database directly,
use active records to abstract its model and structure.

Active Record to Domain Model
If the business logic that manipulates active records becomes complex and you notice
more and more cases of inconsistencies and duplications, refactor the implementa‐
tion to the domain model pattern.

Start by identifying value objects. What data structures can be modeled as immutable
objects? Look for the related business logic, and make it a part of the value objects as
well.

Next, analyze the data structures and look for transactional boundaries. To ensure
that all state-modifying logic is explicit, make all of the active records’ setters private
so that they can only be modified from inside the active record itself. Obviously,
expect the compilation to fail; however, the compilation errors will make it clear
where the state-modifying logic resides. Refactor it into the active record’s bound‐
aries. For example:

public class Player
{
 public Guid Id { get; set; }
 public int Points { get; set; }
}

public class ApplyBonus
{
 ...

 public void Execute(Guid playerId, byte percentage)
 {
 var player = _repository.Load(playerId);
 player.Points *= 1 + percentage/100.0;
 _repository.Save(player);
 }
}

174 | Chapter 11: Evolving Design Decisions

In the following code, you can see the first steps toward the transformation. The code
won’t compile yet, but the errors will make it explicit where external components are
controlling the object’s state:

public class Player
{
 public Guid Id { get; private set; }
 public int Points { get; private set; }
}

public class ApplyBonus
{
 ...

 public void Execute(Guid playerId, byte percentage)
 {
 var player = _repository.Load(playerId);
 player.Points *= 1 + percentage/100.0;
 _repository.Save(player);
 }
}

In the next iteration, we can move that logic inside the active record’s boundary:

public class Player
{
 public Guid Id { get; private set; }
 public int Points { get; private set; }

 public void ApplyBonus(int percentage)
 {
 this.Points *= 1 + percentage/100.0;
 }
}

When all the state-modifying business logic is moved inside the boundaries of the
corresponding objects, examine what hierarchies are needed to ensure strongly con‐
sistent checking of business rules and invariants. Those are good candidates for
aggregates. Keeping in mind the aggregate design principles we discussed in Chap‐
ter 6, look for the smallest transaction boundaries, that is, the smallest amount of data
that you need to keep strongly consistent. Decompose the hierarchies along those
boundaries. Make sure the external aggregates are only referenced by their IDs.

Finally, for each aggregate, identify its root, or the entry point for its public interface.
Make the methods of all the other internal objects in the aggregate private and only
callable from within the aggregate.

Tactical Design Concerns | 175

Domain Model to Event-Sourced Domain Model
Once you have a domain model with properly designed aggregate boundaries, you
can transition it to the event-sourced model. Instead of modifying the aggregate’s data
directly, model the domain events needed to represent the aggregate’s lifecycle.

The most challenging aspect of refactoring a domain model into an event-sourced
domain model is the history of the existing aggregates: migrating the “timeless” state
into the event-based model. Since the fine-grained data representing all the past state
changes is not there, you have to either generate past events on a best-effort basis or
model migration events.

Generating Past Transitions
This approach entails generating an approximate stream of events for each aggregate
so that the stream of events can be projected into the same state representation as in
the original implementation. Consider the example you saw in Chapter 7, as repre‐
sented in Table 11-1.

Table 11-1. A state-based representation of the aggregate’s data

lead-
in

first-
name

last-
name

phone_number status last-
contacted-on

order-placed-
on

converted-on followup-
on

12 Shauna Mercia 555-4753 converted 2020-05-27T
12:02:12.51Z

2020-05-27T
12:02:12.51Z

2020-05-27T
12:02:12.51Z

null

We can assume from the business logic perspective that the instance of the aggregate
has been initialized; then the person has been contacted, an order has been placed,
and finally, since the status was “converted,” the payment for the order has been con‐
firmed. The following set of events can represent all of these assumptions:

{
 "lead-id": 12,
 "event-id": 0,
 "event-type": "lead-initialized",
 "first-name": "Shauna",
 "last-name": "Mercia",
 "phone-number": "555-4753"
},
{
 "lead-id": 12,
 "event-id": 1,
 "event-type": "contacted",
 "timestamp": "2020-05-27T12:02:12.51Z"
},
{
 "lead-id": 12,
 "event-id": 2,

176 | Chapter 11: Evolving Design Decisions

 "event-type": "order-submitted",
 "payment-deadline": "2020-05-30T12:02:12.51Z",
 "timestamp": "2020-05-27T12:02:12.51Z"
},
{
 "lead-id": 12,
 "event-id": 3,
 "event-type": "payment-confirmed",
 "status": "converted",
 "timestamp": "2020-05-27T12:38:44.12Z"
}

When applied one by one, these events can be projected into the exact state represen‐
tation as in the original system. The “recovered” events can be easily tested by projec‐
ting the state and comparing it to the original data.

However, it’s important to keep in mind the disadvantage of this approach. The goal
of using event sourcing is to have a reliable, strongly consistent history of the aggre‐
gates’ domain events. When this approach is used, it’s impossible to recover the com‐
plete history of state transitions. In the preceding example, we don’t know how many
times the sales agent has contacted the person, and therefore, how many “contacted”
events we have missed.

Modeling Migration Events
The alternative approach is to acknowledge the lack of knowledge about past events
and explicitly model it as an event. Instead of recovering the events that may have led
to the current state, define a migration event and use it to initialize the event streams
of existing aggregate instances:

{
 "lead-id": 12,
 "event-id": 0,
 "event-type": "migrated-from-legacy",
 "first-name": "Shauna",
 "last-name": "Mercia",
 "phone-number": "555-4753",
 "status": "converted",
 "last-contacted-on": "2020-05-27T12:02:12.51Z",
 "order-placed-on": "2020-05-27T12:02:12.51Z",
 "converted-on": "2020-05-27T12:38:44.12Z",
 "followup-on": null
}

The advantage of this approach is that it makes the lack of past data explicit. At no
stage can someone mistakenly assume that the event stream captures all of the
domain events that happened during the aggregate instance’s lifecycle. The disadvan‐
tage is that the traces of the legacy system will remain in the event store forever. For
example, if you are using the CQRS pattern (and with the event-sourced domain

Tactical Design Concerns | 177

model you most likely will), the projections will always have to take into account the
migration events.

Organizational Changes
Another type of change that can affect a system’s design is a change in the organiza‐
tion itself. Chapter 4 looked at different patterns of integrating bounded contexts:
partnership, shared kernel, conformist, anticorruption layer, open-host service, and
separate ways. Changes in the organization’s structure can affect teams’ communica‐
tion and collaboration levels and, as a result, the ways the bounded contexts should
be integrated.

A trivial example of such change is growing development centers, as shown in
Figure 11-2. Since a bounded context can be implemented by only one team, adding
new development teams can cause the existing wider bounded context boundaries to
split into smaller ones so that each team can work on its own bounded context.

Figure 11-2. Splitting a wide bounded context to accommodate growing engineering
teams

Moreover, the organization’s development centers are often located in different geo‐
graphical locations. When the work on the existing bounded contexts is shifted to
another location, it may negatively impact the teams’ collaboration. As a result, the
bounded contexts’ integration patterns have to evolve accordingly, as described in the
following scenarios.

178 | Chapter 11: Evolving Design Decisions

Partnership to Customer–Supplier
The partnership pattern assumes there is strong communication and collaboration
among teams. As time goes by, that might cease to be the case; for example, when
work on one of the bounded contexts is moved to a distant development center. Such
a change will negatively affect the teams’ communication, and it may make sense to
move away from the partnership pattern toward a customer–supplier relationship.

Customer–Supplier to Separate Ways
Unfortunately, it’s not uncommon for teams to have severe communication problems.
The issues might be caused by geographical distance or organizational politics. Such
teams may experience more and more integration issues over time. At some point, it
may become more cost-effective to duplicate the functionality instead of continu‐
ously chasing one another’s tails.

Domain Knowledge
As you’ll recall, the core tenet of domain-driven design is that domain knowledge is
essential for designing a successful software system. Acquiring domain knowledge is
one of the most challenging aspects of software engineering, especially for the core
subdomains. A core subdomain’s logic is not only complicated, but also expected to
change often. Moreover, modeling is an ongoing process. Models have to improve as
more knowledge of the business domain is acquired.

Many times, the business domain’s complexity is implicit. Initially, everything seems
simple and straightforward. The initial simplicity is often deceptive and it quickly
morphs into complexity. As more functionality is added, more and more edge cases,
invariants, and rules are discovered. Such insights are often disruptive, requiring
rebuilding the model from the ground up, including the boundaries of the bounded
contexts, aggregates, and other implementation details.

From a strategic design standpoint, it’s a useful heuristic to design the bounded con‐
texts’ boundaries according to the level of domain knowledge. The cost of decompos‐
ing a system into bounded contexts that, over time, turn out to be incorrect can be
high. Therefore, when the domain logic is unclear and changes often, it makes sense
to design the bounded contexts with broader boundaries. Then, as domain knowl‐
edge is discovered over time and changes to the business logic stabilize, those broad
bounded contexts can be decomposed into contexts with narrower boundaries, or
microservices. We will discuss the interplay between bounded contexts and microser‐
vices in more detail in Chapter 14.

When new domain knowledge is discovered, it should be leveraged to evolve the
design and make it more resilient. Unfortunately, changes in domain knowledge are
not always positive: domain knowledge can be lost. As time goes by, documentation

Domain Knowledge | 179

1 Brian Foote and Joseph Yoder. Big Ball of Mud. Fourth Conference on Patterns Languages of Programs
(PLoP ’97/EuroPLoP ’97), Monticello, Illinois, September 1997.

often becomes stale, people who were working on the original design leave the com‐
pany, and new functionality is added in an ad hoc manner until, at one point, the
codebase gains the dubious status of a legacy system. It’s vital to prevent such degra‐
dation of domain knowledge proactively. An effective tool for recovering domain
knowledge is the EventStorming workshop, which is the topic of the next chapter.

Growth
Growth is a sign of a healthy system. When new functionality is continuously added,
it’s a sign that the system is successful: it brings value to its users and is expanded to
further address users’ needs and keep up with competing products. But growth has a
dark side. As a software project grows, its codebase can grow into a big ball of mud:

A big ball of mud is a haphazardly structured, sprawling, sloppy, duct-tape-and-baling-
wire, spaghetti-code jungle. These systems show unmistakable signs of unregulated
growth, and repeated, expedient repair.

—Brian Foote and Joseph Yoder1

The unregulated growth that leads to big balls of mud results from extending a soft‐
ware system’s functionality without re-evaluating its design decisions. Growth blows
up the components’ boundaries, increasingly extending their functionality. It’s crucial
to examine the effects of growth on design decisions, especially since many domain-
driven design tools are all about setting boundaries: business building blocks (subdo‐
mains), model (bounded contexts), immutability (value objects), or consistency
(aggregates).

The guiding principle for dealing with growth-driven complexity is to identify and
eliminate accidental complexity: the complexity caused by outdated design decisions.
The essential complexity, or inherent complexity of the business domain, should be
managed using domain-driven design tools and practices.

When we discuss DDD in earlier chapters, we follow the process of first analyzing the
business domain and its strategic components, designing the relevant models of the
business domain, and then designing and implementing the models in code. Let’s fol‐
low the same script for dealing with growth-driven complexity.

Subdomains
As we discussed in Chapter 1, the subdomains’ boundaries can be challenging to
identify, and as a result, instead of striving for boundaries that are perfect, we must
strive for boundaries that are useful. That is, the subdomains should allow us to

180 | Chapter 11: Evolving Design Decisions

identify components of different business value and use the appropriate tools to
design and implement the solution.

As the business domain grows, the subdomains’ boundaries can become even more
blurred, making it harder to identify cases of a subdomain spanning multiple, finer-
grained subdomains. Hence, it’s important to revisit the identified subdomains and
follow the heuristic of coherent use cases (sets of use cases working on the same set of
data) to try to identify where to split a subdomain (see Figure 11-3).

Figure 11-3. Optimizing subdomains’ boundaries to accommodate growth

If you are able to identify finer-grained subdomains of different types, this is an
important insight that will allow you to manage the business domain’s essential com‐
plexity. The more precise the information about the subdomains and their types is,
the more effective you will be at choosing technical solutions for each subdomain.

Identifying inner subdomains that can be extracted and made explicit is especially
important for core subdomains. We should always aim to distill core subdomains as
much as possible from all others so that we can invest our effort where it matters
most from a business strategy perspective.

Bounded Contexts
In Chapter 3, you learned that the bounded context pattern allows us to use different
models of the business domain. Instead of building a “jack of all trades, master of
none” model, we can build multiple models, each focused on solving a specific
problem.

As a project evolves and grows, it’s not uncommon for the bounded contexts to lose
their focus and accumulate logic related to different problems. That’s accidental com‐
plexity. As with subdomains, it’s crucial to revisit the bounded contexts’ boundaries
from time to time. Always look for opportunities to simplify the models by extracting
bounded contexts that are laser focused at solving specific problems.

Growth can also make existing implicit design issues explicit. For example, you may
notice that a number of bounded contexts become increasingly “chatty” over time,
unable to complete any operation without calling another bounded context. That can
be a strong signal of an ineffective model and should be addressed by redesigning the
bounded contexts’ boundaries to increase their autonomy.

Growth | 181

Aggregates
When we discussed the domain model pattern in Chapter 6, we used the following
guiding principle for designing aggregates’ boundaries:

The rule of thumb is to keep the aggregates as small as possible and include only
objects that are required to be in a strongly consistent state by the business domain.

As the system’s business requirements grow, it can be “convenient” to distribute the
new functionalities among the existing aggregates, without revisiting the principle of
keeping aggregates small. If an aggregate grows to include data that is not needed to
be strongly consistent by all of its business logic, again, that’s accidental complexity
that has to be eliminated.

Extracting business functionality into a dedicated aggregate not only simplifies the
original aggregate, but potentially can simplify the bounded context it belongs to.
Often, such refactoring uncovers an additional hidden model that, once made
explicit, should be extracted into a different bounded context.

Conclusion
As Heraclitus famously said, the only constant in life is change. Businesses are no
exception. To stay competitive, companies constantly strive to evolve and reinvent
themselves. Those changes should be treated as first-class elements of the design
process.

As the business domain evolves, changes to its subdomains must be identified and
acted on in the system’s design. Make sure your past design decisions are aligned with
the current state of the business domain and its subdomains. When needed, evolve
your design to better match the current business strategy and needs.

It’s also important to recognize that changes in the organizational structure can affect
communication and cooperation among teams and the ways their bounded contexts
can be integrated. Learning about the business domain is an ongoing process. As
more domain knowledge is discovered over time, it has to be leveraged to evolve stra‐
tegic and tactical design decisions.

Finally, software growth is a desired type of change, but when it is not managed cor‐
rectly, it may have disastrous effects on the system design and architecture. Therefore:

• When a subdomain’s functionality is expanded, try to identify more finer-grained
subdomain boundaries that will enable you to make better design decisions.

• Don’t allow a bounded context to become a “jack of all trades.” Make sure the
models encompassed by bounded contexts are focused to solve specific problems.

182 | Chapter 11: Evolving Design Decisions

• Make sure your aggregates’ boundaries are as small as possible. Use the heuristic
of strongly consistent data to detect possibilities to extract business logic into
new aggregates.

My final words of wisdom on the topic are to continuously check the different
boundaries for signs of growth-driven complexity. Act to eliminate accidental com‐
plexities, and use domain-driven design tools to manage the business domain’s essen‐
tial complexity.

Exercises
1. What kind of changes in bounded context integration are often caused by organi‐

zational growth?
a. Partnership to customer–supplier (conformist, anticorruption layer, or open-

host service)
b. Anticorruption layer to open-host service
c. Conformist to shared kernel
d. Open-host service to shared kernel

2. Assume that the bounded contexts’ integration shifts from a conformist relation‐
ship to separate ways. What information can you deduce based on the change?
a. The development teams struggled to cooperate.
b. The duplicate functionality is either a supporting or a generic subdomain.
c. The duplicate functionality is a core subdomain.
d. A and B.
e. A and C.

3. What are the symptoms of a supporting subdomain becoming a core subdo‐
main?
a. It becomes easier to evolve the existing model and implement the new

requirements.
b. It becomes painful to evolve the existing model.
c. The subdomain changes at a higher frequency.
d. B and C.
e. None of the above.

Exercises | 183

4. What change results from discovering a new business opportunity?
a. A supporting subdomain turns into a core one.
b. A supporting subdomain turns into a generic one.
c. A generic subdomain turns into a core one.
d. A generic subdomain turns into a supporting one.
e. A and B.
f. A and C.

5. What change in the business strategy could turn one of WolfDesk’s (the fictitious
company described in the Preface) generic subdomains into a core subdomain?

184 | Chapter 11: Evolving Design Decisions

CHAPTER 12

EventStorming

In this chapter, we will take a break from discussing software design patterns and
techniques. Instead, we will focus on a low-tech modeling process called EventStorm‐
ing. This process brings together the core aspects of domain-driven design that we
covered in the preceding chapters.

You will learn the EventStorming process, how to facilitate an EventStorming work‐
shop, and how to leverage EventStorming to effectively share domain knowledge and
build a ubiquitous language.

What Is EventStorming?
EventStorming is a low-tech activity for a group of people to brainstorm and rapidly
model a business process. In a sense, EventStorming is a tactical tool for sharing busi‐
ness domain knowledge.

An EventStorming session has a scope: the business process that the group is interes‐
ted in exploring. The participants are exploring the process as a series of domain
events, represented by sticky notes, over a timeline. Step by step, the model is
enhanced with additional concepts—actors, commands, external systems, and
others—until all of its elements tell the story of how the business process works.

185

Who Should Participate in EventStorming?
Just keep in mind that the goal of the workshop is to learn as much as possible in the shortest
time possible. We invite key people to the workshop, and we don’t want to waste their valua‐
ble time.

—Alberto Brandolini, creator of the EventStorming workshop

Ideally, a diverse group of people should participate in the workshop. Indeed, anyone
related to the business domain in question can participate: engineers, domain experts,
product owners, testers, UI/UX designers, support personnel, and so on. As more
people with different backgrounds are involved, more knowledge will be discovered.

Take care not to make the group too big, however. Every participant should be able to
contribute to the process, but this can be challenging for groups of more than 10
participants.

What Do You Need for EventStorming?
EventStorming is considered a low-tech workshop because it is done using a pen and
paper—a lot of paper, actually. Let’s see what you need in order to facilitate an Event‐
Storming session:

Modeling space
First, you need a large modeling space. A whole wall covered with butcher paper
makes the best modeling space, as shown in Figure 12-1. A large whiteboard can
fit the purpose as well, but it has to be as big as possible—you will need all the
modeling space you can get.

Sticky notes
Next, you need lots of sticky notes of different colors. The notes will be used to
represent different concepts of the business domain, and every participant should
be able to add them freely, so make sure you have enough colors and enough for
everyone. The colors that are traditionally used for EventStorming are described
in the next section. It’s best to stick to these conventions, if possible, to be consis‐
tent with all of the currently available EventStorming books and trainings.

Markers
You’ll also need markers that you can use to write on the sticky notes. Again, sup‐
plies shouldn’t be a bottleneck for knowledge sharing—there should be enough
markers for all participants.

Snacks
A typical EventStorming session lasts about two to four hours, so bring some
healthy snacks for energy replenishment.

186 | Chapter 12: EventStorming

1 Of course, that’s not a hard rule. Leave a few chairs if some of the participants find it hard to be on their feet
for so long.

Room
Finally, you need a spacious room. Ensure there isn’t a huge table in the middle
that will prevent participants from moving freely and observing the modeling
space. Also, chairs are a big no-no for EventStorming sessions. You want people
to participate and share knowledge, not sit in a corner and zone out. Therefore, if
possible, take the chairs out of the room.1

Figure 12-1. Modeling space for EventStorming

The EventStorming Process
An EventStorming workshop is usually conducted in 10 steps. During each step, the
model is enriched with additional information and concepts.

Step 1: Unstructured Exploration
EventStorming starts with a brainstorm of the domain events related to the business
domain being explored. A domain event is something interesting that has happened
in the business. It’s important to formulate domain events in the past tense (see
Figure 12-2)—they are describing things that have already happened.

The EventStorming Process | 187

Figure 12-2. Unstructured exploration

During this step, all participants are grabbing a bunch of orange sticky notes, writing
down whatever domain events come to mind, and sticking them to the modeling
surface.

At this early stage, there is no need to worry about ordering events, or even about
redundancy. This step is all about brainstorming the possible things that can happen
in the business domain.

The group should continue generating domain events until the rate of adding new
ones slows significantly.

Step 2: Timelines
Next, the participants go over the generated domain events and organize them in the
order in which they occur in the business domain.

The events should start with the “happy path scenario”: the flow that describes a suc‐
cessful business scenario.

Once the “happy path” is done, alternative scenarios can be added—for example,
paths where errors are encountered or different business decisions are taken. The
flow branching can be expressed as two flows coming from the preceding event or
with arrows drawn on the modeling surface, as shown in Figure 12-3.

188 | Chapter 12: EventStorming

Figure 12-3. Flows of events

This step is also the time to fix incorrect events, remove duplicates, and of course,
add missing events if necessary.

Step 3: Pain Points
Once you have the events organized in a timeline, use this broad view to identify
points in the process that require attention. These can be bottlenecks, manual steps
that require automation, missing documentation, or missing domain knowledge.

It’s important to make these inefficiencies explicit so that it will be easy to return to
them as the EventStorming session progresses, or to address them afterward. The
pain points are marked with rotated (diamond) pink sticky notes, as illustrated in
Figure 12-4.

Figure 12-4. A diamond-shaped pink sticky note, which points to an aspect of the process
that requires attention: missing domain knowledge about how the airfare prices are com‐
pared during the booking process

The EventStorming Process | 189

Of course, this step is not the only opportunity to track pain points. As a facilitator,
be aware of the participants’ comments throughout the process. When an issue or a
concern is raised, document it as a pain point.

Step 4: Pivotal Events
Once you have a timeline of events augmented with pain points, look for significant
business events indicating a change in context or phase. These are called pivotal
events and are marked with a vertical bar dividing the events before and after the piv‐
otal event.

For example, “shopping cart initialized,” “order initialized,” “order shipped,” “order
delivered,” and “order returned” represent significant changes in the process of mak‐
ing an order, as shown in Figure 12-5.

Figure 12-5. Pivotal events denoting context changes in the flow of events

Pivotal events are an indicator of potential bounded context boundaries.

Step 5: Commands
Whereas a domain event describes something that has already happened, a command
describes what triggered the event or flow of events. Commands describe the system’s
operations and, contrary to domain events, are formulated in the imperative. For
example:

• Publish campaign
• Roll back transaction
• Submit order

190 | Chapter 12: EventStorming

Commands are written on light blue sticky notes and placed on the modeling space
before the events they can produce. If a particular command is executed by an actor
in a specific role, the actor information is added to the command on a small yellow
sticky note, as illustrated in Figure 12-6. The actor represents a user persona within
the business domain, such as customer, administrator, or editor.

Naturally, not all commands will have an associated actor. Therefore, add the actor
information only where it’s obvious. In the next step we will augment the model with
additional entities that can trigger commands.

Figure 12-6. The “Submit Order” command, executed by the customer (actor) and fol‐
lowed by the “Order initialized,” “Shipping cost calculated,” and “Order shipped” events

Step 6: Policies
Almost always, some commands are added to the model but have no specific actor
associated with them. During this step, you look for automation policies that might
execute those commands.

An automation policy is a scenario in which an event triggers the execution of a com‐
mand. In other words, a command is automatically executed when a specific domain
event occurs.

On the modeling surface, policies are represented as purple sticky notes connecting
events to commands, as shown by the “Policy” sticky note in Figure 12-7.

The EventStorming Process | 191

Figure 12-7. An automation policy that triggers the “Ship Order” command when the
“Shipment Approved” event is observed

If the command in question should be triggered only if some decision criteria is met,
you can specify the decision criteria explicitly on the policy sticky note. For example,
if you need to trigger the escalate command after the “complaint received” event,
but only if the complaint was received from a VIP customer, you can explicitly state
the “only for VIP customers” condition on the policy sticky.

If the events and commands are far apart, you can draw an arrow on the modeling
surface to connect them.

Step 7: Read Models
A read model is the view of data within the domain that the actor uses to make a
decision to execute a command. This can be one of the system’s screens, a report, a
notification, and so on.

The read models are represented by green sticky notes (see the “Shopping cart” note
in Figure 12-8) with a short description of the source of information needed to sup‐
port the actor’s decision. Since a command is executed after the actor has viewed the
read model, on the modeling surface the read models are positioned before the
commands.

192 | Chapter 12: EventStorming

Figure 12-8. The view of the “Shopping cart” (read model) needed for the customer
(actor) to make their decision to submit the order (command)

Step 8: External Systems
This step is about augmenting the model with external systems. An external system is
defined as any system that is not a part of the domain being explored. It can execute
commands (input) or can be notified about events (output).

