
Gregor Hohpe
Forewords by
Simon Brown & Dr. David Knott

Redefining the Architect’s Role

in the Digital Enterprise

The Software
Architect Elevator

Praise for The Software Architect Elevator

“This book is a treasure chest full of tips and techniques
for becoming an effective software architect. If you are serious

about your career, then read this book.”

—Mark Richards, Author of Fundamentals of Software Architecture

“This outstanding book is a must-read for software architects. In a witty
style, Gregor Hohpe covers a lot of ground in this field; from Software Engi-
neering to Organization science, all packed in an entertaining journey every

software architect will benefit from understanding clearly and deeply.”

—Schahram Dustdar, Professor of Computer Science, Head of
Research Division of Distributed Systems, TU Wien, Austria

"The Software Architect Elevator has probably been the best book on IT Archi-
tecture (as a function) I have read. It describes how I see the architect role;

as a leader, an advisor, an enabler, and an agent of change. It repeatedly pro-
vides brilliant analogies as introductions to the subjects; it has many refer-

ences and does describe many of the struggles architects face while
performing their roles. Any person outside of the architecture

practice, especially the ones dealing with architects,
will benefit from reading this book as well.”

—Nuno Abrantes, Head of Enterprise Architecture, Unicre

“This is my favorite book about the role of an architect. You will discover a
new face of a well-known role. Filled with interesting stories, inspiring

quotes, powerful analogies, and varied book references, the book will benefit
software architects working in large organizations. But I think developers,

managers, and executives will also learn a lot. That would make a lot of peo-
ple in the elevator, but the many words of wisdom are widely applicable, not

just concerning architecture. It’s a unique book.”

—Julien Sobczak, Software Engineer

“A practical and useful guide for anyone who bridges technology and the
rest of a business. The book not only provides a fresh look at the role of an

architect but also includes an excellent section on how to communicate, with
concrete evidence from someone who has been on both sides of the

executive/techie divide. I strongly recommend this book for anyone in a
technical leadership role who needs to communicate across

many parts of their organization.”

—Kief Morris, Global Cloud Engineering Director at ThoughtWorks,
Author of Infrastructure as Code

“Covering an essential mix of technical and nontechnical topics,
The Software Architect Elevator is required reading for any software architect

looking to expand their toolbox. Highly recommended.”

—Simon Brown, Author of Software Architecture for Developers

The Software
Architect Elevator

Redefining the Architect’s Role
in the Digital Enterprise

Gregor Hohpe

978-1-492-07754-1

[LSI]

The Software Architect Elevator
by Gregor Hohpe

Copyright © 2020 Gregor Hohpe. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editors: Ryan Shaw,

Melissa Duffield

Development Editor: Melissa Potter

Production Editor: Deborah Baker

Copyeditor: Octal Publishing, LLC

Proofreaders: Kim Wimpsett, Justin Billing

Indexer: Judith McConville

Cover Design: Randy Comer

Interior Designer: Monica Kamsvaag

Illustrators: Rebecca Demarest, Jose Marzan Jr.

April 2020: First Edition

Revision History for the First Edition
2020-04-07: First Release

2020-11-20: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492077541 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Software Architect Eleva-
tor, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s
views. While the publisher and the author have used good faith efforts to ensure that the infor-
mation and instructions contained in this work are accurate, the publisher and the author dis-
claim all responsibility for errors or omissions, including without limitation responsibility for
damages resulting from the use of or reliance on this work. Use of the information and instruc-
tions contained in this work is at your own risk. If any code samples or other technology this
work contains or describes is subject to open source licenses or the intellectual property rights
of others, it is your responsibility to ensure that your use thereof complies with such licenses
and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492077541

Contents

 | Foreword by Simon Brown ix

 | Foreword by David Knott xi

 | About This Book xiii

PART I | Architects

1 | The Architect Elevator 7

2 | Movie-Star Architects 15

3 | Architects Live in the First Derivative 21

4 | Enterprise Architect or Architect in the Enterprise? 29

5 | An Architect Stands on Three Legs 37

6 | Making Decisions 45

7 | Question Everything 53

PART II | Architecture

8 | Is This Architecture? 63

v

9 | Architecture Is Selling Options 69

10 | Every System Is Perfect… 79

11 | Code Fear Not! 87

12 | If You Never Kill Anything, You Will Live Among Zombies 95

13 | Never Send a Human to Do a Machine’s Job 103

14 | If Software Eats the World, Better Use Version Control! 109

15 | A4 Paper Doesn’t Stifle Creativity 117

16 | The IT World Is Flat 125

17 | Your Coffee Shop Doesn’t Use Two-Phase Commit 135

PART III | Communication

18 | Explaining Stuff 145

19 | Show the Kids the Pirate Ship! 151

20 | Writing for Busy People 159

21 | Emphasis Over Completeness 171

22 | Diagram-Driven Design 181

23 | Drawing the Line 189

24 | Sketching Bank Robbers 197

25 | Software Is Collaboration 203

vi | CONTENTS

PART IV | Organizations

26 | Reverse-Engineering Organizations 215

27 | Control Is an Illusion 225

28 | They Don’t Build ’Em Quite Like That Anymore 233

29 | Black Markets Are Not Efficient 241

30 | Scaling an Organization 247

31 | Slow Chaos Is Not Order 255

32 | Governance Through Inception 263

PART V | Transformation

33 | No Pain, No Change! 275

34 | Leading Change 281

35 | Economies of Speed 289

36 | The Infinite Loop 297

37 | You Can’t Fake IT 303

38 | Money Can’t Buy Love 309

39 | Who Likes Standing in Line? 315

40 | Thinking in Four Dimensions 321

CONTENTS | vii

PART VI | Epilogue: Architecting IT Transformation

41 | All I Have to Offer Is the Truth 331

 | Index 337

viii | CONTENTS

Foreword by
Simon Brown

My aspiration to become a software architect stemmed from my interest in the
technical side of software design. I really enjoy discussions about how we can
best use technology to solve a problem, and how to create codebases that are
highly modular, well-structured, and easy to work with.

What nobody tells you though, is that these technical aspects are just one
part of the architecture puzzle. It’s not just about technology and designing soft-
ware. It’s about designing software and solving problems within a specific organ-
izational context, and being aware of what’s happening around you, so that you
can successfully navigate and influence that context where necessary. It’s crucial,
therefore, that architects realize they need to communicate and influence at dif-
ferent levels, with different audiences, both inside and outside of their immediate
team environment.

As an industry, however, we do a relatively poor job teaching software devel-
opers how to move into software architecture roles, let alone providing help for
those who are currently in such a role. This is especially true for the nontechnical
aspects. A quick browse of your favorite bookstore will reveal a plethora of books
about software architecture, architectural styles, architectural patterns, DevOps,
automation, enterprise architecture, Lean, Agile, and so on. You’ll find far fewer
books related to people and communication. And it’s even rarer to find a single
book that covers all of these topics.

The Software Architect Elevator fills this gap by discussing an architect’s role
from a broader set of perspectives than usual. It will teach you how to avoid the
traditional, somewhat dysfunctional “business versus IT” mindset, how to see
the bigger picture to map and influence the organizational landscape, how to
make effective decisions, how to deal with vendors, and how to communicate

ix

across all levels of an organization. All of this is essential for those who want to
be successful in their role as an architect.

References to additional reading complement the practical tips and techni-
ques presented in the book. Many of the relatable stories will, unfortunately,
sound far too familiar! Although Gregor’s stories will relate more to people work-
ing in larger organizations with a traditional IT function, many of them are
equally applicable to the newer wave of “digital companies.” I’ve been surprised
to see some of these situations play out in such organizations, too!

In summary, this is a fabulous book for current and aspiring architects,
going beyond what you will find in other books on the subject. It’s a great way to
fast-track the collection of tools in your architecture toolbox. I thoroughly recom-
mend this book to aspiring software architects and CTOs alike. Whether you’re
looking to broaden your skills and get a feel for what architecture is all about, or
you’ve been tasked with improving organizational productivity and performance,
there’s something here for everybody.

—Simon Brown, Author of
Software Architecture

for Developers

x |

Foreword by
David Knott

I remember the first time I was asked to form an architecture team within an IT
function. I didn’t know what it meant, but thought it sounded cool, and was con-
fident that I could figure it out. That confidence lasted about five minutes, until a
team member asked whether we were going to be technology architects or enter-
prise architects, and I realized that I didn’t know the difference!

Twenty years later, I am privileged to be chief architect of a global organiza-
tion, and although I still haven’t found a perfect job description for architects, I
have learned that being comfortable with ambiguity is one of the most important
attributes of a good architect—asking awkward questions, as my team member
illustrated, being another!

This book will help you understand what being an architect is like by paint-
ing a vivid picture of an architect’s life and mission in the current phase of the
information technology revolution. Riding the architecture elevator is how my
team and I spend our time: racing from one part of our organization to another,
connecting, explaining, questioning, and trying to make good decisions about
complex systems with imperfect information. The elevator takes us from code to
business strategy and back again, all within the same day.

Architecture has been intermittently in and out of fashion within enterprise
technology, and architects are sometimes accused of “not making anything.” I
believe that architects make two things that are of vital importance and in short
supply: they make sense and they make decisions. Whenever architects help their
organizations understand a world that is increasingly difficult to grasp, figure out
what decisions need to be taken, and help take those decisions in a rational way
at the right time, then they have had a good day at the office. And, as this book

xi

explains, if you’re not taking meaningful decisions (see Chapter 6), making them
explicit, and helping people understand them, you’re not doing architecture.

However, these are difficult skills to master. Humans have been shown to be
notoriously bad at understanding complexity and at making good decisions with
limited information. Architects can help themselves and their companies by
adopting techniques and ways of thinking which have been won through years of
experience. They can create understanding by making sure that they turn learn-
ing curves into ramps rather than cliffs and can make better decisions by adopt-
ing the language of the market (see Chapter 18), as well as by selling options to
the business (see Chapter 9).

One of the reasons that architecture has been in and out of fashion is that
what organizations need from architects has changed. At many points in my
career, the organizations I worked for believed that they wanted me to define
their current state and future state, and to figure out the path between them. This
was an understandable belief: it seems reasonable to want to know where we are,
where we want to go, and how we are going to get there. But it was also based on
a static view of the world, in which all change was deviation from a steady state.

In today’s world, the technology running any organization must be dynamic,
and the organization must be able to change that technology to adapt to econo-
mies of speed (see Chapter 35). The job of architects now is to create the condi-
tions for speed and dynamism within their organizations: to satisfy the design
goals of change velocity and service quality at the same time (and to help people
understand that these goals are not in conflict; see Chapter 40). If you still
believe that the job is to define future state architectures delivered through a
multiyear plan, you would do well to read Part V of this book.

The image of the architecture elevator is apt because it is one of continuous
motion running through the center of an organization. Elevators are also a trans-
formational technology: they are one of the inventions which made skyscrapers
possible, and changed our skylines forever. If you want to be an architect then
you are signing up for a life of movement and transformation. If you are curious
and have a need to explain, a desire to connect, and the drive to make decisions,
then it might be the job for you. You still won’t get a job description that
describes everything you need to do, but this book will help you figure it out.

—Dr. David Knott,
Chief Architect, HSBC

xii |

About This Book

As the digital economy changes the rules of the game for traditional enterprises,
the role of architects also fundamentally changes. Rather than focus on technical
implementations alone, they must connect the organization’s penthouse, where
the business strategy is set, with the technical engine room, where the enabling
technologies are implemented. Only if both parts are connected can IT change its
role from a cost center to a competitive digital advantage. Making this connection
by walking from one organizational floor to the next won’t work. Instead,
modern architects bypass existing structures by taking the fast track: the Architect
Elevator.

This book helps (aspiring) architects embrace a new view of what it means to
be an architect and equips them to ride the architect elevator across many levels,
aligning organization and technology and effecting lasting change.

A Chief Architect’s Life: It’s Not That Lonely at the Top

A lot is expected from IT leaders and chief architects: they must maneuver in an
organization in which IT is often still seen as a cost center, operations means
“run” as opposed to “change,” and middle management has become cozy neither
understanding the business strategy nor the underlying technology. All the while
they are expected to stay up to date with the latest technology, manage vendors,
translate buzzwords into a solid strategy, and recruit top talent. It’s no surprise,
then, that senior software and IT architects have become some of the most
sought-after IT professionals around the globe.

With such high expectations, though, what does it take to become a success-
ful chief architect? And after you get there, how do you keep up? When I became
a chief IT architect, I wasn’t expecting any magic answers, but I was looking for a
book that would at least spare me from having to reinvent the wheel all the time.

xiii

I attended many CIO/CTO events, which proved useful but focused mainly on
high-level direction instead of on how to actually accomplish the mission on a
technical level. Having been unable to find such a book, I decided to collect my
experience of over two decades as software engineer, consultant, startup
cofounder, and chief architect into a book of my own.

What Will I Learn?

This book is organized into major sections that correspond to an architect’s jour-
ney of supporting a large-scale IT transformation. The journey begins close to the
IT engine room and slowly inches up to the organizational penthouse:

Part I, Architects
Understanding the qualities of an architect in the enterprise context

Part II, Architecture
Redefining architecture’s value proposition as a change driver

Part III, Communication
Conveying technical topics effectively to a variety of stakeholders

Part IV, Organizations
Using an architectural mindset to understand organizational structures
and systems

Part V, Transformation
Effecting lasting change in an organization

Part VI, Epilogue: Architecting IT Transformation
Living the life of a change agent

You are invited to read this book from beginning to end, following the pro-
gression from technical to organizational topics. However, you are just as wel-
come to peruse the book and start reading whichever chapter piques your
interest, using the extensive cross-references I’ve provided to aid your nonlinear
navigation. After all, that’s how the internet works, so I figured it would probably
also work for my book.

This isn’t a technical book. It’s a book about how to grow your horizon as an
architect to effectively apply your technical skill in large organizations. This book
won’t teach you how to configure a Hadoop cluster or how to set up container
orchestration with Docker and Kubernetes. Instead, it teaches you how to reason

xiv | About This Book

about large-scale architectures; how to ensure your architecture benefits the busi-
ness strategy; how to leverage vendors’ expertise; and how to communicate criti-
cal decisions to upper management.

Is It Proven to Work?

If you’re looking for a scientifically proven, repeatable “method” of transforming
a technical organization, you might be disappointed (but if you find one, please
let me know). This book’s structure is rather loose, and you might even be
annoyed at having to read through little anecdotes when all you want is the one
bit of advice you need in order to be successful. However, that’s what the life of
an architect is like. You won’t be able to copy-paste other people’s decisions, but
you can learn from their experience to make better decisions of your own.

This book is based on my daily experiences of two decades in IT, which led
me through being a startup cofounder (lots of fun, not lots of money), system
integrator (made tax audits more efficient), consultant (lots of PowerPoint),
author (collecting and documenting insights), internet software engineer (build-
ing the future), chief architect of a large multinational organization (tough, but
rewarding), and CTO advisor (lots of insights and sharing). I felt that taking a
personal account of IT transformation might be appropriate because architecture
is by nature a somewhat personal business. When looking at a famous building,
you can easily identify the architect from afar. White box: Richard Meier; all
crooked: Frank Gehry; looks like made from fabric: Zaha Hadid. Although not
quite as dramatic, every (chief) IT architect also has their personal emphasis and
style that’s reflected in their works.

The collection of insights that make up this book reflect my personal point of
view but are written such that the “nuggets” can be easily extracted and put to
broader use. Sidebars show you experiences from both traditional and digital
companies.

Architects are busy people. I therefore tried to package my insights into anec-
dotes that are easy to consume and hopefully even a bit fun to read. I hope you’ll
experience a mix of “I’m not the only person facing this problem” and “that’s a
new way of looking at things” along the way.

There’s a lot more to say about architecture and transformation than would
ever fit into a book. You’ll therefore find many references to other books and arti-
cles that help you dive deeper into any particular topic.

About This Book | xv

Tell Me a Story

I chose to structure the book as a collection of stories because in our complex
world, telling stories is a great way to teach. Studies have shown that people
remember stories much better than sheer facts, and there appears to be evidence
that listening to a story activates additional parts of our brain that help with
understanding and retention. Aristotle already knew that a good speech contains
not only logos, the facts and structure, but also ethos, a credible character, and
pathos, emotions, usually triggered by a good story.

To transform an organization, you don’t need to solve mathematical equa-
tions. You need to move people, and that’s why you need to be able to tell a good
story and paint a compelling vision. It’s fine to start out by using some of the
attention-catching slogans from this book (“Zombies will eat your brain!”) and
later supplement them with your own stories. Have you seen people cry and
laugh when watching movies, even though they know that the story is fictitious
and all acting is fake? That’s the power of storytelling in action.

Conventions Used in This Book

This book contains many real-life stories that highlight the contrast between tra-
ditional and digital companies. The respective examples are indicated by the fol-
lowing icons:

The “manager” icon indicates examples describing how traditional IT organiza-

tions think and work.

The “digital native” icon indicates examples describing how modern, “digital”

organizations operate.

This icon signifies a general note or comment.

This icon indicates a warning or caution.

xvi | About This Book

Staying Up-to-Date

My brain doesn’t stop generating new ideas with the publication date. To see
what’s on my mind and to chime in:

• Follow me on Twitter: https://twitter.com/ghohpe

• Find me on Linkedin: http://www.linkedin.com/in/ghohpe

• And find bigger ideas and articles on my blog: https://architectelevator.com/
blog

O’Reilly Online Learning

For more than 40 years, O’Reilly Media has provided tech-
nology and business training, knowledge, and insight to
help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of
text and video from O’Reilly and 200+ other publishers. For more information,
please visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

You can access the web page for this book, where we list errata and any addi-
tional information, at https://oreil.ly/Software_Architect_Elevator.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

About This Book | xvii

https://twitter.com/ghohpe
http://www.linkedin.com/in/ghohpe
https://architectelevator.com/blog
https://architectelevator.com/blog
http://oreilly.com
http://oreilly.com
https://oreil.ly/Software_Architect_Elevator
mailto:bookquestions@oreilly.com

For news and more information about our books and courses, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Many people have knowingly or unknowingly contributed to this book through
hallway conversations, meeting discussions, manuscript reviews, Twitter dia-
logues, or casual chats over a beer. It’s challenging to give due credit to all of the
people I learned from, but I’d like to highlight a few whose input has signifi-
cantly shaped this book. Michael Plöd, Simon Brown, Jean-Francois Landreau,
and Michele Danieli have been a substantial source of suggestions and feedback.
Matthias “Maze” Reik has been an enormously thorough proofreader, while
Andrew Lee spotted a few more typos. My former boss, Barbara Karuth, reviewed
and approved many stories that emerged from insightful conversations with cur-
rent and former colleagues. And, last but certainly not least, Kleines Genius pro-
vided untiring moral support.

xviii | About This Book

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Architects

Architects have an exciting but sometimes challenging life in corporate IT. Some
managers and technical staff might consider them to be overpaid ivory tower res-
idents who, detached from reality, bestow their thoughts upon the rest of the
company with slides and wall-sized posters, while their quest for irrelevant ideals
causes missed project timelines.

On the upside, IT architects have become some of the most sought-after IT
professionals as traditional enterprises are looking to transform their IT land-
scape to compete with digital disruptors. Ironically, though, many of the most
successful digital companies have a world-class software and systems architec-
ture, but don’t have architects at all.

So, what makes a person an architect, besides that it’s printed on their busi-
ness card?

What Architects Are Not

Sometimes, it’s easier to describe what something isn’t rather than trying to
come up with an exact definition of what it is. In the case of architects, exagger-
ated expectations can paint a picture of someone who solves intermittent perfor-
mance problems in the morning and then transforms the enterprise culture in
the afternoon. This leads to a scenario in which architects are pulled into several
roles that clearly miss the purpose of being an architect:

Senior developer
Developers often feel they need to become an architect as the next step in
their career (and their pay grade). However, becoming an architect and a
superstar engineer are two different career paths, with neither being supe-
rior to the other. Architects tend to have a broader scope, including organi-
zational and strategic aspects, whereas engineers tend to specialize and

1

PART | I

deliver running software. Mature IT organizations understand this and
offer parallel career paths.

Firefighter
Many managers expect architects to be able to troubleshoot and solve any
crisis based on their broad understanding of the current system landscape.
Architects shouldn’t ignore production issues, because they provide valua-
ble feedback into possible architectural weaknesses. But an architect that
runs from one fire drill to the next won’t have time to think about architec-
ture. Architecture isn’t operations.

Project manager
Architects must be able to juggle many distinct, but interrelated topics.
Their decisions also take into account—and affect—project time lines,
staffing, and required skill sets. As a result, upper management often
comes to rely on architects for project information, especially if the project
manager is busy filling out status report templates (Chapter 30). This is a slip-
pery slope for an architect because it’s valuable work, but it distracts from
the architect’s main responsibility.

Scientist
Architects need to sport a sharp intellect and must be able to think in mod-
els and systems (Chapter 10), but the decisions they make impact real busi-
ness projects. Hence, many organizations separate the role of the chief
architect from that of a chief scientist. Personally, I prefer the title chief engi-
neer to highlight that architects produce more than paper. Lastly, although
scientists may get their papers published by making things sound complex
and difficult to understand, an architect’s job is the inverse: making complex
topics easy to digest (Chapter 18).

Many Kinds of Architects

Architects operate at different levels of abstraction. Just like real-life architecture
has city planners, building, landscape, and interior architects, IT architects can
have many specializations: you’ll have network architects, security architects,
software architects, solution architects, enterprise architects, and many more.
Just like in the real world, no one architect is more important than the other. For
example, living in a house with great architecture in a poorly planned city with
endless traffic jams but few public facilities is going to be equally frustrating as
living in a house with poor architecture in a well-functioning city. The same is

2 | THE SOFTWARE ARCHITECT ELEVATOR

true in IT—your beautifully designed and perfectly modularized application isn’t
any good if it solves the wrong problem or is duplicating an existing application.
Likewise, if the application is unable to connect to the corporate network, few
users will be able to appreciate it. Therefore, it’s not about which type of architect
is more important; it’s about getting all types of architects to work together.

Architects Deal with Nonrequirements

It’s commonly assumed that developers deal with functional requirements,
whereas architects deal with nonfunctional requirements, often referred to as the
“ilities”: scalability, maintainability, availability, interoperability, and so on. The
reality isn’t as simple, though. I find that more often, architects deal with
nonrequirements. This term doesn’t indicate things that aren’t required; rather, it
refers to requirements that aren’t stated anywhere. This includes context, tacit
assumptions, hidden dependencies, and other things that were never spelled out.
Unearthing these implicit requirements and making them explicit is one of an
architect’s most valuable contributions. Again, this work can take place at any
level from enterprise architect to software architect—it’s the connection that
counts.

Measuring an Architect’s Value

Articulating an architect’s value isn’t always easy. I often explain to people that if
an IT system can still absorb high rates of change after many years, the project
team probably included a good architect. Now, waiting several years to assess an
architect’s value is slightly impractical. Instead, we can see architects bringing
value in several dimensions:

Architects “connect the dots”
Often, each individual element of an IT architecture is well thought out
and well run, but the sum of all these fine systems still isn’t delivering
what the business needs. Architects look between the boxes to make sure
interdependencies are well understood.

Architects see trade-offs
System design and development involves innumerous decisions. Most
meaningful decisions don’t just have upsides, but also downsides. Archi-
tects see both sides of the coin and balance trade-offs in line with overarch-
ing goals and principles.

ARCHITECTS | 3

Architects look beyond products
Too much of IT decision-making is driven by product selection (Chapter 16).
Architects look beyond the product names and feature lists to distill deci-
sion options and trade-offs.

Architects articulate strategy
IT’s purpose is to support the business strategy. Architects establish this
linkage by translating business needs into technical drivers.

Architects fight complexity
IT is complex. Architects harmonize to reduce complexity, for example,
through governance in the form of architecture review boards and inception
(see Chapter 32). It also includes “retiring” systems (in the Blade Runner
sense of the word), lest you want to live among zombies (Chapter 12).

Architects deliver
Staying grounded in reality and receiving feedback on decisions from real
project implementations is vital for architects. Otherwise, control remains
an illusion (Chapter 27).

So, architects do a lot more than draw pretty architecture diagrams!

Architects as Change Agents

Today’s successful architects aren’t just IT specialists, they’re also major change
agents. Architects must therefore possess a special set of skills beyond just
technology.

The chapters in this part prepare you for this role by teaching you how to:

Chapter 1, The Architect Elevator
Transcend organizational levels by riding the architect elevator.

Chapter 2, Movie-Star Architects
Adopt multiple personas that might resemble movie characters.

Chapter 3, Architects Live in the First Derivative
Live in the first derivative.

Chapter 4, Enterprise Architect or Architect in the Enterprise?
Connect business and IT.

4 | THE SOFTWARE ARCHITECT ELEVATOR

Chapter 5, An Architect Stands on Three Legs
Bring more than skill because that’s just one of the three legs architects
stand on.

Chapter 6, Making Decisions
Exercise good decision-making discipline in the face of uncertainty.

Chapter 7, Question Everything
Get to the root of problems by questioning everything.

ARCHITECTS | 5

The Architect Elevator
From the Penthouse to the Engine Room and Back

Tall buildings need someone to ride the elevator

Architects play a critical role as a connecting and translating element, espe-
cially in large organizations where departments speak different languages, have
different viewpoints, and drive toward conflicting objectives. Many layers of man-
agement only exacerbate the problem as communicating up and down the

7

| 1

1 In the telephone game, children form a circle and relay a message from one child to the next. By the time
the message returns to the originator, it typically has completely changed along the way.

corporate ladder resembles the telephone game.1 The worst-case scenario materi-
alizes when people holding relevant information or expertise aren’t empowered
to make decisions, whereas the decision makers lack relevant information. Not a
good state to be in for a corporate IT department, especially in the days when
technology has become a driving factor for most businesses.

The Architect Elevator

Architects can fill an important void in large enterprises: they work and commu-
nicate closely with technical staff on projects, but are also able to convey technical
topics to upper management without losing the essence of the message (Chapter 18).
Conversely, they understand the company’s business strategy and can translate it
into technical decisions that support it.

If you picture the levels of an organization as the floors in a building, archi-
tects can ride what I call the architect elevator: they ride the elevator up and down
to move between a large enterprise’s board room and the engine room where soft-
ware is being built. Such a direct linkage between the levels has become more
important than ever in times of rapid IT evolution and digital disruption.

Stretching the analogy to that of a large ship, if the bridge officers spot an
obstacle and need to turn the proverbial tanker, they will set the engines to
reverse and the rudder to hard starboard. But if in reality the engines are running
full speed ahead, a major disaster is preprogrammed. This is why even old
steamboats had a pipe to echo commands directly from the captain to the boiler
room and back. In large enterprises architects need to play exactly that role!

Some Organizations Have More Floors Than Others

Coming back to the building metaphor, the number of floors an architect has to
ride in the elevator depends on the type of organization. Flat organizations might
not need the elevator at all—a few flights of stairs are sufficient. This also means
that the up-and-down role of an architect might be less critical: if management is
keenly aware of the technical reality at the necessary level of detail and technical
staff have direct access to senior management, fewer “enterprise” architects are
needed. We could say that digital companies live in a bungalow and hence don’t
need the elevator.

8 | THE SOFTWARE ARCHITECT ELEVATOR

The value of the architects in the
elevator metaphor shouldn’t be
measured by how “high” they
travel but by how many floors they
span.

However, classic IT shops in large
organizations tend to have many, many
floors above them. They work in a sky-
scraper so tall that a single architect ele-
vator might not be able to span all levels.
In this case, it’s OK if a technical archi-
tect and an enterprise architect meet in
the middle and cover their respective “halves” of the building. The value of the
architects in this scenario shouldn’t be measured by how “high” they travel but
by how many floors they span. In large organizations, the folks in the penthouse
might make the mistake of seeing and valuing only the architects in the upper
half of the building. Conversely, many developers or technical architects consider
such “enterprise” architects less useful because they don’t code. This can be true
in some cases—such architects often enjoy life in the upper floors so much that
they aren’t keen to take the elevator down ever again. But an “enterprise” archi-
tect who travels halfway down the building to share the strategic vision with tech-
nical architects can have a significant value.

Not a One-Way Street

Invariably you will meet folks who ride the elevator, but only once to the top and
never back down. They enjoy the good view from the penthouse too much and
feel that they didn’t work so hard to still be visiting the grimy engine room. Fre-
quently you can identify these folks by statements like: “I used to be technical.” I
can’t help but retort: “I used to be a manager” (it’s true) or “Why did you stop?
Were you no good at it?” If you want to be more diplomatic (and philosophical)
about it, cite Fritz Lang’s movie Metropolis in which the separation between pent-
house and engine room almost led to the city’s complete destruction before peo-
ple realized that “the head and the hands need a mediator.” In any case, the
elevator is meant to be ridden up and down. Eating caviar in the penthouse while
the basement is flooded isn’t the way to transform corporate IT.

Riding the elevator up and down the organization is also an important mech-
anism for the architect to obtain feedback on decisions and to understand their
ramifications at the implementation level. Long project implementation cycles
don’t provide a good learning loop (Chapter 36) and can lead to an “Architect’s
Dream, Developer’s Nightmare” scenario, in which the architects have achieved
their abstract ideals, but the actual implementation is impractical. Allowing
architects to only enjoy the view from high up invariably leads to the dreaded

THE ARCHITECT ELEVATOR | 9

2 “Authority Without Responsibility,” Wikiwikiweb, 2004, https://oreil.ly/WhXg-.

authority without responsibility antipattern.2 This pattern can be broken only if
architects have to live with, or at least observe, the consequences of their deci-
sions. To do so, they must keep riding the elevator.

High-Speed Elevators

In the past, IT decisions were fairly far removed from the business strategy: IT
was pretty “vanilla,” and the main parameter, or key performance indicator (KPI),
was cost. Therefore, riding the elevator wasn’t as critical as new information was
rare. Nowadays, though, the linkage between business goals and technology
choices has become much more direct, even for “traditional” businesses. For
example, the desire for faster time-to-market to meet competitive pressures trans-
lates into the need for an elastic cloud approach to computing, which in turn
requires applications that scale horizontally and thus should be designed to be
stateless. Targeted content on customer channels necessitates analytical models,
which are tuned by churning through large amounts of data via a Hadoop clus-
ter, which in turn favors local hard-drive storage over shared-network storage.
The fact that in one or two sentences a business need has turned into application
or infrastructure design highlights the need for architects to ride the elevator.
Increasingly they need to take the express elevator, though, to keep up with the
pace at which business and IT are intertwined.

In traditional IT shops, the lower floors of the building can be exclusively
occupied by external consultants (Chapter 38), which allows enterprise architects
to avoid getting their hands dirty. However, because it focuses solely on efficiency
and ignores economies of speed (Chapter 35), such a setup doesn’t perform well in
times of rapid technology evolution. Architects who are used to such an environ-
ment must stretch their role from being pure consumers of vendors’ technology
roadmaps to actively defining it. To do so, they need to develop their own IT
worldview (Chapter 16).

Other Passengers

If you are riding the elevator up and down as a successful architect, you might
encounter other folks riding with you. You might, for example, meet business or
nontechnical folks who learned that a deeper understanding of IT is critical to the
business. Be kind to those folks, take them with you, and show them around.

10 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/WhXg-

Engage them in a dialogue—it will allow you to better understand business
needs and goals. They might even take you to the higher floors you haven’t been
to.

You might also encounter folks who ride the elevator down merely to pick up
buzzwords to sell as their own ideas in the penthouse. We don’t call these people
architects. People who ride the elevator but don’t get out are commonly called lift
boys. They benefit from the ignorance in the penthouse to pursue a “technical”
career without touching actual technology. You might be able to convert some of
these folks by getting them genuinely interested in what’s going on in the engine
room. If you don’t succeed, it’s best to maintain the proverbial elevator silence,
avoiding eye contact by examining every ceiling tile in detail. Keep your “elevator
pitch” for those moments when you share the cabin with a senior executive, not a
mere messenger.

The Dangers of Riding the Elevator

You would think that architects riding the elevator up and down are highly appre-
ciated by their employer. After all, they provide significant value to businesses
transforming their IT to better compete in a digital world. Surprisingly, such
architects can encounter resistance. Both the penthouse and the engine room
might actually have grown quite content with being disconnected: the company
leadership is under the false impression that the digital transformation is pro-
ceeding nicely, whereas the folks in the engine room enjoy the freedom to try out
new technologies without much supervision. Such a disconnect between pent-
house and engine room resembles a cruise ship heading for an iceberg with the
engines running at full speed ahead: by the time the leadership realizes what’s
going on, it’s likely too late.

I was once criticized by the engine room for pushing corporate agenda against

the will of the developers while at the same time corporate leadership chastised

me for wanting to try new solutions just for fun. Ironically, this likely meant I

found a good balance.

One can liken such organizations to the Leaning Tower of Pisa where the
foundation and the penthouse aren’t vertically aligned. Riding the elevator in
such a building is certainly more challenging. When stepping into such an envi-
ronment, the elevator architect must be prepared to face resistance from both
sides. No one ever said being a disruptor is easy, especially as systems resist change
(Chapter 10).

THE ARCHITECT ELEVATOR | 11

The best strategy in these situations is to start linking the levels carefully,
waiting for the right moment to share information. For example, you could begin
by helping the folks in the engine room convey to management what great work
they are doing. It will give them more visibility and recognition while you gain
access to detailed technical information.

Other corporate denizens not content with you riding the elevator can be
found on the middle floors: seeing you whiz by to connect leadership and the
engine room makes them feel bypassed. Thus, the organization has an “hour-
glass” shape of appreciation for your work: top management sees you as a critical
transformation enabler, whereas the folks in the engine room are happy to have
someone to talk to who actually understands and appreciates their work. The
folks in the middle, though, see you as a threat to their livelihood, including their
children’s education and their vacation home in the mountains. This is a delicate
affair. Some might even actively block you on your way: being stopped at every
floor to give an explanation—aka aligning (Chapter 30)—makes riding the eleva-
tor not really faster than taking the stairs.

Lastly, because folks riding the elevator are rare, being good at one thing
often leads others to conclude that you aren’t good at anything else. For example,
architects giving meaningful and inspiring presentations to management are
often assumed to not be great technologists, even though that’s the very reason
their presentations are meaningful. So, every once in a while, you’re going to
want to let the upper floors know that you can hold your own down in the engine
room.

Flattening the Building

Instead of tirelessly riding the elevator up and down, why not get rid of all those
unnecessary floors? After all, the digital companies your business is trying to
compete with have much fewer floors. Unfortunately, you can’t simply pull some
floors out of a building. And blowing the whole thing up just leaves you with a
pile of rubble, not a lower building. The guys on the middle floors are often criti-
cal knowledge holders about the organization and IT landscape, especially if
there’s a large black market (Chapter 29), so the organization can’t function
without them in the near term.

Flattening the building little by little can be a sound long-term strategy, but it
would take too long because it requires fundamental changes to the company
culture. It also changes or eliminates the role played by the folks inhabiting the
middle floors, who will put up a fierce resistance. This isn’t a fight an architect

12 | THE SOFTWARE ARCHITECT ELEVATOR

can win. However, an architect can start to loosen things up a little bit; for exam-
ple, by getting the penthouse interested in information from the engine room or
by providing faster feedback loops.

THE ARCHITECT ELEVATOR | 13

Movie-Star Architects
Most Architects Carry Multiple Personas

The architect walk of fame

What should an architect be doing besides riding the elevator? Let’s try
another analogy: movie characters.

Before the movie starts, you get to watch advertisements or short films. In
our case, it’s a short film about the origin of the word architect: it derives from the
Greek ἀρχιτέκτων (architekton), which roughly translates into “master builder.”
Keeping in mind that this word was meant for people who built houses and
structures, not IT systems, we should note that the word implies “builder,” not
“designer”—an architect should be someone who actually builds, not someone
who only draws pretty pictures. An architect is also expected to be accomplished
in their profession as to deserve the attribute of being a “master.” Now to the
main feature…

15

| 2

The Matrix: The Master Planner

If you ask tech folk to name a prototypical architect in the movies, they’ll likely
mention the The Matrix trilogy. The Architect of the Matrix is (per Wikipedia) a
“cold, humorless, white-haired man in a light-gray suit,” qualities he largely owes
to the fact that he is a computer program himself. Wikipedia also notes that the
Architect “speaks in long logical chains of reasoning,” something that many IT
architects are known to do. So perhaps the analogy holds?

Fun fact: Vint Cerf, one of the key architects of the internet, bears a remarkable

resemblance to the Matrix Architect. Considering Vint designed much of the

Matrix we live in, this might not be pure coincidence.

The Matrix Architect is also the ultimate authority: he designed the “Matrix”
(the computer program that simulates reality to humans who are being farmed
by machines as an energy source) and knows and controls everything. The enter-
prise architect is sometimes seen as such a person—the all-knowing decision
maker. Some even wish themselves into such a role, partly because it is neat to
be all-knowing and partly because it gets you a lot of respect.

Naturally, this role model has some issues: all-knowingness turns out to be a
little too ambitious for humans, leading to poor decision-making and all sorts of
other problems. Even if the architect is a super-smart person, they can base deci-
sions on only those facts that are known to them. In large companies with a com-
plex IT, it would be impossible to stay in touch with all technology that is in
place, no matter how often they ride the elevator (Chapter 1) down to the engine
room. They’ll therefore inevitably need to rely on presentations, documents, or
statements from management on the middle floors. Such an information chan-
nel to the supreme decision maker has severe challenges: every floor through
which such a document passes understands its value as an influencing vehicle.
This means that the middle floors are tempted to inject their favorite messages
and project proposals, often irrespective of any technical merit. Further up, any
real technical content or potentially controversial topics are sure to be removed.
As a result, the top architect is being fed indirect, distorted, and often biased
information. Making decisions based on such information is dangerous.

16 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/xuDWC

1 Christopher Alexander, The Nature of Order (Berkeley, CA: Center for Environmental Structure, 2002).

I have observed senior management briefings in which the proposed solutions

were rather a list of people’s favorite projects than actual solutions. Interest-

ingly, and fortunately, despite having less IT experience, top management

sensed that there was a missing link between the two.

In summary: corporate IT is no movie, and its role isn’t to provide an illu-
sion for humans being farmed as power sources. We should be cautious with
this architect model.

Edward Scissorhands: The Gardener

A slightly more fitting analogy for enterprise architects is that of a gardener. I
tend to depict this metaphor with a character from one of my favorite movies,
Edward Scissorhands. Large-scale IT is much like a garden: things evolve and grow
on their own, with weeds growing the fastest. The role of the gardener is to trim
and prune what doesn’t fit and to establish an overall balance and harmony in
the garden, keeping in mind the plants’ needs. For example, shade-loving plants
should be planted near large trees or bushes, just like automated testing and con-
tinuous integration (CI)/continuous development (CD) will be happier in the
neighborhood of rapidly evolving systems.

A good gardener, just like a good architect, is no dictatorial master planner
and certainly doesn’t make all the detailed decisions about which direction a
strain of grass should grow—Japanese gardens being a possible exception.
Rather, gardeners see themselves as the caretaker of a living ecosystem. Some
gardeners, like Edward, are true artists!

I like this analogy because it has a soft touch to it. Complex enterprise IT
does feel organic, and good architecture has a sense of balance, which we can
often find in a nice garden. Top-down governance with weed killer is unlikely to
have a lasting effect and usually does more harm than good. Whether this think-
ing leads to a new application for The Nature of Order,1 I am not sure yet. I should
go read it.

Vanishing Point: The Guide

Erik Dörnenburg, ThoughtWorks’ head of technology, Europe, introduced me to
another very apt metaphor. Erik closely works with many software projects,
which tend to loathe the ostensibly all-knowing, all-decision-making architect

MOVIE-STAR ARCHITECTS | 17

who is disconnected from reality. Erik even coined the term architecture without
architects, which might cause some architects to worry about their career.

Erik likens an architect to a tour guide, someone who has been to a certain
place many times, can tell a good story about it, and can gently guide you to pay
attention to important aspects and avoid unnecessary risks. This is a guiding
role: tour guides cannot force their guests to follow their advice, except maybe
those who drop off a bus load of tourists at a tourist-trap restaurant in the middle
of nowhere.

This type of architect needs to “lead by influence” and must be hands-on
enough to earn the respect of those whom they’re leading. The tour guide also
stays along for the ride and doesn’t just hand a map to the tourists like some con-
sultant architects are known to do. An architect who acts as a guide often
depends on strong management support because evidence that good things hap-
pened due to their guidance can be subtle. In purely “business case–driven” envi-
ronments, this could be limiting the “tour guide” architect’s impact or career.

An unconventional guide out of another one of my favorite movies is the
blind DJ Super Soul from the 1971 road movie Vanishing Point. Like so many IT
projects, the movie’s protagonist, Kowalski, is on a death march to meet an
impossible deadline and overcome numerous obstacles along the way. He isn’t
delivering code, but a 1970 Dodge Challenger R/T 440 Magnum from Denver to
San Francisco—in 15 hours. Kowalski is being guided by Super Soul who has tap-
ped the police network, just like architects plugging into the management net-
work, to get access to crucial information. The guide tracks Kowalski’s progress
and keeps the hero clear of all sorts of traps that police (i.e., management) have
set up. After Super Soul is compromised by “management,” the “project” goes
adrift and ends like too many IT projects: in a fiery crash.

The Wizard of Oz

Architects can sometimes be seen as wizards who can solve just about any tech-
nical challenge. Although that can be a short-term ego boost, it’s not a good job
description and expectation to live up to. Hence, by the “wizard” architect anal-
ogy, I don’t mean an actual wizard waving the magic wand but the “Mighty Oz”:
a video projection that appears large and powerful but is in fact controlled by a
mere human “wizard,” who turns out to be an ordinary man using the big
machinery to garner respect.

A gentle dose of such engineered deception can be of use in large organiza-
tions in which “normal” developers are rarely involved in management

18 | THE SOFTWARE ARCHITECT ELEVATOR

discussions or major decisions. This is where the “architect” title can be used to
make oneself a bit more “great and mighty.” The projection can garner the
respect of the general population and can even be a precondition to taking the
elevator to the top floors. Is this cheating? I would say “no” as long as you don’t
get enamored in so much wizardry that you forget about your technical roots.

Superhero? Superglue!

Similar to the wizard, a common expectation of an architect is that of the super-
hero: if you believe some job postings, enterprise architects can single-handedly
catapult companies into the digital age, solve just about any technical problem,
and are always up to date on the latest technology. These are tough expectations
to fulfill, so I’d caution any architect against taking advantage of this common
misconception.

Amir Shenhav from Intel appropriately pointed out that instead of the super-
hero we need “super glue” architects—the guys who hold architecture, technical
details, business needs, and people together across a large organization or com-
plex projects. I like this metaphor because it resembles the analogy of an archi-
tect being a catalyst. We just need to be a little careful: being the glue (or catalyst)
means understanding a good bit about the things you glue together. It’s like
being a good matchmaker: you need to find matching parts, and to do that you
need to understand what your parts are made from.

Making the Call

Which type of architect should you be? First, there are likely many more types
and movie analogies. You could play Inception and create architectural dream
worlds with a (dangerous) twist. Or be one of the two impostors debating Chilean
architecture in There’s Something about Mary or (more creepily) Anthony Royal in
the utopian drama High-Rise—the opportunities are manifold.

In the end, most architects exhibit a combination of these prototypical ster-
eotypes. Periodic gluing, gardening, guiding, impressing, and a little bit of all-
knowing every now and then can make for a pretty good architect.

MOVIE-STAR ARCHITECTS | 19

Architects Live in the
First Derivative
In a Constantly Moving World, Your Current
Position Isn’t Very Meaningful

Deriving the need for architecture

Defining a system’s architecture is a balancing act between many, often-
conflicting goals: flexible systems can be complex; high-performing systems can
be difficult to understand; easy-to-maintain systems can take more effort to
construct initially. Although this is what makes an architect’s work so interesting,
it also makes it difficult to pin down what exactly drives architectural decisions.

21

| 3

1 The derivative of a function measures the sensitivity to change of the function’s output value with respect
to a change in its input value.

Rate of Change Defines Architecture

If I had to name one primary factor that influences architecture, I’d put rate of
change at the top of my list, based on reasoning about the inverse question: when
does a system not need any architecture at all? Although as an architect this isn’t
a natural question to ask (nor to answer), it can reveal what system property
makes architecture valuable. In my mind, the only system that wouldn’t benefit
from architecture is one that doesn’t change at all. If everything about a system is
100% fixed, just getting it working somehow seems good enough.

Now, reverting the logic back to the original proposition, it appears natural
that the rate of change is a major driver of architecture’s value and architectural
decisions. It’s easy to see that a system that doesn’t need to change much will
have a substantially different architecture than one that needs to absorb frequent
changes over long periods of time. Good architects, therefore, deal with change.
This means that they live in the system’s first derivative: the mathematical expres-
sion for how quickly a function’s value changes.1

Once we understand the influence change has on architecture, it’s useful to
consider the various forms of change affecting an IT system. The first change
that comes to mind is a change in functional requirements, but there’s a lot
more: changes in the volume of traffic or data to be processed, changing the run-
time environment to the cloud, or changes to the business context such as using
the system in different languages or by different people.

Change = Business as Unusual?

Despite the popular saying that “the only constant is change,” traditional IT
organizations tend to have a somewhat uneasy relationship with change. This
mindset is often revealed by a popular engine room slogan: “never touch a run-
ning system” (Chapter 12). When change can’t be avoided, IT departments neatly
package it into a project. The most celebrated part of an IT project is the end, or
launch, which ironically is often the first time real users actually get to use the
system. The reason for celebration is that things can return to “business as
usual,” that is, stable operations without any change.

22 | THE SOFTWARE ARCHITECT ELEVATOR

Packaging change into projects reflects an organization’s belief that “no change”

is the normal, desired state and “change” is the intermittent, unusual state.

Thus, many organizational systems are designed to control and prevent
change: budgeting processes limit spending on change; quality gates limit
changes going to production; project planning and requirements documents
limit scope changes. Transforming a software delivery organization such that it
embraces constant change requires adjusting these processes to support rather
than prevent change without ignoring the (generally useful) motivation for set-
ting them up in the first place. That’s not an easy task and is the reason why this
book devotes an entire part to transformation (Part V).

Varying Rates of Change

Technology is a fast-moving field: we don’t think much of IT products carrying a
three-part version number: “well, if you’re still on 2.4.14, I can’t help you much;
it’s really time to upgrade to .15.”

Luckily, not everything in IT moves fast: the most common processor archi-
tecture, the base for Intel’s x86 processors, originates from 1978. The ARM chips
that dominate today’s mobile devices are based on a design from around 1985.
Both Linux and Windows operating systems are well past their teenage years,
and even Java passed the 20-year mark at version 9 some years ago, closely
followed by the Java Spring Framework, which has surpassed a respectable 15
years.

Naturally, such low rates of change can largely be observed in lower layers of
the so-called IT stack: hardware and operating systems have such a vast installed
base and so many dependencies that the cost of an all-out replacement would be
huge. Hence, we tend to see more evolution than revolution here. These technol-
ogies form the base of the pyramid (Chapter 28), giving us a stable foundation to
build on.

On top, things move a lot faster. For example, the popular AngularJS frame-
work was essentially replaced by the very different Angular framework just five
years after its inception. Google’s Fabric framework also lived just five years
before being subsumed by Firebase. And Google Mashup Editor, one of my
favorites of the day, survived a mere two years.

ARCHITECTS LIVE IN THE FIRST DERIVATIVE | 23

Things are moving fast and are
only getting faster. If rate of
change is a driver for architecture,
it looks like we’ll need more of it!

A software system’s first derivative
is its build and deployment
toolchain.

Although we’re surely sad to witness
products’ early demise, the rate at which
new products and tools arrive paints an
even more dramatic picture. For example,
a look at the Cloud Native Interactive
Landscape offered by the Cloud Native

Computing Foundation (CNCF) will quickly convince you that building modern
applications requires a fast-growing list of ingredients.

A Software System’s First Derivative

If the first derivative is an architect’s primary concern, how does this somewhat
abstract concept translate into the reality of systems architecture? We can get a
hint by thinking about which part of a software system determines its rate of
change. For a custom-built system, the critical element for change is the build
toolchain, the part that converts source code into an executable format that is
subsequently deployed onto the runtime infrastructure.

All changes to the software (better)
go through this build and deployment
toolchain. Knowing that the software
toolchain is the first derivative, increasing
a software system’s rate of change

requires a well-tuned toolchain (Chapter 13).
It’s no surprise, then, that in recent years the industry has put much atten-

tion and effort into reducing friction in software delivery: Continuous Integration
(CI), Continuous Deployment (CD), and configuration automation are all aspects
of increasing the first derivative of software systems and thus speeding up soft-
ware delivery. Without such innovations, daily or hourly software deployments
wouldn’t be possible, and companies wouldn’t be able to compete in digital mar-
kets, which thrive on constant improvement and frequent updates.

Whereas build systems previously were the proverbial shoemaker’s children,
meaning they didn’t get a lot of attention, they now run on the same type of
infrastructure as the production systems. Containerized, fully automated, elastic,
cloud-based, on-demand build systems are quickly becoming the norm. Teams
building and maintaining such sophisticated build systems clearly live in the first
derivative!

24 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/bnk5E
https://oreil.ly/bnk5E

2 Nicole Fosgren, Jez Humble, and Gene Kim, Accelerate: Building and Scaling High Performing Technol-
ogy Organizations (Portland, Oregon: IT Revolution, 2018).

Designing for the First Derivative

When designing a system for change, it’s again helpful to think about the
opposite—the aspects that impede change:

Dependencies
Too many interdependencies between a system’s components will result in
small changes needing adjustments in many places, increasing both effort
and risk. Systems with fewer interdependencies—for example, because
they are modular and cleanly separate responsibilities—localize changes
and can therefore generally absorb a higher rate of change. The research
conducted by the authors of the book Accelerate2 shows that decoupling sys-
tem components is the biggest contributor to sustained software delivery.

Friction
Both cost and risk of change increase with friction, generated, for example,
by long lead times for infrastructure provisioning or numerous manual
deployment steps. Teams that live in the first derivative therefore ensure
that their software build chain is fully automated.

Poor quality
There’s a common misbelief that good quality requires extra time and
effort. The inverse is actually true: poor quality slows down software deliv-
ery. Changes to a poorly tested or poorly built system take more time and
are more likely to break things.

Fear
Often ignored, a programmer’s attitude has a major impact on the rate of
change. Poor quality and low levels of automation make change a risky
proposition. Developers will thus be afraid of making changes. This leads
to code rot, which in turn increases the risk of change—a nasty spiral.

The list shows that an architect has several levers with which they can
increase velocity, some technical in nature and others that relate to team attitude.
It’s another example of how technical and organizational architecture go hand in
hand.

ARCHITECTS LIVE IN THE FIRST DERIVATIVE | 25

Confidence Brings Speed

If fear slows you down, confidence should speed you up. Automated tests do just
that: they give teams confidence and thus increase the rate of change. That’s why
determining whether a system has sufficient test coverage shouldn’t be meas-
ured in the percentage of lines of code covered. Rather, it should be measured by
whether teams can make changes confidently.

Propose to a development team that they let you delete 20 arbitrary lines from

their source code. Then, they’ll run their tests—if they pass, they’ll push the

code straight into production. From their reaction, you’ll know immediately

whether their source code has sufficient test coverage.

Despite an abundance of tools that are supposed to speed up software deliv-
ery, the determining factor remains decidedly human. The change that’s never
made out of fear cannot be accelerated by the world’s best toolchain.

Rate of Change Trade-Offs

Increasing an organization’s rate of change is not an all-or-nothing affair and
involves balancing trade-offs. Borrowing one more time from the routinely over-
stretched analogy between IT architecture and building architecture yields useful
advice on the multiple facets of designing for change. If either a large software
project or housing project is undertaken without a conscious decision about its
architecture, the “default” architecture converges toward the “Big Ball of Mud,”
also referred to by its real-world incarnation of a shantytown (Chapter 8).

A shantytown, or slum, is generally constructed using cheap materials and
unskilled labor. Low cost and a broad labor pool are actually desirable properties.
Additionally, local changes, such as adding a wall or even another floor, are often
quick and inexpensive—in contrast to fancier high-rise buildings. However,
besides not providing a very comfortable living environment, slums also lack
common infrastructure, such as a well-built electrical or sewer system. The lack
of such infrastructure ultimately limits their rate of growth. This is a good
reminder that optimizing for local or short-term change can inhibit global or
long-term change.

26 | THE SOFTWARE ARCHITECT ELEVATOR

Multispeed Architectures

If a system’s rate of change influences its architecture, it would seem natural to
construct a system such that components are separated by rate of change. This
approach forms the basis for the popular concepts of two-speed architecture or bi-
modal IT, which suggest that traditional companies looking to become competi-
tive in a digital world should initially increase the rate of change in the
interaction layer (“Systems of Engagement”) while keeping legacy systems (“Sys-
tems of Record”) stable. In doing so, rapid changes can supposedly be applied to
the customer-facing systems, whereas the record-keeping systems are kept stable
and reliable.

Although dividing systems by rate of change is a fair idea, this particular
approach has significant shortcomings. First, it’s based on the flawed assumption
that one can move faster by compromising quality (Chapter 40). Otherwise we
wouldn’t need to keep a low rate of change in systems of record to maintain their
reliability. Second, a company will be hard pressed to localize change into the
interaction layer. For example, the addition of a simple field to the system of
engagement typically also requires a change to the system of record, coupling the
two systems’ rates of change: if the system of record follows a six-month release
cycle, there won’t be much speed inside this two-speed architecture.

It turns out that the separation between systems of engagement and systems
of record is artificial and doesn’t line up well with the overall rate of change from
a business or end-user perspective. This insight is underlined by the fact that
hardly any digital business follows such a setup.

Digital companies only know one speed: fast.

Separating rate of change along a different dimension might well be benefi-
cial, though. For example, a company’s accounting or payroll system will likely
have a lower rate of change and can utilize a different architecture from the core
business systems, which form a competitive differentiator for the organization,
and hence should support a higher rate of change.

ARCHITECTS LIVE IN THE FIRST DERIVATIVE | 27

The Second Derivative

If the first derivative describes a software system’s rate of change, following our
mathematical analogy, increasing the rate of change is dependent on a positive
second derivative. Using the speed of a car as an analogy, a car’s speed is the first
derivative of its position: it defines how much distance it can cover over a given
time interval. Accelerating—that is, increasing the speed—is the second
derivative.

Back in IT, the second derivative is the essence of most transformation pro-
grams: they aim to increase the rate of change in an organization or its IT sys-
tems. Thus, for an organization to appreciate and successfully conduct a
transformation program, it first needs to appreciate the importance of the first
derivative; that is, it must understand economies of speed (Chapter 35). It’s hard to
sell a stronger engine and a shorter gear ratio for faster acceleration to someone
who prefers to coast along on cruise control.

Rate of Change for Architects

Lastly, technical systems and organizations aren’t the only systems that need to
increase their rate of change. Architects also do because new technologies arrive
at an ever-faster pace, leaving architects with an enormous challenge of staying
up to date. If they don’t, they might be relegated to life in the ivory tower (Chap-
ter 1), far away from the engine room.

How can architects expect to keep up in today’s world of rapid innovation?
Trying to do so by yourself appears futile—no one can stay current on everything.
Instead, architects should be part of a trusted but diverse network of experts,
which can provide unbiased information.

When you sit near a large IT budget that’s being vied for by vendors, you’ll
have many folks wanting to update you on new technologies, or rather products
(Chapter 16). However, neutrality is an architect’s major asset, so they’re
expected to cut through the buzzword fog to discern what’s really new and what’s
just clever repackaging of old concepts.

Even though living in a world that’s moving ever faster can be tiring, it’s also
what keeps architects’ jobs interesting and makes architecture more valuable. So,
embrace life in the first derivative!

28 | THE SOFTWARE ARCHITECT ELEVATOR

Enterprise Architect or
Architect in the Enterprise?
The Upper and Lower Floors of the Ivory Tower

Architecture from the ivory tower

When I was hired as an enterprise architect, the head of enterprise architecture
to be more precise, I had little idea what enterprise architecture really entailed. I
also wondered whether my team should be called the “Feet of Enterprise Archi-
tecture,” but that contemplation didn’t find much love. The driver behind the

29

| 4

1 Keith Rabois, Quora, May 11, 2010, “What does “Head” usually mean in job titles like “Head of Social,”
“Head of Product,” “Head of Sales,” etc.?”, https://oreil.ly/5LmbY.

2 Jeanne W. Ross, Peter Weill, and David C. Robertson, Enterprise Architecture as Strategy: Creating a
Foundation for Business Execution (Boston, MA: Harvard Business Review Press, 2006).

tendency to prefix titles with “head of” was aptly described in an online forum I
stumbled upon:1

This title typically implies that the candidate wanted a director/VP/executive title

but the organization refused to extend the title. By using this obfuscation, the candi-

date appears senior to external parties but without offending internal constituencies.

I am not particularly fond of the “head of xyz” title because it focuses on the
person heading (no pun intended) a team rather than accomplishing a specific
function. I’d rather name the person by what they need to achieve, assuming that
they don’t do this alone but have a team supporting them.

All title prefixes aside, when IT folks meet an enterprise architect, their initial
reaction is to place this person high up into the penthouse (Chapter 1), where they
draw pretty pictures that bear little resemblance to reality. To receive a warmer
welcome from IT staff, one should therefore be careful with the label enterprise
architect. However, what is an architect who works at enterprise scale supposed to
be called, then?

Enterprise Architecture

The recurring challenge with the title enterprise architect tends to be that it could
describe a person who architects the enterprise as a whole (including the busi-
ness strategy level) or someone doing IT architecture at the enterprise level (as
opposed to a departmental architect, for example).

To help resolve this ambiguity, let’s defer to the defining book on the topic,
Enterprise Architecture as Strategy by Jeanne Ross, Peter Weill, and David Robert-
son.2 Here, we learn the following:

Enterprise architecture is the organizing logic for business processes and IT infra-

structure reflecting the integration and standardization requirements of the compa-

ny’s operating model.

Following this definition, enterprise architecture (EA) isn’t a pure IT function
but also considers business processes, which are part of a company’s operating

30 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/5LmbY

3 Object Management Group website, http://www.omg.org/bawg.

model. In fact, the book’s most widely publicized diagram shows four quadrants
depicting business operating models with higher or lower levels of process stand-
ardization (uniformity across lines of business) and process integration (sharing
of data and interconnection of processes). Giving industry examples for all quad-
rants, Weill and Robertson map each model to a suitable high-level IT architec-
ture strategy. For example, a data and process integration program might yield
little value if the business operating model is one of highly diversified business
units with few shared customers. For such enterprises, IT should instead provide
a common infrastructure, on top of which each division can implement its
diverse processes. Conversely, a business that’s composed of largely identical
units, such as a franchise, benefits from a highly standardized application land-
scape. The matrix demonstrates perfectly how EA forges the connection between
the business and IT. Only if the two are well aligned does IT provide value to the
business.

Connecting Business and IT

Connecting business and IT is easier if the business side of the organization also
has a well-defined architecture. Luckily, as business environments become more
complex and digital disruptors force traditional enterprises to evolve their busi-
ness models more rapidly, the notion of business architecture has gained signifi-
cant attention in recent years. Business architecture translates the structured,
architectural way of thinking (Chapter 8) that’s guided by a formalized view of
components and interrelationships into the business domain. Rather than con-
necting technical system components and reasoning about technical system
properties such as security and scalability, business architecture describes the
“the structure of the enterprise in terms of its governance structure, business
processes and business information.”3

The business architecture essentially defines the company operating model,
including how business areas are structured and integrated, derived from the
business strategy. Meanwhile, the IT architecture builds the corresponding IT
capabilities. If the two work seamlessly side by side, you don’t need much else. In
the more likely case that the two aren’t well connected, you need something to
pull them together. Therefore, here’s my proposed definition of enterprise
architecture:

ENTERPRISE ARCHITECT OR ARCHITECT IN THE ENTERPRISE? | 31

http://www.omg.org/bawg
https://oreil.ly/D8ehD

Most digital giants don’t have EA
departments because their business
and IT are tightly interlinked.

Enterprise architecture is the glue between business and IT architecture.

This definition clarifies that EA, unlike IT architecture at enterprise level,
isn’t an IT function. Accordingly, the EA team should be positioned close to the
company leadership and not be buried deep within the IT organization, so that it
can balance business, technical, and organizational considerations.

The definition also implies that after business and IT are tightly interlinked,
you won’t need much EA, which is one reason why you don’t find much EA
within so-called digital giants.

Alas, don’t panic! The translation
between business needs and IT architec-
ture remains a domain that’s perennially
short of talent. It appears that most folks
find comfort on one or the other side of

the fence, but only a few can, and choose to, credibly play in both worlds. It’s a
good time to be an enterprise architect.

IT Is from Mars, Business Is from Venus

The strict separation between IT and business that is commonly found in enter-
prises seems troublesome to me. I tend to jest that in the old days, when every-
thing was running on paper instead of computers, companies also didn’t have a
separate “paper” department and a CPO—the chief paper officer. In digital com-
panies business and IT are inseparable; IT is the business, and the business is
IT.

Connecting business and IT gives EA a whole new relevance but also new
challenges. It’s like adding a mid-floor elevator that connects the business folks
in the penthouse with the IT folks in the engine room because the respective ele-
vators don’t quite reach each other. Although highly valuable, in the long run
such an enterprise architecture department’s objective must be to make itself
obsolete, or at least smaller, by extending the respective elevators. But no worries,
rapid changes in both the business and technical environments make it unlikely
that the need for enterprise architecture disappears altogether.

Building a fruitful, bidirectional connection between business and IT archi-
tecture becomes easier if the business architecture is at a comparable level of
maturity as IT architecture. More often than not, though, business architecture is
even less mature as a domain than IT architecture. That’s not because businesses
had no architecture; rather, it’s because the folks doing business architecture

32 | THE SOFTWARE ARCHITECT ELEVATOR

were not identified as such but were the business leaders, division heads, or
COOs. Also, designing the business was rather attributed to business acumen
than structured thinking. Where the business produced architecture-like arti-
facts, they often ended up being “functional capability maps” that don’t include
any lines (Chapter 23).

Supporting the business is the ultimate goal and raison d’être of all enterprise
functions. Positioning IT architecture on par with business architecture high-
lights, though, that the days when IT was a simple order-taker that provides a
commodity resource at the lowest possible cost are (luckily) over. In the digital
age, IT is a competitive differentiator and opportunity driver, not a commodity
like electricity.

Digital giants like Google or Amazon aren’t technology companies; they are

advertising or fulfillment companies that understand how to use technology for

competitive advantage.

Therefore, the common excuse that “Google and Amazon are technology
companies while we are an insurance company/bank/manufacturing business”
no longer holds. These companies will compete with you, and if you want to be
competitive, you also need to change your view of IT. It’s not an easy thing to do,
but the digital giants have demonstrated how powerful that insight is.

Value-Driven Architecture

The scale and complexity of doing architecture at enterprise scale makes large-
scale IT architecture exciting, but it also presents one of the biggest dangers. It’s
far too easy to become lost in this complexity and have an interesting time explor-
ing it without ever producing tangible results. Such instances are the source of
the stereotype that EA resides in the ivory tower and delivers little value. EA
teams therefore need to have a clearly articulated path to value: any effort that is
made needs to be paid back by providing value to the organization.

Another danger lies in the long feedback cycles. Judging whether someone
performs good EA takes even longer than judging good application architecture.
Even though the digital world forces shorter cycles, many EA plans still span
three to five years. Thus, enterprise architecture can become a hiding ground for
wanna-be cartographers. That’s why enterprise architects need to show impact
(Chapter 5).

ENTERPRISE ARCHITECT OR ARCHITECT IN THE ENTERPRISE? | 33

FOOLS WITH TOOLS

Some enterprise architects associate themselves closely with a specific EA tool
that captures the diverse aspects of the enterprise landscape. These tools allow
structured mapping from business processes and capabilities, ideally produced
by the business architects, to IT assets such as applications and servers.

Make sure that your tools work for you, not the other way around!

Done well, such tools can be the structured repository that builds the bridge
between business and IT architecture. Done poorly, they become a never-ending
discovery and documentation process that produces a deliverable that’s missing
an emphasis (Chapter 21) and is outdated by the time it’s published. Needless to
say, such a deliverable provides little value.

Visit All Floors

My definition of EA also implies that some IT architects, who aren’t enterprise
architects, work at enterprise scope. These are largely the folks I refer to in this
book. Because they are the technical folks who have learned to ride the elevator
(Chapter 1) to the upper floors to engage with management and business archi-
tects, they are a critical element in any IT transformation.

How is being an “enterprise-scale architect” different from a “normal” IT
architect? First, everything is bigger. Many large enterprises are conglomerates of
different business units and divisions, each of which can be a multibillion-dollar
business and can be engaged in a different business model. As things get bigger,
you will also find more legacy: businesses grow over time or through acquisi-
tions, both of which breed legacy. This legacy isn’t constrained to systems, but
also to people’s mindsets and ways of working. Enterprise-scale architects must
therefore be able to navigate organizations (Chapter 34) and complex political
situations.

Performing true EA is as complex and as valuable as fixing a Java concur-
rency bug. There’s enormous complexity at all levels, but the good news is that
you can use similar patterns of thinking at the different levels. For example, soft-
ware architects need to balance their system’s granularity and interdependencies:
a giant monolith is rather inflexible, whereas a thousand tiny services will be dif-
ficult to manage and can incur significant communication overhead. The exact

34 | THE SOFTWARE ARCHITECT ELEVATOR

same considerations apply to business architecture when considering the size of
divisions and product lines. Lastly, EA also faces the same trade-offs when having
to decide which systems should be centralized, which simplifies governance but
can also stifle local flexibility. Architecture, if taken seriously, provides significant
value at all levels.

Enterprises resemble a fractal structure: the more you zoom in or out, the
more things look similar. The short film Powers of 10, produced in 1977 by
Charles and Ray Eames for IBM, illustrates this beautifully: the film zooms out
from a picnic in Chicago by one order of magnitude every 10 seconds until it rea-

ches 1024, showing a sea of galaxies. Subsequently, it zooms in until at 10−18 it
shows the realm of quarks. Interestingly, the two views don’t look all that
different.

ENTERPRISE ARCHITECT OR ARCHITECT IN THE ENTERPRISE? | 35

An Architect Stands
on Three Legs
A Three-Legged Stool Does Not Wobble

A three-legged stool does not wobble

What do IT architects do? You could say that they are the people who make
IT architecture, but that leaves you with having to define what architecture is,
which we won’t do until Part II. More interesting yet, what sets a good architec-
ture apart from an average one? And what does an architect become after many
successful years? A penthouse resident (Chapter 1)? Hopefully not! A chief technol-
ogy officer (CTO)? Not a bad choice. Or do they remain a (more senior) architect?
That’s what famous building architects do, after all.

It’s time to have a look at the progression of architects.

37

| 5

Knowledge is like having a drawer
chest full of tools. Skill implies
knowing when to open which
drawer and which tool to use.

Skill, Impact, Leadership

When asked to characterize the seniority of an architect, I apply a simple frame-
work: a successful architect must stand on three “legs”:

Skill
The foundation for practicing architects. It requires knowledge and the
ability to apply it to solve real problems.

Impact
The measure of how well an architect applies his or her skill to benefit the
company.

Leadership
Determines whether an architect advances the state of the practice.

This nomenclature maps well to other professional fields that rely on highly
trained and experienced individuals. For example, in the medical field after study-
ing and acquiring skill, doctors practice and treat patients before they go on to
publish in medical journals and pass their learnings on to the next generation of
doctors. The legal field works similarly.

Let’s have a brief look at each “leg.”

SKILL

Skill is the ability to apply relevant knowl-
edge which can relate to specific technol-
ogies (such as Docker) or architectures
(such as microservices architectures).
Such knowledge can usually be acquired
by taking a course, reading a book, or

perusing online material. Most (but not all) professional certifications focus on
verifying knowledge, partly because it’s easily mapped to a set of multiple choice
questions. Skill brings this knowledge to life by successfully applying it to spe-
cific problems. For example, defining the right domain boundaries and service
granularity for a complex microservices architecture is a skill. Knowledge is like
having a drawer chest full of tools. Skill implies knowing when to open which
drawer and which tool to use.

38 | THE SOFTWARE ARCHITECT ELEVATOR

IMPACT

Impact is measured by the benefit achieved for the business, usually in form of
additional revenue or reduced cost. Faster times to market or the ability to incor-
porate unforeseen requirements late in the product cycle also positively affect
revenue and therefore count as impact. Focusing on impact is a good exercise for
architects to not drift off into PowerPoint-land. As I converse with colleagues
about what distinguishes a great architect, we often identify rational and disci-
plined decision making (Chapter 6) as a key factor in translating skill into impact.
This doesn’t mean that just being a good decision maker makes you a good archi-
tect. You still need to know your stuff.

LEADERSHIP

The leadership leg acknowledges that experienced architects do more than make
architecture. Mentoring junior architects can save a new generation of architects
many years of learning by doing. Senior architects should also further the state of
the field as a whole; for example, by sharing what they’ve learned or mental mod-
els they’ve developed. Such sharing can be done via numerous channels, includ-
ing academic publications, magazine articles, teaching at university, teaching
professional courses, speaking at conferences, or blogging.

When someone with the title “senior architect” proposes to meet me, I tend to

do a quick internet search for their name before I reply. If nothing much comes

up, I have doubts as to how “senior” they are. It will also make it more difficult

for them to get my time.

A Chair Can’t Stand on Two Legs

Just as a stool cannot stand on two legs, it’s important to appreciate the balance
between the three aspects. Skill without impact is where new architects start out
as students or apprentices. But soon it is time to get out into the world and make
an impact—architects who don’t make an impact don’t have a place in a for-profit
business.

Impact without leadership is a typical place for architects who are deeply
ingrained in projects but “don’t get out much.” Such architects will plateau at an
intermediate level, which is bad for them and their employer. The architects will
likely hit a glass ceiling in their career because they won’t be able to see beyond
their current environment. Likewise, such an architect won’t lead the company to
much-needed innovative or transformative solutions, ultimately limiting their
impact.

AN ARCHITECT STANDS ON THREE LEGS | 39

Many companies are penny-wise and pound-foolish by not placing sufficient

emphasis on nurturing their architects. They fear that any distraction from daily

project work will be unproductive. However, they miss out on growing world-

class architects.

Mature companies, in contrast, go as far as formalizing the aspect of leader-
ship as “give back”: for example, IBM distinguished engineers and fellows are
expected to demonstrate giving back to the community both internally (e.g., via
mentoring) and externally (e.g., via conference presentations or publications).

Lastly, leadership without (prior) impact lacks foundation and might be a
warning signal that an architect has become an ivory tower resident with a weak
link to reality. This undesirable effect can also occur when the impact stage of an
architect lies many years or even decades back: the architect might preach meth-
ods or insights that are no longer applicable to current technologies. Although
some insights are timeless, others age with technology: putting as much logic as
possible into the database as stored procedures because it speeds up processing
is no longer a wise approach as databases often turn out to be the bottleneck in
modern web-scale architectures. The same is true for architectures that rely on
nightly batch cycles. Modern 24/7 real-time processing doesn’t know any
nighttime.

The Virtuous Cycle

But there’s more to the three facets of being a good architect: each element con-
tributes back to the other, as shown in Figure 5-1.

As an architect applies their skill to generate impact, they also learn what
skills to prioritize to maximize that impact. Most likely you learned a lot of things
that don’t easily translate into daily life in corporate IT—the Ackerman function
(Chapter 39) is one of my favorites. Given the rate of innovation in our field,
being able to prioritize your learning time is a major asset. So, there’s a symbi-
otic relationship between building up skill and applying it.

40 | THE SOFTWARE ARCHITECT ELEVATOR

Figure 5-1. An architect’s virtuous cycle

Often, the best way to learn something is to apply it to a real-world problem.

That’s why my house is full of home automation. It’s not that I really need all

things to be automated; most of these were learning projects.

Exercising leadership further amplifies an architect’s impact: 10 well-
mentored junior architects will surely generate more impact than one senior
architect. As architects, we know that scaling vertically (getting smarter) works
only up to a certain level and can lead to a single point of failure (you!). There-
fore, you need to scale horizontally (Chapter 30) by deploying your knowledge to
multiple architects. The scarcity of good architects makes this step more impor-
tant than ever.

Interestingly, though, mentoring not only benefits the mentee, but also the
mentor. The old saying that to really understand something you need to teach it
to someone else is most true for architecture. Likewise, giving a talk or writing a
paper (Chapter 18) requires you to sharpen your thoughts, which often leads to
renewed insight. Also, in a fast-moving world, mentors can receive reverse

AN ARCHITECT STANDS ON THREE LEGS | 41

1 Jennifer Jordan and Michael Sorell, “Why Reverse Mentoring Works and How to Do It Right,” Harvard
Business Review, Oct. 3, 2019, https://oreil.ly/bjAET.

2 Wikipedia, “You Spin Me Round (Like a Record),” https://oreil.ly/fDcRP.

3 Gregor Hohpe and Bobby Woolf, Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions (Boston, MA: Addison-Wesley, 2003).

mentoring1 about new technologies or approaches, which can often help offload
existing assumptions that no longer hold true (Chapter 26).

Authoring books and sharing openly has given me access to the most amazing

communities and has allowed me to have much more impact.

Lastly, sharing openly and demonstrating thought leadership offers another
huge benefit: it can give you access to a powerful community of other thought
leaders, which in turn makes you a better architect. Most tight-knit communities
share certain expectations for their members. While usually not spelled out, they
typically involve giving back to the community in the form of conference talks,
authoring books or blog posts, or contributing to open source projects.

You Spin Me Right Round…

Experienced architects will correctly interpret this 1980s reference (others can
resort to Wikipedia2) to mean that an architect doesn’t complete the virtuous
cycle just once. This is partly driven by ever-changing technologies and architec-
tural styles. A person might already be a thought leader in relational databases,
but they might need to acquire new skills in NoSQL databases. The second time
around, acquiring skill is usually significantly faster because you can build on
what you already know. After a sufficient number of cycles, we might in fact
experience what the curmudgeons always knew: that there is really not much
new in software architecture and that we’ve seen it all before.

Another reason to repeat the cycle is that the next time, our understanding
can be at a much deeper level. The first time around, we might have learned how
to do things, but only after the second time might we understand why. For exam-
ple, it’s likely no misrepresentation that writing Enterprise Integration Patterns3 is
a form of thought leadership. Still, some of the elements such as the pattern
icons or the decision trees and tables in the chapter introductions were more
accidental than based on deep insight. It’s only now in hindsight that we

42 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/bjAET
https://oreil.ly/fDcRP

understand them as instances of a visual pattern language or pattern-aided deci-
sion approaches. Thus, it’s often worthwhile to make another cycle.

Architect as Last Stop?

Even though architects have one of the most exciting jobs, some people might be
sad to see that being an architect implies that you’ll likely remain one for most of
your career. I am not so worried about that. First, this puts you in a good peer
group of CEOs, presidents, doctors, lawyers, and other high-end professionals.
Second, in technically minded organizations, software engineers should feel the
same: your next career step should be to remain a software engineer, except a
senior one, or staff engineer or perhaps a principal engineer.

The goal is, therefore, to detach the job title of software engineer or IT architect
from a specific seniority level.

At many digital organizations the software engineer career ladder reaches all the

way to the senior vice president level, with commensurate standing and

compensation.

Some organizations even include a chief engineer, which, if you think about it,
might be a better title than chief architect. Personally, I prefer to get better at
what I like doing than trying to chase something else just for the title. Keep
architecting!

AN ARCHITECT STANDS ON THREE LEGS | 43

Making Decisions
Deciding Not to Decide Is a Decision

(IT) Life is full of choices

You buy a lottery ticket and win. What a fantastic decision! You cross the
road at night, on red, on a busy street, slightly intoxicated, and with your eyes
closed, and arrive safely on the other side. Also a good decision? Doesn’t sound
like it. But what’s the difference? Both decisions had positive outcomes. In the
latter case, though, we judge by the risk involved while in the former we focus on
the outcome, ignoring the ticket price and the (usually low) odds of winning.
However, you can’t judge a decision by the outcome alone, simply because you
didn’t know the outcome when you made the decision.

Here’s another exercise: in front of you is a very large jar. It contains
1,000,000 pills. They all look the same, are all tasteless, and benign—except one,
which will kill you instantly and painlessly. How much money does someone
have to pay you to take a pill from this jar? Most people will answer 1 million dol-
lars, 10 million dollars, or straight-out refuse. However, the same people are
quite willing to cross the road on a red light (with their eyes open), which carries

45

| 6

1 Daniel Kahneman, Thinking, Fast and Slow (New York: Farrar, Straus and Giroux, 2013).

the same risk as swallowing a couple of pills. It’d be difficult to argue that the 30
seconds you saved by crossing on red would have earned you the equivalent of a
few million dollars.

Humans are terrible decision makers, especially when small probabilities
and grave outcomes like death are involved. Kahneman’s book Thinking, Fast and
Slow1 shows so many examples of how our brain can be tricked, it can make you
wonder how humanity could get this far despite being such terrible decision
makers. I guess we had a lot of tries.

Making decisions is a critical part of an enterprise-scale architect’s job. Being
a good architect therefore warrants a conscious effort to becoming a better deci-
sion maker.

The Law of Small Numbers

Contrived examples make erratic or illogical behavior quite apparent. But when
faced with complex business decisions, poor decision-making discipline often
isn’t as obvious.

I attended weekly operations meetings that labeled weeks “good” or “bad” based

on the number of critical infrastructure outages. I relabeled those weeks as

“lucky” because lowering the number and severity of incidents in the long run

is the real metric to observe.

Hoping for a week with fewer outages is the corporate IT equivalent of the
(flawed) roulette strategy of “after five times black it’s gotta be red!” My shocker
version of highlighting such flawed thinking consists of a (fictitious) sequence of
events during Russian Roulette: “click—I am a genius!—boom.” Kahneman calls
this “The law of small numbers”; people tend to jump to conclusions based on
sample sizes that are way too small to be significant. For example, zero outages
in a week are no cause for celebration in a large enterprise.

46 | THE SOFTWARE ARCHITECT ELEVATOR

Google’s mobile ads team used rigid metrics for A/B testing experiments that

affected ad appearance or selection. The dashboard included metrics to check

click-through rates (more clicks = more money) but also to understand whether

ads distract from the search results (users come for search, not ads). Each met-

ric’s confidence interval represented the range that 95% of sample sets would

randomly fall into. If your experiment’s improvement landed inside the confi-

dence interval, you’d need to extend the experiment to get valid data before

implementing the suggested change (for normal distributions, the confidence

interval narrows with the square root of the number of sample points).

Alas, not all data leads to better decisions. When selecting a product, IT often
compiles extensive requirement lists that are summed up into scores. However,
when you pick the “winner” with a score of 82.1 over the “loser” with 79.8, it
would be challenging to prove the statistical significance of this decision.

Still, numeric scores might be better than traffic light comparison tables that
rate each attribute as “green,” “yellow,” or “red.” A product might get “green” for
allowing time travel but “red” for requiring planned downtime. Although this
might make it look roughly equivalent to one with the opposite properties, I
know which one I’d prefer.

Traditional IT organizations often reverse engineer score charts from a specific

outcome so that they have data to back up their preference.

Sadly, such comparison charts are reverse engineered from a preferred out-
come. Others are designed to protect the status quo by demanding quirks only
present in existing products.

I have seen IT requirements analogous to demanding that a new car must rattle

at 60 mph and have a squeaky door so that it can appropriately replace the exist-

ing one.

Bias

Kahneman’s book lists many ways in which our thinking is biased. For example,
confirmation bias describes our tendency to interpret data in such a way that it
supports our own hypotheses. The Google Ad dashboard was designed to over-
come this bias.

MAKING DECISIONS | 47

2 John A. Bargh, Mark Chen, and Lara Burrows, “Automaticity of Social Behavior,” Journal of Personality
and Social Psychology 71, no. 2 (Aug. 1996): 230-244.

Another well-known bias is prospect theory: when faced with an opportunity,
people tend to favor a smaller but guaranteed gain over the uncertain chance for
a larger one: “A sparrow in the hand is better than the pigeon on the roof.” When
it comes to taking a loss, however, people are likely to take a (long) shot at avoid-
ing the penalty over coughing up a smaller amount for sure. We tend to “feel
lucky” when we can hope to escape a negative event, an effect called loss aversion.

You have likely seen project managers avoid the certain loss in short-term veloc-

ity for performing a major refactoring because the payoff in system stability or

sustained velocity is uncertain.

The following scenario shows how loss aversion tricks us into making irra-
tional decisions. When you offer someone a coin toss that makes them pay $100
on heads but gives them $120 on tails, the expected return of taking the gamble
is $10 (0.5 × –$100 + 0.5 × $120)—easy money. However, most people will
kindly decline due to their loss aversion. Losing $100 to them feels worse than
the chance to gain $120. Most people will only accept the offer when the payout
is between $150 and $200.

Priming

Another phenomenon, priming, can influence decisions based on recent data we
received. In the extreme case, when faced with enormous uncertainty, it can
make us pick a number we recently heard or saw even if it’s totally unrelated.
This effect plays a role when many people answer one million dollars when faced
with the one-million-pills example.

Priming is routinely used in retail scenarios. When you go to buy a piece of
clothing—let’s say a sweater—the store clerk is almost guaranteed to first show
you something expensive, even outside your price range. A sweater for $399? It’s
made from cashmere and feels very soft and comfortable; tempting, but it’s sim-
ply too expensive. But the almost-as-nice sweater for $199 seems a reasonable
compromise, and you’ll happily buy it. Next door, decent sweaters can be had for
$59. You fell victim to priming, setting a context that influences your decision.
Priming can even make you walk more slowly if your mindset is on elderly
people.2

48 | THE SOFTWARE ARCHITECT ELEVATOR

3 William Poundstone, Priceless: The Myth of Fair Value (New York: Hill and Wang, 2011).

William Poundstone’s book Priceless: The Myth of Fair Value3 shows that prod-
ucts that no one actually buys can shift purchasing behavior significantly, thanks
to priming. When presented with a choice between a “premium” beer for $2.60
and a “bargain” one for $1.80, about two thirds of test subjects (students) chose
the premium beer. Adding a third, “super-premium” beer for a whopping $3.40
shifted student’s desire so that 90% ordered the premium beer and 10% the
super-premium.

If we are such horrible decision makers, what can we do to get better at it?
Understanding these pitfalls can help you avoid or at least compensate for them.
However, mathematics can also help.

Micromort

One of the most interesting classes that I took at Stanford was Ron Howard’s
class on decision analysis, which was entertaining, thought-provoking, and chal-
lenging. Decision analysis helps us think rationally about our earlier jar-with-pills
example. A one-in-one-million chance of dying is called one micromort. Taking
one pill from the jar amounts to being exposed to exactly one micromort. The
amount you are willing to pay to avoid this risk is called your micromort value.
Micromorts help us reason about decisions with small probabilities but very seri-
ous outcomes, such as deciding whether to undergo surgery that eliminates life-
long pain but fails with a 1% probability, resulting in immediate death.

To calibrate the micromort value, it helps to consider the risks of different
life activities: a day of skiing clocks in at between one and nine micromorts,
whereas motor vehicle accidents amount to about 0.5 per day. So a ski trip can
run you some five micromorts—the same as swallowing five pills. Is it worth it?
You’d need to compare the enjoyment value you derive from skiing against the
trip’s cash expense plus the “cost” of the micromort risk you are taking.

So how much should you demand to take one pill? Most people’s micromort
value lies between $1 and $20. Assuming a prototypical value of $10, the ski trip
that might cost you $100 in gas and lift tickets costs you an extra $50 in risk of
death. You should therefore decide whether a day in the mountains is worth $150
to you. This also shows why a micromort value of $1,000,000 makes little sense:
you’d hardly be willing to pay $5,000,100 for a one-day ski trip unless you are

MAKING DECISIONS | 49

4 Ronald A. Howard and Ali E. Abbas, Foundations of Decision Analysis (Prentice Hall, 2015).

5 George Box, “Science and Statistics,” Journal of the American Statistical Association (1976).

6 Scott E. Page, The Model Thinker: What You Need to Know to Make Data Work for You (New York: Basic
Books, 2018).

filthy rich! Lastly, the model helps you judge whether buying a helmet for $100 is
a worthwhile investment for you if it reduces the risk of death in half.

The micromort value isn’t the same for all people. It goes up with income (or
rather, consumption) and goes down with age. This is to be expected as the mon-
etary value you assign to your remaining life increases with your income. A weal-
thy person should easily decide to buy a $100 helmet, whereas a person who is
struggling to make ends meet is more likely to accept the risk. As you age, the
likelihood of death from natural causes unstoppably increases until it reaches
about 100,000 micromorts annually, or almost 300 per day, by the age of 80. At
that point, the value derived from buying a risk reduction of two micromorts is
rather small.

Luckily, Ron Howard and Ali Abbas have captured the mathematics of deci-
sion making in their book Foundations of Decision Analysis.4 The book isn’t cheap,
though, listing at around $200. Should you buy a book for $200 that could make
you a better decision maker? Think about it…

Model Thinking

Decision models can go a long way toward making us better decision makers.
Thanks to George Box, it’s well known that “all models are wrong, but some are
useful.”5 So, don’t dismiss a model just because it makes simplifying assump-
tions. It’s likely to help you make a much better decision than your gut. The best
overview of models and their application I have come across is Scott Page’s Cour-
sera course on Model Thinking. He also recently published the content in his
book The Model Thinker.6

Decision trees are very simple models that help us make more rational deci-
sions (see Figure 6-1). Suppose that you want to buy a car, but there’s a 40%
chance that the dealer will offer a $1,000 cash-back promotion starting next
month. You need a car now, so if you defer the purchase, you’ll need to rent a car
for $500 for the coming month, even if the rebate doesn’t come through. What
should you do? If you buy now, you’ll pay the list price, which we calibrate to $0
for simplicity’s sake. If you rent first, you are down by $500 with a 40% chance

50 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/qKWp3

to gain $1,000, so the expected value is 0.4 × $1,000 – $500 = –$100, lower than
the list price. You should buy the car now.

Figure 6-1. A decision tree helps you decide whether to buy a car now

Let’s make the scenario a bit more interesting: assume that an insider offers
to tell you whether the cash-back promotion happens next month or not. He asks
$150 for this information. Should you buy it? Having this information, your new
decision tree (see Figure 6-2) would allow you to buy now if you’re told that
there’s no cash back (in 60% of cases) and to buy later if there is (in 40% of
cases). Having information up front increases the expected value to 0.6 × 0 + 0.4
× (1,000 – 500) = $200. As your current best scenario (i.e., buying now) yielded a
value of $0, it’s worth paying $150 for the extra information.

Figure 6-2. Should you pay someone to tell you whether there will be a rebate?

How do you know that the chance of the cashback is exactly 40%? You don’t.
But using the model helps you reason in face of uncertainty. You can rerun the
model for a 50% likelihood and see whether your decision changes.

MAKING DECISIONS | 51

7 Martin Fowler, “Who Needs an Architect?,” IEEE Software, July/August 2003, https://oreil.ly/djeuH.

IT Decisions

Deadly pills, premium beers, and car dealer rebates—how do we bring our learn-
ings back to IT decision making? Many IT decisions—especially those related to
cybersecurity risks or system outages—share similar characteristics of small
probability but severe downsides. Therefore, separating likelihood from impact
and baselining probabilities can help remove emotion, resulting in more rational
decisions. Maybe you even find it useful to define a concept of microfail for your
systems: a one-in-a-million chance of a catastrophic system failure.

A classic case for decision making is system uptime. Suppose that a single
server can achieve 99.5% availability, meaning that 99.5% of the time it will be
available to your application’s users. This means that over the course of an aver-
age month, which has 730 hours, the system can be “down” for 730 / 200 = 3.65
hours. That’s not horrible, but also not great. 99.9% is generally considered a
good uptime—the allowed downtime would be less than roughly 45 minutes per
month. However, to achieve this, you generally need redundant hardware, mean-
ing that you need a second set of servers ready to go in case your primary server
fails. This will double your hardware cost, often require additional failover machi-
nery, and in some cases also double your software license cost. Are three hours
downtime less per month worth double the cost? Sounds like a perfect case for
decision analysis!

Avoiding Decisions

With all this science behind decision making, what’s the best decision? It’s the
one that you don’t need to take! That’s what Martin Fowler indicated when he
observed that “one of an architect’s most important tasks is to eliminate irreversi-
bility in software designs.”7 Those are the decisions that don’t need to be made or
can be made quickly because they can be easily changed later thanks to you having
built-in options (Chapter 9). In a well-designed software system, decisions aren’t
as final as when taking deadly pills from a jar.

52 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/djeuH

Question Everything
Wer Nicht Fragt, Bleibt Dumm!

The architect riddler

It’s a common misconception that chief architects know everything better
than “normal” architects—why else would they be the “chief”? Such thinking is
actually pretty far from the truth. Hence, I often introduce myself as a person
who knows the right questions to ask. Wrangling one more reference from the
movie The Matrix, visiting the chief architect is a bit like visiting the Oracle: you
won’t get a straight answer, but you will hear what you need to hear.

53

| 7

Five Whys

Asking questions isn’t a new technique and has been widely publicized in the
“five whys” approach devised by Sakichi Toyoda as part of the Toyota Production
System. It’s a technique to get to the root cause of an issue by repeatedly asking
why something happened. If your car doesn’t start, you should keep asking
“why” to find out the starter doesn’t turn because the battery is dead because you
left the lights on because the beeper that warns you of parking with your lights
on didn’t sound because of an electronics problem. So, before you jump-start the
car, you should fix the electronics to keep the problem from happening again. In
Japanese the method is called naze-naze-bunseki (なぜなぜ分析), which roughly
translates into “why, why analysis.” I therefore consider the “five whys” more of a
guideline to not give up too early—you surely didn’t cheat if you identified the
actual root cause with just four whys.

The technique can be quite useful but requires discipline because people can
be tempted to inject their own preferred solutions or assumptions into their
answers. I have seen people conducting root-cause analysis on production out-
ages repeatedly answer the second or third question with “because we don’t have
sufficient monitoring” and the next one with “because we don’t have enough
budget.” The equivalent answer from the car example would be “because the car
is old.” That’s not root-cause analysis but opportunism or excuse-ism, a word that
made it into the Urban Dictionary, but not yet into Merriam-Webster.

Repeatedly asking questions can annoy people a bit, so it’s good to have the
reference to the Toyota Production System handy to highlight that this is a widely
adopted and useful technique and not you just being difficult. It’s also helpful to
remind your counterparts that you are not challenging their work or competence,
but that your job requires you to understand systems and problems in detail so
that you can spot potential gaps or misalignments.

Whys Reveal Decisions and Assumptions

When conducting architecture reviews, “why” is a useful question because it
helps draw attention to the decisions (Chapter 8) that were made as well as the
assumptions and principles that led to those decisions. Too often, results are pre-
sented as “god-given” facts that “fell from the sky” or wherever you believe the
all-deciding divine creator (the real chief architect!) resides. Uncovering the
assumptions that led to a decision can provide much insight and increase the
value of an architecture review. An architecture review is not only looking to
validate the results but also the thinking and decisions behind it all. To

54 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/h_aFt
https://oreil.ly/h_aFt
https://oreil.ly/CVz6U

1 Michael Nygard, “Documenting Architecture Decisions,” Relevance, Nov. 15, 2011, https://oreil.ly/1sniB.

emphasize this fact, one should request an architecture decision record1 from any
team submitting an architecture for review.

Unstated assumptions can be the root of much evil if the environment has
changed since the assumptions were made. For example, traditional IT shops
often write elaborate graphical configuration tools that could be replaced with a
few lines of code and a standard software development tool chain. Their deci-
sions are based on the assumption that writing code is slow and error prone,
which no longer holds universally true as we learn once we overcome our fear of
code (Chapter 11). If you want to change the behavior of the organization, you
often need to identify and overcome outdated assumptions first (Chapter 26).

Coming back to The Matrix, the explanation given by the Oracle—“You
didn’t come here to make the choice, you’ve already made it. You’re here to try to
understand why you made it”—could make a somewhat dramatic but very appro-
priate opening to an architecture review.

A Workshop for Every Question

A clear and present danger of asking questions in large organizations lies in the
fact that people often don’t know, can’t express, or are unwilling to give the
answer. Their counterproposal is usually to hold a meeting, most likely a very
long one, which is labeled as “workshop,” with the purported goal of sharing and
documenting the answer. In the actual workshop, though, it frequently turns out
that the answer is unknown, leaving you with the job of answering your own
questions. The team might also bring external support to defend against you ask-
ing too many undesired questions.

Asking questions in traditional organizations might not get you insights but

defensiveness to cover up the lack of decision discipline.

Soon, your calendar will be full of workshop invitations, allowing teams to
blame you for being the bottleneck that slows their progress because you aren’t
available for their important meetings. And they aren’t even lying! Such organi-
zational behavior is an example of systems resisting change (Chapter 10).

QUESTION EVERYTHING | 55

https://oreil.ly/1sniB

If your goal is to not just review architecture proposals but also to change the
behavior of the organization, you need to take up this challenge and change the
system. For example, you can redefine the expectations for architecture docu-
mentation and obtain management buy-in for doing so; for example, to increase
transparency. If satisfactory documentation isn’t produced before the meeting,
the workshop must be canceled. If teams are unable to produce such
documentation, you can offer them architects who perform this task on a project
basis. The actual workshop becomes more effective when you moderate and work
off a list of concrete questions. Cutting the scheduled time in half brings addi-
tional focus.

On the upside, running architecture documentation workshops and sketching
bank robbers (Chapter 24) can give you an invaluable set of system documentation
that you can later use as a reference. This effort requires good writing skills (Chap-
ter 18) and adequate staffing, which you can obtain only by taking the architect
elevator (Chapter 1) to the upper floors and clearly articulating the value of docu-
menting system architectures. For example, such documents could allow faster
staff ramp-up, reveal architectural inconsistencies, and allow rational, fact-based
decision making, which in turn supports evolution toward a harmonized IT land-
scape. In top-down organizations, sometimes you need to lob things to the top so
they can trickle back down.

No Free Pass

Occasionally, teams that are sent into architecture review would like to just
obtain a “rubber stamp” for what they have done, and they aren’t excited about
you asking any questions at all. These are often the same candidates who answer
the “why” questions with “because we have no time” after they purposefully wai-
ted until the very last minute. For such cases, I have a stated principle of, “You
can avoid my review, but you cannot get a free pass.” If management decides that
no architecture review is needed because it doesn’t see architecture as a first-class
citizen, I’d rather avoid the review altogether than hold a show trial.

I see this as in line with my professional reputation: be tough but fair
and make tasty hamburgers out of holy cows. My boss once summarized this
in a nice compliment: she stated that she likes to have the architecture team
involved because, “we have nothing to sell, no one can fool us, and we take the
time to explain things well.” This would make a nice mandate for any architec-
ture team.

56 | THE SOFTWARE ARCHITECT ELEVATOR

If you’re wondering about the meaning of the German subtitle of this
chapter, it’s from the title song of the German version of Sesame Street, which
rhymes nicely and goes "Wieso, weshalb, warum, wer nicht fragt, bleibt dumm!,”
which literally translates into “why? who doesn’t ask, remains stupid!” Don’t
remain stupid!

QUESTION EVERYTHING | 57

Architecture

Defining architecture isn’t an easy task—there appear to be almost as many defi-
nitions of IT architecture as there are practicing architects.

Beyond Software Architecture

Most software architecture definitions cite a system’s elements and components
plus their interrelationships. In my view, this covers only one aspect of architec-
ture. First, IT architecture is much more than software architecture: unless you
outsourced all your IT infrastructure into the public cloud, you need to architect
networks, datacenters, computing infrastructure, storage, and much more. And
even if you did, you still need a deployment architecture, a data architecture, and
a security architecture. Second, defining which “components” you are focusing
on constitutes a significant aspect of architecture.

A manager once stated that he can’t understand the many network issues

despite all the network stuff “being there.” His view was a physical one: Ether-

net cables plugged into servers and switches. The complexity of network archi-

tecture, however, lies in virtual network segregation, routing, address

translation, and much more. Different stakeholders see different parts of the

architecture.

Three Kinds of Architecture

When speaking about architecture, people routinely refer to three quite different
concepts, all of which relate to IT but are very different in nature:

1. A system’s architecture, defined by its structure, as in "microservices
architecture"

2. The act of defining a system’s structure, as in “the architecture committee"

59

PART | II

1 Brian Foote and Joseph Yoder, “Big Ball of Mud,” Laputan.org, Nov. 21, 2012, http://www.laputan.org/
mud.

3. A team that is involved in defining architecture, as in “we’re setting up
enterprise architecture"

So, while every system has an architecture, not every organization has an
architecture (unit) and even if it does, they may not get much architecture done.

To make things a little less confusing, when I mention “architecture,” I gen-
erally refer to a system’s properties. For organizational aspects, I speak about
“architects”—it’s based on humans after all.

There Always Is an Architecture

When speaking about a system’s architecture, it’s worth pointing out that all sys-
tems have one. You can’t build anything out of several pieces that doesn’t have
any structure. Even clumping everything together into a giant monolith is an
architecture decision. Once we come to this realization, statements like “we don’t
have time for architecture” aren’t particularly meaningful. It’s simply a matter of
whether you consciously choose your architecture or whether you let it happen to
you. History has shown that the latter approach invariably leads to the infamous
Big Ball of Mud1 architecture, also referred to as shantytown. Although that archi-
tecture does allow for rapid implementation without central planning or special-
ized skills, it also lacks critical infrastructure and doesn’t make for a great living
environment. Fatalism isn’t a great enterprise architecture strategy, so I suggest
you pick your architecture.

The Value of Architecture

Because there always is an architecture, an organization should be clear on what
it expects from setting up an architecture function. Setting up an architecture
team and then not letting it do its job—for example, by routinely subjecting
architecture decisions to management decisions—is actually worse than inten-
tionally letting things drift into a Big Ball of Mud: you pretend to define your
architecture, but in reality you don’t. Worse yet, good architects don’t want to be
in a place where architecture is seen as a form of corporate entertainment. If you
don’t take architecture seriously, you won’t be able to attract and retain serious
architects.

60 | THE SOFTWARE ARCHITECT ELEVATOR

http://www.laputan.org/mud
http://www.laputan.org/mud

IT management often believes that “architecture” is a long-term investment
that will only pay off far into the future. Although this is true for some aspects—
for example, managed system evolution over time—architecture can also pay off
in the short-term, such as when you can accommodate a customer requirement
late in the development cycle, when you gain leverage in vendor negotiations
because you avoided lock-in, or when you can easily migrate your systems to a
new datacenter location. Good architecture can also make a team more produc-
tive by allowing concurrent development and testing of components. Generally,
good architecture buys you flexibility. In a rapidly changing world, this seems
like a smart investment.

Principles Drive Decisions

Architecture is a matter of trade-offs: there rarely is one single “best” architec-
ture. For example, the option to be able to move your application to the cloud
likely increased cost and complexity. Architects therefore must take the context
into consideration when making architectural decisions, because that context will
help them weigh the trade-offs against one another.

Architects should also strive for conceptual integrity, that is, uniformity
across system designs. This is best accomplished by selecting a well-defined set
of architecture principles that are consistently applied to architectural decisions.
Deriving these principles from a declared architecture strategy assures that the
decisions support the strategy.

Vertical Cohesion

A good architecture is not only consistent across systems but also considers all
layers of a software and hardware stack. Investigating new types of scale-out com-
pute hardware or software-defined networks is useful, but if all your applications
are inflexible monoliths with hardcoded IP addresses, you gain little. Architects
therefore not only need to ride the elevator (Chapter 1) across the organization but
also up and down the technology stack.

Vertical cohesion doesn’t stop at technology, but also needs to consider the
business architecture. For example, many IT decisions can’t be made by IT alone
but require input from the business and an understanding of the business struc-
ture and context.

ARCHITECTURE | 61

Architecting the Real World

The real world is full of architectures, not just building architectures but also cit-
ies, corporate organizations, or political systems. The real world must deal with
many of the same issues faced by large enterprises: lack of central governance,
difficult to reverse decisions, enormous complexity, constant evolution, slow
feedback cycles. That’s why architects should walk through the world with open
eyes, always looking to learn from the architectures they encounter.

ARCHITECTURE IN THE ENTERPRISE

When defining architecture in large organizations, architects need to know a lot
more than how to draw UML diagrams. They need to be able to do the following,
as well:

Chapter 8, Is This Architecture?
Distinguish whether something is architecture in the first place.

Chapter 9, Architecture Is Selling Options
Be able to sell options to the business.

Chapter 10, Every System Is Perfect…
Tackle complexity by thinking in systems.

Chapter 11, Code Fear Not!
Know that configuration isn’t better than coding.

Chapter 12, If You Never Kill Anything, You Will Live Among Zombies
Hunt zombies so that they don’t have their brain eaten.

Chapter 13, Never Send a Human to Do a Machine’s Job
Automate everything and make the rest self-service.

Chapter 14, If Software Eats the World, Better Use Version Control!
Think like software developers as everything becomes software defined.

Chapter 15, A4 Paper Doesn’t Stifle Creativity
Build platforms and set standards that don’t stifle creativity.

Chapter 16, The IT World Is Flat
Navigate their IT landscape with an undistorted world map.

Chapter 17, Your Coffee Shop Doesn’t Use Two-Phase Commit
Gain architecture insights from waiting in line at the coffee shop.

62 | THE SOFTWARE ARCHITECT ELEVATOR

1 Wikipedia, "Jacobellis v. Ohio,” Sept. 7, 2019, https://oreil.ly/EwvpU.

Is This Architecture?
Look for Decisions!

Would you pay an architect for this?

Part of my job as chief architect is to review and approve system architec-
tures. When I ask teams to show me “their architecture,” I frequently don’t con-
sider what I receive to be an architecture document. Their counter-question of
“what do you expect?” isn’t so easy for me to answer: despite many formal defini-
tions, it isn’t immediately clear what architecture is or whether a document really
depicts an architecture. Too often we have to fall back to the “I know it when I
see it” test famously applied by a US Supreme Court judge to obscene material.1

We’d hope that identifying architecture is a more noble task than identifying

63

| 8

https://oreil.ly/EwvpU

2 Desmond F. D’Souza and Alan Cameron Wills, Objects, Components, and Frameworks with UML: The
Catalysis Approach (Boston: Addison-Wesley Professional, 1998).

obscene material, so let’s try a little harder. I am not a big believer in all-
encompassing definitions but prefer to use lists of defining characteristics or
tests that can be applied. One of my favorite tests for architecture documentation
is whether it contains any nontrivial decisions and the rationale behind them.

Defining Software Architecture

So many attempts at defining software architecture have been made that the Soft-
ware Engineering Institute (SEI) maintains a reference page of these definitions.

Among the most widely used is this definition from Garlan and Perry, from
1995:

The structure of the components of a system, their interrelationships, and principles

and guidelines governing their design and evolution over time.

In 2000 the ANSI/IEEE Std 1471 chose the following definition (adopted as
ISO/IEC 42010 in 2007):

The fundamental organization of a system, embodied in its components, their rela-

tionships to each other and the environment, and the principles governing its design

and evolution.

The Open Group adopted a variation thereof for TOGAF:

The structure of the components, their interrelationships, and principles and guide-

lines governing their design and evolution over time.

One of my personal favorites is from Desmond D’Souza and Alan Cameron
Wills’s book on the Catalysis method:2

The set of design decisions about any system that keeps its implementors and main-

tainers from exercising needless creativity.

The key point here isn’t that architecture should dampen all creativity, but
needless creativity, of which I witness ample amounts. It also highlights the
importance of making decisions (Chapter 6).

64 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/48Opd

Architectural Decisions

These well-thought-out definitions aren’t easy to work with, however, when
someone walks up with a PowerPoint slide showing boxes and lines (Chapter 23),
claiming, “This is my system architecture.” The first test I tend to apply is
whether the documentation contains meaningful decisions. After all, if no deci-
sions needed to be made, why employ an architect and prepare architectural
documentation?

Martin Fowler’s knack for explaining the essence of things using extremely
simple examples motivated me to illustrate the “architectural decision test” with
the simplest example I could think of, drawing from the (admittedly limping)
analogy to building architecture.

Consider the drawing of a house on the left side of Figure 8-1. It has many of
the elements required by the popular definitions of systems architecture: we see
the main components of the system (door, windows, roof) and their interrelation-
ships (door and windows in the wall, roof on the top). We might be a tad thin,
though, on principles governing its design, but we do notice that we have a single
door that reaches the ground and multiple windows, which follows common
building principles.

Figure 8-1. Is this architecture?

Yet, to build such a house I wouldn’t want to pay an architect. This house is
“cookie-cutter,” meaning I don’t see any nonobvious decisions that an architect
would have made. Consequently, I wouldn’t consider this architecture.

IS THIS ARCHITECTURE? | 65

Let’s compare this to the sketch on the right side of the figure. The sketch is
equally simple, and the house is almost the same, except for the roof. This house
has a steep roof and for a good reason: the house is designed for a cold climate
where winters bring extensive snowfall. Snow is quite heavy and can easily over-
load the roof of the house. A steep roof allows the snow to slide off and be easily
removed thanks to gravity, a pretty cheap and widely available resource. Addition-
ally, an overhang prevents the sliding snow from piling up right in front of the
windows.

To me, this is architecture: nontrivial decisions have been made and docu-
mented. The decisions are driven by the system context; in this case, the climate:
it’s unlikely that the customer explicitly stated a requirement that the roof not be
crushed by snowfall. Additionally, the documentation highlights relevant deci-
sions and omits unnecessary noise.

If you believe these architectural decisions were pretty obvious, let’s look at a
very different house in Figure 8-2.

Figure 8-2. Great architecture on a napkin

This house in Figure 8-2 is quite different: the walls are made out of glass.
While providing a stellar view, glass walls have the problem that the sun heats up
the building, making it feel more like a greenhouse than a residence. The

66 | THE SOFTWARE ARCHITECT ELEVATOR

3 P. La Roche, “The Case Study House Program in Los Angeles: A Case for Sustainability,” in Proc. of Con-
ference on Passive and Low Energy Architecture (2002).

Architecture isn’t good or bad, it’s
fit or unfit for a purpose.

solution? Extending the roof well beyond the glass walls keeps the interior in the
shade, especially in summer when the sun is high in the sky. In the winter, when
the sun is low on the horizon, the sun reaches through the windows and helps
warm the building interior. Again, the architecture is defined by a fairly simple
but fundamental decision, documented in an easy-to-understand format that
highlights the essence of the decision and the rationale behind it.

Fundamental Decisions Needn’t Be Complicated

If you think the idea of building an overhanging roof isn’t all that original or sig-
nificant, try buying one of the first homes to feature such a design; for example,
the Case Study House No 22 in Los Angeles by architect Pierre Koenig. It’s easily
in the league of most recognized residential building in Los Angeles or beyond
(aided by Julius Shulman’s iconic photograph) and surely isn’t for sale. You can
tour it, though, if you sign up far in advance. Significant architectural decisions
may look obvious in hindsight, but that doesn’t diminish their value. No one is
perfect, though: UCLA PhD students have measured that the overhang works
better on the south-facing facade than west or east.3

Fit for Purpose

The simple house example also highlights another important property of archi-
tecture: rarely is an architecture simply “good” or “bad.” Rather, architecture is fit
or unfit for purpose. A house with glass walls and a flat roof might be regarded
as great architecture, but probably not in the Swiss Alps where it will collapse
after a few winters or suffer from a leaking roof. It also doesn’t do much good
near the equator where the sun’s path on the sky remains fairly constant
throughout the year. In those regions, you are better off with thick walls, small
windows, and lots of air conditioning.

Assessing the context and identifying
implicit constraints or assumptions in
proposed designs is an architect’s key
responsibility. Architects are commonly
described as the people dealing with nonfunctional requirements. I generally

IS THIS ARCHITECTURE? | 67

All meaningful decisions have
downsides.

refer to hidden assumptions as nonrequirements—requirements that were never
explicitly stated (Part I).

Even the dreaded Big Ball of Mud can be “fit for purpose”; for example, when
you need to make a deadline at all costs and can’t care much about what happens
afterward. This may not be the context you wish for, but just like houses in some
regions have to be earthquake proof, some architectures have to be management
proof.

Passing the Test

Having stretched the overused building architecture analogy one more time, how
do we translate it back to software systems architecture? Systems architecture
doesn’t need to be something terribly complicated. It must include, however, sig-
nificant decisions that are well documented and are based on a clear rationale.
The word “significant” can be open to some interpretation and depend on the
level of sophistication of the organization, but “we separate frontend from back-
end code” or “we use monitoring” surely have the ring of “my door reaches the
ground so people can walk in” or “I put windows in the walls so light can enter.”

Instead, when discussing architectures, let’s talk about what isn’t obvious.
For example, “do you use a service layer and why?” (some people may find even
this obvious) or “why are you spreading your application across multiple cloud
providers?” A good test is whether the chosen option also has downsides—deci-
sions without downsides are unlikely to be meaningful.

It’s quite amazing how many “archi-
tecture documents” don’t pass this rela-
tively simple test. I hope our set of house
sketches provides a simple and non-

threatening way to provide feedback and to motivate architects to better docu-
ment their designs and decisions.

68 | THE SOFTWARE ARCHITECT ELEVATOR

http://www.laputan.org/mud

Architecture Is Selling Options
In Uncertain Times It’s Good to Have a Few Options

Options on sale

Quite frequently I am being asked about the value of architecture, some-
times out of actual curiosity, and at other times as a (welcome) challenge. Sadly, I
also consistently find out just how difficult it can be to answer this seemingly
harmless question in a succinct and convincing manner for a nontechnical audi-
ence. I thus consider having a good answer to this question a valuable skill for
any senior architect.

A colleague once suggested that an architect’s key performance indicator (KPI)

should be the number of decisions made. While decision making is a defining

element of doing architecture, I had a feeling that making as many decisions as

possible isn’t what drives my profession.

69

| 9

1 Fowler, “Who Needs an Architect?”

Measuring an architect’s contribution by the number of decisions they’re
making reminded me of trying to measure developers’ productivity in lines of
code written. That metric is widely known as a bad idea because poor developers
tend to write verbose code with lots of duplication, whereas good developers find
short and elegant solutions to complex problems. After a little bit of pondering, I
remembered one of Martin Fowler’s most popular articles that also involves deci-
sion making, but from a very different point of view.

Reversing Irreversible Decision Making

Many conventional definitions of software architecture include the notion of
making difficult- (or expensive-) to-reverse decisions. Ideally, these decisions
would be made early in the project to give the project a direction and avoid “anal-
ysis paralysis,” the dangerous state in a project when requirements gathering
drags on without any code being written. Making critical decisions early comes
with a major challenge, though: the beginning of the project is also the time of
highest ignorance because little is known about the project as well as the technol-
ogies to be used. Therefore, architects are generally expected to draw on their
ability to abstract from their past experience to get those decisions “right.” Con-
sistent project cost and timeline overruns have hinted, though, that deciding the
system structure early in a project is difficult at best, even for an all-knowing
architect (Chapter 2).

Martin Fowler concluded some time ago that the opposite is actually true:
“one of an architect’s most important tasks is to eliminate irreversibility in soft-
ware designs.”1 So, instead of entrusting all crucial decisions to one person, a
project can be better off by minimizing the number of early and irreversible deci-
sions. For example, choosing a flexible or modular design can localize the scope
of a later change and thus minimize the extent of up-front decision making. Now
one could posit that deciding on a modular design is a second-degree up-front
decision—we’ll come back to that point later.

The desire to make decisions up front is frequently driven by the project’s
surrounding structures and processes as opposed to technical needs. For exam-
ple, time-consuming budget approval and procurement processes may require
teams to make product selections well before development can start. Likewise,
enterprise software and hardware vendors have a tendency to push for early

70 | THE SOFTWARE ARCHITECT ELEVATOR

tooling decisions in order to secure a deal. They might promise unsuspecting IT
management spectacular results, including reducing or removing the need for
expensive programmers, if only their tool is chosen right from the start.

So if the organization is better off with an architect not making decisions,
how do we eloquently articulate this to upper management?

Deferring Decisions with Options

Communicating to upper management becomes easier if you avail yourself of
the business’s concepts and vocabulary. Along the way you may even discover
business concepts that lend themselves to a new way of looking at IT. Financial
services present us with just that: options.

Decision making is a common activity in financial services, especially in
stock trading. Buying shares in a company requires you to put up cash now in
hopes of a future return—somewhat similar to buying a new car (Chapter 6),
though the future price is unknown. Now, if you could travel into the future and
see the stock price one year from now, making a decision would be very easy as
long as you can still buy the stock at today’s price. Time travel isn’t available quite
yet, but the example makes clear that being able to defer a decision while fixing
the parameters has value. That’s intuitive because you’ll know more by the time
the decision has to be made, allowing you to make a better decision.

I tend to buy my ski passes on the day of my trip, as I’ll have checked for good

weather and snow conditions the night before. I choose to forgo a prepurchase

discount for the value of being able to defer my decision.

The closest approximation to time travel in financial services is the concept
of a financial option. An option is defined as “the right, but not the obligation, to
execute a financial transaction at fixed parameters in the future.” It’s a lot sim-
pler to understand with an example:

You may acquire the option to buy a stock for $100 (the “strike price”) in a year’s

time (assuming a European option). After a year passes, it’s trivial to decide whether

to exercise this option: if the stock price trades higher than $100, you can instantly

make money by exercising your option to buy the stock for $100 and selling it at a

profit. If the actual stock price is less than $100, you let the option expire, meaning

you don’t use your right to buy at $100. Coincidentally, this doesn’t mean buying

the option was a bad decision (see Chapter 6).

ARCHITECTURE IS SELLING OPTIONS | 71

2 You can also use options for selling shares, the so-called put options. These are commonly used to hedge
against major drops in a stock price, essentially acting like an insurance policy for your investment.

3 Wikipedia, “Black–Scholes Model,” https://oreil.ly/2ZcmI.

An option allows you to defer a decision: instead of deciding to buy or sell a
stock today, you can buy the option today and thus acquire the right to make that
decision in the future.2

Good IT architecture can also offer options. For example, by coding in Java
or another language that’s widely supported you are offering an option to run
that software on different operating systems, deferring that decision until a later
date. Luckily, your option won’t expire as long as Java keeps being supported on
many platforms.

Options Have Value

The financial industry knows quite well that deferring decisions has value, and
therefore an option has a price, C. There’s a whole market for buying and selling
options and other derivatives. Two very smart gentlemen, Fischer Black and
Myron Scholes, scored a Nobel prize for computing the value of an option, a for-
mula known as the Black-Scholes formula:3

C S, t = N d1 S − N d2 Ke−r T − t

d1 = 1
σ T − t ln S

K + r + σ2

2 T − t

d2 = d1 − σ T − t

There’s a lot going on here, but we can see how a few key parameters influ-
ence the price. For example, a higher strike price (K) reduces the value of the
option as we’d expect. We can also see that if the option is valid right now (T = t),
the option price becomes the current price (S) minus the strike price (K).

So, it’s nice to have mathematical proof that options have value: if architects
sell options, that means they bring value!

72 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/2ZcmI

An Architecture Option: Elasticity

Luckily, IT architects need neither complex formulas nor a Nobel prize. All you
need to do is design your system such that it defers decisions. You accomplish
that by providing options that can be exercised in the future.

A classic example is server sizing: before deploying an application, tradi-
tional IT teams would conduct a lengthy sizing study to calculate the amount of
hardware required to run the application. Sadly, infrastructure sizing leads only
to one of two possible outcomes: either too large or too small, which either
results in wasted money or a poorly performing application. What a great oppor-
tunity to defer some decisions!

For this example, the option the architect creates is horizontal scaling, allow-
ing compute resources to be added or subtracted at a later time. Clearly, this
option has a value: infrastructure can be sized according to the application’s
actual needs and can grow (or shrink) as required. Also, this option isn’t free
given that the system has to be designed to be able to scale out; for example, by
making application components stateless or by using a distributed database.

Essentially, you’re paying for the option with increased complexity. Given
that complexity is one of the primary factors slowing down system delivery, it’s
no small price to pay. Also, to take advantage of the application’s scale-out capa-
bility, you likely need to deploy the application on an elastic cloud platform,
which might lock you into a particular vendor. So, in effect you’re paying for one
option by giving up another.

Architecture options are rarely free. For example, you may pay with increased

complexity or loss of another option.

Just like financial options, architecture options also allow you to hedge your
bets in case you want to limit your downside if a desired outcome doesn’t materi-
alize. For example, providing an abstraction from a vendor-specific interface can
hedge against the vendor increasing license fees or going out of business.

Strike Prices

Now all the architect can do is offer the option for sale, describing the nature and
price of the option. Someone has to decide whether to buy it. As mentioned a
moment ago, making an application horizontally scalable or adding a layer of

ARCHITECTURE IS SELLING OPTIONS | 73

4 Gregor Hohpe, “Don’t Get Locked Up into Avoiding Lock-in,” MartinFowler.com (2019), https://oreil.ly/
jWDAW.

indirection isn’t free, so while it might be good architectural practice, decision
discipline teaches us to examine whether this option is actually needed.

The financial world sells options with different strike prices, which is the price
you pay per share when you exercise the option in the future. It’s easy to see (and
reflected in the Black-Scholes formula) that options with a lower strike price com-
mand a higher up-front price: the lower the price to execute the option in the
future, the higher your potential gain. It’s useful to note that the option still has
value even if the strike price is higher than today’s price—after all, the price
might increase in the future.

The effect translates easily into the earlier IT example: by migrating to a
cloud provider we can lower the strike price for horizontal scaling to near zero,
thanks to full automation. However, this reduction in strike price isn’t free: you’ll
most likely pay with being locked into this specific provider’s APIs, access con-
trol, account setup, and machine types. So, the strike price for switching provid-
ers will be high.

To reduce the strike price for switching cloud providers, you can build an
abstraction layer that allows you to move your applications to any cloud provider
by clicking a button. Container platforms make this feasible, but you also need to
abstract all your storage, billing, and access control needs. You may also be
bound by commercial agreements. So, aiming for a near-zero-cost cloud migra-
tion carries a huge up-front development cost: this is an expensive option to buy.
Considering the low chance of needing to switch providers, this option might not
be worth buying.4

Minimizing the strike price—that is, switching cost from one vendor to another

—is often seen as the architectural ideal, but it’s rarely the most economical

choice.

Alternatively, consciously managing your application’s dependencies and
deploying in containers might be a better balance. It carries a higher strike price
—migrating will still incur some effort—but has a much lower up-front invest-
ment. Good architects offer a range of options at different strike prices and cost
instead of aiming for a minimum strike price at all cost.

74 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/jWDAW
https://oreil.ly/jWDAW

Uncertainty Increases an Option’s Value

Consequently, just as with financial markets, pricing and buying architecture
options takes some consideration. There’s a second factor, though, that has a
major impact on the value of an option: uncertainty. The more uncertain about
the future I am, the more value I derive from deferring a decision. For example,
the option to scale horizontally isn’t that valuable if my application is built for a
small and constant number of users. However, if I am building an internet-
facing application that could have 100 or 100,000 users, the option becomes
much more valuable.

The same is true in the financial world: the Black-Scholes formula contains a
critical parameter, σ (“sigma”), which indicates the volatility. You’ll see this
sigma squared in the numerator of the equation, indicating a strong correlation
between volatility and option price.

The business not wanting to be involved in technical decisions leads to subopti-

mal decision making because IT alone can’t judge the value of an option.

Instead, it’s the architect’s job to translate technical options into meaningful

choices for the business.

Therefore, architects who put up options for sale need to understand the
context and its volatility. Most likely, such input needs to come from the business
side and can’t be made by IT alone. This implies that the business side stating
that it doesn’t want to be involved in technical decisions is a bad idea because it
will lead to suboptimal decision making.

Time Is Fleeting

Another parameter influences an option’s value: time. The time at which the
option can be exercised—that is, the option’s maturity date—is represented by
the parameter T in the Black-Scholes formula, whereas the current time is identi-
fied as t. The further out the maturity is in the future, the higher its value. This
makes intuitive sense because your uncertainty increases the further you are
looking into the future, making the option more valuable.

Architects and project managers typically work under different time horizons

and thus value the same option differently.

ARCHITECTURE IS SELLING OPTIONS | 75

5 Stewart C. Myers, Determinants of Corporate Borrowing (Cambridge, MA: MIT Sloan School of Manage-
ment, 1976).

6 Lenos Trigeorgis, Real Options: Managerial Flexibility and Strategy in Resource Allocation (Cambridge,
MA: MIT Press, 1996).

This effect can help explain why architects and project managers often
debate the merit of architecture options: project managers typically have a shorter
time horizon than enterprise architects, who need to assure architectural integ-
rity over many years and sometime decades. Due to the different time horizons,
each of them has a different perceived (and, in fact, calculated) value of the same
option. Interestingly, during such arguments, both parties are making rational
but different decisions because their input parameters differ. A model, such as
the options model, can help reduce such arguments to differences in input
parameters and thus lead to better decision making.

Real Options

The idea of applying options theory outside of financial instruments isn’t just
limited to IT and is referred to as real options.5 Real options guide corporate
investment decisions, such as acquisitions or buying real estate, and are com-
monly broken down into categories,6 which map very well to software architec-
ture and projects:

Option to defer
The ability to make an investment, such as adding a feature, at a later time.

Option to abandon
The ability to use or resell parts of a project in case the project as planned
has to be abandoned. In IT architecture, this option can equate to building
self-contained modules or services that can be salvaged for use in other
projects.

Option to expand
The ability to increase capacity; for example, to scale out an application by
adding hardware.

Option to contract
The ability to elegantly reduce capacity; for example, by using elastic
infrastructure.

76 | THE SOFTWARE ARCHITECT ELEVATOR

7 Neal Ford, Matthew McCullough, and Nathaniel Schutta, Presentation Patterns: Techniques for Crafting
Better Presentations (Boston: Addison-Wesley Professional, 2012).

Just like with buying hot chocolate (Chapter 17), we can learn from looking at
the real world outside IT.

Arbitrage

In the financial world, markets are generally assumed to be efficient, meaning
instruments are priced fairly according to their risk and expected return. Every
once in a while, though, someone figures out a way to make immediate returns
through arbitrage, an opportunity to profit at no risk. Architects should similarly
look out for such opportunities where they can provide options at very low cost.
For example, using an open source object-relational mapping (ORM) framework
is both best practice and an inexpensive option to make switching database ven-
dors easier.

Agile and Architecture

Some Agile developers question architecture’s value because it was closely associ-
ated with a big, up-front-design approach that would look to make all decisions at
the outset. Understanding architecture as providing options, you can easily see
that the opposite is true. Both Agile methods and architecture are ways to deal
with uncertainty, meaning that working in an Agile fashion allows you to benefit
more from architecture.

The value of both Agile methods and architecture increases with uncertainty, so

they are friend, not foe.

Evolutionary Architecture

What should you do if meaningful options aren’t known, or at least not known
far enough in advance? In that case, you need an architecture that can evolve
along with your increased understanding of technology and customer needs—an
approach that’s described as evolutionary architecture.7 Just like in natural history,
what sets evolution apart from a series of changes is a fitness function that guides
change by examining how well a solution serves an intended purpose. Choosing
the right fitness function can now become the evolutionary architect’s

ARCHITECTURE IS SELLING OPTIONS | 77

contribution, rather than choosing a specific architecture up front. If you feel
that’s an application of the well-known motto “all problems can be solved with
one more level of indirection,” you might be onto something.

Amplifying Metaphors

When I first shared the “selling options” metaphor with a senior financial serv-
ices executive, the former head of asset management, he instantly embraced the
metaphor and quickly concluded that higher volatility increases the value of an
option. Translating this back into IT, he stated that in times of high uncertainty,
as we are facing them today both in business and technology, the value of archi-
tecture options also increases. Businesses should therefore invest more into
architecture.

Isn’t it fantastic when a person from a different field adopts a metaphor and
takes it to the next level?

78 | THE SOFTWARE ARCHITECT ELEVATOR

Every System Is Perfect…
For What It Was Designed to Do!

Analyzing system behavior

Much of what architects do is reason about the behavior of complex systems:
systems that have many pieces and complex interrelationships. There’s an entire
field dedicated to such reasoning, called systems thinking or complex systems theory.
While popular software architecture definitions focus on a system’s components
and interrelationships, systems thinking emphasizes behavior (Chapter 8). As
architects, we should view structure simply as a means to achieve a desired
behavior. Thinking in systems helps us do so.

Heater as a System

A residential heater provides a canonical example of a system, which we also look
at when we realize that control is an illusion (Chapter 27). As demonstrated in
Figure 10-1, a heating system’s typical architecture diagram would depict the
components and their relationships: a furnace generates hot water or air, a

79

| 10

radiator or air duct delivers the heat to the room, and a thermostat controls the
furnace. The structural/control system theory point of view, shown at the top of
the figure, considers the thermostat the central element: it switches the furnace
on and off as needed to regulate the room temperature.

Figure 10-1. A structural view (top) and a systems view (bottom) of a heater

In contrast, the systems thinking point of view, at the bottom of Figure 10-1,
focuses on the room temperature as the central variable and the reasons why it is
influenced: the burning furnace increases the room temperature while heat dissi-
pation to the outside reduces it. Heat dissipation depends on both the room and
the outside temperature: in cold weather more heat dissipates through walls and
windows. That’s why smart heating systems increase the heating power in cold
weather. In a way, systems thinking is a parallel universe that looks at the same
system from a completely different angle, an angle that helps us better under-
stand why we are building something.

Feedback Loops

Systems thinking helps us understand interrelated behavior; for example, feed-
back loops. The room thermostat establishes a negative feedback loop, which is
typical for control systems: if the room temperature is too high, the furnace turns
off, letting the room cool down again. Negative feedback loops usually aim to

80 | THE SOFTWARE ARCHITECT ELEVATOR

1 Thomas Piketty, Capital in the Twenty-First Century (Boston: Belknap Press, 2014).

2 Gerald M. Weinberg, An Introduction to General Systems Thinking (Dorset House, 2001).

keep a system in a relatively stable state—the room temperature will still oscillate
slightly depending on the hysteresis of the thermostat and the inertia of the heat-
ing system. The self-stabilizing range of most systems is limited, though: a
heater cannot cool a room in the heat of summer or compensate for an open win-
dow during winter.

Positive feedback loops behave in the opposite way: an increase in one sys-
tem variable fuels a further increase. We know the dramatic effects of such
behavior from explosives (heat releases more oxygen to burn hotter), nuclear
reactions (a classical “chain reaction”), or hyperinflation (a spiral of price and
wage increases). Another positive feedback loop consists of more cars on the road
leading to investments in roads as opposed to public transit, which makes it
more compelling to commute by car. Likewise, rich people tend to have more
investment options to achieve higher returns, leading to a “the rich getting
richer” symptom, as for example described in Piketty’s Capital in the Twenty-First
Century.1

Positive feedback loops can be dangerous due to their “explosive” nature.
Policies are often designed to counteract such positive feedback loops with nega-
tive ones; for example, by applying higher tax rates to higher incomes or by
increasing gasoline tax while subsidizing public transit. However, it’s difficult to
balance out the exponential character of positive feedback loops. Thinking in sys-
tems helps us reason about such effects.

Organized Complexity

Gerald Weinberg2 highlighted the importance of thinking in systems by dividing
the world into three areas: organized simplicity is the realm of well-understood
mechanics, such as levers or electrical systems consisting of discrete resistors
and capacitors. You can calculate exactly how these systems behave. On the other
end of the spectrum, unorganized complexity doesn’t allow us to understand
exactly what’s going on, but we can model the system as a whole statistically
because the behavior is unorganized, meaning the parts don’t interrelate much.
Modeling the spread of a virus falls into this category. The tricky domain is the
one of organized complexity, where structure and interaction between

EVERY SYSTEM IS PERFECT… | 81

3 Donella H. Meadows, Thinking in Systems: A Primer (White River Junction, VT: Chelsea Green Publishing,
2008).

components matter, but the system is too complex to solve it by using a formula.
This is the area of systems. And the area of systems architecture.