The external systems are represented by pink sticky notes. In Figure 12-9, the CRM
(external system) triggers execution of the “Ship Order” command. When the ship‐
ment is approved (event), it is communicated to the CRM (external system) through
a policy.

Figure 12-9. External system triggering execution of a command (left) and approval of
the event being communicated to the external system (right)

The EventStorming Process | 193

By the end of this step, all commands should either be executed by actors, triggered
by policies, or called by external systems.

Step 9: Aggregates
Once all the events and commands are represented, the participants can start think‐
ing about organizing related concepts in aggregates. An aggregate receives commands
and produces events.

Aggregates are represented as large yellow sticky notes, with commands on the left
and events on the right, as depicted in Figure 12-10.

Figure 12-10. Commands and domain events organized in an aggregate

Step 10: Bounded Contexts
The last step of an EventStorming session is to look for aggregates that are related to
each other, either because they represent closely related functionality or because
they’re coupled through policies. The groups of aggregates form natural candidates
for bounded contexts’ boundaries, as shown in Figure 12-11.

194 | Chapter 12: EventStorming

Figure 12-11. A possible decomposition of the resultant system into bounded contexts

Variants
Alberto Brandolini, the creator of the EventStorming workshop, defines the Event‐
Storming process as guidance, not hard rules. You are free to experiment with the pro‐
cess to find the “recipe” that works best for you.

In my experience, when introducing EventStorming in an organization I prefer to
start by exploring the big picture of the business domain by following steps 1 (chaotic
exploration) through 4 (pivotal events). The resultant model covers a wide range of
the company’s business domain, builds a strong foundation for ubiquitous languages,
and outlines possible boundaries for bounded contexts.

After gaining the big picture and identifying the different business processes, we con‐
tinue to facilitate a dedicated EventStorming session for each relevant business pro‐
cess—this time, following all the steps to model the complete process.

At the end of a full EventStorming session, you will have a model describing the busi‐
ness domain’s events, commands, aggregates, and even possible bounded contexts.
However, all of these are just nice bonuses. The real value of an EventStorming ses‐
sion is the process itself—the sharing of knowledge among different stakeholders,
alignment of their mental models of the business, discovery of conflicting models,
and, last but not least, formulation of the ubiquitous language.

The resultant model can be adopted as a basis for implementing an event-sourced
domain model. The decision of whether to go that route or not depends on your
business domain. If you decide to implement the event-sourced domain model, you

Variants | 195

have the bounded context boundaries, the aggregates, and of course, the blueprint of
the required domain events.

When to Use EventStorming
The workshop can be facilitated for many reasons:

Build a ubiquitous language
As the group cooperates in building the model of the business process, they
instinctively synchronize the terminology and start using the same language.

Model the business process
An EventStorming session is an effective way to build a model of the business
process. Since it is based on DDD-oriented building blocks, it is also an effective
way to discover the boundaries of aggregates and bounded contexts.

Explore new business requirements
You can use EventStorming to ensure that all the participants are on the same
page regarding the new functionality and reveal edge cases not covered by the
business requirements.

Recover domain knowledge
Over time, domain knowledge can get lost. This is especially acute in legacy sys‐
tems that require modernization. EventStorming is an effective way to merge the
knowledge held by each participant into a single coherent picture.

Explore ways to improve an existing business process
Having an end-to-end view of a business process provides the perspective needed
to notice inefficiencies and opportunities to improve the process.

Onboard new team members
Facilitating an EventStorming session together with new team members is a great
way to expand their domain knowledge.

In addition to when to use EventStorming, it’s important to mention when not to use
it. EventStorming will be less successful when the business process you’re exploring is
simple or obvious, such as following a series of sequential steps without any interest‐
ing business logic or complexity.

Facilitation Tips
When facilitating an EventStorming session with a group of people who have never
done EventStorming before, I prefer to start with a quick overview of the process. I
explain what we are about to do, the business process we are about to explore, and the
modeling elements we will use in the workshop. As we go through the elements—
domain events, commands, actors, and so on—I build a legend, depicted in

196 | Chapter 12: EventStorming

Figure 12-12, using the sticky notes we will use and labels to help the participants
remember the color code. The legend should be visible to all participants during the
workshop.

Figure 12-12. Legend depicting the various elements of the EventStorming process writ‐
ten on the corresponding sticky notes

Watch the Dynamics
As the workshop progresses, it’s important to track the energy of the group. If the
dynamics are slowing down, see whether you can reignite the process by asking ques‐
tions or whether it’s time to advance to the next stage of the workshop.

Remember that EventStorming is a group activity, so ensure that it is handled as such.
Make sure everyone has a chance to participate in the modeling and the discussion. If
you notice that some participants are shying away from the group, try to involve them
in the process by asking questions about the current state of the model.

EventStorming is an intense activity, and at some point, the group will need a break.
Don’t resume the session until all the participants are back in the room. Resume the
process by going through the current state of the model to return the group to a col‐
laborative modeling mood.

Remote EventStorming
EventStorming was invented as a low-tech activity in which people interact and learn
together in the same room. The creator of the workshop, Alberto Brandolini, has
often objected to conducting EventStorming remotely because it’s impossible to

Facilitation Tips | 197

achieve the same levels of participation, and hence, collaboration and knowledge
sharing, when the group is not colocated.

However, with the onset of the COVID-19 pandemic in 2020, it became impossible to
have in-person meetings and do EventStorming as it was meant to be done. A num‐
ber of tools attempted to enable collaboration and facilitation of remote EventStorm‐
ing sessions. At the time of this writing, the most notable of them is miro.com. Be
more patient when doing online EventStorming and take into account the less effec‐
tive communication that results.

In addition, my experience shows that remote EventStorming sessions are more effec‐
tive with a smaller number of participants. While as many as 10 people can attend an
in-person EventStorming session, I prefer to limit online sessions to five participants.
When you need more participants to contribute their knowledge, you can facilitate
multiple sessions, and afterward compare and merge the resultant models.

When the situation allows, return to in-person EventStorming.

Conclusion
EventStorming is a collaboration-based workshop for modeling business processes.
Apart from the resultant models, its primary benefit is knowledge sharing. By the end
of the session, all the participants will synchronize their mental models of the busi‐
ness process and take the first steps toward using a ubiquitous language.

EventStorming is like riding a bicycle. It’s much easier to learn by doing it than to
read about it in a book. Nevertheless, the workshop is fun and easy to facilitate. You
don’t need to be an EventStorming black belt to get started. Just facilitate the session,
follow the steps, and learn during the process.

Exercises
1. Who should be invited to an EventStorming session?

a. Software engineers
b. Domain experts
c. QA engineers
d. All stakeholders having knowledge of the business domain that you want to

explore

198 | Chapter 12: EventStorming

http://miro.com

2. When is it a good opportunity to facilitate an EventStorming session?
a. To build a ubiquitous language.
b. To explore a new business domain.
c. To recover lost knowledge of a brownfield project.
d. To introduce new team members.
e. To discover ways to optimize the business process.
f. All of the above answers are correct.

3. What outcomes can you expect from an EventStorming session?
a. A better shared understanding of the business domain
b. A strong foundation for a ubiquitous language
c. Uncovered white spots in the understanding of the business domain
d. An event-based model that can be used to implement a domain model
e. All of the above, but depending on the session’s purpose

Exercises | 199

CHAPTER 13

Domain-Driven Design in the Real World

We have covered domain-driven design tools for analyzing business domains, sharing
knowledge, and making strategic and tactical design decisions. Just imagine how fun
it will be to apply this knowledge in practice. Let’s consider a scenario in which you
are working on a greenfield project. All of your coworkers have a strong grasp of
domain-driven design, and right from the get-go all are doing their best to design
effective models and, of course, are devotedly using the ubiquitous language. As the
project advances, the bounded contexts’ boundaries are explicit and effective in pro‐
tecting the business domain models. Finally, since all tactical design decisions are
aligned with the business strategy, the codebase is always in great shape: it speaks the
ubiquitous language and implements the design patterns that accommodate the mod‐
el’s complexity. Now wake up.

Your chances of experiencing the laboratory conditions I just described are about as
good as winning the lottery. Of course, it’s possible, but not likely. Unfortunately,
many people mistakenly believe that domain-driven design can only be applied in
greenfield projects and in ideal conditions in which everybody on the team is a DDD
black belt. Ironically, the projects that can benefit from DDD the most are the brown‐
field projects: those that already proved their business viability and need a shake-up
to fight accumulated technical debt and design entropy. Coincidentally, working on
such brownfield, legacy, big-balls-of-mud codebases is where we spend most of our
software engineering careers.

Another common misconception about DDD is that it’s an all-or-nothing proposi‐
tion—either you apply every tool the methodology has to offer, or it’s not domain-
driven design. That’s not true. It might seem overwhelming to come to grips with all
of these concepts, let alone implement them in practice. Luckily, you don’t have to
apply all of the patterns and practices to gain value from domain-driven design. This

201

is especially true for brownfield projects, where it’s practically impossible to introduce
all the patterns and practices in a reasonable time frame.

In this chapter, you will learn strategies for applying domain-driven design tools and
patterns in the real world, including on brownfield projects and in less-than-ideal
environments.

Strategic Analysis
Following the order of our exploration of domain-driven design patterns and practi‐
ces, the best starting point for introducing DDD in an organization is to invest time
in understanding the organization’s business strategy and the current state of its sys‐
tems’ architecture.

Understand the Business Domain
First, identify the company’s business domain:

• What is the organization’s business domain(s)?
• Who are its customers?
• What service, or value, does the organization provide to customers?
• What companies or products is the organization competing with?

Answering these questions will give you a bird’s-eye view of the company’s high-level
goals. Next, “zoom in” to the domain and look for the business building blocks the
organization employs to achieve its high-level goals: the subdomains.

A good initial heuristic is the company’s org chart: its departments and other organi‐
zational units. Examine how these units cooperate to allow the company to compete
in its business domain.

Furthermore, look for the signs of specific types of subdomains.

Core subdomains
To identify the company’s core subdomains, look for what differentiates it from its
competitors:

• Does the company have a “secret sauce” that its competitors lack? For example,
intellectual property, such as patents and algorithms designed in-house?

• Keep in mind that the competitive advantage, and thus the core subdomains, are
not necessarily technical. Does the company possess a nontechnical competitive

202 | Chapter 13: Domain-Driven Design in the Real World

advantage? For example, the ability to hire top-level personnel, produce a unique
artistic design, and so on?

Another powerful yet unfortunate heuristic for core subdomains is identifying the
worst-designed software components—those big balls of mud that all engineers hate
but the business is unwilling to rewrite from scratch because of the accompanying
business risk. The key here is that the legacy system cannot be replaced with a ready-
made system—it would be a generic subdomain—and any modification to it entails
business risks.

Generic subdomains
To identify generic subdomains, look for off-the-shelf solutions, subscription serv‐
ices, or integration of open source software. As you learned in Chapter 1, the same
ready-made solutions should be available to the competing companies, and those
companies leveraging the same solution should have no business impact on your
company.

Supporting subdomains
For supporting subdomains, look for the remaining software components that cannot
be replaced with ready-made solutions yet do not directly provide a competitive
advantage. If the code is in rough shape, it triggers less emotional response from soft‐
ware engineers since it changes infrequently. Thus, the effects of the suboptimal soft‐
ware design are not as severe as for the core subdomains.

You don’t have to identify all of the core subdomains. It won’t be practical or even
possible to do so, even for a medium-sized company. Instead, identify the overall
structure, but pay closer attention to the subdomains that are most relevant to the
software systems you are working on.

Explore the Current Design
Once you are familiar with the problem domain, you can continue to investigate the
solution and its design decisions. First, start with the high-level components. These
are not necessarily bounded contexts in the DDD sense, but rather boundaries used
to decompose the business domain into subsystems.

The characteristic property to look for is the components’ decoupled lifecycles. Even
if the subsystems are managed in the same source control repository (mono-repo) or
if all the components reside in a single monolithic codebase, check which can be
evolved, tested, and deployed independently from the others.

Strategic Analysis | 203

Evaluate the tactical design
For each high-level component, check which business subdomains it contains and
what technical design decisions were taken: what patterns are used to implement the
business logic and define the component’s architecture?

Does the solution fit the complexity of the problem? Are there areas where more
elaborate design patterns are needed? Conversely, are there any subdomains where it’s
possible to cut corners or use existing, off-the-shelf solutions? Use this information to
make smarter strategic and tactical decisions.

Evaluate the strategic design
Use the knowledge of the high-level components to chart the current design’s context
map, as though these high-level components were bounded contexts. Identify and
track the relationships between the components in terms of bounded context integra‐
tion patterns.

Finally, analyze the resultant context map and evaluate the architecture from a
domain-driven design perspective. Are there suboptimal strategic design decisions?
For example:

• Multiple teams working on the same high-level component
• Duplicate implementations of core subdomains
• Implementation of a core subdomain by an outsourced company
• Friction because of frequently failing integration
• Awkward models spreading from external services and legacy systems

These insights are a good starting point for planning the design modernization strat‐
egy. But first, given this more in-depth knowledge of both the problem (business
domain) and the solution (current design) spaces, look for lost domain knowledge.
As we discussed in Chapter 11, knowledge of the business domain can get lost for
various reasons. The problem is widespread and acute in core subdomains, where the
business logic is both complex and business critical. If you encounter such cases,
facilitate EventStorming sessions to try to recover the knowledge. Also, use the Event‐
Storming session as the foundation for cultivating a ubiquitous language.

Modernization Strategy
The “big rewrite” endeavors, in which the engineers are trying to rewrite the system
from scratch, this time designing and implementing the whole system correctly, are
rarely successful. Even more rarely does management support such architectural
makeovers.

204 | Chapter 13: Domain-Driven Design in the Real World

A safer approach to improving the design of existing systems is to think big but start
small. As Eric Evans says, not all of a large system will be well designed. That’s a fact
we have to accept, and therefore we must strategically decide where to invest in terms
of modernization efforts. A prerequisite for making this decision is to have bound‐
aries dividing the system’s subdomains. The boundaries don’t have to be physical,
making each subdomain a full-fledged bounded context. Instead, start by ensuring
that at least the logical boundaries (namespace, modules, and packages, depending on
the technology stack) are aligned with the subdomains’ boundaries, as shown in
Figure 13-1.

Figure 13-1. Reorganizing the bounded context’s modules to reflect the business subdo‐
mains’ boundaries rather than technical implementation patterns

Adjusting the system’s modules is a relatively safe form of refactoring. You are not
modifying the business logic, just repositioning the types in a more well-organized
structure. That said, ensure that references by full type names, such as the dynamic
loading of libraries, reflection, and so on, are not breaking.

In addition, keep track of the subdomains’ business logic implemented in different
codebases; stored procedures in a database, serverless functions, and so on. Make
sure to introduce the new boundaries in those platforms as well. For instance, if some
of the logic is handled in the database’s stored procedures, either rename the proce‐
dures to reflect the module they belong to or introduce a dedicated database schema
and relocate the stored procedures.

Strategic Modernization
As we discussed in Chapter 10, it can be risky to prematurely decompose the system
into the smallest bounded contexts possible. We will discuss bounded contexts and
microservices in more detail in the next chapter. For now, look for where the most
value can be gained by turning the logical boundaries into physical boundaries. The
process of extracting a bounded context(s) by turning a logical boundary into a phys‐
ical one is shown in Figure 13-2.

Modernization Strategy | 205

Questions to ask yourself:

• Are multiple teams working on the same codebase? If so, decouple the develop‐
ment lifecycles by defining bounded contexts for each team.

• Are conflicting models being used by the different components? If so, relocate
the conflicting models into separate bounded contexts.

Figure 13-2. Extracting a bounded context by turning a logical boundary into a physical
boundary

When the minimum required bounded contexts are in place, examine the relation‐
ships and integration patterns between them. See how the teams working on different
bounded contexts communicate and collaborate. Especially when they are communi‐
cating through ad hoc or shared-kernel–like integration, do the teams have shared
goals and adequate collaboration levels?

Pay attention to problems that the context integration patterns can address:

Customer–supplier relationships
As we discussed in Chapter 11, organizational growth can invalidate prior com‐
munication and collaboration patterns. Look for components designed for a part‐
nership relationship of multiple engineering teams, but where the partnership is
no longer sustainable. Refactor to the appropriate type of customer–supplier
relationship (conformist, anticorruption layer, or open-host service).

Anticorruption layer
Anticorruption layers can be useful for protecting bounded contexts from legacy
systems, especially, when legacy systems are using inefficient models that tend to
spread into downstream components.

206 | Chapter 13: Domain-Driven Design in the Real World

Another common use case for implementing an anticorruption layer is to protect
a bounded context from frequent changes in the public interfaces of an upstream
service it uses.

Open-host service
If changes in the implementation details of one component often ripple through
the system and affect its consumers, consider making it an open-host service:
decouple its implementation model from the public API it exposes.

Separate ways
Especially in large organizations, you may encounter friction among engineering
teams resulting from having to collaborate and co-evolve a shared functionality.
If the “apple of discord” functionality is not business critical—that is, it’s not a
core subdomain—the teams can go their separate ways and implement their own
solutions, eliminating the source of friction.

Tactical Modernization
First and foremost, from a tactical standpoint, look for the most “painful” mis‐
matches in business value and implementation strategies, such as core subdomains
implementing patterns that don’t match the complexity of the model—transaction
script or active record. These system components that directly impact the success of
the business have to change the most often, yet are painful to maintain and evolve
due to poor design.

Cultivate a Ubiquitous Language
A prerequisite to the successful modernization of a design is the domain knowledge
and effective model of the business domain. As I have mentioned several times
throughout this book, domain-driven design’s ubiquitous language is essential for
achieving knowledge and building an effective solution model.

Don’t forget domain-driven design’s shortcut for gathering domain knowledge:
EventStorming. Use EventStorming to build a ubiquitous language with the domain
experts and explore the legacy codebase, especially if the codebase is an undocumen‐
ted mess that no one truly understands. Gather everyone related to its functionality
and explore the business domain. EventStorming is a fantastic tool for recovering
domain knowledge.

Once you are equipped with the domain knowledge and its model(s), decide which
business logic implementation patterns best suit the business functionality in ques‐
tion. As a starting point, use the design heuristics described in Chapter 10. The next
decision you have to make concerns the modernization strategy: gradually replacing
whole components of the system (the strangler pattern), or gradually refactoring the
existing solution.

Modernization Strategy | 207

Strangler pattern
Strangler fig, shown in Figure 13-3, is a family of tropical trees that share a peculiar
growth pattern: stranglers grow over other trees—host trees. A strangler begins its life
as a seed in the upper branches of the host tree. As the strangler grows, it makes its
way down until it roots in the soil. Eventually, the strangler grows foliage that over‐
shadows the host tree, leading to the host tree’s death.

Figure 13-3. A strangler fig growing on top of its host tree (source: https://unsplash.com/
photos/y_l5tep9wxI)

The strangler migration pattern is based on the same growth dynamic as the tree the
pattern is named after. The idea is to create a new bounded context—the strangler—
use it to implement new requirements, and gradually migrate the legacy context’s
functionality into it. At the same time, except for hotfixes and other emergencies, the
evolution and development of the legacy bounded context stops. Eventually, all func‐
tionality is migrated to the new bounded context—the strangler— and following the
analogy, leading to the death of the host—the legacy codebase.

Usually, the strangler pattern is used in tandem with the façade pattern: a thin
abstraction layer that acts as the public interface and is in charge of forwarding the
requests to processing either by the legacy or the modernized bounded context.
When migration completes—that is, when the host dies—the façade is removed as it
is no longer necessary (see Figure 13-4).

208 | Chapter 13: Domain-Driven Design in the Real World

Figure 13-4. The façade layer forwarding the request based on the status of migrating the
functionality from the legacy to the modernized system; once the migration is complete,
both the façade and the legacy system are removed

Contrary to the principle that each bounded context is a separate subsystem, and thus
cannot share its database with other bounded contexts, the rule can be relaxed when
implementing the strangler pattern. Both the modernized and the legacy contexts can
use the same database for the sake of avoiding complex integration between the con‐
texts, which in many cases can entail distributed transactions—both contexts have to
work with the same data, as shown in Figure 13-5.

The condition for bending the one-database-per-bounded-context rule is that eventu‐
ally, and better sooner than later, the legacy context will be retired, and the database
will be used exclusively by the new implementation.

Figure 13-5. Both the legacy and the modernized systems temporarily working with the
same database

Modernization Strategy | 209

An alternative to strangler-based migration is modernizing the legacy codebase in
place, also called refactoring.

Refactoring tactical design decisions
In Chapter 11, you learned the various aspects of migrating tactical design decisions.
However, there are two nuances to be aware of when modernizing a legacy codebase.

First, small incremental steps are safer than a big rewrite. Therefore, don’t refactor a
transaction script or active record straight to an event-sourced domain model.
Instead, take the intermediate step of designing state-based aggregates. Invest the
effort in finding effective aggregate boundaries. Ensure that all related business logic
resides within those boundaries. Going from state-based to event-sourced aggregates
will be orders of magnitude safer than discovering wrong transactional boundaries in
an event-sourced aggregate.

Second, following the same reasoning of taking small incremental steps, refactoring
to a domain model doesn’t have to be an atomic change. Instead, you can gradually
introduce the elements of the domain model pattern.

Start by looking for possible value objects. Immutable objects can significantly reduce
the solution’s complexity, even if you are not using a full-blown domain model.

As we discussed in Chapter 11, refactoring active records into aggregates doesn’t have
to be done overnight. It can be done in gradual steps. Start by gathering the related
business logic. Next, analyze the transactional boundaries. Are there decisions that
require strong consistency but operate on eventually consistent data? Or conversely,
does the solution enforce strong consistency where eventual consistency would suf‐
fice? When analyzing the codebase, don’t forget that these decisions are driven by
business, not technology, concerns. Only after a thorough analysis of the transac‐
tional requirements should you design the aggregate’s boundaries.

Finally, when necessary as you’re refactoring legacy systems, protect the new code‐
base from old models using an anticorruption layer, and protect the consumers from
changes in the legacy codebase by implementing an open-host service and exposing a
published language.

Pragmatic Domain-Driven Design
As we discussed in this chapter’s introduction, applying domain-driven design is not
an all-or-nothing endeavor. You don’t have to apply every tool DDD has to offer. For
example, for some reason, the tactical patterns might not work for you. Maybe you
prefer to use other design patterns because they work better in your specific domain,
or just because you find other patterns more effective. That’s totally fine!

210 | Chapter 13: Domain-Driven Design in the Real World

As long as you analyze your business domain and its strategy, look for effective mod‐
els to solve particular problems, and most importantly, make design decisions based
on the business domain’s needs: that’s domain-driven design!

It’s worth reiterating that domain-driven design is not about aggregates or value
objects. Domain-driven design is about letting your business domain drive software
design decisions.

Selling Domain-Driven Design
When I present on this topic at technology conferences, there is one question that I’m
asked almost every time: “That all sounds great, but how do I ‘sell’ domain-driven
design to my team and management?” That’s an extremely important question.

Selling is hard, and personally, I hate selling. That said, if you think about it, design‐
ing software is selling. We are selling our ideas to the team, to management, or to cus‐
tomers. However, a methodology that covers such a wide range of design decision
aspects, and even reaches outside the engineering zone to involve other stakeholders,
can be extremely hard to sell.

Management support is essential for making any considerable changes in an organi‐
zation. However, unless the top-level managers are already familiar with domain-
driven design or are willing to invest time to learn the business value of the
methodology, it’s not top of mind for them, especially because of a seemingly large
shift in the engineering process that DDD entails. Fortunately, however, it doesn’t
mean you can’t use domain-driven design.

Undercover Domain-Driven Design
Make domain-driven design a part of your professional toolbox, not an organiza‐
tional strategy. DDD’s patterns and practices are engineering techniques, and since
software engineering is your job, use them!

Let’s see how to incorporate DDD into your day-to-day job without making much
ado about it.

Ubiquitous language
The use of a ubiquitous language is the cornerstone practice of domain-driven
design. It is essential for domain knowledge discovery, communication, and effective
solution modeling.

Luckily, this practice is so trivial that it’s borderline common sense. Listen carefully to
the language the stakeholders use when they speak about the business domain. Gen‐
tly steer the terminology away from technical jargon and toward its business
meaning.

Selling Domain-Driven Design | 211

Look for inconsistent terms and ask for clarifications. For example, if there are multi‐
ple names for the same thing, look for the reason. Are those different models inter‐
twined in the same solution? Look for contexts and make them explicit. If the
meaning is the same, follow common sense and ask for one term to be used.

Also, communicate with domain experts as much as possible. These efforts shouldn’t
necessarily require formal meetings. Watercoolers and coffee breaks are great com‐
munication facilitators. Speak with the domain experts about the business domain.
Try using their language. Look for difficulties in understanding and ask for clarifica‐
tions. Don’t worry—domain experts are usually happy to collaborate with engineers
who are sincerely interested in learning about the problem domain!

Most importantly, use the ubiquitous language in your code and all project-related
communication. Be patient. Changing the terminology that has been used in an orga‐
nization for a while will take time, but eventually, it will catch on.

Bounded contexts
When exploring possible decomposition options, resolve to the principles behind
what the bounded context pattern is based on:

• Why is it better to design problem-oriented models instead of a single model for
all use cases? Because “all-in-one” solutions are rarely effective for anything.

• Why can’t a bounded context host conflicting models? Because of the increased
cognitive load and solution complexity.

• Why is it a bad idea for multiple teams to work on the same codebase? Because of
friction and hindered collaboration between the teams.

Use the same reasoning for bounded context integration patterns: make sure you
understand the problem each pattern is supposed to solve.

Tactical design decisions
When discussing tactical design patterns, don’t appeal to authority: “Let’s use an
aggregate here because the DDD book says so!” Instead, appeal to logic. For example:

• Why are explicit transactional boundaries important? To protect the consistency
of the data.

• Why can’t a database transaction modify more than one instance of an aggregate?
To ensure that the consistency boundaries are correct.

• Why can’t an aggregate’s state be modified directly by an external component? To
ensure that all the related business logic is colocated and not duplicated.

• Why can’t we offload some of the aggregate’s functionality to a stored procedure?
To make sure that no logic is duplicated. Duplicated logic, especially in logically

212 | Chapter 13: Domain-Driven Design in the Real World

and physically distant components of a system, tends to go out of sync and lead
to data corruption.

• Why should we strive for small aggregate boundaries? Because wide transactional
scope will both increase the complexity of the aggregate and negatively impact
the performance.

• Why, instead of event sourcing, can’t we just write events to a logfile? Because
there are no long-term data consistency guarantees.

Speaking of event sourcing, when the solution calls for an event-sourced domain
model, implementation of this pattern might be hard to sell. Let’s take a look at a Jedi
mind trick that can help with this.

Event-sourced domain model
Despite its many advantages, event sourcing sounds too radical for many people. As
with everything we’ve discussed in this book, the solution is to let the business
domain drive this decision.

Talk to domain experts. Show them the state- and event-based models. Explain the
differences and the advantages offered by event sourcing, especially with regard to the
dimension of time. More often than not, they will be ecstatic with the level of insight
it provides and will advocate event sourcing themselves.

And while interacting with the domain experts, don’t forget to work on the ubiqui‐
tous language!

Conclusion
In this chapter, you learned various techniques for leveraging domain-driven design
tools in real-life scenarios: when working on brownfield projects and legacy codeba‐
ses, and not necessarily with a team of DDD experts.

As in greenfield projects, always start by analyzing the business domain. What are the
company’s goals and its strategy for achieving them? Use the organizational structure
and existing software design decisions to identify the organization’s subdomains and
their types. With this knowledge, plan the modernization strategy. Look for pain
points. Look to gain the most business value. Modernize legacy code either by refac‐
toring or by replacing the relevant components. Either way, do it gradually. Big
rewrites entail more risk than business value!

Finally, you can use domain-driven design tools even if DDD is not widely adopted in
your organization. Use the right tools, and when discussing them with colleagues,
always use the logic and principles behind each pattern.

Conclusion | 213

This chapter concludes our discussion of domain-driven design on its own. In
Part IV, you will learn about the interplay of DDD with other methodologies and
patterns.

Exercises
1. Assume you want to introduce domain-driven design tools and practices to a

brownfield project. What is going to be your first step?
a. Refactor all business logic to the event-sourced domain model.
b. Analyze the organization’s business domain and its strategy.
c. Improve the system’s components by ensuring that they follow the principles

of proper bounded contexts.
d. It’s impossible to use domain-driven design in a brownfield project.

2. In what ways does the strangler pattern contradict some of the core principles of
domain-driven design during the migration process?
a. Multiple bounded contexts are using a shared database.
b. If the modernized bounded context is a core subdomain, its implementation

gets duplicated in the old and the new implementations.
c. Multiple teams are working on the same bounded context.
d. A and B.

3. Why is it generally not a good idea to refactor active-record-based business logic
straight into the event-sourced domain model?
a. A state-based model makes it easier to refactor aggregates’ boundaries during

the learning process.
b. It’s safer to introduce big changes gradually.
c. A and B.
d. None of the above. It’s reasonable to refactor even a transaction script straight

into an event-sourced domain model.
4. When you’re introducing the aggregate pattern, your team asks why the aggre‐

gate can’t just reference all the possible entities and thus make it possible to tra‐
verse the whole business domain from one place. How do you answer them?

214 | Chapter 13: Domain-Driven Design in the Real World

PART IV

Relationships to Other
Methodologies and Patterns

So far in this book you’ve learned how to use domain-driven design to design soft‐
ware solutions according to an organization’s business strategy and needs. We saw
how to apply DDD tools and practices to make sense of the business domain, design
the boundaries of the system’s components, and implement the business logic.

Domain-driven design covers a lot of the software development lifecycle, but it can’t
cover all of software engineering. Other methodologies and tools have their roles. In
Part IV, we will discuss DDD in relation to other methodologies and patterns:

• It’s no secret that domain-driven design gained most of its traction due to the
popularity of the microservices-based architectural style. In Chapter 14, we will
explore the interplay between microservices and domain-driven design and how
the two approaches complement each other.

• The event-driven architecture is a popular method of architecting scalable, per‐
formant, and resilient distributed systems. In Chapter 15, you will learn the prin‐
ciples of event-driven architecture and how to leverage DDD to design effective
asynchronous communication.

• Chapter 16 concludes the book with effective modeling in the context of data
analytics. You will learn about the predominant data management architectures,
data warehouses and data lakes, and how their shortcomings are addressed by the
data mesh architecture. We will also analyze and discuss how DDD and the data
mesh architecture are based on the same design principles and goals.

1 Reference model for service-oriented architecture v1.0. (n.d.). Retrieved June 14, 2021, from OASIS.

CHAPTER 14

Microservices

In the mid-2010s, microservices took the software engineering industry by storm.
The intent was to address modern systems’ need to change quickly, scale, and fit the
distributed nature of cloud computing naturally. Many companies made the strategic
decision to decompose their monolithic codebases in favor of the flexibility provided
by the microservices-based architecture. Unfortunately, many such endeavors didn’t
end well. Instead of flexible architectures, these companies ended up with distributed
big balls of mud—designs that are much more fragile, clumpy, and expensive than the
monoliths the companies wanted to break apart.

Historically, microservices are often associated with DDD, especially with the boun‐
ded context pattern. Many people even use the terms bounded context and microservi‐
ces interchangeably. But are they really the same thing? This chapter explores the
relationship between domain-driven design methodology and the microservices
architectural pattern. You will learn the interplay between the patterns, and more
importantly, how you can leverage DDD to design effective microservices-based
systems.

Let’s start with the basics and define what exactly are services and microservices.

What Is a Service?
According to OASIS, a service is a mechanism that enables access to one or more
capabilities, where the access is provided using a prescribed interface.1 The prescribed
interface is any mechanism for getting data in or out of a service. It can be synchro‐
nous, such as a request/response model, or asynchronous, such as a model that is

217

https://oreil.ly/IXhpG

producing and consuming events. This is the service public interface, as shown in
Figure 14-1, which provides a means for communicating and integrating with other
system components.

Figure 14-1. Communication between services

Randy Shoup likens a service’s interface to a front door. All data going into or out of
the service has to pass through the front door. Furthermore, a service’s public inter‐
face defines the service itself: the functionality exposed by the service. A well-
expressed interface is enough to describe the functionality implemented by a service.
For example, the public interface illustrated in Figure 14-2 explicitly describes the
functionality of the service.

Figure 14-2. A service’s public interface

This takes us to the definition of microservice.

What Is a Microservice?
The definition of a microservice is surprisingly simple. Since a service is defined by
its public interface, a microservice is a service with a micro-public interface: a micro-
front door.

218 | Chapter 14: Microservices

https://oreil.ly/IU6xJ

Having a micro-public interface makes it easier to understand both the function of a
single service and its integration with other system components. Reducing a service’s
functionality also limits its reasons for change and makes the service more autono‐
mous for development, management, and scale.

In addition, it explains the practice of microservices not exposing their databases.
Exposing a database, making it a part of the service’s front door, would make its pub‐
lic interface huge. For example, how many different SQL queries can you execute on a
relational database? Since SQL is quite a flexible language, the likely estimate would
be infinity. Hence, microservices encapsulate their databases. The data can only be
accessed through a much more compact, integration-oriented public interface.

Method as a Service: Perfect Microservices?
Saying that a microservice is a micro-public interface is deceptively simple. It may
sound as though limiting service interfaces to a single method would result in perfect
microservices. Let’s see what will happen if we apply this naïve decomposition in
practice.

Consider the backlog management service in Figure 14-3. Its public interface consists
of eight public methods, and we want to apply the “one method per service” rule.

Figure 14-3. Naïve decomposition

Since these are well-behaved microservices, each encapsulates its database. No one
service is allowed to access another service’s database directly; only through its public
interface. But currently, there is no public interface for that. The services have to work
together and synchronize the changes each service is applying. As a result, we need to
expand the services’ interfaces to account for these integration-related concerns. Fur‐
thermore, when visualized, the integrations and data flow between the resultant serv‐
ices resemble a typical distributed big ball of mud, as shown in Figure 14-4.

What Is a Microservice? | 219

Figure 14-4. Integration complexity

Paraphrasing Randy Shoup’s metaphor, by decomposing the system to such fine-
grained services, we definitely minimized the services’ front doors. However, to
implement the overarching system’s functionality, we had to add enormous “staff
only” entrances to each service. Let’s see what we can learn from this example.

Design Goal
Following the simplistic decomposition heuristic of having each service expose only a
single method proved to be suboptimal for many reasons. First, it’s simply not possi‐
ble. Since the services have to work together, we were forced to expand their public
interfaces with integration-related public methods. Second, we won the battle but lost

220 | Chapter 14: Microservices

the war. Each service ended up being much simpler than the original design, however
the resultant system became orders of magnitude more complex.

The goal of the microservices architecture is to produce a flexible system. Concen‐
trating the design efforts on a single component, but ignoring its interactions with the
rest of the system, goes against the very definition of a system:

• A set of connected things or devices that operate together
• A set of computer equipment and programs used together for a particular

purpose

Hence, a system cannot be built out of independent components. In a proper
microservices-based system, however decoupled, the services still have to be integra‐
ted and communicate with each other. Let’s take a look at the interplay between the
complexity of individual microservices and the complexity of the overarching system.

System Complexity
Forty years ago, there was no cloud computing, there were no global-scale require‐
ments, and there was no need to deploy a system every 11.7 seconds. But engineers
still had to tame systems’ complexity. Even though the tools in those days were differ‐
ent, the challenges—and more importantly, the solution—are relevant nowadays and
can be applied to the design of microservices-based systems.

In his book, Composite/Structured Design, Glenford J. Myers discusses how to struc‐
ture procedural code to reduce its complexity. On the first page of the book, he
writes:

There is much more to the subject of complexity than simply attempting to minimize
the local complexity of each part of a program. A much more important type of com‐
plexity is global complexity: the complexity of the overall structure of a program or
system (i.e., the degree of association or interdependence among the major pieces of a
program).

In our context, local complexity is the complexity of each individual microservice,
whereas global complexity is the complexity of the whole system. Local complexity
depends on the implementation of a service; global complexity is defined by the inter‐
actions and dependencies between the services. Which of the complexities is more
important to optimize when designing a microservices-based system? Let’s analyze
both extremes.

It’s surprisingly easy to reduce global complexity to a minimum. All we have to do is
eliminate any interactions between the system’s components—that is, implement all
functionality in one monolithic service. As we’ve seen earlier, this strategy may work
in certain scenarios. In others, it may lead to the dreaded big ball of mud: probably
the highest possible level of local complexity.

What Is a Microservice? | 221

On the other hand, we know what happens when we optimize only the local com‐
plexity but neglect the system’s global complexity—the even more dreaded distributed
big ball of mud. This relationship is shown in Figure 14-5.

Figure 14-5. Service granularity and system complexities

To design a proper microservices-based system, we have to optimize both global and
local complexities. Setting the design goal of optimizing either one individually is a
local optima. The global optima balances both complexities. Let’s see how the notion
of micro-public interfaces lends itself to balancing global and local complexities.

Microservices as Deep Services
A module in a software system, or any system, for that matter, is defined by its func‐
tion and logic. A function is what the module is supposed to do—its business func‐
tionality. The logic is the module’s business logic—how the module implements its
business functionality.

In his book, The Philosophy of Software Design, John Ousterhout discusses the notion
of modularity and proposes a simple yet powerful visual heuristic for evaluating a
module’s design: depth.

Ousterhout proposes to visualize a module as a rectangle, as shown in Figure 14-6.
The rectangle’s top edge represents the module’s function, or the complexity of its

222 | Chapter 14: Microservices

public interface. A wider rectangle represents broader functionality, while a narrower
one has a more restricted function and thus a simpler public interface. The area of the
rectangle represents the module’s logic, or the implementation of its functionality.

Figure 14-6. Deep modules

According to this model, effective modules are deep: a simple public interface encap‐
sulates complex logic. Ineffective modules are shallow: a shallow module’s public
interface encapsulates much less complexity than a deep module. Consider the
method in the following listing:

int AddTwoNumbers(int a, int b)
{
 return a + b;
}

This is the extreme case of a shallow module: the public interface (the method’s signa‐
ture) and its logic (the methods) are exactly the same. Having such a module introdu‐
ces extraneous “moving parts,” and thus, instead of encapsulating complexity, it adds
accidental complexity to the overarching system.

Microservices as Deep Modules
Apart from different terminology, the notion of deep modules differs from the micro‐
services pattern in that the modules can denote both logical and physical boundaries,
while microservices are strictly physical. Otherwise, both concepts and their underly‐
ing design principles are the same.

The services implementing a single business method, shown in Figure 14-3, are shal‐
low modules. Because we had to introduce integration-related public methods, the
resultant interfaces are “wider” than they should have been.

What Is a Microservice? | 223

From a system complexity standpoint, a deep module reduces the system’s global
complexity, while a shallow module increases it by introducing a component that
doesn’t encapsulate its local complexity.

Shallow services are also the reason why so many microservices-oriented projects fail.
The mistaken definitions of a microservice as a service having no more than X lines
of code, or as a service that should be easier to rewrite than to modify, concentrate on
the individual service while missing the most important aspect of the architecture:
the system.

The threshold upon which a system can be decomposed into microservices is defined
by the use cases of the system that the microservices are a part of. If we decompose a
monolith into services, the cost of introducing a change goes down. It is minimized
when the system is decomposed into microservices. However, if you keep decompos‐
ing past the microservices threshold, the deep services will become more and more
shallow. Their interfaces will grow back up. This time, due to integration needs, the
cost of introducing a change will go up as well, and the overall system’s architecture
will turn into the dreaded distributed big ball of mud. This is depicted in Figure 14-7.

Figure 14-7. Granularity and cost of change

Now that we’ve learned what microservices are, let’s take a look at how domain-
driven design can help us find the boundaries of deep services.

224 | Chapter 14: Microservices

Domain-Driven Design and Microservices’ Boundaries
As microservices, many of the domain-driven design patterns discussed in the previ‐
ous chapters are about boundaries: the bounded context is the boundary of a model, a
subdomain bounds a business capability, while aggregate and value objects are trans‐
actional boundaries. Let’s see which of these boundaries lends itself to the notion of
microservices.

Bounded Contexts
The microservices and bounded context patterns have a lot in common, so much so
that the patterns are often used interchangeably. Let’s see whether that’s really the
case: do bounded contexts’ boundaries correlate with the boundaries of effective
microservices?

Both microservices and bounded contexts are physical boundaries. Microservices, as
bounded contexts, are owned by a single team. As in bounded contexts, conflicting
models cannot be implemented in a microservice, resulting in complex interfaces.
Microservices are indeed bounded contexts. But does this relationship work the other
way around? Can we say that bounded contexts are microservices?

As you learned in Chapter 3, bounded contexts protect the consistency of ubiquitous
languages and models. No conflicting models can be implemented in the same boun‐
ded context. Say you are working on an advertising management system. In the sys‐
tem’s business domain, the business entity Lead is represented by different models in
the Promotions and Sales contexts. Hence, Promotions and Sales are bounded con‐
texts, each defining one and only one model of the Campaign entity, which is valid in
its boundary, as shown in Figure 14-8.

Figure 14-8. Bounded contexts

For simplicity’s sake, let’s assume there are no other conflicting models in the system
besides Lead. This makes the resultant bounded contexts naturally wide—each boun‐
ded context can contain multiple subdomains. The subdomains can be moved from

Domain-Driven Design and Microservices’ Boundaries | 225

one bounded context to another one. As long as the subdomains do not imply con‐
flicting models, all the alternative decompositions in Figure 14-9 are perfectly valid
bounded contexts.

Figure 14-9. Alternative decompositions to bounded contexts

The different decompositions to bounded contexts attribute different requirements,
such as different teams’ sizes and structures, lifecycle dependencies, and so on. But
can we say that all the valid bounded contexts in this example are necessarily micro‐
services? No. Especially considering the relatively wide functionalities of the two
bounded contexts in decomposition 1.

Therefore, the relationship between microservices and bounded contexts is not sym‐
metric. Although microservices are bounded contexts, not every bounded context is a
microservice. Bounded contexts, on the other hand, denote the boundaries of the
largest valid monolith. Such a monolith should not be confused with a big ball of
mud; it’s a viable design option that protects the consistency of its ubiquitous
language, or its model of the business domain. As we will discuss in Chapter 15, such
broad boundaries are more effective than microservices in certain cases.

226 | Chapter 14: Microservices

Figure 14-10 visually demonstrates the relationship between bounded contexts and
microservices. The area between the bounded contexts and microservices is safe.
These are valid design options. However, if the system is not decomposed into proper
bounded contexts or is decomposed past the microservices threshold, it will result in
a big ball of mud or a distributed big ball of mud, respectively.

Figure 14-10. Granularity and modularity

Next, let’s examine the other extreme: whether aggregates can help find the microser‐
vices’ boundaries.

Aggregates
While bounded contexts impose limits on the widest valid boundaries, the aggregate
pattern does the opposite. The aggregate’s boundary is the narrowest boundary possi‐
ble. Decomposing an aggregate into multiple physical services, or bounded contexts,
is not only suboptimal but, as you will learn in Appendix A, leads to undesired conse‐
quences, to say the least.

As bounded contexts, aggregates’ boundaries are also often considered to drive the
boundaries of microservices. An aggregate is an indivisible business functionality
unit that encapsulates the complexities of its internal business rules, invariants, and
logic. That said, as you learned earlier in this chapter, microservices are not about
individual services. An individual service has to be considered in the context of its
interactions with other components of the system:

Domain-Driven Design and Microservices’ Boundaries | 227

Does the aggregate in question communicate with other aggregates in its subdomain?

• Does it share value objects with other aggregates?
• How likely will the aggregate’s business logic changes affect other components of

the subdomain and vice versa?

The stronger the aggregate’s relationship is with the other business entities of its sub‐
domain, the shallower it will be as an individual service.

There will be cases in which having an aggregate as a service will produce a modular
design. However, much more often such fine-grained services will increase the over‐
arching system’s global complexity.

Subdomains
A more balanced heuristic for designing microservices is to align the services with
the boundaries of business subdomains. As you learned in Chapter 1, subdomains are
correlated with fine-grained business capabilities. These are the business building
blocks required for the company to compete in its business domain(s). From a busi‐
ness domain perspective, subdomains describe the capabilities—what the business
does—without explaining how the capabilities are implemented. From a technical
standpoint, subdomains represent sets of coherent use cases: using the same model of
the business domain, working on the same or closely related data, and having a
strong functional relationship. A change in the business requirements of one of the
use cases is likely to affect the other use cases, as shown in Figure 14-11.

Figure 14-11. Subdomains

228 | Chapter 14: Microservices

The subdomains’ granularity and the focus on the functionality—the “what” rather
than the “how”—makes subdomains naturally deep modules. A subdomain’s descrip‐
tion—the function—encapsulates the more complex implementation details—the
logic. The coherent nature of the use cases contained in a subdomain also ensures the
resultant module’s depth. Splitting them apart in many cases would result in a more
complex public interface and thus shallower modules. All of these things make sub‐
domains a safe boundary for designing microservices.

Aligning microservices with subdomains is a safe heuristic that produces optimal sol‐
utions for the majority of microservices. That said, there will be cases where other
boundaries will be more efficient; for example, staying in the wider, linguistic bound‐
aries of the bounded context or, due to nonfunctional requirements, resorting to an
aggregate as a microservice. The solution depends not only on the business domain
but also on the organization’s structure, business strategy, and nonfunctional require‐
ments. As we discussed in Chapter 11, it’s crucial to continuously adapt the software
architecture and design to changes in the environment.

Compressing Microservices’ Public Interfaces
In addition to finding service boundaries, domain-driven design can help make serv‐
ices deeper. This section demonstrates how the open-host service and anticorruption
layer patterns can simplify the microservices’ public interfaces.

Open-Host Service
The open-host service decouples the bounded context’s model of the business domain
from the model used for integration with other components of the system, as shown
in Figure 14-12.

Introducing the integration-oriented model, the published language, reduces the sys‐
tem’s global complexity. First, it allows us to evolve the service’s implementation
without impacting its consumers: the new implementation model can be translated to
the existing published language. Second, the published language exposes a more
restrained model. It is designed around integration needs. It encapsulates the com‐
plexity of the implementation that is not relevant to the service’s consumers. For
example, it can expose less data and in a more convenient model for consumers.

Having a simpler public interface (function) over the same implementation (logic)
makes the service “deeper” and contributes to a more effective microservice design.

Compressing Microservices’ Public Interfaces | 229

Figure 14-12. Integrating services through a published language

Anticorruption Layer
The anticorruption layer (ACL) pattern works the other way around. It reduces the
complexity of integrating the service with other bounded contexts. Traditionally, the
anticorruption layer belongs to the bounded context it protects. However, as we dis‐
cussed in Chapter 9, this notion can be taken a step further and implemented as a
standalone service.

The ACL service in Figure 14-13 reduces both the local complexity of the consuming
bounded context and the system’s global complexity. The consuming bounded con‐
text’s business complexity is separated from the integration complexity. The latter is
offloaded to the ACL service. Because the consuming bounded context is working
with a more convenient, integration-oriented model, its public interface is com‐
pressed—it doesn’t reflect the integration complexity exposed by the producing
service.

230 | Chapter 14: Microservices

Figure 14-13. Anticorruption layer as a stand-alone service

Conclusion
Historically, the microservice-based architectural style is deeply interconnected with
domain-driven design, so much so that the terms microservice and bounded context
are often used interchangeably. In this chapter, we analyzed the connection between
the two and saw that they are not the same thing.

All microservices are bounded contexts, but not all bounded contexts are necessarily
microservices. In its essence, a microservice defines the smallest valid boundary of a
service, while a bounded context protects the consistency of the encompassed model
and represents the widest valid boundaries. Defining boundaries to be wider than
their bounded contexts will result in a big ball of mud, while boundaries that are
smaller than microservices will lead to a distributed big ball of mud.

Nevertheless, the connection between microservices and domain-driven design is
tight. We saw how domain-driven design tools can be used to design effective micro‐
service boundaries.

In Chapter 15, we will continue discussing high-level system architecture but from a
different perspective: asynchronous integration through event-driven architecture.
You will learn how to leverage the different kinds of event messages to further opti‐
mize microservices’ boundaries.

Conclusion | 231

Exercises
1. What is the relationship between bounded contexts and microservices?

a. All microservices are bounded contexts.
b. All bounded contexts are microservices.
c. Microservices and bounded contexts are different terms for the same concept.
d. Microservices and bounded contexts are completely different concepts and

cannot be compared.
2. What part of a microservice should be “micro”?

a. The number of pizzas required to feed the team implementing the microservi‐
ces. The metric has to take into account the team members’ different dietary
preferences and average daily calorie intakes.

b. The number of lines of code it takes to implement the service’s functionality.
Since the metric is agnostic of the lines’ widths, it’s preferable to implement
microservices on ultrawide monitors.

c. The most important aspect of designing microservices-based systems is to get
microservices-friendly middleware and other infrastructural components,
preferably from microservices-certified vendors.

d. The knowledge of the business domain and its intricacies exposed across the
service’s boundary and reflected by its public interface.

3. What are the safe component boundaries?
a. Boundaries wider than bounded contexts.
b. Boundaries narrower than microservices.
c. Boundaries between bounded contexts (widest) and microservices

(narrowest).
d. All boundaries are safe.