System Effects

If we can’t determine system behavior with mathematical formulas, how can sys-
tems thinking help us? Complex systems, especially systems involving humans,
tend to be subject to recurring system effects or patterns. These effects explain
why fishermen keep overfishing, depleting their own livelihood, and why tourists
flocking to the same destination destroy exactly what attracted them. Understand-
ing these patterns allows us to better predict system behavior and influence it.
Donella Meadows’s book Thinking in Systems3 contains a list of common effects,
including these typical ones:

• Bounded rationality, a term coined by Nobel laureate Herbert A. Simon,
captures the effect that people will generally do what is rational, but only
within the context that they observe. For example, if an apartment building
has a central heating system without consumption-based billing, people
will leave the heater on all day and open the windows to cool down the
apartment as needed. Obviously, this is a giant waste of energy and leads
to pollution, resource depletion, and global warming. However, if your
bounded context is just that of the temperature in your apartment and
your wallet, this behavior is the rational thing to do, whether you like it or
not: keeping the heater running allows you to control the room tempera-
ture more easily as you avoid the inertia of the heating system having to
warm up.

• The idea of the tragedy of the commons derives from the concept of the com-
mons, a shared pasture in old Irish and English villages that was open to
grazing by all the villagers’ animals. As this common resource is free, vil-
lagers are incentivized to acquire more cattle to feed on the commons. Of
course, as the commons is a finite resource, this behavior will lead to
resource depletion and poverty; hence, the tragedy. One reason such a
system doesn’t self-regulate is delay: the effect of the wrong behavior will
only become apparent when it is too late.

82 | THE SOFTWARE ARCHITECT ELEVATOR

4 David Bollier, “The Only Woman to Win the Nobel Prize in Economics Also Debunked the Orthodoxy,” Evo-
nomics, July 28, 2015, https://oreil.ly/9Na0H.

A system’s structure is simply a
means to achieve a desired
behavior.

The complexity of these effects is underlined by the fact that Elinor Ostrom,
the only woman to win the Nobel Prize in Economics, famously debunked4 the
concept of the tragedy of the commons.

Understanding System Behavior

Systems documentation, especially in IT, tends to depict the static structure but
rarely the behavior of the system. Ironically, however, the system’s behavior is
what’s most interesting: systems generally exist to exhibit a certain, desirable
behavior. For example, the heating system was created to keep the temperature in
your house at a comfortable level. Server infrastructure is made redundant to
increase availability. In both cases the system structure is simply a means to an
end.

The difficulty in deriving system
behavior from its components can be
illustrated by the heating system in my
apartment, which supplies both floor
heating and wall radiators with hot water
and comprises a handful of major components: the gas burner heats the water
inside a primary circuit driven by a built-in pump. Two additional external
pumps feed the hot water from the primary circuit to the floor heating and wall
radiators, respectively. A misconfiguration caused the secondary pumps to not
draw enough water, and therefore heat, from the primary circuit, which quickly
overheated. This, in turn, caused the gas heater to shut off for a fixed duration,
leading to a lack of heating power: naturally, the house cannot get warm when
the heater is not burning. Because the house wouldn’t warm up, the technician’s
intuition was to increase the burner’s heating power. However, this only exacerba-
ted the problem: the system wasn’t able to move enough heat away from the pri-
mary circuit, so increasing the gas burner’s power only overheated it faster. After
almost a dozen attempts, the heating system still wasn’t operating as designed,
because the technicians might understand the individual system components but
they are not comprehending the complex system behavior.

Seems a little complicated? For architects, this stuff is our daily bread and
butter. Understanding complex interrelationships between system components

EVERY SYSTEM IS PERFECT… | 83

https://oreil.ly/9Na0H

5 James R. Chiles, Inviting Disaster: Lessons from the Edge of Technology (New York: Harper Business,
2002).

6 John D. Sterman, “Modeling Managerial Behavior,” Management Science, Vol. 35, No. 3 (March 1989),
https://oreil.ly/wrtzb.

and influencing them to achieve a desired behavior is what architects do. Often a
good diagram (Chapter 22) will help.

Influencing System Behavior

Most of what users see from a system are events: things happening as a result of
the system behavior, which in turn is determined by the system structure, that is
often invisible. If the users are unhappy with those events, such as the heater
shutting off despite the room being cold, they often try to inflict a change, such
as setting the room thermostat higher, without analyzing or changing the system
behind them. The book Inviting Disaster5 provides dramatic examples of how mis-
understanding a system led to major catastrophes such as the Three Mile Island
nuclear reactor incident or the capsizing of the Deepwater Horizon drilling plat-
form. In both cases, compromised system displays led operators to perform the
very action that caused the disaster because they didn’t understand the underly-
ing system and its behavior from the events they observed. Their mental model
deviated from the real system, causing them to make fatal decisions.

It has repeatedly been observed that humans are particularly bad at steering
systems that have slow feedback loops, meaning those that exhibit reactions to
changing inputs only after a significant delay. A classic example is MIT’s “beer
game” in which participants on average perform almost 10 times worse than the
ideal scenario.6 Overuse of credit cards is another classic example: people keep
piling on debt until they are no longer able to pay even the interest and wonder
how they got themselves into such a mess.

Also, humans who don’t think about the system as a whole are prone to tak-
ing actions that have the opposite of the intended effect. For example, people
react to overly full work calendars by setting up “blockers,” which make the cal-
endars even fuller. Instead, we need to understand and fix what causes the full
calendars; for example, a misaligned organizational structure that requires too
many alignment meetings. You can’t fix a system by merely addressing the
symptoms.

Understanding system effects can help you devise more effective ways to
influence the system and thus its behavior. For example, transparency is a useful

84 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/wrtzb

7 John Gall, The Systems Bible, Third Edition (Walker, MN: General Systemantics Press, 2002).

8 Frederic Laloux and Ken Wilber, Reinventing Organizations: A Guide to Creating Organizations Inspired
by the Next Stage in Human Consciousness (Nelson Parker, 2014).

antidote to the bounded rationality effect because it widens people’s bounds. An
example from Donella Meadows’s book illustrates that having the electricity
meter visible in the hallway caused people to be more conservative with their
energy consumption without additional rules or penalties. Interestingly, systems
thinking can be applied to both organizational and technical systems. We’ll learn
this, for example, when we scale an organization (Chapter 30).

John Gall’s Systems Bible7 gives a humorous but also insightful account of the
ways in which systems behave, often against our intention or intuition.

Systems Resist Change

Changing systems is difficult not only because of their complex structure, but
also because most of them actively resist change. Organizational systems’ change
resistance achieves longevity, for example, through well-defined processes, but
presents a challenge when a shift in the environment requires the organization
to change. Frederic Laloux8 describes it as a key characteristic of amber organiza-
tions: they are built on the assumption that what worked in the past will work in
the future, and it often served them well over thousands of years.

As described in Chapter 7, if you request better documentation for architecture

reviews, “the system” might respond by scheduling lengthy workshops that

drain your available time. If you increase pressure, the system will respond with

subquality documentation that increases your review cycles. You must therefore

get to the root of the problem and highlight the value of good documentation,

properly train architects, and allocate time for this task in project schedules.

Most organizational systems have settled into a steady state over time and
serve their purpose well enough. If the business environment demands a differ-
ent system behavior, the system will actively resist by wanting to revert to its pre-
vious state. It’s like trying to push a car out of a ditch: the car keeps rolling back
until you finally get it over the hump. This system effect makes organizational
transformation so challenging.

EVERY SYSTEM IS PERFECT… | 85

Code Fear Not!
Programming in a Poorly Designed Language
Without Tool Support Is No Fun

Who dares run this code?

Yoda, the wise teacher of Jedi apprentice Luke Skywalker in the Star Wars
movies, knows that fear leads to anger; anger leads to hate; hate leads to suffer-
ing. Likewise, corporate IT’s fear of code and the love of configuration can lead it
down a path to suffering from which it is difficult to escape. Beware of the dark
side, which has many faces, including vendors peddling products that “only
require configuration,” as opposed to tedious, error-prone coding. Sadly, most
complex configuration really is just programming, albeit in a poorly designed,
rather constrained language without decent tooling or useful documentation.

87

| 11

Fear of Code

Corporate IT, which is often driven by operational considerations, tends to con-
sider code the stuff that contains all the bugs, causes performance problems, and
is written by expensive external consultants (Chapter 38) who are difficult to hold
liable because they’ll have long moved to another project by the time the prob-
lems surface. Some IT leaders even proudly proclaim that they are a “proper
business” and not a software development company, so they shouldn’t bother
with coding stuff.

The most grotesque example of fear of code I have observed was corporate IT

providing application servers as a shared service. Once you deploy code on

them, you’d no longer receive operational support. It’s like voiding a car’s war-

ranty after you start the engine—after all, the manufacturer has no idea what

you will do to it!

Corporate IT’s eternal fear of code plays to the advantage of enterprise ven-
dors who offer configuration as the safe alternative to coding. As we shall see,
that’s a rather short-sighted proposition.

Good Intentions Don’t Lead to Good Results

IT’s aversion to coding originates from a good principle. Most enterprise IT
rightly follows a buy-over-build strategy: buying commercial off-the-shelf (COTS)
solutions not only saves IT departments time and money but also lets someone
else worry about regular updates and security patches. Once purchased, solutions
can be customized and configured to the enterprise’s specific needs.

Likewise, common libraries and open source tools are a great way of reusing
existing work. Open source tools are also often accompanied by an extensive
community that can provide support and make technology adoption easier. For
example, who would you want to write their own XML serializer? There’s a
library for that.

There’s a catch, though…well, actually, two: first, if you expect to configure a
piece of software that you bought, you are relying on the vendor having anticipa-
ted the need for your case of customization, meaning the vendor gave you the
option (Chapter 9). Doing this well would mean the vendor has perfected big, up-
front design, correctly anticipating all possible requirements, while the rest of us
are still trying to become more Agile (Chapter 31). Second, configuration means
working in an abstraction provided by the software vendor. Now, abstractions are

88 | THE SOFTWARE ARCHITECT ELEVATOR

1 Wikiquote, “Alan Kay,” https://oreil.ly/SBC39.

generally a good thing because they allow you to get away from the nitty-gritty
details, but some abstractions also come with downsides.

Levels of Abstraction: Simplicity Versus Flexibility

Raising the level of abstraction is one of the primary techniques that makes
developers’ lives easier. Thanks to abstraction, very few programmers still write
assembly code, read single data blocks from a hard disk, or put individual data
packets onto the network. This level of detail has been nicely wrapped behind
high-level languages, files, and socket streams. These programming abstractions
are very convenient and dramatically increase productivity: try doing without
them!

If abstractions are this useful, you might legitimately wonder whether
adding further abstraction layers could boost productivity even more. For exam-
ple, you could use libraries or services for all business functions. Ultimately, you
could do away with coding altogether and allow solution development simply by,
let’s say, configuration. If this sounds a bit too good to be true, that’s because it
is.

When raising the level of abstraction, you face a fundamental dilemma: how
do you make a really simple model without losing too much flexibility? For exam-
ple, if a developer needs rapid direct-access to any file location, the file stream
abstraction actually gets in the way because it requires reading files sequentially.
The best abstractions are therefore those that solve and encapsulate the difficult
part of the problem while leaving the user with sufficient flexibility.

If an abstraction takes away too many or the wrong things, it becomes overly

restrictive and no longer applicable. If it takes away too few things, it didn’t

accomplish much in terms of simplification and hence isn’t very valuable.

Or as Alan Kay elegantly stated: Simple things should be simple, complex
things should be possible.1 MapReduce, a framework for distributed data process-
ing, is a positive example: it abstracts away the gnarly parts of distributed data
processing, such as controlling and scheduling many worker instances, dealing
with failed nodes, aggregating data across nodes, and so on. But it nevertheless

CODE FEAR NOT! | 89

https://oreil.ly/SBC39

leaves the programmer enough flexibility to solve a wide range of problems and
was extremely widely used within Google.

When Are We Configuring?

So, if configuration promises us to abstract away the details of programming, we
should look a little closer at the trade-offs that were made. But before we get
there, it turns out that it’s not even trivial to determine when something is con-
figuration as opposed to coding. The notion of configuration is mostly made by
conflating several, unrelated aspects:

• The representation (e.g., visuals versus text)

• Whether you provide data or instructions

• Whether you make changes before or after deployment

Let’s dissect each of these a bit.

MODEL VERSUS REPRESENTATION

Coding abstractions such as libraries take away implementation details, but
you’re still coding, although against more powerful objects and methods. Enter-
prise software abstraction often comes in different packaging, a graphical user
interface (GUI) that enables spiffy drag-and-drop demos, which make the whole
exercise seem trivial.

At first sight, we might believe that painting a thin visual veneer over an
existing programming model can provide a higher level of abstraction. Many
business users might at first agree: typing in commands surely looks like coding,
whereas drawing diagrams feels a lot more like PowerPoint. Unfortunately, that’s
an illusion: a GUI changes the representation, but not the underlying model. A
complex model, such as a workflow engine that includes concepts like concur-
rency, synchronization, correlation, long-running transactions, compensating
actions, and more, inherently carries heavy conceptual weight: there’s a lot of
stuff to consider. Wrapping it in pretty visual packaging can make it more appeal-
ing, but it won’t remove this weight. If your synchronization bar is drawn in the
wrong place, your workflow is just as broken as when making a coding mistake.

This isn’t to say visual representations have no value. For example, repre-
senting visual workflows as graphs can be naturally expressive. But although they
may reduce some of the initial learning curve, they generally don’t scale very
well: once applications grow, it becomes difficult to follow what’s going on via a
giant canvas of symbols. Zooming out means text won’t be readable anymore.

90 | THE SOFTWARE ARCHITECT ELEVATOR

2 Gregor Hohpe, “Failure Doesn’t Respect Abstraction,” The Architect Elevator (blog), January 21, 2019,
https://oreil.ly/ejTmy.

Debugging and version control can also be a nightmare given that these tools
mostly lack familiar diff functions.

To test whether the visuals are just a thin veneer or really a better model, I
generally apply two tests when vendors provide a demo of visual programming
tools:

• I ask them to enter a typo into one of the fields where the user is expected
to enter some logic. Often this leads to cryptic error messages or obscure
exceptions in generated code later on. This is “tightrope programming”: as
long as you stay exactly on the line, everything is well. One misstep and the
deep abyss awaits you.

• I ask them to leave the room for two minutes while we change a few ran-
dom elements of their demo configuration. Upon return, they would have
to debug and figure out what was changed.

So far, no vendor has taken the bait; they presumably know that failure
doesn’t respect abstraction.2

CODE OR DATA? OR BOTH?

Leaving visuals aside, at which level of abstraction can we call something “config-
uration” versus “high-level programming”? We’ve seen that despite repeated ven-
dor messaging, a visual user interface doesn’t suffice. Many programmers will
tell you that files in XML (or JSON or YAML) syntax are configuration. However,
anyone who has programmed in XSLT, which uses XML syntax, can attest that
this isn’t configuration but heavy-duty declarative programming. There’s nothing
simple about it.

A better decision criterion could be whether what you provide to the system
is executable or pieces of data. If the algorithm is predefined and you supply only
a few key values, it may be fair to call this configuration. For example, let’s
assume a program needs to classify users of different ages into children, adults,
and seniors. The code will contain a chain of if-else or a switch statement. A
configuration file could now supply the values for the decision thresholds; for
example, 18 and 65. This would fit our definition of configuration.

CODE FEAR NOT! | 91

https://oreil.ly/ejTmy

3 Wikipedia, “von Neumann architecture,” https://oreil.ly/ilzNC.

We might now conclude that changing those values is safe: typing in a num-
ber keeps you from having to understand programming language syntax and
operator precedence. Alas, it doesn’t save you from screwing up the program. If
you accidentally enter the values 65 and 18, the program is likely to not work as
expected. The exact program behavior in this case is impossible to predict as it
depends on the way the algorithm is coded. If the program checks for children
first, you may have declared everyone as a child, whereas if the program checks
for seniors first, you may have made everyone a senior. So while configuration is
safer, it isn’t foolproof.

The distinction between code and data blurs further when the data you enter
determines execution order. For example, the “data” you enter may be a sequence
of instruction codes. Or the data may resemble a declarative programming lan-
guage; for example, to configure a rules engine or even XSLT. Aren’t coding
instructions just data for the execution engine? Von Neumann3 would have said
so. Apparently, it’s not so black and white.

DEPLOYMENT AT DESIGN-TIME VERSUS RUNTIME

Another way configuration is commonly distinguished from code is that we can
change configuration after the application is deployed. This is certainly useful
given that we can’t foresee some parameters until runtime; for example, the
number of servers we need (Chapter 9). The distinction is based on the underlying
assumption, though, that changing code is something that’s slow (because you
have to rebuild and redeploy the whole application) and risky (because you may
be introducing new defects). Microservices architectures and automated build-
test-and-deploy chains put quite a few question marks behind these assumptions:
they enable teams to rebuild, test, and deploy application code rapidly, repeatably,
and with high quality.

Rather than trying to anticipate changes for configuration, you may want to

invest in your tool chain to allow incremental, rapid deployment.

This doesn’t mean that configuration is useless, but it does mean that
modern software delivery has given us other tools to achieve much of what con-
figuration was intended to do. If we can make changes in the code, we don’t have

92 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/ilzNC

4 Benjamin Treynor Sloss, “An Update on Sunday’s Service Disruption,” Inside Google Cloud (blog), June 3,
2019, https://oreil.ly/yaGr6.

5 Gregor Hohpe, “Visualizing Dependencies,” Enterprise Integration Patterns (blog), July 12, 2004, https://
oreil.ly/1j4-7.

6 FOLDOC, “Configuration Programming,” https://oreil.ly/DkiV0.

to decide a priori which parameters we allow to be configured later, leading to
much simpler code. Plus, we benefit from a fast range of tools like version con-
trol, editor support, and automated testing.

When enterprise vendors tout their configuration suites, I challenge them to

speed up their software delivery model.

The lack of tooling makes the common assumption that configuration is
safer, a questionable one. For example, “Configuration changes” have caused
major outages at several cloud services providers.4

Higher-Level Programming

In many cases, what’s being passed as configuration is really higher-level pro-
gramming. For example, when composing distributed systems by connecting
them via named message channels, “configuration” files often determine over
which channel(s) a component communicates. Two components talk to each
other when they use the same channel. Entering this data in local XML configu-
ration files seems convenient, but it’s prone to mistakes because a simple typo
would mean that components don’t communicate or are chained together in the
wrong order.

Composing a messaging system isn’t a matter of configuration, but a high-
level programming model for the composition layer of the system. Treating the
configuration files as first-class citizens by checking them into source control and
by creating validation and management tools5 can help debugging and trouble-
shooting enormously.

Configuration Programming

Whenever there’s a choice to be made—in our case programming versus configu-
ration—you can be assured that someone has found a compromise. In our case
this would be configuration programming:6 an approach that advocates the use of a

CODE FEAR NOT! | 93

https://oreil.ly/yaGr6
https://oreil.ly/1j4-7
https://oreil.ly/1j4-7
https://oreil.ly/DkiV0

separate configuration language to specify the coarse-grained structure of pro-
grams. Configuration programming is particularly attractive for concurrent, par-
allel, and distributed systems that have inherently complex program structures.

Configuration Hiding as Code?

So, is there a good place for configuration? Yes, for example, injecting runtime
parameters into highly distributed programs or setting up cloud infrastructure
(Chapter 14) are great use cases for configuration. Oddly, much of these
approaches run under the moniker infrastructure as code (IaC) these days, even
though most of the tools really are configuration. Someone must have felt that
code sounds more powerful than configuation.

Abstractions are a very useful technique, but believing that labeling some-
thing as “configuration” is going to eliminate complexity or the need to hire
developers is a fallacy. Instead, think about whether this “configuration” is really
higher-level programming. And in either case, make sure that it undergoes the
same best practices of design, testing, version control, and deployment manage-
ment that defines modern software delivery. Otherwise, you’d have created a pro-
prietary, poorly designed language without tooling support. Then you would have
been better off coding.

94 | THE SOFTWARE ARCHITECT ELEVATOR

If You Never Kill Anything, You
Will Live Among Zombies
And They Will Eat Your Brain

The night of the living legacy systems

Corporate IT lives among zombies: old systems that are half alive and have
everyone in fear of going anywhere near them. They are also tough to kill com-
pletely. Worse yet, they eat IT staff’s brains. It’s like Shaun of the Dead minus the
funny parts.

Despite being a reality in corporate IT, living legacy systems are becoming
more difficult to justify in a world that’s changing faster and faster. It’s time to
put some zombies to rest.

95

| 12

1 Michael Feathers, Working Effectively with Legacy Code (Upper Saddle River, NJ: Prentice Hall, 2004).

Legacy

Legacy systems are built on outdated technology and are often poorly docu-
mented but (ostensibly) still perform important business functions. In many
cases, the exact scope of the function they perform is not completely known.
Ironically, most legacy systems generate a lot of revenue because otherwise they
would have been killed a long time ago.

When discussing what sets modern “digital” companies apart from traditional

ones, “lack of legacy” regularly comes up as a key factor.

Systems fall into the state of legacy because technology moves faster than the
business: life insurance systems often must maintain data and functionality for
decades, rendering much of the technology used to build the system obsolete.
With a bit of luck, the systems don’t have to be updated anymore, so IT might be
inclined to “simply let it run,” following the popular advice to “never touch a run-
ning system.” Unfortunately, changing regulations or security vulnerabilities in
old versions of the application or the underlying software stack are likely to inter-
fere with such an approach.

Traditional IT sometimes justifies their zombies with having to support the
business: how can you shut down a system that may be needed by the business?
They also feel that digital companies don’t have such problems because they are
too young to have accumulated legacy. 150 Google developers attending Mike
Feathers’s talk about Working Effectively with Legacy Code1 might make us ques-
tion this assumption. Because Google’s systems evolve rapidly, they also accumu-
late legacy more quickly than traditional IT. So it’s not that they have been
blessed with not having legacy—they must have found a better way of dealing
with it.

Fear of Change

Systems become legacy zombies by not evolving with the technology. This hap-
pens in classic IT largely because change is seen as a risk (Chapter 26). Once
again: “never touch a running system.” System releases are based on extensive,
often manual test cycles that can last months, making updates or changes a

96 | THE SOFTWARE ARCHITECT ELEVATOR

2 Stephan Murer and Bruno Bonati, Managed Evolution: A Strategy for Very Large Information Systems
(Berlin: Springer, 2011).

costly endeavor. Worse yet, there’s no “business case” for updating the system
technology. This widespread logic is about as sound as considering changing the
oil in your car a waste of money—after all, the car still runs if you don’t. And it
even makes your quarterly profit statement look a little better; that is, until the
engine seizes.

Slogans like “Never touch a running system” reflect the belief that change bears

risk.

A team from Credit Suisse described how to counterbalance this trap in its
aptly titled book Managed Evolution.2 The key driver for managed evolution is to
maintain agility in a system. A system that no one wants to touch has no agility at
all: it can’t be changed. In a very static business and technology environment,
this might not be all that terrible, but that’s not the environment we live in
anymore!

In today’s environment, the inability to change a system becomes a major liabil-

ity for IT and the business.

Hoping for the Best Isn’t a Strategy

Most things are the way they are for a reason. This is also true for the fear of
change in corporate IT. These organizations typically lack the tools, processes,
and skills to closely observe production metrics and to rapidly deploy fixes in case
something goes awry. They hence try to test for all scenarios before deploying
and then running the application more or less “blind,” hoping that nothing
breaks. This behavior looks to maximize MTBF—the mean time between failures.

While increasing the time between failures is a worthwhile approach, focus-
ing on MTBF alone has two major downsides. First, it slows down hardware pro-
visioning and software deployment due to excessive up-front testing. It also leads
to a situation where the response to an actual failure becomes “this wasn’t sup-
posed to happen.” It’s unlikely that those are the words you want to hear from an
operations team.

IF YOU NEVER KILL ANYTHING, YOU WILL LIVE AMONG ZOMBIES | 97

3 Wikipedia, “Airport crash tender,” https://oreil.ly/e4DNF.

4 Nicole Forsgren, Jez Humble, and Gene Kim, Accelerate: The Science of Lean Software and DevOps:
Building and Scaling High Performing Technology Organizations (Portland, OR: IT Revolution, 2018).

Such teams often ignore the other side of the equation: the mean time to
recovery (MTTR). This metric indicates how quickly a system can recover from an
error. Modern teams look at both aspects. As an analogy, you’d want to use fire-
retardant materials but also a fire brigade that can be onsite in a few minutes.
The top benchmark for incident response time I observed was at a large chemical
factory where the fire brigade would be at the incident site in 45 seconds (!). Air-
ports generally achieve two to three minutes.3

Traditional organizations “hope for the best” by relying on ways to maximize

MTBF, whereas modern organizations also “prepare for the worst” by minimiz-

ing MTTR.

Reducing MTTR involves very different mechanisms such as high system
transparency, version control, and automation. In fact, reducing MTTR is such a
game changer for IT organizations that it’s one of the four software delivery per-
formance measures used by the authors of the book Accelerate.4

Version Upgrades

The zombie problem is not limited to systems written in PL/1 running on an
IBM/360, though. Often updating basic runtime infrastructures like application
servers, JDK versions, browsers, or operating systems scare the living daylights
out of IT, causing version updates to be deferred until the vendor ceases support.
The natural reaction then is to pay the vendor for extended support to avoid the
horror scenario of having to migrate your software to a new version.

Often the inability to migrate cascades across multiple layers of the software
stack: one cannot upgrade to a newer JDK because it doesn’t run on the current
application server version, which can’t be updated because it requires a new
version of the operating system, which deprecates some library or feature the
software depends on.

I have seen IT shops that are stuck on Internet Explorer 6 because their soft-

ware utilizes a proprietary feature not present in later versions.

98 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/e4DNF

Looking at the user interfaces of most corporate applications, you would find
it difficult to imagine that they eked out every little bit of browser capability. They
surely would have been better off not depending on such a peculiar feature and
instead being able to benefit from browser evolution. Such a line of thought
requires a conscious trade-off between optimizing for the short term versus
assuring long-term velocity (Chapter 3).

Ironically, IT’s widespread fear of code (Chapter 11) leads it down a dark and
narrow road toward heavily customized frameworks. Version upgrades become
very difficult and expensive to make, and another zombie grows. Anyone who has
done an SAP upgrade can relate.

Run Versus Change

The fear of change is even encoded in many IT organizations that separate “run”
(operating) from “change” (development), establishing that running software
doesn’t imply change. Rather, it’s the opposite of change, which is done by appli-
cation development—those guys who produce the flaky code IT is afraid of.
Structuring IT teams this way will guarantee that systems will age and become
legacy because no change could be applied to them.

You might think that by not changing running systems, IT can keep the
operational cost low. Ironically, the opposite is true: many IT departments spend
more than half of their IT budget on “run” and “maintenance,” leaving only a
fraction of the budget for “change” that can support the evolving demands of the
business. That’s because running and supporting legacy applications is expen-
sive: operational processes are often manual; the software may not be stable,
necessitating constant attention; the software may not scale well, requiring the
procurement of expensive hardware; lack of documentation means time-
consuming trial-and-error troubleshooting in case of problems. These are rea-
sons why legacy systems tie up valuable IT resources and skills, effectively
devouring the brains of IT that could be applied to more useful tasks; for exam-
ple, delivering features to the business.

Planned Obsolescence

When selecting a product or conducting a request for proposal (RFP), classic IT
tends to compile a list containing dozens or hundreds of features or capabilities
that a candidate product has to offer. Often, these lists are created by external
consultants unaware of the business need or the company’s IT strategy. How-
ever, they can produce very long lists, and longer appears to be better to some IT

IF YOU NEVER KILL ANYTHING, YOU WILL LIVE AMONG ZOMBIES | 99

5 A prenuptial agreement often clarifies asset division in case of a divorce.

staff, whose main motivation lies in demonstrating that the selection was
“thorough.”

To cite another car analogy, this is a bit like evaluating a car by having an
endless list of more or less (ir)relevant features like “must have a 12V lighter out-
let,” “speedometer goes above 200 km/h,” “can turn the front wheels,” and then
scoring a BMW versus a Mercedes for these. How likely this is to steer (pun
intended) you toward the car you will enjoy the most is questionable at best.

One item routinely missing from such “features” lists is planned obsoles-
cence: how easy is it to replace the system? Can the data be exported in a well-
defined format? Can business logic be extracted and reused in a replacement
system to avoid vendor lock-in? During the new product selection honeymoon,
this can feel like discussing a prenup5 before the wedding—who likes to think
about parting ways when you are about to embark on a lifelong journey? In the
case of an IT system, you better hope the journey isn’t lifelong; systems are
meant to come and go. So better to have a prenup in place than being held hos-
tage by the system (or vendor) you are trying to part with.

If It Hurts, Do It More Often

How do you break out of the “change is bad” cycle? As mentioned earlier,
without proper instrumentation and automation, making changes is not only
scary but indeed risky. The reluctance to upgrade or migrate software is similar
to the reluctance to build and test software often. Martin Fowler issued the best
advice to break this cycle: “If it hurts, do it more often.” Behind the provocative
name sits the insight that deferring a painful task generally makes it dispropor-
tionately more painful: if you haven’t built your source code in months, it’s guar-
anteed not to go smoothly. Likewise, if the application server your software is
running on is three versions behind, you’ll have the migration from hell.

Performing such tasks more frequently provides a forcing function to auto-
mate some of the processes; for example, with automated builds or test suites.
Dealing with migration problems will also become routine. This is the reason
emergency workers train regularly; otherwise, they’ll freak out in case of an
actual emergency and won’t be effective. Of course, training takes time and
energy. But what’s the alternative?

100 | THE SOFTWARE ARCHITECT ELEVATOR

Culture of Change

Digital companies also have to deal with change and obsolescence.

The going joke at Google was that every API had two versions: the obsolete one

and the not-yet-quite-ready one. Actually, it wasn’t a joke, but pretty close to

reality.

Dealing with constant change is painful at times—every piece of code you
write could break at any time because of changes in its dependencies. But living
this culture of change allows Google to keep up the pace (Chapter 35), which is the
most important of today’s IT capabilities. Sadly, it’s rarely listed as a performance
indicator for project teams. Even Shaun knows that zombies can’t run fast.

IF YOU NEVER KILL ANYTHING, YOU WILL LIVE AMONG ZOMBIES | 101

Never Send a Human
to Do a Machine’s Job
Automate Everything; What You Can’t
Automate, Make a Self-Service

Sending a machine to do a human’s job

Who would have thought that you can learn so much about large-scale IT
architecture from the movie trilogy The Matrix? Acknowledging that the Matrix is
run by machines, it should not be completely surprising to find some nuggets of
system design wisdom, though: Agent Smith teaches us that one should never
send a human to do a machine’s job after his deal with Cypher, one of Mor-
pheus’ human crew members, to betray and hand over his boss failed.

103

| 13

Automate Everything!

There’s a certain irony in the fact that corporate IT, which has largely established
itself by automating business processes, is often not very automated itself. Early
in my corporate career, I shocked a large assembly of infrastructure architects by
declaring my strategy as: “automate everything and make those parts that can’t
be automated a self-service.” The reaction ranged from confusion and disbelief to
mild anger. Still, this is exactly what Amazon et al. have done. And it has revolu-
tionized how people procure and access IT infrastructure along the way. These
companies have also attracted the top talent in the industry to build said infra-
structure. If corporate IT wants to remain relevant, this is the way it ought to be
thinking!

It’s Not Only About Efficiency

Just like test-driven development is not a testing technique (it’s primarily a
design technique), automation is not just about efficiency but primarily about
repeatability and resilience. A vendor’s architect once stated that automation
shouldn’t be implemented for infrequently performed tasks because it isn’t eco-
nomically viable. Basically, the vendor calculated that writing the automation
would take more hours than would ever be spent completing the task manually
(the vendor also appeared to be on a fixed-price contract).

I challenged this reasoning with the argument of repeatability and traceabil-
ity: wherever humans are involved, mistakes are bound to happen, and work will
be performed ad hoc without proper documentation. That’s why you don’t send
humans to do a machine’s job. The error rate is actually likely to be the highest
for infrequently performed tasks because the operators are lacking routine.

The second counter-example is disaster scenarios and outages: we hope that
they occur infrequently, but when they happen, the systems better be fully auto-
mated to make sure they can return to a running state as quickly as possible. The
economic argument here isn’t about saving manpower but minimizing the loss
of business during the outage, which far exceeds the manual labor cost. To
appreciate this thinking, you need to understand economies of speed (Chapter 35).
Otherwise, you may as well argue that the fire brigade should use a bucket chain
because all those fire trucks and pumps are not economically viable given how
rarely buildings actually catch fire.

104 | THE SOFTWARE ARCHITECT ELEVATOR

Repeatability Grows Confidence

When I automate tasks, the biggest immediate benefit I usually derive is
increased confidence. For example, when I wrote the original self-published ver-
sion of the book in Markdown, I had to maintain two slightly different versions:
the ebook version used hyperlinks for chapter references, whereas the print ver-
sion used chapter numbers. After quickly becoming tired of manually converting
between the formats, I developed two simple scripts that switch between print
and epub versions of the text. Because it was easy to do, I also made the scripts
idempotent, meaning that running a script multiple times caused no harm. With
these scripts at hand, I didn’t even worry a split-second about switching between
formats because I could be assured that nothing would go wrong. Automation is
hugely liberating and hence speeds up work significantly.

Self-Service

Once things are fully automated, users can directly execute common procedures
in a self-service portal. To provide the necessary parameters—for example, the
size of a server—they must have a clear mental model of what they are ordering.
Amazon Web Services provides a good example of an intuitive user interface,
which not only alerts you that your server is reachable from any computer in the
world but even detects your IP address to make it easy to restrict access.

When filling out the spreadsheet required to order a Linux server, I was told to

just copy the network settings from an existing server because I wouldn’t be

able to understand what I need anyway.

Designing good user interfaces can be a challenging but valuable exercise for
infrastructure engineers who are largely used to working in hiding on rather eso-
teric “plumbing.” It’s also a chance for them to show the Pirate Ship (Chapter 19),
which is far more exciting than all the bits and pieces it’s made out of.

Self-service gives you better control, accuracy, and traceability than semi-manual

processes.

Self-service doesn’t at all imply that infrastructure changes become a free-
for-all. Just like a self-service restaurant still has a cashier, validations and appro-
vals apply to users’ change requests. However, instead of a human having to

NEVER SEND A HUMAN TO DO A MACHINE’S JOB | 105

re-enter a request submitted in free-form text or an Excel spreadsheet, when a
self-service request is approved the workflow pushes the requested change into
production without further human intervention and possibility of error. Self-
service also reduces input errors: because free-form text or an Excel spreadsheet
rarely perform validations, input errors lead to lengthy email cycles or pass
through unnoticed. An automated approach gives immediate feedback to the
user and makes sure the order actually reflects what the user needs.

Beyond Self-Service

Self-service portals are a major improvement over emailing spreadsheets. How-
ever, the best place for configuration changes is the source code repository,
where approvals can be handled via pull requests and merge operations. Approved
changes trigger an automated deployment into production. Source code manage-
ment has long known how to administer large volumes of complex changes
through review and approval processes, including commenting and audit trails.
You should leverage these processes for configuration changes so that you can
start to think like a software developer (Chapter 14). Because it seems that any good
idea needs a buzzword these days, using a source repository to manage code and
configuration is now referred to as “GitOps.”

Most enterprise software vendors pitch GUIs as the ultimate in ease of use
and cost reduction. However, in large-scale operations the opposite is the case:
manual entry into user interfaces is cumbersome and error prone, especially for
repeated requests or complex setups. If you need 10 servers with slight varia-
tions, would you want to enter this data 10 times by hand? Fully automated con-
figurations should therefore be done via APIs, which can be integrated with other
systems or scripted as part of higher-level automation.

I once set a rule that no infrastructure changes could be made from a user inter-

face but had to be done through version-controlled automation. This put a mon-

key wrench into many vendor demos.

Allowing users to specify what they want and providing it quickly in high
quality would seem like a pretty happy scenario. However, in the digital world,
you can always push things a little further. For example, Google’s “zero-click
search” initiative, which resulted in Google Now, considered even one user click
too much of a burden, especially on mobile devices. The system should anticipate
the users’ needs and answer before a question is even asked. It’s like going to

106 | THE SOFTWARE ARCHITECT ELEVATOR

McDonalds and finding your favorite happy meal already waiting for you at the
counter. Now that’s customer service! An IT world equivalent may be autoscal-
ing, which allows the infrastructure to automatically provision additional capacity
under high load situations without any human intervention.

Automation Is Not a One-Way Street

Automation usually focuses on the top-down part; for example, configuring a
piece of low-level equipment based on a customer order or the needs of a higher-
level component. However, we will learn that control can be an illusion (Chap-
ter 27) wherever humans are involved. Also, “control” necessitates two-way
communication that references the current system state: when your room is too
hot, you want the control system to turn on the air conditioning instead of the
heater. The same is true in IT system automation: to specify how much hardware
to order or what network changes to request, you likely first need to examine the
current state. Therefore, full transparency on existing system structures and a
clear vocabulary are paramount. In one case, it took us weeks just to understand
whether a datacenter has sufficient spare capacity to deploy a new application. All
order process automation doesn’t help if it takes weeks to understand the current
state of affairs.

If you manage to fully automate and make your infrastructure immutable,
meaning no manual changes are allowed at all, you can start working under the
assumption that reality matches what’s specified in the configuration scripts. In
that case, transparency becomes trivial: you just look at the scripts. While such a
setup is a desirable end-state, it might take significant effort to consistently
implement across a large IT estate. For example, legacy hardware or applications
might not be automatable.

Explicit Knowledge Is Good Knowledge

Tacit knowledge is knowledge that exists only in employees’ heads but isn’t docu-
mented or encoded anywhere. Such undocumented knowledge can be a major
overhead for large or rapidly growing organizations because it can easily be lost
and requires new employees to relearn things the organization already knew.
Encoding tacit knowledge, which existed only in an operator’s head, into a set of
scripts, tools, or source code makes these processes visible and eases knowledge
transfer.

Tacit knowledge is also a sore spot for any regulatory body whose job it is to
assure that businesses in regulated industries operate according to well-defined

NEVER SEND A HUMAN TO DO A MACHINE’S JOB | 107

and repeatable principles and procedures. Full automation forces processes to be
well defined and explicit, eliminating unwritten rules and undesired variation
inherent in manual processes. As a result, automated systems are easier to audit
for compliance. Ironically, classic IT often insists on manual steps in order to
maintain separation of duty, ignoring the fact that manually approving an auto-
mated process achieves both separation of concerns and repeatability.

A Place for Humans

If we automate everything, is there a place left for humans? Computers are much
better at executing repetitive tasks, but even though we humans are no longer
unbeatable at the board game Go, we are still number one in coming up with
new and creative ideas, designing things, or automating stuff. We should stick to
this separation of duty and let the machines do the repeatable tasks without fear-
ing that Skynet will take over the world any moment.

108 | THE SOFTWARE ARCHITECT ELEVATOR

If Software Eats the World,
Better Use Version Control!
When Your Infrastructure Becomes Software-Defined,
You Need to Think Like a Software Developer

Software eats infrastructure

If software does indeed eat the world, it will have IT infrastructure for break-
fast: the rapidly advancing virtualization of infrastructure from VMs and contain-
ers to serverless architectures turns provisioning code onto a piece of hardware
into a pure software problem. While this is an amazing capability and one of the
major value propositions of cloud computing, corporate IT’s uneasy relationship
with code (Chapter 11) and lack of familiarity with the modern development life
cycle can make this a dangerous proposition.

SDX: Software-Defined Anything

Much of traditional IT infrastructure is either hardwired or semi-manually con-
figured: servers are racked and cabled, network switches are manually configured
with tools or configuration files. Operations staff, who endearingly refer to their

109

| 14

1 A. Verma et al., “Large-Scale Cluster Management at Google with Borg,” Google, Inc., https://oreil.ly/
uGbf5.

2 Amin Vahdat, “Pulling Back the Curtain on Google’s Network Infrastructure,” Google AI Blog, August 18,
2015, https://oreil.ly/JWczw.

equipment as “metal,” are usually quite happy with this state of affairs: it keeps
the programmer types away from critical infrastructure where the last thing you
need is bugs and stuff like “Agile” development, which is still widely misinter-
preted (Chapter 31) as doing random stuff and hoping for the best.

This is rapidly changing, though, and that’s a good thing. The continuing
virtualization of infrastructure makes resources that were once shipped by truck
or wired by hand available via a call to a cloud service provider’s API. It’s like
going from haggling in a car dealership and waiting four months for delivery just
to find out that you should have ordered the premium seats after all to hailing an
Uber from your mobile phone and being shuttled off three minutes later.

Virtualized and programmable infrastructure is an essential element to keep-
ing up with the scalability and evolution demands of digital applications. You
can’t run an Agile business model when it takes you four weeks to get a server
and four months to get it on the right network segment.

Operating system–level virtualization is by no means a new invention, but
the “software defined” trend has extended to software-defined networks (SDNs)
and full-blown software-defined datacenters (SDDC). If that isn’t enough, you
can opt for SDX—software-defined anything, which includes virtualization of
compute, storage, network, and whatever else can be found in a datacenter, hope-
fully in some coordinated manner. Other marketing departments coined the
term infrastructure as code (IaC), apparently oblivious to the fact their tools mostly
accomplish it via configuration, not code (Chapter 11).

As so often, it’s possible to look into the future of IT by reading Google’s
research papers describing its systems of five-plus years ago (the official paper on
Borg,1 Google’s cluster manager, was published in 2015, almost a decade after its
internal introduction). To get a glimpse of where SDN is headed, look at what
Google has done with the so-called Jupiter Network Architecture.2 If you are too
busy to read the whole thing, this three-liner will do to get you excited:

Our latest-generation Jupiter network [...] delivering more than 1 Petabit/sec of total

bisection bandwidth. This means that each of 100,000 servers can communicate

with one another in an arbitrary pattern at 10 Gb/s.

110 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/uGbf5
https://oreil.ly/uGbf5
https://oreil.ly/JWczw

3 After the introduction of the power loom in the UK in the early 1800s led to widespread unemployment
and reduction in wages among loomers, they organized to destroy this new type of loom.

4 Paul Ford, “What Is Code?” BusinessWeek, June 11, 2015, https://oreil.ly/n2hmb.

Such capability can be achieved only by having a network infrastructure that
can be configured based on the applications’ needs and is considered as an inte-
gral part of the overall infrastructure virtualization.

The Loomers’ Riot?

New tools necessitate a new way of thinking, though, to be useful. It’s the old “a
fool with a tool is still a fool.” I actually don’t like this saying because you don’t
have to be a fool to be unfamiliar with a new tool and a new way of thinking. For
example, many folks in infrastructure and operations are far detached from the
way contemporary software development is done. This doesn’t make them fools
in any way, but it prevents them from migrating into the “software-defined”
world. They might never have heard of unit tests, continuous integration (CI), or
build pipelines. They may have been led to believe that “Agile” is a synonym for
“haphazard” and also haven’t had enough time to conclude that immutability is
an essential property because rebuilding/regenerating a component from scratch
beats making incremental changes.

As a result, despite being the bottleneck in an IT ecosystem that demands
ever-faster changes and innovation cycles, operations teams are often not ready to
hand over their domain to the “application folk” who can script the heck out of
the software-defined anything. One could posit that such behavior is akin to the
Loomer Riots because the economic benefits of a software-defined infrastructure
are too strong for anyone to put a stop to it.3 At the same time, it’s important to
get those folks on board who keep the lights on and who understand the existing
systems the best. So, we can’t ignore this dilemma.

If software eats the world, there will be only two kinds of people: those who tell

the machines what to do and those for whom it’s the other way around.

Explaining to everyone What Is Code?4 can be a useful first step. Having
more senior management role models who can code would be another good step.
However, living successfully in a software-defined world isn’t a simple matter of
learning programming or scripting.

IF SOFTWARE EATS THE WORLD, BETTER USE VERSION CONTROL! | 111

https://oreil.ly/n2hmb

Software Developers Don’t Undo, They Re-Create

A vivid example of how software developers think differently is reversibility; that
is, the ability to quickly revert to a known stable state if a new configuration isn’t
working.

When our team requested the ability to revert to a known good infrastructure

configuration state from an infrastructure vendor, the response was that this

would require an explicit “undo” script for each possible action, a huge addi-

tional investment in their eyes. Apparently, they didn’t think like software

developers.

With manual updates, reverting to a known good state is very difficult and
time consuming at best. In a software-defined world, it’s much easier. Experi-
enced software developers know that if their automated build system can build
an artifact, such as a binary image or a piece of configuration, from scratch, they
can easily revert to a previous version. So, rather than explicitly undoing a change
these developers reset version control to the last known good version, rebuild
from scratch, and republish this “undone” configuration, as illustrated in
Figure 14-1.

Figure 14-1. A traditional and a version-controlled mindset

112 | THE SOFTWARE ARCHITECT ELEVATOR

5 Just like every snowflake is unique, “snowflake servers” are those that don’t match a standard
configuration.

This mindset stems from software being ephemeral—re-creating it from
scratch isn’t a major effort. By making infrastructure software-defined, it can also
become ephemeral. This is a huge shift in mindset, especially when you consider
the annual depreciation cost of all that hardware. But only thinking this way can
provide the true benefit of being software defined.

In complex software projects, rolling things back is a quite normal proce-
dure, often instigated by the so-called “build cop” after failing automated tests
cause the build to go “red.” The build cop will ask the developer who checked in
the offending code to make a quick fix or simply revert that code submission.
Configuration automation tools have a similar ability to regain a known stable
state and can be applied to reverting and automatically reconfiguring infrastruc-
ture configurations.

Melt the Snowflakes

Software-defined infrastructure shuns the notion of “snowflake” or “pet” servers
—servers that have been running for a long time without a reinstall, have a
unique configuration,5 and are manually maintained with great care.

“This server has been up for three years” isn’t bragging rights but a risk: who

could re-create this “pet” server if it does go down?

In a software-defined world, a server or network component can be reconfig-
ured or re-created automatically with ease, similar to re-creating a Java build arti-
fact. You no longer have to be afraid to mess up a server instance because it can
easily be re-created via software in minutes.

Software-defined infrastructure therefore isn’t just about replacing hardware
configuration with software, but primarily about adopting a rigorous develop-
ment life cycle based on disciplined development, automated testing, and CI.
Over the past decades, software teams have learned how to move quickly while
maintaining quality. Turning hardware problems into software problems allows
you to take advantage of this body of knowledge.

IF SOFTWARE EATS THE WORLD, BETTER USE VERSION CONTROL! | 113

Automated Quality Checks

One of Google’s critical infrastructure pieces was a router, which would direct
incoming traffic to the correct type of service instance. For example, HTTP
requests for maps.google.com would be forwarded to a service serving up maps
data, as opposed to the search page. The router was configured via a file consist-
ing of hundreds of regular expressions. Of course, this file was under version
control, as it should be.

Despite rigorous code reviews, invariably someday someone checked a misconfi-

guration into the service router, which immediately brought down most of Goo-

gle’s services because the requests weren’t routed to the corresponding service

instance. Luckily, the previous version was quickly restored thanks to version

control. Google’s answer wasn’t to disallow changes to this file, because that

would have slowed things down. Rather, automatic checks were added to the

code submit pipeline to make sure that syntax errors or conflicting regular

expressions are detected before the file is checked into the code repository.

When working with software-defined infrastructure, you need to work like
you would in professional software development.

Use Proper Language

One curiosity about Google is that no one working there ever used buzzwords
like “big data,” “cloud,” or “software-defined datacenter” because Google had all
these things well before these buzzwords were created by industry analysts.
Much of Google’s infrastructure was already software defined more than a dec-
ade ago. As the scale of applications grew, configuring the many process instan-
ces that were being deployed into the datacenter became tedious. For example, if
an application consists of seven frontends, 1 through 7, and two backends, A and
B, frontends 1 through 4 would connect to backend A, whereas frontends 5 to 7
would connect to backend B. Maintaining individual configuration files for each
instance would be cumbersome and error prone, especially as the system scales
up and down. Instead, developers generated configurations via a well-defined
functional language called Borg Configuration Language (BCL), which supports
templates, value inheritance, and built-in functions like map() that are convenient
for manipulating lists of values.

While avoiding the trap of configuration files (Chapter 11), learning a custom
functional language to describe deployment descriptors may not be everyone’s
cup of tea, but for software developers that’s the natural approach.

114 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/2qfVz

When configuration programs became more complex, causing testing and
debugging configurations to become an issue, folks wrote an interactive
expression evaluator and unit testing tools. That’s what software people do to
solve a problem: solve software problems with software!

The BCL example highlights what a real software-defined system looks like:
well-defined languages and tooling that make infrastructure part of the software
development life cycle. GUIs for infrastructure configuration, which vendors
often like to show off, should be banned because they don’t integrate well into a
software life cycle, aren’t testable, and are error prone.

Software Eats the World, One Revision at a Time

There’s much more to being software defined than a few scripts and configura-
tion files. Rather, it’s about making infrastructure part of your software develop-
ment life cycle (SDLC). First, make sure your SDLC is fast but disciplined, and
automated but quality oriented. Second, apply the same thinking to your
software-defined infrastructure; or else you may end up with SDA, Software-
Defined Armageddon.

IF SOFTWARE EATS THE WORLD, BETTER USE VERSION CONTROL! | 115

A4 Paper Doesn’t
Stifle Creativity
A Solid Platform Gives Developers a Blank Sheet of Paper

Creativity knows no boundaries

Today’s IT departments must meet two major but seemingly conflicting
goals. First, the business environment puts pressure on IT spend, whereas digital
disruptors require IT to increase the rate of change and innovation. One of IT’s
major cost levers is harmonization of the IT landscape: reducing the number of
different applications and technologies in use provides better economies of scale,
better negotiating power with vendors, and fewer skills requirements, which can
be a major factor in times of skill scarcity.

117

| 15

1 DIN stands for Deutsches Institut für Normung, which is the current name of the German national insti-
tution that sets official domestic standards.

2 20 is the weight in pounds of a ream (500 sheets) of Bond paper, which measures 22 × 17 inches. Con-
verting that to ounces per sheet is left as an exercise to the reader.

At first sight, such an effort does seem at odds with innovation, though; how
can a company be innovative if too many parameters are fixed? Doesn’t innova-
tion require freedom to experiment and questioning established norms and
standards? Interestingly, some harmonization not only doesn’t get in the way of
innovation but actually boosts it.

Following a recurring theme from this book, we can once again get a hint
from the real world: paper.

A4 Paper

One of the most well-known standards—at least outside the US—is the standard
for paper sizes. The most common size of paper used around the world for print-
ing or writing is A4 size paper. A4 paper sets a precise standard of 210 mm wide
× 297 mm long for a sheet of paper. At first glance, setting such a standard may
appear both arbitrary and constraining. On a second look, though, it’s neither.

The family of DIN A paper sizes,1 defined in 1922, are far from arbitrary. The
ratio between length and width is always equal to the square root of 2. Thanks to
this unique property, two sheets of a smaller size put next to each other along the
long edge are the same size as a single sheet of paper of the next larger size. For
example, two A4 papers make an A3 paper. And if you are out of A5 paper, you
can fold a sheet of A4 paper in the center and tear it to receive two perfectly sized
sheets of A5 paper. Pretty handy, huh?

But there’s more. If two A4-size sheets make an A3-size sheet, and two A3
sheets make an A2 sheet, and so on, 16 A4 sheets make up an A0 size sheet. But
how big should such a sheet be? Easy: one square meter, again with the edge
dimensions having a square root of 2 relationship, resulting in a size of 841 mm
× 1189 mm. So, if you ever wonder if 3 sheets of common “80 gram” paper
require extra postage, you can quickly compute that each sheet weighs 1/16th of
that of a square meter, which is 80/16 = 5 grams per the paper classification. For
comparison, try calculating the weight of three letter size sheets of #20 paper in
ounces.2

On top of all this, standardizing paper sizes eliminates the need to select
from myriad paper sizes. It also stacks neatly and allows the use of same-size

118 | THE SOFTWARE ARCHITECT ELEVATOR

sleeves, envelopes, drawers, paper punches, and copiers, so you don’t have to
worry about any of those. A4-size paper is so ubiquitous that even my laptop is
A4 size so that it will neatly fit into any briefcase that is designed to hold a sheet
of paper.

Importantly, despite being rather prescriptive, the paper standard doesn’t sti-
fle creativity. You can still draw and write on it, whatever you prefer. I haven’t
seen a person who was unable to work on a blank sheet of paper due to its partic-
ular dimensions. It’s fair to say that A4 paper actually increases creativity because
it allows users to focus on the creative aspects—what they put on the paper, as
opposed to dealing with paper format ecosystem entropy.

So, when we are standardizing IT components, we should look for a result
that resembles paper formats: standardize what simplifies life and achieves
economies of scale, but give users a blank sheet of paper to work on.

Product Standards Restrict, Interface Standards Enable

When IT departments are looking to harmonize their portfolio, they usually aim
to standardize products (Chapter 32); for example, which databases or applications
servers should be used across applications. Standardizing products reduces diver-
sity and can save money by bundling purchasing power, a classic economies of
scale (Chapter 35) maneuver: the bigger a company’s spend on a particular prod-
uct or vendor, the better a deal it can likely secure. However, unlike A4-size
paper, such product standards do tend to limit developers’ choices and are there-
fore quite unpopular.

The most successful technical standards in the world, in contrast, have been
those that affect how products or components can be combined. We call such
standards interface standards or compatibility standards. The most dramatic exam-
ple of an interface standard that affects IT is the hypertext transfer protocol
(HTTP). HTTP enabled the internet revolution because it allowed any browser to
connect to any web server, implemented in any programming language or tech-
nology. As a result, parts became easily interchangeable and enabled independ-
ent evolution. For example, anyone could develop a higher-performing web
server without having to replace all browsers.

Platform Standards

There’s a useful and increasingly common approach that, done right, combines
the benefits of interface and product standards to act more like A4-size paper
than a corporate rule book. These standards are referred to as platform standards

A4 PAPER DOESN’T STIFLE CREATIVITY | 119

3 S. Wardley, “Wardley maps,” Medium.com, March 7, 2018, https://oreil.ly/bk3sL.

or simply platforms. Platform standards essentially split the IT into two parts: a
lower layer that standardizes those elements that are unlikely to form a competi-
tive differentiator and an upper layer of in-house-developed software that pro-
vides direct business value and competitive differentiation.

This concept of platforms has long been known to the car industry where
multiple, outwardly distinct vehicle models share the same “infrastructure” of
chassis, suspension, safety equipment, and engine options. Because these com-
ponents require significant engineering effort and cost but are less visible to the
end customer, it makes sense to reuse them across as many models as possible.
Meanwhile, interior and exterior elements differ among models as they often
serve as differentiating factors across market segments. For a nice model that
allows plotting elements by how visible and how commoditized they are, I highly
recommend Wardley maps.3

Back in IT, layering certainly isn’t a new idea. If anything, it’s one of the old-
est concepts to reduce complexity and achieve reuse (Chapter 28). The best candi-
dates for the lower layer are traditionally found in the networking and hardware
environments. There are two reasons for this. First, for most enterprises, there’s
little business value in different types of processor architectures, networking
equipment, monitoring frameworks, or application servers. Second, their lower
rate of change (Chapter 3) makes it easier to standardize them into a common
base layer.

Layers Versus Platforms

So, if platforms use layering, which is a well-known concept, what makes plat-
forms different and interesting? At least three aspects spring to mind:

Self service
In traditional IT, the interaction between the layers occurred by means of
service requests or emailing spreadsheets (Chapter 13), vaguely based on a
model that the lower layers hold the power (that’s governance, after all!)
and the folks in the upper layer have to beg for access. Modern platforms,
epitomized by cloud service providers, turn this concept on its head by
allowing people in the upper layers to request services through online por-
tals or APIs. It’s customer centricity applied to IT services.

120 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/bk3sL

Dividing line
The dividing line between the IT layers used to be infrastructure versus
applications, often even reflected in the organization’s structure, where
you’d find an application team and an infrastructure team. Cloud comput-
ing platforms have shifted the boundary dramatically and keep shifting it.
For example, serverless computing shifts the platform all the way up to the
code for a single function.

Center of gravity
Modern platforms don’t just focus on the compute runtime, such as net-
work, servers, and storage as previous approaches did. They also include
software delivery tool chains because they are a key element that defines
delivery velocity (Chapter 3). They also often include monitoring and com-
munication, such as service meshes. As a result, they offer applications a
well-rounded ecosystem of services.

Done well, standardizing lower layers doesn’t constrain what functionality
can be delivered to the business. However, it relieves development teams from
having to choose and operate a whole stack of software and hardware. It also
channels developers’ creative energy into those parts that generate business value
as opposed to developing yet-another-persistence-framework. Interestingly, this
matches my favorite definition of software architecture: design decisions that
keep implementors from exercising needless creativity (Chapter 8).

At a major financial services provider, we defined an Agile Delivery Platform

that was a lot more than just a private cloud runtime; it included an on-premises

source code repository, a containerized build tool chain, common monitoring

and visualization, and security features. It became the de facto platform for new

application delivery and sped up adoption of modern development techniques.

Digital Discipline

Digital companies are great examples of high velocity necessitating discipline (Chap-
ter 31). They realized that strictness in some aspects actually boosts the rate of
innovation. Often, this strictness comes in form of an A4-style platform. For
example, Google, which is well-known for rapid innovation, has very strict plat-
form standards (Chapter 32) for application deployment and operations: there’s
essentially one way to deploy an application, on one type of operating system,
observed by one monitoring framework. Google found the exact level at which to

A4 PAPER DOESN’T STIFLE CREATIVITY | 121

abstract to allow people to innovate where it matters without exercising needless
creativity.

Google is a great example of enforcing strict platform standards that neverthe-

less boost the speed of innovation.

Avoid the Skipping Stones

There’s a very silly TV show called Takeshi’s Castle, which makes contestants
compete by enduring several rather sadistic exercises, much to the enjoyment of
the audience. An all-time favorite is Skipping Stones, called “Dragon God Pond”
in the Japanese original. The contestants are tasked with crossing a pond filled
with a murky, rather uninviting liquid via a sequence of stepping stones. It
wouldn’t be funny, though, if there weren’t a catch: most stones are solid, but
some are merely floating pieces of Styrofoam. They are visually indistinguisha-
ble, but designed to quickly give way to any unlucky contestant’s misstep, result-
ing in spectacular falls, which are best watched in slow motion.

Some platforms seem to make their customers play Takeshi’s Castle—their
components appear solid, but some suddenly give way. IT platforms give way by
deprecating components, having inconsistent interfaces, or being poorly integra-
ted. Needless to say that this isn’t much fun for the contestant: you. So, don’t
build platforms that look like the Skipping Stones! Instead, follow a few critical
aspects to assure that your platform is solid, but flexible enough to spur adoption
and innovation:

Choose a useful level of abstraction
Would standardizing pens and pencils still improve creativity or run the
risk of stifling it? Useful standards are those that shield significant com-
plexity but can be utilized by a wide range of tools: you can draw on A4
paper with pen, pencil, chalk, watercolor, and more, so it’s a concrete stan-
dard that allows many uses.

Constantly fine tune
Nothing is eternal, especially in IT. The same holds true for IT standards.
They need to be able to evolve along with the technology and new insights.
Today’s best innovation platform can be a road block in just a few years.

122 | THE SOFTWARE ARCHITECT ELEVATOR

Keep it up to date
Although your customers may want your platform to be stable, they don’t
want it to be outdated or full of security holes because of lacking patches.
Keep your product versions up to date!

Make it real
Standards that just exist on paper are unlikely to be followed. Therefore,
make sure your standards come alive in ready-to-use tools and platforms.
Many people may not care for A4 paper, but if it’s the easy choice available
in any store, they probably don’t mind.

Reward compliance
You want to reward people who adopt the standards; for example, by offer-
ing lower prices, better service, or shorter provisioning times when com-
pared to nonstandard solutions.

Cloud providers don’t set standards just on paper, but provide an implemen-
tation that allows rapid delivery through self-service interfaces. Cloud platforms
also continuously evolve and grow, making them excellent examples of solid plat-
forms that enable innovation.

One of the critical decisions making the Agile Delivery Platform a success was

to regularly update the platform, against common practice (and advice from the

infrastructure teams). The traditional approach, which would have required all

application owners’ agreement before updating, would have made the platform

outdated within just a few months.

After initially mostly offering virtual machines as infrastructure as a service
(IaaS), most cloud providers now offer platform as a service (PaaS) for applica-
tions and functions as a service (FaaS)/“serverless” for single code snippets.
Focusing on common (de facto) standards like Docker for containers has fueled
the creation of platforms and boosted the rate of innovation among platform
users.

One Size Might Not Fit All Tastes

As powerful as platforms and standards are, establishing global standards can be
harder than expected. For example, despite all the virtues of A4-size paper, so-
called “letter-size” paper at 8.5 × 11 inches remains a standard in the United

A4 PAPER DOESN’T STIFLE CREATIVITY | 123

4 Wikipedia, “Paper Size,” https://oreil.ly/et7UH.

5 Wikipedia, “PC LOAD LETTER,” https://oreil.ly/ou-b8.

States. Though Wikipedia describes its precise origin as “not known”4—the most
credible hypothesis ascribes it to historical manufacturing by hand—a migration
to DIN-sized paper appears unlikely. Until then, I’ll have to use two different
paper cartridges for my venerable HP LaserJet 4 and be frequently reminded to
PC LOAD LETTER.5

124 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/et7UH
https://oreil.ly/ou-b8

1 “The True Size Of Africa,” Information Is Beautiful, Oct. 14, 2010, https://oreil.ly/yeVps.

The IT World Is Flat
Without a Map, Any Road Looks Promising

Living in the Middle Kingdom—by Kwong Hing Yen (江慶人)

Maps have been valuable tools for millennia, despite most of them, espe-
cially world maps, being quite badly distorted. The fundamental challenge of
plotting the surface of a sphere onto a flat sheet of paper forces maps to make
compromises when depicting angles, sizes, and distances—if the earth were flat,
things would be much easier. For example, the historically popular Mercator pro-
jection provides true angles for seafarers, meaning you can read an angle off the
map and use the same angle on the ship’s compass (compensating for the dis-
crepancy between geographic and magnetic north). The price to pay for this con-
venient property, which avoids distorting angles, is area distortion: the further
away countries are from the equator, the larger they appear on the map. That’s
why Africa looks disproportionately small on such maps,1 a trade-off that might

125

| 16

https://oreil.ly/yeVps

be acceptable when navigating by boat: misestimating the distance is likely a
lesser problem than heading into the wrong direction.

Plotting the surface of a sphere also presents the challenge of deciding where
the “middle” is. Most world maps conveniently position Europe in the center,
supported by 0 degree longitude (the prime meridian) going through Greenwich,
England. This depiction results in Asia being in the “East” and the Americas
being in the “West.” The keen observer will quickly conclude that when living on
a sphere, notions of West and East are somewhat relative to the viewpoint of the
beholder. The same type of thinking likely motivated the residents of East Asia to
historically put their country in the middle of the map and even name it accord-
ingly: 中國 , the “middle kingdom.”

Although many centuries later we might regard such a world view as a tad
self-centered, at the time it simply made practical sense: having the most detail
about places that are near you makes putting your starting point in the middle of
your map natural. It also roughly lines up the map boundaries with your travel
limits.

IT landscapes are also vast, and navigating a typical enterprise’s range of
products and technologies can be equally daunting to sailing Cape Horn. Despite
some similarities, each IT landscape tends to be its own planet, making universal
IT world maps hard to come by. Aside from some useful attempts like the Big
Data Landscape by Matt Turck, enterprise architects therefore often rely on maps
provided by their vendors.

Vendors’ Middle Kingdoms

As chief architect of a large company, you’ll quickly gather new friends: account
managers, (presales) solution architects, field CTOs, and sales executives, to
name a few. Their job is to sell their products to large enterprises like yours that
rely heavily on external hardware, software, and services. It makes sense to buy
systems that aren’t a competitive differentiator or to lease them via a software as
a service (SaaS) model. Creating an accounting system yourself is in most cases
as valuable as creating your own electricity. It’s important to have such things,
but they won’t give you any competitive advantage. So just as you’re unlikely to
benefit from operating your own power plant, you should also abstain from
building your own accounting system.

Enterprise vendors are also an important source of information, especially
for architects, as vendors keep close track of industry trends. Do keep in mind,
however, that the information you are given might be skewed by the vendor’s

126 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/_yNxO
https://oreil.ly/_yNxO

worldview. That’s because enterprise vendors live in their own middle kingdom,
generally depicting their home state disproportionately large and accepting a fair
degree of distortion on the periphery. Distortion can take the form of vendors
defining product categories or buzzwords by features that only their product has.
For example, I have seen “Zero Trust” pegged to safe web browsing and
“GitOps” tied to Kubernetes. Both are a stretch of imagination at best.

I often joke that if you have no concept whatsoever of what a car is and only ever

talked to one specific German automaker, you’d end up walking away with the

firm belief that a star emblem on the hood is a defining feature of an

automobile.

IT architects in large enterprises must therefore develop their own, balanced
worldview so that they can safely navigate the treacherous waters of enterprise
architecture and IT transformation. Vendors’ distortion doesn’t imply deception;
it’s largely a byproduct of the context people grew up in. If you develop databases,
it’s natural to view the database as the center of any application: after all, that’s
where the data is stored. Server and storage hardware are viewed as parts of a
database appliance, whereas application logic becomes a data feed. Conversely, to a
storage hardware manufacturer, everything else is just “data,” and databases are
lumped into a generic “middleware” segment. It’s like me on my first trip to Aus-
tralia considering a quick hop to New Zealand because I thought it was so super
close. Realizing that it’s still a good three-and-a-half-hour flight from Melbourne
to Auckland proved that my world map is also distorted on the periphery.

Plotting Your World Map

To avoid falling into the “star on the hood” or the “it’s all a database” trap, it’s
important that your architecture team first develops its own, undistorted map of
the IT landscape—a great exercise for enterprise architects (Chapter 4). Luckily, the
world of IT is flat, so it’s a bit easier to plot on a whiteboard or a piece of paper.
Your own map gives you a much better, product-neutral understanding and may,
for example, illustrate that a car’s drive train is much more relevant than the
hood emblem.

Any architect who carries a product name in their title likely carries the vendor’s

map as opposed to your own.

THE IT WORLD IS FLAT | 127

2 Ytong is the name of a popular brand of aerated concrete bricks used in Europe for building construction.

It’s OK to draw the map piece-by-piece, starting, for example, where a new
product needs to be set up or an old one replaced—rate of change (Chapter 3) is
once again a good indicator for architecture. Another good starting point is where
existing products represent critical differentiators for the company.

Drawing your map requires you to piece together information from various
sources, which will often be distorted. Maybe one day we’ll have an AI-driven
application that can do this for enterprise architecture the same way smart-
phones can stitch together multiple photos into a panorama. Until then, you have
to collect information from vendors, blogs, industry analyst reports, and your
infrastructure and development teams. Resist the temptation to simply ask your
favorite two- or three-lettered enterprise supplier to make the map for you. For
one, it will once again be distorted, and second, at today’s rate of innovation
many of them are outdated, as well.

When placing countries and territories on your map, focus on function and
relationships as opposed to product names.

Describing the architecture of a big data system as “Microsoft SQL Server” is no

more useful than claiming the architecture of a house is “Ytong.”2 Both may be

good choices, but neither describes the architecture.

Because IT architecture operates between the buzzwords and the product
names, it’s less concerned with the pieces than with how they are put together.
This is why it’s so important to look not only at the boxes but also the lines (Chap-
ter 23).

Defining Borders

Where to place the “borders” in your map is a key aspect of doing architecture in
the enterprise. Although we all like to think of boundary-free architecture, if we
want to establish a meaningful map and vocabulary for our enterprise, we need
to place some borders. For example, should our “data” continent be separated
into data warehouses, data lakes, data marts, and databases? Would databases
then break down into relational and NoSQL databases, which could further break
down into graph databases, object stores, and so on? Would you want to distin-
guish managed cloud databases like DynamoDB or Spanner from other

128 | THE SOFTWARE ARCHITECT ELEVATOR

databases? Would you want to separate operational databases from those used for
analytics? There are many ways to slice, and defining these boundaries is a key
element of doing architecture at an enterprise level. The word reference architec-
ture even comes to mind, but you need to keep in mind that architecture isn’t a
copy-paste exercises. You need to define the continents and countries that are
meaningful for your organization, your business strategy, and your business
architecture, as illustrated in Figure 16-1.

Figure 16-1. A plausible database continent

A colleague of mine conducted a thorough mapping exercise for application
monitoring that includes black-box monitoring, white-box monitoring, trouble-
shooting, log analysis, alerting, and predictive monitoring. All are distinct but
interrelated aspects of an application monitoring solution. Many vendors, espe-
cially those with a history in application performance monitoring, will also
include performance testing because that’s the middle of their map. Whether you
want to do the same or whether it’s part of the development tool chain is your
decision.

When I see most reference architectures, I feel that they ought to print a dis-

claimer at the bottom, similar to those used for movies: “Any similarities with

real persons or systems is purely coincidental.”

THE IT WORLD IS FLAT | 129

Charting Territory

As soon as your IT world map has undisputed borders, you can start populating
“countries” with vendor products that may be in use or available on the market.
The map will help you assess how well a vendor’s product fits your map. Some
products may not completely cover the gap, while others have significant overlap
with solutions already in place.

Placing products on an IT world map is a bit like playing Tetris: the piece that

fits best depends on what you already have in place. This means that rather than

picking the “best” product, you should select the one that fits best.

Most large IT organizations govern their product portfolio (Chapter 32) via a
standards group. Standards reduce product diversity and allow enterprises to har-
vest economies of scale; for example, by bundling purchasing power. When
defining standards, the world map can be an enormous help because it can deter-
mine what kind of standards you’ll want and at which level you’d want to apply
them. For example, defining different types of databases or data stores on your
“database continent” can tell you whether you need a different standard for rela-
tional databases and NoSQL databases or whether you distinguish light-weight
use cases from mission-critical ones. Having a good map is essential to navigat-
ing the complexity of vendor offerings.

A vivid example of the difficulty of discussing product fit without a good map

came up in a conversation about a web portal: a divisional IT manager using a

shared web portal lamented the lack of documentation on port forwarding. The

project’s architect replied that a web server isn’t part of their solution, assuming

port forwarding is done in a web server. Much debate and confusion ensued

because the division implemented port forwarding in an integrated network

management tool, not in a web server. They used different world maps and con-

tinued to talk past each other for some time.

Looking at the map to get the proverbial “lay of the land” can help a lot to
resolve misunderstandings. For example, a map might show that port forwarding
is part of the concept of an Application Delivery Controller (ADC), which manages
web traffic by including functions such as reverse proxying, load balancing, and
also port forwarding. You can utilize a web server as ADC in simple cases or pur-
chase an integrated product like F5.

130 | THE SOFTWARE ARCHITECT ELEVATOR

Ironically, conducting the worthwhile exercise of plotting your own IT world

map can be challenged by traditional IT managers as “academic.” This can be

especially amusing in Germany where IT management is littered with PhDs

(not necessarily in any technical major) who carry the title “Dr.” as part of their

legal name. If pragmatic means “haphazard,” I am happy to be in the “aca-

demic” camp: I am paid to think and plan, not to play product lottery.

Product Philosophy Compatibility Check

When plotting vendor offerings onto your map, it’s not enough to just under-
stand the vendor’s current product portfolio, but also where it is headed—the
world of IT never stands still. That’s why I first like to understand whether a ven-
dor’s and our worldviews align.

Meeting with vendors’ senior technical staff, such as a CTO, is most effective
when discussing worldview and comparing maps because too many “solution
architects” are just glorified technical salespeople, who navigate purely off the
vendor’s map, the “middle kingdom” so to speak. I need a world map, though.

When an account manager starts the meeting with “please help us understand

your environment,” which roughly translates into “please tell me what I should

sell to you,” I typically preempt the exercise by asking the senior person about

their product philosophy. It’s a bit of a big word, but it’s helpful in shifting the

conversation to the vendor’s world map.

I prefer to ask vendors two key questions to understand their world map:

• What base assumptions did you have to make? No one can operate on a com-
pletely empty map without borders, so the vendor must have made choices
and picked boundaries. The answer to this question tells you where the
edge of their map is.

• What’s the toughest problem you had to solve? The answer to this question
will tell you where the center of their map is.

Discussing what base assumptions and decisions are baked into a product
gives you great insight into a vendor’s world map (see Figure 16-2), both about
the center and the edge (remember the IT world is flat, so it has edges).

THE IT WORLD IS FLAT | 131

Figure 16-2. A product vendor’s core and periphery

Naturally, this works only when talking to someone who is actually defining
the vendor’s corporate or product strategy. Looking at the company leadership
page can help you identify the right people. Looking at the leadership’s history
can also help you understand “where they come from”; that is, under which
assumptions they operate.

When asking these questions of a monitoring vendor, it became clear that the

core of their map was being able to monitor running applications without hav-

ing access to the source code. This feature is particularly useful if you look at the

problem from an operational point of view, especially if you work in an organi-

zation that separates “change” from “run” (Chapter 12). However, in a “you build

it, you run it” environment where development teams are directly involved in

operational aspects, this intellectual property would be less valuable. You can

end up paying for something that you don’t need. Understanding the vendor’s

world map can help you make better decisions.

Comparing world maps isn’t about finding out which one is right and which
one is wrong; it’s about comparing worldviews. For example, I believe that a good
programming language and a disciplined software development life cycle (SDLC)
beats “easy” configuration (Chapter 11). That’s because I come from a software
engineer mindset. Other folks might be happy to not have to hassle with git
stash and compilation errors and prefer the vendor’s configuration tools.

132 | THE SOFTWARE ARCHITECT ELEVATOR

Shifting Territory

While the real world is relatively static (continental drift is pretty slow and the
trend of splitting countries in the ’90s has also slowed down a bit), the world of
IT is changing faster than ever. Because it’s difficult for a vendor to change its
product philosophy, you will likely encounter old products with a new coat of
paint on top. Your job as an architect is to look through the shiny new paint and
see whether there’s any rust or filler underneath.

THE IT WORLD IS FLAT | 133

1 This chapter was published (in slightly different form) in IEEE Software, Vol. 22, and Best Software
Writing, ed. J. Spolsky (Apress).

Your Coffee Shop Doesn’t
Use Two-Phase Commit
Learn About Distributed System Design While in the Queue!

Grande, durable, nonatomic, soy chai latte

When designing solutions, architects often look at technical solutions like
ACID (Atomic, Consistent, Isolated, Durable) transactions and binary values in
order to craft a well-defined and perfect system. In reality, though, designing
complex systems isn’t that easy, so there’s one more source of design guidance
that you should consider: the real world.1

135

| 17

2 Gregor Hohpe, “Competing Consumers,” Enterprise Integration Patterns, https://oreil.ly/NShD-.

Hotto Cocoa o Kudasai

You know you’re a geek when going to the coffee shop gets you thinking about
interaction patterns between loosely coupled systems. This happened to me on a
trip to Japan. Some of the more familiar sights in Tokyo are the numerous Star-
bucks coffee shops, especially in the areas of Shinjuku and Roppongi. After
stretching my limited Japanese skills by muttering “Hotto Cocoa o Kudasai” (“A
hot chocolate, please”), I returned to my bubble of foreigner-ness and started
thinking about how Starbucks processes drink orders.

Starbucks, like most other businesses, is primarily interested in maximizing
throughput of orders because more orders equal more revenue. Interestingly, the
optimization for throughput results in a concurrent and asynchronous process-
ing model: when you place your order, the cashier marks a coffee cup with the
details of your order (e.g., tall, nonfat, soy, dry, extra hot latte with double shot)
and places it into the queue, which is quite literally a queue of coffee cups lined
up on top of the espresso machine. This queue decouples cashier and barista,
allowing the cashier to keep taking orders even if the barista is momentarily
backed up. If the store becomes busy, multiple baristas can be deployed in a
competing-consumer scenario,2 meaning that they work off items in parallel
without duplicating work.

Asynchronous processing models can be highly scalable but are not without
challenges. Still waiting for my hot chocolate, I started thinking about how Star-
bucks dealt with some of these issues. Maybe we can learn something from the
coffee shop about designing successful asynchronous messaging solutions?

Correlation

Parallel and asynchronous processing causes drink orders to be not necessarily
completed in the same order in which they were placed. This can happen for two
reasons. First, order processing time varies by type of beverage: a blended
smoothie takes more time to prepare than a basic drip coffee. A drip coffee
ordered last might thus arrive first. Second, baristas might make multiple drinks
in one batch to optimize processing time.

Starbucks therefore has a correlation problem: drinks that are delivered out
of sequence must be matched up to the correct customer. Starbucks solves the
problem with the same “pattern” used in messaging architectures: a correlation

136 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/NShD-

3 Gregor Hohpe, “Correlation Identifier,” Enterprise Integration Patterns, https://oreil.ly/NkR28.

identifier3 uniquely marks each message and is carried through the processing
steps. In the US, most Starbucks use an explicit correlation identifier by writing
your name on the cup at the time of ordering, calling it out when the drink is
ready. Other countries might correlate by the type of drink. When I had difficul-
ties in Japan understanding the baristas calling out the types of drinks, my solu-
tion was to order extra-large “venti” drinks because they’re uncommon and
therefore easily identifiable, that is, “correlatable.”

Exception Handling

Exception handling in asynchronous messaging scenarios presents another chal-
lenge. What does the coffee shop do if you can’t pay? They will toss the drink if it
has already been made or otherwise pull your cup from the “queue.” If they
deliver you a drink that’s incorrect or unsatisfactory, they will remake it. If the
machine breaks down and they cannot make your drink, they will refund your
money. Apparently, we can learn quite a bit about error-handling strategies by
standing in the queue!

Just like Starbucks, distributed systems often cannot rely on two-phase-
commit semantics that guarantee consistent outcomes across multiple actions.
They therefore employ the same error-handling strategies.

WRITE OFF

The simplest error-handling strategy is doing nothing. If the error occurs during
a single operation, you just ignore it. If the error happens during a sequence of
related actions, you can ignore the error and continue with the subsequent steps,
ignoring or discarding any work done so far. This is what the coffee shop would
do when a customer is unable to pay: discard the drink and move on.

Doing nothing about an error might seem like a bad plan at first, but in the
reality of a business transaction, this option might be perfectly acceptable: if the
loss is small, building an error correction solution is likely more expensive than
just letting things be. When humans are involved, correcting errors also has a
cost and might delay serving other customers. Moreover, error handling can lead
to additional complexity—the last thing you want is an error-handling mecha-
nism that has errors. So, in many cases “simple does it.”

YOUR COFFEE SHOP DOESN’T USE TWO-PHASE COMMIT | 137

https://oreil.ly/NkR28

I worked for a number of ISP providers who would choose to write off errors in

the billing/provisioning cycle. As a result, a customer might end up with active

service but would not get billed. The revenue loss was small enough that it

didn’t hurt the business and customers rarely complained about getting free

service. Periodically, they would run reconciliation reports to detect the “free”

accounts and close them.

RETRY

When simply ignoring an error won’t do, you might want to retry the failing
operation. This is a plausible option if there’s a realistic chance that a renewed
attempt will actually succeed; for example, because a temporary communications
glitch has been fixed or an unavailable system has restarted. Retrying can over-
come intermittent errors, but it doesn’t help if the operation violates a firm busi-
ness rule. Starbucks will try to remake your beverage if it’s not to your liking but
they won’t if the power is out.

When encountering a failure in a group of operations (i.e., “transaction”),
things become simpler if all components are idempotent, meaning they can
receive the same command multiple times without duplicating the execution.
You can then simply reissue all operations because the receivers that already
completed them will simply ignore the retried operation. Shifting some of the
error-handling burden, i.e., detecting duplicate messages, to the receivers thus
simplifies the overall interaction.

It’s amazing how frequently a basic retry operation succeeds in systems that
were built out of zeros and ones. The common saying that defines insanity as
“doing the same thing over and over again and expecting different results” appa-
rently doesn’t apply to computer systems.

COMPENSATING ACTION

The final option to put the system back into a consistent state after a failed opera-
tion is to undo the operations that were completed so far. Such “compensating
actions” work well for monetary transactions that can recredit money that has
been debited. If the coffee shop can’t make the coffee to your satisfaction, it will
refund your money to restore your wallet to its original state.

Because real life is full of failures, compensating actions can take many
forms, such as a business calling a customer to ask them to ignore a letter that
has been sent or to return a package that was sent in error. The classic counter-
example to compensating an action is sausage making. Some actions are not
easily reversible.

138 | THE SOFTWARE ARCHITECT ELEVATOR

4 Gregor Hohpe, “Conversation Patterns,” Enterprise Integration Patterns, https://oreil.ly/g-wvQ.

Transactions

All of the strategies described so far differ from a two-phase commit that relies
on separate prepare and execute phases. In the Starbucks example, a two-phase
commit would equate to waiting at the cashier desk with the receipt and the
money on the table until the drink is finished. Once the drink is added to the
items on the table, money, receipt, and drink can change hands in one swoop.
Neither the cashier nor the customer would be able to leave until this “transac-
tion” is completed.

Using such a two-phase-commit approach would eliminate the need for addi-
tional error-handling strategies, but it would almost certainly hurt Starbucks’s
business because the number of customers it can serve within a set time interval
would decrease dramatically. This is a good reminder that a two-phase-commit
approach can make life a lot simpler, but it can also hurt the free flow of mes-
sages (and therefore the scalability) because it has to maintain stateful transac-
tion resources across multiple, asynchronous actions. It’s also an indication that
a high-throughput system should be optimized for the happy path instead of bur-
dening each transaction for the rare case when something goes wrong.

Backpressure

Despite working asynchronously, the coffee shop cannot scale infinitely. As the
queue of labeled coffee cups gets longer and longer, Starbucks can temporarily
reassign a cashier to work as a barista. This helps reduce the wait time for cus-
tomers who have already placed an order while exerting backpressure to customers
still waiting to place their order. No one likes waiting in line, but not yet having
placed your order provides you with the option to leave the store and forgo the
coffee or to wander to the next, not-very-far-away coffee shop.

Conversations

The coffee shop interaction is also a good example of a simple but common con-
versation pattern4 that illustrates sequences of message exchanges between partic-
ipants. The interaction between two parties (customer and coffee shop) consists
of a short synchronous interaction (ordering and paying) and a longer, asynchro-
nous interaction (making and receiving the drink). This type of conversation is
quite common in purchasing scenarios. For example, when an order is placed on

YOUR COFFEE SHOP DOESN’T USE TWO-PHASE COMMIT | 139

https://oreil.ly/g-wvQ

5 Gregor Hohpe, “Canonical Data Model,” Enterprise Integration Patterns, https://oreil.ly/8SU8U.

6 “Thank you very much!”

Amazon, the short synchronous interaction assigns an order number, whereas
all subsequent steps (charging credit card, packaging, shipping) are performed
asynchronously. Customers are notified via email (asynchronous) when the addi-
tional steps complete. If anything goes wrong, Amazon usually compensates the
customer (refunds payment) or retries (resends the lost goods).

Canonical Data Model

A coffee shop can teach you even more about distributed system design. When
Starbucks was relatively new, customers were both enamored and frustrated by
the new language they had to learn just to order a coffee. Small coffees are now
“tall,” while a large one is called “venti.” Defining your own language is not only
a clever marketing strategy but also establishes a canonical data model5 that opti-
mizes downstream processing. Any uncertainties (soy or nonfat?) are resolved
right at the “user interface” by the cashier, thus avoiding a lengthy dialogue that
would burden the barista.

Welcome to the Real World!

The real world is mostly asynchronous: our daily lives consist of many coordina-
ted but asynchronous interactions, such as reading and replying to email, buying
coffee, etc. This means that an asynchronous messaging architecture can often
be a natural way to model these types of interactions. It also means that looking
at daily life can help design successful messaging solutions. Domo arigato
gozaimasu!6

140 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/8SU8U

Communication

Architects don’t live in isolation. It’s their job to gather information from dispa-
rate departments, articulate a cohesive strategy, communicate decisions, and win
supporters at all levels of the organization. Communication skills are therefore
paramount for architects. Conveying technical content to a diverse audience is
challenging, though, because many classical presentation or writing techniques
don’t work well for highly technical subjects. For example, slides with single
words superimposed on dramatic photographs may draw the audience’s atten-
tion, but they aren’t going to convey the intricacies of your cloud computing plat-
form strategy. Instead, architects need to focus on a communication style that
emphasizes content, but in an engaging and approachable manner.

You Can’t Manage What You Can’t Understand

“You can’t manage what you can’t measure” is a common management slogan.
However, for the measurements to be meaningful, you have to understand the
dynamics of the system you are managing. Otherwise, you can’t tell which levers
you should pull to influence the system behavior (Chapter 10).

Understanding what you are managing becomes an enormous challenge for
decision makers in a world in which technology invades all parts of personal and
professional lives. Even though business executives aren’t expected to code a sol-
ution themselves, ignoring technological evolution and capabilities invariably
leads to missed business opportunities or missed expectations when IT systems
don’t deliver what the business needs. Managing complex technology projects by
timeline, staffing, and budget considerations alone is no longer going to suffice
in the digital world that demands ever faster delivery of functionality at high quality
(Chapter 40).

141

PART | III

Architects must help close the gap between technical knowledge holders and
high-level decision makers by clearly communicating the ramifications of techni-
cal decisions on the business; for example, through development and operational
cost, flexibility, or time-to-market. It’s not only the “business types” who face
challenges in understanding complex technology, though. Even architects and
developers cannot possibly keep up with all aspects of intricate technical solu-
tions, forcing them to also rely on easy-to-understand but technically accurate
descriptions of architectural decisions and their implications.

Getting Attention

Technical material can be very exciting, but ironically more so to the presenter
than to the audience. Keeping attention through a lengthy presentation on code
metrics or datacenter infrastructure can be taxing for even the most enthusiastic
audience. Decision makers don’t just want to see the hard facts, but also be
engaged and motivated to support your proposal. Architects therefore have to use
both halves of their brain to not only make the material logically coherent but to
also craft an engaging story.

Pushing (Less) Paper

The technical decision papers published by my team in the past yielded much
praise, but also unexpected criticism like, “All you architects do is produce
paper.” You might want to preempt such criticism by reminding people that doc-
umentation provides value in numerous ways:

Coherence
Agreeing on and documenting design principles and decisions improves
consistency of decision making and thus preserves the conceptual integrity
of the system design.

Validation
Structured documentation can help identify gaps and inconsistencies in
the design.

Clarity of thought
You can write only what you have understood.

Education
New team members become productive faster if they have access to good
documentation.

142 | THE SOFTWARE ARCHITECT ELEVATOR

History
Decisions (Chapter 8) are based on a specific context, which may have
changed since. Documentation can help you understand that context.

Stakeholder communication
Architecture documentation can help steer a diverse audience to the same
level of understanding.

Nevertheless there seems to be an unfounded resistance against writing doc-
umentation among development teams.

If someone claims that writing their thoughts down is too much effort, I rou-

tinely challenge them that this is likely because they haven’t really understood

things in the first place.

Useful documentation doesn’t imply reams of paper, rather the opposite:
short documents are more likely to be read. That’s why most technical docu-
ments that my teams write are subject to a five-page limit.

Isn’t the Code the Documentation?

Never shy of arguments, some developers claim that the source code is their doc-
umentation. So writing anything down is just duplication, right? They might
have a point as long as all audience groups have access to the code, the code is
well structured, and tools such as search are available. Still, your source code is
highly unlikely to explain your value proposition and your critical decisions to
your executive sponsors. For that, you’re going to want to take the Architect Eleva-
tor (Chapter 1) up to the penthouse, equipped with a crystal clear piece of
documentation.

Generating diagrams and documentation from code can be useful, but the
resulting visuals often struggle to help people see the forest for the trees. Also,
they don’t do a great job at explaining why things were done the way they are
because they generally fail to place the appropriate emphasis. Defining what is
“interesting” or “noteworthy” luckily remains a human task.

Choosing the Right Words

Technical writing is difficult, as evidenced by user manuals, which must rank as
some of the most ridiculed pieces of literature, if we can even call them that.
They might be surpassed in lack of empathy only by tax form instruction sheets.

COMMUNICATION | 143

Architects must therefore be able to engage readers who wasted years of
their career perusing poorly written manuals and who may never want to read
anything technical again outside of the occasional Dilbert comic. Careful choice
of words and clean sentence structures go a long way toward assisting readers in
grasping difficult concepts.

Communication Tools

This part helps overcome some common challenges of creating engaging techni-
cal communication and highlights that documentation can be a tremendously
useful tool for architects:

Chapter 18, Explaining Stuff
Helping management reason about complex technical topics requires you
to build a careful ramp for the audience.

Chapter 19, Show the Kids the Pirate Ship!
Excite your audience by showing not just the building blocks but also the
pirate ship.

Chapter 20, Writing for Busy People
Busy executives won’t read every line you write, so make it easy for them to
navigate your documents.

Chapter 21, Emphasis Over Completeness
There’s always too much to tell. Focus on the essence.

Chapter 22, Diagram-Driven Design
Not only can a picture say more than a thousand words, but it can actually
help you design better systems.

Chapter 23, Drawing the Line
Your architecture doesn’t just include a list of components, but also their
relationships. You must draw a line.

Chapter 24, Sketching Bank Robbers
Technical staff might struggle to create a good picture of a system, even
though they know it best. Help them by sketching bank robbers.

Chapter 25, Software Is Collaboration
Version control/continuous integration isn’t just for software development.
It’s a key part of collaboration.

144 | THE SOFTWARE ARCHITECT ELEVATOR

Explaining Stuff
Build a Ramp for the Reader, Not a Cliff!

Build a ramp, not a cliff for the reader—by Miu Tsutsui

Martin Fowler occasionally introduces himself as a guy “who is good at
explaining things.” Although this certainly has a touch of British Understate-
ment™, it also highlights a critically important but rare skill in IT. Too often
technical people either produce an explanation at such a high level that it is
almost meaningless or spew out reams of technical jargon with no apparent
rhyme or reason.

Build a Ramp, Not a Cliff

A team of architects once presented a new hardware and software stack for high-
performance computing to a management steering committee. The material cov-
ered everything from workload management down to storage hardware. It
contrasted vertically integrated stacks like Hadoop and Hadoop Distributed File
System (HDFS) against standalone workload management solutions like Plat-
form Load Sharing Facility (LSF). In one of the comparison slides, “POSIX

145

| 18

https://oreil.ly/FQmQY
https://oreil.ly/FQmQY

compliance” jumped out as a selection criteria. While this may be entirely appro-
priate, how do you explain to someone who knows little about filesystems what
this means, why it is important, and what the ramifications are?

We often refer to learning curves as steep, meaning it is tough for newcom-
ers to become familiar with, or “ramp up” on, a new system or tool. I tend to
assume my executive audience is quite intelligent (you don’t get that high up
simply by brown-nosing and playing politics), so they can in fact climb up a
pretty steep learning ramp. What they cannot do is climb up a vertical cliff. Build-
ing a logical sequence that enables the audience to draw conclusions in an unfa-
miliar domain can be “steep” but doable. Being bombarded with out-of-context
acronyms or technical jargon constitutes a “cliff.” “POSIX compliance” is a cliff
for most people.

You can turn it into a ramp by explaining that POSIX is a standard program-
ming interface for file access, which is widely adhered to by Unix distributions,
thus reducing lock-in in case you’re maintaining multiple Linux flavors. With
this ramp, executives can reason that because they already standardized on a sin-
gle Linux distribution, POSIX compliance doesn’t add much value. It’s also not
relevant for vertically integrated systems like Hadoop, which include the
filesystem.

By building a ramp out of just a few words, you managed to involve someone
who isn’t deeply technical in the decision-making process. The ramp might not
take the audience into the depths of POSIX versions and Linux flavors, but it pro-
vides a mental model to reason within the scope of the proposed decision.

A steep ramp is suitable for a quick climb but becomes tiresome if you are
trying to lead your audience up Mount Everest. Therefore, consider how high (or
deep) your audience needs to go to reason about what is presented. When defin-
ing terms, define them within the context of your problem, highlighting the rele-
vant properties and omitting irrelevant detail. For example, details about POSIX
history and Linux Standard Base aren’t pertinent to the decision above and
should be omitted.

Mind the Gap

The ramp should not only provide a reasonable incline but also avoid gaps or
jumps in logic. Experts often don’t perceive these gaps because their mind
silently fills them in. This is a phenomenal feature of our brain, but an audience
not intimately familiar with the topic is likely to stumble over even a minor gap
and lose track of the line of reasoning. This effect is known as the curse of

146 | THE SOFTWARE ARCHITECT ELEVATOR

knowledge: once you know something, it’s very hard to imagine how someone else
learns it.

At a discussion about network security, a team of architects presented their

requirement that servers located in the untrusted network zone have separate

network interfaces, so-called NICs, for incoming and outgoing network traffic to

avoid a direct network path from the internet to trusted systems. They contin-

ued with a statement that the vendor’s “three-NIC design” cannot meet their

requirement. To me, this made no sense: why is a server with three network

interfaces unable to support a design requiring two interfaces, one for incoming

traffic and one for outgoing? The answer was “obvious” to those who are famil-

iar with the context: each server uses one additional network interface each for

backup and management tasks, bringing the number of required ports to four,

which clearly exceeds three. Skipping this detail created a gap large enough for

the audience (and me) to stumble.

How big a gap they are creating is difficult to judge for the presenter. That’s
the curse of knowledge. In the example above, just a few words or two additional
labeled lines in the diagram would have been enough to bridge the gap. That,
however, doesn’t imply that the gap itself was small—it might have been narrow,
but plenty deep.

Presenting your line of reasoning to a person not familiar with the topic and

asking them to “teach back” what you explained to them, similar to holding a pop

quiz (Chapter 21), can be a great help in finding gaps.

First, Create a Language

When preparing technical conversations, I tend to use a two-step approach: first I
set out to establish a basic mental model based on plain vocabulary without prod-
uct names or acronyms. Once equipped with this, the audience is able to reason
in the problem space and to discern the relevance of parameters. This mental
model doesn’t have to be anything formal, it merely needs to give the audience a
way to make a connection between the different elements that are being
described.

In the aforementioned filesystem example, I would first describe how file
access is composed of a layered stack spanning from hardware (i.e., disk), basic
block storage (like a SAN) to filesystems, and ultimately the operating system,

EXPLAINING STUFF | 147

which hosts the applications on top. This explanation doesn’t even occupy half a
slide and would nicely fit into a picture of layered blocks (see Figure 18-1).

As a second step, I can use this vocabulary to explain that Hadoop is integra-
ted from the application layer all the way down to the local filesystem and disks
without any SAN or the like. This setup has specific advantages, such as low cost
and data locality, but requires you to build applications for this particular frame-
work. In contrast, standalone filesystems for high-performance computing, for
example GPFS or pNFS, either build on top of standard filesystems or provide
“adapters” that make the proprietary filesystem available through widespread
APIs, such as POSIX.

Figure 18-1. Comparing filesystems

You depict this in a diagram by having the Hadoop “stack” reach all the way
from top to bottom, whereas other systems provide “seams,” including POSIX
compliance. The audience can now easily understand why the POSIX feature is
important, but HDFS doesn’t need to provide it.

Consistent Level of Detail

Determining the appropriate level of detail to support the line of reasoning is dif-
ficult. For example, we pretended “POSIX” is a single thing when in reality there
are many different versions and components, the Linux Standard Base, and so
on. The ability to draw the line at roughly the right level of detail is an important
skill of an architect. Many developers or IT specialists love to inundate their audi-
ence with irrelevant jargon. Others consider it all terribly obvious and leave giant

148 | THE SOFTWARE ARCHITECT ELEVATOR

gaps by omitting critical details. As so often, the middle ground is where you
want to be.

Drawing the line at the correct level of detail depends on you knowing your
audience. If your audience is mixed, building a good ramp is ever more impor-
tant because it allows you to catch up folks who aren’t familiar with the details
without boring those who are. The highest form is building a ramp that audience
members already familiar with the subject matter appreciate despite not having
learned anything new. This is tough to achieve but is a noble goal to aim for.

Building a steep, but logical ramp allows those unfamiliar with the topic to get

up to speed without boring those who are.

Getting the level of detail “just right” is usually a crapshoot, even if you do
know the audience. At least as important, though, is sticking to a consistent level
of detail. If you describe high-level filesystems on slide one and then dive into bit
encoding on magnetic disks in slide two, you are almost guaranteed to either
bore or lose your audience. Therefore, strive to find a line that maintains cohe-
sion for reasoning about the architectural decision at hand, without leaving too
many “dangling” aspects.

Algorithm-minded people would phrase this challenge as a graph partition
problem: your topic consists of many elements that are logically connected, just
like a graph of nodes connected by edges. Your task is to split the graph (i.e., to
cover only a subset of the elements), while minimizing the number of edges (i.e.,
logical connections) being cut.

I Wanted to Have Liked To, but Didn’t Dare Be Allowed

This poor translation of Karl Valentin’s famous quote “Mögen hätt’ ich schon wol-
len, aber dürfen habe ich mich nicht getraut” reminds me of the biggest challenge
in explaining technical matter: too many architects believe their audience will
never “get” their explanations, anyway. Some are also afraid that presenting tech-
nical detail will make them appear unfit for management. Therefore, even
though they might have been able to, they’re shying away from attempting to
present technical concepts to a senior audience. In my view, this is a missed
opportunity. I see every interaction with management also as a teaching opportu-
nity. It’s the basis for the Architect Elevator.

EXPLAINING STUFF | 149

Every interaction with senior man-
agement is also a teaching oppor-
tunity. Use it!

Others go a step further and actually
prefer to confuse management with ran-
dom jargon, acronyms, and product
names so that their “decisions” (often
simply preferences or vendor recommen-

dations) aren’t unnecessarily put into question by the audience. This usually hap-
pens when technical teams, which see approval meetings as a nuisance rather
than an opportunity to gather feedback, play off management’s insecurity when it
comes to technical topics.

I have a rather critical view of such behavior and generally advise manage-
ment not to approve anything that isn’t crystal clear to them. After all, if some-
thing isn’t easily comprehensible, it’s due to lack of clarity, not the audience.

Your role as an architect is to build a broad understanding of the ramifica-
tions of decisions and assumptions that were made. Without it, big problems are
bound to pop up. For example, if a few years down the road an IT system can no
longer serve the business needs, it is often due to a constraint or an invalid
assumption that was made but never clearly communicated. Communicating
decisions and explaining trade-offs clearly protects both you and the business.

150 | THE SOFTWARE ARCHITECT ELEVATOR

Show the Kids the Pirate Ship!
Why the Whole Is Much More Than the Parts

This is what people want to see

When you look at the cover of a box of LEGOs you don’t see a picture of each
individual brick that’s inside. Instead, you see the picture of an exciting, fully
assembled model, such as a pirate ship. To make it even more exciting, the
model isn’t sitting on a living room table but is positioned in a life-like pirate’s
bay with cliffs and sharks—Captain Jack Sparrow would be jealous.

What does this have to do with communicating system architecture and
design? Sadly, not much, but it should! Technical communication too frequently

151

| 19

does the opposite: it lists all the individual elements in painstaking detail but for-
gets to show the pirate ship. The results are tons of boxes (and hopefully some
lines; see Chapter 23), without a clear gestalt or overall value proposition.

Is this a fair comparison, though? LEGO is selling toys to kids, whereas
architects need to explain the complex interplay between components to manage-
ment and other professionals. Furthermore, IT professionals have to explain
issues like network outages due to flooded network segments, something much
less fun than playing pirates. I’d posit that the analogy holds and we can learn
quite a few things from the pirate ship for the presentation of IT architecture.

Grab Attention

The initial purpose of the pirate ship is to draw attention among all the other
competing toy boxes. While kids come to the toy store to hunt for new and shiny
toys, many corporate meeting attendees are there because they were delegated by
their boss, not because they want to hear your content. Grabbing their attention
and getting them to put down their smartphones requires you to show some-
thing exciting.

Sadly, many presentations start with a table of contents, which I consider
rather silly. First, it isn’t exciting: it’s like a list of assembly instructions instead of
the ship. Second, the purpose of a table of contents is to allow a reader to navi-
gate a book or a magazine. If the audience must sit through the entire presenta-
tion anyhow, there is no point in giving them a table of contents at the
beginning.

Starting a presentation with a table of contents isn’t useful, because the audi-

ence doesn’t get to jump to Chapter 3. It also makes for a boring start: have you

ever seen a movie that begins with the outline of its storyline?

The old adage of “tell them what you are going to tell them,” which is
vaguely attributed to Aristotle, certainly doesn’t translate into a slide showing a
table of contents. You are going to tell them how to build a pirate ship!

Build Excitement

The moment children and your audience look at the pirate ship, they should feel
excitement. How cool is this? There are sharks and pirates, daggers and cannons,
chests of gold, and the parrot. You can feel the story unravel in your head just as
you are reading the list of play pieces. Why should PaaS, API gateways, web

152 | THE SOFTWARE ARCHITECT ELEVATOR

application firewalls, and build pipelines tell a less exciting story? It’s a story of
gaining speed in the treacherous waters of the digital world where automated
tests and build pipelines keep you safe despite the fast pace. Automated deploy-
ments industrialize your delivery, and PaaS allows your fleet to grow and shrink
as needed while you’re trying to avoid running ashore in the vicious land of ven-
dor lock-in. That’s at least as exciting as a pirate story!

I am convinced that IT architecture can be much more exciting and interest-
ing than people commonly believe. In an interview with my friend Yuji back in
2004, I explained that software development is quite a bit more exciting than it
appears on the outside—it is as exciting as you make it. If you regard software
development as a pile of LEGOs, you haven’t seen the pirate ship! People who
find software and architecture boring or just a necessary tedium haven’t
scratched the surface of software design and architecture thinking. They also
haven’t understood that IT isn’t any longer a means to an end but an innovation
driver for the business. They consider IT as randomly stacking LEGO bricks,
when in reality we are building exciting pirate ships!

Focus on Purpose

Coming back to the pirate ship, the box also clearly shows the purpose of the
pieces inside. The purpose isn’t for the bricks to be randomly stacked together
but to build a cohesive, balanced solution. The whole really is much more than
the sum of the parts in this case. It’s the same with system design: a database
and a few servers are nothing special, but a scale-out, masterless NoSQL database
is quite exciting.

Alas, the technical staff who had to put all the pieces together is prone to
dwell on said pieces instead of drawing attention to the purpose of the solution
they built. They feel that the audience should appreciate all the hard work that
went into assembling the pieces as opposed to the usefulness of the complete sol-
ution. Here’s the bad news: no one is interested in how much work it took you;
people want to see the results you achieved.

Pirate Ship Leads to Better Decisions

A pirate ship can do more than build excitement. It can also be a tool to make
better decisions. My Architect Elevator workshops include an exercise to draw a
system architecture. To see different ways of illustrating a common architecture,
I picked a system that’s quite well understood to most attendees, an application
monitoring system. I hand each group of attendees about a dozen cards, each of

SHOW THE KIDS THE PIRATE SHIP! | 153

https://oreil.ly/79lq9
https://architectelevator.com/workshops/

which contains common monitoring components like log aggregator, time series
database, thresholds, alerting, and ask them to draw an architecture containing
these pieces.

Attendees will typically draw diagrams that put the components into a logical
sequence; for example, by data flow, as demonstrated in Figure 19-1. Sometimes
components are further grouped into major functions, such as data collection,
data processing, and user interface. That’s what architecture diagrams normally
look like.

Figure 19-1. A typical architecture drawing of a monitoring system

After looking at such diagrams, I ask an innocent-sounding question:
“What’s this system’s purpose?” Initially, attendees mention detecting anomalies
and alerting someone. After some contemplation and prodding, the architects
start to see the bigger picture. They correctly identify the real purpose of a moni-
toring system as maximizing system availability by minimizing system down-
time. This is easily validated by assuming the opposite: the only time you don’t
need any monitoring is if you don’t care about system availability.

Soon after, participants realize that the original picture shows only half the
equation: a monitoring system is useful only if a detected problem can be ana-
lyzed and corrected. Based on this insight, they start to augment or redo the dia-
grams to show the pirate ship; that is, the main purpose, as depicted in
Figure 19-2.

154 | THE SOFTWARE ARCHITECT ELEVATOR

Figure 19-2. Showing the pirate ship of a monitoring system

They can now add the equivalent of the shark and the parrot by illustrating
the purpose in the center of the diagram: minimize MTTR, the time from the
error to recovery. As the MTTR spans the whole circle, we can think about both
sides: how long does it take to detect an outage, and how long does it take to
resolve it?

Thanks to the completed model, this aspect is apparent, and we can better
reason about whether the company should invest in an upgraded monitoring sys-
tem. Investing in a monitoring system that reduces the time to detect outages
from half an hour to a few minutes thanks to better sensors and smarter analyt-
ics may seem like a good idea. If resolving an outage takes several hours, though,
the picture changes: spending, for instance, half a million dollars to reduce the
MTTR from 4.5 hours to 4.1 hours doesn’t look that great anymore. Instead,
you’d be looking to reduce the time spent resolving outages. This can be
achieved, for example, by better transparency across systems or higher levels of
automation (Chapter 13) that can quickly roll back the deployed software to an ear-
lier, stable version. Drawing a better picture has helped us make better decisions
(Chapter 22).

SHOW THE KIDS THE PIRATE SHIP! | 155

1 Luke Hohmann, Innovation Games: Creating Breakthrough Products Through Collaborative Play (Bos-
ton: Addison-Wesley), 2007.

The Product Box

A successful concept similar to the pirate ship is the product box, one of Luke
Hohmann’s “innovation games” from his book of the same title.1 This game asks
participants to design a physical retail box for their product. To be appealing to
potential buyers, such a box would want to show common usages and highlight
benefits instead of just features.

Thinking of your product like a retail item can help focus on tangible benefits

instead of technical features.

If teams do well, they’ll put an exciting pirate ship on the cover, as shown in
Figure 19-3.

Figure 19-3. A product box for cloud computing

Designing the Pirate Ship

Drawing a pirate ship is generally a new, and occasionally uncomfortable, exer-
cise for product and engineering teams. A few techniques can overcome initial
hurdles.

156 | THE SOFTWARE ARCHITECT ELEVATOR

SHOW CONTEXT

The LEGO box cover image shows the pirate ship within a useful context, such as
a (fake) pirate’s bay. Likewise, the context in which an IT system is embedded is
at least as relevant as the intricacies of the internal design. Hardly any system
lives in isolation, and the interplay between systems is often more difficult to
engineer than the innards of a single system. So you should show a system in its
natural habitat.

Many architecture methods begin with a system context diagram. While well
intentioned, too many times it fails to be useful because it aims for a complete
system specification without placing an emphasis (Chapter 21). Such diagrams
show an endless ocean, but not the pirate ship.

THE CONTENT ON THE INSIDE

LEGO toys also show the exact part count and their assembly, but they do so on a
leaflet inside the box, not on the cover. Correspondingly, technical communica-
tion should display the pirate ship on the first page or slide and keep the descrip-
tion of the bricks and how to stack them together for the subsequent pages. Get
your audience’s attention, then take them through the details. If you do it the
other way around, they might all be asleep by the time the exciting part finally
comes.

CONSIDER THE AUDIENCE

Just like LEGO has different product ranges for different age groups, not every IT
audience is suitable for the pirate ship. To some levels of management that are
far removed from technology, you may need to show the little duckie made from
a handful of LEGO DUPLO bricks.

Pack Some Pathos

Some might feel that excitement is a bit too frivolous for a serious workplace dis-
cussion. That’s where you should look back at Aristotle, who gave us great advice
on communicating, some 2,300 years ago (Figure 19-4). He concluded that a
good argument is based on logos, facts and reasoning; ethos, trust and authority;
and pathos, emotion! Most technical presentations deliver 90% logos, 9% ethos,
and maybe 1% pathos. From that starting point, a small extra dose of pathos can
go a long way. You just have to make sure that your content can match the pic-
ture presented on the cover: pitching a pirate ship and not having the cannons
inside the box is bound to lead to disappointment.

SHOW THE KIDS THE PIRATE SHIP! | 157

Figure 19-4. Three modes of persuasion

Play Is Work

While on the topic of toys: building pirate ships would be classified by most peo-
ple as playing—something that is commonly seen as the opposite of work. Pull-
ing another reference from the ’80s movie archives reminds us that “all work
and no play makes Jack a dull boy.” Let’s hope that lack of play doesn’t have the
same effect on IT architects as it had on the author Jack in the movie The Shining
—he went insane and attempted to kill his family. But it certainly stifles learning
and innovation.

Most of what we know we didn’t learn from our school teachers, but from
playing and experimenting. Sadly, most people seem to have forgotten how to
play, or were told not to, when they entered their professional life. This happens
due to social norms, pressure to always be (or appear) productive, and fear. Play-
ing knows no fear and no judgment; that’s why it gives you an open mind for
new things.

Playing is learning, so in times of rapid change architects need to play more.

If playing is learning, times of rapid change that require us to learn new
technologies and adapt to new ways of working should re-emphasize the impor-
tance of playing. I actively encourage engineers and architects in my team to
play. Interestingly, LEGO offers a successful method called Serious Play for exec-
utives to improve group problem solving. They might be building pirate ships.

158 | THE SOFTWARE ARCHITECT ELEVATOR

http://www.seriousplay.com

Writing for Busy People
Don’t Expect Everyone to Read Word for Word

If you don’t have time to read, look at the pictures

Most organizations are full of boring documents that remain largely unread.
That doesn’t mean that documentation is a bad idea. Done well, it’s still the best
vehicle to proverbially get everyone on the same page across a wide audience.
Over time, brief but accurate technical position and decision papers have become
a trademark of my architecture teams.

While the title of this chapter is a pun on the titles of popular books such as
Japanese for Busy People, it intentionally implies an ambiguity that we are both
writing for a busy audience and are busy authors as well.

159

| 20

Writing Scales

Sadly, writing takes much more effort than reading, but skimping on writing is
penny-wise and pound-foolish because the written word has enormous advan-
tages over the spoken word or slide presentations:

It scales
You can address a large audience without gathering everyone in one room
(podcasts, admittedly, can also accomplish that).

It’s fast
People read two to three times faster than they can listen.

It’s searchable
You can find what you want to read quickly.

It can be edited and versioned
Everybody sees the same, versioned content.

So, writing pays off when you have a large (or important) enough audience.
The biggest benefit, though, is Richard Guindon’s insight that “Writing is
nature’s way of telling us how sloppy our thinking is.” That alone makes writing
a worthwhile exercise because it requires you to sort out your thoughts so that
you can put them into a somewhat cohesive storyline. Unlike most slide decks,
well-written documents are also self-contained, so they can be widely distributed
without further commentary.

Quality Versus Impact

The catch with writing is that although you can to some extent force people to (at
least pretend to) listen to you, it’s much more difficult to force anyone to read
your text. I remind writers that “the reader is by no means required to turn the
page. They decide based on what they read so far.”

Assuming the topic is interesting and relevant to the readership, I have
repeatedly observed a nonlinear relationship between the quality of the writing
and the attention it will receive, which is a good proxy metric for the impact of a
technical paper. If the paper doesn’t meet a minimum bar for quality—for exam-
ple, because it is verbose, poorly structured, full of typos, or displayed in some
ridiculous, difficult to read font—people won’t read it at all, resulting in zero
impact. I call this the “trash-bin” zone, named after the likely reader reaction. At

160 | THE SOFTWARE ARCHITECT ELEVATOR

the other end of the spectrum, additional impact from quality improvement ulti-
mately tapers off as the document approaches the “gold-plating” zone.

So, you want to get the quality of your writing into the “sweet spot” and then
focus on content instead of polishing further. While the sweet spot depends on
the topic and the audience, I posit that the trash-bin zone is wider, and therefore
more dangerous, than most developers believe. Key influencers—your most
important readers—are very busy people and tend to shy away from anything
that is more than a few pages long, perhaps unless it is from a high-paid consul-
tancy, in which case they make someone else read it because they paid so much
money for it.

A senior executive once refused to read a paper because his first name was mis-

spelled on the cover page. I think he was right.

For this impatient readership, clarity of wording and brevity aren’t nice-to-
haves: a lack thereof will quickly put your paper quite literally into the trash-bin
zone. Blatant typos or grammar issues are like the proverbial fly in the soup: the
taste is arguably the same, but the customer is unlikely to come back for more.

“In the Hand”—First Impressions Count

When Bobby Woolf and I wrote Enterprise Integration Patterns, the publisher
highlighted the importance of the “in the hand” moment, which occurs when a
potential buyer picks the book from the shelf to give a quick glimpse at the front
and back cover, maybe the table of contents, and to leaf through. The reader
makes the purchasing decision at this very moment, not when they stumble on
your ingenious conclusion on page 326. This is one reason why we included
many diagrams in that book: almost all facing pages contain a graphical element,
such as an icon (aka “Gregorgram”), a pattern sketch, a screenshot, or a UML
diagram: roughly 350 in total. We wanted to send a strong message to potential
readers that it isn’t an academic book, but a pragmatic and approachable one.
Technical papers should do the same: use a clean layout, insert a handful of
expressive diagrams, and, above all, keep it short and to the point!

To assess what a short paper will “feel” like to the reader without wasting
printer paper, I zoom out my WYSIWYG editor far enough that all pages appear
on the screen, as illustrated in Figure 20-1. I can’t read the text anymore, but I
can see the headings, diagrams, and overall flow; for example, the length of

WRITING FOR BUSY PEOPLE | 161

1 Barbara Minto, The Pyramid Principle: Logic in Writing and Thinking (Upper Saddle River, NJ: Prentice
Hall, 2010).

paragraphs and sections. This is exactly how a reader will see it when flipping
through your document to decide whether it’s worth reading. If they see an end-
less parade of bullet points, bulky paragraphs, or a giant mess, the paper will
leave “the hand” quite quickly as gravity teleports it into the recycling bin.

Figure 20-1. Zooming out from a technical paper

The Curse of Writing: Linearity

Text is linear: one word comes after the other, one paragraph after the previous.
However, hardly any relevant technical topic is one-dimensional. One of the
major challenges of technical writing (or speaking) is therefore to map a complex
topic space into a linear storyline. For the algorithmically inclined, writing is a bit
like coding a graph traversal problem: you can go breadth-first or depth-first.
Breadth-first means that you cover all your topics at a high level, gradually
descending down into the detail. Depth-first covers each topic in depth before
moving on to the next topic.

A well-thought-out logical structure can help overcome this limitation. It’s
easier to traverse a tree than a complex graph with many loops. Barbara Minto
captures the essence of this approach in her book The Pyramid Principle.1 The
“pyramid” in this context denotes the hierarchy of content; that is, a tree, not the
pyramids in IT (Chapter 28).

162 | THE SOFTWARE ARCHITECT ELEVATOR

A Good Paper Is Like the Movie Shrek

Most animated movies have to entertain multiple audiences: the kids who love
the cute characters plus the adults who had to shell out 30 bucks to take the fam-
ily to the movies and spend two hours watching cute characters. Great animated
movies like Shrek manage to address both audiences by including humor for kids
and adults. The audiences might laugh at slightly different scenes but aren’t dis-
tracted by each other.

Technical papers that address a diverse audience should aim to do the same.
They need to supply technical detail while also highlighting important decisions
and recommendations, so they can be read at two levels. A few simple techniques
can help make reading your paper a little bit like watching Shrek:

Storytelling headings
These replace an executive summary: your reader should get the gist of the
paper just by reading the headings. Headings like “introduction” or “con-
clusion” aren’t telling a story and have no place in a short paper.

Anchor diagrams
These provide a visual cue for important sections. Readers who flip
through a paper likely pause at a diagram, so it’s good to position them
strategically.

Sidebars
These are the short sections that are offset in a different font or color, indi-
cating to the reader that this additional detail can be safely skipped without
losing the train of thought.

This way, executives can just read the headings and look at the diagram to
get the essence of your paper in a minute or two (Figure 20-2). Most readers will
read the paper but might skip the callouts, whereas specialists will pay particular
attention to the detail in the callouts. This way, you can help break the curse of
linearity a tiny bit by giving different readers different paths through the
document.

WRITING FOR BUSY PEOPLE | 163

2 Leslie A. Olsen and Thomas N. Huckin, Technical Writing and Professional Communication, 2nd ed. (New
York: McGraw-Hill, 1991).

Figure 20-2. Breaking the curse of linearity

Making It Easy for the Reader

After a positive first impression, your readers will begin reading your paper. For
advice on technical writing, I recommend the book Technical Writing and Profes-
sional Communication,2 which sadly appears out of print but is widely available
used. It covers a lot of ground in its 700 pages, including authoring different
types of documents, such as resumes. I find the sections toward the end on paral-
lelism and paragraph structure most helpful. Parallelism demands that all entries
in a list follow the same grammatical structure; for example, all start with a verb
or an adjective. A counterexample would be the left column of the following, with
the right-hand side showing a better approach:

System A is preferred because: System A is preferred due to:

• It’s faster • Performance

• Flexible • Flexibility

• We want to reduce cost • Economics

• Stable • Stability

164 | THE SOFTWARE ARCHITECT ELEVATOR

3 Jeff Ullman, “Viewpoint: Advising students for success,” Communications of the ACM 52, No. 3 (March
2009).

Inconsistent writing uses too many of your reader’s brain cells just to parse
the text instead of focusing on your message. Taking the “noise” out of the lan-
guage reduces friction and allows your reader to focus on the content. Parallelism
is not only useful in lists but also in sentences; for example, when drawing analo-
gies or contrasting.

Each paragraph should focus on a single topic and introduce that topic at the
beginning, like this very paragraph: readers can glean from the first few words
that this paragraph is about paragraphs. They can also rest assured that I don’t
start talking about lists halfway through, so if they already know how to write a
good paragraph, they can safely skip this one. That’s why “It is further important
to note that in some circumstances one has to pay special attention to…” makes
for a very poor paragraph opening.

Lists, Sets, Null Pointers, and Symbol Tables

Most programming languages support sets—i.e., unordered collections of ele-
ments—but books (and speeches) don’t: every list has an order. Because you
can’t avoid it, you’d better choose the order consciously. Valid options are time
(chronological), structure (relationships), or ranking (importance). Note that
“alphabetical” and “serendipitous” aren’t valid choices.

“How is this ordered?” has become a standard question I ask when reviewing

documents containing a list or grouping.

Loose usage of the word this as a stand-alone reference is another pet peeve
of mine; for example, stating that “this is a problem” without being clear what
“this” actually refers to. Jeff Ullman cites such a “non-referential this” as one of
the major impediments to clear writing, exemplified in his canonical example:3

If you turn the sproggle left, it will jam, and the glorp will not be able to move. This

is why we foo the bar.

Do we foo the bar because the glorp doesn’t move or because the sproggle
jammed? Programmers well understand the dangers of dangling pointers and

WRITING FOR BUSY PEOPLE | 165

4 Literally, “brevity gives spice,” ironically translating into “short and sweet.”

5 Walker Royce, Eureka!: Discover and Enjoy the Hidden Power of the English Language (New York: Morgan
James Publishing, 2011).

Null Pointer Exceptions, but they don’t seem to apply the same rigor to writing—
maybe because your readers don’t throw a stack trace at you?

Another fantastic piece of advice from Minto is the following:

Making a statement to a reader that tells him something he doesn’t know will auto-

matically raise a logical question in his mind […] the writer is now obliged to answer

that question. The way to ensure total reader attention, therefore, is to refrain from

raising any questions in the reader’s mind before you are ready to answer them.

My translation for software engineers: when writing, assume that your read-
ers use a single-pass compilation algorithm and don’t have access to a complete
symbol table. This means that forward references aren’t allowed: you can only
refer to terms and concepts that were already introduced. For the algorithmically
minded, you’ll need to do a topological sort on your topic graph. What if there’s a
circle? You’ll get a stack overflow, just like your audience!

Following this simple advice will place your technical paper above 80% of
the rest, because, sadly, the bar for technical documents is so low.

An internal presentation once stated on the first slide: “only technology ABCD

has proven to be a viable solution.” When I asked for proof, it turned out that

none existed due to “lack of time and funding.” These aren’t just wording

issues, but fatal flaws. A reader no longer wants to see page 2 if they cannot

trust page 1.

Lastly, make sure to avoid unsubstantiated claims. I refer to this phenom-
enon as the “hourglass presentation”: it starts with a lot of buzzwords and prom-
ises, then becomes very narrow, and ends with bold requests for funding and
headcount.

In der Kürze liegt die Würze4

In technical writing, your readers are not out to appreciate your literary creativity,
but to understand what you are saying. Therefore, less is more when it comes to
word count. Although Walker Royce5 spends a good part of his book musing
about English words, his advice on brevity and editing is sound. His paraphrased

166 | THE SOFTWARE ARCHITECT ELEVATOR

6 William Zinsser, On Writing Well: The Classic Guide to Writing Nonfiction (New York: Harper, 2006).

7 Jacques Barzun, Simple & Direct (New York: Harper Perennial, 2001).

8 Richard P. Gabriel, Writers’ Workshops & the Work of Making Things: Patterns, Poetry… (Upper Saddle
River, NJ: Pearson Education, 2002).

citation from Zinsser6 on the usage of “I might add,” “It should be pointed out,”
and “It is interesting to note,” hits the mark:

If you might add, add it. If it should be pointed out, point it out. If it is interesting to

note, make it interesting.

Royce also gives many concrete suggestions on how to replace long-winded
expressions or “big” words with single, simple words, thereby not only reducing
noise but also aiding non-native speakers.

If you are up to a more rigorous evaluation of properly linking words into
sentences and you are willing to put up with a few tirades and snipes, I recom-
mend Barzun’s Simple & Direct,7 which isn’t simple, but pedantically direct.

Our team’s internal editing cycles routinely cut word count by 20 to 30%
despite including additional material or detail. To the first-time author this might
be shocking, but Saint-Exupéry’s adage that “perfection is achieved not when
there is nothing more to add, but when nothing is left to take away” is especially
true for technical papers (and good code for that matter). I actually edited this
very chapter down by 15%.

When this type of cruel editing was first bestowed upon me by a professional
copy editor, I felt that the document no longer sounded “like me.” Over the years,
I have come to appreciate that being crisp and accurate is a great way to have a
technical paper sound like me. Longer, more personal pieces like this book allow
some “slack” to help the reader keep attention after many pages.

Unit Testing Technical Papers

The most effective vehicle for improving technical papers is to hold a writer’s
workshop.8 Such a workshop entails attendees discussing a paper, which they
have read, while the author is allowed to listen but not to speak. This setup simu-
lates someone reading and trying to understand a paper. The author must
remain silent because they cannot pop out of their paper to explain to each reader
what was really meant—a document must be self-contained. Because writer’s

WRITING FOR BUSY PEOPLE | 167

9 John Vlissides, James O. Coplien, and Norman L. Kerth, Pattern Languages of Program Design 2 (Read-
ing, MA: Addison-Wesley, 1996).

workshops are time intensive, they are best applied after the paper has gone
through an initial review.

Technical Memos

A document doesn’t need to be all encompassing—who reads an encyclopedia,
anyway? Twenty years ago, Ward Cunningham defined the notion of a technical
memo, a document that describes a particular aspect of the system, in his Episodes
pattern language:9

Maintain a series of well formatted technical memoranda addressing subjects not

easily expressed in the program under development. Focus each memo on a single

subject. […] Traditional, comprehensive design documentation […] rarely shines

except in isolated spots. Elevate those spots in technical memos and forget about the

rest.

Keep in mind, though, that writing technical memos is more useful, but not
necessarily easier, than producing reams of mediocre documentation. The classic
example of this noble idea gone wrong is a project wiki full of random, mostly
outdated, and incohesive documentation. This isn’t the tool’s fault (the wiki was
not quite coincidentally also invented by Ward); rather, it’s due to a lack of
emphasis over completeness (Chapter 21) by the writers.

The Pen Is Mightier Than the Sword, but Not Mightier Than
Corporate Politics

Producing high-quality position papers can lead to an unexpected amount of
organizational headwind. The word perfection is invariably used with a negative
connotation by those who are poor writers or want to avoid sharing their team’s
work. Ironically, these are often the same departments that love to be entertained
by colorful vendor presentations.

Other teams claim that their “Agile” approach spares them from any need to
produce documentation, notwithstanding the fact that those teams have no run-
ning code to show either. Agile software development places the emphasis on
producing working code that is worth reading, but multiyear IT strategy plans are

168 | THE SOFTWARE ARCHITECT ELEVATOR

unlikely to manifest themselves in code alone. Alas, good documents seem to be
even more difficult to find than good code.

Some corporate denizens actively resent writing clear and self-contained
documents because they prefer to “tune” their story for each audience. Naturally,
this approach doesn’t scale (Chapter 30).

Writing good documents in an organization that is generally poor at writing
can give you significant visibility, but it can also rock the political system.

The first time I sent a positioning paper on digital ecosystems to senior manage-

ment, a person complained to both my boss and my boss’s boss about me not

having “aligned” the paper with her.

Communication is a mighty tool, and some people in your organization will
fight hard to control it. Pick your targets wisely.

WRITING FOR BUSY PEOPLE | 169

Emphasis Over Completeness
Show the Forest, Not the Trees

Can you spot the performance bottleneck in this database schema?

When sharing a diagram, you might receive feedback such as, “System ABC
is missing.” Even though it’s well intentioned, completeness shouldn’t be your
architecture diagrams’ primary goal. Rather, you should depict the appropriate
scope. What’s the right scope? One that’s big enough to be meaningful, small
enough to be comprehensible, and cohesive enough to make sense.

In large organizations, there’s a constant danger of being overcome by the
sheer size and complexity of the environment. So, putting some blinders on is
allowed, and in fact encouraged.

171

| 21

1 William Kent, Data and Reality: A Timeless Perspective on Perceiving and Managing Information in Our
Imprecise World, 3rd ed. (Westfield, NJ: Technics Publications, LLC, 2012).

All models are wrong, but some
are useful. To know which ones,
you must first know which ques-
tion you’re trying to answer.

Diagrams Are Models

When discussing architecture diagrams, it’s good to remind ourselves why we
draw them in the first place. Architecture diagrams are models of reality (Chap-
ter 22). The most common model of reality we use in daily life is a map: maps
help us decide where to go and how to get there. To do so, maps select a specific
scope and emphasis. For example, a Chicago street map that shows only half of
downtown would be awkward. However, including all of Lake Michigan wouldn’t
be very useful, just like adding Springfield at the same scale. A map designer
chooses conscious boundaries and a conscious level of detail based on the map’s
intended purpose.

Models, whether maps or architecture diagrams, aren’t about being right or
wrong. In fact, they’re all wrong (Chapter 6) because they aren’t reality. The open-
ing paragraph of William Kent’s book Data and Reality1 aptly reminds us: “Rivers
do not have dotted lines in them and freeways are not painted red.”

Instead of trying to make models right, you should think about whether your
models are useful. To answer that question, though, you need to first know what
the model’s use, or purpose, is. For a model to be useful, it needs to help you
answer a question or make a better decision. Otherwise, your diagram is just art,
and having looked at thousands of architecture diagrams, my impression is that
most architects aren’t particularly gifted artists.

So, before setting out to draw a specific diagram or design a presentation
slide, you must first decide which questions you are looking to answer. A broad
“lay of the land” might be needed to build your world map (Chapter 16), but it isn’t
very useful as an architecture diagram. Think of it this way: a travel bureau will
show you beaches and palm trees, not a map of the whole continent.

When deciding on a diagram’s scope
and boundaries, I am not always able to
do so a priori. Sometimes, I need to have
the diagram in front of my eyes to decide
whether I prefer to split it into two. I
therefore almost always work iteratively.

172 | THE SOFTWARE ARCHITECT ELEVATOR

2 Wikipedia, “Five-Second Rule,” https://oreil.ly/1Z397.

3 Garr Reynolds, "Slideuments and the Catch-22 for Conference Speakers,” Presentation Zen (blog), April
5, 2006, https://oreil.ly/yw45r.

The Five-Second Test

Architecture diagrams or slides are designed to get a specific point across and
therefore must place a clear emphasis. This distinguishes them from reference
books or manuals, which aim to be comprehensive. Still, too many slides I see try
to give the big picture as the best possible approximation of reality without know-
ing which part is actually worth looking at.

When faced with overly “noisy” slides, I tend to apply a strict but useful five-
second rule, which isn’t related to food safety:2

I show the audience a slide for a mere five seconds and ask them to describe what

they saw. In most cases, the responses boil down to a few words from the headline

and statements like “three yellow boxes and one blue barrel below.” If you are aim-

ing to convey a shared database pattern, you likely succeeded, but most authors will

be disappointed to hear such a dramatic simplification of their precious content.