4. Is it a good design decision to align microservices with the boundaries of
aggregates?
a. Yes, aggregates always make for proper microservices.
b. No, aggregates should never be exposed as individual microservices.
c. It’s impossible to make a microservice out of a single aggregate.
d. The decision depends on the business domain.

232 | Chapter 14: Microservices

CHAPTER 15

Event-Driven Architecture

As microservices, event-driven architecture (EDA) is ubiquitous in modern dis‐
tributed systems. Many advise using event-driven communication as the default inte‐
gration mechanism when designing loosely coupled, scalable, fault-tolerant
distributed systems.

Event-driven architecture is often linked to domain-driven design. After all, EDA is
based on events, and events are prominent in DDD—we have domain events, and
when needed, we even use events as the system’s source of truth. It may be tempting
to leverage DDD’s events as the basis for using event-driven architecture. But is this a
good idea?

Events are not a kind of secret sauce that you can just pour over a legacy system and
turn it into a loosely coupled distributed system. Quite the opposite: careless applica‐
tion of EDA can turn a modular monolith into a distributed big ball of mud.

In this chapter, we will explore the interplay between EDA and DDD. You will learn
the essential building blocks of event-driven architecture, common causes for failed
EDA projects, and how you can leverage DDD’s tools to design effective, asynchro‐
nously integrated systems.

Event-Driven Architecture
Stated simply, event-driven architecture is an architectural style in which a system’s
components communicate with one another asynchronously by exchanging event
messages (see Figure 15-1). Instead of calling the services’ endpoints synchronously,
the components publish events to notify other system elements of changes in the sys‐
tem’s domain. The components can subscribe to events raised in the system and react
accordingly. A typical example of an event-driven execution flow is the saga pattern
that was described in Chapter 9.

233

1 Hohpe, G., & Woolf, B. (2003). Enterprise Integration Patterns: Designing, Building, and Deploying Messaging
Solutions. Boston: Addison-Wesley.

Figure 15-1. Asynchronous communication

It’s important to highlight the difference between event-driven architecture and event
sourcing. As we discussed in Chapter 7, event sourcing is a method for capturing
changes in state as a series of events.

Although both event-driven architecture and event sourcing are based on events, the
two patterns are conceptually different. EDA refers to the communication between
services, while event sourcing happens inside a service. The events designed for event
sourcing represent state transitions (of aggregates in an event-sourced domain
model) implemented in the service. They are aimed at capturing the intricacies of the
business domain and are not intended to integrate the service with other system
components.

As you will see later in this chapter, there are three types of events, and some are
more suited for integration than others.

Events
In an EDA system, the exchange of events is the key communication mechanism for
integrating the components and making them a system. Let’s take a look at events in
more detail and see how they differ from messages.

Events, Commands, and Messages
So far, the definition of an event is similar to the definition of the message pattern.1

However, the two are different. An event is a message, but a message is not necessar‐
ily an event. There are two types of messages:

234 | Chapter 15: Event-Driven Architecture

Event
A message describing a change that has already happened

Command
A message describing an operation that has to be carried out

An event is something that has already happened, whereas a command is an instruc‐
tion to do something. Both events and commands can be communicated asynchro‐
nously as messages. However, a command can be rejected: the command’s target can
refuse to execute the command, for example, if the command is invalid or if it contra‐
dicts the system’s business rules. A recipient of an event, on the other hand, cannot
cancel the event. The event describes something that has already happened. The only
thing that can be done to overturn an event is to issue a compensating action—a
command, as it’s carried out in the saga pattern.

Since an event describes something that has already happened, an event’s name
should be formulated in the past tense: for example, DeliveryScheduled, Shipment‐
Completed, or DeliveryConfirmed.

Structure
An event is a data record that can be serialized and transmitted using the messaging
platform of choice. A typical event schema includes the event’s metadata and its pay‐
load—the information communicated by the event:

{
 "type": "delivery-confirmed",
 "event-id": "14101928-4d79-4da6-9486-dbc4837bc612",
 "correlation-id": "08011958-6066-4815-8dbe-dee6d9e5ebac",
 "delivery-id": "05011927-a328-4860-a106-737b2929db4e",
 "timestamp": 1615718833,
 "payload": {
 "confirmed-by": "17bc9223-bdd6-4382-954d-f1410fd286bd",
 "delivery-time": 1615701406
 }
}

An event’s payload not only describes the information conveyed by the event, but also
defines the event’s type. Let’s discuss the three types of events in detail and how they
differ from one another.

Events | 235

2 Fowler, M. (n.d.). What do you mean by “Event-Driven”? Retrieved August 12, 2021, from Martin Fowler
(blog).

Types of Events
Events can be categorized into one of three types:2 event notification, event-carried
state transfer, or domain events.

Event notification
An event notification is a message regarding a change in the business domain that
other components will react to. Examples include PaycheckGenerated and Cam‐
paignPublished, among others.

The event notification should not be verbose: the goal is to notify the interested par‐
ties about the event, but the notification shouldn’t carry all the information needed
for the subscribers to react to the event. For example:

{
 "type": "paycheck-generated",
 "event-id": "537ec7c2-d1a1-2005-8654-96aee1116b72",
 "delivery-id": "05011927-a328-4860-a106-737b2929db4e",
 "timestamp": 1615726445,
 "payload": {
 "employee-id": "456123",
 "link": "/paychecks/456123/2021/01"
 }
}

In the preceding code, the event notifies the external components of a paycheck that
was generated. It doesn’t carry all the information related to the paycheck. Instead,
the receiver can use the link to fetch more detailed information. This notification
flow is depicted in Figure 15-2.

Figure 15-2. Event notification flow

236 | Chapter 15: Event-Driven Architecture

https://oreil.ly/aSK5l
https://oreil.ly/aSK5l

In a sense, integration through event notification messages is similar to the Wireless
Emergency Alert (WEA) system in the United States and EU-Alert in Europe (see
Figure 15-3). The systems use cell towers to broadcast short messages, notifying citi‐
zens about public health concerns, safety threats, and other emergencies. The systems
are limited to sending messages with a maximum length of 360 characters. This short
message is enough to notify you about the emergency, but you have to proactively use
other information sources to get more details.

Figure 15-3. Emergency alert system

Succinct event notifications can be preferable in multiple scenarios. Let’s take a closer
look at two: security and concurrency.

Security. Enforcing the recipient to explicitly query for the detailed information pre‐
vents sharing sensitive information over the messaging infrastructure and requires
additional authorization of the subscribers to access the data.

Concurrency. Due to the asynchronous nature of event-driven integration, the infor‐
mation can already be rendered stale when it reaches the subscribers. If the informa‐
tion’s nature is sensitive to race conditions, querying it explicitly allows getting the
up-to-date state.

Furthermore, in the case of concurrent consumers, where only one subscriber should
process an event, the querying process can be integrated with pessimistic locking.
This ensures the producer’s side that no other consumer will be able to process the
message.

Event-carried state transfer
Event-carried state transfer (ECST) messages notify subscribers about changes in the
producer’s internal state. Contrary to event notification messages, ECST messages
include all the data reflecting the change in the state.

Events | 237

ECST messages can come in two forms. The first is a complete snapshot of the modi‐
fied entity’s state:

{
 "type": "customer-updated",
 "event-id": "6b7ce6c6-8587-4e4f-924a-cec028000ce6",
 "customer-id": "01b18d56-b79a-4873-ac99-3d9f767dbe61",
 "timestamp": 1615728520,
 "payload": {
 "first-name": "Carolyn",
 "last-name": "Hayes",
 "phone": "555-1022",
 "status": "follow-up-set",
 "follow-up-date": "2021/05/08",
 "birthday": "1982/04/05",
 "version": 7
 }
}

The ECST message in the preceding example includes a complete snapshot of a cus‐
tomer’s updated state. When operating large data structures, it may be reasonable to
include in the ECST message only the fields that were actually modified:

{
 "type": "customer-updated",
 "event-id": "6b7ce6c6-8587-4e4f-924a-cec028000ce6",
 "customer-id": "01b18d56-b79a-4873-ac99-3d9f767dbe61",
 "timestamp": 1615728520,
 "payload": {
 "status": "follow-up-set",
 "follow-up-date": "2021/05/10",
 "version": 8
 }
}

Whether ECST messages include complete snapshots or only the updated fields, a
stream of such events allows consumers to hold a local cache of the entities’ states and
work with it. Conceptually, using event-carried state transfer messages is an asyn‐
chronous data replication mechanism. This approach makes the system more fault
tolerant, meaning that the consumers can continue functioning even if the producer
is not available. It is also a way to improve the performance of components that have
to process data from multiple sources. Instead of querying the data sources each time
the data is needed, all the data can be cached locally, as shown in Figure 15-4.

238 | Chapter 15: Event-Driven Architecture

Figure 15-4. Backend for frontend

Domain event
The third type of event message is the domain event that we described in Chapter 6.
In a way, domain events are somewhere between event notification and ECST mes‐
sages: they both describe a significant event in the business domain, and they contain
all the data describing the event. Despite the similarities, these types of messages are
conceptually different.

Domain events versus event notification
Both domain events and event notifications describe changes in the producer’s busi‐
ness domain. That said, there are two conceptual differences.

First, domain events include all the information describing the event. The consumer
does not need to take any further action to get the complete picture.

Second, the modeling intent is different. Event notifications are designed with the
intent to alleviate integration with other components. Domain events, on the other
hand, are intended to model and describe the business domain. Domain events can
be useful even if no external consumer is interested in them. That’s especially true in
event-sourced systems, where domain events are used to model all possible state tran‐
sitions. Having external consumers interested in all the available domain events
would result in suboptimal design. We will discuss this in greater detail later in this
chapter.

Events | 239

Domain events versus event-carried state transfer
The data contained in domain events is conceptually different from the schema of a
typical ECST message.

An ECST message provides sufficient information to hold a local cache of the pro‐
ducer’s data. No single domain event is supposed to expose such a rich model. Even
the data included in a specific domain event is not sufficient for caching the aggre‐
gate’s state, as other domain events that the consumer is not subscribed to may affect
the same fields.

Furthermore, as in the case of notification events, the modeling intent is different for
the two types of messages. The data included in domain events is not intended to
describe the aggregate’s state. Instead, it describes a business event that happened dur‐
ing its lifecycle.

Event types: Example
Here is an example that demonstrates the differences between the three types of
events. Consider the following three ways to represent the event of marriage:

eventNotification = {
 "type": "marriage-recorded",
 "person-id": "01b9a761",
 "payload": {
 "person-id": "126a7b61",
 "details": "/01b9a761/marriage-data"
 }
};

ecst = {
 "type": "personal-details-changed",
 "person-id": "01b9a761",
 "payload": {
 "new-last-name": "Williams"
 }
};

domainEvent = {
 "type": "married",
 "person-id": "01b9a761",
 "payload": {
 "person-id": "126a7b61",
 "assumed-partner-last-name": true
 }
};

240 | Chapter 15: Event-Driven Architecture

marriage-recorded is an event notification message. It contains no information
except the fact that the person with the specified ID got married. It contains minimal
information about the event, and the consumers interested in more details will have
to follow the link in the details field.

personal-details-changed is an event-carried state transfer message. It describes
the changes in the person’s personal details, namely that their last name has been
changed. The message doesn’t explain the reason why it has changed. Did the person
get married or divorced?

Finally, married is a domain event. It is modeled as close as possible to the nature of
the event in the business domain. It includes the person’s ID and a flag indicating
whether the person assumed their partner’s name.

Designing Event-Driven Integration
As we discussed in Chapter 3, software design is predominantly about boundaries.
Boundaries define what belongs inside, what remains outside, and most importantly,
what goes across the boundaries—essentially, how the components are integrated
with one another. The events in an EDA-based system are first-class design elements,
affecting both how the components are integrated and the components’ boundaries
themselves. Choosing the correct type of event message is what makes (decouples) or
breaks (couples) a distributed system.

In this section, you will learn heuristics for applying different event types. But first,
let’s see how to use events to design a strongly coupled, distributed big ball of mud.

Distributed Big Ball of Mud
Consider the system shown in Figure 15-5.

The CRM bounded context is implemented as an event-sourced domain model.
When the CRM system had to be integrated with the Marketing bounded context, the
teams decided to leverage the event-sourced data model’s flexibility and let the con‐
sumer—in this case, Marketing—subscribe to the CRM’s domain events and use them
to project the model that fits their needs.

When the AdsOptimization bounded context was introduced, it also had to process
the information produced by the CRM bounded context. Again, the teams decided to
let AdsOptimization subscribe to all domain events produced in the CRM and project
the model that fits AdsOptimization’s needs.

Designing Event-Driven Integration | 241

Figure 15-5. Strongly coupled distributed system

Interestingly, both the Marketing and AdsOptimization bounded contexts had to
present the customers’ information in the same format, and hence ended up projec‐
ting the same model out of the CRM’s domain events: a flattened snapshot of each
customer’s state.

The Reporting bounded context subscribed only to a subset of domain events pub‐
lished by the CRM and used as event notification messages to fetch the calculations
performed in the AdsOptimization context. However, since both AdsOptimization
bounded contexts use the same events to trigger their calculations, to ensure that the
Reporting model is updated the AdsOptimization context introduced a delay. It pro‐
cessed messages five minutes after receiving them.

This design is terrible. Let’s analyze the types of coupling in this system.

Temporal Coupling
The AdsOptimization and Reporting bounded contexts are temporally coupled: they
depend on a strict order of execution. The AdsOptimization component has to finish
its processing before the Reporting module is triggered. If the order is reversed,
inconsistent data will be produced in the Reporting system.

242 | Chapter 15: Event-Driven Architecture

To enforce the required execution order, the engineers introduced the processing
delay in the Reporting system. This delay of five minutes lets the AdsOptimization
component finish the required calculations. Obviously, this doesn’t prevent incorrect
order of execution:

• AdsOptimization may be overloaded and unable to finish the processing in five
minutes.

• A network issue may delay the delivery of incoming messages to the AdsOptimi‐
zation service.

• The AdsOptimization component can experience an outage and stop processing
incoming messages.

Functional Coupling
The Marketing and AdsOptimization bounded contexts both subscribed to the
CRM’s domain events and ended up implementing the same projection of the cus‐
tomers’ data. In other words, the business logic that transforms incoming domain
events into a state-based representation was duplicated in both bounded contexts,
and it had the same reasons for change: they had to present the customers’ data in the
same format. Therefore, if the projection was changed in one of the components, the
change had to be replicated in the second bounded context.

That’s an example of functional coupling: multiple components implementing the
same business functionality, and if it changes, both components have to change
simultaneously.

Implementation Coupling
This type of coupling is more subtle. The Marketing and AdsOptimization bounded
contexts are subscribed to all the domain events generated by the CRM’s event-
sourced model. Consequently, a change in the CRM’s implementation, such as adding
a new domain event or changing the schema of an existing one, has to be reflected in
both subscribing bounded contexts! Failing to do so can lead to inconsistent data. For
example, if an event’s schema changes, the subscribers’ projection logic will fail. On
the other hand, if a new domain event is added to the CRM’s model, it can potentially
affect the projected models, and thus, ignoring it will lead to projecting an inconsis‐
tent state.

Refactoring the Event-Driven Integration
As you can see, blindly pouring events on a system makes it neither decoupled nor
resilient. You may assume that this is an unrealistic example, but unfortunately, this
example is based on a true story. Let’s see how the events can be adjusted to improve
the design dramatically.

Designing Event-Driven Integration | 243

Exposing all the domain events constituting the CRM’s data model couples the sub‐
scribers to the producer’s implementation details. The implementation coupling can
be addressed by exposing either a much more restrained set of events or a different
type of events.

The Marketing and AdsOptimization subscribers are functionally coupled to each
other by implementing the same business functionality.

Both implementation and functional coupling can be tackled by encapsulating the
projection logic in the producer: the CRM bounded contexts. Instead of exposing its
implementation details, the CRM can follow the consumer-driven contract pattern:
project the model needed by the consumers and make it a part of the bounded con‐
text’s published language—an integration-specific model, decoupled from the internal
implementation model. As a result, the consumers get all the data they need and are
not aware of the CRM’s implementation model.

To tackle the temporal coupling between the AdsOptimization and Reporting boun‐
ded contexts, the AdsOptimization component can publish an event notification mes‐
sage, triggering the Reporting component to fetch the data it needs. This refactored
system is shown in Figure 15-6.

Figure 15-6. Refactored system

244 | Chapter 15: Event-Driven Architecture

3 Grove, A. S. (1998). Only the Paranoid Survive. London: HarperCollins Business.

Event-Driven Design Heuristics
Matching types of events to the tasks at hand makes the resultant design orders of
magnitude less coupled, more flexible, and fault tolerant. Let’s formulate the design
heuristics behind the applied changes.

Assume the worst
As Andrew Grove put it, only the paranoid survive.3 Use this as a guiding principle
when designing event-driven systems:

• The network is going to be slow.
• Servers will fail at the most inconvenient moment.
• Events will arrive out of order.
• Events will be duplicated.

Most importantly, these events will occur most frequently on weekends and public
holidays.

The word driven in event-driven architecture means your whole system depends on
successful delivery of the messages. Hence, avoid the “things will be okay” mindset
like the plague. Ensure that the events are always delivered consistently, no matter
what:

• Use the outbox pattern to publish messages reliably.
• When publishing messages, ensure that the subscribers will be able to dedupli‐

cate the messages and identify and reorder out-of-order messages.
• Leverage the saga and process manager patterns when orchestrating cross-

bounded context processes that require issuing compensating actions.

Use public and private events
Be wary of exposing implementation details when publishing domain events, espe‐
cially in event-sourced aggregates. Treat events as an inherent part of the bounded
context’s public interface. Therefore, when implementing the open-host service pat‐
tern, ensure that the events are reflected in the bounded context’s published language.
Patterns for transforming event-based models are discussed in Chapter 9.

When designing bounded contexts’ public interfaces, leverage the different types of
events. Event-carried state transfer messages compress the implementation model

Designing Event-Driven Integration | 245

into a more compact model that communicates only the information the consumers
need.

Event notification messages can be used to further minimize the public interface.

Finally, sparingly use domain events for communication with external bounded con‐
texts. Consider designing a set of dedicated public domain events.

Evaluate consistency requirements
When designing event-driven communication, evaluate the bounded contexts’ con‐
sistency requirements as an additional heuristic for choosing the event type:

• If the components can settle for eventually consistent data, use the event-carried
state transfer message.

• If the consumer needs to read the last write in the producer’s state, issue an event
notification message, with a subsequent query to fetch the producer’s up-to-date
state.

Conclusion
This chapter presented event-driven architecture as an inherent aspect of designing a
bounded context’s public interface. You learned the three types of events that can be
used for cross-bounded context communication:

Event notification
A notification that something important has happened, but requiring the con‐
sumer to query the producer for additional information explicitly.

Event-carried state transfer
A message-based data replication mechanism. Each event contains a snapshot of
a state that can be used to maintain a local cache of the producer’s data.

Domain event
A message describing an event in the producer’s business domain.

Using inappropriate types of events will derail an EDA-based system, inadvertently
turning it into a big ball of mud. To choose the correct type of events for integration,
evaluate the bounded contexts’ consistency requirements and be wary of exposing
implementation details. Design an explicit set of public and private events. Finally,
ensure that the system delivers the messages, even in the face of technical issues and
outages.

246 | Chapter 15: Event-Driven Architecture

Exercises
1. Which of the following statements is/are correct?

a. Event-driven architecture defines the events intended to travel across compo‐
nents’ boundaries.

b. Event sourcing defines the events that are intended to stay within the bounded
context’s boundary.

c. Event-driven architecture and event sourcing are different terms for the same
pattern.

d. A and B are correct.
2. What type of event is best suited for communicating changes in state?

a. Event notification.
b. Event-carried state transfer.
c. Domain event.
d. All event types are equally good for communicating changes in state.

3. Which bounded context integration pattern calls for explicitly defining public
events?
a. Open-host service
b. Anticorruption layer
c. Shared kernel
d. Conformist

4. The services S1 and S2 are integrated asynchronously. S1 has to communicate
data and S2 needs to be able to read the last written data in S1. Which type of
event fits this integration scenario?
a. S2 should publish event-carried state transfer events.
b. S2 should publish public event notifications, which will signal S1 to issue a

synchronous request to get the most up-to-date information.
c. S2 should publish domain events.
d. A and B.

Exercises | 247

CHAPTER 16

Data Mesh

So far in this book, we have discussed models used to build operational systems.
Operational systems implement real-time transactions that manipulate the system’s
data and orchestrate its day-to-day interactions with its environment. These models
are the online transactional processing (OLTP) data. Another type of data that
deserves attention and proper modeling is online analytical processing (OLAP) data.

In this chapter, you will learn about the analytical data management architecture
called data mesh. You will see how the data mesh–based architecture works and how
it differs from the more traditional OLAP data management approaches. Ultimately,
you will see how domain-driven design and data mesh accommodate each other. But
first, let’s see what these analytical data models are and why we can’t just reuse the
operational models for analytical use cases.

Analytical Data Model Versus Transactional Data Model
They say knowledge is power. Analytical data is the knowledge that gives companies
the power to leverage accumulated data to gain insights into how to optimize the
business, better understand customers’ needs, and even make automated decisions by
training machine learning (ML) models.

The analytical models (OLAP) and operational models (OLTP) serve different types
of consumers, enable the implementation of different kinds of use cases, and are
therefore designed following other design principles.

Operational models are built around the various entities from the system’s business
domain, implementing their lifecycles and orchestrating their interactions with one
another. These models, depicted in Figure 16-1, are serving operational systems and
hence have to be optimized to support real-time business transactions.

249

Figure 16-1. A relational database schema describing the relationships between entities
in an operational model

Analytical models are designed to provide different insights into the operational sys‐
tems. Instead of implementing real-time transactions, an analytical model aims to
provide insights into the performance of business activities and, more importantly,
how the business can optimize its operations to achieve greater value.

From a data structure perspective, OLAP models ignore the individual business enti‐
ties and instead focus on business activities by modeling fact tables and dimension
tables. We’ll take a closer look at each of these tables next.

Fact Table
Facts represent business activities that have already happened. Facts are similar to the
notion of domain events in the sense that both describe things that happened in the
past. However, contrary to domain events, there is no stylistic requirement to name
facts as verbs in the past tense. Still, facts represent activities of business processes.
For example, a fact table Fact_CustomerOnboardings would contain a record for each
new onboarded customer and Fact_Sales a record for each committed sale.
Figure 16-2 shows an example of a fact table.

250 | Chapter 16: Data Mesh

Figure 16-2. A fact table containing records for cases solved by a company’s support desk

Also, similar to domain events, fact records are never deleted or modified: analytical
data is append-only data: the only way to express that current data is outdated is to
append a new record with the current state. Consider the fact table Fact_CaseStatus
in Figure 16-3. It contains the measurements of the statuses of support requests
through time. There is no explicit verb in the fact name, but the business process cap‐
tured by the fact is the process of taking care of support cases.

Figure 16-3. A fact table describing state changes during the lifecycle of a support case

Another significant difference between the OLAP and OLTP models is the granular‐
ity of the data. Operational systems require the most precise data to handle business
transactions. For analytical models, aggregated data is more efficient in many use
cases. For example, in the Fact_CaseStatus table shown in Figure 16-3, you can see
that the snapshots are taken every 30 minutes. The data analysts working with the
model decide what level of granularity will best suit their needs. Creating a fact record

Analytical Data Model Versus Transactional Data Model | 251

for each change of the measurement—for example, each change of a case’s data—
would be wasteful in some cases and even technically impossible in others.

Dimension Table
Another essential building block of an analytical model is a dimension. If a fact repre‐
sents a business process or action (a verb), a dimension describes the fact (an
adjective).

The dimensions are designed to describe the facts’ attributes and are referenced as a
foreign key from a fact table to a dimension table. The attributes modeled as dimen‐
sions are any measurements or data that is repeated across different fact records and
cannot fit in a single column. For example, the schema in Figure 16-4 augments the
SolvedCases fact with its dimensions.

Figure 16-4. The SolvedCases fact surrounded by its dimensions

The reason for the high normalization of the dimensions is the analytical system’s
need to support flexible querying. That’s another difference between operational and
analytical models. It’s possible to predict how an operational model will be queried to
support the business requirements. The querying patterns of the analytical models

252 | Chapter 16: Data Mesh

are not predictable. The data analysts need flexible ways of looking at the data, and it’s
hard to predict what queries will be executed in the future. As a result, the normaliza‐
tion supports dynamic querying and filtering, and grouping the facts data across the
different dimensions.

Analytical Models
The table structure depicted in Figure 16-5 is called the star schema. It is based on the
many-to-one relationships between the facts and their dimensions: each dimension
record is used by many facts; a fact’s foreign key points to a single dimension record.

Figure 16-5. The many-to-one relationship between facts and their dimensions

Another predominant analytical model is the snowflake schema. The snowflake
schema is based on the same building blocks: facts and dimensions. However, in the
snowflake schema, the dimensions are multilevel: each dimension is further normal‐
ized into more fine-grained dimensions, as shown in Figure 16-6.