Slides that don’t pass this test are likely to confuse the audience when first
shown: viewers’ eyes will chase across the visuals, trying to discern what’s impor-
tant and what’s the meaning of it all. During that time your audience isn’t listen-
ing to you explaining the content because they’re busy with the visuals. Of
course, you will show the actual slide for more than five seconds, but first
impressions count—for every slide you show.

A useful presentation technique is to verbally introduce the concept of the next

slide before actually showing it. The audience is more likely to listen because

they’re aren’t distracted by the new visual and you’re building up a bit of sus-

pense. Naturally, this requires you to know which slide comes next rather than

use the slides as a reminder what to talk about.

Some organizations create slides that try to act like documents, meaning
they are also meant to be read as handouts. The resulting slideument, a term
coined by Garr Reynolds,3 is rarely a useful presentation and never passes the
five-second test because there’s way too much content on a slide. Sadly, most of
them don’t make a meaningful document either because it usually lacks a clear
structure and storyline. Interestingly, Martin Fowler realized that there’s a use

EMPHASIS OVER COMPLETENESS | 173

https://oreil.ly/1Z397
https://oreil.ly/yw45r
https://oreil.ly/VQ20P

4 Martin Fowler, “Infodeck,” MartinFowler.com, Nov. 16, 2012, https://oreil.ly/yvgTq.

5 Nancy Duarte, “PowerPoint Presentations vs. Slidedocs,” Duarte.com, https://oreil.ly/MjKny.

6 A pop quiz is a short test given by a teacher in class without prior announcement. It goes without saying
that this is fairly unpopular with students.

case for documents created in a presentation tool, for which he’s coined the term
Infodecks.4 Nancy Duarte shows a similar approach with SlideDocs.5 Both can be a
useful communication medium when being read as opposed to being projected.

A Pop Quiz

I participate in many architecture reviews and decision boards. While such
boards often exist due to an undesirable separation of decision makers and knowledge
holders (Chapter 1), many large enterprises depend on them to harmonize their
technical landscape and to gain an overview across many functional silos. The
topics for these meetings can be fairly technical in nature, making me skeptical
whether the audience is truly following along.

A presentation pop quiz consists of blanking the presentation and having a

member of the audience explain what they saw and understood. It’s a test for

the presenter, not the audience.

To test whether the decision body understands what they are deciding, I
inject a pop quiz6 into the presentation by telling the presenter to pause and
blank the slide (hitting “B” will do this in PowerPoint) and asking who among
the audience would like to recap what was said up to this point in their own
words. Sadly, this exercise is more likely to trigger nervous laughter, frantic star-
ing at the floor, and sudden checking of incoming emails as opposed to a good
summary. As a result, I might ask the presenter to briefly recap the key points for
everyone’s benefit. It’s also useful to highlight to the audience that this is a test
for the presenter, not for them.

Simple Language

I don’t exclude myself from the pop quiz. When replaying what the speaker said,
I often intentionally use very simple language to make sure I really capture the
essence.

174 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/yvgTq
https://oreil.ly/MjKny

7 Neal Ford, Matthew McCullough, and Nathaniel Schutta, Presentation Patterns: Techniques for Crafting
Better Presentations (Boston: Addison-Wesley Professional, 2012).

In a presentation about network security architecture in the untrusted network

zone, after watching a handful of rather busy slides, I summarized the speaker’s

statement as follows: “What worries you is the black line going all the way from

top to bottom?” His resounding “yes” confirmed both that I had correctly sum-

marized the issue and that the presenter took away an insight into how to better

communicate this very aspect.

This technique might seem overly simplistic at first, but it validates that
there is a solid connection between the model being presented (such as vertical
lines depicting legal network paths from the internet to the trusted network) and
the problem statement (direct paths pose a security risk). Removing all noise and
reducing the statement down to the “black line” sharpens the message.

Diagramming Basics

If I had to name the number-one enemy of useful architecture diagrams, it
would likely be Visio’s default 10-point font size and skimpy line width, augmen-
ted by poor user judgment regarding component placement. It’s really in the
same league as PowerPoint’s autosize feature that gives people an endless supply
of bullet points to neutralize their audience. True, the tool isn’t solely responsi-
ble, but Visio’s default settings, which are tuned for detailed engineering sche-
matics, lure the user into creating visuals that are unsuitable for projecting
something evocative on the wall.

My advice for creating diagrams that can convey a clear message without
dumbing down the content therefore starts with the following basic techniques.

AVOID THE ANT FONT

Text that isn’t readable isn’t adding value, so avoid ant fonts7 unless you consider
“I know you can’t read this” an engaging introduction into a slide. Using sans-
serif fonts of decent size and good color contrast will be appreciated in any pre-
sentation. I can’t count the number of times I see slides that contain tiny fonts
but consist of 50% empty space that could have been used for larger boxes and
larger fonts, similar to Figure 21-1. Architecture diagrams aren’t the place for
minimalism—go bold.

EMPHASIS OVER COMPLETENESS | 175

8 Nancy Duarte, slide:ology: The Art and Science of Creating Great Presentations (Sebastopol, CA: O’Reilly
Media, 2008).

Figure 21-1. Use the available space to make text easily readable

Most tools allow you to set defaults for line width and font sizes. Use them.
Also, periodically zoom down the diagram on your screen to 25% to see what’s
still readable.

MAXIMIZE THE SIGNAL-TO-NOISE RATIO

Differences in elements that don’t have meaning are nothing but distractions.
Therefore, reduce visual noise; for example, by properly aligning elements and
using a consistent form and shape (see Figure 21-2). It’s also good to be careful
with too much decoration, such as rounded corners, shadows, and so on—they
can distract from the core message you’re trying to convey. If things look differ-
ent, make sure that this expresses meaning, as detailed in Chapter 23.

Figure 21-2. Make same things look the same

Great advice on placement, visual layout, and emphasis can be found in
Nancy Duarte’s book slide:ology.8

LET ARROWS POINT

One of the my most frequent maneuvers in presentation tools is to increase the
size of arrowheads. If you use directed arrows to express semantics (Chapter 23),
you’re going to want them to be easily recognizable, as depicted in Figure 21-3. If
direction isn’t critical to understanding the diagram, omit the arrowheads to
reduce noise.

Figure 21-3. If direction is important, make the arrowhead big enough to see

176 | THE SOFTWARE ARCHITECT ELEVATOR

If your tool won’t cooperate, place a triangle over the line; never let the tool
be an excuse for poor diagrams. It’s like the cook coming out of the kitchen and
telling you that your meal isn’t tasty because the farmer didn’t grow tasty toma-
toes. You’re unlikely to be extraordinarily sympathetic.

LEGENDS ARE CRUTCHES

Although they’re a standard feature in scientific circles and charts exported from
Excel, a visual legend requires a viewer to correlate patterns or colors in a dia-
gram with explanatory labels below or next to it. Having the label where the data
is located is much easier to digest, as shown in Figure 21-4.

Figure 21-4. Label your data as opposed to making the reader read a legend

Therefore, use legends only when absolutely unavoidable. Most of the time
you can remove clutter or increase the size of boxes to put the labels where they
belong. I have redrawn stacked bar graphs exported from Excel export to have
better control over sizing and labeling. The investment of a mere five minutes
saved a room full of executives much time and effort in reading the data.

LAYER VISUALLY

As we already learned, a good document reads like watching the movie Shrek (Chap-
ter 20). The same is true for diagrams, which might be required to illustrate
complex interrelationships that lead to a particular system behavior (Chapter 10).
They should nevertheless pass the five-second test by having a clear high-level
structure that is visible first, augmented by additional detail that reveals itself
later and doesn’t interfere with the big picture. Figure 21-5 first reveals that the
system consists of two identical zones, after which you can “zoom in” to see how
each zone is internally composed.

EMPHASIS OVER COMPLETENESS | 177

9 Hohpe and Woolf, Enterprise Integration Patterns.

Figure 21-5. Give your diagrams a clear high-level structure

I occasionally use a build slide or incremental reveal for this purpose, acknowl-
edging that there are strong opinions for and against such visual effects. I find
build slides to work well as they give the viewer time to understand each element
before adding the next batch. For this to work, let the new elements simply
appear, avoiding any temptation to select one of those amazing spiral-twist-fade-
rotate reveals.

If you layer a diagram perfectly, the visuals will reveal themselves incremen-
tally. If you can’t quite get there every time, incremental build slides are a reason-
able substitute.

The Style of Elements

Most architects will develop their own visual style over time and can use it as a
valuable branding tool. Many of my technical papers and diagrams are easily rec-
ognizable—for example, when sitting on someone’s desk—thanks to a consistent
set of colors and a bold, almost cartoon-like style that favors large lettering over
subtle aesthetics.

My diagrams virtually always have lines (Chapter 23), but I keep the lines’
semantics to two or at most three concepts. Each type of relationship that I depict
with lines should be intuitive. For example, I might depict a data flow with broad,
gray arrows, whereas control flow is shown in thin, black lines, as illustrated in
Figure 21-6, which depicts the Control Bus pattern from Enterprise Integration
Patterns.9

178 | THE SOFTWARE ARCHITECT ELEVATOR

10 Barzun, Simple & Direct.

Figure 21-6. The Control Bus pattern illustrates line semantics

The line width suggests that a large amount of data flows through the sys-
tem’s data flow while the control flow is much smaller but significant. The best
visual style, borrowed from advice on writing, is the one “that keeps solely in
view the thought one wants to convey.”10

Making a Statement

When preparing a slide or a document paragraph, the title sets the tone for a
clear and focused statement. For most circumstances, I prefer titles that are full
sentences because the title alone tells the essence of the story. Using this
approach also assures that each slide or paragraph focuses on a single main
statement.

I make an exception for keynote presentations to a large and diverse audi-
ence for which I use titles consisting of single words or short phrases like the
Architect Elevator (Chapter 1). Such short titles mesh well with simple visuals that
are truly a visual aid to me, the speaker, to draw the audience’s attention and help
them memorize the content via a visual metaphor.

For technical presentations that are prepared for a review or decision-making
session, however, I prefer clear statements, with which one can either agree or
disagree. These statements are much better represented as full sentences, akin to
the story-telling headings (Chapter 20) in documents for busy people. In such
cases, “Stateless services and automation support elastic scale-out” is a better title
than “Server Architecture.”

What you certainly want to avoid are verbose phrases or crippled sentences
that confuse the reader but don’t make any form of statement: “Server infrastruc-
ture and application architecture overview diagram (abstracted for simplicity’s
sake).” Trust me, I’ve seen even worse.

EMPHASIS OVER COMPLETENESS | 179

Twenty Slides, One Story

When structuring presentations, I realize that too many technical presentations
tell one story per slide. While it’s good to focus on one message per slide, the
sequence of messages needs to form a cohesive story, as demonstrated in the bot-
tom half of Figure 21-7. Interestingly, you can test this easily using PowerPoint’s
Outline View, which shows all slide headings in a sidebar.

Figure 21-7. Telling one story supported by slides aids flow and saves time

Creating this cohesion not only makes a single story line for a more logical
flow, it also drastically shortens the time needed to present. If each slide tells a
new story, the speaker will easily spend half a minute looking at and introducing
each slide. Multiply this by the typical 20 to 30 slides in a presentation, and you’ll
find that having a connected storyline can save you up 15 minutes. So, when
someone worries that they don’t have enough time for their content, I advise
them to make sure that they have a single story.

For a good collection of slide decks that tell a story, I recommend a visit to
https://speakerdeck.com.

Nothing Is Confusing in and of Itself

The closing advice I give to anyone creating documents and visuals that need to
explain complex topics is the following: things might be complicated, but
whether it’s confusing, that’s up to you.

180 | THE SOFTWARE ARCHITECT ELEVATOR

https://speakerdeck.com

Diagram-Driven Design
Cheating in a Picture Is Much Harder
Than Cheating in Words

Designing with Diagrams

Some years ago, the Crested Butte Enterprise Architecture Summit once
again proved that sticking a bunch of geeks in a remote town can lead to creative
results. In our case, the result was an A-to-Z list of 26 new development strate-
gies, starting from activity-driven development (ADD) and ending on zero-defect
development (ZDD). Domain-driven design (DDD) was dedicated to Eric Evans’s

181

| 22

1 Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (Upper Saddle River, NJ:
Addison-Wesley, 2003).

2 Garr Reynolds, Presentation Zen: Simple Ideas on Presentation Design and Delivery, 3rd ed. (New Rid-
ers, 2019).

3 Edward Tufte, “PowerPoint Does Rocket Science: and Better Techniques for Technical Reports,” Edward-
Tufte.com, https://oreil.ly/kDihX.

fantastic book Domain-Driven Design.1 However, another “DDD” sprang to mind:
diagram-driven design, and it turned out that there’s actually a serious idea behind
the fun exercise.

Presentation Skills: More Than a Wide Stance

While working for Google in Japan, I created and taught a class on presentation
skills for engineers, which included some common ideas of using strong,
impactful visuals inspired by books like Presentation Zen.2 Following my own
advice equipped me with high-resolution graphics of confident managers, fuel
gauges indicating that your mileage may indeed vary, shoes that apparently do
not fit all, and so on. Still, however impactful fancy graphics may be, for most
technical presentations a wide stance, deep voice, and Steve Jobs–like hand ges-
tures (turtleneck optional) are unlikely to teach the audience how a multicloud
strategy increases your system architecture complexity.

Instead, you need “meat”: what design alternatives did the team have? How
do they differ? What design principles made you choose one over the other?
What are the main building blocks of the systems and how do they interact (Chap-
ter 23)? How did you track down that performance bottleneck and what did you
learn from it? When Garr Reynolds, the author of Presentation Zen, came to Goo-
gle to talk about his book, he acknowledged that technical discussions often
require detailed diagrams or even snippets of source code. He suggested to pro-
vide those as a handout instead of including it in the presentation to make it eas-
ier for the audience to read and digest them. Still, most technical presentations I
see do contain source code or diagrams to explain technical concepts in detail, so
we’d better figure out how to do so effectively.

Ed Tufte already ran bullet points through the grinder by blaming them for
the inaction that led to the Space Shuttle Columbia disaster3 upon re-entry (and
he might not be wrong judging from the slides they put together). “Death by
PowerPoint” was immortalized by a Dilbert comic strip as early as 2000. You
can’t fit a lot of source code on a slide either, especially if you are using a verbose

182 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/kDihX

4 Martin Fowler, “UML as Sketch,” MartinFowler.com, https://oreil.ly/WLUgR.

5 Mark Collins-Cope, “Interview with Grady Booch,” Objective View Magazine, Issue 12, Sept. 12, 2014,
https://oreil.ly/HGc5j.

language with checked exceptions. That leaves you with diagrams as your main
communication vehicle for technical concepts.

Diagramming as Design Technique

Back at Crested Butte, we looked at our list and pondered whether some of our
concoctions actually had meaning. Interestingly, as we discussed how to draw
meaningful diagrams in a later session, I highlighted the importance of a consis-
tent visual vocabulary, which would omit unnecessary details but highlight the
essence of the design decisions (Chapter 8). During this discussion, we realized
that to draw a good picture, you need to have a decent design in the first place. If
reality is completely convoluted, it’s hard to depict order in retrospect. Taking
this thought a step further, we realized that good diagramming contributes to
good system design in general. Diagram-driven design had become a reality!

When talking about diagram-driven design, I don’t imply that we’d generate
code from UML diagrams. I am pretty firmly rooted in Martin Fowler’s UML as
Sketch4 camp, meaning UML is a picture to aid human comprehension, not a
programming language or specification. If people don’t quite agree, I refer to
Grady Booch, who as co-creator of the UML remarked that “The UML was never
intended to be a programming language.”5 Instead, I am talking about a picture
that conveys important concepts—the proverbial big picture that does not get
caught up in irrelevant details.

Designing with Diagrams

An excellent example of designing with diagrams is the book Enterprise Integra-
tion Patterns coauthored by Bobby Woolf and myself in 2003. The book defines a
pattern language for designing asynchronous messaging solutions, which is rep-
resented both in text form and as a set of icons. The consistent visual style and
the simple composition model of messaging solutions allows the visual language
to become a design tool, as shown in the illustration from the book (Figure 22-1).

DIAGRAM-DRIVEN DESIGN | 183

https://oreil.ly/WLUgR
https://oreil.ly/HGc5j

6 Edward R. Tufte, The Visual Display of Quantitative Information (Cheshire, CT: Graphics Press, 2001).

Figure 22-1. Designing with Enterprise Integration Patterns

The resulting diagrams aren’t just illustrations but also help validate the
design. For example, the visual language reminds you that for every splitting or
distribution of messages, you need to aggregate them back later. It also validates
a logical grouping of the elements.

One great historical example of diagram-driven design are the graphical train
schedules created to plot trains’ paths along two axes by distance (vertical) and
time (horizontal). The faster a train moves, the steeper the line will drop. The
lines on such charts intersect where trains running in opposing directions pass
each other (see Figure 22-2). On a single-track railroad, you’d want to make sure
that these occur at a station where there are two tracks and platforms. Having the
train schedules laid out visually is a great design aid.

Well-known examples of these maps go back to Étienne-Jules Marey and his
book La Méthode Graphique (1878). They are also featured prominently in Tufte’s
The Visual Display of Quantitative Information,6 perhaps the standard text on
charting and diagramming.

184 | THE SOFTWARE ARCHITECT ELEVATOR

Figure 22-2. Visually designing train schedules

Diagram-Driven Design Techniques

Once you embrace diagramming as a design technique, you’ll find several con-
nections between good visual design and good system design, which we examine
in the following sections.

ESTABLISH A VISUAL VOCABULARY AND VIEWPOINTS

Good diagrams use a consistent visual language. A box means something (for
example, a component, a class, a process), a solid line something else (maybe a
build dependency, data flow, or an HTTP request), and a dashed line means
something else yet. No, you don’t need a Meta-Object Facility and correctness-
proven semantics, but you need to have an idea what element or relationship you
are depicting how. Picking this visual vocabulary is important to define the archi-
tectural viewpoint you are going to concern yourself with, such as source code
dependencies, runtime dependencies, call trees, or allocation of processes to
machines.

Good design is often tied to the ability to think in abstractions. Diagrams are
visual abstractions and can be instrumental in this process.

DIAGRAM-DRIVEN DESIGN | 185

LIMIT THE LEVELS OF ABSTRACTION

One of the most frequent problems I encounter in technical documents is a wild
mix of different levels of abstraction (the same problem can be found in source
code). For example, the way configuration data affects a system’s behavior can be
described like this:

The system configuration is stored in an XML file, whose “timetravel” entry can be

set to either true or false. The file is read from the local filesystem or alternatively

from the network, but then you need NFS access or to have Samba installed. It uses

a SAX parser to avoid building the whole DOM tree in memory. The “Config” class,

which reads these settings, is a singleton because…

In these few sentences you learn about the file format, project design deci-
sions, implementation detail, performance optimizations, and more. It’s rather
unlikely that a single reader is actually interested in this smörgåsbord of facts.

Now try to draw a picture of this paragraph! It will be nearly impossible to
get all of these concepts onto a single sheet of paper.

Drawing a diagram thus forces us to clean up our thinking by considering
one level of abstraction at a time. While drawing a picture doesn’t automagically
make the problem of mixing abstractions disappear, it puts it in your face much
more bluntly than a meandering chain of prose, which from afar might not look
all that bad. A well-known German proverb proclaims that Papier ist geduldig
(“paper is patient”), meaning paper is unlikely to object to what garbage you
scribble on it. Diagrams are a little less patient. If you do compare architecture
diagrams to modern art, you’ll want the Mondrian, not the Pollock.

REDUCE TO THE ESSENCE

Billboard-sized database schema posters, which include every single table, stick
to a single level of abstraction but are still fairly useless because they try to convey
reality without placing an emphasis (Chapter 21). When shrunken down to fit on a
single presentation slide, they start to look like abstract art—something better
placed in the museum than in architecture documentation.

Therefore, omit unimportant detail to concentrate on what’s most relevant!
The same is true for system design: it’s important to know “what kind of thing”
your system is; for example, by defining a system metaphor (Chapter 24).

186 | THE SOFTWARE ARCHITECT ELEVATOR

FIND BALANCE AND HARMONY

Limiting the levels of abstraction and scope does not yet guarantee a useful dia-
gram. Good diagrams lay out important entities such that they are logically grou-
ped, relationships become naturally clear, and an overall balance and harmony
emerges. If such a balance doesn’t emerge, it may just be that your system
doesn’t have one.

I once reviewed a relatively small module of code that consisted of a rather

entangled mess of classes and relationships. When the developer and I tried to

document this module, we just couldn’t come up with a half-decent way to

sketch what was going on. After a lot of drawing and erasing we came up with a

picture that vaguely resembled a data-processing pipeline. We subsequently

refactored the entangled code to match this new system metaphor. It improved

the structure and testability of the code significantly, thanks to diagram-driven

design!

A well-balanced diagram will show coupling, cohesion, and a high-level
structure, concepts that equally help with good system design.

INDICATE DEGREES OF UNCERTAINTY

When looking at a piece of code, you can always figure out what was done, but
it’s much harder to understand why it was done. It can be even more difficult to
understand which decisions were made consciously and which ones simply
happened.

When creating diagrams, you have more tools at hand to express these nuan-
ces, so you should use them. For example, you can use a hand-drawn sketch to
convey that your design is merely a basis for discussion. Once you have full
agreement and want to convey that every detail is critical, you can use a visual
style that resembles an engineering blueprint. Many books, including Eric
Evans’s, use this technique effectively. That’s also the reason this book uses
sketches: we are discussing architecture approaches and ways of thinking, not
concrete tools and processes.

When drawing, consider the precision versus accuracy dilemma: “next week it
will be roughly 15.235 degrees” doesn’t make sense as it’s precise but inaccurate.
Don’t make precise-looking slides if you know they aren’t accurate.

DIAGRAM-DRIVEN DESIGN | 187

7 Marchitecture denotes marketing pictures disguised as architecture.

Diagrams Are Art

Diagrams can (and should) be beautiful—little works of art, even. I am a firm
believer that system design has a close relationship to art and (nontechnical)
design. Both visual and technical design start with a blank slate and virtually
unlimited possibilities. Decisions are often influenced by multiple, usually con-
flicting, forces. Good design resolves these forces to create a functional solution,
which attains a good balance and some degree of beauty. This may explain why
many of my friends who are great (software) designers and architects have an
artistic vein or at least interest.

No Silver Bullet (Point)

Not all diagrams are useful as a design technique. Drawing a messy picture won’t
make your poor design any better. Beautiful marchitecture diagrams,7 which have
little to do with the actual system being built, are also of limited value. For many
technical discussions, though, I have observed that drawing a good diagram
greatly improves the conversation and the resulting design decisions. If you are
unable to draw a good diagram (and it isn’t due to lack of skill), it might just be
because your actual system structure is not what it should be.

188 | THE SOFTWARE ARCHITECT ELEVATOR

Drawing the Line
Architecture Without Lines Likely Isn’t One

A functional architecture of a car

The sketch above depicts the architecture of a car. All the important compo-
nents are there, including their relationships: the engine is under the hood; pas-
senger seats are appropriately located inside the passenger compartment, close to
the steering wheel; wheels are assembled nicely at the bottom of the car in the
chassis. This diagram appears to fulfill most definitions of architecture (except
my favorite one because I am looking for decisions; see Chapter 8).

However, it does precious little to help you understand how a car functions:
could you omit the gas tank because it’s far away from the engine, anyway? Are
engine and transmission side by side under the hood by coincidence or do they
have a special relationship? Does the car need exactly four wheels or will three
also do? If you had to build the car in stages, what subset would make sense to
assemble first? Would just the cabin with the seats be a good start? How can you
distinguish a good car from a bad one? Which aspects are common in virtually all
cars (e.g., the wheels being at the bottom) and which ones vary (Porsche 911, VW
Beetle, or DeLorean owners would be quick to point out that their engine isn’t
under the hood)?

189

| 23

1 “Galactic Modeling Language,” Wikiwikiweb, https://oreil.ly/XT4lF.

2 Neal Harrison, Brian Foote, and Hans Rohnert, Pattern Languages of Program Design 4 (Boston:
Addison-Wesley, 1999).

The picture doesn’t really answer any of these questions. It depicts the loca-
tion of the components, but it doesn’t convey their relationships or function in
the overall system “car.” Even though the picture is factually correct and actually
reasonably detailed, it doesn’t allow us to reason much about the system it is
describing, especially its behavior. Coincidentally, it might also not be a good
example of diagram-driven design (Chapter 22).

Behold the Line!

The critical element that’s missing in the picture are lines connecting the compo-
nents. Without lines, it’s quite difficult to represent rich relationships. The line is
so important that boxes, labels, and lines suffice to make up Kent Beck’s only
half-joking Galactic Modeling Language.1 Without lines, there wouldn’t be much
of a modeling language left. Also, as often stated, “the lines are more interesting
than the boxes.” Where does stuff usually go wrong? In the integration between
two well-tested pieces. Where do I need to look to achieve strong or loose cou-
pling? Between the boxes. How do I tell a well-structured architecture from a Big
Ball of Mud?2 By the lines.

The importance of lines is most easily understood from a simple example,
illustrated in Figure 23-1.

Figure 23-1. Without lines, an architecture diagram is rather meaningless

The system on the left and the system on the right are made from the same
components, A, B, C, and D. Would the two systems have different properties

190 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/XT4lF

If I see an architecture diagram
without lines, I am inclined to
reject it because it won’t convey the
system’s behavior.

and behaviors? The system on the left has a neat, layered architecture, which pro-
vides clear dependencies and makes it easy to replace a component with a differ-
ent one. It can also suffer from long latency because messages or commands
have to travel through each component in sequence. Also, each component can
become a single point of failure: if C fails, the chain is broken, and the system is
unable to function.

The system on the right has almost the exact opposite properties: interdepen-
dencies are a bit messy, making it difficult to replace a component. However, the
system provides shorter communication paths and is more resilient: if C fails, A
can still talk to D.

Now imagine that this diagram had
no lines. You would never know whether
the system is built like the one on the left
or the one on the right, resulting in a
rather meaningless architecture diagram.
Therefore, if I see an architecture dia-
gram without any connecting lines, I am skeptical as to whether it qualifies as a
meaningful depiction of an architecture. Unfortunately, many diagrams fail this
basic test.

The Metamodel

Stating that the diagram of the car doesn’t show any relationships isn’t quite
true. The picture does contain two primary relationships between components:

Containment
One box is enclosed by another.

Proximity
Some boxes are close to one another, whereas others are farther apart.

Containment corresponds to real-world semantics in this drawing: seats are
actually contained inside the passenger cell, and the hood (the engine compart-
ment to be more precise) houses engine and transmission. Engine and transmis-
sion are also next to each other, giving them proximity, which underlines them
sharing a strong relationship: one makes little sense without the other. But the
proximity semantics in this picture are relatively weak: the gas tank and spare tire
are also next to each other, but for the function of the car this doesn’t have any
meaning. The vague correspondence of proximity in the diagram to real-life

DRAWING THE LINE | 191

3 “Intentional Programming,” Wikiwikiweb, https://oreil.ly/5bGf-.

proximity has no relationship to function and thus renders an odd mix of a logi-
cal and physical representation.

I routinely challenge diagrams that limit relationships between components
to containment. Such diagrams make it difficult to reason about the system, as
seen in the car example we looked at earlier. Reasoning about the system is one
of the main purposes of drawing an (architecture) diagram, so we need to do
better.

Diagrams that are based only on containment and proximity generally could
have been just as easily represented as an indented bullet list: subbullets are con-
tained by outer bullets and bullets next to each other are in proximity. In our
example, you would end up with a list like this (showing only a portion to avoid
death by bullet points):

• Hood

— Engine

— Transmission

• Passenger cell

— Speedometer

— Steering wheel

— Four seats

In this case, the picture doesn’t say the proverbial 1,000 words. The list and
the picture are just different projections of the same tree structure. And people say
intentional programming is difficult!3 You might like the picture better than the
list, but you must be aware that both representations have the same richness, or
poorness, of expression. The picture adds the size and shape of the boxes, which
aren’t represented in the textual list, but the semantics of size and shape in our
example are unclear: all components are rectangles, but the wheels are circles.
It’s a crude approximation of reality, but for reasoning about the system it
doesn’t add much.

192 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/5bGf-

The Semantics of Semantics

When I was told for the first time that “UML sequence diagrams have weak
semantics,” I was doubtful whether this rather academic statement had any rele-
vance for me as a normal programmer. The short answer is: “yes, it does.” Prior
to UML 2, sequence diagrams depicted only one possible sequence of interac-
tions between objects, albeit allowing for concurrency. They couldn’t express the
complete set of legal interaction sequences, such as loops (repeating interactions)
or branches (either/or choices). Because loops and branches are some of the
most fundamental control flow constructs, sequence diagrams’ weak semantics
rendered them essentially useless as a specification. UML 2 improved the seman-
tics but at the cost of much reduced readability.

Why worry so much about the semantics of a diagram? The purpose of
design diagrams or engineering drawings is to give viewers an understanding of
the system, particularly the system behavior. A drawing is a model, so it’s by defi-
nition wrong (Chapter 6). However, it can be useful; for example, by allowing the
viewer to reason about the system. The visual elements, such as boxes and lines,
must neatly map to concepts in the abstract model so that the viewer can build
the model in their head. For the viewer to grasp the meaning of the drawing, the
visual elements need semantics: semantics is the study of meaning.

Elements—Relationship—Behavior

Without lines, it is impossible to ascertain a system’s behavior. It’s like listing the
ingredients for a meal without the recipe. Whether something tasty comes out
primarily depends on the way it’s prepared: potatoes can turn into French fries,
gratin, boiled potatoes, mashed potatoes, baked potatoes, fried potatoes, hash
browns, and more. A meaningful architecture diagram, therefore, needs to depict
the relationships between components and provide semantics for these
relationships.

Electric circuit diagrams provide a canonical example of system behavior that
depends heavily on connections between components. One of the most versatile
elements in analog circuitry is the operational amplifier, or op-amp for short.
Paired with a few resistors and a capacitor or two, this element can act as a com-
parator, amplifier, inverted amplifier, differentiator, filter, oscillator, wave genera-
tor, and much more. The system’s behavior, which varies widely, doesn’t depend
on the list of elements, but solely on how they are connected. In the world of IT,
a database can act as a cache, ledger, file storage, data store, content store, queue,

DRAWING THE LINE | 193

4 Martin Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3rd ed. (Boston:
Addison-Wesley Professional, 2003).

configuration input, and much more. How the database is connected to its sur-
rounding elements is fundamental, just like the op-amp.

Architecture Diagrams

If you feel that this is about as much as one could and should say about a con-
trived sketch of a car, rest assured that I get to see many architecture diagrams
without any lines. These diagrams do depict proximity, simply because some
boxes have to be next to each other, but whether any semantics are tied to this
fact remains unclear. If you are lucky, proximity represents a form of “layering”
from top to bottom, which in turn implies a dependency from things on “top” to
things “further down.” In the worst case, proximity was defined by the order in
which the author drew the boxes.

So-called “capability diagrams” or “functional architectures” are particularly
likely to be devoid of lines. These diagrams tend to list (pun intended) capabili-
ties that are needed to perform a certain business function. For example, to man-
age customer relationships you need customer channels, campaign
management, a reporting dashboard, etc. The set of capabilities forms a “laundry
list” of things that are needed, but we aren’t closer to architecture than listing
windows, doors, roof for a house. I, therefore, prefer such input to be repre-
sented as textual lists so that this distinction becomes clear. Wrapping text in
boxes doesn’t constitute architecture.

UML

Speaking of lines, UML has a beautiful abundance of line styles: in a class dia-
gram, classes (boxes) can be connected through association (a simple line), aggre-
gation (with a hollow diamond on one end), composition (a solid diamond), or
generalization (triangle). Navigability can be indicated by an open arrow, and a
dependency by a dashed line. On top of this, multiplicities—for example, a truck
having four to eight wheels but only one engine—can be added to the relation-
ship lines. In fact, UML class diagrams allow so many kinds of relationships that
Martin Fowler decided to split the discussion into two separate chapters inside
his defining book UML Distilled.4 Interestingly, UML allows composition to be

194 | THE SOFTWARE ARCHITECT ELEVATOR

5 Edward R. Tufte, The Visual Display of Quantitative Information (Cheshire, CT: Graphics Press, 2001).

visually expressed through a line or as containment, that is, drawing one box
inside the other.

With such a rich visual vocabulary, why invent your own? The challenge with
UML notation is that you can appreciate the nuances of the relationship seman-
tics between classes only if you have in fact read UML Distilled or the UML speci-
fication. That’s why such diagrams aren’t as useful when addressing a broad
audience: the visual translation of solid diamond versus hollow diamond or solid
line versus dotted line isn’t immediately intuitive. This is where containment
works well: a box inside another is easily understood without having to add a
legend.

Beware of Extremes

As so often, the opposite of bad is also troublesome. I have seen diagrams in
which elements have different shapes, sizes, colors, and border widths; connect-
ing lines have solid arrows, open arrows, no arrows; are dotted, dashed, and of
different color. These cases either result from sloppiness, in which case the vis-
ual variation has no meaning and is simply “noise,” or from a metamodel that’s
so rich (or convoluted) that a diagram likely isn’t the right way to convey it. The
rule I apply is that any visual variation in a diagram should have meaning—in
other words, semantics. If it doesn’t, the variance should be eliminated to reduce
visual noise, which only distracts the viewer and, worse yet, can cause the viewer
to interpret this noise as semantics that were in fact never intended. Because you
cannot look inside the viewer’s head, such misunderstandings or misinterpreta-
tions are difficult to detect. In short: making all boxes the same size won’t crimp
your artistic talent, but it will make clear to the viewer that the model behind the
diagram considers all boxes to have the same properties. It’ll also help draw
attention to the lines.

The standard text on charting and diagramming is Tufte’s The Visual Display
of Quantitative Information5 plus his subsequent books. Although the books ini-
tially focus on display of numeric information, later volumes cover broader
aspects, including many examples that package complex concepts into diagrams
that remain crisp and easy to grasp.

DRAWING THE LINE | 195

Sketching Bank Robbers
Architects as Police Sketch Artists

That’s what he looked like!

With a demanding job like that of an architect in a large IT organization, it’s
a healthy exercise to do more of those things you enjoy and fewer of those you
don’t enjoy. Of course, this requires you to know what you truly enjoy (and truly
despise) in the first place—a task that can be a little more challenging than it
sounds, especially for left-brained IT architects. The latter is generally more
easily answered: in my case it’s 8 a.m. meetings with no particular objective that
end up in a monologue by the highest-paid person. The former usually takes a bit
more reflection. Over the years, I have realized that one of my favorite work activ-
ities is to listen to system owners or solution architects describe their system,
often in fragments, and to draw a cohesive picture for them. The most satisfying

197

| 24

moment happens when they exclaim, “That’s exactly what it looks like,” without
them having been able to draw the picture themselves. This exercise is also a
great opportunity to learn about those system details that aren’t documented
anywhere.

Asking people to tell you about their system so that you can draw it for them
may remind you of the old joke that describes consultants (Chapter 38) as those
people who borrow your watch to tell you what time it is (and charge you a lot of
money for it). Drawing expressive architecture diagrams, though, is a bit more
involved than reading the time off a watch. It extracts people’s knowledge and
presents it in a way that they weren’t able to create themselves.

Being able to build a system doesn’t automatically mean the same person is
gifted at representing it in an intuitive way. Therefore, helping such a person
draw a picture of their system can be quite valuable. I liken this task to that of a
police sketch artist.

Everyone Saw the Perpetrator

If a bank is robbed and you ask those people who saw the perpetrator to draw a
picture, you’ll likely end up with stick figures or very rough sketches. In any case,
you won’t get anything particularly useful even though the witnesses have a first-
hand account of the person. Knowing something, being able to articulate it, and
being able to draw it are three very different skills.

That’s why a professional police sketch artist is usually brought in, especially
in cases where security cameras could not get precise footage. The artist inter-
views the witnesses, asking them a series of questions that they can easily
answer, such as “Was the person tall?” Based on the descriptions the artist draws
the picture, frequently obtaining feedback from the witnesses. After initially giv-
ing trivial facts like “He was tall,” people end up confirming, “He looked just like
that!”

A Police Sketch Artist

A police sketch artist is a fairly specialized job whose education includes both art
and human anatomy. For example, a police sketch artist will undergo training in
dental and bone structure because they influence the appearance of the suspect.
The same is true for architecture artists: they need to have a minimum level of
artistic skill, probably not quite at the level of the criminal sketch artist, but they
must also have the mental model and visual vocabulary to express architectural
concepts.

198 | THE SOFTWARE ARCHITECT ELEVATOR

1 Kent Beck, Extreme Programming Explained: Embrace Change (Boston: Addison-Wesley, 1999).

Interestingly, sketch artists break down the problem and work with well-
known “patterns”: after initially asking very broad questions like “tell me about
the person,” the artist will guide the witness with these typical patterns, for exam-
ple, ethnicity, or defining features such as nose, eyes, or hair. To exaggerate, they
won’t discover that the person had two ears, two eyes, and one nose (if they don’t,
that’s certainly worth mentioning!), but they do drive toward discriminating and
defining features, just like we do when we try to tell whether something is architec-
ture (Chapter 8). In the world of IT, we would do the equivalent. For example,
when looking at data storage, we’d ask if it’s an RDBMS or a NoSQL DB, perhaps
a combination, whether it uses caching, replication, and so on.

Sketching Architectures

When assuming the role of an “architecture sketch artist,” I tend to combine two
different approaches:

THE SYSTEM METAPHOR

First, I look for noteworthy or defining features; for instance, for the key decisions
(Chapter 8). Is it a pretty vanilla website for a customer to review information,
like a customer information portal? Or, is it rather a new sales channel, or even a
piece of a cross-channel strategy? Is it designed to handle tons of volume, or is it
rather an experiment that will see little traffic but must evolve very quickly? Or, is
it a spike to test out new technologies and the use case is secondary? After I have
established this frame, I start filling in the details.

I am a big fan of Kent Beck’s notion of a system metaphor that describes
what kind of “thing” the system is. As Kent wisely states in Extreme Programming
Explained:1

We need to emphasize the goal of architecture, which is to give everyone a coherent

story within which to work, a story that can easily be shared by the business and

technical folks. By asking for a metaphor we are likely to get an architecture that is

easy to communicate and elaborate.

In the same book, Kent also states that “Architecture is just as important in
XP [Extreme Programming] projects as it is in any software project,” something

SKETCHING BANK ROBBERS | 199

2 Nick Rozanski and Eoin Woods, Software Systems Architecture: Working With Stakeholders Using View-
points and Perspectives, 2nd ed. (Upper Saddle River, NJ: Addison-Wesley, 2011).

to be kept in mind by folks who are tempted to shun architecture because they are
Agile (Chapter 31).

Just like with diagram-driven design (Chapter 22), architecture sketching can
also be a useful design technique. If the picture makes no sense (and the archi-
tecture sketch artist is talented), something might be inconsistent or wrong in
the architecture.

VIEWPOINTS

As soon as I have a rough idea about the nature of the system, I let the metaphor
drive which aspects or viewpoints to examine. This is where doing an architecture
sketch differs from performing an architecture analysis. An analysis typically walks
through a fixed, structured set of aspects, as defined for example by methods
such as C4 or arc42. This is useful as a “checklist” to uncover missing aspects or
gaps. In contrast, a police sketch artist doesn’t want to draw the details of a per-
son’s trouser finishings (hemmed? cuffed?), but wants to highlight those charac-
teristics that are unique or noteworthy. The same is true for the architecture
sketch artist.

Following a fixed set of viewpoints always runs the risk of becoming a paint-
by-numbers exercise in which one fills in every section of a template, but forgets
to place an emphasis (Chapter 21) or omits critical points in the process. I there-
fore find the viewpoint descriptions in Nick Rozanski and Eoin Woods’s Software
Systems Architecture2 useful because they don’t prescribe a fixed notation, but
highlight concerns and pitfalls. Nick and Eoin also separate perspectives from
views. When sketching an architecture, you are most likely interested in a specific
perspective, such as performance and security, that spans multiple viewpoints;
for example, a deployment or functional view.

Visuals

Each artist has their own style, and to some degree architecture sketches will also
differ. I am not a big fan of molding all system documentation into a single nota-
tion because we are not creating a system specification (that’s in the code), but a
sketch that gives humans a better vehicle to reason about the system. For me, it’s
important that every visual feature of the notation has meaning in the context, or

200 | THE SOFTWARE ARCHITECT ELEVATOR

https://c4model.com/
http://arc42.org/

3 Grady Booch, “Draw Me a Picture,” IEEE Software 28, no. 1 (Jan./Feb. 2011).

perspective, that we are analyzing. Otherwise, it’s just noise. Of course, the dia-
gram must not only show the components but also their relationships (Chapter 23).

The best diagrams are rich in expressiveness but don’t require a legend
because the notation is intuitive from the start, or because the viewer can learn
the notation from simple examples and apply what they learned to more complex
aspects of the diagram. This is very much how user interfaces work: no user
wants to read a long manual, but they will use what they see to build a mental
model and use it to set expectations for how more complex features should work.
Why not think of a diagram as a user interface? You might feel that it lacks inter-
activity, and you are right, but viewers navigate complex diagrams very much like
users navigate user interfaces.

Architecture Therapy

Grady Booch drew analogies between having teams depicting their architecture
and family therapy,3 which asks children to draw a picture of their family in a
method referred to as Kinetic Family Drawings (KFD). The drawings give thera-
pists insight into the family dynamics, such as proximity, hierarchy, or behavioral
patterns. I have experienced the same with development teams, so you shouldn’t
outright discard their drawings as meaningless or incomplete, but derive insight
into the team’s thinking and hierarchy from them: is the database in the middle
of it all? Maybe the schema designer is calling the shots in the team (I know a
case of that happening). Are there many boxes, but no lines? Probably the team’s
thinking is focused on structural concerns but ignores system behavior. This is
often the case when the architect is too far removed from code and operational
aspects.

That’s Wrong! Do It Again!

A common situation when sketching an architecture for someone else is them
stating, “This is wrong!” This is a good thing; it means that you discovered a mis-
match between your and their understanding. If you hadn’t drawn it, you would
have never realized. Also, if you assume you are a reasonable proxy for subse-
quent consumers of the diagram, you also saved them from the same misunder-
standing. Therefore, sketching out architecture is almost always an iterative
process. Bring an eraser.

SKETCHING BANK ROBBERS | 201

Software Is Collaboration
Got Git?

Hello Peter, what’s happening?

Much has (rightly) been said and written about the differences between IT
architecture and classic building architecture, which we often refer to in our
metaphors. For example, although buildings do evolve over time (just very

203

| 25

1 Stewart Brand, How Buildings Learn: What Happens After They’re Built (New York: Penguin Books,
1995).

2 A simple text-based language, originally intended to author web pages without having to learn HTML.

slowly1), achieving high rates of change at low cost is something that brick-and-
mortar objects can’t do. But many things can, and it’s not at all limited to soft-
ware development.

Who Says Software Is for Computers Only?

Enterprises spend significant effort creating, revising, and sharing documents,
be they strategic plans, schedules, design documents, or status reports (Chapter 30).
Typically, these documents need input from multiple parties and undergo itera-
tions and quality checks until they are released. Such artifacts are really a form of
software—they surely aren’t hardware, even though they may be printed on physi-
cal paper on occasion (witnessing someone print 25 copies of a large slide deck
on digital transformation will forever be burned into my mind).

So, if documents are in fact software, if we want to optimize and accelerate
our collaboration and communication, we might be able to learn a bit by looking
at how software delivery teams, especially widely distributed open source teams,
work.

Version Control

The one tool you won’t be able to pry out of any developer’s dead cold hands is
version control (Chapter 14). Version control is the safety net that gives developers
the confidence to move fast because they have the assurance that they can revert
quickly in case they take a wrong turn. One of the most popular version control
tools these days is Git. The model behind this software takes some getting used
to, but once you adapt your flow, you’ll never want to go back to anything else.

I wrote the precursor to this book in Markdown,2 a simple text format. I used
Git for version control and Dropbox for file synchronization with the publishing
engine. After the book was published, I kept ideas for additional chapters (like
this one) in a backlog. Without thinking too much about it, I reverted to writing
the backlog in Microsoft Word as these chapters weren’t done and weren’t going
to be published soon.

I instantly noticed that my rate of progress slowed down: should I remove or
rewrite this paragraph? What if I change my mind later and want to keep it? I
better make a copy and “park” it somewhere for later. By the way, where did I

204 | THE SOFTWARE ARCHITECT ELEVATOR

keep the latest version? Should I use the Track Changes feature instead? When
working with text files and version control, I would not have spent a second on
any of this because I’d be assured that I could revert to a prior version at any
time. I’d also be able to see all the changes I made over time, so I could track
progress easily.

Of course, I could have checked my Word documents into Git or a document
management system like Microsoft SharePoint. However, two main factors
would be missing: first, version comparison between Word files is much more
laborious than on simple text files. Word’s review mode tracks history but is
much more geared toward minor revision changes as opposed to iterative cre-
ation of a document. More important, the build tool chain to produce the book
works with Markdown files, so I would not enjoy the benefits of Continuous Inte-
gration, meaning I can create a preview copy of the book any time I make a
change.

Anyone who has looked at a corporate file server notices that I am not the only

one who appreciates version control. You’ll find 20-some copies of the same

document, with the filename either suffixed with a version number, prefixed

with the date (for easy sorting), tagged with the last author’s initials to indicate

branching, etc. Someone had the right idea but stumbled in the

implementation.

Single Source of Truth

Version control is a powerful tool, if all team members look at the same version.
Emailing documents around that are kept on local drives means that each person
has their own source of truth, which is going to lead to friction in the best case
and lost information in the worst. Therefore, version control must be coordinated
among team members.

The most transformative change in collaboration patterns I have witnessed
was the advent of Google Docs (then called “Writely”) around 2006, and it wasn’t
due to my seven years of drinking Google Kool-Aid. Google Docs popularized a
browser-based document editing model that allows multiple users to simultane-
ously edit the same document. Interestingly, when Google Docs first became
available internally at Google for dogfooding (Chapter 37), its feature maturity
resembled that of Microsoft Word 5.0 from 1989. Getting two bullet points to be
the same size was already a challenge.

Still, being able to collaborate in real time on a shared document fundamen-
tally changed the way people worked together. No time was wasted on

SOFTWARE IS COLLABORATION | 205

3 Paul Hammant et al., “Trunk Based Development,” https://trunkbaseddevelopment.com.

maintaining, mailing, finding, or merging multiple versions of documents.
Almost all “my version versus your version” discussions went away as it was clear
that the team worked toward a single shared outcome. Adding collaborators
became easy and natural. Having had to go back to sharing Word and Power-
Point documents by email has been a rather frustrating experience.

Trunk-Based Development

Most version control tools allow branching. Branches are separate versions of the
codebase, often used to develop a special feature that’s not yet ready to be
released. The major advantage of branching is that a person working in a branch
can make many changes without having to worry about what else is going on.
Alas, that freedom is usually short lived. Sooner or later, the branch must be
“merged” back into the authoritative version, also called the trunk, following the
analogy of a version “tree.”

Unfortunately, while a person was working in the branch, time wasn’t
actually standing still: many other changes occurred to the documents or source
code. As a result, merging becomes a rather unpleasant and often wasteful exer-
cise: perhaps someone copyedited the paragraph that you just rewrote. That’s
wasted effort! Also, while you are working in your branch, no one else can benefit
from what you have done. If branches remind you of locally stored document ver-
sions, you are onto something. A version control system where each person
works in their own branch doesn’t really help much in terms of collaboration.

As a result, many folks advocate trunk-based development,3 an approach that
mandates all changes going into a single authoritative version of the codebase or
document. Naturally, doing so avoids any drift between different authors’
versions.

However, how can you put unfinished work into the main version of a docu-
ment? There are quite a few options:

• The most obvious but also most underused solution is to break down big
changes into a series of smaller tasks (Chapter 30).

• Software teams use feature toggles to enable or disable a feature, allowing
code to be integrated into the system but not yet available to users. The
equivalent for presentations are hidden slides: you can happily work on
those knowing that they won’t be shown to the audience.

206 | THE SOFTWARE ARCHITECT ELEVATOR

https://trunkbaseddevelopment.com

4 Jeff Patton, “Don’t Know What I Want, But I Know How to Get It,” Jeff Patton and Associates website,
https://oreil.ly/biPNX.

• Making very short branches that last only a single day is also OK and won’t
break the trunk-based model. This way you can iterate and tinker and
merge before you leave work.

Having code in the trunk doesn’t mean it’s instantly released to production.
Many teams use separate release branches, which undergo additional review and
testing. The equivalent for documents and presentations would be to cut a PDF
at a known-good-state for subsequent distribution.

Always Be Ready to Ship

When collaborating on a slide deck, usually multiple authors contribute parts,
which are then reviewed over the course of multiple iterations until it’s consid-
ered good enough and meets the corporate style guidelines. The key question is
when is something good “good enough”? To me, the most important elements of
a presentation are the key messages and the storyline they are woven into (Chap-
ter 20). Interestingly, both can be done well before painstakingly aligning all the
boxes and converting graphics to the corporate color palette. A presentation with
a solid storyline and simple graphics is also far more impactful than a half-
finished one with fancy stock photographs, so we should work on those aspects
first.

When working on slides, we can learn from modern software development
techniques such as Agile development and DevOps, which aim to always have
software that could be released if need be.

I tend to ask my teams: “what if we had to present in one hour?” Do we have a

core storyline and some essential slides to support it? When you are at that

point, you can refine and improve slides with much less stress.

Always being ready to ship highlights the difference between working itera-
tively and incrementally.4 Many people make slides incrementally and have only
half a slide deck after half the time elapsed. They are not ready to present. Follow-
ing the DevOps mindset nudges you to work iteratively, meaning you have a
rough version of the whole story that you can share immediately if needed (see
Figure 25-1).

SOFTWARE IS COLLABORATION | 207

https://oreil.ly/biPNX

Figure 25-1. Building presentations incrementally versus iteratively

Style Versus Substance

Some folks might counter that even if a storyline is decent, presenting it in rough
packaging means it “isn’t ready” or even “not professional.” I am a big fan of
good design and spend a fair amount of time giving my stage presentations a
clean and professional appearance. However, if I have to choose between a solid
message and pretty pictures, I’d have to choose the message because I am an
architect and not an artist—analogous to the Agile Manifesto’s preference of run-
ning software over documents. Documentation is important, but if you can have
only one or the other, you’d want to pick running software.

You’ll encounter the same argument when working in formats like Mark-
down or simple collaboration tools. Because such systems aren’t as full featured
as desktop-publishing or word-processing tools, teams that are used to focusing

208 | THE SOFTWARE ARCHITECT ELEVATOR

on visuals over content often dismiss them as not meeting their needs, failing to
realize that this is exactly what they need.

Transparency

On many software projects, you can see a monitor or a glowing orb that shows
the project’s current build status. Just by walking by, you can see how many
builds have been made, how many are green (free of errors), and how many are
red. Such a project is fully transparent, which builds trust outside the project and
motivation within. The same level of transparency can be applied to any project;
for example, showing how many servers were migrated out of an old datacenter
over time or how many systems have become compliant with the IT security
guidelines.

On a prior team we had a glowing LED display that showed the total number of

pushes to our source code repository. Not only was it a great conversation piece,

it also led to a minor celebration when four digits weren’t sufficient anymore.

In an enterprise context, you are likely to encounter two major hurdles
against such transparency. First, project managers prefer to “massage” their mes-
sage carefully in status meetings instead of sharing it widely. Second, many
teams don’t have the relevant data ready at hand. Whereas the former is annoy-
ing, the latter is worse: how do they steer the project if they don’t have the vital
metrics at their fingertips?

Pairing

The most debated practice of modern software delivery is pair programming.
However, when producing slides or documents, you’ll find a joint working ses-
sion to be much more productive than emailing redlined documents and com-
ments back and forth.

I have seen slide review cycles that oscillate between review meetings, assigning

tasks, people making changes (often misunderstanding what was discussed),

and reconvening for weeks and months. If everybody sat in a room and devel-

oped the slides together, they could have been done in a few hours.

“Pairing” on slide decks—I call it “pair PowerPointing”—can save lengthy
review and edit cycles and generally leads to better results.

SOFTWARE IS COLLABORATION | 209

Resistance

Of course, there’s always resistance. Star Wars couldn’t possibly have had nine
episodes’ worth of storyline without The Resistance. Besides purely politically
motivated arguments against transparency, you may find that people consider
working in text formats like Markdown to be “too technical.”

I was once alerted by a large company’s digital innovation branch that “Mark-

down is too technical.” My initial reaction was to ask them whether it’s the hash

mark or the star that tripped them up…

More serious, you’ll find that working with a version control system like Git
is not to everyone’s liking and carries a learning curve.

During my early days using Git I missed staging a new file. When I checked out

an older branch, the file was still in my working directory (it wasn’t under Git’s

control), so I concluded that I should delete it. When reverting to the original

branch, I was shocked to find my file didn’t come back. Thank God for hard

drive backups.

When asking people to embrace version control, it’s important to teach the
concept of a version control system first; that is, a commit, a branch, etc., in the
context of real work scenarios. It then becomes easier to get used to Git’s occa-
sionally quirky model. When they’re past this hurdle, though, people will con-
sider working without version control like driving without a seatbelt.

210 | THE SOFTWARE ARCHITECT ELEVATOR

Organizations

Architects in the enterprise live at the intersection of the technical and business
worlds. In fact, getting these two pieces to work together seamlessly is one of an
architect’s key contributions (Chapter 4). Therefore, a good architect needs to not
only understand the interplay between system components, but also the interplay
in a large and dynamic system that is known as organization.

Organizational Architecture: The Static View

The most common depiction of an organization’s architecture is the organiza-
tional chart (“org chart”). These charts depict who reports to whom, and one can
measure people’s importance by how far they are from the CEO. Assuming you
count from zero in good computer-science tradition, I am often at level two or
three below a group CEO, a divisional CEO, and perhaps a COO in between. For
an architect in a large organization, this isn’t bad at all—many people find them-
selves at level 6 or 7.

Luckily, org charts have lines and thus pass our test for architecture diagrams
(Chapter 23). Computer-science-educated folks may recognize an org chart as a
tree, a noncyclical, connected directed graph with a single root (math folks con-
sider trees to be undirected, but that’s fine also). Alas, it’s only showing part of
the picture: depicting the static structure tells us little about how people interact
to make the business work.

Organizational Architecture: The Dynamic View

An org chart depicts engineering, manufacturing, marketing, and finance depart-
ments as separate pillars of the organizational pyramid. However, in reality, engi-
neering must design a product that can be easily and reliably manufactured,
marketed to customers, and sold at a profit. How well organizations work is

211

PART | IV

rarely defined by the organization’s structure—most organizations will have the
aforementioned functions—but by how they interact: how slow or fast are their
development cycles; do they work in a Waterfall or an Agile model; who talks to
customers, who, interestingly, aren’t depicted in the org chart?

Coworkers also routinely talk to one another to solve problems without fol-
lowing the lines in the organizational pyramid. This is a good thing because
otherwise managers would quickly become communication bottlenecks. In many
cases the org chart shows the control flow of the organization—for example, to
give budget approvals, whereas the data flow is much more open and dynamic.
Ironically, the way people actually work with one another is rarely depicted in a
diagram. Part of the reason might be that this data is difficult to gather; the other
part could be that it doesn’t look nearly as neat as the org chart pyramid.

When people coordinate and communicate electronically, the actual,
dynamic organizational structure can be more easily observed. For example, if
developers collaborate via a version-control system, we can analyze code reviews
or check-in approvals to see the real collaboration taking place. Google had
another interesting system that allowed you to see which persons are sitting
nearby a given person. Because interaction and collaboration are often still based
on ad hoc conversations, physical proximity can be a better predictor of collabora-
tion patterns than the org chart structure.

The Matrix (Not the Movie)

In large organizations, people can have multiple reporting lines: a “dotted line”
to their project or program manager, and a “solid line” to their department or
“line manager.” Such an arrangement is often part of a so-called matrix organiza-
tion in which people report horizontally to the project and vertically to their man-
ager. Or is it the other way around? If you find this a little confusing, you’re not
alone. High-performance delivery organizations generally shun such arrange-
ments, making sure people are fully assigned to, and responsible for, a single
project. I often jest that I want all people working on a project to be on the same
boat without life vests and no rescue lines to other parts of the organization. A
team needs a shared success or, if it so happens, shared failure. Don’t worry, they
are all able to swim.

212 | THE SOFTWARE ARCHITECT ELEVATOR

Organizations as Systems

As architects, we know well how to design systems; for example, when to apply
horizontal scaling, loose coupling, caching. We often are also trained in systems
thinking (Chapter 9), which teaches us how to reason about the relationship
between elements in a system and the overall system behavior, driven, for exam-
ple, by positive or negative feedback loops. However, we often hesitate to apply
such rational thinking to organizations because organizations have a very human
face, which makes us feel bad if we degrade our nice and not-so-nice coworkers
into the boxes and lines (Chapter 23) of some system architecture.

However, even though they’re composed of individuals, large organizations
behave much more like complex systems, including technical ones. Therefore, as
architects we can apply our architectural mindset and rational systems thinking
to large organizations in order to understand and influence them. It’s a bit like a
reverse engineering, debugging, and refactoring exercise.

Organizations as People

All rational reasoning aside, organizations are made up of individuals. We also
shouldn’t forget that for many of them work is just a small part of their lives: they
have families to take care of, bills to pay, doctors to visit, home repairs to make,
or hangovers from the party last night to overcome. Understanding organizations
depends on understanding people’s emotions and motivations. This can be a
stretch for left-brain-type architects, but one they need to make. Consider this
yoga for your brain.

Navigating Large Organizations

Dealing with organizations can be challenging for architects. However, many
concepts that are well known in the context of architect systems can also be
applied to understanding organizations:

Chapter 26, Reverse-Engineering Organizations
To bring lasting change, you need to help organizations unlearn existing
beliefs.

Chapter 27, Control Is an Illusion
Command-and-control structures aren’t a one-way street.

Chapter 28, They Don’t Build ’Em Quite Like That Anymore
Pyramids went out of vogue 4,500 years ago, but are still widely used in IT.

ORGANIZATIONS | 213

Chapter 29, Black Markets Are Not Efficient
High-friction organizations breed black markets, which are dangerous.

Chapter 30, Scaling an Organization
Experience in distributed systems design can be applied to organizations.

Chapter 31, Slow Chaos Is Not Order
Slow-moving things can seem well coordinated when in reality they’re just
slow-motion chaos.

Chapter 32, Governance Through Inception
Governance by decree is difficult and better done by planting ideas.

214 | THE SOFTWARE ARCHITECT ELEVATOR

Reverse-Engineering
Organizations
Learning Is Hard; Unlearning Is Much Harder

Attaching some probes to the organization

To change a system’s observed behavior, you need to change the system itself
(Chapter 10). For organizational systems, the systemic behavior is primarily gui-
ded by its culture. A significant portion of this culture derives from shared beliefs
held by the organization’s members. So, to permanently change an organiza-
tion’s observed behavior, you need to identify and change those beliefs.

Unfortunately, these shared beliefs aren’t written down anywhere; there
aren’t any motivational posters for shared beliefs. Also, most people won’t even
be aware that they carry them. So, you’ll need to apply one of your well-honed
engineering skills: reverse engineering.

215

| 26

Dissecting IT Slogans

A good starting point for reverse-engineering an organization’s hidden beliefs
are popular slogans. Anyone who has worked in IT for a little bit surely has heard
the saying “never touch a running system” (Chapter 12). Why would people not
want to touch a system that’s running? Apparently because they believe that
change is risky: if you touch it, you might break it. Deeper down, they may also
believe that fixing broken things is cumbersome, so it’s better not to break them
in the first place.

The well-known IT slogan “never touch a running system” reflects the underly-

ing belief that change is risky. And, worse yet, it also assumes that not changing

anything bears no risk.

Importantly, though, there’s an additional assumption behind this simple
slogan: if you don’t touch the system, all will be fine. This belief—that no change
implies no risk, is worrisome. First, from an operational perspective, systems
that aren’t maintained will rot and, for example, use outdated libraries and oper-
ating systems that pose security risks. Also, in the digital world, which is con-
stantly evolving, standstill is regress: competitors move ahead with frequent
updates and rapid feature evolution. Ultimately, not changing can be fatal for
organizations—consider Kodak, Blockbuster, or BlackBerry.

Second, you’ll notice how simple slogans can become self-fulfilling prophe-
cies. When you avoid changing a system for a long time this actually does
increase the risk of change: important details will have been long forgotten, and
undocumented manual steps increase the odds that something will go wrong.
Such experiences confirm and fuel the belief.

Unknown Beliefs

Not all organizational beliefs manifest in slogans, though. In most cases, people
might not even be aware that they carry certain beliefs until their assumptions
are being challenged. I had that very experience at a Munich beer festival.

The well-known Munich Oktoberfest has a springtime cousin, the Starkbier
Fest (“strong beer festival”). As the name suggests, this festival serves beer with
an alcohol content about 50% higher than the Oktoberfest, in the same 1 liter
jugs. Needless to say, “having a beer or two” can make the way home somewhat
challenging. The more surprised I was when my younger colleague commented
that he drove to the festival in a convertible to take advantage of the sunny

216 | THE SOFTWARE ARCHITECT ELEVATOR

You can’t just ask people what
their beliefs are because most are
unaware of them.

weather. My immediate reaction was: “Are you out of your mind to drive to a
beer fest?” His calm answer was, “No, I leave the car here.”

Not only did I feel old, I also realized
that I had been carrying a fundamental
belief about cars: if you drive somewhere,
you (hopefully) come back with the same
car; otherwise, it would be difficult to go
somewhere else tomorrow. What broke this assumption, which was useful in the
past? Car sharing—the ability to pick up a car near your home, to rent it by the
minute, and to leave it at your destination. Without ubiquitous smart phones,
GPS, telematics, and other good stuff, my assumption was handy and never chal-
lenged; now it limited my thinking.

Because most people are unaware of the assumptions they hold, you can’t
just ask them what their beliefs are. If you had asked me about my beliefs about
cars, I might have said that you must have liability insurance and fuel in the tank.

Beliefs Are Proven Until Disproven

Beliefs stick because people often have living proof or firsthand experience.
When the environment changes, though, and the belief is no longer applicable,
their past experience makes them reluctant to change.

Think of kids who learned that touching a stove top is a bad idea. Some of
them learned this the very hard and painful way, others were told many times.
They therefore embraced a useful belief that prevents accidents. Alas, the inven-
tion of the induction cooktop makes this belief obsolete: induction cookers heat
pots directly through electromagnetic fields, leaving the cooktop surface relatively
cool. You will find it difficult, though, to make children touch this new cooktop,
because they learned their lesson well. The best way might be to touch the cook-
top yourself to demonstrate the change.

Because most people have living proof for their beliefs, just telling them other-

wise is unlikely to succeed.

The same is true in IT: most IT folks will be able to tell you a story in which
someone did touch a running system, causing it to fail, and needing operations
teams to stay up 48 hours straight trying to get it back up and running. Simply
telling people that they are wrong or that magically everything is different is

REVERSE-ENGINEERING ORGANIZATIONS | 217

1 Barry O’Reilly, Unlearn: Let Go of Past Success to Achieve Extraordinary Results (New York: McGraw-Hill,
2018).

unlikely to be successful. Trying to convince them that change isn’t risky by
spewing out buzzwords and acronyms like TDD, IaC, Git, and Spinnaker is like
explaining to kids that an induction stove is safe to touch by citing Faraday’s law.
Instead, you might start by explaining the tenets of DevOps, such as deployment
automation, version control, and automated testing. Also, making smaller
changes reduces the risk of change. Better yet, you demonstrate the effect with a
real software delivery project.

Unlearning Old Habits

Bringing change into an organization can easily stumble over existing, strongly
held beliefs that are part of the existing culture. For example, selling Continuous
Delivery to a person who equates change with risk is going to be quite a chal-
lenge. We therefore need to help the organization unlearn these old habits before
lasting change can take hold. Learning new things isn’t easy, but unlearning old
habits, especially ones that served us well many times, is much more difficult.1 It
seems that replacing existing beliefs requires you to free up a memory slot in the
brain first before you can program it again.

Common IT Beliefs

When trying to reverse-engineer existing beliefs, there’s one ray of hope: many
IT organizations hold similar beliefs because they were subject to the same learn-
ing, or priming (Chapter 6). Hence, the following list of beliefs can give you a
head start:

SPEED AND QUALITY ARE OPPOSED (“QUICK AND DIRTY”)

The so-called project management triangle is both one of the most popular and
most dangerous tools in IT management because it purports that scope, time,
and resources have a simple relationship. For example, twice as many people
would be able to accomplish the same work in half the time. Worse yet, it
assumes that by compromising quality, things can be sped up further.

While the triangle might work for simple, physical tasks, it surely doesn’t
work in software delivery where the opposite is often the case. For example, if a
developer wanted to secretly sabotage a software project, a suitable way would be

218 | THE SOFTWARE ARCHITECT ELEVATOR

2 Wikipedia, “Shift-Left Testing,” https://oreil.ly/iotex.

3 Fredrick P. Brooks, The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition (Bos-
ton: Addison-Wesley Professional, 1995).

to introduce subtle, hard-to-find bugs. How then, can lower quality speed things
up?

Modern developers know that in software development the opposite effect
takes place: we speed things up by automating them, which also increases quality
(Chapter 40) and repeatability.

QUALITY CAN BE ADDED LATER

Classic software projects end with a “QA” phase, the quality assurance phase,
which consists of a team of testers checking whether the deliverable is of high
quality. Behind this common approach rests a fundamental belief that quality is
something that can be added to an existing work product: if something of poor
quality goes into QA, it comes out with higher quality.

Detecting bugs and reworking can improve some aspects of software, but it
cannot correct fundamental deficiencies in the internal quality of a software sys-
tem, such as its structure or testability. Those must be built in from the begin-
ning. Methods such as shift-left testing2 follow this approach.

This belief and the previous one are related. If you work under the assump-
tion that quality is added at the end, compressing the schedule will most likely
decimate the (manual) QA activity, actually resulting in lower quality.

ALL PROBLEMS CAN BE SOLVED WITH MORE PEOPLE OR MONEY

Also guided by the scope-resources-time triangle, some organizations assume
that more people reduce time under constant scope.

There’s a common saying that when a project manager in a typical bank tells the

business that it’s impossible to deliver the project in three months, the business

responds by asking “how much more money do you need?”

Fred Brooks already documented four decades ago3 that adding people
requires onboarding and increases communication overhead, both of which will
slow down a project. Also, large projects often come to a grinding halt due to
excessive complexity. Adding more resources is likely to increase complexity,
exacerbating the problem.

REVERSE-ENGINEERING ORGANIZATIONS | 219

https://oreil.ly/iotex

Therefore, if you want to speed up a project, look to reduce friction instead of
adding more resources. If your car’s (or your organization’s) handbrake is set,
you’ll want to release the brake, not step harder on the gas pedal.

FOLLOWING A PROVEN PROCESS LEADS TO PROVEN GOOD RESULTS

Much of an organization’s way of working is encoded in well-defined processes,
which aim to reduce risk, control spending, and assure high-quality deliverables.
Many large organizations even have entire departments whose job it is to define
and update processes.

Even though most processes, such as approvals or budget reviews, are well
intended, following them assures only one thing: that the process was followed.
There’s a big leap from someone checking a box or completing a task to actually
achieving the desired result, such as reducing spend or assuring architecture
compliance. Especially if processes are cumbersome, people will be inclined to
just obtain the necessary process check marks without fulfilling the intention of
the process, possibly leading to a flourishing black market (Chapter 29). Some
organizations therefore police and audit for process compliance by investigating
projects and their implementations, resulting in a catch me if you can kind of
game.

Attempting to achieve desirable results via processes and check lists typically
stems from a lack of transparency. If you can’t see what a project does or what
kind of code it develops, the next best thing you could do is to make sure a cer-
tain process was followed. Modern development and deployment practices such
as central code repositories, automated code quality checks, automated policy
checkers, and cloud runtimes provide a much higher level of transparency and
allow much more effective compliance checks.

LATE CHANGES ARE EXPENSIVE OR IMPOSSIBLE

Did you ever wonder why a typical IT project has an endless list of requirements
that appears to anticipate any possible use case or scenario for the next five years?
It’s based on a simple belief: the business has learned that late changes are
expensive or even impossible.

An old joke goes that IT tends to deliver only half of what it promised, so the

business asks for twice as much in the hope that they get the right half.

220 | THE SOFTWARE ARCHITECT ELEVATOR

This belief stems from IT service providers’ common practice of charging
large sums for late changes. Because they compete aggressively on the initial bid
for a project, they compensate by charging astronomical sums for changes dur-
ing project execution when the customer doesn’t have a lot of alternatives. Even
internal projects that are subject to budget approvals or are poorly architected
might have reconfirmed this belief because they are difficult to change later.

Welcoming late changes is a key tenet of Agile development, dispelling this
common belief. It’s best illustrated by Mary Poppendieck’s observation that “a
late change in requirements is a competitive advantage.”

AGILITY OPPOSES DISCIPLINE

Because Agile development welcomes change during a project, it is often seen as
being at odds with stable processes. After all, change and stability are opposites
of each other. Following this logic, some organizations even believe that in the
absence of rigid steering and control mechanisms, things descend into utter
chaos.

However, the opposite is true: Agile development is actually a very disci-
plined process because speed and lack of discipline don’t mix (Chapter 31). Agile
methods prioritize on delivering value early and maintain velocity through a rigid
adherence to regular (re)planning and tracking of progress and quality, some-
thing often missing in traditional projects.

THE UNEXPECTED IS UNDESIRED

After spending a lot of time creating a plan, traditional organizations expect
things to go according to their plan. Deviations from the plan or unexpected out-
comes are undesired and considered a failure.

However, when something unexpected happens, the most learning happens.
That’s because the unexpected can tell you that you made a poor assumption or
that an error was hidden in the system. Therefore, successful businesses run
experiments to verify or falsify a hypothesis. Either way, the outcome implies
learning and isn’t a failure at all. This means that traditional enterprises learn
less, which is dangerous in a world that’s constantly changing.

Rather than avoid deviations, enterprise should identify valuable hypothesis
that they can test quickly and cheaply. Therefore, minimizing the cost of experi-
mentation is a better goal than minimizing deviation.

REVERSE-ENGINEERING ORGANIZATIONS | 221

Reprogramming the Organization

Given how strongly existing beliefs influence an organization’s ability to trans-
form, how do you best go about identifying and changing them? There is no
magic three-step recipe, but you can combine several behaviors to tackle them:

Observe carefully
You can’t just ask people about their beliefs, because most of the time they
aren’t even aware of them. Instead, observe how people behave and look
for unusual or unexpected decisions. Then, consider which belief would
make such a decision appear rational.

Ask questions
Keep asking people (Chapter 7) why they would choose a particular option
to uncover what drives their behavior.

Explain carefully
Acknowledge the usefulness of their belief in the past, but explain what has
changed since then.

Define new beliefs
Because it’s difficult for people to unlearn things, establish clear new
beliefs that can replace the old ones.

Be patient
Change takes time (Part V).

Your goal isn’t to turn everyone’s belief system upside-down but to identify
and dislodge those beliefs that impede the change you are trying to bring. Revert-
ing too many beliefs will make folks insecure and confused.

Handed-Down Beliefs

Whereas most beliefs stem from actual experience, others are handed down
through generations. A classic (unconfirmed) story of beliefs taking a life of their
own involves monkeys, water, and bananas: several primates were in a cage with
bananas hung in the middle. As soon as any monkey would reach for the tempt-
ing bananas, all monkeys would be sprayed with cold water, something they
weren’t particularly fond of. Every now and then, a monkey was replaced with a
new one. If the new arrival would reach for the bananas, the others would be
quick to hold them back because they knew what was going to happen. Even after

222 | THE SOFTWARE ARCHITECT ELEVATOR

all the original monkeys have been replaced and none of the resident monkeys
have ever been sprayed with water, the best practice of “don’t touch the bananas”
lives on.

This story isn’t based on scientific evidence, but sometimes it does feel that
despite all the technical advances we have made, our basic behavior hasn’t
evolved that much from reaching for bananas.

REVERSE-ENGINEERING ORGANIZATIONS | 223

Control Is an Illusion
It’s When You’re Told Exactly What You Want to Hear

Who’s in control here?

While working in Asia, I’ve become accustomed to sharing a few of my per-
sonal details before presenting to a group of people. I like the idea because it
didn’t have the flavor of bragging about professional accomplishments; rather, it
gives the audience an impression about the speaker’s background to better
understand what shaped their thinking. In a presentation to a group of CEEMA
(the Central-Eastern Europe, Middle-East, and Africa region) COOs and CIOs, I
once opened with a slide summarizing my core beliefs in the form of the pin but-
tons that many people used to wear in the 1980s.

The one slogan that received immediate attention was “Control is an illu-
sion.” Even more attention was paid to my explanation: “You feel that you have
control when people tell you exactly what you want to hear.” Perhaps this wasn’t
the kind of control these senior executives wanted to have over their business.

225

| 27

1 Steve Denning, “Ten Agile Axioms That Make Managers Anxious,” Forbes, June 17, 2018, https://oreil.ly/
Dn1es.

2 Jeff Sussna, Designing Delivery: Rethinking IT in the Digital Service Economy (Sebastopol, CA: O’Reilly,
2015).

The Illusion

How can control be an illusion? “Having control” is based on the assumption
that a direction set from top down is actually being followed and has the desired
effect. And this can be a big illusion. How would you know that it does, if you are
simply sitting at the top, pushing (control) buttons instead of working alongside
the staff? You can rely on management status reports, but then you make a major
assumption that the presented information reflects reality. This might be yet
another big illusion.

Steven Denning uses the term semblance of control1 in contrast to actual con-
trol for this phenomenon in large organizations. A more cynical version would be
to claim that the inmates are running the asylum. In either case, it’s not the state
you want your organization to be in.

Control Circuits

A brief look at control theory sheds some light on where the illusion originates.
Control circuits, such as a room thermostat, keep a system in a stable condition
—in this example, keeping a room at a constant temperature. They do so based
on sensors and feedback: the thermostat senses the room temperature and turns
the furnace on when the room is cold. When the desired temperature is reached,
it turns off the furnace.

The feedback loop compensates for external factors such as the outside tem-
perature or someone opening the window. This runs counter to many project
planning approaches that attempt to predict all factors up front and then look to
execute according to plan. It’s like running the heater for exactly two hours and
then blaming the cold weather for the room not being warm enough. Embarrass-
ingly, a cheap thermostat can give us better control than some project managers.

A Two-Way Street

Jeff Sussna describes the importance of feedback loops in his book Designing
Delivery,2 drawing on the notion of cybernetics. While most people think of
cyborgs and terminators when they hear the term, cybernetics is actually a field

226 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/Dn1es
https://oreil.ly/Dn1es

of study that deals with “control and communication in the animal and the
machine.” Such control and communication is almost always based on a closed
signaling loop.

When we portray large organizations as “command-and-control” structures,
we often focus only on the top-down steering part, and less on the feedback from
the “sensors.” But not using the sensors means one is flying blind, possibly with
a feeling of control, but one that’s disconnected from reality. It’s like driving a car
at night without headlights and turning the steering wheel with no clue where
the car is actually headed—a very dumb idea. It’s shocking to see how such
behavior, which borders on absurdity, can establish itself in large organizations.

Problems on the Way Up

Even if an organization uses sensors—for example, by obtaining the infamous
status reports—not all is necessarily well. Anyone who has heard the term water-
melon status understands: these are the projects whose status is “green” on the
outside but “red” on the inside, meaning that they are presented as going well
but in reality suffer from serious issues. Corporate project managers and status
reporters aren’t straight-out liars, but they might be overly optimistic or take
some literary license to make their project look good. “700 happy passengers
reach New York after Titanic’s maiden voyage” is also factually correct, but not
the status report you’d want to get.

Observing how much trust some senior executives place in PowerPoint
slides might make you believe that it not only has a built-in spell checker but also
a lie detector. Digital companies are generally suspicious of fabricated presenta-
tions and “massaged” messages, but instead believe in hard data, preferably ren-
dered in live metrics dashboards.

Google’s Mobile Ads team in Japan reviewed the performance of all ad experi-

ments, run as A/B tests, every week, and decided which experiments should be

accepted into production, which ones should be rejected, and which ones

needed to run longer in order to become conclusive. The decisions were based

on hard user data, not projections or promises.

Working based off of hard data can be frustrating because getting a solution
running doesn’t yet earn you much praise: that’s expected anyway. Praise comes
once your solution receives attention and traffic from actual users—data that’s
much harder to fabricate.

CONTROL IS AN ILLUSION | 227

3 Stephen Bungay, The Art of Action: How Leaders Close the Gaps between Plans, Actions and Results
(London: Nicholas Brealey Publishing, 2010).

Smart Control

Some control circuits take in more feedback signals and refine how they drive the
system. For example, some heating systems measure the outside temperature to
predict energy loss through windows and walls. Google’s Nest thermostat takes it
a step further: it takes in additional information, such as the weather forecast (the
sun helps warm the house), and when you are usually home or away. It also
learns about the inertia of the heating system, which can lead to overheating the
house due to heat capacity left in the radiators when the furnace is switched off.
Nest is thus called a “learning” or “smart” thermostat; it takes in additional sig-
nals and optimizes what it does based on that feedback. It would be fantastic if
we could apply that label to more project managers.

Saupreiß, ned so Damischer

When people speak about command-and-control structures, they are quick to cite
the military, which, after all, is run by commanders. The military organization
most equated with stodginess and “iron discipline” is the Prussian army. For
people living in Bavaria, in Germany’s southern region, Prussia is externalized in
the concept of the Preiß, a not-so-friendly term referring to people born north of
their state.

Ironically, the Prussian military understood very well that one-way control is
merely an illusion. Carl von Clausewitz wrote a 1,000-page tome, On War, in the
early 1800s, in which he cites sources of friction: the external gap between
desired and actual outcomes (uncertainty) and the internal gap between plans
and the actions of an organization.

In his book The Art of Action,3 Stephen Bungay extends this concept into
three gaps, as illustrated in Figure 27-1: the knowledge gap between what you’d
like to know and actually do know, the alignment gap between plans and actions,
and the effects gap between what you expect your actions to achieve and what
actually happens.

228 | THE SOFTWARE ARCHITECT ELEVATOR

Figure 27-1. The three gaps that can make control an illusion (adapted from Bungay)

You can recognize organizations that believe they can close these gaps by the
methods they apply. They try to close the knowledge gap by generating thick
requirements documents, which are often outdated by the time they are comple-
ted. They try to tackle the alignment gap by developing extensive project plans
and micro-managing according to them. Lastly, the effects gap is a bit more diffi-
cult to close. Such organizations try nonetheless, either through the aforemen-
tioned watermelon status reports or by using proxy metrics (Chapter 40), things
that are easily measured but don’t quite reflect reality. Essentially, these organiza-
tions create their own reality, or illusion.

Many IT organizations believe they can close the knowledge, alignment, and

effects gaps, an approach that has been disproven some 200 years ago.

Unlike some IT organizations, the Prussians already knew that the gaps
couldn’t be eliminated. Instead, they accepted the gaps and adjusted their man-
agement style accordingly, replacing a concrete order with the concept of Auftrag-
staktik, best translated as “mission command” or “directive.” Understanding the
purpose of the mission enabled the troops to adjust to unforeseen circumstances
(knowledge or effects gaps) without having to report back to central command.
This would save valuable time and lead to better decisions in the local context.

CONTROL IS AN ILLUSION | 229

The difference between an order and a mission command becomes clear with a

simple example. Suppose that a small platoon is given the order to take a hill. As

it climbs up the hill, the soldiers realize that there’s no resistance at all and pro-

gress easily. Should they march to the top? If they have been given a simple

command, they’ll do so. This might be correct if the intent, the Auftrag, was to

take the hill as a strategic position. However, if the intent was to attack troops

positioned on the hill, advancing to the top makes little sense.

Auftragstaktik doesn’t mean people are left to do whatever they deem appro-
priate. It’s based on discipline, but active discipline, one that respects the com-
mander’s intentions, as opposed to passive obedience, which demands blind
execution. Also, when deciding on an action, teams pull from a well-defined
repertoire of tactics that are well known and extensively trained.

So, the Preißn weren’t so stodgy after all and were possibly ahead of many
modern IT departments.

Actual Control: Autonomy

Ironically, it turns out that giving teams decision autonomy actually increases
control as it accepts the gaps and avoids operating in an illusion. But be careful:
many organizations equate autonomy to “everyone does what they think is best.”
Now, unfortunately, that’s not autonomy, that’s anarchy: whether we like it or
not, anarchists do what they believe is right.

Everyone doing what they think is best isn’t autonomy, it’s anarchy.

How can large-scale IT organizations establish autonomy without falling into
anarchy? In my experience, it requires the interplay between three elements (see
Figure 27-2):

Enablement
It may sound trivial, but first you need to enable people to perform their
work. Sadly, corporate IT knows many mechanisms that disable people: HR
processes that restrict recruiting, approval processes that take weeks to pro-
vision servers, black markets (Chapter 29) that are inaccessible to new hires.
Just like a thermostat connected to a furnace with a plugged gas line won’t
do much good, high friction negates autonomy. In IT, platforms such as

230 | THE SOFTWARE ARCHITECT ELEVATOR

4 Henrik Kniberg, “Spotify Engineering Culture (part 1),” Spotify Labs, March 27, 2014, https://oreil.ly/
d3MAI.

cloud computing can enable employees and at the same time assure con-
sistency in “tactics” as they provide a common set of tools to select from.

Feedback
Autonomous teams can make better decisions because they have the short-
est feedback cycles (Chapter 36). This way, they can learn fast and improve.
This works only if teams see the consequences for their decisions. If the
thermostat is mounted in another room than the radiator, there’s no con-
trol circuit.

Strategy
To make good decisions, teams need to be able to distinguish which deci-
sions are good. They therefore need to have specific goals; for example, rev-
enue generated or quantifiable user engagement. These goals aren’t
specific commands but overall objectives to be achieved. A thermostat is
useful only if someone sets the desired temperature.

Figure 27-2. Strategy, feedback, and enablement separate autonomy from anarchy

This system won’t work if you omit one or more elements: strategy without
enablement will lead to zero progress but lots of frustration. Autonomy without
strategy or feedback will resemble anarchy as teams can’t judge the appropriate-
ness of their decisions. And enablement without strategy will only make anarchy
more efficient. For example, the Spotify Squad Model4 found that increasing
alignment on a common strategy supports increasing autonomy.

CONTROL IS AN ILLUSION | 231

https://oreil.ly/d3MAI
https://oreil.ly/d3MAI

Many enterprise architecture teams (Chapter 4) set direction without being

responsible for the consequences. Applying the logic that lack of strategy and

feedback leads to anarchy implies a rather disconcerting outcome.

Another insight might surprise traditional organizations that are looking to
give teams more autonomy: autonomous teams need better management. Man-
aging nonautonomous teams is comparatively easy: they’ll largely do as told.
Autonomous teams, in contrast, require leadership: they need to be told the over-
all intent and goals. So, ironically, organizations that are looking to increase
autonomy in their teams might need to strengthen management first.

Autonomous teams need better management.

Controlling the Control Loop

Even though a control circuit’s job is to keep a system in a steady state without
someone having to monitor it, observing the circuit’s behavior can still be useful
in a larger context, meaning we shouldn’t blindly trust the autopilot. For exam-
ple, if the air filter in a forced-air heating system becomes clogged or the furnace
collects soot, it will take longer to warm the house under otherwise identical con-
ditions. A “dumb” thermostat will simply run the heater longer, covering up the
issue. A smart control system, in contrast, can measure the length of the thermo-
stat duty cycle; for instance, how long the furnace runs to reach or maintain a
certain room temperature. If this duty cycle extends, the controller can give a hint
that the system is no longer operating as efficiently as before. Therefore, a control
loop shouldn’t be a black box; instead, it should expose health metrics based on
what it has “learned.”

Advanced cloud features like server autoscaling, which are able to absorb sud-

den load spikes without human intervention, are handy, but they can also mask

serious problems. For example, if a new version of the software performs

poorly, the infrastructure might attempt to autocompensate this problem by

deploying more servers. You might just find out a bit later via your monthly bill.

In control theory, observing the behavior of a control loop is considered an
“outer loop” that observes the behavior of the inner control loop and can trigger
adjustments to the system.

232 | THE SOFTWARE ARCHITECT ELEVATOR

They Don’t Build ’Em Quite
Like That Anymore
No One Lives in a Foundation

The Great Pyramid at 30% completion: effort completion, that is

The great pyramids are impressive buildings and attract hordes of tourists
even several millennia after their construction. The attraction results not only
from the engineering marvel, such as the perfect alignment and balance, but also
from the fact that pyramids are quite rare. Besides the US one-dollar bill, you’ll
find them only in Egypt, Central America, and IT organizations!

233

| 28

Why IT Architects Love Pyramids

Pyramids are a fairly common sight in IT architecture diagrams and tend to give
architects, especially the ones nearer to the penthouse, a noticeable sense of satis-
faction. In most cases, the pyramid diagram indicates a layering concept with a
base layer that includes functionality commonly needed by the upper layers. For
example, the base layer could contain generic functions, while the next layer up
would contain industry-specific functions, followed by functionality for specific
business functions, and being topped off with customer-specific configuration
(Chapter 11).

Layering is a very popular and useful concept in systems architecture
because it constrains dependencies between system components to flow in a sin-
gle direction, as opposed to a Big Ball of Mud (Chapter 8). Depicting the layers in
the shape of a pyramid suggests that the upper layers are much smaller and
more specialized than the base layers, which provide most of the common
functionality.

IT is enamored with this model because it implies that a large portion of the
base layer code can be shared or acquired given that it’s identical across many
businesses and applications. For example, a better Object-Relational Mapping
(ORM) framework or a common business component such as a billing system
are unlikely to present a competitive advantage and should simply be bought.
Meanwhile, necessary and valuable customizations can be performed in the “tip”
with relatively little effort or by lesser-skilled labor. The analogy is consistent with
the pyramids of Giza, where the top third of the pyramid’s height makes up only
roughly 4% of the material.

Organizational Pyramids

The other place littered with pyramids are slide decks depicting organizational
structures, where they refer to hierarchical structures. Almost all organizations
are hierarchical: multiple people from a lower tier report to a single person on the
next upper tier, resulting in a directed tree graph, which, when the root is placed
on the top, resembles a pyramid. Even “flat” organizations tend to have some
hierarchy, as a single person generally acts as a chairman or CEO. Such a setup
makes sense because directing work takes less effort than actually conducting the
work, meaning an organization needs fewer managers or supervisors than work-
ers (unless they are trying to buy love; see Chapter 38). Having fewer leaders also
helps with consistent decision making and setting a single strategic direction.

234 | THE SOFTWARE ARCHITECT ELEVATOR

No Pyramid Without Pharaoh

Still, there’s a good reason why the Egyptians abandoned the idea of building pyr-
amids some 4,500 years ago: the base layers of a pyramid require an enormous
amount of material. It’s estimated that the Great Pyramid of Giza consists of
more than two million blocks weighing in at several tons each. Assuming work-
ers toiled day and night over the course of one decade, they would have had to lay
an average of three large limestone blocks per minute. Three quarters of the
material had to be laid for the first 50 meters of height alone. Even though the
result is undoubtedly impressive and long lasting, it can hardly be called efficient.

The economics of building pyramids can function only if there’s an abun-
dance of cheap or forced labor (historians still debate whether the pyramids were
built by slaves or paid workers) or a pharaoh’s unbelievable accumulation of
wealth. In addition to resources, one also needs to bring a lot of patience. Build-
ing pyramids doesn’t mix well with economies of speed (Chapter 35). Some of the
pyramids in Egypt weren’t even finished during the pharaoh’s lifetime.

No One Lives in a Foundation

Functional pyramids as we find them in IT system designs face another chal-
lenge: the folks building the base layer not only need to move humongous
amounts of material, they also must anticipate the needs of the teams building
the upper layers. That’s a lot more difficult to do in IT pyramids where things tend
to evolve over time (Chapter 3).

Building an IT pyramid purely from the bottom up incurs several problems:

• First, the lower layers alone don’t provide much value to the business—
they are merely a foundation for more things to come. The result is a large
investment with a slow return of value, not something a typical business is
looking for.

• It also negates the Agile principle of “use before reuse.” Building a base
layer means designing functions to be reused later without first actually
using them. This can be a guessing game at best.

• Lastly, it also dangerously ignores the Build-Measure-Learn cycle (Chap-
ter 36) of learning what’s needed from observing actual usage. What if the
business expected a different pyramid?

THEY DON’T BUILD ’EM QUITE LIKE THAT ANYMORE | 235

No one likes to live in a foundation. Therefore, delivering only a base layer has

limited business value.

Not limited to pyramids but applicable to any layered system is the challenge
of defining the appropriate seams between the layers. Done well, these seams
form abstractions that hide the complexity of the layer below while leaving the
layer above with sufficient flexibility (Chapter 11). It’s not easy to find examples
that work well—like abstracting packet-based network routing behind data
streams (sockets)—but when implemented well, this enables major transforma-
tions like the internet. Normal IT teams can’t expect to be quite that lucky.

Building Pyramids from the Top

If you’re determined to build an IT pyramid, the best way to do so is from the top
down. This is not something you can do with real pyramids, but software does
allow us to defy gravity in this case. When I mention “top down,” I am referring
to the way the pyramid is constructed, not the way the project is managed. Ironi-
cally, “top-down management” leads to pyramids being built bottom up.

To build an IT pyramid from the top, you start with a specific application or
service that delivers customer value, thus assuring use before considering resue
and avoiding the dangerous notion of “reusable.” When multiple applications
can utilize a specific feature or functionality, you can let the related components
“sift down” into a lower layer of the pyramid, making them more broadly avail-
able. Building the pyramid this way ensures that the base layer contains function-
ality that’s actually needed as opposed to functions that some people, often the
enterprise architects (Chapter 4) far away from actual software development,
believe might be needed somewhere, sometime.

“Reusable” can be a dangerous word. It describes components that were

designed to be widely used but aren’t.

Anticipating some needs ahead of time, such as the much-mentioned ORM
framework, is fine. So is building some of the pyramid base layers like operating
systems. In many ways, cloud computing is a massive base layer, but one with
very nice seams.

236 | THE SOFTWARE ARCHITECT ELEVATOR

Building pyramids from the top can lead to some amount of duplication; for
example, if two independent development teams build similar functionality that’s
not yet part of the base layer. Transparency across teams—for example, by using
a common source code repository or a common service registry—can help detect
such duplication early. While too much duplication may be undesired, we must
keep in mind that avoiding duplication isn’t free (Chapter 35).

I have seen base services layers that force a consumer to make many remote

calls even to execute a simple function. This approach was chosen by the base-

layer architects because it ostensibly provides more flexibility. The first client

developer coding against this interface described his experience in quite unkind

words, citing well-known issues such as sequencing, partial failure, and main-

taining state. The base-layer team’s retort was a new dispatcher layer on top of

their service layer to “enhance the interaction.” The team was building the pyra-

mid from the bottom up.

Building the pyramid from the top down also typically results in much more
usable APIs (programming interfaces) into the lower layers. Because in the lay-
ered model the consumers of the lower layers live on top, building APIs from the
top equates to being customer centric: rather than guessing what your customers
(other development teams in this case) might want, you derive it from actual use.

Celebrating the Base Layer

Building pyramids is popular in IT for another reason: the completion of the pyr-
amid’s base layer provides a proxy metric for actual product success. It allows
teams to claim major progress without any meaningful validation of business
impact.

It’s analogous to developers’ love of building frameworks: you get to devise
your own requirements, and upon delivery of those requirements, you declare
success without any actual user having validated the need nor the implementa-
tion. In other words, designing pyramid base layers allows penthouse architects
(Chapter 1) to claim that they are connected to the engine room without facing
the scrutiny of actual product development teams or, worse yet, real customers.

The folks highest up in the organizational pyramid love to design the bottom

layers of the IT system pyramid, far away from actual users.

THEY DON’T BUILD ’EM QUITE LIKE THAT ANYMORE | 237

It’s ironic that the folks highest up in the organizational pyramid love to
design the bottom layers of the IT system pyramid. The reason is clear: building
successful applications is more difficult than generic and unvalidated base layers.
Unfortunately, by the time the bluff becomes apparent, the penthouse architects
are almost guaranteed to have moved to another project.

Living in Pyramids

While IT building pyramids can be debated, organizational pyramids are largely a
given: we all report to a boss, who reports to someone else, and so on. In large
organizations, we often define our standing by how many people are above us in
the corporate hierarchy. The key consideration for an organization is whether
they actually live in the pyramid; in other words, whether the lines of communi-
cation and decision making follow the lines in the hierarchy. If that’s the case,
the organization will face severe difficulties in times that favor economies of speed
(Chapter 35) because pyramid structures can be efficient, but they are neither fast
nor flexible: decisions travel up and down the hierarchy, often suffering from a
bottleneck in the coordination layer (Chapter 30).

Luckily, many organizations don’t actually work in the patterns described by
the org chart but follow a concept of feature teams, tribes, or squads. These organi-
zational elements typically have complete ownership of an individual product or
service: decisions are pushed down to the level of the people actually most famil-
iar with the problem. This speeds up decision making and provides shorter feed-
back loops.

Some organizations are looking to speed things up by overlaying communi-
ties of practice over their structural hierarchy, bringing people with a common
interest or area of expertise together. Communities can be useful change agents,
but only if they are empowered and have clear goals (Chapter 27). Otherwise, they
run the risk of becoming communities of leisure, a hiding place for people to
debate and socialize without measurable results.

We should wonder, then, why organizations are so enamored with org charts
that they adorn the second slide of almost any corporate project presentation. My
hypothesis is that static structures carry a lower semantic load than dynamic
structures: when presented with a picture showing two boxes, A and B,
connected by a line, the viewer can easily derive the model: A and B have a rela-
tionship. One can almost imagine two physical cardboard boxes connected by a
string wire. Dynamic models are more difficult to internalize: if A and B have
multiple lines between them that depict interaction over time, possibly including

238 | THE SOFTWARE ARCHITECT ELEVATOR

conditions, parallelism, and repetition, it’s much more difficult to imagine the
reality the model is trying to depict. Often, only an animation can make it more
intuitive. Hence, we are more content with static structures even though under-
standing a system’s behavior (Chapter 10) is generally much more meaningful
than seeing its structure.

It Always Can Get Worse

Running an organization as a pyramid can be slow and inhibit feedback cycles,
which are needed to drive innovation. However, some organizations have a pyra-
mid model that’s even worse: the inverse pyramid. In this model, a majority of
people manage and supervise a minority of people doing actual work. Besides the
apparent imbalance, the inevitable need of the managers to obtain updates and
status reports from the workers is guaranteed to grind progress to a halt. Such
pathetic setups can occur in organizations that once depended completely on exter-
nal providers (Chapter 38) for IT implementation work and are now starting to
bring IT talent back in-house. It can also happen during a crisis, such as a major
system outage, which gets so much management attention that the team spends
more time preparing status calls than resolving the issue.

A second antipattern ironically occurs when organizations attempt to fix the
issues inherent in their hierarchical pyramid setup. They supplement the exist-
ing top-down reporting organization (often referred to as a line organization) with
a new project organization. The combination is typically called a matrix organiza-
tion (for once, this isn’t a movie reference) as people have a horizontal reporting
line into their project and a vertical reporting line into the hierarchy. However,
organizations that are not yet flexible and confident enough to give project teams
the necessary autonomy (Chapter 27) are prone to creating a second pyramid, the
project pyramid. Now employees struggle not only with one but with two
pyramids.

Building Modern Structures

If pyramids aren’t the way to go, how should you build systems, then? I view
both systems and organizational design as an iterative, dynamic process that’s
driven by the need to deliver business value. When building IT systems, you
should add new components only if they provide measurable value. Once you
observe a sizable set of common functions, it’s good to push those down into a
common base layer. If you don’t find such components, that’s also OK. It simply
means that a pyramid model doesn’t fit your situation.

THEY DON’T BUILD ’EM QUITE LIKE THAT ANYMORE | 239

Black Markets Are Not Efficient
But They Reveal How Things Actually Get Done

I got anythin’ you need, bro

A common complaint about large organizations is that they are slow and
mired in processes that are designed to exert control (Chapter 27) as opposed to
supporting people in getting their work done quickly. For example, I used to be
allowed to make technical decisions involving tens of millions of dollars, but I
had to obtain management approval to purchase a $200 plane ticket. By the time
I got the approval, often the fare had increased.

241

| 29

Most organizations consider such processes as crucial to keeping the organi-
zation running smoothly. “What would happen if everyone did what they
wanted?” is the common justification. Most organizations never dare to find out,
not because they fear chaos and mayhem, but because they fear that everything
will be fine, and the people creating and administering the processes will no
longer be needed.

Black Markets to the Rescue

Ironically, beneath the covers of law and order, such organizations are intrinsi-
cally aware that their processes hinder progress. That’s why these organizations
tolerate a “black market” where things get done quickly and informally without
following the self-imposed rules. Such black markets often take the innocuous
form of needing to “know who to talk to” to get something done quickly. You
need a server urgently? Instead of following the standard process, you call your
buddy who can “pull a few strings.” Setting up an official “priority order” process,
usually for a higher price, is fine. Bypassing the process to get special favors for
those who are well connected is a black market.

If the answer to “how long does it take to get a server?” is “it depends on who’s

asking,” then you have a black market.

Another type of black market can originate from “high up.” While it’s not
uncommon to offer different service levels, including “VIP support,” providing
senior executives with support that ignores the very process- or security-related
constraints imposed by the executives in the first place is a black market. Such a
black market appears, for example, in the form of executives sporting sexy mobile
devices that are deemed too insecure for employees, notwithstanding the fact that
executives’ devices often contain the most sensitive data.

Black Markets Are Rarely Efficient

What these examples have in common is that they are based on unwritten rules
and undocumented, or sometimes secret, relationships. That’s why black mar-
kets are rarely efficient, as you can see from countries where black markets con-
stitute a major portion of the economy: black markets are difficult to control and
deprive the government of much-needed tax income. They also tend to circum-
vent balanced allocation of resources: those with access to the black market will

242 | THE SOFTWARE ARCHITECT ELEVATOR

be able to obtain goods or favors that others cannot. Black markets therefore stifle
economic development because they don’t provide broad and equal access to
resources. This is true for countries as much as large enterprises.

Black markets stifle innovation because they don’t provide equal access to

resources. The digital world democratizes access, which is exactly the opposite.

In organizations, black markets often contribute to slow chaos (Chapter 31), in
which the outside of the organization appears to be disciplined and structured,
but the reality is completely different. They also make it difficult for new mem-
bers of the organization to gain traction because they lack connections into the
black market, presenting one way systems resist change (Chapter 10).

Black markets also cause inefficiency by forcing employees to learn the black-
market system. Knowing how to work the black market is undocumented organi-
zational knowledge that’s unique to the organization. The time it takes
employees to learn the black market doesn’t benefit the organization and
presents a real but rarely measured cost. Once acquired, the knowledge doesn’t
benefit the employee either, because it has no market value outside of the organi-
zation. Ironically, this effect can contribute to large organizations tolerating black
markets: it aids employee retention because much of their knowledge consists of
undocumented processes, special vocabulary, and black-market structures, which
ties them to the organization.

Worse yet, black markets break necessary feedback cycles: if procuring a
server is too slow to compete in the digital world, the organization must resolve
the issue and speed up that process. Circumventing it in a black-market fashion
gives management a false sense of security, which often goes along with fabrica-
ted heroism: “I knew we could get it done in two days.” Amazon can get it done
in a few minutes for a hundred thousand customers. The digital transformation
is driven by democratization; that is, giving everyone rapid access to resources.
That’s exactly the opposite of what a black market does.

You Cannot Outsource a Black Market

Another very costly limitation of black markets is that they cannot be outsourced.
Large organizations tend to outsource commodity processes like human resour-
ces or IT operations, exactly the areas that are subject to black market economies.
Specialized outsourcing providers have better economies of scale and lower cost

BLACK MARKETS ARE NOT EFFICIENT | 243

structures, partly because they follow officially established processes. Because
services are now performed by a third-party provider, and processes are contrac-
tually defined, the unofficial black market bypass no longer works. Essentially,
the business has subjected itself to a work-to-rule slowdown. Organizations that
rely on an internal black market, therefore, will experience a huge loss in produc-
tivity when they outsource part of their service portfolio.

Beating the Black Market

How do you avoid running the organization via a black market? More control and
governance could be one approach: just like the DEA cracks down on the black
market for drugs, you could identify and shut down the black-market traders.
However, one must recall that the IT organization’s black market isn’t engaged
in trading illegal substances. Rather, people circumvent processes that don’t
allow them to get their work done. Knowing that overambitious control processes
caused the black market in the first place makes more control and governance an
unlikely solution. Still, some organizations will be tempted to do so, which is a
perfect example of doing exactly the opposite of what has the desired effect (Chap-
ter 10).

You can’t eliminate black markets with more control and governance. After all,

those are the very mechanisms that caused the black market in the first place.

The only way to avoid a black market is to build an efficient “white market,”
one that doesn’t hinder progress but enables it. An efficient white market
reduces people’s desire to maintain an alternate black-market system, which does
take some effort after all. Trying to shut down the black market without offering
a functioning white market is likely to result in resistance and substantial reduc-
tion in productivity.

Self-service systems are a great tool to starve black markets because they
remove the human connection and friction by giving everyone equal access, thus
democratizing the process. If you can order IT infrastructure through a self-
explanatory tool that provides fast provisioning times, there’s much less motiva-
tion to do it “through the back door.” Automating undocumented processes is
cumbersome, though, and often unwelcome because it can highlight the slow
chaos (Chapter 31).

244 | THE SOFTWARE ARCHITECT ELEVATOR

Feedback and Transparency

Black markets generally originate as a response to cumbersome processes, which
result from process designers prioritizing reporting and control: inserting a
checkpoint or quality gate at every step provides accurate progress tracking and
valuable metrics. However, it makes people using the process jump through an
endless sequence of hurdles to get anything done. That’s the reason I have never
seen a single user-friendly HR or expense reporting system. Forcing the people
designing processes to use them for their own daily work can highlight the
amount of friction the processes create and thus provide a valuable feedback loop
(Chapter 27). This means no more VIP support but support that’s good enough
for everyone to use. Wouldn’t everyone like to be treated like a VIP? Similarly,
HR teams should apply for their own job postings to experience the process
firsthand.

When recruiting, I routinely apply for my own job openings so I can detect any

hurdles in the process.

Transparency is a good antidote to black markets. Black markets are inher-
ently nontransparent, providing benefit to only a small subset of people. When
users gain full transparency of the official processes, such as ordering a server,
they might be less inclined to want to order one from the black market, which
does carry some overhead and uncertainty. For example, will a black market
server be supported or perhaps reallocated during the next inventory sweep?
Therefore, full transparency should be embedded into an organization’s systems
as a main principle.

Replacing a black market with an efficient, democratic white market also
makes control less of an illusion (Chapter 27): if users employ official, documented,
and automated processes, the organization can observe actual behavior and exert
governance; for example, by requiring approvals or issuing usage quotas. No
such mechanisms exist for black markets.

The main hurdle to drying up black markets is that improving processes has
a measurable up-front cost while the cost of the black market is usually not meas-
ured. This gap leads to the cost of no change (Chapter 33) being perceived as being
low, which in turn reduces the incentive to change.

BLACK MARKETS ARE NOT EFFICIENT | 245

Scaling an Organization
How to Scale an Organization? The Same
Way You Scale a System!

Horizontal scaling seems more natural

The digital world is all about scalability: millions of websites, billions of hits
per month, petabytes of data, more tweets, more images uploaded. To make this
work, architects have learned a ton about scaling systems: make services stateless
and horizontally scalable, minimize synchronization points to maximize
throughput, keep transaction scope local, avoid synchronous remote communica-
tion, use clever caching strategies, and shorten your variable names (just
kidding!).

247

| 30

1 Joel Spolsky, “Don’t Let Architecture Astronauts Scare You,” April 21, 2001, Joel on Software (blog),
https://oreil.ly/MafCn.

2 Wikipedia, "Getting Things Done,” https://oreil.ly/PRfdu.

With everything around us scaling to never-before-seen throughput, the lim-
iting element in all of this is bound to be us, the human users, and the organiza-
tions we work in. You might wonder, then, whether IT architects, who know so
much about scalability, can apply their expertise to scaling and optimizing
throughput in organizations. I might have become an architect astronaut1 suffer-
ing from oxygen deprivation due to exceedingly high levels of abstraction, but I
can’t help but feel that many of the scalability and performance approaches
known to experienced IT architects can just as well be applied to scaling organi-
zations. If a coffee shop (Chapter 17) can teach us about maximizing a system’s
throughput, maybe our knowledge of IT systems design can help improve an
organization’s performance?

Component Design—Personal Productivity

Increasing throughput starts with the individual. Some folks are simply 10 times
more productive than others. For me it’s hit or miss: when I am “in the zone,” I
can be incredibly productive but lose traction just as quickly when I am being fre-
quently interrupted or annoyed by something. So, I won’t bestow on you any
great personal advice, but instead refer you to the many resources like GTD (Get-
ting Things Done),2 which advises you to minimize your inventory of open tasks
(making the Lean folks happy) and to break down large tasks into smaller ones
that are immediately actionable. For example, “I really ought to replace that old
clunker” turns into “visit three dealerships this weekend.” Incoming stuff is cate-
gorized and either immediately processed or parked until it’s actionable, thus
reducing the number of concurrent threads. The suggestions are very sound, but
as always it takes a bit of trust and lots of discipline to succeed at implementing
them.

Avoid Sync Points—Meetings Don’t Scale

Let’s assume people individually do their best to be productive and have high
throughput, meaning we have efficient and effective system components. Now
we need to look at the integration architecture, which defines the interaction
between components; in other words, people. One of the most common interac-
tion points (short of email, more on that later) surely is the meeting. The name

248 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/MafCn
https://oreil.ly/PRfdu

alone gives some of us goose bumps because it suggests that people get together
to “meet” one another, but doesn’t define any specific agenda, objective, or
outcome.

Meetings are synchronization points—a well-known throughput killer.

From a systems design perspective, meetings have another troublesome
property: they require multiple humans to be (mostly) in the same place at the
same time. In software architecture, we call this a synchronization point, widely
known as one of the biggest throughput killers. The word “synchronous” derives
from Greek and essentially means things happening at the same time. In dis-
tributed systems for things to happen at the same time, some components must
wait for others, which is quite obviously not the way to maximize throughput.

The longer the wait for the synchronization point, the more dramatic the
negative impact on performance becomes. In some organizations finding a meet-
ing time slot among senior people can take a month or longer. Such resource
contention on people’s time significantly slows down decision making and
project progress (and hurts economies of speed; see Chapter 35). The effect is ana-
log to locking database updates: if many processes are trying to update the same
table record, throughput suffers enormously as most processes just wait for oth-
ers to complete, eventually ending up in the dreaded deadlock. Administrative
teams in large organizations acting as transaction monitor underlines the over-
head caused by using meetings as the primary interaction model. Worse yet, full
schedules cause people to start blocking time “just in case,” a form of pessimistic
resource allocation, which has exactly the opposite of the intended effect on the
system behavior (Chapter 10).

Getting together can be useful for brainstorming, critical discussions, or
decisions, but the worst kind of meetings must be status meetings. If someone
wants to know where a project stands, why would they want to wait for the next
status meeting that takes place in a week or two? To top it off, many status meet-
ings I attended had someone read text off a document that wasn’t distributed
ahead of the meeting lest someone read through it and escape the meeting.

SCALING AN ORGANIZATION | 249

3 Hohpe, “Conversation Patterns,” Enterprise Integration Patterns, https://oreil.ly/qHzFw.

4 Tom DeMarco and Timothy Lister, Peopleware: Productive Projects and Teams, 3rd ed. (Upper Saddle
River, NJ: Addison-Wesley, 2013).

5 Wikipedia, “Exponential Backoff,” https://oreil.ly/A4QbL.

Interrupts Interrupt—Phone Calls

When you can’t wait for the next meeting, you tend to call the person. I know
well as I log half a dozen incoming calls a day, which I routinely don’t answer
(they typically lead to an email starting with the phrase “I was unable to reach
you by phone,” whose purpose I never quite understood). Phone calls have short
wait times when compared to meetings, but are still synchronous and thus
require all resources to be available at the same time. How many times have you
played “phone tag” where you were unable to answer a call just to experience the
reverse when you call back? I am not sure there’s an analog to this in system
communication (I should know; after all, I am documenting conversation pat-
terns),3 but it’s difficult to imagine this as effective communication.

Phone calls are “interrupts” (they are blockable by muting your ringer), and
in an open environment, they not only interrupt you but also your coworkers.
That’s one reason that Google Japan’s engineering desks were by default not
equipped with phones—you had to specifically request one, which was looked
upon as a little old fashioned. The damage ringing phones can do in open office
spaces was already illustrated in Tom DeMarco and Tim Lister’s classic People-
ware.4 The “tissue trick” won’t work anymore with digital phones, but luckily vir-
tually all of them have a volume setting. My pet peeve related to phones is people
busting into my office while I am talking on the speaker phone, so I’d like to
build a mini project to illuminate an “on air” sign while I am on the phone.

Piling on Instead of Backing off

Retrying an unsuccessful operation is a typical conversation pattern. It’s also a
dangerous operation because it can escalate a small disturbance in a system into
an onslaught of retries, which brings everything to a grinding halt. That’s why
Exponential Backoff 5 is a well-known pattern and forms the basis of many low-
level networking protocols, such as Carrier Sense, Multiple Access with Collision
Detection (CSMA/CD), which is a core element of the Ethernet protocol.

Ironically, humans tend to not back off if a phone call fails, but have a ten-
dency to pile on: if you don’t pick up, they tend to call you at ever shorter

250 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/qHzFw
https://oreil.ly/A4QbL

intervals to signal that it’s urgent. Ultimately, they will back off, but only after
burdening the system with overly aggressive retries. Such behavior contributes to
uneven resource utilization. It seems that either everyone seems to be calling you
or it’s extremely quiet. Asynchronous communication with queues in contrast
can perform traffic shaping—spikes are absorbed by the queue, allowing the “ser-
vice” to process requests at the optimal rate without becoming overloaded. That’s
why I prefer to receive an email starting with “I was unable to reach you by
phone”: I converted a synchronous operation into an asynchronous one.

Asynchronous Communication—Email, Chat, and More

In corporate environments, email tends to draw almost as much ire as meetings.
It has one big advantage, though: it’s asynchronous. Instead of being interrupted,
you can process your email whenever you have a few minutes to spare. Getting a
response might take slightly longer, but it’s a classic “throughput over latency”
architecture, best described by Clemens Vaster’s analogy of building wider
bridges, not faster cars, to solve the perennial congestion on the two-lane floating
bridge that’s part of Washington State Route 520 between Seattle and Redmond.

Email also has drawbacks, the main one being people flooding everyone’s
inbox because the perceived cost of sending mail is zero. Unfortunately, the cost
of reading an email isn’t. You must therefore have a good inbox filter if you want
to survive. Also, mail isn’t collectively searchable—each person has their own
record of history. I guess you could call that an eventually consistent architecture of
sorts and just live with it, but it still seems horribly inefficient. I wonder how
many copies of that same 10 MB PowerPoint presentation plus all its prior ver-
sions are stored on a typical Exchange server.

Integrating chat with email can overcome some of these limitations: if you
don’t get a reply or the reply indicates that a real-time discussion is needed, the
“reply by chat” button turns the conversation into quasi-synchronous mode: it
still allows the receiver to answer at will (so it’s asynchronous) but allows for
much quicker iterations than mail. Products like Slack, which favor a chat/chan-
nel paradigm, also enable asynchronous communication without email. Systems
architects would liken this approach to tuple spaces, which, based on a blackboard
architectural style, are well suited for scalable, distributed systems thanks to loose
coupling and avoiding duplication.

SCALING AN ORGANIZATION | 251

Asking Doesn’t Scale—Build a Cache!

Much of corporate communication consists of asking questions, often via syn-
chronous communication. This doesn’t scale because the same questions are
asked again and again. Architects would surely introduce a cache into their sys-
tem to offload the source component, especially when they receive repeated
requests for basic information, such as a photo of a new team member. In such
cases, I simply type the person’s name into Google and reply with a hyperlink to
an online picture, asking Google instead of another person.

Search scales, but only if the answers are available in a searchable medium.
Therefore, if you receive a question, reply so that everyone can see (and search)
the answer; for example, on an internal forum—that’s how you load the cache.
Taking the time to explain something in a short document or forum post scales:
1,000 people can search for and read what you have to share. 1,000 one-on-one
meetings to explain the same story would take half of your annual work time.

One cache killer that I have experienced is the use of different templates,
which aim for efficiency but hurt data reuse. For example, when I answer
requests for my resume with a link to my home page or LinkedIn, I observe a
human transcribing the data found online into a prescribed Word template.
Some things are majorly wrong in the digital universe.

Poorly Set Domain Boundaries—Excessive Alignment

Even though some communication styles might scale better than others, all will
ultimately collapse under heavy traffic because humans can handle only so much
throughput, even in chat or asynchronous communication. The goal therefore
mustn’t only be to tune communication but also to reduce it. Large corporations
suffer from a lot of unnecessary communication, caused, for example, by the
need “to align.” I often jest that “aligning” is what I do when my car doesn’t run
straight or wears the tires unevenly. Why I need to do it at work all the time puz-
zled me, especially as “alignment” invariably triggers a meeting with no clear
objective.

In corp speak, to align means to coordinate on an issue and come to some
sort of common understanding or agreement. A common understanding is an
integral part of productive teamwork, but the act of “aligning” can start to take on
a life of its own. My suspicion is that it’s a sign of misalignment (pun intended)
between the project and organizational structures: the people who are critical to a
project’s success or are vital decision makers aren’t part of the project, requiring
frequent “steering” and “alignment” meetings. The system design analog for this

252 | THE SOFTWARE ARCHITECT ELEVATOR

6 Eric Evans, “About Domain Language,” Domain Language (website), https://oreil.ly/m71x1.

7 Martin Fowler, “Bounded Context,” MartinFowler.com, https://oreil.ly/AtY88.

8 Sam Newman, Building Microservices: Designing Fine-Grained Systems (O’Reilly, 2015).

problem is setting domain boundaries poorly, drawing on Eric Evans’s Domain-
Driven Design6 concept of a Bounded Context.7 Slicing a distributed system
across poorly set domain boundaries is almost guaranteed to increase latency and
burden both the system and its developers, who must grapple with increased
complexity. Sam Newman would surely agree.8

Self-Service Is Better Service

Self-service generally has poor connotations: if the price were the same, would
you rather eat at McDonald’s or in a white-tablecloth restaurant with waiter ser-
vice? If you are a food chain looking to optimize throughput, though, would you
rather be McDonald’s or the quaint Italian place with five tables? Self-service
scales.

Requesting a service or ordering a product by making a phone call or email-
ing spreadsheet attachments for someone to manually enter data doesn’t scale,
even if you lower the labor cost with near- or offshoring. To scale, automate every-
thing (Chapter 13): make all functions and processes available online on the intra-
net, ideally both as web interfaces and as (access protected) service APIs so that
users can layer new services or custom user interfaces on top; for example, to
combine popular functions.

Staying Human

Does scaling organizations like computer systems mean that the digital world
shuns personal interaction, turning us into faceless email and workflow drones
that must maximize throughput? I don’t think so. I very much value personal
interaction for brainstorming, negotiation, solution finding, bonding, or just hav-
ing a good time. That’s what we should maximize face-to-face time for. Having
someone read slides aloud or calling me the third time to ask the same question
could be achieved many times faster by optimizing communication patterns. Am
I being impatient? Possibly, but in a world in which everything moves faster and
faster, patience might not be the best strategy. High-throughput systems don’t
reward patience.

SCALING AN ORGANIZATION | 253

https://oreil.ly/m71x1
https://oreil.ly/AtY88
http://shop.oreilly.com/product/0636920033158.do

Slow Chaos Is Not Order
Going Fast? Bring Discipline!

Agile or just fast? The next turn will tell.

We all have our pet peeves or hot buttons, things that we’ve come across
often enough that, despite their insignificance, really annoy us. In private life,
these issues tend to revolve around things like toothpaste tubes: cap off versus
cap on, or squeezed from the bottom versus from the middle. Such differences
have been known to put numerous marriages and live-in relationships in danger
(hint: a second tube runs about $1.99).

In the corporate IT world, pet peeves tend to be related to things more tech-
nical in nature. Mine is people using the word agile without having understood
its meaning, almost two decades after the Agile Manifesto was authored. Surely
you have overheard conversations like the following:

255

| 31

http://agilemanifesto.org

• What’s your next major deliverable? Dunno—we are Agile!

• What’s your project plan? Because we are Agile, we are so fast that we
couldn’t keep the plan up to date!

• Could I see your documentation? Don’t need it—we are Agile!

• Could you tell me about your architecture? Nope—Agile projects don’t
need this!

And when one dares to ask how the teams know that they are Agile, you’re
sure to hear the following response:

• We are guaranteed to be Agile because we’re officially certified!

Such ignorance is topped only by statements that Agile methods aren’t
suited for your company or department because they are too chaotic for such a
structured environment. Ironically, the opposite is usually the case: corporate
environments often lack the discipline to implement Agile processes.

Fast Versus Agile

My first annoyance about the widespread abuse of the word agile is repeatedly
having to remind people that the method is called “Agile,” not “fast,” and for a
good reason. Agile methods are about hitting the right target through frequent
recalibration and embracing change rather than trying to predict the environ-
ment and eliminating uncertainty. Firing from afar at a moving target is fast, but
not Agile: you will likely miss. Agile methods allow course corrections along the
way, more like a guided missile (though I am not fond of the weapons analogy).
Agile quickly gets you where you need to be. Running in the wrong direction
faster isn’t a method, but foolishness.

Speed and Discipline

When observing something that moves fast, it’s easy to feel a sense of chaos: too
many things are happening at the same time for someone to judge how it all
really fits together. A good example is a Formula 1 pit stop: screech, whir, whir,
roar, and the car has four new tires in under four seconds (refueling is no longer
allowed in F1 racing). Watching this process happening at such high speeds
leaves one feeling slightly dizzy and that it’s some sort of miracle or in fact a bit
chaotic. If you watch the procedure a few times, ideally in slow motion, you can

256 | THE SOFTWARE ARCHITECT ELEVATOR

appreciate that few teams are more disciplined than a pit stop crew: every move-
ment is precisely choreographed and trained hundreds of times. After all, at F1
speed a second longer in the pit means lagging almost 100 meters behind.

Moving fast in the IT world likewise requires discipline. Automated tests are
your safety belt—how else would you be able to deploy code into production at a
moment’s notice, e.g., in case of a serious problem? The most valuable time for
an online retailer to deploy code is right in the middle of the holiday season,
when customer traffic is at its peak. That’s when a critical fix or a new feature can
have the biggest positive impact on the bottom line. Ironically, that’s exactly the
time when most corporate IT shops impose a “frozen zone,” during which they
forbid the deployment of code changes. Making a code push in peak traffic takes
confidence. Having iron discipline and lots of practice can make you more confi-
dent and fast. Fear will slow you down. Confidence without discipline will make
you crash and burn.

Fast and Good

Agile development overcomes the perception that things are either fast or of high
quality by adding a new dimension (Chapter 40). This admittedly makes it difficult
to really grasp the concept without seeing it in action. I often claim that “Agile
cannot be taught, it can only be shown,” meaning that you should learn Agile
methods by working on an Agile team, and not from a textbook.

I describe the attributes required for fast software development and deploy-
ment as follows:

Velocity
Development velocity assures that you can make code changes swiftly. If the
code base is fraught with technical debt, such as duplication, you will lose
speed right there.

Confidence
Once you made a code change, you must have the confidence in your code’s
correctness, e.g., through code reviews, rigorous automated tests, and
small, incremental releases. If you lack confidence, you will hesitate, and
you can’t be fast.

SLOW CHAOS IS NOT ORDER | 257

1 John Roberts, The Modern Firm: Organizational Design for Performance and Growth (Oxford: Oxford Uni-
versity Press, 2007).

Repeatable
Deployment must be repeatable, usually by being 100% automated. All your
creativity should go into writing great features for your users, not into mak-
ing each deployment work. Once you decide to deploy, you must depend
on the deployment working exactly as it did the last 100 times.

Elastic
Your runtime must be elastic because once your users like what you built,
you must be able to handle the traffic.

Feedback
You need feedback from monitoring to make sure you can spot production
issues early and to learn what your users need. If you don’t know in which
direction to head, moving faster is no help.

Secure
And last but not least, you need to secure your runtime environment against
accidental and malicious attacks, especially when deploying new features
frequently, which may contain, or rely on libraries that contain, security
exploits.

In unison, these qualities make for a disciplined but fast-moving and agile
development process. People who haven’t seen such a process live often cannot
quite believe how liberating it is to work with confidence. Even with the 15-year-
old build system for my Enterprise Integration Patterns website I don’t hesitate
for a second to delete all build artifacts to rebuild and redeploy them from
scratch.

Slow-Moving Chaos

If high speed requires high discipline (or ends up in certain disaster), is it true
then that slow speed allows sloppiness? While not logically equivalent, the reality
shows that this is usually the case. Once you look under the cover of traditional
processes, you realize that there’s a lot of messiness, rework, and uncontrolled
black markets (Chapter 29). For example, US auto plants in the 1980s apparently
dedicated up to one-quarter of the floor space to rework.1 No wonder Japanese car
companies came in and ate their lunch with a disciplined, zero-defect approach,

258 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/hV3NG

2 “ITIL—IT service management,” Axelos (website), https://oreil.ly/PN_Mj.

which acknowledged that stopping a production line to debug a problem is more
effective than churning out faulty cars. These manufacturing companies were
disrupted 30 years ago much in the same way digital companies are disrupting
slow and chaotic service businesses now. Hopefully, you can learn something
from their mistakes!

Alarmingly, you can find the same level of messiness in corporate IT: why
would it take two weeks to provision a virtualized server? For one, because most
of this time is spent in queues (Chapter 35), and second, because of “thorough test-
ing.” Hold on, why would you need to test a virtual server that should be provi-
sioned in a 100% automated and repeatable fashion? And why would it take two
weeks? Usually because the process being followed isn’t actually 100% automa-
ted and repeatable: a little duct tape is added here, a little optimization is done
over there, a little script is edited, and someone forgot to mount the storage vol-
umes. Oops. That’s one reason to never send a human to do a machine’s job (Chap-
ter 13).

Once you look under the veil of “proven processes,” you quickly discover
chaos, defined as a state of confusion or disorder. It’s just so slow moving that
you have to look a few times to recognize it. A good way to test for chaos is to
request precise documentation of the aforementioned proven processes: most of
the time it doesn’t exist, is outdated, or is not meant to be shared. Yeah, right…

ITIL to the Rescue?

If you challenge IT operations about slow chaos, you will likely receive a stare of
disbelief and a reference to ITIL,2 a proprietary but widely adopted set of practi-
ces for IT service management. ITIL provides common vocabulary and structure,
which can be of huge value when supplying services or interfacing with service
providers. ITIL is also a bit daunting, consisting of five volumes of some 500
pages each.

When an IT organization refers to ITIL, I am generally suspicious whether
there’s a gap between perception and reality; i.e., does the organization really fol-
low ITIL, or is this label used to shield further investigation into the slow chaos?
A few quick tests give valuable hints: I ask a sysadmin which ITIL process they
primarily follow. Or I ask an IT manager to show me the strategic analysis of the
customer portfolio described in section 4.1.5.4 of the volume on service strategy.

SLOW CHAOS IS NOT ORDER | 259

https://oreil.ly/PN_Mj

Most of the time we find that the ITIL ideal and the ITIL reality differ
dramatically.

I prominently displayed a set of ITIL manuals in my office to thwart anyone’s

temptation of hand-waving their way through a conversation.

ITIL itself is a very useful collection of service management practices. How-
ever, just like placing a math book under your pillow didn’t get you an “A” grade
in school, simply referencing ITIL doesn’t repel slow chaos.

Objectives Require Discipline

Many organizations are managed by objectives and grant teams autonomy in
achieving these objectives. While this in general is a sound approach, it can fail
spectacularly in organizations that lack discipline, because teams may use any
means to achieve the objective, compromising on base values such as quality. If
reaching objectives by any means is rewarded, result-oriented objectives can
actually cause a lack of discipline.

A provider’s large datacenter migration project had been set a clear goal of

migrating a certain number of applications into a new datacenter location (a

quite sensible objective). Alas, the provider had difficulties reliably provisioning

servers in the new datacenter, causing many migration issues. To drive out this

issue first, I suggested creating an automated test that repeatedly placed orders

for servers in a variety of configurations and validated that all servers were deliv-

ered to spec. We would then start application migration once reliable provision-

ing was proven. The project manager exclaimed that if they did that, they’d

never migrate a single application in 10 years! The team preferred to migrate

applications regardless of their underlying problems, just so that they could ach-

ieve the project objective.

Setting output-oriented objectives therefore requires an agreed-upon disci-
pline as a baseline for achieving those objectives. This is why the Prussian ideal of
Auftragstaktik (Chapter 27) depended on active discipline: increasing an organiza-
tion’s discipline allows more far-reaching and meaningful objectives to be set.

260 | THE SOFTWARE ARCHITECT ELEVATOR

The Way Out

You may be asking yourself: why does no one clean up the slow chaos? Many tra-
ditional but successful organizations simply have too much money (Chapter 38)
to really notice or bother with it. They must first realize that the world has
changed from pursuing economies of scale to pursuing economies of speed (Chap-
ter 35). Speed is a great forcing function for automation and discipline. For most
situations besides dynamic scaling, it’s OK if provisioning a server takes a day.
But if it takes more than 10 minutes, you know there’ll be the temptation to per-
form a piece of it manually. And that’s the dangerous beginning of slow-moving
chaos. Instead, let software eat the world (Chapter 14) and don’t send humans to do a
machine’s job (Chapter 13). You’ll be fast and disciplined.

SLOW CHAOS IS NOT ORDER | 261

Governance Through Inception
I Am from Headquarters, I Am Here to Help You

Corporate governance circa 1984

Corporate IT tends to have its own vocabulary. A top contender for the most
frequently used phrase must be to align, which translates vaguely into the activity
of holding a meeting with no particular objective beyond mulling over a topic and
coming to some sort of agreement short of an official approval. Large IT organi-
zations tend to get slowed down (Chapter 30) by doing this a lot. After alignment,
governance likely comes in second.

263

| 32

Living in Perfect Harmony

Governance generally describes the act of harmonizing and standardizing things
across the organization by means of rules, guidelines, and standards. IT harmo-
nization done well increases purchasing power through economies of scale,
reduces downtime thanks to less operational complexity, and boosts IT security
by eliminating unnecessary diversity.

While pursuing harmonization is a rather worthwhile goal, governance can
also do harm; for example, by converging on a lowest common denominator,
which in the end doesn’t meet the business’s need. Also, many enterprises stand-
ardize on an all-encompassing solution that ends up being too expensive for
many use cases. Lastly, if the wrong things are standardized, it can stifle
creativity.

Harmonization can reduce cost and complexity, increase uptime, and

strengthen cybersecurity. But, if done in the abstract, it can also stifle innova-

tion, lead to a lowest-common-denominator solution, or propose overengineered

and overpriced universal solutions.

One common cause of suboptimal standards is that those setting the stand-
ards don’t have the necessary skill set and the full context of a situation. Worse
yet, these teams often lack meaningful feedback on the effect of the standards
they set. Things may look orderly from the top—e.g., everyone uses the same
type of laptop—but developers lack administrative access and main memory,
while frequent travelers must lug around a desktop-equivalent monster laptop.

In many large IT organizations, top decision makers don’t use the very tools

they standardize. For example, they rarely use the standard workplace or HR tools

(Chapter 29), because they’re entitled to special solutions or they have admins

who do this work for them. They hence can lack both the situational context and

a critical feedback cycle.