As a result of the additional normalization, the snowflake schema will use less space
to store the dimension data and is easier to maintain. However, querying the facts’
data will require joining more tables, and therefore, more computational resources
are needed.

Both the star and snowflake schemas allow data analysts to analyze business perfor‐
mance, gaining insights into what can be optimized and built into business intelli‐
gence (BI) reports.

Analytical Data Model Versus Transactional Data Model | 253

Figure 16-6. Multilevel dimensions in the snowflake schema

Analytical Data Management Platforms
Let’s shift the discussion from analytical modeling to data management architectures
that support generating and serving analytical data. In this section, we will discuss
two common analytical data architectures: data warehouse and data lake. You will
learn the basic working principles of each architecture, how they differ from each
other, and the challenges of each approach. Knowledge of how the two architectures
work will build the foundation for discussing the main topic of this chapter: the data
mesh paradigm and its interplay with domain-driven design.

Data Warehouse
The data warehouse (DWH) architecture is relatively straightforward. Extract data
from all of the enterprise’s operational systems, transform the source data into an
analytical model, and load the resultant data into a data analysis–oriented database.
This database is the data warehouse.

This data management architecture is based primarily on the extract-transform-load
(ETL) scripts. The data can come from various sources: operational databases,
streaming events, logs, and so on. In addition to translating the source data into a

254 | Chapter 16: Data Mesh

facts/dimensions-based model, the transformation step may include additional oper‐
ations such as removing sensitive data, deduplicating records, reordering events,
aggregating fine-grained events, and more. In some cases, the transformation may
require temporary storage for the incoming data. This is known as the staging area.

The resultant data warehouse, shown in Figure 16-7, contains analytical data covering
all of the enterprise’s business processes. The data is exposed using the SQL language
(or one of its dialects) and is used by data analysts and BI engineers.

Figure 16-7. A typical enterprise data warehouse architecture

The careful reader will notice that the data warehouse architecture shares some of the
challenges discussed in Chapters 2 and 3.

First, at the heart of the data warehouse architecture is the goal of building an
enterprise-wide model. The model should describe the data produced by all of the
enterprise’s systems and address all of the different use cases for analytical data. The
analytical model enables, for example, optimizing the business, reducing operational
costs, making intelligent business decisions, reporting, and even training ML models.
As you learned in Chapter 3, such an approach is impractical for anything by the
smallest organizations. Designing a model for the task at hand, such as building
reports or training ML models, is a much more effective and scalable approach.

The challenge of building an all-encompassing model can be partly addressed by the
use of data marts. A data mart is a database that holds data relevant for well-defined
analytical needs, such as analysis of a single business department. In the data mart
model shown in Figure 16-8, one mart is populated directly by an ETL process from
an operational system, while another mart extracts its data from the data warehouse.

Analytical Data Management Platforms | 255

Figure 16-8. The enterprise data warehouse architecture augmented with data marts

When the data is ingested into a data mart from the enterprise data warehouse, the
enterprise-wide model still needs to be defined in the data warehouse. Alternatively,
data marts can implement dedicated ETL processes to ingest data directly from the
operational systems. In this case, the resultant model makes it challenging to query
data across different marts—for example, across different departments—as it requires
a cross-database query and significantly impacts performance.

Another challenging aspect of the data warehouse architecture is that the ETL pro‐
cesses create a strong coupling between the analytical (OLAP) and the operational
(OLTP) systems. The data consumed by the ETL scripts is not necessarily exposed
through the system’s public interfaces. Often, DWH systems simply fetch all the data
residing in the operational systems’ databases. The schema used in the operational
database is not a public interface, but rather an internal implementation detail. As a
result, a slight change in the schema is destined to break the data warehouse’s ETL
scripts. Since the operational and analytical systems are implemented and maintained
by somewhat distant organizational units, the communication between the two is
challenging and leads to lots of friction between the teams. This communication pat‐
tern is shown in Figure 16-9.

256 | Chapter 16: Data Mesh

Figure 16-9. Data warehouse populated by fetching data directly from operational data‐
bases, ignoring the integration-oriented public interfaces

The data lake architecture addresses some of the shortcomings of the data warehouse
architecture.

Data Lake
As a data warehouse, the data lake architecture is based on the same notion of ingest‐
ing the operational systems’ data and transforming it into an analytical model. How‐
ever, there is a conceptual difference between the two approaches.

A data lake–based system ingests the operational systems’ data. However, instead of
being transformed right away into an analytical model, the data is persisted in its raw
form, that is, in the original operational model.

Eventually, the raw data cannot fit the needs of data analysts. As a result, it is the job
of the data engineers and the BI engineers to make sense of the data in the lake and
implement the ETL scripts that will generate analytical models and feed them into a
data warehouse. Figure 16-10 depicts a data lake architecture.

Figure 16-10. Data lake architecture

Analytical Data Management Platforms | 257

Since the operational systems’ data is persisted in its original, raw form and is trans‐
formed only afterward, the data lake allows working with multiple, task-oriented ana‐
lytical models. One model can be used for reporting, another for training ML models,
and so on. Furthermore, new models can be added in the future and initialized with
the existing raw data.

That said, the delayed generation of analytical models increases the complexity of the
overall system. It’s not uncommon for data engineers to implement and support mul‐
tiple versions of the same ETL script to accommodate different versions of the opera‐
tional model, as shown in Figure 16-11.

Figure 16-11. Multiple versions of the same ETL script accommodating different versions
of the operational model

Furthermore, since data lakes are schema-less—there is no schema imposed on the
incoming data—and there is no control over the quality of the incoming data, the
data lake’s data becomes chaotic at certain levels of scale. Data lakes make it easy to
ingest data but much more challenging to make use of it. Or, as is often said, a data
lake becomes a data swamp. The data scientist’s job becomes orders of magnitude
more complex to make sense of the chaos and to extract useful analytical data.

Challenges of Data Warehouse and Data Lake Architectures
Both data warehouse and data lake architectures are based on the assumption that the
more data that is ingested for analytics, the more insight the organization will gain.
Both approaches, however, tend to break under the weight of “big” data. The trans‐
formation of operational to analytical models converges to thousands of unmaintain‐
able, ad hoc ETL scripts at scale.

258 | Chapter 16: Data Mesh

From a modeling perspective, both architectures trespass the boundaries of the
operational systems and create dependencies on their implementation details. The
resultant coupling to the implementation models creates friction between the
operational and analytical systems teams, often to the point of preventing changes to
the operational models for the sake of not breaking the analysis system’s ETL jobs.

To make matters worse, since the data analysts and data engineers belong to a sepa‐
rate organizational unit, they often lack the deep knowledge of the business domain
possessed by the operational systems’ development teams. Instead of the knowledge
of the business domain, they are specialized mainly in big data tooling.

Last but not least, the coupling to the implementation models is especially acute in
domain-driven design–based projects, in which the emphasis is on continuously
evolving and improving the business domain’s models. As a result, a change in the
operational model can have unforeseen consequences in the analytical model. Such
changes are frequent in DDD projects and often result in friction between R&D and
data teams.

These limitations of data warehouses and data lakes inspired a new analytical data
management architecture: data mesh.

Data Mesh
The data mesh architecture is, in a sense, domain-driven design for analytical data.
As the different patterns of DDD draw boundaries and protect their contents, the
data mesh architecture defines and protects model and ownership boundaries for
analytical data.

The data mesh architecture is based on four core principles: decompose data around
domains, data as a product, enable autonomy, and build an ecosystem. Let’s discuss
each principle in detail.

Decompose Data Around Domains
Both the data warehouse and data lake approaches aim to unify all of the enterprise’s
data into one big model. The resultant analytical model is ineffective for all the same
reasons as an enterprise-wide operational model is. Furthermore, gathering data from
all systems into one location blurs the ownership boundaries of the various data
elements.

Instead of building a monolithic analytical model, the data mesh architecture calls for
leveraging the same solution we discussed in Chapter 3 for operational data: use mul‐
tiple analytical models and align them with the origin of the data. This naturally
aligns the ownership boundaries of the analytical models with the bounded contexts’
boundaries, as shown in Figure 16-12. When the analysis model is decomposed

Data Mesh | 259

according to the system’s bounded contexts, the generation of the analysis data
becomes the responsibility of the corresponding product teams.

Figure 16-12. Aligning the ownership boundaries of the analytical models with the
bounded contexts’ boundaries

Each bounded context now owns its operational (OLTP) and analytical (OLAP) mod‐
els. Consequently, the same team owns the operational model, now in charge of
transforming it into the analytical model.

260 | Chapter 16: Data Mesh

Data as a Product
The classic data management architectures make it difficult to discover, understand,
and fetch quality analytical data. This is especially acute in the case of data lakes.

The data as a product principle calls for treating the analytical data as a first-class citi‐
zen. Instead of the analytical systems having to get the operational data from dubious
sources (internal database, logfiles, etc.), in a data mesh–based system the bounded
contexts serve the analytical data through well-defined output ports, as shown in
Figure 16-13.

Figure 16-13. Polyglot data endpoints exposing the analytical data to the consumers

Analytical data should be treated the same as any public API:

• It should be easy to discover the necessary endpoints: the data output ports.
• The analytical endpoints should have a well-defined schema describing the

served data and its format.
• The analytical data should be trustworthy, and as with any API, it should have

defined and monitored service-level agreements (SLAs).
• The analytical model should be versioned as a regular API and correspondingly

manage integration-breaking changes in the model.

Furthermore, since the analytical data is treated as a product, it has to address the
needs of its consumers. The bounded context’s team is in charge of ensuring that the
resultant model addresses the needs of its consumers. Contrary to the data warehouse
and data lake architectures, with data mesh, accountability for data quality is a top-
level concern.

The goal of the distributed data management architecture is to allow the fine-grained
analytical models to be combined to address the organization’s data analysis needs.
For example, if a BI report should reflect data from multiple bounded contexts, it
should be able to easily fetch their analytical data if needed, apply local transforma‐
tions, and produce the report.

Data Mesh | 261

Finally, different consumers may require the analytical data in different forms. Some
may prefer to execute SQL queries, others to fetch analytical data from an object stor‐
age service, and so on. As a result, the data products have to be polyglot, serving the
data in formats that suit different consumers’ needs.

To implement the data as a product principle, product teams require adding data-
oriented specialists. That’s the missing piece in the cross-functional teams puzzle,
which traditionally includes only specialists related to the operational systems.

Enable Autonomy
The product teams should be able to both create their own data products and con‐
sume data products served by other bounded contexts. Just as in the case of bounded
contexts, the data products should be interoperable.

It would be wasteful, inefficient, and hard to integrate if each team builds their own
solution for serving analytical data. To prevent this from happening, a platform is
needed to abstract the complexity of building, executing, and maintaining interopera‐
ble data products. Designing and building such a platform is a considerable under‐
taking and requires a dedicated data infrastructure platform team.

The data infrastructure platform team should be in charge of defining the data prod‐
uct blueprints, unified access patterns, access control, and polyglot storage that can be
leveraged by product teams, as well as monitoring the platform and ensuring that the
SLAs and objectives are met.

Build an Ecosystem
The final step to creating a data mesh system is to appoint a federated governance
body to enable interoperability and ecosystem thinking in the domain of the analyti‐
cal data. Typically, that would be a group consisting of the bounded contexts’ data and
product owners and representatives of the data infrastructure platform team, as
shown in Figure 16-14.

The governance group is in charge of defining the rules to ensure a healthy and inter‐
operable ecosystem. The rules have to be applied to all data products and their inter‐
faces, and it’s the group’s responsibility to ensure adherence to the rules throughout
the enterprise.

262 | Chapter 16: Data Mesh

Figure 16-14. The governance group, which ensures that the distributed data analytics
ecosystem is interoperable, healthy, and serves the organization’s needs

Combining Data Mesh and Domain-Driven Design
These are the four principles that the data mesh architecture is based on. The empha‐
sis on defining boundaries, and encapsulating the implementation details behind
well-defined output ports, makes it evident that the data mesh architecture is based
on the same reasoning as domain-driven design. Furthermore, some of the domain-
driven design patterns can greatly support implementing the data mesh architecture.

First and foremost, the ubiquitous language and the resultant domain knowledge are
essential for designing analytical models. As we discussed in the data warehouse and
data lake sections, domain knowledge is lacking in traditional architectures.

Second, exposing a bounded context’s data in a model that is different from its opera‐
tional model is the open-host pattern. In this case, the analytical model is an addi‐
tional published language.

The CQRS pattern makes it easy to generate multiple models of the same data. It can
be leveraged to transform the operational model into an analytical model. The CQRS

Data Mesh | 263

pattern’s ability to generate models from scratch makes it easy to generate and serve
multiple versions of the analytical model simultaneously, as shown in Figure 16-15.

Figure 16-15. Leveraging the CQRS pattern to simultaneously serve the analytical data
in two different schema versions

Finally, since the data mesh architecture combines the different bounded contexts’
models to implement analytical use cases, the bounded context integration patterns
for operational models apply for analytical models as well. Two product teams can
evolve their analytical models in partnership. Another can implement an anticorrup‐
tion layer to protect itself from an ineffective analytical model. Or, on the other hand,
the teams can go their separate ways and produce duplicate implementations of ana‐
lytical models.

Conclusion
In this chapter, you learned the different aspects of designing software systems, in
particular, defining and managing analytical data. We discussed the predominant
models for analytical data, including the star and snowflake schemas, and how the
data is traditionally managed in data warehouses and data lakes.

The data mesh architecture aims to address the challenges of the traditional data
management architectures. At its core, it applies the same principles as domain-
driven design but to analytical data: decomposing the analytical model into managea‐
ble units and ensuring that the analytical data can be reliably accessed and used
through its public interfaces. Ultimately, the CQRS and bounded context integration
patterns can support implementing the data mesh architecture.

264 | Chapter 16: Data Mesh

Exercises
1. Which of the following statements is/are correct regarding the differences

between transactional (OLTP) and analytical (OLAP) models?
a. OLAP models should expose more flexible querying options than OLTP

models.
b. OLAP models are expected to undergo more updates than OLTP models, and

thus have to be optimized for writes.
c. OLTP data is optimized for real-time operations, whereas it’s acceptable to

wait seconds or even minutes for an OLAP query’s response.
d. A and C are correct.

2. Which bounded context integration pattern is essential for implementation of the
data mesh architecture?
a. Shared kernel
b. Open-host service
c. Anticorruption layer
d. Partnership

3. Which architectural pattern is essential for implementation of the data mesh
architecture?
a. Layered architecture.
b. Ports & adapters.
c. CQRS.
d. Architectural patterns cannot support implementation of an OLAP model.

4. The definition of data mesh architecture calls for decomposing data around
“domains.” What is DDD’s term for denoting the data mesh’s domains?
a. Bounded contexts.
b. Business domains.
c. Subdomains.
d. There is no synonym for a data mesh’s domains in DDD.

Exercises | 265

Closing Words

To complete our exploration of domain-driven design I want to get back to the quote
we started with:

There is no sense in talking about the solution before we agree on the problem, and no
sense talking about the implementation steps before we agree on the solution.

—Efrat Goldratt-Ashlag

This quote neatly summarizes our DDD journey.

Problem
To provide a software solution, we first have to understand the problem: what is the
business domain that we are working in, what are the business goals, and what is the
strategy for achieving them.

We used the ubiquitous language to gain a deep understanding of the business
domain and its logic that we have to implement in software.

You learned to manage the complexity of the business problem by breaking it apart
into bounded contexts. Each bounded context implements a single model of the busi‐
ness domain, aimed at solving a specific problem.

We discussed how to identify and categorize the building blocks of business domains:
core, supporting, and generic subdomains. Table E-1 compares these three types of
subdomains.

Table E-1. The three types of subdomains
Subdomain type Competitive advantage Complexity Volatility Implementation Problem
Core Yes High High In-house Interesting
Generic No High Low Buy/adopt Solved
Supporting No Low Low In-house/outsource Obvious

267

Solution
You learned to leverage this knowledge to design solutions optimized for each type of
subdomain. We discussed four business logic implementation patterns—transaction
script, active record, domain model, and event sourced domain model—and the scenar‐
ios in which each pattern shines. You also saw three architectural patterns that pro‐
vide the required scaffolding for the implementation of business logic: layered
architecture, ports & adapters, and CQRS. Figure E-1 summarizes the heuristics for
tactical decision-making using these patterns.

Figure E-1. Decision tree summarizing heuristics for tactical decision-making

268 | Closing Words

Implementation
In Part III, we discussed how to turn theory into practice. You learned how to effec‐
tively build a ubiquitous language by facilitating an EventStorming session, how to
keep the design in shape as the business domain evolves, and how to introduce and
start using domain-driven design in brownfield projects.

In Part IV, we discussed the interplay between domain-driven design and other
methodologies and patterns: microservices, event-driven architecture, and data mesh.
We saw that not only can DDD be used in tandem with these techniques, but they in
fact complement each other.

Further Reading
I hope this book got you interested in domain-driven design. If you want to keep
learning, here are some books that I wholeheartedly recommend.

Advanced Domain-Driven Design
• Evans, E. (2003). Domain-Driven Design: Tackling Complexity in the Heart of Soft‐

ware. Boston: Addison-Wesley.
Eric Evans’s original book that introduced the domain-driven design methodol‐
ogy. Although it doesn’t reflect newer aspects of DDD such as domain events and
event sourcing, it’s still essential reading for becoming a DDD black belt.

• Martraire, C. (2019). Living Documentation: Continuous Knowledge Sharing by
Design. Boston: Addison-Wesley.
In this book, Cyrille Martraire proposes a domain-driven design–based approach
to knowledge sharing, documentation, and testing.

• Vernon, V. (2013). Implementing Domain-Driven Design. Boston: Addison-
Wesley.
Another timeless DDD classic. Vaughn Vernon provides in-depth discussion and
detailed examples of domain-driven design thinking and the use of its strategic
and tactical toolset. As a learning foundation, Vaughn uses a real-world example
of failing initiatives with DDD and the teams’ rejuvenated journey afforded by
applying essential course corrections.

• Young, G. (2017). Versioning in an Event Sourced System. Leanpub.
In Chapter 7, we discussed that it can be challenging to evolve an event-sourced
system. This book is dedicated to this topic.

Closing Words | 269

https://learning.oreilly.com/library/view/domain-driven-design-tackling/0321125215/
https://learning.oreilly.com/library/view/domain-driven-design-tackling/0321125215/
https://learning.oreilly.com/library/view/living-documentation-continuous/9780134689418/
https://learning.oreilly.com/library/view/living-documentation-continuous/9780134689418/
https://learning.oreilly.com/library/view/implementing-domain-driven-design/9780133039900/
https://leanpub.com/esversioning/read

Architectural and Integration Patterns
• Dehghani, Z. (Expected to be published in 2022). Data Mesh: Delivering Data-

Driven Value at Scale. Boston: O’Reilly.
Zhamak Dehghani is the author of the data mesh pattern that we discussed in
Chapter 16. In this book, Dehghani explains the principles behind the data man‐
agement architecture, as well as how to implement the data mesh architecture in
practice.

• Fowler, M. (2002). Patterns of Enterprise Application Architecture. Boston:
Addison-Wesley.
The classic application architecture patterns book that I quoted multiple times in
Chapter 5 and Chapter 6. This is the book in which the transaction script, active
record, and domain model patterns were originally defined.

• Hohpe, G., & Woolf, B. (2003). Enterprise Integration Patterns: Designing, Build‐
ing, and Deploying Messaging Solutions. Boston: Addison-Wesley.
Many of the patterns discussed in Chapter 9 were originally introduced in this
book. Read this book for more component integration patterns.

• Richardson, C. (2019). Microservice Patterns: With Examples in Java. New York:
Manning Publications.
In this book, Chris Richardson provides many detailed examples of patterns
often used when architecting microservices-based solutions. Among the dis‐
cussed patterns are saga, process manager, and outbox, which we discussed in
Chapter 9.

Modernization of Legacy Systems
• Kaiser, S. (Expected to be published in 2022). Adaptive Systems with Domain-

Driven Design, Wardley Mapping, and Team Topologies. Boston: Addison-Wesley.
Susanne Kaiser shares her experience of modernizing legacy systems by leverag‐
ing domain-driven design, Wardley mapping, and team topologies.

• Tune, N. (Expected to be published in 2022). Architecture Modernization: Prod‐
uct, Domain, & Team Oriented. Leanpub.
In this book, Nick Tune discusses in depth how to leverage domain-driven design
and other techniques to modernize brownfield projects’ architecture.

• Vernon, V., & Jaskula, T. (2021). Implementing Strategic Monoliths and Microservi‐
ces. Boston: Addison-Wesley.

270 | Closing Words

https://www.oreilly.com/library/view/data-mesh/9781492092384/
https://www.oreilly.com/library/view/data-mesh/9781492092384/
https://learning.oreilly.com/library/view/patterns-of-enterprise/0321127420/
https://learning.oreilly.com/library/view/enterprise-integration-patterns/0321200683/
https://learning.oreilly.com/library/view/enterprise-integration-patterns/0321200683/
https://www.manning.com/books/microservices-patterns
https://leanpub.com/arch-modernization-ddd
https://leanpub.com/arch-modernization-ddd

A hands-on book in which the authors demonstrate ageless software engineering
tools, including rapid discovery and learning, domain-driven approaches, and
handling the intricacies of properly implementing monolith- and microservices-
based solutions, all while focusing on the most important aspect: delivering inno‐
vative business strategy.

• Vernon, V., & Jaskula, T. (2021). Strategic Monoliths and Microservices. Boston:
Addison-Wesley.
In this book Vaughn and Tomasz promote software strategic thinking by explor‐
ing how to achieve all-important innovations using discovery-based learning
along with a domain-driven approach, and how to select the most purposeful
architecture and tools for the job: microservices, monoliths, or a blend, and how
to make them work together.

EventStorming
• Brandolini, A. (Not yet published). Introducing EventStorming. Leanpub.

Alberto Brandolini is the creator of the EventStorming workshop, and in this
book, he explains in detail the process and rationale behind EventStorming.

• Rayner, P. (Not yet published). The EventStorming Handbook. Leanpub.
Paul Rayner explains how he uses EventStorming in practice, including numer‐
ous tips and tricks for facilitating a successful session.

Conclusion
That’s it! Thank you so much for reading this book. I hope you enjoyed it and that
you will use what you’ve learned from it.

What I hope you take away from this book are the logic and the principles behind
domain-driven design tools. Don’t follow domain-driven design blindly as a dogma,
but rather understand the reasoning it is based on. This understanding will signifi‐
cantly increase your opportunities to apply DDD and gain value from it. Understand‐
ing the philosophy of domain-driven design is also the key to leveraging value by
incorporating the methodology’s concepts individually, especially in brownfield
projects.

Finally, always watch your ubiquitous language, and when in doubt, do EventStorm‐
ing. Good luck!

Closing Words | 271

https://leanpub.com/introducing_eventstorming
https://leanpub.com/eventstorming_handbook

APPENDIX A

Applying DDD: A Case Study

In this appendix, I will share how my domain-driven design journey started: the story
of a start-up company that, for the purposes of this example, we’ll refer to as “Market‐
novus.” At Marketnovus, we had been employing DDD methodology since the day
the company was founded. Over the years, not only had we committed every possible
DDD mistake, but we also had the opportunity to learn from those mistakes and fix
them. I will use this story and the mistakes we made to demonstrate the role that
DDD patterns and practices play in the success of a software project.

This case study consists of two parts. In the Part I, I’ll walk you through the stories of
five of Marketnovus’s bounded contexts, what design decisions were made, and what
the outcomes were. In the second part, I will discuss how these stories reflect the
material you learned in this book.

Before we begin, I need to stress that Marketnovus doesn’t exist anymore. As a result,
this appendix is in no way promotional. Furthermore, since this is a defunct com‐
pany, I’m free to speak honestly about our experiences.

Five Bounded Contexts
Before we delve into the bounded contexts and how they were designed, as well-
behaved DDD practitioners we have to start by defining Marketnovus’s business
domain.

Business Domain
Imagine you are producing a product or a service. Marketnovus allowed you to out‐
source all of your marketing-related chores. Marketnovus’s experts would come up
with a marketing strategy for your product. Its copywriters and graphic designers
would produce tons of creative material, such as banners and landing pages, that

273

would be used to run advertising campaigns promoting your product. All the leads
generated by these campaigns would be handled by Marketnovus’s sales agents, who
would make the calls and sell your product. This process is depicted in Figure A-1.

Figure A-1. Marketing process

Most importantly, this marketing process provided many opportunities for optimiza‐
tion, and that’s exactly what the analysis department was in charge of. They analyzed
all the data to make sure Marketnovus and its clients were getting the biggest bang for
their buck, whether by pinpointing the most successful campaigns, celebrating the
most effective creatives, or ensuring that the sales agents were working on the most
promising leads.