Exerting governance in an existing organization or one that grew by acquisi-
tion involves migrating from the “wrong” system implementation to the “stan-
dard.” Such migrations bring cost and risk without an apparent benefit for the
local entity, making enforcement difficult. The enemy of governance is the
“shadow IT,” which describes local development outside the reaches of central
governance.

264 | THE SOFTWARE ARCHITECT ELEVATOR

The Value of Standards

Standardization has enormous value, as epitomized by what happened during a
devastating 1904 fire in Baltimore, Maryland. When much of downtown Balti-
more was ablaze, firemen from surrounding cities rushed to help with their fire
engines. Sadly, many of these firefighters and much of their equipment ended
up standing idle because the fire hose connections of other cities’ departments
wouldn’t fit Baltimore’s fire hydrants. The National Fire Protection Association
was quick to learn from this disaster and in 1905 established a standard for fire
hose connections, still known as the “Baltimore Standard.”

Corporate governance typically starts by defining a set of standards that are
to be adhered to. A standards organization will define and administer these
standards for many types of products that are being used. For example, they may
decree that software ABC shall be used as the internet browser and vendor prod-
uct XYZ for databases. But if we look at the real world, the most successful stand-
ards have been of a different nature.

The standards with the biggest economic impact have been compatibility or
interface standards: specifications that allow interchangeability of parts. Fire hoses
and hydrants are a great example, as is HTTP. In an IT environment, interface
standards translate to standardizing interfaces rather than products; for example,
standardizing on HTTP or a specific minimum version of HTML, as opposed to
setting Internet Explorer as the browser.

The most successful IT standards over the past half-century have been TCP/IP

and HTTP—these brought us universal connectivity and the internet. However,

neither is a product standard, but both are interface standards. Also, both are

open standards.

Interface Standards

Interface standards bring flexibility and network effects: when many elements can
interconnect, the benefit to all participants increases. The internet, originally
based on the HTML and HTTP standards for content and connectivity, is the per-
fect example. Thanks to these standards, any browser could connect to any web
server regardless of the implementation technology used. Such effects also high-
light again how lines are more interesting than boxes (Chapter 23).

Enterprises must therefore articulate their main driver behind setting stand-
ards: standardizing vendor products aims to reduce cost and complexity through

GOVERNANCE THROUGH INCEPTION | 265

economies of scale, while compatibility or connectivity standards boost flexibility
and innovation. Both are useful, but call for different types of standards.

Not all interface standards look like interfaces. For example, when standard-
izing inside an enterprise, elements, or “boxes,” can act as connecting elements.
Monitoring and version control systems are great examples: while they are com-
ponents, their purpose is to connect many applications so that one can gain a
unified view across software development or operational status, respectively.
That’s why in my view it’s more beneficial to standardize the version control sys-
tem than standardize the integrated development environment (IDE) that devel-
opers use: the former is a connecting element, while the latter is a node. Storing
all sources in a single repository allows easy reuse or shared code ownership,
something that shared IDEs can’t do.

It’s more beneficial to standardize connecting elements, such as monitoring or

source control, than endpoints such as laptops or IDEs. Google took this to the

extreme by storing (almost) all of its source code in a single version control

system.

Mapping Standards

However, setting standards, even for interfaces, isn’t quite as simple. For exam-
ple, sizing all fire hose connections the same turns out to not be such a good
idea. For a standard to be useful, it needs to be based on a common worldview and
vocabulary (Chapter 16) that specifies the standard’s scope. For example, IT stand-
ards for databases, application servers, or integration run the risk of being mean-
ingless without a distinction of the types of databases or servers under
consideration.

The Baltimore fire hydrant standard distinguishes two kinds of standards, one

for pumper connections and one for fire hose connections. Pumper connections

feed water from the hydrant to a pump truck and have a large diameter. Hose

connections feed an individual fire hose and are smaller in diameter.

For example, if an organization wants to standardize database products,
you’d need to first define whether you standardize relational databases separately
from NoSQL databases and, if so, whether you want to distinguish between docu-
ment and graph databases (Chapter 16). Only then should you look at products:
before you visit a car dealer you should know whether you want a minivan or a

266 | THE SOFTWARE ARCHITECT ELEVATOR

1 Momar Seck and David Evans, “Major U.S. Cities Using National Standard Fire Hydrants, One Century
After the Great Baltimore Fire,” NISTIR 7158, National Institute of Standards and Technology.

two-seater sports car. Or visit Porsche—they seem to be making everything these
days.

For storage, you need to distinguish a SAN from NAS and differentiate
backup storage from direct-attached storage (DAS). And you may be looking into
HDFS and converged/so-called “hyperconverged” storage (a storage virtualization
layer over local disks).

Governance by Decree

Enforcing standards can be a bit like herding cats, even when the economic value
is blatantly obvious. For example, almost one hundred years after the Baltimore
standard, fighting large fires such as the Oakland Hills Fire of 1991 is still impe-
ded by cities not following the standard.1 Often, the deviation from the standard
is a historical artifact or purposely driven by vendors to gain lock-in.

In many organizations, a diagnostic “police” will visit different entities to
ascertain their standard compliance, which gives rise to the joke about the big-
gest lie in a corporate environment: “I am from headquarters; I am here to help
you.” Cybersecurity can be a useful vehicle to drive standardization: nonstandard
or outdated versions of software generally carry a higher risk of vulnerability than
well-maintained, harmonized environments.

A specific challenge is posed by users who also use a standard, in addition to
their own solution. They thus will correctly proclaim “yes, we do drive BMW
cars,” in line with a corporate standard that they do so, despite the parking lot
being full of Mercedes, Rolls-Royces, and Yugos. In another phenomenon, users
employ a standard, but for the wrong purpose. For example, they may use the
standard BMW as a meeting room for four people, and don’t actually drive it
(they prefer Mercedes for that). Sounds absurd? I have seen many similarly
absurd examples in corporate IT!

Governance Through Infrastructure

Interestingly, in my seven years at Google no one ever mentioned the word gover-
nance (or SOA or big data, for that matter). Knowing that Google not only has a
fantastic service architecture and world-leading big data analytics, you might
guess then that it also has strong governance. In fact, Google has an extremely

GOVERNANCE THROUGH INCEPTION | 267

2 A reference to the ’80s movie Back to the Future.

3 A. Verma et al., “Large-Scale Cluster Management at Google with Borg.”

strong governance in places where it matters most; for example, runtime infra-
structure. Employees were free to write code in Emacs, vi, Notepad, IntelliJ,
Eclipse, or any other editor, but there was basically only one way to deploy soft-
ware to the production infrastructure, on one kind of OS (in the old days, you
could choose between 32 or 64 bit), on one kind of hardware.

While occasionally painful, this strictness worked because most software
developers would put up with pretty much anything to have their software run on
a Google-scale infrastructure: it was, and likely still is, a decade ahead of what
most other companies were using. The governance didn’t need to take the form
of a decree because the system was vastly superior to anything else, rendering
not following it a guaranteed waste of time. If the corporate car is a Ferrari or has
a flux capacitor for time travel,2 people won’t be running to the VW dealer. In
Google’s case, the flux capacitor was the amazing “Borg” deployment and
machine management system, which has been publicly described in a Google
research paper.3 For Google the system’s economies of scale worked so well that
in the end it became reasonable to have everyone drive a Ferrari while enjoying
the fast pace.

RUNTIME GOVERNANCE

Netflix exerts governance over application design and architecture by running
their infamous Chaos Monkey against deployed software to verify that the soft-
ware is resilient. Noncompliant software will be pummeled in production by
automated compliance testers. Hardly any organization that brags about its cor-
porate governance group would have the guts to do the same.

Inception

In large IT organizations the motivation is generally a little less pronounced and
the infrastructure a little less advanced. If you’ve been to the movies in recent
years you must have come across Inception, an ingenious Christopher Nolan flick
depicting corporate criminals who steal trade secrets from victims’ subconscious
minds. The title derives from the plot, in which the corporate team usually oper-
ates in “read only” mode to extract secrets from the victim’s memory, but that for
their big coup they must actively implant an idea into a victim’s mind to cause

268 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/Xgm7_

him to take a particular action—a process referred to “inception.” In the movie
the tricky part is to make the victim truly believe it was his idea.

If we could perform inception, corporate governance would be much easier:
IT units would independently come to the conclusion to use the same software.
This isn’t quite as absurd as it sounds because there’s one magic ingredient in
today’s IT world that makes it possible: change. With change comes the need to
update systems (still have Lotus Notes somewhere?) and the opportunity to set
new standards without any additional migration costs. You “simply” have to
agree on which incarnation of the new piece of technology you want to employ,
for example for a software-defined network, a big data cluster, or an on-premise
platform-as-a-service. That you have to do by inception.

Inception in corporate IT works only if the governing body is ahead of the
rest of the world, so they can set the direction before the widespread need arises.
Acting as an educator, they supply new ideas to their audience and can inject, or
incept, ideas, such as demand for a specific product or standard. In a sense,
that’s what marketing has been doing for centuries: creating demand for the
product that manufacturing happened to have built.

In times of change, the “new” will ultimately replace the “old” and through
constant inception the landscape becomes more standardized. The key require-
ment is that “central” needs to innovate faster than the business units so that
when a division requests a big data analytics cluster, corporate IT already has
clear guidance and a reference implementation. Doing so requires foresight and
funding, but beats chasing business units for noncompliance and facing migra-
tion costs.

The Emperor’s New Clothes

Traditional IT governance can also cause an awkward scenario best described as
the “emperor’s new clothes”: a central team develops a product that exists pri-
marily in slide decks, so-called vaporware. When such a product is decreed as a
standard, which is essentially meaningless, customers may happily adopt it
because it’s an easy way to earn a “brownie point,” or even funding, for standard
compliance without the need for much actual implementation. In the end every-
one appears happy, except the shareholders: it’s a giant and senseless waste of
energy.

GOVERNANCE THROUGH INCEPTION | 269

4 Manuel Herz, From Camp to City: Refugee Camps of the Western Sahara (Lars Muller, 2012).

Governance Through Necessity

In an interesting book about refugee camps in the Western Sahara,4 I learned
that almost everyone in these camps who owns a car has the same older car mod-
els, either a Land Rover all-terrain vehicle or an early 1990s Mercedes sedan.
Together, these models make up more than 90% of all local cars, with 85% of
sedans being Mercedes—a corporate governor’s dream! Why? Residents chose
an inexpensive and very reliable car that could withstand the rough terrain and
heat. The standardization came through simple necessity, however: buying
another model of car would mean not being able to take advantage of the existing
skill set and the pool of available spare parts. In an environment of economic
constraints, these are major considerations. Corporate IT has the same forces,
especially regarding IT skill set availability for new technologies. The observed
diversity in corporate environments is therefore a rich company problem (Chap-
ter 38): the scarcity of skills or resources just isn’t strong enough to drive joint
decision making—they can easily be solved with more money. You could also
argue that the refugee camps had the advantage of a so-called greenfield installa-
tion, even though that term seems awfully inappropriate for people being dis-
placed in the desert.

270 | THE SOFTWARE ARCHITECT ELEVATOR

Transformation

When setting up modern technology in a large IT organization, you’ll invariably
find that there’s an impedance mismatch. Using elastic billing from a cloud pro-
vider won’t work well if you have to make an annual budget forecast anyway. And
being able to provision infrastructure with an API call becomes a lot less exciting
if there’s a two-month approval process attached to it. Therefore, the last and
final leg on your architect journey is being able to change the way organizations
work.

Change Is Risky

Bringing change into large organizations is rewarding but challenging, requiring
you to utilize everything you’ve learned so far: you must first use your architec-
tural thinking to understand how complex organizations work and which “levers”
you may have. Superb communication skills help you garner support, while lead-
ership skills are needed to effect a lasting change. Last, your IT architect skills are
needed to plan and implement the technical changes necessary for the organiza-
tion to work in a different way. As an architect you are best qualified to under-
stand how technical and organizational changes depend on each other so that
you can solve the Gordian knot of interdependencies.

Citing The Matrix one more time (after all, Neo is quite a change agent in a
tough environment!), the exchange between the Architect and the Oracle draws
the apt context:

The Architect: You played a very dangerous game.

The Oracle: Change always is.

271

PART | V

Interestingly, in The Matrix, the Architect is the main entity trying to prevent
change. You should identify yourself with Neo, instead, making sure to have an
Oracle to back you up.

Not All Change Is Transformation

Not every kind of change deserves to be called “transformation.” You change the
layout of the furniture in your living room, but you transform (or maybe convert)
your house into a club, retail store, or place of worship. The word trans-form has
its origin in Latin with a literal meaning of “to change shape or structure.” When
we speak of IT transformation, we therefore imply not an incremental evolution,
but a fundamental restructuring of the technology landscape, the organizational
setup, and the culture. Basically, expect to have to turn the house upside down,
cut it into pieces, and put it back together in a new shape.

Bursting the Boiler

A prevalent risk in corporate transformation agendas is upper management rec-
ognizing the need for change and subsequently applying pressure to the organi-
zation to become faster, more agile, more customer centric, etc. However, the
organization, and especially middle management, is often not ready to transform
and attempts to achieve the targets set by upper management within the old way
of working. This can put enormous strain on the organization and is unlikely to
meet the ambitions. I compare this to a steam engine that is surpassed by a fast
electric train. In an attempt to speed up, the steam-engine operator throws more
coals onto the fire to increase the boiler pressure. While it may initially speed up
the steam engine, soon the boiler will burst. You can’t compete with an electric
train by putting more pressure on the boiler. Instead, you need to devise a new
engine that can keep up. That’s what architects do.

Why Me?

As an architect, you might think: “Why me? Isn’t this where the high-paid con-
sultants come in?” They can certainly help, but you can’t just inject change from
the outside with a slide deck. Lasting change must come from the inside through
role models, rapid feedback cycles, celebrated achievements, and much more. To
effect lasting change in an organization you’ll need to understand the following:

272 | THE SOFTWARE ARCHITECT ELEVATOR

1 SKU = Stock Keeping Unit, used for order and inventory management.

Chapter 33, No Pain, No Change!
Organizations are unlikely to change if there’s no pain.

Chapter 34, Leading Change
You must show a better way of doing things.

Chapter 35, Economies of Speed
Organizations need to think in economies of speed instead of economies of
scale.

Chapter 36, The Infinite Loop
Running in circles is an essential part of digital organizations.

Chapter 37, You Can’t Fake IT
You must be digital on the inside to be digital on the outside.

Chapter 38, Money Can’t Buy Love
There is no SKU for transformation.1

Chapter 39, Who Likes Standing in Line?
You can speed up organizations by waiting less instead of working more.

Chapter 40, Thinking in Four Dimensions
To transform, organizations need to think in new dimensions.

TRANSFORMATION | 273

No Pain, No Change!
And Watching Late-Night TV Does Not Help…

Go, go, gooooo!

A colleague of mine once attended a “digital showcase” event in his com-
pany, which highlighted many innovative projects and external hackathons the
company had organized. Upon returning to his desk, though, he found himself
in the same old corporate IT world where he is forced to clock time, cannot get a
server in less than three weeks, and isn’t allowed to install software on his laptop.
He was wondering whether he was caught in some twisted incarnation of two-
speed IT, but that made little sense; after all, his project was part of the fast-
moving “digital” speed.

Stages of Transformation

I had a different answer: transformation is a difficult and time-consuming pro-
cess that doesn’t happen overnight. People just don’t wake up one day and
behave completely differently, no matter how many TED Talks they listened to

275

| 33

the day before. (A talk I once attended illustrated how difficult it is to change
which part of the body you dry first with your towel after taking a shower in the
morning. I guess the speaker was right—I never changed that.)

To illustrate the stages a person or an organization tends to go through when
transforming their habits, I drew up the example of someone changing from eat-
ing junk food to leading a healthy lifestyle. With no scientific evidence, I quickly
came up with 10 stages:

1. You eat junk food. Because it’s tasty.

2. You realize eating junk food is bad for you. But you keep eating it.
Because it is tasty.

3. You start watching late-night TV weight-loss programs. While eating junk
food. Because it is so tasty.

4. You order a miracle exercise machine from the late-night TV program.
Because it looked so easy.

5. You use the machine a few times. You realize that it’s hard work. Worse
yet, no visible results were achieved during the two weeks you used it. Out
of frustration you eat more junk food.

6. You force yourself to exercise even though it’s hard work and the results
are meager. You’re still eating some junk food, though.

7. You force yourself to eat healthier, but find it not tasty.

8. You actually start liking vegetables and other healthy food.

9. You become addicted to exercise. Your motivation changed from losing
weight to doing what you truly like.

10. Friends ask you for advice on how you did it. You have become a source of
inspiration to others.

Change happens incrementally, and it will take a lot of time plus dedication.

Digital Transformation Stages

Drawing the analogy between my colleague’s situation and my freshly created
framework, I concluded that they must be somewhere between stage 3 and 4 on
their transformation journey. What he attended was the digital equivalent of
watching late-night miracle solutions. Maybe the company even invested in or
acquired one of the nifty startups, which are young, hip, and use DevOps. But

276 | THE SOFTWARE ARCHITECT ELEVATOR

1 Russell Ackoff, “A Lifetime of Systems Thinking,” The Systems Thinker (website), https://oreil.ly/DP_Ea.

upon returning to his desk, he experienced that the organization was still eating
lots of junk food.

I suggest that the transformation scale from 1 to 10 isn’t linear: the critical
steps occur from stage 1 to 2 (awareness, not to be underestimated!), 5 to 6 (over-
coming disillusionment) and from 7 to 8 (wanting instead of forcing yourself). I
would therefore give his company a lot of credit for starting the journey, but warn
them that disillusionment is likely to lie ahead.

Wishful Thinking Sells Snake Oil

It can be amazing how gullible smart individuals and organizations become
when they are presented with miracle claims for a better life. As soon as people
or organizations have entered stage 3, whole industries that are built on selling
“snake oil” eagerly await them, overweight individuals and slow-paced corporate
IT departments alike: late-night weight-loss commercials and shiny demos show-
ing business people building cloud solutions in no time. As Russell Ackoff once
pointedly put it, in “A Lifetime of Systems Thinking”:1

Managers are incurably susceptible to panacea peddlers. They are rooted in the belief

that there are simple, if not simple-minded, solutions to even the most complex of

problems.

When you are looking for a quick change, it’s difficult to resist, especially if
you don’t have your own world map (Chapter 16).

Digital natives have it easy because, as the name suggests, they were born on
the upper levels of the digital transformation scale and never had to make it
through this painful change process. Others feel the pain and tend to search for
an easy way out. The problem is that this approach will never get you beyond
stage 5, where real change hasn’t happened yet.

Tuning the Engine

Not everyone who buys snake oil is a complete fool, though. Many organizations
adopt worthwhile practices but don’t understand that these practices don’t work
outside of a specific context. For example, sending a few hundred managers to
become Scrum Master certified doesn’t make you agile. You need to change the
way people think and work and establish new values. Holding a standup meeting

NO PAIN, NO CHANGE! | 277

https://oreil.ly/DP_Ea

2 Jason Yip, “It’s Not Just Standing Up: Patterns for Daily Standup Meetings,” MartinFowler.com, Feb. 21,
2016, https://oreil.ly/Le5-n.

every day that resembles a status call where people report 73% progress also
doesn’t transform your organization. It’s not that standup meetings are a bad
idea, rather the opposite, but they are about much more than standing up.2 Real
transformation has to go far beyond scratching the surface and change the
system.

Systems theory (Chapter 10) teaches us that to change the observed behavior
of a system, you must change the system itself. Everything else is wishful think-
ing. It’s like wanting to improve the emissions of a car by blocking the exhaust
pipe. If you want a cleaner running car, there’s no other way than going all the
way back to the engine and tuning it or transforming it into an electric car. When
you want to change the behavior of a company, you need to go to its engine—the
people and the way they are organized. This is burdensome, but the only truly
effective way.

Help Along the Way

Some enterprise IT vendors do resemble the folks selling overpriced workout
machines on late-night TV: their products work, but not quite as advertised, and
they are in fact overpriced. A good walk in the park every day likely produces the
same results for free. You just need to be smart enough to know that and disci-
plined enough to stick to it.

Many enterprise IT vendors provide genuine innovation to their customers,
but at a price. Enterprise vendors range from “old school” to “selling an imitation
of the new world to old enterprises” and “truly new world.” The further left on
this scale your organization is, the more you will pay. My goal, therefore, is to
build sufficient internal skill to use products as far to the right on that spectrum
as possible. As I once stated in a slightly exaggerated way: “Corporate IT tends to
pay for its stupidity. If you are stupid, you better be rich!” An organization that
doesn’t yet have the required skill pays “tuition,” a concept well-known in Ger-
man as Lehrgeld. If spending the money helps them do better next time, it’s a
good investment. As always, I make sure to document such decisions (Chapter 8).

The consultants and enterprise vendors that surround traditional enterprises
(Chapter 38) have a limited incentive to fully transform their clients into becom-
ing digital: digital companies tend to shun consultants and largely employ open-
source technology, often developed by themselves. Because externals are set to

278 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/Le5-n
https://oreil.ly/Le5-n

profit from the transformation path itself, they are useful in helping an enter-
prise start the transformation, as this brings the willingness to invest money.
However, they aren’t quite as keen to catapult their customers into a state where
their advice or products are no longer needed. This love-hate relationship is likely
to affect the role an architect plays in the transformation effort: you can’t achieve
it without external help, but you have to be aware that it’s a co-opetition rather
than true collaboration.

The Pain of Not Changing

The biggest risk during the transformation journey is suffering a relapse after
having bought “snake oil” just to realize that it doesn’t achieve the promised
results, or at least not as quickly as anticipated. This risk is particularly high at
stages 4 or 5 of my model.

The inevitable pain of changing makes the lure of the easy path, that is, not
changing or giving up halfway, a clear-and-present danger. The long-term effects
of not changing are easily put aside because that pain isn’t happening yet. Plus,
you already accepted the current state, even if it clearly isn’t optimal. The cer-
tainty of knowing the current state proves to be a major force against change,
which carries a large amount of uncertainty—who knows whether all the projec-
ted benefits will actually materialize? It could be getting worse for all we know.
This is one of the many ways we are biased and thus poor decision makers (Chap-
ter 6).

IT organizations, especially operations teams, tend to equate change to risk
(Chapter 26). The insight that change was needed often comes much later, when
the cost of not having changed becomes blatantly and painfully apparent. Sadly,
at that time the list of available options tends to be much shorter, or empty. This
is true for individuals (“I wish I had started a healthier life when I was young”) as
well as organizations (“We wish we had cleaned up our IT before we became dis-
rupted”). When people reflect on their lives, they are much more likely to regret
not having done things as opposed to the things they did. The logical conclusion
is simple: do more things and keep doing those that work well.

Getting Over the Hump

A linear chain of events has one tricky property: the probability of making it
through all steps computes as the product of the individual transition probabili-
ties between each step and the next. Let’s say you are a quite determined person
and have a 70% chance of making it from one step to the next, even though the

NO PAIN, NO CHANGE! | 279

machine you ordered from late-night TV didn’t work quite as advertised. If you
compound this probability across the 9 steps needed to go from stage 1 to stage
10, you arrive at a 4% probability, 1 in 25, of making it to the goal. If you assume
a fifty-fifty chance at each step, which might be more realistic (just look on eBay

for barely used exercise machines), you end up with 1/29 = 0.2% or 1 in 512 (!).
“Against All Odds” comes to mind, even though it’s probably not Phil Collins’s
best song.

The biggest enemy of change is complacency: if things aren’t so bad, the
motivation to change is low. Organizations can artificially increase the pain of
not changing, e.g., by creating fear or conjuring a (fake) crisis before the real cri-
sis occurs. Such a strategy can work but is risky. It cannot be applied many times,
as people will start ignoring the repeated “fire drill.” Still, conjuring a crisis beats
undergoing a real crisis. Many organizations only really start to change when
they have a “near-death” experience. The problem is that near-death often results
in actual death.

280 | THE SOFTWARE ARCHITECT ELEVATOR

Leading Change
The Island of Sanity in the Sea of Desperation

Don’t get voted off the island!

Demonstrating positive results from a different way of doing things in a
small team can help overcome complacency and the fear of uncertainty, and thus
is a good way to start a transformation. We shouldn’t forget, though, that the
“trailblazers” on such teams have a doubly tough job: they need to overcome the
pain of change and do so in an environment that’s still at stage 1 of the transfor-
mation journey. This is comparable to eating healthy when everyone around you
at the table is having tasty cake and the restaurant has nothing healthy on the
menu at all.

To succeed, you need a firm belief and perseverance. The corporate IT equiv-
alent of trying to eat healthy at the cake party is trying to be Agile when it takes
four weeks to get a new server or when contemporary development tools and
hardware aren’t allowed because they violate corporate security standards. You’ve
got to be willing to swim upstream to effect change.

281

| 34

A Tractor Passing the Race Car

One particular danger of leading change with a different approach is that the
existing, slow approaches are often more suitable for the current environment.
This is a form of systems resisting change (Chapter 10) and can result in your fancy
new software/hardware/development approach being pummeled by the old,
existing ways. I compare this to building a full-fledged race car, just to find out
that in your corporate environment each car has to pull three tons of baggage in
the form of rules and regulations. And instead of a nice, paved racetrack, you find
yourself in a foot-deep sea of process mud. You will find out that the old corpo-
rate tractor slowly but steadily passes your shiny new Formula 1 car, which is
busily throwing up mud while shredding its rear tires. In such a scenario, it
becomes difficult to argue that you devised a better way of doing things.

It’s therefore critical to change processes and culture along with introducing
new technology. A race car in a tractor pulling contest will be laughable at best.
You need to build a proper road before it makes sense to commission a race car.
You also need to employ your communication skills (Part III) to secure manage-
ment support when setbacks happen.

Setting Course

To motivate people for change, you can either dangle the digital carrot, painting
pictures of a happy, digital life on the far horizon, or wield the digital stick, warn-
ing of impending doom through disruption. In the end, you’ll likely need a little
bit of both, but the carrot is generally the more noble approach. For the carrot to
work, you need to paint a tangible picture of the alternate future and set visible,
measurable targets based on the company strategy. For example, if the corporate
strategy is based on increasing speed to reduce time-to-market, a tangible and visi-
ble goal would be to cut the release cycle for your division’s software products or
services in half (or more) every year. If the goal is resilience, you set a goal of halv-
ing average recovery times (Chapter 12) for outages. Some goals can even be
enforced through automation.

Digital companies may enforce a goal to improve resilience by deploying a

Chaos Monkey (Chapter 32) that randomly disables components.

Setting goals can be a tricky affair, as the organization might meet the goals
without completing the intended change. For example, setting a reduction in

282 | THE SOFTWARE ARCHITECT ELEVATOR

number of outages as a goal surfaces two major issues. First, it incentivizes hid-
ing outages and, second, it’ll make teams invest in more up-front testing, slowing
down the organization. Lastly, it’s not necessarily the number of outages that
negatively affect the business, but the total observed downtime.

Venturing Off the Mainland

You cannot expect everyone to instantly join you on your journey, though, simply
because you’re telling stories about the magic land awaiting them in the far dis-
tance. You will surely find some explorers or adventurers-at-heart who are willing
to get on the boat just based on your vision or charisma. Some may not even
believe your promises, but find sailing to unknown shores more appealing than
just sitting around. These folks are your early adopters and can become powerful
multipliers for your mission. Find them, connect them in a community, and take
them along.

Others will wait to see whether your ship actually floats. Be kind to them and
pick them up for the journey once they are ready. These folks may actually be
more committed as they overcame an initial hurdle or fear. Yet others will want
to see you return with your ship loaded with gold. That’s also fine—some have to
see to believe. So you need to be patient and recruit for your transformation jour-
ney in waves.

Burning the Ships

Even after folks have joined you on the transformation journey, the chance of a
relapse is high: on your journey you will encounter storms, pirates, sharks, sand-
banks, icebergs, and other adverse conditions. Captains of a digital transforma-
tion have to be skilled sailors, but also strong leaders. A tough approach is to
“burn the ships,” derived from the story that upon arriving on a new shore the
captain would burn the ships so no one could propose to retreat and go back
home. I am not sure whether this approach really increases the odds of success.
You want a team that’s committed and believes in success, as opposed to one that
has doubts but no ship on which to return.

Offshore Platforms

Some companies’ change programs sail far off the mainland to overcome the
constraints imposed by the old world. Copying what they observe in successful
so-called “digital” companies, teams move into colorful buildings with open seat-
ing plans and baristas, use Apple laptops full of open source stickers, and wear

LEADING CHANGE | 283

1 Wikipedia, “Cargo Cult,” https://oreil.ly/GpesJ.

You can’t copy-paste culture.

shorts or hoodies. Such units, resembling offshore drilling platforms far from
the mainland—run under fancy labels like “innovation center,” “digital hub,” or
“digital factory”—can be a lot of fun, but suffer from several major issues:

1. These new islands often don’t have a meaningful bridge back to the main-
land, meaning they largely operate in isolation. They therefore don’t act as
a transformation vehicle for the main island. My cynical advice for such a
setup is: “if you want to show that smart people in an ideal environment
can create valuable things, you could have just bought Facebook stock.”

2. Such islands often don’t have economic pressure because they are well-
funded by the mothership. They thus end up being “digital trust fund”
playgrounds that don’t deliver concrete business value. Those setups
could be handy for press releases and corporate tours, but not for working
in rapid-value delivery cycles.

3. And last, copying digital leaders’ working environments isn’t going to
make you “digital.” This fallacy, known as the cargo cult,1 ignores the
mechanisms behind the visual facade. A barista stand doesn’t magically
accelerate your release cycles: you can’t copy-paste culture.

So, just building a new island in a
different ocean isn’t going to help with
an organization’s transformation. You

need to strike a balance between sufficiently reducing constraints but still being
relevant to the mainland. How to find the right balance? The best approach I
found is to keep iterating (Chapter 36).

The Island of Sanity

Still, the temptation to create a better working environment for at least a subset
of the organization can be strong. I followed this approach, which I refer to as
building an “island of sanity in the sea of desperation,” myself in the year 2000.
Back then, just before the internet bubble burst, our somewhat traditional con-
sulting company vied for talent with internet startups like WebVan and Pets.com
(a plastic bag and a sock puppet decorate my private internet bubble archive). I

284 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/GpesJ

therefore helped create an environment that would be attractive for such candi-
dates and was successful in recruiting a stellar team of top-notch technologists.

Sooner or later, though, your island will become too small for the people on
it, causing them to feel constrained in their career options. If the island has drif-
ted far from the mainland because the mainland hasn’t changed much at all,
reintegration will be very difficult, increasing the risk that people leave the com-
pany altogether. That’s what happened to most of my team in 2001. Second, peo-
ple will wonder why they have to live on a small and remote island when other
companies feature the same, desirable (corporate) lifestyle on their extensive
mainland. Wouldn’t that seem much easier? Or, as a friend once asked, or,
rather, challenged me in a very pointed way: “Why don’t you just quit and let
them die?” While transformation is hard work, you also gotta know when you’re
trying too hard.

Skunkworks That Works

People working in a separate location can however create significant innovations
and transform the mothership, though. The best-known example perhaps is the
IBM PC, which was developed in Boca Raton, Florida, far away from IBM’s New
York headquarters. The development bypassed many corporate rules, for exam-
ple, by mostly using parts from outside manufacturers, by building an open sys-
tem, or by selling through retail stores. It’s hard to imagine where IBM (and the
rest of the computer industry) would be if they hadn’t created the PC.

IBM was certainly not a company used to moving quickly, with insiders
claiming that it “would take at least nine months to ship an empty box.” But the
prototype for the IBM PC was assembled in one month and the computer was
launched only one year later, which required not only development, but also
manufacturing to be set up. Several factors likely contributed to the team’s
success:

• This skunkworks was tasked with launching a real, sustainable product on
the market. It wasn’t a playground.

• The team streamlined many processes but didn’t circumvent all corporate
guidance. For example, its products passed the standard IBM quality assur-
ance tests and thus gained acceptance on the mainland. The team didn’t
deliver a toy but a successful commercial product.

LEADING CHANGE | 285

2 Satya Nadella, Hit Refresh: The Quest to Rediscover Microsoft’s Soul and Imagine a Better Future for
Everyone (New York: HarperBusiness, 2017).

• Lastly, teams back on the mainland probably didn’t see this project as a
threat. They were simply convinced that it was impossible for IBM to make
a computer for less than $15,000 and were happy to be proven wrong.

These factors led to the IBM PC becoming a positive example of an ambi-
tious project team questioning existing assumptions while being led by existing
management. A more recent example of how large-scale transformation can
work is Microsoft under CEO Satya Nadella, who opted not to sail off the main-
land but rather led the transformation by “rediscovering the soul of Microsoft.”2

Leaving Your Island Will Get Your Feet Wet

You also need to be cautious that most systems (Chapter 10) operate on a local
optimum. While that local optimum might be extremely far removed from the
much more agile and fast way digital organizations work, it’s usually still better
than the “surrounding” operating modes that you end up with when you make a
small change to the system.

For example, an organization may only be able to push code into production
every six months, which is a practical joke in the digital world. However, it has
managed to establish processes that make this cadence workable. If you change
the release cycle to three months, you will make people’s lives worse and may
hurt the product quality and even the company’s reputation. Hence, you should
first introduce automated build and deployment tools to form the basis for faster
releases. Sadly, doing so also makes the operations staff’s lives worse because
they are already very busy with production support, and now in addition they
must attend training and learn new tools. They will also make mistakes while
doing so.

In your view, the organization might live on a tiny molehill while you know
of a high mountain of gold somewhere else. However, between the molehill and
the mountain is a muddy swamp. Because you won’t be able to leap straight to
the mountain of gold, you first have to get folks off the molehill, convincing them
to keep moving after their feet get wet and muddy. That’s why you must commu-
nicate a clear vision and prepare them for tougher times ahead before the new
optimum can be reached.

286 | THE SOFTWARE ARCHITECT ELEVATOR

The Country of the Blind

One shouldn’t underestimate the resistance to change and innovation in large
and successful enterprises that have “done things this way” for a long time. H. G.
Wells’s short story “The Country of the Blind” comes to mind: an explorer falls
down a steep slope and discovers a village in a valley that is completely separated
from the rest of the world. Unbeknownst to the explorer, a genetic disease has
rendered all of the villagers unable to see. Upon realizing this peculiarity, the
explorer feels that because “the one-eyed man is king” in this town he can teach
and rule them. However, his ability to see proves to be of little advantage in a
place designed for blind people, without windows or lights. After struggling to
take advantage of his gift, the explorer is to have his eyes removed by the village
doctor to cure his strange obsessions.

Oddly, two versions of this story exist, each with a different ending: in the
original version, the explorer escapes the village after struggling back up the
slope. The revised story has him observe that a rockslide is about to destroy the
village and he’s the only one able to escape, along with his blind girlfriend. In
either case, it’s not a happy ending for the villagers. Be careful not to fall into the
“in the land of the blind, the one-eyed man is king” trap. Complex organizational
systems settle into specific patterns over time and actively resist change. If you
want to change their behavior, you have to change the system.

LEADING CHANGE | 287

Economies of Speed
Death by Efficiency Is Slow and Painful

Economies of scale versus economies of speed

Large companies looking to speed up are used to optimizing the way they
work: they can make production a few percent more efficient, negotiate a slightly
higher discount from vendors, and reduce budget by printing in black and white.
Sadly, though, their digital competitors don’t move 10% faster, but 10 times
faster, leaving traditional IT departments somewhat puzzled by how this is even
possible.

30,000 Times Faster

A quick example showing how a 10-times speed-up can still be a quite conserva-
tive figure comes from setting up a version control system. A large IT organiza-
tion looking to define a standard for source control invested six months of

289

| 35

community work to conclude that the company should be using Git (Chapter 25).
However, it was considered too difficult to migrate other projects off Subversion,
so both products were recommended. The preparation cycle for the global archi-
tecture steering board meeting took another month, bringing the total elapsed
time to seven months or roughly 210 days.

Some tasks that would take traditional organizations months of preparation and

approvals, digital companies can accomplish in a few minutes.

A modern IT organization or startup would have spent a few minutes decid-
ing on the product and have accounts set up, a private repository created, and the
first commit made in about 10 minutes. The speed-up factor between the two
examples comes to 210 days * (24 hours/day) * (60 minutes/hour) / 10 minutes
≈ 30,000!

If that number alone doesn’t scare you, keep in mind that one organization
published a paper (without selecting or implementing a product such as Bit-
Bucket, GitHub, or GitLab) and is merrily dragging along its legacy. Its “deci-
sion” is thus about as meaningful as prescribing that men should wear black
shoes, but brown is also allowed for historical reasons. Meanwhile, the other
organization is already committing code in a live repository.

Admittedly, large organizations have more parties to align across, existing
source repositories, and many other factors that will make it difficult to set up a
shared service in 10 minutes. However, if you augment the timeline to include
vendor selection, license negotiation, internal alignment, paperwork, and setting
up the running service, the ratio could well end up in the hundreds of thousands.
Should these organizations be scared? Yes!

Old Economies of Scale

How can modern organizations act at orders of magnitude faster than traditional
ones? Traditional organizations pursue economies of scale, meaning they are
looking to benefit from their size. Size can indeed be an advantage, as can be
seen in cities: density and scale provide short transportation and communication
paths, diverse labor supply, better education, and more cultural offerings. Cities
grow because the socioeconomic factors scale in a superlinear fashion (a city of
double the size offers more than double the socioeconomic benefits), while
increases in infrastructure costs are sublinear (you don’t need twice as many

290 | THE SOFTWARE ARCHITECT ELEVATOR

1 Geoffrey West, “Why Cities Keep Growing, Corporations and People Always Die, and Life Gets Faster,”
Edge, May 23, 2011, https://oreil.ly/UAh5C.

roads for a city twice the size). But density and size also bring pollution, risk of
epidemics, and congestion problems, which ultimately limit the size of cities.
Still, cities grow larger and live longer than corporate organizations. One reason
lies in the fact that organizations suffer more severely from the overhead intro-
duced by processes and control structures that are required or perceived to be
required to keep a large organization in check. Geoffrey West, past president of
the Santa Fe Institute, summarized this dynamic in his fascinating video conver-
sation “Why Cities Keep Growing, Corporations and People Always Die, and Life
Gets Faster.”1

In corporations, economies of scale are generally driven by the desire for effi-
ciency: resources such as machines and people must be used as efficiently as pos-
sible, avoiding downtimes due to idling and retooling. This efficiency is often
pursued by using large batch sizes: making 10,000 of the same widget in one
production run costs less than making 10 different batches of 1,000 each. The
bigger you are, the larger batches you can make, and the more efficient you
become. This view is overly simplistic, though, as it ignores the cost of storing
intermediate products, for example. Worse yet, it doesn’t consider revenue lost
by not being able to serve an urgent customer order because you are in the midst
of a large production run: such an organization values resource efficiency over cus-
tomer efficiency.

The manufacturing business realized this about half a century ago, resulting
in most things being manufactured in small batches or in one continuous batch
of highly customized products. Think about today’s cars: the number of options
you can order is mind boggling, causing the traditional “batch” thinking to com-
pletely fall apart. Cars are essentially batches of one. With all the thinking about
“Lean” and “Just-in-Time” manufacturing, it’s especially astonishing that the IT
industry is often still chasing efficiency instead of speed.

A software vendor once stated that, “Obviously the license cost per unit goes

down if you buy more licenses.” To me, this isn’t obvious at all as there’s no dis-

tribution cost per unit of software, aside from that very salesperson sitting

across the table from me. Whether 10,000 customers download one license or

one customer buys 10,000 licenses should be the same, as long as the software

vendor doesn’t send humans to do a machine’s job (Chapter 13). Cloud computing

finally broke the old model.

ECONOMIES OF SPEED | 291

https://oreil.ly/UAh5C

It looks like enterprise software sales and enterprise procurement both have
some transformations ahead of themselves. In their defense, though, you have to
admit that their behavior is determined by enterprise customers still stuck in the
old thought pattern: supersize it to get a better deal!

In the digital world, the limiting factor for an organization’s size becomes its
ability to change. While in static environments being big is an advantage thanks
to economies of scale, in times of rapid change economies of speed win out and
allow startups and digital-native companies to disrupt much larger companies.
Or as Jack Welch famously stated: “If the rate of change on the outside exceeds
the rate of change on the inside, the end is near.”

Behold the Flow!

The quest for efficiency focuses on the individual production steps, looking to
optimize their utilization. What’s completely missing is the awareness of the pro-
duction flow, i.e., the flow of a piece of work through a series of production steps.
Translated into organizations, individual task optimization results in every
department requiring lengthy forms to be filled out before work can begin: I have
been told that some organizations require that firewall changes be requested 10
days in advance. And all too often the customer is subsequently told that some
thing or another is missing from the request form and is sent back to the begin-
ning of the line. After all, helping the customer fill out the form would be less
efficient. If that reminds you of government agencies, you might get the hint that
such processes aren’t designed for maximum speed and agility.

Besides the inevitable frustration with such setups, they trade off flow effi-
ciency for processing efficiency: the work stations are nicely efficient, but the cus-
tomers (or products or widgets) chase from station to station, fill out a form, pick
a number, and wait. And wait (Chapter 39). And wait some more just to find out
they are in the wrong line or their need cannot be processed. This is dead time
that isn’t measured anywhere except in the customers’ blood pressure. Come to
think of it, in most of these places, the people going through the flow are not cus-
tomers in the true sense given that they don’t choose to visit this process, but are
forced to. That’s why you are bound to experience such setups at government
offices, where you could at least argue that misguided efficiency is driven by the
pursuit to preserve taxpayer money. You’ll also commonly find it in IT depart-
ments that exert strong governance (Chapter 32).

292 | THE SOFTWARE ARCHITECT ELEVATOR

2 Donald G. Reinertsen, The Principles of Product Development Flow: Second Generation Lean Product
Development (Redondo Beach, CA: Celeritas Publishing, 2009).

Cost of Delay

For innovation and product development processes, this type of efficiency is pure
poison. While digital companies do care about resource utilization (at Google,
datacenter utilization was a CEO-level topic), their real driver is speed:
time-to-market.

Traditional organizations often misunderstand or underestimate the value of
speed. In a joint business-IT workshop, a business owner once described his
product as carrying substantial revenue opportunities. At the same time, the
product owner asked for a specific feature that required significant development
effort, but which would realize value only when rolled out in another country.
Deferring that feature would speed up the initial launch, thus harvesting the por-
trayed revenue opportunities sooner.

Flow-based thinking calls this concept the cost of delay (see the excellent book
The Principles of Product Development Flow2), which must be added to the cost of
development. Launching a promising product later means that you lose the
opportunity to gain revenue during the time of delay. For products with large rev-
enue upside, the cost of delay can be higher than the cost of development, but it’s
often ignored. On top of avoiding the cost of delay, deferring a feature and
launching sooner also allows you to learn from the initial launch and adjust your
requirements accordingly. The initial launch may be an utter failure, causing the
product to never be launched in the second country. By deferring this feature you
avoided wasting time building something that would have never been used.
Gathering more information allows you to make a better decision (Chapter 6).

A great example of a non-high-tech company that embraced economies of
speed is the fashion brand Zara, part of the Inditex fashion empire. When the
pursuit of efficiency drove most fashion retailers to outsource production to low-
cost suppliers in Asia, Zara implemented a vertically integrated model and man-
ufactured three-quarters of its clothing in Europe, which allowed it to bring new
designs into stores in a matter of weeks as opposed to the industry average of
three to six months. In the fast-moving fashion retail industry, speed is such a
significant advantage that this strategy propelled Inditex’s founder to be one of
the 10 richest people on the planet. However, the world of fashion is also one of
constant change and even “fast fashion” retailers face stiff competition from

ECONOMIES OF SPEED | 293

online retailers such as boohoo, which works in small batch sizes coupled with
extremely short product cycles.

The Value and Cost of Predictability

Why do intelligent people ignore basic economic arguments such as calculating
the cost of delay? Because they are working in a system that favors predictability
over speed. Adding a feature later or, worse yet, deciding later whether to add it
or not may require going through lengthy budget approval processes. Those pro-
cesses exist because the people who control the budget value predictability over
agility. Predictability makes their lives easier because they plan the budget for the
next 12 to 24 months, and sometimes for good reasons: they don’t want to disap-
point shareholders with runaway costs that unexpectedly reduce the company
profit. As these teams manage cost, not opportunity, they don’t benefit from an
early product launch.

Optimizing for predictability ignores the cost of delay.

Chasing predictability causes another well-known phenomenon: sandbagging.
Project and budget plans sandbag by overestimating timelines or cost in order to
more easily achieve their target. Keep in mind that estimates aren’t single num-
bers but probability distributions: a project may have a 50% chance of being done
in four weeks’ time. If “you are lucky and all goes well,” it may be done in three
weeks, but with only a 20% likelihood. Sandbaggers pick a number far off on the
other end of the probability spectrum and would estimate eight weeks for the
project, giving them a greater than 95% chance of meeting the target. Even
worse, if the project happens to be done in four weeks, the sandbaggers idle for
another four weeks before release to avoid having their time or budget estimates
cut the next time. If a deliverable depends on a series of activities, sandbagging
compounds and can extend the time to delivery enormously.

The Value and Cost of Avoiding Duplication

On the list of inefficiencies, duplication of work must be high up: what could be
more inefficient than doing the same thing twice? That’s sound reasoning, but
you must also consider that avoiding duplication doesn’t come for free: you need
to actively de-duplicate, i.e., detect duplicates and merge them.

294 | THE SOFTWARE ARCHITECT ELEVATOR

The primary cost involved in de-duplication is coordination: to avoid duplica-
tion you first need to detect it. In a large codebase this can be done efficiently
through code search. In a large organization, it can require many “alignment”
meetings—synchronization points—high up in the hierarchy, which we know not
to scale (Chapter 30) in both computer systems and organizations.

A story on duplication, attributed to Jeff Bezos, CEO of Amazon: When a man-

ager pointed out that efforts might be duplicated, the senior executive walked to

the board and wrote “2 > 0.”

Evolving a widely reused resource also requires coordination because
changes must be compatible with all existing systems or users. Such coordina-
tion can slow down innovation. On the flip side, modern development tools, such
as automated testing, can reduce the traditional dangers of duplication. Some
digital companies have even begun to explicitly favor duplication because their
business environment rewards economies of speed.

How to Make the Switch?

Changing from efficiency-based thinking to speed-based thinking can be difficult
for organizations: after all, it’s less efficient! In most people’s minds being less
efficient translates into wasting money. On top of that, people being idle is more
visible than the damage done by missed market opportunities.

Usually, this change in attitude happens only when IT is seen as driving
business opportunity instead of being a cost center. While corporate IT is stuck
in a cycle of cutting cost and increasing efficiency, economies of scale will pre-
vail, which gives the digital giants an ever-bigger lead over traditional companies
that dream of becoming digital but cannot shed their old habits.

ECONOMIES OF SPEED | 295

The Infinite Loop
Sometimes Running in Circles Can Be Productive

The corporate innovation circuit. Best lap time: unknown

In programming, an infinite loop is rarely a good thing (unless you are
Apple, Inc., and your address is 1 Infinite Loop in Cupertino, California). But
even Apple HQ appears to be moving off the infinite loop, which is a noteworthy
feat in and of itself. In poorly run organizations (not Apple!) employees often
make cynical remarks about how they run in circles and when the desired results
aren’t achieved, management tells them to run faster. You surely don’t want to
be part of that infinite loop!

297

| 36

1 Eric Ries, The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create Radically
Successful Businesses (New York: Crown Business, 2011).

Build-Measure-Learn

There’s one loop, though, that’s a key element of most digital companies: the con-
tinuous learning loop. Because digital companies know well that control is an illu-
sion (Chapter 27), they are addicted to rapid feedback. Eric Ries eternalized this
concept in his book The Lean Startup1 as the Build-Measure-Learn cycle: a com-
pany builds a minimum viable product and launches it into production to meas-
ure user adoption and behavior. Based on the insights from live product usage,
the company learns and refines the product. Jeff Sussna aptly describes the
“learning” part of the cycle as “operate to learn”—the goal of operations isn’t to
maintain the status quo but to deliver critical insights into making a better
product.

Digital RPMs

The critical KPI for most digital companies is how much they can learn per dollar
or time-unit spent, i.e., how many revolutions through the Build-Measure-Learn
cycle they can make. The digital world has thus changed the nature of the game
completely and it would be foolish at best (fatal at worst) to ignore this change.

Taking book authoring as an example: publishing Enterprise Integration Pat-
terns took a year of writing, followed by some six months of editing and three
months of production. While we had a feeling that the book might be a success,
it wasn’t until another year later that we could measure the success in actual
copies sold. So, making one-half revolution from Build to Measure took about
four years! Completing the cycle, i.e., publishing a second edition, would have
taken another 6 to 12 months. In comparison, I wrote the original version of this
book as an ebook that was published while it was still a work in progress. The
book sold several hundred copies before it was even done, and I received reader
feedback by email and Twitter almost in real time as I was writing.

The same is true for many other industries: digital technology has made cus-
tomer feedback immediate. This is a huge opportunity, but also a huge challenge
as customers have learned to expect rapid changes based on their feedback. If I
don’t post an update to my book in two or three weeks, people may worry that I
might have given up on writing. Luckily, I find instant feedback (comments as

298 | THE SOFTWARE ARCHITECT ELEVATOR

well as purchases) hugely motivating, so I have been far more productive in writ-
ing this book than ever before.

Adopting learning as an organization’s key metric is good news for another
reason. While many tasks are taken over by machines, learning how to build a
product that excites users remains firmly in the hands of humans.

Old-World Hurdles

Unfortunately, traditional companies aren’t built for rapid feedback cycles. They
often still separate “run” from “change” (Chapter 12) and assume a project is done
by the time it reaches production. Launching a product is about the 120-degree
mark in the innovation wheel of fortune, so making one-third of a single revolu-
tion counts for nothing if your competition is on its one-hundredth refinement.

What keeps traditional organizations from completing rapid learning cycles?
Their structuring as a layered hierarchy: in a fairly static, slow-moving world,
organizing into layers has distinct advantages; it allows a small group of people to
steer a large organization without having to be involved in all details. Information
that travels up is aggregated and translated for easy consumption by upper man-
agement. Such a setup works very well in large organizations, but has one funda-
mental disadvantage: it’s horribly slow to react to changes in the environment or
to insights at the working level. It takes too much time for information to travel
all the way up to make a decision because each “layer” in the organization brings
communication overhead and requires a translation. Even if architects can ride the
elevator (Chapter 1), it still takes time for decisions to trickle back down through a
web of budgeting and steering processes. Once again, we aren’t talking about a
difference of 10% but of factors in the hundreds or thousands: traditional organi-
zations often run feedback cycles to the tune of 18 months while digital compa-
nies can do it in days or weeks.

Layered organizations benefit from separation of concerns. However, it

becomes a liability in Economies of Speed.

In times when nearly every organization wants to become more “digital” and
the technical platforms are readily available as open source or cloud services,
building a fast-learning organization is a critical success factor.

THE INFINITE LOOP | 299

Looping in Externals

With every revolution, the organization not only learns what features are most
useful for the users, but the project team also learns how to build enticing user
experiences, how to speed up development cycles, or how to scale the system to
meet increasing demand. This learning cycle is critical for the organization’s dig-
ital transformation because it enables in-house innovation and rapid iterations.

Digital transformation begins with changing HR and recruiting practices.

Inversely, if corporate IT depends heavily on the work of external providers,
which is rather common, the ones benefiting from this learning are the external
consultants. Organizations should therefore place their internal staff inside the
learning cycle and use external support mainly to coach or teach them. Taking
this logic a step further, digital transformation begins with transforming HR and
recruiting practices to hire qualified staff and to educate existing employees so
that they can become part of the learning cycle.

Pivoting the Layer Cake

To speed up the feedback engine you need to turn the organizational layer cake
on its side by forming teams that carry full responsibility from product concept to
technical implementation, operations, and refinement. Often such an approach
carries the label of “tribes,” “feature teams,” or “DevOps,” which is associated
with a “you build it, you run it” attitude. Doing so not only provides a direct feed-
back loop to the developers about the quality of their product (pagers going off in
the middle of the night are a very immediate form of feedback), but it also scales
the organization (Chapter 30) by removing unnecessary synchronization points:
all relevant decisions can be made within the project team.

Running in independent teams that focus on rapid feedback has one other
fundamental advantage: it brings the customer back into the picture. In the tradi-
tional pyramid of layered command-and-control, the customer is nowhere to be
found—at best somewhere interacting with the lowest layer of the organization,
far from where decisions are made and strategies are set. In contrast, “vertical”
teams draw feedback and their energy directly from the customer.

The main challenge in assembling such teams is to get a complete range of
skill sets into a compact team, ideally not exceeding the size of a “two-pizza

300 | THE SOFTWARE ARCHITECT ELEVATOR

2 Henrik Kniberg, “Spotify Engineering Culture (Part 1).”

team”; that is, one that can be fed by two large pizzas. This requires qualified
staff, a willingness to collaborate across skill sets, and a low-friction environment.
The Spotify team concepts2 of chapters and guilds are likely the most useful
resource in this context.

Maintaining Cohesion

If all control rests in the vertically integrated team, what ensures that these teams
are still part of one company and for example use common branding and com-
mon infrastructure? It’s OK to have some pie crust on the vertical layer cake: for
example, one at the top for branding and overall strategy and one at the bottom
for common infrastructure that never sends a human to do a machine’s job (Chap-
ter 13).

Once you have perfected the rapid Build-Measure-Learn feedback cycle, you
may wonder how many revolutions you will need to make. In digital companies
the feedback engine stops spinning only when the product is dead. That’s why,
for once, it’s good to be part of an infinite loop.

THE INFINITE LOOP | 301

You Can’t Fake IT
To Be Digital on the Outside, You First
Need to Be Digital on the Inside

Who can spot the dinosaur programmer?

Rapid feedback cycles (Chapter 36) help digital companies understand cus-
tomer demand and improve the product or service offered. Naturally, this feed-
back loop works best when the product or service has direct exposure to the end
customer or consumer. Corporate IT, in contrast, is relatively far removed from
the end customer because it supplies IT services to the business, which in turn is
in contact with the customer. Does this imply that corporate IT shouldn’t be the
focal point for digital transformation as it’s too far removed from digital

303

| 37

customers? Many digital transformation initiatives that are driven “from the top”
appear to support this notion: they have special teams engage with customers in
focus groups before handing down the specs to IT for implementation.

Laying the Foundation

But just like you cannot build a fancy new house on an old, fragile foundation,
you cannot be digital on the outside without transforming the IT engine room:
IT must deliver those capabilities to the business that are needed to become Agile
and to compete in the digital marketplace. If it takes eight weeks to procure a vir-
tual server based on an email request, the business cannot scale up with demand,
unless it stockpiles a huge number of idling servers, which would be the exact
opposite of what cloud computing promises. Worse yet, if these servers are set
up with an old version of the OS, modern applications may not run on them. On
top of all this, necessary manual network changes are guaranteed to break things
or slow them down.

Feedback Cycles

Rapidly deploying servers can be achieved with private cloud technologies, but
that alone doesn’t make IT “digital.” For corporate IT to credibly offer services to
businesses competing in a digital world, it must itself be ready to compete in the
digital world of IT service providers, not only from a cost and quality perspective,
but also from an engagement model point of view: corporate IT must become
customer centric and learn from customers using its products in an infinite loop
(Chapter 36).

If the servers that are provisioned aren’t the ones the customer needs, provi-
sioning them faster accomplishes nothing. Moreover, the customer may not
want to order servers at all, but prefers to deploy applications on a so-called “serv-
erless” architecture. To understand these trends, IT must engage with their inter-
nal customers—the business units—in a rapid feedback loop, just as the
business units do with their end customers.

Delivering on Your Promises

Engaging with customers is helpful only if you can deliver on their demands. In
the case of IT delivering services to its customers, the business units, it must
have the capability and the attitude to deliver digital services rapidly at high

304 | THE SOFTWARE ARCHITECT ELEVATOR

1 David Shpilberg et al., “Avoiding the Alignment Trap in IT,” MIT Sloan Management Review, October 1,
2007, https://oreil.ly/nK9ph.

quality. An MIT study1 showed that those companies that aligned business and
IT without first improving their IT delivery capability actually spent more money
on IT but suffered from below-average revenue growth. You can’t fake being
digital.

Customer Centricity

Customer centricity is a common phrase incorporated into many a company’s
motto or “value statement.” What company wouldn’t want to be customer centric
after all? Even institutions whose customers are decreed by law, such as the
Internal Revenue Service, have exhibited a good dose of customer awareness in
recent years. For many organizations, though, it’s difficult to move beyond the
simple slogan and truly become customer centric because it requires fundamen-
tal changes to the organizational culture and setup: hierarchical organizations are
CEO centered, not customer centered. Operational teams following ITIL pro-
cesses are process centered, not customer centered. IT run as a cost center is
likely cost centered as opposed to customer centered. Running a customer-
centric business on top of a process- or CEO-centric IT is bound to generate enor-
mous friction.

Cocreating IT Services

To support a business in digital transformation, it’s no longer enough for IT to
develop and push commodity services to their customers, the business units, via
governance (Chapter 32). IT must start to behave like a digital business, generat-
ing “pull” demand instead of pushing product. This can be done well by develop-
ing products jointly with customers, which goes under the fancy moniker of
“cocreation.” While many internal customers will welcome the change in mind-
set and the opportunity to influence a service being built, others may not want to
engage unless you present a firm price and service-level agreement. Being digital
works only if your customers are digital.

YOU CAN’T FAKE IT | 305

https://oreil.ly/nK9ph

Eat Your Own Dog Food

Some IT departments are relatively far from the end customer, so they wonder
how they can get feedback cycles started. They tend to ignore a large, readily
available pool of customers that’s very close by: their own employees. Employees
are friendly and motivated customers that are usually eager to try out new stuff.
Ironically, the common name for this clever practice is dogfooding, assuming peo-
ple will eat their own dog food. I’d side with an old friend here who determined
that it’s unfair that his dog eats dog food while he’s having a tasty dinner. So he
decided to share his meal with his dog instead—the vet confirmed the dog is per-
fectly healthy doing this.

Google is famous for dogfooding its products, meaning its employees get to try

alpha or beta versions of new products. While the name doesn’t make it sound

too appealing, Google’s “food” includes pretty exciting products, some of which

never reach the eyes of the consumer.

Dogfooding is effective because it enables an extremely rapid feedback and
learning cycle in a safe and controlled environment. I start all my IT services by
offering them first as an internal beta release. Once we better understand cus-
tomer expectations and work out the kinks, we offer them to external customers.

Google took things a step further and merged employee and customer accounts

into a single user-management system, making customers and employees

appear identical to most applications, differentiated only by their domain name

(google.com) and their access from the corporate network. Merging the previ-

ously disparate systems was rather painful, but the effect was hugely liberating

as employees were treated as customers.

In contrast, traditional organizations can look at employees and customers
very differently, as illustrated by this example:

At a large financial services company, employees weren’t supposed to use Android

phones. Without even debating the technical merit, I couldn’t help but wonder how

this company can then support customers using Android devices, which make up

some 80% of the market. If Android isn’t considered secure enough for the compa-

ny’s financial services employees, how can it be considered secure enough for its

customers?

306 | THE SOFTWARE ARCHITECT ELEVATOR

Rather than trying to control the user base, it’d be more helpful to under-
stand and address potential weaknesses, for example through two-factor authen-
tication, mobile device management, fraud monitoring, or disallowing old
versions of the OS, both for customers and employees.

Digital Mindset

Besides starting to use their own products and learning to iterate, one of the big-
gest hurdles in making corporate IT more digital can be the employees’ mindset.
When employees use previous-generation BlackBerry phones and internal pro-
cesses are handled by emailing spreadsheets based on rules documented in a
slide deck, it’s difficult to believe that an organization can act digitally. While it’s
a touchy subject, the age distribution in traditional IT can be an additional chal-
lenge: the average age in corporate IT is often in the 40s or early 50s, far
removed from the digital natives being courted as the new digital customer seg-
ment. Bringing younger employees into the mix can help companies become dig-
ital as it brings some of your target customer segment in-house.

The good news is that change can happen gradually, starting with small
steps. When employees start using LinkedIn to pull photos or resumes instead of
emailing resume templates, it’s a step toward becoming digital. Checking Google
Maps to find convenient hotels instead of the clunky travel portal is another.
Building small internal applications to automate approval processes is a small
but very important step: it gets people into a “maker mindset” that motivates
them to tackle problems by building solutions, not by referring to outdated rule
books. The digital feedback cycle can work only if people can build solutions.
This may be the biggest hurdle for corporate IT departments, because they are
too afraid of code (Chapter 11). Code is what software innovation is made of, so if
you want to be digital, you’d better learn to code!

Opportunities for making small steps toward becoming digital are plentiful.
I tend to look for little problems to solve or small things to speed up and
automate.

YOU CAN’T FAKE IT | 307

2 Anshu Sharma, “Why Big Companies Keep Failing: The Stack Fallacy,” TechCrunch, Jan. 18, 2016, https://
oreil.ly/OYCi-.

At Google, getting a USB charger cable was a matter of 2.5 minutes: 1 minute to

walk to the nearest Tech Stop, 30 seconds to swipe your badge and scan the

cable at the self-checkout, and 1 minute to walk back to your desk. To do this in

corporate IT, I had to mail someone, who mailed someone, who asked me the

type of phone I use and then entered an order, which I had to approve. Elapsed

time: about 2 weeks. Speed factor: 14 days × 24 hours/day × 60 minutes/hour /

2.5 minutes = 8064, in the same league as setting up a source code repository

(Chapter 35).

Fixing this would make a great miniproject. You don’t see a positive business
case? That’s probably because your company isn’t yet set up to develop solutions
rapidly. A digital company could likely build this solution in an afternoon,
including database and web user interface, and host it in its private cloud basi-
cally for free. If you never start building small, rapid solutions, your IT will be
paralyzed and likely unable to act in a digital environment.

The Stack Fallacy

As much of corporate IT is focused on infrastructure and operations, becoming
software minded (Chapter 14) requires a huge shift. For example, my idea to build
an on air sign (Chapter 30) that illuminates when my IP desk phone is off the
hook never materialized because the team rolling out the devices didn’t code or
deal with software APIs.

The challenge an organization faces when “moving up the stack,” e.g., from
infrastructure to application software platform or from software platform to end-
user application is well-known and has aptly been labeled the stack fallacy.2 Even
successful companies underestimate the challenge and are subject to the fallacy:
VMware missed the shift from virtualization software to Docker containers for
many years, Cisco has been spending billions in acquisitions to get closer to
application delivery, and even mighty Google failed to move from utility software
like search and mail to an engaging social network, a market dominated by
Facebook.

For most of corporate IT, this means an uphill climb from a focus on operat-
ing infrastructure to engaging users with rapidly evolving applications and serv-
ices. Though challenging, it is doable: internal IT doesn’t need to compete in the
open market, giving it the chance to change in small increments.

308 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/OYCi-
https://oreil.ly/OYCi-

Money Can’t Buy Love
Or a Culture Change

I need that feature by Tuesday

After transitioning from a Silicon Valley company to a traditional business,
my new coworkers frequently reminded me that we’re a large corporation, imply-
ing that what works for Google wouldn’t apply here. My routine retort was that
by applying the standard measure of market capitalization, I joined a corporation
10 times smaller. More interesting, my coworkers also pointed out that Google
can do pretty much whatever it wants thanks to all the money it has. My view, in
contrast, was that many successful traditional businesses suffer from exactly this
problem of having too much money.

309

| 38

1 Clayton M. Christensen, The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail,
reprint ed. (New York: HarperBusiness, 2011).

Innovator’s Dilemma

How can organizations have too much money? After all, their goal is to maxi-
mize profits and shareholder returns. To do so, companies use stringent budget-
ing processes that control spending. For example, proposed projects are assessed
by their expected rate of return against a benchmark typically set by existing
investments, sometimes called internal rate of return (IRR).

Such processes can hurt innovation, though, when new ideas must compete
with existing, highly profitable “cash cows.” Most innovative products can’t
match established products’ performance or profitability during early stages. Tra-
ditional budgeting processes may therefore reject new and promising ideas, a
phenomenon that Christensen coined the Innovator’s Dilemma.1 However, when
these new innovations later surpass sustaining technologies, they threaten organ-
izations that didn’t invest early on and that now lag behind.