Since we were a self-funded company, we had to get rolling as fast as possible. As a
result, right after the company was founded, the first version of our software system
had to implement the first one-third of our value chain:

• A system for managing contracts and integrations with external publishers
• A catalog for our designers to manage creative materials
• A campaign management solution to run advertising campaigns

I was overwhelmed and had to find a way to wrap my head around all the complexi‐
ties of the business domain. Fortunately, not long before we started working, I read a
book that promised just that. Of course, I’m talking about Eric Evans’s seminal work,
Domain-Driven Design: Tackling Complexity at the Heart of Software.

If you have read this book’s Preface, you know Evans’s book provided the answers I’d
been seeking for quite a while: how to design and implement business logic. That
said, for me it wasn’t an easy book to comprehend on the first read. Nevertheless, I

274 | Appendix A: Applying DDD: A Case Study

1 @DDDBorat is a parody Twitter account known for sharing bad advice on domain-driven design.

felt like I’d already gotten a strong grasp of DDD just by reading the tactical design
chapters.

Guess how the system was initially designed? It would definitely make a certain
prominent individual1 from the DDD community very proud.

Bounded Context #1: Marketing
The architectural style of our first solution could be neatly summarized as “aggregates
everywhere.” Agency, campaign, placement, funnel, publisher: each and every noun
in the requirements was proclaimed as an aggregate.

All of those so-called aggregates resided in a huge, lone, bounded context. Yes, a big,
scary monolith, the kind everyone warns you about nowadays.

And of course, those were no aggregates. They didn’t provide any transactional
boundaries, and they had almost no behavior in them. All the business logic was
implemented in an enormous service layer.

When you aim to implement a domain model but end up with the active record pat‐
tern, it is often termed an “anemic domain model” antipattern. In hindsight, this
design was a by-the-book example of how not to implement a domain model. How‐
ever, things looked quite different from a business standpoint.

From the business’s point of view, this project was considered a huge success! Despite
the flawed architecture, we were able to deliver working software in a very aggressive
time to market. How did we do it?

A kind of magic
We somehow managed to come up with a robust ubiquitous language. None of us
had any prior experience in online marketing, but we could still hold a conversation
with domain experts. We understood them, they understood us, and to our astonish‐
ment, domain experts turned out to be very nice people! They genuinely appreciated
the fact that we were willing to learn from them and their experience.

The smooth communication with the domain experts allowed us to grasp the busi‐
ness domain in no time and implement its business logic. Yes, it was a pretty big
monolith, but for two developers in a garage, it was just good enough. Again, we pro‐
duced working software in a very aggressive time to market.

Applying DDD: A Case Study | 275

Our early understanding of domain-driven design
Our understanding of domain-driven design at this stage could be represented with
the simple diagram shown in Figure A-2.

Figure A-2. Our early understanding of domain-driven design

Bounded Context #2: CRM
Soon after we deployed the campaign management solution, leads started flowing in,
and we were in a rush. Our sales agents needed a robust customer relationship man‐
agement (CRM) system to manage the leads and their lifecycles.

The CRM had to aggregate all incoming leads, group them based on different param‐
eters, and distribute them across multiple sales desks around the globe. It also had to
integrate with our clients’ internal systems, both to notify the clients about changes in
the leads’ lifecycles and to complement our leads with additional information. And,
of course, the CRM had to provide as many optimization opportunities as possible.
For example, we needed to be able to make sure the agents were working on the most
promising leads, assign leads to agents based on their qualifications and past perfor‐
mance, and allow a very flexible solution for calculating agents’ commissions.

Since no off-the-shelf product fit our requirements, we decided to roll out our own
CRM system.

More “aggregates”!
The initial implementation approach was to continue focusing on the tactical pat‐
terns. Again, we pronounced every noun as an aggregate and shoehorned them into
the same monolith. This time, however, something felt wrong right from the start.

We noticed that, all too often, we were adding awkward prefixes to those “aggregates”
names: for example, CRMLead and MarketingLead, MarketingCampaign and
CRMCampaign. Interestingly, we never used those prefixes in our conversations with
the domain experts. Somehow, they always understood the meaning from the
context.

276 | Appendix A: Applying DDD: A Case Study

Then I recalled that domain-driven design has a notion of bounded contexts that we
had been ignoring so far. After revisiting the relevant chapters of Evans’s book, I
learned that bounded contexts solve exactly the same issue we were experiencing:
they protect the consistency of the ubiquitous language. Furthermore, by that time,
Vaughn Vernon had published his “Effective Aggregate Design” paper. The paper
made explicit all the mistakes we were making when designing the aggregates. We
were treating aggregates as data structures, but they play a much larger role by pro‐
tecting the consistency of the system’s data.

We took a step back and redesigned the CRM solution to reflect these revelations.

Solution design: Take two
We started by dividing our monolith into two distinct bounded contexts: marketing
and CRM. Of course, we didn’t go all the way to microservices here; we just did the
bare minimum to protect the ubiquitous language.

However, in the new bounded context, the CRM, we were not going to repeat the
same mistakes we made in the marketing system. No more anemic domain models!
Here we would implement a real domain model with real, by-the-book aggregates. In
particular, we vowed that:

• Each transaction would affect only one instance of an aggregate.
• Instead of an ORM, each aggregate itself would define the transactional scope.
• The service layer would go on a very strict diet, and all the business logic would

be refactored into the corresponding aggregates.

We were so enthusiastic about doing things the right way. But, soon enough, it
became apparent that modeling a proper domain model is hard!

Relative to the marketing system, everything took much more time! It was almost
impossible to get the transactional boundaries right the first time. We had to evaluate
at least a few models and test them, only to figure out later that the one we hadn’t
thought about was the correct one. The price of doing things the “right” way was very
high: lots of time.

Soon it became obvious to everyone that there was no chance in hell we would meet
the deadlines! To help us out, management decided to offload implementation of
some of the features to…the database administrators team.

Yes, to implement the business logic in stored procedures.

This one decision resulted in much damage down the line. Not because SQL is not
the best language for describing business logic. No, the real issue was a bit more sub‐
tle and fundamental.

Applying DDD: A Case Study | 277

https://oreil.ly/tJ0pb

Tower of Babel 2.0
This situation produced an implicit bounded context whose boundary dissected one
of our most complex business entities: the Lead.

The result was two teams working on the same business component and implement‐
ing closely related features, but with minimal interaction between them. Ubiquitous
language? Give me a break! Literally, each team had its own vocabulary to describe
the business domain and its rules.

The models were inconsistent. There was no shared understanding. Knowledge was
duplicated, and the same rules were implemented twice. Rest assured, when the logic
had to change, the implementations went out of sync immediately.

Needless to say, the project wasn’t delivered anywhere near on time, and it was full of
bugs. Nasty production issues that had flown under the radar for years corrupted our
most precious asset: our data.

The only way out of this mess was to completely rewrite the Lead aggregate, this time
with proper boundaries, which we did a couple of years later. It wasn’t easy, but the
mess was so bad there was no other way around it.

A broader understanding of domain-driven design
Even though this project failed pretty miserably by business standards, our under‐
standing of domain-driven design evolved a bit: build a ubiquitous language, protect
its integrity using bounded contexts, and instead of implementing an anemic domain
model everywhere, implement a proper domain model everywhere. This model is
shown in Figure A-3.

Figure A-3. Introduction of strategic design concepts into our understanding of domain-
driven design

Of course, a crucial part of domain-driven design was missing here: subdomains,
their types, and how they affect a system’s design.

278 | Appendix A: Applying DDD: A Case Study

Initially we wanted to do the best job possible, but we ended up wasting time and
effort on building domain models for supporting subdomains. As Eric Evans put it,
not all of a large system will be well designed. We learned that the hard way, and we
wanted to use the acquired knowledge in our next project.

Bounded Context #3: Event Crunchers
After the CRM system was rolled out, we suspected that an implicit subdomain was
spread across marketing and CRM. Whenever the process of handling incoming cus‐
tomer events had to be modified, we had to introduce changes both in the marketing
and CRM bounded contexts.

Since conceptually this process didn’t belong to any of them, we decided to extract
this logic into a dedicated bounded context called “event crunchers,” shown in
Figure A-4.

Figure A-4. The event crunchers bounded context handling the incoming customer
events

Since we didn’t make any money out of the way we move data around, and there
weren’t any off-the-shelf solutions that could have been used, event crunchers resem‐
bled a supporting subdomain. We designed it as such.

Nothing fancy this time: just layered architecture and some simple transaction
scripts. This solution worked great, but only for a while.

As our business evolved, we implemented more and more features in the event
crunchers. It started with business intelligence (BI) people asking for some flags: a
flag to mark a new contact, another one to mark various first-time events, some more
flags to indicate some business invariants, and so on.

Eventually, those simple flags evolved into a real business logic, with complex rules
and invariants. What started out as transaction scripts evolved into a full-fledged core
business subdomain.

Unfortunately, nothing good happens when you implement complex business logic as
transaction scripts. Since we didn’t adapt our design to cope with the complex busi‐
ness logic, we ended up with a very big ball of mud. Each modification to the

Applying DDD: A Case Study | 279

codebase became more and more expensive, quality went downhill, and we were
forced to rethink the event crunchers design. We did that a year later. By that time,
the business logic had become so complex that it could only be tackled with event
sourcing. We refactored the event crunchers’ logic into an event-sourced domain
model, with other bounded contexts subscribing to its events.

Bounded Context #4: Bonuses
One day, the sales desk managers asked us to automate a simple yet tedious procedure
they had been doing manually: calculate the commissions for the sales agents.

Again, it started out simple: once a month, just calculate a percentage of each agent’s
sales and send the report to the managers. As before, we contemplated whether this
was a core subdomain. The answer was no. We weren’t inventing anything new,
weren’t making money out of this process, and if it was possible to buy an existing
implementation, we definitely would. Not core, not generic, but another supporting
subdomain.

We designed the solution accordingly: active record objects, orchestrated by a “smart”
service layer, as shown in Figure A-5.

Figure A-5. The bonuses bounded context implemented using the active record and lay‐
ered architecture patterns

Once the process became automated, boy, did everyone in the company become crea‐
tive about it. Our analysts wanted to optimize the heck out of this process. They
wanted to try out different percentages, tie percentages to sales amounts and prices,
unlock additional commissions for achieving different goals, and on and on. Guess
when the initial design broke down?

280 | Appendix A: Applying DDD: A Case Study

Again, the codebase started turning into an unmanageable ball of mud. Adding new
features became more and more expensive, bugs started to appear—and when you’re
dealing with money, even the smallest bug can have BIG consequences.

Design: Take two
As with the event crunchers project, at some point we couldn’t bear it anymore. We
had to throw away the old code and rewrite the solution from the ground up, this
time as an event-sourced domain model.

And just as in the event crunchers project, the business domain was initially catego‐
rized as a supporting one. As the system evolved, it gradually mutated into a core
subdomain: we found ways to make money out of these processes. However, there is a
striking difference between these two bounded contexts.

Ubiquitous language
For the bonuses project, we had a ubiquitous language. Even though the initial imple‐
mentation was based on active records, we could still have a ubiquitous language.

As the domain’s complexity grew, the language used by the domain experts got more
and more complicated as well. At some point, it could no longer be modeled using
active records! This realization allowed us to notice the need for a change in the
design much earlier than we did in the event crunchers project. We saved a lot of time
and effort by not trying to fit a square peg into a round hole, thanks to the ubiquitous
language.

A classic understanding of domain-driven design
At this point, our understanding of domain-driven design had finally evolved into a
classic one: ubiquitous language, bounded contexts, and different types of subdo‐
mains, each designed according to its needs, as shown in Figure A-6.

Figure A-6. A classic model of domain-driven design

However, things took quite an unexpected turn for our next project.

Applying DDD: A Case Study | 281

Bounded Context #5: The Marketing Hub
Our management was looking for a profitable new vertical. They decided to try using
our ability to generate a massive number of leads and sell them to smaller clients,
ones we hadn’t worked with before. This project was called “marketing hub.”

Since management had defined this business domain as a new profit opportunity, it
was clearly a core business domain. Hence, designwise, we pulled out the heavy artil‐
lery: event-sourced domain model and CQRS. Also, back then, a new buzzword,
microservices, started gaining lots of traction. We decided to give it a try.

Our solution looked like the implementation shown in Figure A-7.

Figure A-7. A microservices-based implementation of the marketing hub bounded
context

Small services, each having its own database, with both synchronous and asynchro‐
nous communication between them: on paper, it looked like a perfect solution design.
In practice, not so much.

Micro what?
We näively approached microservices thinking that the smaller the service was, the
better. So we drew service boundaries around the aggregates. In DDD lingo, each
aggregate became a bounded context on its own.

Again, initially this design looked great. It allowed us to implement each service
according to its specific needs. Only one would be using event sourcing, and the rest
would be state-based aggregates. Moreover, all of them could be maintained and
evolved independently.

However, as the system grew, those services became more and more chatty. Eventu‐
ally, almost each service required data from all the other services to complete some of
its operations. The result? What was intended to be a decoupled system ended up
being a distributed monolith: an absolute nightmare to maintain.

282 | Appendix A: Applying DDD: A Case Study

Unfortunately, there was another, much more fundamental issue we had with this
architecture. To implement the marketing hub, we used the most complex patterns
for modeling the business domain: domain model and event-sourced domain model.
We carefully crafted those services. But it all was in vain.

The real problem
Despite the fact that the business considered the marketing hub to be a core subdo‐
main, it had no technical complexity. Behind that complex architecture stood a very
simple business logic, one so simple that it could have been implemented using plain
active records.

As it turned out, the businesspeople were looking to profit by leveraging our existing
relationships with other companies, and not through the use of clever algorithms.

The technical complexity ended up being much higher than the business complexity.
To describe such discrepancies in complexities, we use the term accidental complexity,
and our initial design ended up being exactly that. The system was overengineered.

Discussion
Those were the five bounded contexts I wanted to tell you about: marketing, CRM,
event crunchers, bonuses, and marketing hub. Of course, such a wide business
domain as Marketnovus entailed many more bounded contexts, but I wanted to share
the bounded contexts we learned from the most.

Now that we’ve walked through the five bounded contexts, let’s look at this from a
different perspective. How did application or misapplication of core elements of
domain-driven design influence our outcomes? Let’s take a look.

Ubiquitous Language
In my experience, ubiquitous language is the “core subdomain” of domain-driven
design. The ability to speak the same language with our domain experts has been
indispensable to us. It turned out to be a much more effective way to share knowledge
than tests or documents.

Moreover, the presence of a ubiquitous language has been a major predictor of a proj‐
ect’s success for us:

• When we started, our implementation of the marketing system was far from per‐
fect. However, the robust ubiquitous language compensated for the architectural
shortcomings and allowed us to deliver the project’s goals.

Applying DDD: A Case Study | 283

• In the CRM context, we screwed it up. Unintentionally, we had two languages
describing the same business domain. We strived to have a proper design, but
because of the communication issues we ended up with a huge mess.

• The event crunchers project started as a simple supporting subdomain, and we
didn’t invest in the ubiquitous language. We regretted this decision big time when
the complexity started growing. It would have taken us much less time if we ini‐
tially started with a ubiquitous language.

• In the bonuses project, the business logic became more complex by orders of
magnitude, but the ubiquitous language allowed us to notice the need for a
change in the implementation strategy much earlier.

Hence, ubiquitous language is not optional, regardless of whether you’re working on
a core, supporting, or generic subdomain.

We learned the importance of investing in the ubiquitous language as early as possi‐
ble. It requires immense effort and patience to “fix” a language if it has been spoken
for a while in a company (as was the case with our CRM system). We were able to fix
the implementation. It wasn’t easy, but eventually we did it. That’s not the case, how‐
ever, for the language. For years, some people were still using the conflicting terms
defined in the initial implementation.

Subdomains
As you learned in Chapter 1, there are three types of subdomains— core, supporting,
and generic—and it’s important to identify the subdomains at play when designing
the solution.

It can be challenging to identify a subdomain’s type. As we discussed in Chapter 1, it’s
important to identify the subdomains at the granularity level that is relevant to the
software system you are building. For example, our marketing hub initiative was
intended to be the company’s additional profit source. However, the software aspect
of this functionality was a supporting subdomain, while leveraging the relationships
and contracts with other companies was the actual competitive advantage, the real
core subdomain.

Furthermore, as you learned in Chapter 11, it’s not enough to identify a subdomain’s
type. You also have to be aware of the possible evolutions of the subdomain into
another type. At Marketnovus, we witnessed almost all the possible combinations of
changes in subdomain types:

• Both the event crunchers and bonuses started as supporting subdomains, but
once we discovered ways to monetize these processes, they became our core
subdomains.

284 | Appendix A: Applying DDD: A Case Study

• In the marketing context, we implemented our own creative catalog. There was
nothing really special or complex about it. However, a few years later, an open
source project came out that offered even more features than we originally had.
Once we replaced our implementation with this product, the supporting subdo‐
main became a generic one.

• In the CRM context, we had an algorithm that identified the most promising
leads. We refined it over time and tried different implementations, but eventually
it was replaced with a machine learning model running in a cloud vendor’s man‐
aged service. Technically, a core subdomain became generic.

• As we’ve seen, our marketing hub system started as a core, but ended up being a
supporting subdomain, since the competitive edge resided in a completely differ‐
ent dimension.

As you’ve learned throughout this book, the subdomain types affect a wide range of
design decisions. Failing to properly identify a subdomain can be a costly mistake as,
for example, in the case of the event crunchers and the marketing hub.

Mapping design decisions to subdomains
Here is a trick I came up with at Marketnovus to foolproof the identification of sub‐
domains: reverse the relationship between subdomains and tactical design decisions.
Choose the business logic implementation pattern. No speculation or gold plating;
simply choose the pattern that fits the requirements at hand. Next, map the chosen
pattern to a suitable subdomain type. Finally, verify the identified subdomain type
with the business vision.

Reversing the relationship between subdomains and tactical design decisions creates
an additional dialogue between you and the business. Sometimes businesspeople
need us as much as we need them.

If they think something is a core business, but you can hack it in a day, then it is
either a sign that you need to look for finer-grained subdomains or that questions
should be raised about the viability of that business.

On the other hand, things get interesting if a subdomain is considered a supporting
one by the business but can only be implemented using the advanced modeling tech‐
niques: domain model or event-sourced domain model.

First, the businesspeople may have gotten overly creative with their requirements and
ended up with accidental business complexity. It happens. In such a case, the require‐
ments can, and probably should, be simplified.

Second, it might be that the businesspeople don’t yet realize they employ this subdo‐
main to gain an additional competitive edge. This happened in the case of the

Applying DDD: A Case Study | 285

bonuses project. By uncovering this mismatch, you’re helping the business identify
new profit sources faster.

Don’t ignore pain
Most importantly, never ignore “pain” when implementing the system’s business logic.
It is a crucial signal to evolve and improve either the model of the business domain or
the tactical design decisions. In the latter case, it means the subdomain has evolved,
and it’s time to go back and rethink its type and implementation strategy. If the type
has changed, talk with the domain experts to understand the business context. If you
need to redesign the implementation to meet new business realities, don’t be afraid of
this kind of change. Once the decision of how to model the business logic is made
consciously and you’re aware of all the possible options, it becomes much easier to
react to such a change and refactor the implementation to a more elaborate pattern.

Boundaries of Bounded Contexts
At Marketnovus, we tried quite a few strategies for setting the boundaries of bounded
contexts:

• Linguistic boundaries: We split our initial monolith into marketing and CRM
contexts to protect their ubiquitous languages.

• Subdomain-based boundaries: Many of our subdomains were implemented in
their own bounded contexts; for example, event crunchers and bonuses.

• Entity-based boundaries: As we discussed earlier, this approach had limited suc‐
cess in the marketing hub project, but it worked in others.

• Suicidal boundaries: As you may remember, in the initial implementation of the
CRM we dissected an aggregate into two different bounded contexts. Never try
this at home, okay?

Which of these strategies is the recommended one? None of them fits in all cases. In
our experience, it was much safer to extract a service out of a bigger one than to start
with services that are too small. Hence, we preferred to start with bigger boundaries
and decompose them later, as more knowledge was acquired about the business. How
wide are those initial boundaries? As we discussed in Chapter 11, it all goes back to
the business domain: the less you know about the business domain, the wider the ini‐
tial boundaries.

This heuristic served us well. For example, in the cases of the marketing and CRM
bounded contexts, each encompassed multiple subdomains. As time passed, we grad‐
ually decomposed the initially wide boundaries into microservices. As we defined in
Chapter 14, throughout the evolution of the bounded contexts, we stayed in the range

286 | Appendix A: Applying DDD: A Case Study

of the safe boundaries. We were able to avoid going past the safe boundaries by doing
the refactoring only after gaining enough knowledge of the business domain.

Conclusion
In the stories of Marketnovus’s bounded contexts I showed how our understanding of
domain-driven design evolved through time (refer to Figure A-6 for a refresher):

• We always started by building a ubiquitous language with the domain experts to
learn as much as possible about the business domain.

• In the case of conflicting models, we decomposed the solution into bounded con‐
texts, following the linguistic boundaries of the ubiquitous language.

• We identified the subdomains’ boundaries and their types in each bounded
context.

• For each subdomain we chose an implementation strategy by using tactical
design heuristics.

• We verified the initial subdomain types with those resulting from the tactical
design. In cases of mismatching types, we discussed them with the business.
Sometimes this dialogue led to changes in the requirements, because we were
able to provide a new perspective on the project to the product owners.

• As more domain knowledge was acquired, and if it was needed, we decomposed
the bounded contexts further into contexts with narrower boundaries.

If we compare this vision of domain-driven design with the one we started with, I’d
say the main difference is that we went from “aggregates everywhere” to “ubiquitous
language everywhere.”

In parting, since I’ve told you the story of how Marketnovus started, I want to share
how it ended.

The company became profitable very quickly, and eventually it was acquired by its
biggest client. Of course, I cannot attribute its success solely to domain-driven design.
However, during all those years, we were constantly in “start-up mode.”

What we term “start-up mode” in Israel is called “chaos” in the rest of the world: con‐
stantly changing business requirements and priorities, aggressive time frames, and a
tiny R&D team. DDD allowed us to tackle all of these complexities and keep deliver‐
ing working software. Hence, when I look back, the bet we placed on domain-driven
design paid off in full.

Applying DDD: A Case Study | 287

APPENDIX B

Answers to Exercise Questions

Chapter 1
1. D: B and C. Only core subdomains provide competitive advantages that differen‐

tiate the company from other players in its industry.
2. B: Generic. Generic subdomains are complex but do not entail any competitive

advantage. Hence, it’s preferable to use an existing, battle-proven solution.
3. A: Core. Core subdomains are expected to be the most volatile since these are

areas in which the company aims to provide new solutions and it often requires
quite a few interactions to find the most optimized solution.

4. WolfDesk’s business domain is Help Desk management systems.
5. We can identify the following core subdomains that allow WolfDesk to differenti‐

ate itself from its competitors and support its business model:
a. Ticket lifecycle management algorithm that is intended to close tickets and

thus encourage users to open new ones
b. Fraud detection system to prevent abuse of its business model
c. Support autopilot that both eases the tenants’ support agents’ work and fur‐

ther reduces the tickets’ lifespan
6. The following supporting subdomains can be identified in the description of the

company:
a. Management of a tenant’s ticket categories
b. Management of a tenant’s products, regarding which the customers can open

support tickets
c. Entry of a tenant’s support agents’ work schedules

289

7. The following generic subdomains can be identified in the description of the
company:
a. “Industry standard” ways of authenticating and authorizing users
b. Using external providers for authentication and authorization (SSO)
c. The serverless compute infrastructure the company leverages to ensure elastic

scalability and minimize the compute costs of onboarding new tenants

Chapter 2
1. D: All of the project’s stakeholders should contribute their knowledge and under‐

standing of the business domain.
2. D: A ubiquitous language should be used in all project-related communication.

The software’s source code should also “speak” its ubiquitous language.
3. WolfDesk’s customers are tenants. To start using the system, tenants go through a

quick onboarding process. The company’s charging model is based on the num‐
ber of tickets that were opened during a charging period. The ticket lifecycle man‐
agement algorithm ensures that inactive tickets are automatically closed.
WolfDesk’s fraud detection algorithm prevents tenants from abusing its business
model. The support autopilot functionality tries to find solutions for new tickets
automatically. A ticket belongs to a support category and is associated with a prod‐
uct for which the tenant provides support. A support agent can only process tick‐
ets during their work time, which is defined by their shift schedules.

Chapter 3
1. B: Bounded contexts are designed, while subdomains are discovered.
2. D: All of the above. A bounded context is a boundary of a model, and a model is

only applicable in its bounded context. Bounded contexts are implemented in
independent projects/solutions, thus allowing each bounded context to have its
own development lifecycle. Finally, a bounded context should be implemented by
a single development team, and therefore, it is also an ownership boundary.

3. D: It depends. There is no perfect size of a bounded context for all projects and
cases. Different factors, such as models, organizational constraints, and nonfunc‐
tional requirements, affect the optimum scope of a bounded context.

4. D: B and C are correct. A bounded context should be owned by one team only. At
the same time, the same team can own multiple bounded contexts.

5. It’s safe to assume that the operation model, implementing the tickets’ lifecycle,
will be different from the one used for fraud detection and the support autopilot
feature. Fraud detection algorithms usually require more analytics-oriented

290 | Appendix B: Answers to Exercise Questions

modeling, whereas, the autopilot feature is likely to use a model optimized for
use with machine learning algorithms.

Chapter 4
1. D: Separate ways. The pattern entails duplicate implementation of a functionality

in multiple bounded contexts. Duplicating complex, volatile, and business-
critical business logic should be avoided at all costs.

2. A: Core subdomain. A core subdomain is most likely to leverage an anticorrup‐
tion layer to protect itself from ineffective models exposed by upstream services,
or to contain frequent changes in the upstream’s public interfaces.

3. A: Core subdomain. A core subdomain is most likely to implement the open-
host service. Decoupling its implementation model from the public interface
(published language) makes it more convenient to evolve the core subdomain’s
model without affecting its downstream consumers.

4. B: Shared kernel. The shared kernel pattern is an exception to the bounded con‐
texts’ single team ownership rule. It defines a small portion of the model that is
shared and can be evolved simultaneously by multiple bounded contexts. The
shared part of the model should be always kept as small as possible.

Chapter 5
1. C: Neither of these patterns can be used to implement a core subdomain. Both

transaction script and active record lend themselves to the case of simple busi‐
ness logic, whereas core subdomains involve more complex business logic.

2. D: All of the above issues are possible:
a. If the execution fails after line 6, the caller retries the operation, and the same

agent is chosen by the FindLeastBusyAgent method, the agent’s ActiveTickets
counter will be increased by more than 1.

b. If the execution fails after line 6 but the caller doesn’t retry the operation, the
counter will be increased, while the ticket itself won’t be created.

c. If the execution fails after line 12, the ticket is created and assigned, but the
notification on line 14 won’t be sent.

3. If the execution fails after line 12 and the caller retries the operation and it suc‐
ceeds, the same ticket will be persisted and assigned twice.

4. All of WolfDesk’s supporting subdomains are good candidates for implementa‐
tion as transaction script or active record as their business logic is relatively
straightforward:

Answers to Exercise Questions | 291

a. Management of a tenant’s ticket categories
b. Management of a tenant’s products, regarding which the customers can open

support tickets
c. Entry of a tenant’s support agents’ work schedules

Chapter 6
1. C: Value objects are immutable. (Also, they can contain both data and behavior.)
2. B: Aggregates should be designed to be as small as possible, as long as the busi‐

ness domain’s data consistency requirements are intact.
3. B: To ensure correct transactional boundaries.
4. D: A and C.
5. B: An aggregate encapsulates all of its business logic, but business logic manipu‐

lating an active record can be located outside of its boundary.

Chapter 7
1. A: Domain events use value objects to describe what has happened in the busi‐

ness domain.
2. C: Multiple state representations can be projected and you can always add addi‐

tional projections in the future.
3. D: Both B and C are correct.
4. The ticket lifecycle algorithm is a good candidate to be implemented as an event-

sourced domain model. Generating domain events for all state transitions can
make it more convenient to project additional state representations optimized for
the fraud detection algorithm and the support autopilot functionality.

Chapter 8
1. D: A and C.
2. D: B and C.
3. C: Infrastructure layer.
4. E: A and D.
5. Working with multiple models projected by the CQRS pattern doesn’t contradict

the bounded context’s requirement of being a model boundary, since only one of
the models is defined as the source of truth and is used for making changes in the
aggregates’ states.

292 | Appendix B: Answers to Exercise Questions

Chapter 9
1. D: B and C.
2. B: Reliably publish messages.
3. The outbox pattern can be used to implement asynchronous execution of exter‐

nal components. For example, it can be used for sending email messages.
4. E: A and D are correct.

Chapter 10
1. Event-sourced domain model, CQRS architecture, and testing strategy that focu‐

ses on unit tests.
2. The shifts can be modeled as active records, working in the layered architectural

pattern. The testing strategy should primarily focus on integration tests.
3. The business logic can be implemented as a transaction script, organized in a lay‐

ered architecture. From a testing perspective, it’s worth concentrating on end-to-
end tests, verifying the full integration flow.

Chapter 11
1. A: Partnership to customer–supplier (conformist, anticorruption layer, or open-

host service). As an organization grows, it can become more challenging for
teams to integrate their bounded contexts in an ad hoc fashion. As a result, they
switch to a more formal integration pattern.

2. D: A and B. A is correct because bounded contexts go separate ways when the
cost of duplication is lower than the overhead of collaboration. C is incorrect
because it’s a terrible idea to duplicate implementation of a core subdomain.
Consequently, B is correct because the separate ways pattern can be used for sup‐
porting and generic subdomains.

3. D: B and C.
4. F: A and C.
5. Upon reaching a certain level of growth, WolfDesk could follow the footsteps of

Amazon and implement its own compute platform to further optimize its ability
to scale elastically and optimize its infrastructure costs.

Answers to Exercise Questions | 293

Chapter 12
1. D: All stakeholders having knowledge of the business domain that you want to

explore.
2. F: All the answers are sound reasons to facilitate an EventStorming session.
3. E: All the answers are possible outcomes of an EventStorming session. The out‐

come you should expect to get depends on your initial purpose for facilitating the
session.

Chapter 13
1. B: Analyze the organization’s business domain and its strategy.
2. D: A and B.
3. C: A and B.
4. An aggregate with a bounded context-wide boundary may make all of the boun‐

ded context’s data a part of one big transaction. It’s also likely that performance
issues with this approach will be evident from the get go. Once that happens, the
transactional boundary will be removed. As a result, it will no longer be possible
to assume that the information residing in the aggregate is strongly consistent.

Chapter 14
1. A: All microservices are bounded contexts. (But not all bounded contexts are

microservices.)
2. D: The knowledge of the business domain and its intricacies exposed across the

service’s boundary and reflected by its public interface.
3. C: Boundaries between bounded contexts (widest) and microservices

(narrowest).
4. D: The decision depends on the business domain.

Chapter 15
1. D: A and B are correct.
2. B: Event-carried state transfer.
3. A: Open-host service.
4. B: S2 should publish public event notifications, which will signal S1 to issue a

synchronous request to get the most up-to-date information.

294 | Appendix B: Answers to Exercise Questions

Chapter 16
1. D: A and C are correct.
2. B: Open-host service. One of the published languages exposed by the open-host

service can be OLAP data optimized for analytical processing.
3. C: CQRS. The CQRS pattern can be leveraged to generate projections of the

OLAP model out of the transactional model.
4. A: Bounded contexts.

Answers to Exercise Questions | 295

References

Brandolini, A. (n.d.). Introducing EventStorming. Leanpub.
Brooks, F. P., Jr. (1974). The Mythical Man Month and Other Essays on Software Engi‐

neering. Reading, MA: Addison-Wesley.
Eisenhardt, K., & Sull, D. (2016). Simple Rules: How to Succeed in a Complex World.

London: John Murray.
Esposito, D., & Saltarello, A. (2008). Architecting Applications for the Enterprise:

Microsoft® .NET. Redmond, WA: Microsoft Press.
Evans, E. (2003). Domain-Driven Design: Tackling Complexity in the Heart of Soft‐

ware. Boston: Addison-Wesley.
Feathers, M. C. (2005). Working Effectively with Legacy Code. Upper Saddle River, NJ:

Prentice Hall PTR.
Fowler, M. (2002). Patterns of Enterprise Application Architecture. Boston: Addison-

Wesley.
Fowler, M. (2019). Refactoring: Improving the Design of Existing Code (2nd ed.). Bos‐

ton: Addison-Wesley.
Fowler, M. (n.d.). What do you mean by “Event-Driven”? Retrieved August 12, 2021,

from https://martinfowler.com/articles/201701-event-driven.html.
Gamma, E., Helm, R., & Johnson, R. (1994). Design Patterns: Elements of Reusable

Object-Oriented Software. Reading, MA: Addison-Wesley.
Gigerenzer, G., Todd, P. M., & ABC Research Group (Research Group, Max Planck

Institute, Germany). (1999). Simple Heuristics That Make Us Smart. New York:
Oxford University Press.

Goldratt, E. M. (2005). Beyond the Goal: Theory of Constraints. New York: Gildan
Audio.

Goldratt, E. M., & Goldratt-Ashlag, E. (2018). The Choice. Great Barrington, MA:
North River Press Publishing Corporation.

Goldratt-Ashlag, E. (2010). “The Layers of Resistance—The Buy-In Process Accord‐
ing to TOC.” (Chapter 20 of the Theory of Constraints handbook.) Bedford, Eng‐
land: Goldratt Marketing Group.

297

https://martinfowler.com/articles/201701-event-driven.html

Garcia-Molina, H., & Salem K. (1987). Sagas. Princeton, NJ: Department of Com‐
puter Science, Princeton University.

Helland, P. (2020). Data on the outside versus data on the inside. Communications of
the ACM, 63(11), 111–118.

Hohpe, G., & Woolf, B. (2003). Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions. Boston: Addison-Wesley.

Khononov, V. (2022). Balancing Coupling in Software Design. Boston: Addison-
Wesley.

Khononov, V. (2019). What Is Domain-Driven Design? Boston: O’Reilly.
Martraire, C. (2019). Living Documentation: Continuous Knowledge Sharing by Design.

Boston: Addison-Wesley.
Millett, S., & Tune, N. (2015). Patterns, Principles, and Practices of Domain-Driven

Design (1st ed.). Nashville: John Wiley & Sons.
Myers, G. J. (1978). Composite/Structured Design. New York: Van Nostrand Reinhold.
Ousterhout, J. (2018). A Philosophy of Software Design. Palo Alto, CA: Yaknyam Press.
Richardson, C. (2019). Microservice Patterns: With Examples in Java. New York: Man‐

ning Publications.
Vernon, V. (2013). Implementing Domain-Driven Design. Boston: Addison-Wesley.
Vernon, V. (2016). Domain-Driven Design Distilled. Boston: Addison-Wesley.
West, G. (2018). Scale: The Universal Laws of Life and Death in Organisms, Cities and

Companies. Oxford, England: Weidenfeld & Nicolson.
Wright, D., & Meadows, D. H. (2009). Thinking in Systems: A Primer. London:

Earthscan.

298 | Bibliography

Index

A
accidental complexity

case study of applying DDD, 283
growth and, 180, 181, 182

active records, 69-71
design evolving

active record to domain model, 174
transaction script to active record, 174

design heuristics, 161, 163
Fowler naming, 71
implementation, 70
layered architecture, 124
when to use, 71

aggregates, 84-92
about, 88

boundaries, 227
case study of applying DDD

customer relationship management
bounded context, 276-279

marketing bounded context, 275
commands, 85
communication

aggregate root, 90
domain events, 91, 143-154
outbox pattern, 145
process manager, 150-154
saga pattern, 147-150

complexity reduction, 95
consistency and aggregate boundaries, 150
consistency enforcement, 84-87
domain services coordinating, 92
“Effective Aggregate Design” (Vernon), 277
entities, 84

identification field, 84, 114

EventStorming, 194
growth management, 182
hierarchy of entities, 87-89
microservices, 227
referencing other aggregates, 89
state persisted versus event sourcing, 99, 108

(see also domain model; event-sourced
domain model)

Ticket aggregate (see help desk)
transaction boundary, 87

domain services and, 93
ubiquitous language, 92

Agile Manifesto, 30
analysis model, 23
analytical data management platforms

about, 254
analytical versus transactional model, 249
data lake, 257-258

challenges of, 258
data mesh

about, 259
data as product, 261, 262
decomposing data around domains, 259
domain-driven design and, 263
governance ecosystem, 262

data warehouse, 254-256
challenges of, 258

analyzing business domains (see domain analy‐
sis)

anemic domain model antipattern, 71, 275
(see also active records)

answers to exercise questions, 289-295
anticorruption layer, 54

microservices, 230

299

model translation, 137-140
modernization strategy, 206

APIs in application layer, 86
application layer, 86, 126

(see also service layer)
applying domain-driven design (see case study

of applying DDD)
architecture (see software architecture)
audit log

event sourcing for, 111
text file instead, 114

monetary transactions, 162

B
backend-for-frontend pattern, 142
big ball of mud, 180

(see also real-world domain-driven design)
distributing via events, 241

The Blue Book (Evans), xiii
book source code, xix
book website, xix
boundaries

about, 41, 49
aggregates, 227
case study discussion, 286
event-driven architecture, 241
growth management, 180
logical boundaries, 41

layers in layered architecture, 125
service layer as, 122

microservices
about, 225
aggregates, 227
bounded contexts, 225-227
subdomains, 228

modernization strategy, 205
ownership boundaries, 42
physical boundaries, 41

bounded contexts, 225
microservices, 223, 225
tiers in N-Tier architecture, 125

real-world DDD, 203
bounded contexts

about, 35
boundaries (see boundaries)
case study of applying DDD

bonuses, 280
boundaries discussion, 286
business domain, 273-275

customer relationship management,
276-279

event crunchers, 279
marketing, 275
marketing hub, 282

communication, 137-142
context map, 57-58

limitations, 58
maintenance, 58

data mesh architecture, 263
design heuristics, 160
EventStorming, 194
growth management, 181
integrating

about contracts, 49
cooperation, 50-52
customer–supplier, 53-55
separate ways no collaboration, 56

microservices, 225-227
model boundaries, 36
organizational changes and, 178
real life, 42-46

day-to-day DDD, 212
scope of, 37
strangler migration pattern, 207-210
subdomains versus, 38-41

interplay between, 39-41
subdomain design changes and, 172

ubiquitous language, 35-38
(see also ubiquitous language)

Box, George, 28
brainstorming (see EventStorming)
Brandolini, Alberto, 21, 22, 186, 195, 197
Brooks, Fred, 99
brownfield DDD, 201

(see also real-world domain-driven design)
business domains

about, 3
need to know, 3, 267

about domain-driven design, xvi
analyzing (see domain analysis)
bounded contexts in real life, 42-46

case study of applying DDD, 273-275
real-world DDD, 202

bounded contexts integrated
about contracts, 49
cooperation, 50-52
customer–supplier, 53-55
separate ways no collaboration, 56

300 | Index

business logic in layered architecture, xv
EventStorming for knowledge, 207

(see also EventStorming)
modeling (see modeling business domain)
subdomains, 228

(see also subdomains)
case study discussion, 284-286

(see also case study of applying
DDD)

ubiquitous language for, 24-26
case study of applying DDD, 275, 278,

281
modernization strategy, 207

business knowledge
business problems, 21, 267
communication, 22-24

analysis model, 23
ubiquitous language, 24-26

(see also ubiquitous language)
domain experts, xiii, 17

(see also domain experts)
EventStorming for, 207

(see also EventStorming)
knowledge discovery, 22
knowledge lost, 179, 204
modeling, 27

(see also modeling business domain)
real-world DDD, 202

business logic implementation
about, 63
active records, 69-71

design heuristics, 161
Fowler naming, 71
implementation, 70
layered architecture, 124
when to use, 71

brainstorming (see EventStorming)
case study (see case study of applying DDD)
design heuristics, 161-163

changes in design, 169-172
domain model pattern

about, 76
about history, 75
aggregates, 84-92, 95
complexity management, 77, 94
design heuristics, 162
domain services, 92
entities, 83
implementation, 77

layered architecture and, 125
value objects, 77-83, 95

pragmatic approach, 72
real-world DDD, 202

modernization strategy, 204-210
software architecture

business logic versus, 117
command-query responsibility segrega‐

tion, 128-134
dependency inversion principle, 126
ports & adapters architecture, 125, 127
service layer for business logic, 122, 126

time dimension (see event-sourced domain
model)

transaction scripts, 63-69
debugging, 64-68
design heuristics, 161
implementation, 64
layered architecture, 124
when to use, 68

business logic layer of layered architecture, 119
business problems, 21, 267

C
case study of applying DDD

about, 273
bounded contexts

bonuses, 280
business domain, 273-275
customer relationship management,

276-279
event crunchers, 279
marketing, 275
marketing hub, 282

discussion
boundaries of bounded contexts, 286
subdomains, 284-286
ubiquitous language, 283

ubiquitous language
discussion, 283
domain experts, 275, 281
two separate languages, 278

The Choice (Goldratt), 94
collaboration patterns

about, 49
cooperation, 50-52

partnerships, 50
shared kernel, 50-52

customer–supplier

Index | 301

about, 53
anticorruption layer, 54
conformist, 53
open-host service, 55
subdomain changes affecting, 173

modernization strategy, 206
organizational changes

customer–supplier to separate ways, 179
partnership to customer–supplier, 179

separate ways no collaboration, 56
communication issues, 56
generic subdomains, 56
model differences, 56
subdomain changes affecting, 173

command-query responsibility segregation
(CQRS), 128-134
data mesh architecture, 263
implementation, 129

command execution model, 129
read models, 130

model segregation, 133
polyglot modeling, 129
projecting read models, 130

asynchronous projections, 132
challenges, 132
synchronous projections, 130

when to use, 133
design heuristics, 163

commands
aggregate state-modifying methods, 85
events versus, 234
EventStorming, 190
saga pattern of aggregate communication,

147-150
process manager versus, 150

communication
about domain-driven design, xxiv
aggregates

aggregate root, 90
domain events, 91, 143-154
outbox pattern, 145
process manager, 150-154
saga pattern, 147-150

business knowledge, 22-24
analysis model, 23
case study of applying DDD, 275, 281
EventStorming for, 207

(see also EventStorming)
ubiquitous language, 24-26

(see also ubiquitous language)
case study of applying DDD

discussion, 283
two separate languages, 278
ubiquitous language, 275, 281

collaboration obstacle, 56, 278
context map for patterns, 57, 206
event-driven architecture as, 234

domain events, 239
event notification, 236
event-carried state transfer, 237

layers in layered architecture, 120
model translation

about, 137
stateful, 141
stateful aggregating incoming data, 141
stateful unifying multiple sources, 142
stateless, 138
stateless asynchronous, 140
stateless synchronous, 138

modeling business domain, 28
(see also ubiquitous language)

non-English-speaking countries, 31
services, 218
software crisis and, xxiv

competitive advantage
core subdomains providing, 5, 7

in-house implementation, 10
generic subdomains not providing, 6, 7
subdomain comparisons, 7
supporting subdomains not providing, 6, 7

complexity
about, 7, 8
accidental complexity

case study of applying DDD, 283
growth and, 180, 181, 182

business logic domain model, 77, 94
core subdomains, 5, 8

software design affected, 8
domain complexity

about, 33
boundaries, 41
bounded contexts, 35-38
bounded contexts in real life, 42-46
inconsistent models, 33-35
subdomains versus bounded contexts, 38

generic subdomains, 6, 8
global complexity, 221

302 | Index

growth and accidental complexity, 180, 181,
182

subdomain comparisons, 7
system complexity

definition, 94
microservices and, 221-224
system definition, 221

compliance with GDPR and data deletion, 114
Composite/Structured Design (Myers), 221
conformist relationship, 53
context map of bounded contexts, 57-58

communication patterns, 57, 206
limitations, 58
maintenance, 58

contracts in bounded contexts
about, 49
communication, 137
cooperation, 50-52

partnerships, 50
shared kernel, 50-52

customer–supplier, 53-55
separate ways no collaboration, 56

cooperation pattern of bounded contexts, 50-52
partnerships, 50
shared kernel, 50-52

core domains versus core subdomains, 6
core subdomains, 4, 169

boundaries, 12
competitive advantage from, 5, 7

in-house implementation, 10
complexity, 5, 8

software design affected, 8
core domains versus, 6
design evolving

changing to generic, 170
changing to supporting, 172
generic changing to, 170
supporting changing to, 171

design heuristics, 162
evolving continuously, 9, 10
in-house implementation, 10
insights from event sourcing, 111
real-world DDD, 202

CRUD (create, read, update, and delete), 7
customer–supplier collaboration pattern

about, 53
anticorruption layer, 54
changing to separate ways, 179
conformist, 53

modernization strategy, 206
open-host service, 55
partnership changing to, 179
subdomain changes affecting, 173

D
data access layer of layered architecture, 119

infrastructure layer, 126
data corruption

aggregate consistency enforcement, 84-87
pragmatic approach, 72
transaction script errors, 64-68

data lake, 257-258
challenges of, 258
data as product, 261

data mesh
about, 249, 259
analytical data management platforms

about, 254
challenges of data lake and warehouse,

258
data lake, 257-258
data warehouse, 254-256

analytical versus transactional data model
about, 249
analytical models, 253
dimension table, 252
fact tables, 250-252
snowflake schema, 253
star schema, 253

data as product, 261
autonomy enabled, 262

decomposing data around domains, 259
domain-driven design and, 263
governance ecosystem, 262
online analytical processing data, 249

data polyglot persistence model, 129
data protection regulation

deleting data, 114
monetary transactions, 162

data warehouse (DWH), 254-256
challenges of, 258

DDD (see domain-driven design)
debugging

retroactive via event sourcing, 111
transaction script errors, 64-68

decision tree for tactical design, 166
deep modules

microservices as deep modules, 223

Index | 303

modules in software system, 222
subdomains as deep modules, 229

degrees of freedom and complexity, 94
dependency inversion principle (DIP) , 126
design

changes in design
about, 169
active record to domain model, 174
case study discussion, 284, 286
domain knowledge, 179
domain model to event-sourced domain

model, 176
domains changed, 169-172
generating past transitions, 176
growth, 180-182
modeling migration events, 177
organizational changes, 178
strategic design concerns, 172
tactical design concerns, 173-178
transaction script to active record, 174

heuristics
about heuristics, 159
architectural patterns, 163
bounded contexts, 160
business logic implementation, 161-163
decision tree, 166
testing strategy, 164

strategic (see strategic design)
tactical (see tactical design)

Dijkstra, Edsger W., 28
dimension of time (see time modeled)
dimension table, 252
domain analysis

about business domains, 3
need to know, 3

business problem domains, 22
domain experts, xiii, 17

(see also domain experts)
examples

about, 14
BusVNext, 15
Gigmaster, 14-15

real-world DDD, 202
subdomain boundaries

about, 11
details of business functions, 11
essentials only, 14
subdomains as use cases, 12

subdomain types

about, 4, 11
core subdomains, 4
generic subdomains, 6
supporting subdomains, 6
supporting subdomains example, 6

subdomains compared
about, 7, 11
competitive advantage, 7
complexity, 7
in-house versus outsource, 10
volatility, 9

domain events
aggregate communication, 91, 143-154

outbox pattern, 145
process manager, 150-154
saga pattern, 147-150

brainstorming business processes, 185
(see also EventStorming)

event-driven architecture, 239
event notification versus, 239
event-carried state transfer versus, 240

example, 240
domain experts, 17

business knowledge
analysis model, 23
business problems, 21
data mesh architecture, 263
knowledge contribution, xiii, 17
knowledge discovery, 22
knowledge lost, 179, 204
sharing via EventStorming, 185