Rich companies tend to have a high IRR and are therefore especially likely to
reject new ideas. Also, they perceive the risk of no change as low—after all,
things are going great. This dampens their appetite for change (Chapter 33) and
increases the danger of disruption.

Beware of the HiPPO

Despite its downsides, companies making investment decisions based on
expected return at least use a consistent decision metric. Many rich companies
have a different decision process: that of the highest paid person’s opinion, or
HiPPO. This approach isn’t just highly subjective but also susceptible to shiny,
HiPPO-targeted vendor demos, which peddle incremental “enterprise” solutions
as opposed to real innovation. Because those decision makers are far removed
from actual technology and software delivery, they don’t realize how fast new sol-
utions can be built on a shoestring budget.

To make matters worse, internal “salespeople” exploit management’s limited
understanding to push their own pet projects, often at a cost orders of magnitude
higher than what digital companies would spend. I have seen someone make it
to board level with the idea of exposing functionality as an API, at a cost of many
million Euros. It’s easy to sell people in the stone age a wheel.

310 | THE SOFTWARE ARCHITECT ELEVATOR

Overhead and Tolerated Inefficiency

Many established companies with a profitable business model carry significant
overhead: fancy corporate offices, old labor contracts with overly generous retire-
ment provisions, overemployment for roles that are no longer needed, an army of
administrative staff for executives, company cars, drivers, car washes, private din-
ing rooms, coffee and cake being served in boardrooms—the list is long. This
overhead cost is generally distributed across all cost centers, placing an enor-
mous financial burden on small and innovative teams working on disruptive
technologies.

My small team of architects was loaded with enormous overhead cost ranging

from office space and cafeteria subsidies to workplace charges (computers,

phones), which I couldn’t influence. In comparison, free meals offered by digi-

tal companies are a trivial expense.

Overhead costs also result from inefficiencies that are tolerated in wealthy
organizations because there’s little pressure to remove them. Examples are mani-
fold: labor-intensive manual processes (I have seen people manually preparing
spreadsheets from SAP data every month), lengthy meetings with 20 executives,
half of whom have little to contribute, ordering processes with long paper trails,
people printing reams of paper as handouts for meetings on digital strategy. All
these line items add up and make it difficult for large companies to compete in
new segments where margins aren’t yet rich enough to support such overhead.

Hollowed-Out IT

A particularly dangerous pitfall for wealthy organizations looking to transform is
the belief that any required skill can be bought at will. Years ago, many compa-
nies considered IT a commodity: a necessity, but not one that created a competi-
tive advantage. That’s why they didn’t perceive any risk in keeping IT skills
outside of the company. Instead, they valued the flexibility in ramping external IT
staff up and down as needed just as they would with administrative or cleaning
staff. They perceived this model as more efficient (Chapter 35).

MONEY CAN’T BUY LOVE | 311

In the late 1990s, the telecom business was very profitable thanks to a fast-

growing broadband internet market. These companies outsourced virtually all

technical work to external contractors and system integrators (where I was

employed). Solid profits allowed them to digest the high consulting fees, high

administrative overhead for contract management, and more than occasional

project cost overruns.

However, outsourcing software delivery has severe drawbacks in the digital
age: first, it prevents the organization from effectively participating in the Build-
Measure-Learn cycle (Chapter 36) because externals typically work on a prenegoti-
ated scope of work and therefore have little incentive to keep iterating on
products or to shorten release cycles. Second, the organization won’t be able to
develop a deep understanding of new technologies and their potential, thus sti-
fling innovation. Worse yet, in many cases knowledge of a company’s existing
system landscape rests with external contractors, rendering the organization
unable to make rational decisions based on the status quo. If you don’t know
your starting point, it’s difficult to get on the road to change.

Outsourcing IT has severe drawbacks in the digital age because it excludes the

organization from the critical innovation cycle.

These companies’ IT departments degenerated into mere budget administra-
tion structures with hardly any technology skill. The main skill needed was secur-
ing budget and spending it. Those companies couldn’t attract much real IT talent
because qualified candidates realized that their skills weren’t valued. Neverthe-
less, all was perceived as working well while the money flowed freely.

Excessive Dependencies

But then everything changed: hardly any industry was overrun by internet com-
panies as spectacularly as telecommunications. Telecoms used to “own” commu-
nication but completely failed to see the potential of the smartphone and digital
consumer services. Telecoms used to generate billions of dollars in profits from
short message service (SMS) products, a market that dropped significantly in just
a few years thanks to WhatsApp, Facebook Messenger, and others.

Existing IT contracts focused on improving efficiency (Chapter 35) in backend
processing, such as billing; no internal skill was available to design and deliver
new services to customers; and existing organizational structures and processes

312 | THE SOFTWARE ARCHITECT ELEVATOR

2 John Roberts, The Modern Firm: Organizational Design for Performance and Growth (Oxford, England:
Oxford University Press, 2007).

My experience is that people who
come for money leave for more
money.

squashed any innovation that was trying to happen. Eventually, telecoms were
left with providing “dumb data pipes” in a downward price spiral while digital
companies enjoyed almost-trillion-dollar valuations and rich profit margins.
Experienced software architects know that too many external dependencies get
you in trouble. The same is true for organizations.

Paying More May Get You Less

Other factors surely played a role in telecoms missing the “digital boat,” but
believing that technology skills can be acquired as needed is particularly danger-
ous. Just like you cannot buy friends, a company cannot buy motivated employ-
ees. Candidates with highly marketable skill sets, such as cloud architecture or
machine learning, are attracted to teams with strong, like-minded people. This
presents traditional companies with a chicken-and-egg problem.

Many companies try to overcome this hurdle by paying higher salaries. How-
ever, compensation is often not the main motivator for top candidates; they are
looking for an employer where they can learn from their peers and have the free-
dom to implement projects rapidly. That’s why it’s difficult for companies to
“buy” skilled employees.

Worse yet, trying to attract talent by
offering higher salaries can backfire
because it will attract “mercenary” devel-
opers who work for the money alone. My
experience is that people who come for
money leave for more money. It won’t attract passionate developers who want to
be part of a high-performing team to change the world. I compare this pitfall to
the unpopular kid handing out candy at school: the kid won’t make friends, but
will be surrounded by children who are willing to pretend to be a friend in
exchange for candy.

Changing Culture from Within

Top consultants can surely help you implement new and exciting technology
projects, but they won’t significantly change the organization’s culture; the cul-
tural change must come from within. Roberts2 classifies the describing

MONEY CAN’T BUY LOVE | 313

characteristics of an organization as PARC–people, architecture (structures), rou-
tines (processes), and culture. Restructurings and process reengineering can
change the organization’s architecture and routines, but cultural changes must
be instilled by the company leadership. This takes time, lots of energy, and some-
times a leadership change: “to do change management, sometimes you need to
change management.”

Because digital transformation requires changing both technology and cul-
ture, I opted to drive a large-scale IT transformation from the inside. It’s the
hard, but only sustainable way.

314 | THE SOFTWARE ARCHITECT ELEVATOR

Who Likes Standing in Line?
Good Things Don’t Come to Those Who Wait

100% utilization

When in university, we often wonder whether and how what we learn will
help us in our future careers and lives. While I am still waiting for the Ackerman
function to accelerate my professional advancement (our first semester in com-
puter science blessed us with a lecture on computability), the class on queuing
theory was actually helpful: not only can you talk to the people in front of you in
the supermarket checkout line about M/M/1 systems and the benefits of single
queue, multiple servers systems (which most supermarkets don’t use), but it also

315

| 39

1 Leonard Kleinrock, Queueing Systems. Volume 1: Theory (New York: Wiley-Interscience, 1975).

gives you an important foundation to reason about economies of speed (Chap-
ter 35).

Looking Between the Activities

When looking to speed things up in enterprises, most people look at how work is
done: are all machines and people utilized, and are they working efficiently? Iron-
ically, when looking for speed, you mustn’t look at the activities, but between
them. By looking at activities you may find inefficient activity, but between the
activities is where you find inactivity, things sitting around and waiting to be
worked on.

Inactivity can have a much more detrimental effect on speed than inefficient
activity. If a machine is working well and almost 100% utilized but a widget must
wait three months to be processed by that machine, you may have replicated the
public healthcare system, which is guided by efficiency but certainly not speed.
Many statistics show that wait times in typical IT processes, such as ordering a
server, make up more than 90% of the total elapsed time. Instead of working
more, we should wait less!

A Little Bit of Queuing Theory

When you look between activities, you are bound to find queues, just like the lines
at your local department of motor vehicles or city office. To better understand
how they work and what they do to a system, let’s indulge in a bit of queuing
theory. My university textbook on queuing theory, Kleinrock’s Queuing Systems,1

appears to be out of print, but is available used. But don’t worry, you don’t need
to digest 400 pages of queuing theory to understand enterprise transformation.

My university professor reminded us that if we remember only one thing
from his class, it should be Little’s Result. This equation states that in a stable sys-
tem, the total processing time T, which includes wait time, is equal to N, the
number of items in the system (the ones in the queue plus the ones being pro-
cessed) divided by the processing rate λ; in short T = N /λ. This makes intuitive
sense: the longer the queue, the longer it takes for new items to be processed. If
you are processing two items per second and there are 10 items on average in the
systems, a newly arriving item will spend five seconds in the system. You might
correctly deduce that most of those five seconds are spent in the queue, not

316 | THE SOFTWARE ARCHITECT ELEVATOR

actually processing the item. The noteworthy aspect of Little’s result is that the
relationship holds for most arrival and departure distributions.

To build a bridge between speed and efficiency, let’s look at the relationship
between utilization and wait time. The system is utilized whenever an item is
being processed, meaning one or more items are in the system. If you sum up
the probability that a given number of items are in the system, for instance, 0
items (the system is idle), 1 (one item being processed), 2 (one item being pro-
cessed plus one in the queue), etc., you find that the average number of items in
the system is equal to ρ / (1 – ρ), where ρ designates the utilization rate, or the
fraction of time the server is busy (we make the assumption that arrivals are
independent, which is described as a memoryless system). From the equation you
can quickly gather that high levels of utilization (ρ moving closer to 100%) lead to
extreme queue sizes and therefore wait times. Increasing utilization from 60%
to 80% almost triples the average queue length: 0.6/(1 – 0.6) = 1.5 versus 0.8/(1 –
0.8) = 4. Driving up utilization will drive away your customers because they get
tired of standing in line!

Finding Queues

Queuing theory proves that driving up utilization increases processing times: if
you live in a world in which speed counts, you have to stop chasing task effi-
ciency. Instead, you need to look at your queues. Sometimes these queues are
visible like the lines at government offices where you take a number and wonder
whether you’ll be served before closing time. In corporate IT the queues are gen-
erally less visible—that’s why so little attention is paid to them. By looking a little
harder, though, you can find them almost everywhere:

Busy calendars
When everyone’s calendar is 90% “utilized,” important decisions queue for
people to meet and discuss them. I waited for meetings with senior execu-
tives for multiple months.

Steering meetings
Such regular meetings tend to occur once every month or quarter. Topics
will be queued up for them, again holding up decisions or project progress.

WHO LIKES STANDING IN LINE? | 317

Email
Inboxes fill up with items that would take you a mere three minutes to take
care of, but that you don’t get to for several days because you are highly
“utilized” in meetings all day. Stuff often rots in my inbox queue for weeks.

Software releases
Code that is written and tested but waiting for a release is sitting in a
queue, sometimes for six months.

Workflow
Many processes ranging from getting an invoice paid to requesting a raise
for employees, have excessive wait times built in. For example, ordering a
book takes large companies multiple weeks, as opposed to having it deliv-
ered the next day from Amazon.

To get a feeling for the damage done by queues, consider that ordering a
server often takes four weeks or more. The infrastructure team won’t actually
bend metal to build a brand-new server just for you: most servers are provisioned
as VMs these days (thanks to software eating the world—Chapter 14). If you rea-
sonably assume that there are four hours of actual work in setting up a server
consisting of assigning an IP address, loading an operating system image, and
doing some nonautomated installations and configurations, the time spent in the
queue makes up 99.4% of the total time! That’s why we should look at the
queues. Reducing the four hours of effort to two won’t make any difference
unless you reduce the wait times.

Cutting the Line

Standing in line is hardly productive, but occasionally entertaining. When wait-
ing in line at the San Francisco Marina post office I observed the highly utilized
and actually quite friendly postal workers. To give myself a bit of utilization I
stepped over to grab Priority Mail envelopes for my next urgent mailing (back
then I didn’t know what cool things the Graffiti Research Lab guys made from
postal supplies). When returning to my spot in the line, the guy behind me com-
plained and after a brief argument he claimed, “You are out of line.” I think the
irony of his statement escaped him as I was the only one who was amused.

318 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/RlScH/

Digital companies understand the danger of queues quite well. The infamously

tasty and free Google cafés have signs posted stating that “Cutting the line is

encouraged.” Google doesn’t like to bear the opportunity cost of 20 people

politely waiting behind a person who transports salad leaves to their plate one by

one.

Making Queues Visible

“You can’t manage what you can’t measure,” goes the old saying, apparently
falsely attributed to W. Edwards Deming. In the case of queues, making them
visible can be a major step toward managing them. For example, metrics extrac-
ted from the ticketing system can show the time spent in each step or the ratio of
effort over elapsed time (you will be shocked!). Showing that most time is simply
spent waiting could also help the organization think in new dimensions (Chap-
ter 40); for example, to realize that more elapsed time doesn’t equate to higher
quality.

For critical business processes such as insurance claims handling, queue
metrics are often managed under the umbrella of business activity monitoring
(BAM). Corporate IT should use BAM to measure its own business, such as pro-
visioning software and hardware, and reduce lag times. Slow IT these days
means slow business.

Why are single queue, multiple server systems more efficient and why don’t
more supermarkets use them? Lining customers up in a single queue reduces
the chances that a server (i.e., cashier) is idling due to an uneven distribution of
customers across the queues. It also allows smooth increases or reduction in the
number of cashiers without everyone running to the newly opened lane or being
ticked off at a lane closing. Most important, it eliminates the frustration that the
other line is always moving faster! However, a single queue requires a bit more
floor space and a single entry point for customers. You will see single queue, mul-
tiple server systems in many post offices and some large electronic stores like
Fry’s Electronics. Apparently, they understand queuing theory!

Message Queues Aren’t All Bad

So how can the coauthor of a book on asynchronous message queues conclude
that queues are trouble? Queues are a great tool for building high throughput
and resilient systems. They buffer load spikes to allow resources to work at opti-
mum rates. Just imagine each person who wants to check out of the supermarket
just piling their items onto the checkout counter the moment they reach it.

WHO LIKES STANDING IN LINE? | 319

Hardly a useful scenario. Many businesses, such as Starbucks, use queues (Chap-
ter 17) to optimize throughput.

Queues become troublesome when they get long due to excessive utilization
rates. High utilization and short response times don’t mix. Don’t blame the
queue for it.

320 | THE SOFTWARE ARCHITECT ELEVATOR

Thinking in Four Dimensions
More Degrees of Freedom Can Make Your Head Hurt

Stuck in two dimensions

A university class on coding theory taught us about spheres in an n-
dimensional space. Though the math behind it made a good bit of sense (the
spheres represent the “error radius” for encoding, while the space between the
sphere is “waste” in the coding scheme), trying to visualize four-dimensional
spheres can make your head hurt a good bit. However, thinking in more dimen-
sions can be the key to transforming the way you think about your IT and your
business.

321

| 40

Living Along a Line

IT architecture is a profession of trade-offs: flexibility brings complexity; decou-
pling increases latency; distributing components introduces communication
overhead. The architect’s role is often to determine the “best” spot on such a con-
tinuum, based on experience and an understanding of the system context and
requirements. A system’s architecture is essentially defined by the combination
of trade-offs made across multiple continua.

Quality Versus Speed

When looking at development methods, one well-known trade-off is between
quality and speed: if you have more time, you can achieve better quality because
you have time to build things properly and to test more extensively to eliminate
remaining defects. If you count how many times you have heard the argument
“We would like to have a better (more reusable, scalable, standardized) architec-
ture, but we just don’t have time,” you start to believe that this God-given trade-
off is taught in the first lecture of “IT project management 101.” The ubiquitous
slogan “quick-and-dirty” further underlines this belief (Chapter 26).

The folks bringing this argument often also like to portray companies or
teams that are moving fast as undisciplined “cowboys” or as building software
where quality doesn’t matter as much as in their “serious” business, because they
cannot distinguish fast discipline from slow chaos (Chapter 31). The term banana
product is sometimes used in this context—a product that supposedly ripens in
the hands of the customer. Again, speed is equated with a disregard for quality.

Ironically, the cause for the “we don’t have time” argument is often self-
initiated as the project teams tend to spend many months documenting and
reviewing requirements or getting approval, until finally upper management puts
their fist on the table and demands some progress. During all these preparation
phases, the team “forgot” to talk to the architecture team until someone in budg-
eting catches them and sends them over for an architecture review that invariably
begins with, “I’d love to do it better, but…” The consequence is a fragmented IT
landscape consisting of a haphazard collection of ad hoc decisions because there
was never enough time to “do it right” and no business case to fix it later. The old
saying, “nothing lasts as long as the temporary solution,” certainly holds in cor-
porate IT. Most of these solutions last until the software they are built on is going
out of vendor support and becomes a security risk.

322 | THE SOFTWARE ARCHITECT ELEVATOR

More Degrees of Freedom

So what if we add a dimension to the seemingly linear trade-off between quality
and speed? Luckily, we are moving only from one to two dimensions, so our head
shouldn’t hurt as much as with the n-dimensional spheres. We’d simply have to
plot speed and quality on two separate axes of a coordinate system instead of on a
single line, as illustrated in Figure 40-1. Now we can portray the trade-off
between the two parameters as a curve whose shape depicts how much speed we
have to give up to achieve how much better quality.

Figure 40-1. Moving from one to two dimensions

For simplicity’s sake, you could assume that the relationship is linear, depic-
ted by a straight line. This probably isn’t quite true, though: as we aim to
approach zero defects the time we need to spend in testing probably goes up a
lot, and as we know, testing can prove only the presence of defects but not their
absence. Developing software for life- and safety-critical systems or things that
are shot into space are probably positioned on this end of the spectrum, and
rightly so. That they rarely achieve zero defects can be seen by the example of the
Mars Climate Orbiter, which disintegrated due to a unit error between metric
and US measures. At the other end of the continuum, in the “now or never
zone,” you may simply reach the limits of how fast you can go. You’d need to
slow down a good bit and spend at least some time on proper design and testing
to improve quality. So, the relationship likely looks more like a concave curve that
asymptotically approaches the extremes at the two axes.

THINKING IN FOUR DIMENSIONS | 323

The trade-off between time (speed) and quality still holds in this two-
dimensional view, but you can reason much more rationally about the
relationship between the two. This is a classic example of how even a simple model
can sharpen your thinking (Chapter 6).

Changing the Rules of the Game

When you move into the two-dimensional space, you can ask a much more pro-
found question: “Can we shift the curve?” And: “If so, what would it take to shift
it?” Shifting the curve to the upper right would give you better quality at the same
speed or faster speed without sacrificing quality. Changing the shape or position
of the curve means we no longer need to move along a fixed continuum between
speed and quality. Heresy? Or a doorstep to a hidden world of productivity?

Because digital companies see speed and quality as two dimensions, they can

think about how to shift the curve.

Probably both, but that’s exactly what digital companies have achieved: they
have shifted the curve significantly to achieve never-before-seen speeds in IT
delivery while maintaining feature quality and system stability. How do they do
it? A big factor is following processes that are optimized for speed (Chapter 35), as
opposed to optimizing for resource utilization under the guises of efficiency (Chap-
ter 39).

Digital companies can shift the curve because:

• They understand that software runs fast and predictably, so they never send
a human to do a machine’s job (Chapter 13).

• They optimize end-to-end instead of optimizing locally.

• They turn as many problems as possible into software problems so they
can automate them and hence move faster and often more predictably.

• If something does go wrong, they can react quickly, often with the users
barely noticing. This is possible because everything is automated and they
use version control (Chapter 14).

• They build resilient systems, ones that can absorb disturbance and self-
heal, instead of trying to predict and eliminate all failure scenarios.

324 | THE SOFTWARE ARCHITECT ELEVATOR

The traditional definition of qual-
ity is a proxy metric.

None of these techniques are rocket science. However, they require an orga-
nization to change the way it thinks. And that’s not easy to do.

Inverting the Curve

If adding a new dimension doesn’t make folks’ head hurt enough, tell them that
modern software delivery can even invert the curve: faster software often means
better software! Much delay in software delivery is caused by manual tasks: long
wait times for servers or environments to be set up by hand, manual regressing
testing, and so on.

Removing this friction, usually by automating things, not only speeds up
software development but also increases quality because manual tasks are often
the biggest source of errors (Chapter 13). As a result, you can use speed as a lever to
increase quality. For example, you can demand shorter provisioning times for
servers in order to increase the level of automation and reduce defects due to
human error.

What Quality?

When speaking about speed and quality, we should take a moment to consider
what quality really means. Most traditional IT folks would define it as the soft-
ware’s conformance to specification and possibly adherence to a schedule. Sys-
tem uptime and reliability are surely also part of quality. These facets of quality
have the essence of predictability: we got what we asked or wished for at the time
we were promised it. But how do we know whether we asked for the right thing?
Probably someone asked the users, so the requirements reflect what they wanted
the system to do. But do they know what they really want, especially if you are
building a system the users have never seen before? One of Kent Beck’s great
sayings is, “I want to build a system the users wish they asked for.”

The traditional definition of quality is
a proxy metric: we presuppose to know
what the customers want, or at least that
they know what they want. What if this
proxy isn’t a very reliable indicator? Companies living in the digital world don’t
pretend to know exactly what their customers want because they are building
brand-new solutions. Instead of asking their customers what they want, they
observe customer behavior (Chapter 36). Based on the observed behavior they
quickly adjust and improve their product, often trying out new things using A/B
testing. You could argue that this results in a product of much higher quality,

THINKING IN FOUR DIMENSIONS | 325

1 Wikipedia, "The Planiverse,” https://oreil.ly/RncTp.

one that the customers wish they could have asked for. So, not only can you shift
the curve of how much quality you can get for how much speed, you can also
change what quality you are aiming for. Maybe this is yet another dimension?

Losing a Dimension

What happens when a person who is used to working in a world with more
degrees of freedom enters a world with fewer, such as an IT organization still
holding the belief that quality and speed are opposites? This can lead to a lot of
surprises and some headaches, almost like moving from our three-dimensional
world to the Planiverse.1 The best way out is reverse engineering the organization’s
beliefs (Chapter 26) and then leading change (Chapter 34).

326 | THE SOFTWARE ARCHITECT ELEVATOR

https://oreil.ly/RncTp

Epilogue:
Architecting IT Transformation

This book’s main purpose is to encourage IT architects to take an active role in
transforming traditional IT organizations that must compete with digital disrup-
tors. “Why are technical architects supposed to take on this enormous task?” you
may ask, and rightly so: many managers or IT leaders may have strong commu-
nication and leadership abilities that are needed to change organizations. How-
ever, today’s digital revolution isn’t just any organizational restructuring, but one
that is driven by IT innovation: mobile devices, cloud computing, data analytics,
wireless networking, and the Internet of Things, to name a few. Leading an orga-
nization into the digital future therefore necessitates a thorough understanding
of the underlying technologies along with their application for competitive
advantage.

Game On

Due to network effects, many digital business models follow a winner-takes-all
dynamic: Google owns search, Facebook owns social, Amazon owns fulfillment
and cloud, Netflix and Amazon jointly own content. Apple and Google’s Android
own mobile. Google tried to get into social and floundered. Microsoft struggles in
search and essentially withdrew from mobile. Amazon also struggled in mobile
just like Google repeatedly dabbled in fulfillment without seeing a lot of traction.
In cloud computing even almighty Google is at best a runner-up with Amazon
holding on to a significant lead.

Following this battle of the titans from the sidelines of a traditional organiza-
tion resembles watching world-class athletes compete from the bleachers while
eating popcorn: these organizations sport evaluations close to a trillion dollars
(Netflix being the “baby” with roughly $150 billion market capitalization in

327

PART | VI

2020), have access to the world’s top IT talent, and are run by extremely talented
and skilled management teams. How would one even hope to compete?

There are several effects that play into the hands of incumbent companies.
First, the digital world is one of constant evolution, and every round brings new
opportunities. Uber disrupted the taxi industry by realizing that taxis aren’t the
only cars on the road and that taxi drivers aren’t the only ones who can give oth-
ers a ride. However, automotive manufacturers may have an ace up their sleeve
in the next round when they launch self-driving cars. Second, traditional enter-
prises can utilize existing assets. For example, Fast Retailing, Uniqlo’s parent
company, rather than emulate an online business model, uses the physical store
as its key asset and is hugely successful at it. Target, a major US retailer, sees
huge uplift in ecommerce sales with its curbside pick-up model—you just drive
up and your order is loaded into your car. The digital world is one of many oppor-
tunities, for those companies that can question existing assumptions and turn IT
into a major innovation driver.

Transforming from the Bottom Up

It’s hard to imagine that instigating a digital transformation purely from the top
down can be successful. Non-tech-savvy management can at best limp along
based on input from external consultants or trade journals. That’s not going to
cut it, though: competition in the digital world is fierce, and customer expecta-
tions are increasing every day. When we hear of a successful startup company
that went public or was acquired for a huge sum of money, we usually forget the
dozens or even hundreds of startups in the same space that didn’t make it
despite a great idea and a bunch of smart people working extremely hard on it.
Architects, who are rooted in technology but can ride the elevator to the pent-
house, are needed to make such a transformation successful.

Transforming from the Inside Out

Watching vendor demos and purchasing a few new products aren’t going to
make an organization competitive against digital behemoths. As the overall direc-
tion of the digital revolution has become fairly clear and technology has been
democratized to the point where every individual with a credit card can procure
servers and big data analytics engines within minutes, the main competitive
asset for an organization is its ability to learn fast. External consultants and ven-
dors can give a boost, but they cannot substitute for an organization’s ability to

328 | THE SOFTWARE ARCHITECT ELEVATOR

Technology evolution has become
inseparable from organizational
evolution. Correspondingly, the job
of the architect has broadened
from designing new IT systems to
also designing a matching organi-
zation and culture.

learn (Chapter 36). Architects are therefore needed to drive or at least support the
transformation from within the organization.

From Ivory Tower Resident to Corporate Savior

If you aren’t yet convinced that transforming the organization is part of your job
as an architect, you may not have much of a choice: recent technology advances
can be successfully implemented only if the organizational structure, processes,
and often the culture also change. For example, DevOps-style development is
enabled through the advent of automation technologies but relies on breaking
down change and run silos. Cloud computing can reduce time-to-market and IT
cost dramatically, but only if the organization and its processes empower devel-
opers to actually provision servers and make necessary network changes. Lastly,
being successful with data analytics requires the organization to stop making
decisions based on management slide sets, but on hard data. All these are major
organizational transformations.

In times of digital disruption, the job
of the IT architect has surely become
more challenging: keeping pace with
ever-faster technology evolution, but also
being well versed in organizational engi-
neering, understanding corporate strat-
egy, and communicating to upper
management are now part of being an
architect. But the architect’s job has also
become more meaningful and rewarding for those who take up the challenge.

In a prior job, I often jested that I was the chief organizational engineer dis-

guised as the chief architect.

The new world doesn’t reward architects who draw diagrams while sitting in
the ivory tower. It has a lot in store, though, for hands-on innovation drivers and
change agents. I hope this book encourages you to take the challenge and equips
you with useful guidance, some clever slogans, and a little wisdom along your
journey.

EPILOGUE: ARCHITECTING IT TRANSFORMATION | 329

All I Have to Offer Is the Truth
Giving Folks the Red Pill

It’s so much more comfortable up here

Embarking on a transformation journey can be quite a dramatic, sometimes
even traumatic, undertaking for many people working for traditional enterprises.
Digital companies are run, or at least perceived to be run, by highly educated, 20-
something digital natives who aren’t distracted by family or social life and require
little to no sleep. Their employers have hardly any legacy to deal with and billions
in the bank, despite offering most services to consumers for free. For IT staff
who have been working in the same, traditional enterprise, following the same
processes for decades, this is likely to cause a mix of fear, denial, and resentment.

331

| 41

Getting these folks on board for a transformation agenda is thus a delicate
affair: if you are too gentle, people may not see a need to change. If you are too
direct, people may panic or resent you.

Nothing But the Truth

Wringing a final reference from the movie The Matrix, when Morpheus asks Neo
to choose between the red pill, which will eject him into reality, and the blue pill,
which will keep him inside the illusion of the Matrix, he doesn’t describe what
“reality” looks like. Morpheus merely states:

Remember: all I’m offering is the truth. Nothing more.

If he had told Neo that the truth translates into living in the confines of a
bare-bones hovercraft ship patrolling sewers in the middle of a war against the
machines who perpetually hunt the ship to chop it up with their powerful laser
beams, he may have taken the blue pill. But Neo had already understood that
there’s something wrong with the current state, the Matrix illusion, and felt a
strong desire to change the system. And while you also sense that something’s
not quite right with the existing system, most of your corporate peers will be
quite content with their current environment and position. Sadly it’s not enough
if you take the pill yourself, so you need to push them a little bit to come along
for the ride.

Just like in the movie The Matrix, though, the new digital reality that awaits
the red-pill-taking folks may not be exactly what they expected.

In a meeting, a fellow architect once proudly proclaimed that for transformation

to succeed the architect’s life needs to be made easier. He was bound to be

disappointed.

Aiming to make one’s life easier is unlikely to lead into the digital future but
will rather end in disappointment. Technological advances and new ways of
working make IT more interesting and valuable to the business, but they don’t
make it easier: new technologies must be learned, and the environment generally
becomes more complex, all while the pace speeds up. Digital transformation isn’t
a matter of convenience, but of corporate survival.

332 | THE SOFTWARE ARCHITECT ELEVATOR

Digital Paradise?

Looking from the outside, working at digital companies appears to largely consist
of free lunches, massages, and riding Segways. While digital companies do court
their employees with an unheard-of list of perks, they are also hugely competitive
internally and externally. They firmly embrace a culture of constant change and
speed to remain competitive and drive innovation. This means that employees
rarely get to rest on the laurels of their work but need to keep pushing on. Engi-
neers don’t join digital companies to relax but to push the envelope, innovate,
and change the world.

The rewards match the challenge, though—not just financially, but most
important, in enabling engineers to really make a difference and accomplish
things they wouldn’t be able to accomplish on their own. More than a decade ago
at Google, you could scale an application you wrote to 100,000 servers and run
analytics against petabytes of logs in a second or two. Most traditional companies
still dream of these capabilities a decade later. Such are the rewards of the digital
IT life. These examples also show traditional companies why they should be
scared.

Don’t Try This at Home

When looking to transform, traditional companies often identify practices
employed by digital disruptors and try to import them into their traditional way
of working. While it’s important to understand how your competitors think and
work, adopting their practices requires careful consideration. Digital companies
are known to do things like storing all their source code in a single repository,
not having any architects, or letting employees work on whatever they like. When
admiring these techniques, traditional companies must realize that they are
watching world-class superstars pulling off amazing stunts. Yes, there are people
who walk a tightrope between skyscrapers or jump off a tower to glide into the
rooftop pool of a nearby building. This doesn’t mean you should try the same at
home.

When adopting “digital” practices, an organization must understand the
interdependencies between these practices. A single code repository requires a
world-class build system that can scale to thousands of machines and execute
incremental build and test cycles. Sticking all your code into a single repository
without having such a system in place, and a team to maintain it, is like jumping
off a building without a parachute. It’s unlikely you’ll be landing softly in the
nearby rooftop pool.

ALL I HAVE TO OFFER IS THE TRUTH | 333

Abandon Ship

For most organizations, sailing to the digital future is a matter of survival. Imag-
ine that you are an officer on the Titanic ocean liner and were just informed that
the ship will be slowly but surely sinking. Most of the passengers are completely
unaware of the severity of the situation and are comfortably sipping champagne
on the upper decks. If you walk up to the passengers and individually inform
them:

Sir, excuse me if you wouldn’t mind. Could you be so kind as to consider relocating

to the main deck so we may transfer you to a safer vessel? After you finish your

drink, obviously. Please kindly excuse the terrible inconvenience. Your well-being is

our primary concern.

You may not get much of a response, maybe just a doubtful stare. People
may order another champagne and then have a peek at the vessel you are sug-
gesting, the lifeboat, just to conclude that it appears much less safe and conve-
nient than staying on the world’s most modern and unsinkable ocean liner.

On the other hand, if you speak to the passengers as follows:

This ship is sinking! Most of you will drown in the icy ocean because there aren’t

enough lifeboats.

you will cause widespread panic and a rush for the lifeboats that’s likely to
leave many passengers dead or injured before the ship even takes on water.

Motivating corporate IT staff to start changing the way they work, and to
leave behind the comfort of their current position is not dissimilar. They are also
unlikely to realize their ship is sinking. Where on the spectrum of communica-
tion methods you should land depends on each organization and individual. I
tend to start gentle and “ratchet up” the rhetoric when I observe perpetual
inaction.

Looks Are Deceiving

Just as it seems unlikely that a simple block of ice can sink a modern (at the
time) marvel of engineering, small, digital companies may not appear threaten-
ing to a traditional enterprise. Many startups are run by relatively inexperienced,
sometimes even naive, people who believe they can revolutionize an industry
while sitting on a beanbag because their office space hasn’t been fully set up yet.

334 | THE SOFTWARE ARCHITECT ELEVATOR

They are often understaffed and need to secure multiple rounds of external fund-
ing before turning profitable, if ever.

However, just like 90% of an iceberg’s volume lies under water, digital com-
panies’ enormous strength is hidden: it lies in their ability to learn much faster,
often orders of magnitude faster than traditional organizations. Dismissing or
trivializing startups’ initial attempts to enter an established market could there-
fore be a fatal mistake. “They don’t understand our business” is a common
observation from traditional businesses. However, what took a business 50 years
to learn may take a disruptor only one year or less because it is set up for econo-
mies of speed (Chapter 35) and has amazing technology at its disposal.

Digital disruptors also don’t have to unlearn bad habits. Learning new things
is difficult, but unlearning existing processes, thought patterns, and assumptions
is disproportionately more difficult. Unlearning and abandoning what made
them successful in the past is one of the biggest transformation hurdles for tradi-
tional companies (Chapter 26).

Some traditional businesses may feel safe from disruption because their
industry is regulated. To demonstrate how thin a safety net regulation provides, I
routinely remind business leaders that if the digitals have managed to put electric
and self-driving cars on the road and rockets into space, they are surely capable of
obtaining a banking or insurance license. For example, they could simply acquire
a licensed company. The fintechs Lemonade (insurance) and N26 (banking) are
vivid examples of successful challengers in a regulated industry.

Digital companies are not out to replicate existing business models. Rather, they

choose weak spots that are highly inefficient or cause unhappy customers.

Lastly, digital disruptors don’t tend to attack from the front. They tend to
choose weak spots in existing business models that are highly inefficient, but not
significant enough for large, traditional enterprises to pay attention to. Airbnb
didn’t build a better hotel, and fintech companies aren’t interested in rebuilding
a complete bank or insurance company. Rather, they attack the distribution chan-
nels, where inefficiency, high commissions, and unhappy customers allow new
business models to scale rapidly with minimum capital investment. Some
researchers claim that had the Titanic hit the iceberg head on, it might not have
sunk. Instead, it was taken down because the iceberg tore open a large portion of
the relatively weak side of the hull. That’s where the digitals hit.

ALL I HAVE TO OFFER IS THE TRUTH | 335

Distress Signals

While transformation can be a scary endeavor, you aren’t the only architect who
is accepting the challenge. Just like ships in distress, it’s good to call for help
when things look dire. You shouldn’t be shy about sending a digital SOS—no
one has a proven recipe for transformation, so exchanging experiences and anec-
dotes with your peers is highly beneficial. You may even opt to share your experi-
ences in a book. I’ll be one of your first readers.

336 | THE SOFTWARE ARCHITECT ELEVATOR

Index

A
abstractions, levels of, 89

ACID transactions, 135

Agile methods, 77, 255-261

alignment

defined, 12

excessive, 252

amber organizations, 85

analysis paralysis, 70

anarchy, 230

Application Delivery Controller (ADC), 130

architect elevator, 7-13

architectural decisions, 65-68

architecture

benefits of automation, 103-108, 253

benefits of including built-in options,

69-78

benefits of layers, 234

defined, 59, 64

evolutionary architecture, 77

gaining insights from the real world

into, 135-140

identifying, 63-68

multispeed, 27

programming versus configuration,

87-94

skills needed to create sound, 62

value of, 60

architecture analysis, 200

architecture diagrams, 172-180, 194

architecture reviews, 54, 63

architecture sketches, 197-201

architecture without architects, 18

assumptions

overcoming, 222

uncovering, 54, 216-221

asynchronous communication, 251

asynchronous processing model, 136

Auftragstaktik, 229

automation

benefits to architecture, 103-108

configuration changes, 24, 106

versus humans, 108, 253

levels of, 155

repeatability and resilience gained by,

104

scaling through, 253

self-service portals, 105

tacit versus explicit knowledge, 107

understanding current system state,

107

autonomy, 230-232

337

B
backpressure, 139

banana products, 322

bi-modal IT, 27

bias, 47

Big Ball of Mud architecture, 60, 68, 234

binary values, 135

black markets, 12, 241-245

decision makers and, 264

Black-Scholes formula for computing

option values, 72, 74

bottleneck

databases as, 40

in IT systems, 111

in organizations, 248

bounded rationality, 82

branching, 206

breadth-first writing, 162

browser-based document editing, 205

Build-Measure-Learn cycle, 297-301

impediments to using, 312

business activity monitoring (BAM), 319

business architecture, 31

business models, 335

buy-over-build strategy, 88

C
canonical data models, 140

cargo cult, 284

change, culture of, 101, 284, 313 (see also

resistance to change; transformation)

Chaos Monkey, 268, 282

checkpoints, 245

chief architects

asking the right questions, 53-57

becoming successful, xiii-xv, 4

role of, 2

chief engineers, 2

Clausewitz, Carl von, 228

code, fear of, 88-94, 307

coffee shop analogy, 135-140

collaboration

benefits of pairing, 209

benefits of version control, 204

coordinating among team members,

205

dealing with resistance, 210

progress transparency, 209

style versus substance, 208

trunk-based development, 206

working iteratively, 207

comments and questions, xvii

commercial off-the-shelf (COTS) solutions,

88

communication

asynchronous, 251

capturing audience interest, 151-158

collaborating using version control,

203-210

conveying technical topics effectively to

upper management, 141-144

corporate politics and, 168

creating architecture sketches, 197-201

diagram-driven design, 181-188

enhancing focus by placing emphasis,

171-180

expressing component relationships,

189-195

presenting complex technical material,

145-150

software architects as connectors and

translators, 7

writing for busy people, 159-169

compatibility standards, 119, 265

338 | INDEX

compensating actions, 138

complex systems, 79

complexity management

feedback loops, 80

heater analogy, 79

influencing system behavior, 84

organized complexity, 81

recurring system effects/patterns, 82

resistance to change, 85

systems thinking, 79

understanding system behavior, 83, 193

conceptual integrity, 61

confidence, 257

configuration

applying design best practices to, 94

code versus data, 91

versus coding, 90

configuration programming, 93

design-time versus runtime deploy-

ment, 92

versus higher-level programming, 93

model versus representation, 90

configuration automation, 24

configuration changes, 106

confirmation bias, 47

container, 74, 123

containment, 191

Continuous Deployment (CD), 24

Continuous Integration (CI), 24

continuous learning loop, 298

control flow, 212

control theory

and accurate reports, 227

autonomy, 230-232

closing gaps between plans, actions,

and results, 228

control circuits, 226

controlling the control loop, 232

feedback loops, 226

illusion of control, 226

smart control, 228

control, actual, 226, 230

Conversation Patterns, 139

correlation identifiers, 136

cost of delay, 293

culture of change, 101, 284, 313

curse of knowledge, 147

customer centricity, 120, 305

customer feedback, 298, 304

cybernetics, 226

D
data flow, 212

deadlocks, 249

decision making

architectural decisions, 65-68

avoiding decisions, 52

benefits of seeing the big picture,

153-157

bias and, 47

decision analysis, 49

decision models, 50

deferring decisions with options, 71-72

five whys approach to, 54

importance of communication in, 141

IT decisions, 52

judging the quality of decisions, 45

minimizing irreversible, 70

poor decision-making discipline, 46

priming, 48, 218

revealing assumptions and principles

leading to, 54, 215-223

decision trees, 50

delay, cost of, 293

INDEX | 339

depth-first writing, 162

designing systems, 135-140

details, in technical presentations, 149

DevOps, 300

diagram-driven design, 181-188

diagrams, creating clear, 163, 175-179,

183-187, 189-195

digital mindset, 307

discipline, achieving speed with, 255-261

discussion group, joining, xvii

distributed system design, 135-140

documentation, corporate politics and, 168

dogfooding, 306

duplication of work, value and cost of, 294

dynamic models, 238

E
economies of scale, 290

economies of speed, 10, 28, 104, 289-295

efficiency, resource versus customer, 291

efficiency-based thinking, 295, 317

elastic, 258

elasticity, 73

engine room

defined, 8

disconnect from penthouse, 11

riding the architect elevator to and

from, 9

enterprise architects

developing an undistorted IT world-

view, 127

role of, 29

versus technical architects, 9, 34

understanding organization structures

and systems, 211-214

enterprise architecture (EA)

versus business architecture, 31-33

challenges of, 33

defined, 30

ethos, xvi, 157

evolutionary architecture, 77

exception handling, 137-138

external consultants, 10, 311

F
face-to-face time, 253

feature teams, 300

feature toggles, 206

feedback, 258

feedback loops, 226, 298, 304

first derivative

defined, 22

designing for, 25

of software systems, 24

fitness function, 77

five whys technique, 54

five-second test, 173

flow efficiency, 292-294

flow-based thinking, 292

G
Git, 204

economies of speed and, 290

learning curve and, 210

goal setting, 282

governance

by decree, 267

by inception, 268

by infrastructure, 267

defined, 264

necessity of, 270

value of standards for, 265-267

340 | INDEX

H
harmonization, 264

headings, in writing, 163

heating system analogy, 80

highest paid person’s opinion (HiPPO),

310

horizontal scaling, 73

I
IBM PC development, as significant inno-

vation, 285

impact

architects and, 39-43

inactivity, effects of, 316

inception, governance through, 263-270

inefficiency, 311

infinite learning loops, 297-301

infrastructure as code (IaC), 94, 110

innovation, IBM PC and, 285

integration architecture, 248

interface standards, 119, 265

internal rate of return (IRR), 310

IT beliefs

agility opposes discipline, 221

all problems can be solved with more

people or more money, 219

following a proven process leads to pro-

ven good results, 220

late changes are expensive or impossi-

ble, 220

quality can be added later, 219

speed and quality are opposed, 218

the unexpected is undesired, 221

IT components, standardizing, 117-124

IT pyramids, 233-239

IT worldview

challenges of establishing, 126

charting territory, 130

defining borders, 128

developing, 10

developing an undistorted map, 127

product philosophy compatibility check,

131

shifting territory, 133

vendors' perspective, 126

ITIL, 259

K
key performance indicators (KPIs)

amount of learning per dollar spent,

298

cost, 10

decision making, 69

knowledge gaps, 147

L
law of small numbers, 46

layers

base layer as proxy metric, 237

benefits of, 234

building from the top, 236

challenges of building, 235

drawbacks of, 235

efficiency versus speed, 238

inverse pyramids, 239

organizational pyramids, 234

versus platforms, 120

leadership

architects and, 39-43

learning loops, 9

legacy systems

culture of change, 101

drawbacks of, 95

embracing change, 100

INDEX | 341

fear of change and, 96

MTBF versus MTTR, 97

planned obsolescence, 99

separation of operating code versus

development code, 99

version upgrades, 98

lift boys, 11

linearity, curse of, 162

lines, expressing component relationships

with, 190-195

logos, xvi, 157

M
maker mindset, 307

mapping standards, 266

marchitecture diagrams, 188

matrix organization, 212

mean time between failures (MTBF), 97

mean time to recovery (MTTR), 98

meetings (synchronization points), 247

impact on performance, 248-249

mental model, dangers of, 84

mentoring, 41

metamodels, 191, 195

microfail value, 52

micromort value, 49

models

business, 30, 335

diagrams as, 172

dynamic, 238

for asynchronous processing, 136

for decision making, 50

using Wardley maps as, 120

versus representations, 90-91

motivation, 282, 313

N
nonrequirements, 3

O
obsolescence, planned, 99

open source tools, 88

options

Agile methods and, 77

dealing with lack of, 77

elasticity, 73

horizontal scaling, 73

no risk options, 77

real options, 76

strike prices, 73

time of exercise, 75

uncertainty and, 75

value of, 72

options model, 76

organizational charts, 211

organizations

achieving speed with discipline, 255-261

amber organizations, 85

command-and-control structures,

225-232

dangers of black markets, 241-245

flat versus classic, 8-13

governance through inception, 263-270

identifying and overcoming outdated

assumptions, 215-223

layering to reduce complexity and ach-

ieve reuse, 233-239

navigating organizations to lead

change, 281-287

resistance to change in, 12, 85

scaling, 247-253

understanding organization structures

and systems, 211-214

342 | INDEX

organized complexity, 81

outsourcing, 311

overhead costs, 311

P
pair programming and collaboration, 209

parallelism, in writing, 164

pathos, xvi, 157

personal productivity, 248

pessimistic resource allocation, 249

phone calls, 250

planned obsolescence, 99

platforms

adhering to standards, 119, 121

building solid, yet flexible, 122-123

criteria for choosing, 122

layers versus platforms, 120

Powers of 10 (Eames film for IBM), 35

predictability, value and cost of, 294

presentations (see also writing skills)

collaborating using version control,

203-210

creating useful models, 172

degrees of trust placed in, 227

diagram-driven design, 181-188

five-second test, 173

presenting clear and useful diagrams,

175-178

recapping key points, 174

structuring, 180

titles, 179

using simple language, 174

priming, 48, 218

processing efficiency, 292

product box, 156

product development flow, 292

product fit, 130

product philosophy compatibility checks,

131

product standards, 119

productivity

asynchronous communication, 251

automation and, 253

excessive alignment and, 252

personal, 248

phone calls and, 250

system, 248

taking advantage of search, 252

project managers, 2

prospect theory, 48

proximity, 191

Prussian army, 228

Q
quality

fallacy that quality can be added later,

219

fallacy that speed and quality are

opposed, 218

faster delivery of functionality at high

quality, 321-326

quality gates, 245

questions and comments, xvii

queuing theory, 316-320

R
rapid feedback cycles, 297-301

rate of change, 21-28

reference architecture, 129

repeatability, 104

repeatable, 258

resilience, 104, 282

resistance to change

challenges of, 85

INDEX | 343

culture of change, 101

dealing with, 11, 282

embracing change, 100

legacy systems, 95-101

persistence of beliefs, 217

retry error handling strategy, 138

reverse engineering

common IT beliefs, 218-221

discovering unknown beliefs, 216

dissecting IT slogans, 216

need for, 215

reluctance to change, 217

unlearning old habits, 218

reverse mentoring, 41

root-cause analysis, 54

run versus change, 99

S
sandbagging, 294

scaling, 73, 247-253

SDX (software-defined anything), 109-115

second derivative, 28

secure, 258

self-service portals, 105

self-service systems, 244, 253

selling options analogy, 69-78

semantics, 193

semblance of control, 226

senior developers, 1

server sizing, 73

serverless architectures, 109, 304

shantytown architecture, 60

sidebars, in writing, 163

skill

architects and, 38-43

skunkworks, 285

slow chaos, 258-259

software architect elevator, 7-13

software architects

ability to question everything, 53-57

becoming a successful chief architect,

xiii-xv, 4

as change agents, 4

changing roles of, xiii, 1-3

communication tips, 141-144

as connectors and translators, 7

enterprise versus technical architects, 9

implicit requirements and, 3, 67

measuring value of, 3

prototypical stereotypes of, 15-19

rate of change and, 21-28

rational and disciplined decision mak-

ing by, 45-52

resistance encountered by, 11

skills needed to create sound architec-

tures, 62

specialization areas, 2

three facets of being a good architect,

37-43

software architecture, defined, 64 (see also

architecture)

software development and deployment

attributes required for fast, 257

product development flow, 292

trunk-based development, 206

software development life cycle (SDLC), 115

software-defined networks (SDNs), 110-115

speed

achieving with discipline, 256-261

achieving with queuing theory, 315-320

economies of speed, 10, 28, 289-295

efficiency versus speed in layers, 238

fallacy that speed and quality are

opposed, 218

344 | INDEX

faster delivery of functionality at high

quality, 321-326

multispeed architectures, 27

two-speed architectures, 27

speed-based thinking, 295

stack fallacy, 308

standardization

benefits of, 265

creativity and, 119

drawbacks of, 264

establishing global standards, 123

interface and product standards, 119

layers versus platforms, 120

maps for, 266

platform standards, 119-124

rationale for, 265

Starbucks analogy, 135-140

strike prices, 72, 73-74

synchronization points (meetings), 247

impact on performance, 248-249

system context diagrams, 157

system design, 135-140

systems theory and change, 278

systems thinking, 79-85

T
technical decision papers, 142

technical memos, 167

Titanic, 227, 334, 335

tolerated inefficiency, 311

tragedy of the commons, 82

transaction monitors, 249

transformation

achieving speed with queuing theory,

315-320

achieving truly digital internal IT,

303-308

architecting IT transformation, 327-329

dealing with complacency, 279

economies of speed, 289-295

effecting lasting change, 271-273

faster delivery of functionality at high

quality, 321-326

infinite learning loops and, 297-301

key to successful, xvi

motivating corporate IT staff, 331-336

navigating organizations to lead

change, 281-287

pain of not changing, 279

perils of large budgets, 309-314

reprogramming organizations, 222

stages of, 275-279

tribes, 300

trunk-based development, 206

two-phase commit approach, 139

two-speed architectures, 27

U
UML diagrams, 183, 194

upgrades, 98, 112

V
velocity, 257

vendors, selecting, 126-133

version control, 204-206

learning curve and, 210

version upgrades, 98

vertical cohesion, 61

virtualization, 110

virtuous cycle, 40

visuals

and configuration, 90

and sketching architectures, 200

in writing, 163

INDEX | 345

W
Wardley maps, 120

watermelon status report, 227

white markets, 244

why, why analysis, 54

working iteratively versus working incre-

mentally, 207

write-off error handling strategy, 137

writing skills

addressing diverse audiences, 163

brevity, 166

capturing audience interest, 151-158

corporate politics and, 168

enhancing focus by placing emphasis,

171-180

importance of first impressions, 161

mapping complex topics into linear

storylines, 162

non-referential statements and unsub-

stantiated claims, 165

parallelism and paragraph structure,

164

presenting complex technical material,

145-150

quality versus impact, 160

technical memos, 168

writers' workshops, 167

written versus spoken presentations,

160

346 | INDEX

About the Author
Gregor Hohpe helps business and technology leaders transform not only their
technology platform, but also their organization. Riding the Architect Elevator
from the engine room to the penthouse, he assures that corporate strategy lines
up with the technical implementation and vice versa.

He has served as Smart Nation Fellow to the Singapore government, as technical
director in Google Cloud’s Office of the CTO, and as chief architect at Allianz SE,
where he oversaw the architecture of a global data center consolidation and
deployed the first private cloud software delivery platform. Having worked for
both digital native companies and traditional enterprise IT allows him to reveal
the many misconceptions that these organizations have about each other in the
form of pointed anecdotes harvested from the daily grind of IT transformation.

Gregor is known as coauthor of the seminal book Enterprise Integration Patterns
(Addison-Wesley), which is widely cited as the reference vocabulary for asynchro-
nous messaging solutions. His articles have been featured in numerous publica-
tions, including Best Software Writing (Apress), selected and introduced by Joel
Spolsky, and 97 Things Every Software Architect Should Know (O’Reilly), by
Richard Monson-Haefel.

Colophon
The cover photo, Modern Elevator, is by Auris. The cover font is Guardian Sans.
The text font is Scala Pro; the heading font is Benton Sans; and the code font is
Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Foreword by Simon Brown
	Foreword by David Knott
	About This Book
	A Chief Architect’s Life: It’s Not That Lonely at the Top
	What Will I Learn?
	Is It Proven to Work?
	Tell Me a Story
	Conventions Used in This Book
	Staying Up-to-Date
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Architects
	Chapter 1. The Architect Elevator
	The Architect Elevator
	Some Organizations Have More Floors Than Others
	Not a One-Way Street
	High-Speed Elevators
	Other Passengers
	The Dangers of Riding the Elevator
	Flattening the Building

	Chapter 2. Movie-Star Architects
	The Matrix: The Master Planner
	Edward Scissorhands: The Gardener
	Vanishing Point: The Guide
	The Wizard of Oz
	Superhero? Superglue!
	Making the Call

	Chapter 3. Architects Live in the First Derivative
	Rate of Change Defines Architecture
	Change = Business as Unusual?
	Varying Rates of Change
	A Software System’s First Derivative
	Designing for the First Derivative
	Confidence Brings Speed
	Rate of Change Trade-Offs
	Multispeed Architectures
	The Second Derivative
	Rate of Change for Architects

	Chapter 4. Enterprise Architect or Architect in the Enterprise?
	Enterprise Architecture
	Connecting Business and IT
	IT Is from Mars, Business Is from Venus
	Value-Driven Architecture
	Fools with tools

	Visit All Floors

	Chapter 5. An Architect Stands on Three Legs
	Skill, Impact, Leadership
	Skill
	Impact
	Leadership

	A Chair Can’t Stand on Two Legs
	The Virtuous Cycle
	You Spin Me Right Round…
	Architect as Last Stop?

	Chapter 6. Making Decisions
	The Law of Small Numbers
	Bias
	Priming
	Micromort
	Model Thinking
	IT Decisions
	Avoiding Decisions

	Chapter 7. Question Everything
	Five Whys
	Whys Reveal Decisions and Assumptions
	A Workshop for Every Question
	No Free Pass

	Part II. Architecture
	Chapter 8. Is This Architecture?
	Defining Software Architecture
	Architectural Decisions
	Fundamental Decisions Needn’t Be Complicated
	Fit for Purpose
	Passing the Test

	Chapter 9. Architecture Is Selling Options
	Reversing Irreversible Decision Making
	Deferring Decisions with Options
	Options Have Value
	An Architecture Option: Elasticity
	Strike Prices
	Uncertainty Increases an Option’s Value
	Time Is Fleeting
	Real Options
	Arbitrage
	Agile and Architecture
	Evolutionary Architecture
	Amplifying Metaphors

	Chapter 10. Every System Is Perfect…
	Heater as a System
	Feedback Loops
	Organized Complexity
	System Effects
	Understanding System Behavior
	Influencing System Behavior
	Systems Resist Change

	Chapter 11. Code Fear Not!
	Fear of Code
	Good Intentions Don’t Lead to Good Results
	Levels of Abstraction: Simplicity Versus Flexibility
	When Are We Configuring?
	Model Versus Representation
	Code or Data? Or Both?
	Deployment at Design-Time Versus Runtime

	Higher-Level Programming
	Configuration Programming
	Configuration Hiding as Code?

	Chapter 12. If You Never Kill Anything, You Will Live Among Zombies
	Legacy
	Fear of Change
	Hoping for the Best Isn’t a Strategy
	Version Upgrades
	Run Versus Change
	Planned Obsolescence
	If It Hurts, Do It More Often
	Culture of Change

	Chapter 13. Never Send a Human to Do a Machine’s Job
	Automate Everything!
	It’s Not Only About Efficiency
	Repeatability Grows Confidence
	Self-Service
	Beyond Self-Service
	Automation Is Not a One-Way Street
	Explicit Knowledge Is Good Knowledge
	A Place for Humans

	Chapter 14. If Software Eats the World, Better Use Version Control!
	SDX: Software-Defined Anything
	The Loomers’ Riot?
	Software Developers Don’t Undo, They Re-Create
	Melt the Snowflakes
	Automated Quality Checks
	Use Proper Language
	Software Eats the World, One Revision at a Time

	Chapter 15. A4 Paper Doesn’t Stifle Creativity
	A4 Paper
	Product Standards Restrict, Interface Standards Enable
	Platform Standards
	Layers Versus Platforms
	Digital Discipline
	Avoid the Skipping Stones
	One Size Might Not Fit All Tastes

	Chapter 16. The IT World Is Flat
	Vendors’ Middle Kingdoms
	Plotting Your World Map
	Defining Borders
	Charting Territory
	Product Philosophy Compatibility Check
	Shifting Territory

	Chapter 17. Your Coffee Shop Doesn’t Use Two-Phase Commit
	Hotto Cocoa o Kudasai
	Correlation
	Exception Handling
	Write Off
	Retry
	Compensating Action

	Transactions
	Backpressure
	Conversations
	Canonical Data Model
	Welcome to the Real World!

	Part III. Communication
	Chapter 18. Explaining Stuff
	Build a Ramp, Not a Cliff
	Mind the Gap
	First, Create a Language
	Consistent Level of Detail
	I Wanted to Have Liked To, but Didn’t Dare Be Allowed

	Chapter 19. Show the Kids the Pirate Ship!
	Grab Attention
	Build Excitement
	Focus on Purpose
	Pirate Ship Leads to Better Decisions
	The Product Box
	Designing the Pirate Ship
	Show Context
	The Content on the Inside
	Consider the Audience

	Pack Some Pathos
	Play Is Work

	Chapter 20. Writing for Busy People
	Writing Scales
	Quality Versus Impact
	“In the Hand”—First Impressions Count
	The Curse of Writing: Linearity
	A Good Paper Is Like the Movie Shrek
	Making It Easy for the Reader
	Lists, Sets, Null Pointers, and Symbol Tables
	In der Kürze liegt die Würze4Literally, “brevity gives spice,” ironically translating into “short and sweet.”
	Unit Testing Technical Papers
	Technical Memos
	The Pen Is Mightier Than the Sword, but Not Mightier Than Corporate Politics

	Chapter 21. Emphasis Over Completeness
	Diagrams Are Models
	The Five-Second Test
	A Pop Quiz
	Simple Language
	Diagramming Basics
	Avoid the Ant Font
	Maximize the Signal-to-Noise Ratio
	Let Arrows Point
	Legends Are Crutches
	Layer Visually

	The Style of Elements
	Making a Statement
	Twenty Slides, One Story
	Nothing Is Confusing in and of Itself

	Chapter 22. Diagram-Driven Design
	Presentation Skills: More Than a Wide Stance
	Diagramming as Design Technique
	Designing with Diagrams
	Diagram-Driven Design Techniques
	Establish a Visual Vocabulary and Viewpoints
	Limit the Levels of Abstraction
	Reduce to the Essence
	Find Balance and Harmony
	Indicate Degrees of Uncertainty

	Diagrams Are Art
	No Silver Bullet (Point)

	Chapter 23. Drawing the Line
	Behold the Line!
	The Metamodel
	The Semantics of Semantics
	Elements—Relationship—Behavior
	Architecture Diagrams
	UML
	Beware of Extremes

	Chapter 24. Sketching Bank Robbers
	Everyone Saw the Perpetrator
	A Police Sketch Artist
	Sketching Architectures
	The System Metaphor
	Viewpoints

	Visuals
	Architecture Therapy
	That’s Wrong! Do It Again!

	Chapter 25. Software Is Collaboration
	Who Says Software Is for Computers Only?
	Version Control
	Single Source of Truth
	Trunk-Based Development
	Always Be Ready to Ship
	Style Versus Substance
	Transparency
	Pairing
	Resistance

	Part IV. Organizations
	Chapter 26. Reverse-Engineering Organizations
	Dissecting IT Slogans
	Unknown Beliefs
	Beliefs Are Proven Until Disproven
	Unlearning Old Habits
	Common IT Beliefs
	Speed and Quality Are Opposed (“Quick and Dirty”)
	Quality Can Be Added Later
	All Problems Can Be Solved with More People or Money
	Following a Proven Process Leads to Proven Good Results
	Late Changes Are Expensive or Impossible
	Agility Opposes Discipline
	The Unexpected Is Undesired

	Reprogramming the Organization
	Handed-Down Beliefs

	Chapter 27. Control Is an Illusion
	The Illusion
	Control Circuits
	A Two-Way Street
	Problems on the Way Up
	Smart Control
	Saupreiß, ned so Damischer
	Actual Control: Autonomy
	Controlling the Control Loop

	Chapter 28. They Don’t Build ’Em Quite Like That Anymore
	Why IT Architects Love Pyramids
	Organizational Pyramids
	No Pyramid Without Pharaoh
	No One Lives in a Foundation
	Building Pyramids from the Top
	Celebrating the Base Layer
	Living in Pyramids
	It Always Can Get Worse
	Building Modern Structures

	Chapter 29. Black Markets Are Not Efficient
	Black Markets to the Rescue
	Black Markets Are Rarely Efficient
	You Cannot Outsource a Black Market
	Beating the Black Market
	Feedback and Transparency

	Chapter 30. Scaling an Organization
	Component Design—Personal Productivity
	Avoid Sync Points—Meetings Don’t Scale
	Interrupts Interrupt—Phone Calls
	Piling on Instead of Backing off
	Asynchronous Communication—Email, Chat, and More
	Asking Doesn’t Scale—Build a Cache!
	Poorly Set Domain Boundaries—Excessive Alignment
	Self-Service Is Better Service
	Staying Human

	Chapter 31. Slow Chaos Is Not Order
	Fast Versus Agile
	Speed and Discipline
	Fast and Good
	Slow-Moving Chaos
	ITIL to the Rescue?
	Objectives Require Discipline
	The Way Out

	Chapter 32. Governance Through Inception
	Living in Perfect Harmony
	The Value of Standards
	Interface Standards
	Mapping Standards
	Governance by Decree
	Governance Through Infrastructure
	Runtime Governance

	Inception
	The Emperor’s New Clothes
	Governance Through Necessity

	Part V. Transformation
	Chapter 33. No Pain, No Change!
	Stages of Transformation
	Digital Transformation Stages
	Wishful Thinking Sells Snake Oil
	Tuning the Engine
	Help Along the Way
	The Pain of Not Changing
	Getting Over the Hump

	Chapter 34. Leading Change
	A Tractor Passing the Race Car
	Setting Course
	Venturing Off the Mainland
	Burning the Ships
	Offshore Platforms
	The Island of Sanity
	Skunkworks That Works
	Leaving Your Island Will Get Your Feet Wet
	The Country of the Blind

	Chapter 35. Economies of Speed
	30,000 Times Faster
	Old Economies of Scale
	Behold the Flow!
	Cost of Delay
	The Value and Cost of Predictability
	The Value and Cost of Avoiding Duplication
	How to Make the Switch?

	Chapter 36. The Infinite Loop
	Build-Measure-Learn
	Digital RPMs
	Old-World Hurdles
	Looping in Externals
	Pivoting the Layer Cake
	Maintaining Cohesion

	Chapter 37. You Can’t Fake IT
	Laying the Foundation
	Feedback Cycles
	Delivering on Your Promises
	Customer Centricity
	Cocreating IT Services
	Eat Your Own Dog Food
	Digital Mindset
	The Stack Fallacy

	Chapter 38. Money Can’t Buy Love
	Innovator’s Dilemma
	Beware of the HiPPO
	Overhead and Tolerated Inefficiency
	Hollowed-Out IT
	Excessive Dependencies
	Paying More May Get You Less
	Changing Culture from Within

	Chapter 39. Who Likes Standing in Line?
	Looking Between the Activities
	A Little Bit of Queuing Theory
	Finding Queues
	Cutting the Line
	Making Queues Visible
	Message Queues Aren’t All Bad

	Chapter 40. Thinking in Four Dimensions
	Living Along a Line
	Quality Versus Speed
	More Degrees of Freedom
	Changing the Rules of the Game
	Inverting the Curve
	What Quality?
	Losing a Dimension

	Part VI. Epilogue: Architecting IT Transformation
	Chapter 41. All I Have to Offer Is the Truth
	Nothing But the Truth
	Digital Paradise?
	Don’t Try This at Home
	Abandon Ship
	Looks Are Deceiving
	Distress Signals

	Index
	About the Author