(see also EventStorming)
ubiquitous language, 24-26

case study ubiquitous language, 275, 281
domain complexity

about, 33
boundaries, 41
bounded contexts, 35-38
bounded contexts in real life, 42-46
inconsistent models, 33-35
subdomains versus bounded contexts, 38

modeling business domain, 22, 28
challenges, 30
tools, 29

domain knowledge (see domain experts)
domain model for business logic

about, 76
about history, 75
anemic domain model antipattern, 71, 275

304 | Index

building blocks
aggregates, 84-92, 95
domain services, 92
entities, 83
value objects, 77-83, 95

design evolving, 169-172
active record to domain model, 174
domain model to event-sourced domain

model, 176
design heuristics, 162, 163
event-sourced domain model versus, 99,

108
implementation, 77
layered architecture and, 125
time modeled (see event-sourced domain

model)
domain services as business logic building

block, 92
domain-driven design (DDD)

about, xiii, xvi
strategic and tactical design, 1

(see also strategic design; tactical
design)

about communication, xxiv
(see also communication)

about problem–solution–implementation,
267-269

case study, 273
(see also case study of applying DDD)

data mesh and, 263
(see also data mesh)

domain experts, xiii, 17
(see also domain experts)

further reading, 269-271
real-world DDD, 201

(see also real-world domain-driven
design)

selling to team and management, 211-213
ubiquitous language, 24-26

(see also ubiquitous language)
Domain-Driven Design (Evans), xiii, xv, 6, 75,

274

E
“Effective Aggregate Design” (Vernon), 277
encryption of sensitive information, 114
entities, 83

aggregates, 84-92
about, 88

aggregate root, 90
commands, 85
consistency enforcement, 84-87
domain events, 91
hierarchy of entities, 87-89
referencing other aggregates, 89
transaction boundary, 87

identification fields, 83
aggregates, 84, 114

entry barriers of core subdomains, 5
ETL (extract, transform, load)

data lake architecture, 257-258
data warehouse architecture, 254-256

OLAP–OLTP coupling, 256
transaction scripts, 68

Evans, Eric, xiii, xv, 6, 75, 92, 205, 274
event notification, 236

concurrency, 237
domain events versus, 239
example, 240
security, 237

event-carried state transfer (ECST), 237
domain events versus, 240
example, 240

event-driven architecture (EDA)
about domain-driven design and, 233
about event-driven architecture, 233

event sourcing versus, 234
designing

about, 241
distributed big ball of mud, 241
implementation coupling, 243
logical coupling, 243
public and private events, 245
refactoring, 243
temporal coupling, 242

events, 234-241
event-sourced domain model, 108-110

about, 99
name, 110

advantages, 110
command-query responsibility segregation

pattern, 129, 134
design heuristics, 162, 163
disadvantages, 111
domain model changing to, 176
domain model versus, 99, 108
event sourcing pattern, 99-108

adjusting event schema, 112

Index | 305

analysis, 105
event store, 107, 114
event-driven architecture versus, 234
searching earlier information values, 104
source of truth, 107, 115
version field for modification state, 104

forgettable payload pattern, 114
frequently asked questions

appending logs to log table, 115
audit log from text file, 114
deleting data, 114
performance, 112
scalability, 114
state-based source of truth, 115

historical perspectives
aggregate past states reconstituted, 111
generating past transitions, 176
retroactive debugging, 111
searching earlier information values, 104

selling domain-driven design, 213
snapshotting an aggregate’s events, 113

events
about, 234
about types of, 236

example, 240
domain events, 239

aggregates, 91
event notification versus, 239
event-carried state transfer versus, 240
example, 240
message translation and, 140

event notification, 236
concurrency, 237
domain events versus, 239
example, 240
security, 237

event-carried state transfer, 237
domain events versus, 240
example, 240

event-driven architecture, 234-241
event sourcing versus, 234

modeling migration events, 177
names of, 235
public and private, 245
structure, 235

EventStorming
about, 185
facilitation tips, 196
further reading, 271

modernization strategy, 207
process, 187-194

about how, 196
aggregates, 194
bounded contexts, 194
commands, 190
external systems, 193
pain points, 189
pivotal events, 190
policies, 191
read models, 192
timelines, 188
unstructured exploration, 187

remote EventStorming, 197
scope, 185
variants, 195
what is needed, 186
when to use, 196
who should participate, 186

exercise question answers, 289-295
external systems, 193
extract-transform-load operations (see ETL)

F
façade pattern abstraction layer

service layer for business logic layer,
121-122, 126

strangler migration pattern and, 208
fact tables, 250-252
forgettable payload pattern, 114
Fowler, Martin, 63, 69, 71, 75, 121
further reading, 269-271

G
GDPR (General Data Protection Regulation)

and data deletion, 114
generic subdomains, 6, 169

boundaries, 12
competitive advantage not provided, 6, 7
complexity, 6, 8
design evolving

changing to core, 170
changing to supporting, 172
core changing to, 170
supporting changing to, 171

design heuristics, 161
duplication over cooperation, 56
off-the-shelf or open source, 10
real-world DDD, 203

306 | Index

Gherkin tests, 29
global complexity, 221
glossary for ubiquitous language, 29
Goldratt, Eliyahu M., xvi, 94
Goldratt-Ashlag, Efrat, 1, 267
Google Search domains, 5
Grove, Andrew, 245
growth management, 180-182

accidental complexity, 180, 181, 182
aggregates, 182
bounded contexts, 181
subdomains, 180

H
help desk

domain model of implementation
about, 76
aggregates, 84-92
entities, 83
value objects, 77-83

event-sourced domain model, 108-110
WolfDesk overview, xviii

heuristics defined, 159
historical perspectives via event sourcing

aggregate past states reconstituted, 111
generating past transitions, 176
retroactive debugging, 111
searching earlier information values, 104
version field for modification state, 104

I
identification fields

entities, 83
aggregates, 84, 114

forgettable payload pattern, 114
implementation of subdomains, 10
infrastructure layer of layered architecture, 126

dependency inversion principle, 126
ports & adapters architecture, 127

K
knowledge of business (see business knowl‐

edge)

L
layered architecture pattern, 118

about, xv
business logic layer, 119

communication between layers, 120
data access layer, 119

infrastructure layer, 126
dependency inversion principle, 126
infrastructure layer, 126
presentation layer, 118

infrastructure layer, 126
service layer, 121-124
terminology, 124
tiers versus layers, 125
when to use, 124

local complexity, 221
logical boundaries, 41

layers in layered architecture, 125
service layer as, 122

M
Malan, Ruth, 41
methods

commands of aggregates, 85
communication of result, 67
CRUD operations, 70

microservices
about microservices, 218

deep modules, 223
deep services, 222
design goal, 220
history, 217
naïve decomposition, 219
system complexity, 221-224

about services, 217
anticorruption layer, 230
boundaries

about, 225
aggregates, 227
bounded contexts, 225-227
subdomains, 228

case study of applying DDD, 282
open-host service, 229
system definition, 221

modeling business domain
about, 28
about models, 27
analysis model, 23
bounded contexts, 36, 41, 49

logical boundaries, 41
ownership boundaries, 42
physical boundaries, 41
scope of, 37, 51

Index | 307

subdomains versus, 38-41
bounded contexts integrated

about contracts, 49
cooperation, 50-52
customer–supplier, 53-55
duplication over collaboration, 56
separate ways no collaboration, 56

brainstorming (see EventStorming)
command-query responsibility segregation,

129
domain expert thinking, 28
domain experts’ mental models, 22

(see also domain experts)
effective modeling, 28
inconsistent models, 33-35
polyglot modeling, 129
time modeled (see event-sourced domain

model)
ubiquitous language, 24-26

about modeling business domain, 28
challenges, 30
continuous effort, 29
modernization strategy, 207
non-English-speaking countries, 31
tools, 29

modernization strategy
about, 204
further reading, 270
refactoring, 210
strangler migration pattern, 207-210
strategic modernization, 205

context map, 206
tactical modernization, 207
ubiquitous language cultivated, 207

modules in software system, 222
microservices as deep modules, 223
subdomains as deep modules, 229

Myers, Glenford J., 221

N
N-Tier architecture versus layered, 125
names

aggregates and data members, 92
domain events, 91
events as past tense, 235
facts, 250

O
online analytical processing (OLAP) data, 249

(see also data mesh)
analytical versus transactional data model,

249
analytical models, 253
fact tables, 250-252
snowflake schema, 253
star schema, 253

dimension table, 252
ETL processes creating OLTP coupling, 256

online transactional processing (OLTP) data,
249
analytical versus transactional data model,

249
ETL processes creating OLAP coupling, 256

open-host service, 55
data mesh architecture, 263
microservices, 229
model translation, 137-138
modernization strategy, 207

optimistic concurrency and event sourcing, 111
organizational changes, 178

customer–supplier to separate ways, 179
partnership to customer–supplier, 179

Ousterhout, John, 222
outbox pattern of communication, 145
ownership boundaries, 42

data lake and warehouse architectures, 259
data mesh architecture, 259

P
parameter objects, 85
partnerships in bounded contexts, 50

partnership changing to customer–supplier,
179

Patterns of Enterprise Application Architecture
(Fowler), 71, 75, 121

performance of event sourcing pattern, 112
snapshotting an aggregate’s events, 113

The Philosophy of Software Design (Ousterh‐
out), 222

physical boundaries, 41
bounded contexts, 225
microservices, 223, 225

policies triggering command execution, 191
polyglot modeling, 129

data as product, 261
polyglot persistence, 129

ports & adapters architecture
about, 125, 127

308 | Index

dependency inversion principle, 126
design heuristics, 163
infrastructure integration, 127
terminology, 126
variants, 128
when to use, 128

power differences in relationships
about, 53
anticorruption layer, 54
conformist, 53
open-host service, 55

pragmatic domain-driven design, 210
presentation layer of layered architecture, 118

infrastructure layer, 126
process manager pattern of aggregate commu‐

nication, 150-154
properties described by value objects, 84
protocols exposed for public, 55
published language public protocol, 55

R
read models

command-query responsibility segregation
asynchronous projections, 132
asynchronous projections challenges,

132
implementation, 130
projecting, 130
synchronous projections, 130

EventStorming, 192
reading further, 269-271
real-world domain-driven design

about, 201
big ball of mud, 180
bounded contexts in real life, 42-46

day-to-day DDD, 212
case study, 273

(see also case study of applying DDD)
day-to-day DDD, 211-213
modernization strategy

about, 204
context map, 206
further reading, 270
refactoring, 210
strangler migration pattern, 207-210
strategic modernization, 205
tactical modernization, 207
ubiquitous language cultivated, 207

pragmatic domain-driven design, 210

selling domain-driven design, 211-213
strategic analysis

business domain knowledge, 202
current system design, 203

refactoring modernization strategy, 210
event-driven architecture, 243

refrigerator-buying bounded contexts, 44
resources

book source code, xix
book website, xix
Domain-Driven Design (Evans), xiii, xv, 6,

75, 274
further reading, 269-271
Patterns of Enterprise Application Architec‐

ture (Fowler), 71, 75, 121

S
saga pattern of aggregate communication,

147-150
about sagas, 147
example, 147-150

sales leads via event sourcing, 99-108
analysis, 105
searching earlier information values, 104
version field for modification state, 104

scalability of event sourcing, 114
science bounded contexts, 43
scripts for transactions, 63-69

debugging, 64-68
implementation, 64
when to use, 68

semantic domains, 43
separate ways no collaboration pattern, 56

communication issues, 56
customer–supplier changing to, 179
generic subdomains, 56
model differences, 56
modernization strategy, 207
subdomain changes affecting, 173

service layer, 121-124
business logic implementation, 122, 126
public API actions to domain model, 86

shared kernel in bounded contexts, 50
communication via model translation, 137
implementation, 51
shared scope, 51
when to use, 52

Shoup, Randy, 218
snapshotting an aggregate’s events, 113

Index | 309

snowflake schema, 253
software architecture

about domain-driven design, xvi, 134
about patterns, 117
boundaries, 41
business logic versus, 117
command-query responsibility segregation,

128-134
challenges, 132
command execution model, 129
data mesh architecture, 263
implementation, 129
model segregation, 133
polyglot modeling, 129
projecting read models, 130-133
read models, 130
when to use, 133, 163

dependency inversion principle, 126
design heuristics, 163
further reading, 270
layered architecture pattern, 118

about, xv
business logic layer, 119
communication between layers, 120
data access layer, 119
dependency inversion principle, 126
infrastructure layer, 126
presentation layer, 118
service layer, 121-124
terminology, 124
tiers versus layers, 125
when to use, 124

N-Tier architecture, 125
ports & adapters architecture

about, 125, 127
dependency inversion principle, 126
design heuristics, 163
infrastructure integration, 127
terminology, 126
variants, 128
when to use, 128

software crisis, xxiii
space for modeling, 186
star schema, 253
strangler migration pattern, 207-210
strategic design

about, xiii, 1
business knowledge (see business knowl‐

edge)

competitive advantage
core subdomains providing, 5, 7
subdomain comparisons, 7

complexity
about, 7, 8
core subdomains, 5, 8
generic subdomains, 6, 8
software design affected, 8
subdomain comparisons, 7

design evolving, 172
domain analysis (see domain analysis)
in-house versus outsource, 10
insights from event sourcing, 111
real-world DDD, 204

modernization strategy, 205
volatility of subdomains, 9

subdomains
about, 4, 11, 228
boundaries identified

about, 11
details of business functions, 11
essentials only, 14
growth management, 180
modernization strategy, 205
subdomains as use cases, 12

bounded contexts versus, 38-41
interplay between, 39-41

business problem domains, 22
case study discussion, 284-286

(see also case study of applying DDD)
changes in design, 169-172

case study discussion, 284, 286
strategic design concerns, 172
tactical design concerns, 173-178

comparing
about, 7, 11
competitive advantage, 7
complexity, 7
in-house versus outsource, 10
volatility, 9

core subdomains, 4
(see also core subdomains)

design heuristics, 161
domain analysis examples

about, 14
BusVNext, 15
Gigmaster, 14-15

generic subdomains, 6
(see also generic subdomains)

310 | Index

growth management, 180
microservices, 228
real-world DDD, 202
supporting subdomains, 6

(see also supporting subdomains)
supporting subdomains, 6, 169

boundaries, 12
change minimal, 9
competitive advantage not provided, 6, 7
complexity absent, 7, 8
design evolving

changing to core, 171
changing to generic, 171
core changing to, 172
generic changing to, 172

design heuristics, 161
example of, 6
in-house implementation, 10
real-world DDD, 203

system complexity and microservices, 221-224
system definition, 221

T
tactical design

about, xiii, 1
business logic (see business logic implemen‐

tation)
day-to-day DDD, 212
evolving design concerns, 173-178

active record to domain model, 174
domain model to event-sourced domain

model, 176
generating past transitions, 176
modeling migration events, 177
transaction script to active record, 174

real-world DDD, 204
modernization strategy, 207

testing strategies
about choosing, 164
reversed testing pyramid, 165
testing diamond, 165
testing pyramid, 165

Ticket aggregate (see help desk)
tiers versus layers in architecture, 125
time modeled via event sourcing

about, 99
event sourcing pattern, 99-108

adjusting event schema, 112
analysis, 105

event store, 107, 114
event-driven architecture versus, 234
searching earlier information values, 104
source of truth, 107, 115
version field for modification state, 104

event-sourced domain model, 108-110
advantages, 110
disadvantages, 111

forgettable payload pattern, 114
frequently asked questions

appending logs to log table, 115
audit log from text file, 114
deleting data, 114
performance, 112
scalability, 114
state-based source of truth, 115

historical perspectives
aggregate past states reconstituted, 111
generating past transitions, 176
retroactive debugging, 111
searching earlier information values, 104
version field for modification state, 104

snapshotting an aggregate’s events, 113
tomato semantic domains, 43
transaction boundary of aggregate, 87

domain services and, 93
transaction scripts, 63-69

active record manipulation, 70
changing to active records, 174
debugging, 64-68
design heuristics, 161, 163
implementation, 64
layered architecture, 124
when to use, 68

transactional versus analytical data model, 249
travelling salesman problem, 16
Tune, Nick, 160

U
Uber subdomains, 4

complexity, 5
ubiquitous language, 24-26, 37

aggregates, 92
bounded contexts integrated

about contracts, 49
cooperation, 50-52
customer–supplier, 53-55
no collaboration, 56
optimal size, 160

Index | 311

case study of applying DDD
discussion, 283
domain experts, 275, 281
two separate languages, 278

challenges, 30
defining scope, 37

data mesh architecture, 263
domain complexity

about, 33
boundaries, 41
bounded contexts, 35-38
bounded contexts in real life, 42-46
inconsistent models, 33-35
subdomains versus bounded contexts, 38

EventStorming for, 196, 207
glossary for, 29
model translation, 137-142
modeling business domain, 28

domain model for business logic, 77
tools, 29

modernization strategy, 207
non-English-speaking countries, 31
published language public protocol, 55

model translation, 140
value objects, 78-81

use cases for subdomain identification, 12

V
value objects

about, 77
aggregates, 88
complexity reduction, 95
implementation, 81
ubiquitous language, 78-81
when to use, 82

Vernon, Vaughn, 277
Versioning in an Event Sourced System

(Young), 112
visualization

context map of bounded contexts, 57-58,
206

decision tree for tactical design, 166
volatility of subdomains, 9

maintainability, 10

W
Wirfs-Brock, Rebecca, 27
WolfDesk overview, xviii

Y
Young, Greg, 112, 129

312 | Index

About the Author
Vlad (Vladik) Khononov is a software engineer with over 20 years of industry expe‐
rience, during which he has worked for companies large and small in roles ranging
from webmaster to chief architect. Vlad maintains an active media career as a public
speaker, blogger, and author. He travels the world consulting and talking about
domain-driven design, microservices, and software architecture in general. Vlad
helps companies make sense of their business domains, untangle legacy systems, and
tackle complex architectural challenges. He lives in Northern Israel with his wife and
an almost-reasonable number of cats.

Colophon
The animal on the cover of Learning Domain-Driven Design is a mona monkey (Cer‐
copithecus mona), which can be found in the tropical forests of West Africa and the
Caribbean islands, where they were introduced during the slave trade. They leap from
trees in the mid- to top canopy, using their long tails for balance.

Mona monkeys have brownish fur that’s darker around their faces, limbs, and on
their tails. Their undersides, including the insides of their legs, are white. Females
average 16 inches in length while males average 20 inches—and the tails add another
26 inches or more. Long tufts of fur on the cheeks of Mona monkeys can tint yellow
or gray, and their noses have some light pink coloring. The cheeks serve as pouches
for food as they forage, holding as much as their stomachs can.

Mona monkeys eat fruit, seeds, insects, and leaves and live for about 30 years in the
wild. Each day, they forage multiple times in large groups. Packs larger than 40 have
been documented; typically a male dominates the group, mating with multiple
females and fighting off competing males. These groups can get very noisy.

Mona monkeys have a conservation status of Near Threatened due to human activi‐
ties. Many of the animals on O’Reilly covers are endangered; all of them are impor‐
tant to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Lydekker’s Royal Natural History. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Copyright
	Table of Contents
	Foreword
	Preface
	Why I Wrote This Book
	Who Should Read This Book
	Navigating the Book
	Example Domain: WolfDesk
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Introduction
	Part I. Strategic Design
	Chapter 1. Analyzing Business Domains
	What Is a Business Domain?
	What Is a Subdomain?
	Types of Subdomains
	Comparing Subdomains
	Identifying Subdomain Boundaries

	Domain Analysis Examples
	Gigmaster
	BusVNext

	Who Are the Domain Experts?
	Conclusion
	Exercises

	Chapter 2. Discovering Domain Knowledge
	Business Problems
	Knowledge Discovery
	Communication
	What Is a Ubiquitous Language?
	Language of the Business
	Scenarios
	Consistency

	Model of the Business Domain
	What Is a Model?
	Effective Modeling
	Modeling the Business Domain
	Continuous Effort
	Tools
	Challenges

	Conclusion
	Exercises

	Chapter 3. Managing Domain Complexity
	Inconsistent Models
	What Is a Bounded Context?
	Model Boundaries
	Ubiquitous Language Refined
	Scope of a Bounded Context

	Bounded Contexts Versus Subdomains
	Subdomains
	Bounded Contexts
	The Interplay Between Subdomains and Bounded Contexts

	Boundaries
	Physical Boundaries
	Ownership Boundaries

	Bounded Contexts in Real Life
	Semantic Domains
	Science
	Buying a Refrigerator

	Conclusion
	Exercises

	Chapter 4. Integrating Bounded Contexts
	Cooperation
	Partnership
	Shared Kernel

	Customer–Supplier
	Conformist
	Anticorruption Layer
	Open-Host Service

	Separate Ways
	Communication Issues
	Generic Subdomains
	Model Differences

	Context Map
	Maintenance
	Limitations

	Conclusion
	Exercises

	Part II. Tactical Design
	Chapter 5. Implementing Simple Business Logic
	Transaction Script
	Implementation
	It’s Not That Easy!
	When to Use Transaction Script

	Active Record
	Implementation
	When to Use Active Record

	Be Pragmatic
	Conclusion
	Exercises

	Chapter 6. Tackling Complex Business Logic
	History
	Domain Model
	Implementation
	Building Blocks
	Managing Complexity

	Conclusion
	Exercises

	Chapter 7. Modeling the Dimension of Time
	Event Sourcing
	Search
	Analysis
	Source of Truth
	Event Store

	Event-Sourced Domain Model
	Advantages
	Disadvantages

	Frequently Asked Questions
	Performance
	Deleting Data
	Why Can’t I Just…?

	Conclusion
	Exercises

	Chapter 8. Architectural Patterns
	Business Logic Versus Architectural Patterns
	Layered Architecture
	Presentation Layer
	Business Logic Layer
	Data Access Layer
	Communication Between Layers
	Variation
	When to Use Layered Architecture

	Ports & Adapters
	Terminology
	Dependency Inversion Principle
	Integration of Infrastructural Components
	Variants
	When to Use Ports & Adapters

	Command-Query Responsibility Segregation
	Polyglot Modeling
	Implementation
	Projecting Read Models
	Challenges
	Model Segregation
	When to Use CQRS

	Scope
	Conclusion
	Exercises

	Chapter 9. Communication Patterns
	Model Translation
	Stateless Model Translation
	Stateful Model Translation

	Integrating Aggregates
	Outbox
	Saga
	Process Manager

	Conclusion
	Exercises

	Part III. Applying Domain-Driven Design in Practice
	Chapter 10. Design Heuristics
	Heuristic
	Bounded Contexts
	Business Logic Implementation Patterns
	Architectural Patterns
	Testing Strategy
	Testing Pyramid
	Testing Diamond
	Reversed Testing Pyramid

	Tactical Design Decision Tree
	Conclusion
	Exercises

	Chapter 11. Evolving Design Decisions
	Changes in Domains
	Core to Generic
	Generic to Core
	Supporting to Generic
	Supporting to Core
	Core to Supporting
	Generic to Supporting

	Strategic Design Concerns
	Tactical Design Concerns
	Transaction Script to Active Record
	Active Record to Domain Model
	Domain Model to Event-Sourced Domain Model
	Generating Past Transitions
	Modeling Migration Events

	Organizational Changes
	Partnership to Customer–Supplier
	Customer–Supplier to Separate Ways

	Domain Knowledge
	Growth
	Subdomains
	Bounded Contexts
	Aggregates

	Conclusion
	Exercises

	Chapter 12. EventStorming
	What Is EventStorming?
	Who Should Participate in EventStorming?
	What Do You Need for EventStorming?
	The EventStorming Process
	Step 1: Unstructured Exploration
	Step 2: Timelines
	Step 3: Pain Points
	Step 4: Pivotal Events
	Step 5: Commands
	Step 6: Policies
	Step 7: Read Models
	Step 8: External Systems
	Step 9: Aggregates
	Step 10: Bounded Contexts

	Variants
	When to Use EventStorming
	Facilitation Tips
	Watch the Dynamics
	Remote EventStorming

	Conclusion
	Exercises

	Chapter 13. Domain-Driven Design in the Real World
	Strategic Analysis
	Understand the Business Domain
	Explore the Current Design

	Modernization Strategy
	Strategic Modernization
	Tactical Modernization
	Cultivate a Ubiquitous Language

	Pragmatic Domain-Driven Design
	Selling Domain-Driven Design
	Undercover Domain-Driven Design

	Conclusion
	Exercises

	Part IV. Relationships to Other Methodologies and Patterns
	Chapter 14. Microservices
	What Is a Service?
	What Is a Microservice?
	Method as a Service: Perfect Microservices?
	Design Goal
	System Complexity
	Microservices as Deep Services
	Microservices as Deep Modules

	Domain-Driven Design and Microservices’ Boundaries
	Bounded Contexts
	Aggregates
	Subdomains

	Compressing Microservices’ Public Interfaces
	Open-Host Service
	Anticorruption Layer

	Conclusion
	Exercises

	Chapter 15. Event-Driven Architecture
	Event-Driven Architecture
	Events
	Events, Commands, and Messages
	Structure
	Types of Events

	Designing Event-Driven Integration
	Distributed Big Ball of Mud
	Temporal Coupling
	Functional Coupling
	Implementation Coupling
	Refactoring the Event-Driven Integration
	Event-Driven Design Heuristics

	Conclusion
	Exercises

	Chapter 16. Data Mesh
	Analytical Data Model Versus Transactional Data Model
	Fact Table
	Dimension Table
	Analytical Models

	Analytical Data Management Platforms
	Data Warehouse
	Data Lake
	Challenges of Data Warehouse and Data Lake Architectures

	Data Mesh
	Decompose Data Around Domains
	Data as a Product
	Enable Autonomy
	Build an Ecosystem
	Combining Data Mesh and Domain-Driven Design

	Conclusion
	Exercises

	Closing Words
	Problem
	Solution
	Implementation
	Further Reading
	Advanced Domain-Driven Design
	Architectural and Integration Patterns
	Modernization of Legacy Systems
	EventStorming

	Conclusion

	Appendix A. Applying DDD: A Case Study
	Five Bounded Contexts
	Business Domain
	Bounded Context #1: Marketing
	Bounded Context #2: CRM
	Bounded Context #3: Event Crunchers
	Bounded Context #4: Bonuses
	Bounded Context #5: The Marketing Hub

	Discussion
	Ubiquitous Language
	Subdomains
	Boundaries of Bounded Contexts

	Conclusion

	Appendix B. Answers to Exercise Questions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

	Bibliography
	Index
	About the Author
	Colophon

