O'REILLY"

Building
Micro-Frontends

Scaling Teams and Projects,
Empowering Developers

Luca Mezzalira
Foreword by Neal Ford

O'REILLY"

Building Micro-Frontends

What's the answer to today’s increasingly complex web
applications? Micro-frontends. Inspired by the microservices
model, this approach lets you break interfaces into separate
features managed by different teams of developers. With this
practical guide, Luca Mezzalira shows software architects,
tech leads, and software developers how to build and deliver
artifacts atomically rather than use a big bang deployment.

You'll learn how micro-frontends enable your team to choose
any library or framework. This gives your organization
technical flexibility and allows you to hire and retain a broad
spectrum of talent. Micro-frontends also support distributed
or colocated teams more efficiently. Pick up this book and
learn how to get started with this technological breakthrough
right away.

» Explore available frontend development architectures

¢ Learn how microservice principles apply to frontend
development

¢ Understand the four pillars for creating a successful micro-
frontend architecture

» Examine the benefits and pitfalls of existing micro-frontend
architectures

e Learn principles and best practices for creating successful
automation strategies

e Discover patterns for integrating micro-frontend
architectures using microservices or a monolith API layer

“Building Micro-Frontends
is one of the rare
examples where all the
important aspects for
successfully adopting a
technical approach are
covered.”

—Alessandro (Cirpo) Cinelli
Head of Developer Experience

“If you are a technical
lead or decision maker
looking into introducing
and implementing
micro-frontends in your
organization, then Luca
Mezzalira has written the
book for you.”

—Jens Oliver Meiert
Engineering Manager and Author
(meiert.com)

Luca Mezzalira is principal solutions
architect at AWS, an international
speaker, and an author. Over the past
18 years, he's mastered software
architectures from frontend to the
cloud, providing the right solution for
the context of the job at hand.

WEB

US $4999 CAN $6599
ISBN: 978-1-492-08299-6

JWTRTIOFIVAN

7814921082996

Twitter: @oreillymedia
facebook.com/oreilly

Building Micro-Frontends

Scaling Teams and Projects,
Empowering Developers

Luca Mezzalira
Foreword by Neal Ford

Bejng - Boston « Farham - Sebastopol - Tokyo [@YRIIMNY

Building Micro-Frontends
by Luca Mezzalira

Copyright © 2022 Luca Mezzalira. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock Indexer: Ellen Troutman-Zaig
Development Editor: Angela Rufino Interior Designer: David Futato
Production Editor: Gregory Hyman Cover Designer: Karen Montgomery
Copyeditor: nSight Inc. lllustrator: O’Reilly Media, Inc.

Proofreader: Justin Billing
November 2021: First Edition

Revision History for the First Edition
2021-11-17: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492082996 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Building Micro-Frontends, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

978-1-492-08299-6
[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492082996

Table of Contents

0] £ 1) o iX
11 T3 Xi
1. The Frontend Landscape.covuiiiriiiiiiiiiiiiiiiiiieiiiereeeenneennns 1

Micro-Frontend Applications 1
Single-Page Applications 3
Isomorphic Applications 5
Static-Page Websites 7
Jamstack 7
Summary 8
2. Micro-Frontend Principles.cvueeeniiiiriiie ittt iiieiiieiienenes 9
Monolith to Microservices 11
Moving to Microservices 12
Introducing Micro-Frontends 14
Microservices Principles 16
Modeled Around Business Domains 16
Culture of Automation 17
Hide Implementation Details 17
Decentralize Governance 17
Deploy Independently 17
Isolate Failure 18
Highly Observable 18
Applying Principles to Micro-Frontends 18
Modeled Around Business Domains 18
Culture of Automation 19

Hide Implementation Details 19

Decentralize Governance

Deploy Independently

Isolate Failure

Highly Observable
Micro-Frontends Are Not a Silver Bullet
Summary

3. Micro-Frontend Architectures and Challenges.coovvviiiiiiiinnnenn,
Micro-Frontends Decisions Framework
Define Micro-Frontends
Domain-Driven Design with Micro-Frontends
How to Define a Bounded Context
Micro-Frontends Composition
Routing Micro-Frontends
Micro-Frontends Communication
Micro-Frontends in Practice
Zalando
HelloFresh
AllegroTech
Spotify
SAP
OpenTable
DAZN
Summary

4. Discovering Micro-Frontend Architectures...........ccovvviiiiiiiiiniiiniennnen.
Micro-Frontend Decisions Framework Applied
Vertical Split
Horizontal Split
Architecture Analysis
Architecture and Trade-offs
Vertical-Split Architectures
Application Shell
Challenges
Implementing a Design System
Developer Experience
Search Engine Optimization
Performance and Micro-Frontends
Available Frameworks
Use Cases
Architecture Characteristics
Horizontal-Split Architectures

19
19
20
20
20
21

23
23
24
25
28
29
31
33
36
36
36
36
37
37
38
38
38

39
39
40
41
43
44
45
45
48
55
57
58
59
62
63
63
65

iv | Tableof Contents

Client Side 67

Challenges 70
Search Engine Optimization 78
Developer Experience 78
Use Cases 80
Module Federation 81
Iframes 87
Web Components 94
Server Side 98
Edge Side 108
Summary 113
. Micro-Frontend Technical Implementation..............c.coiviiiiiiiinnnn, 115
The Project 115
Module Federation 101 118
Technical Implementation 120
Project Structure 121
Application Shell 122
Authentication Micro-Frontend 128
Catalog Micro-Frontend 130
Account Management Micro-Frontend 132
Project Evolution 136
Embedding a Legacy Application 136
Developing the Checkout Experience 138
Implementing Dynamic Remotes Containers 140
Webpack Lock-in 140
Summary 141
. Build and Deploy Micro-Frontends.cccooviiiiiiiiiiiiiiiiiiennnns. 143
Automation Principles 144
Keep a Feedback Loop Fast 145
Iterate Often 146
Empower Your Teams 147
Define Your Guardrails 147
Define Your Test Strategy 148
Developer Experience 148
Horizontal Versus Vertical Split 149
Frictionless Micro-Frontends Blueprints 150
Environments Strategies 151
Version Control 151
Monorepo 152
Polyrepo 155

Table of Contents | v

A Possible Future for a Version Control System
Continuous Integration Strategies

Testing Micro-Frontends

Fitness Functions

Micro-Frontend-Specific Operations
Deployment Strategies

Blue-Green Deployment Versus Canary Releases

Strangler Pattern

Observability
Summary

. Automation Pipeline for Micro-Frontends: A Case Study

Setting the Scene
Version Control
Pipeline Initialization
Code-Quality Review
Build
Post-Build Review
Deployment
Automation Strategy Summary
Summary

Backend Patterns for Micro-Frontends.ccovvvvnvnennnn..

API Integration and Micro-Frontends
Working with a Service Dictionary
Working with an API Gateway
Working with the BFF Pattern
Using GraphQL with Micro-Frontends
Best Practices

Summary

From Monolith to Micro-Frontends: A Case Study...................

The Context
Technology Stack
Platform and Main User Flows
Technical Goals
Migration Strategy
Micro-Frontend Decisions Framework Applied
Splitting the SPA in Multiple Subdomains
Technology Choice
Implementation Details
Application Shell Responsibilities

158
159
160
165
166
167
167
170
172
173

175
175
177
178
179
180
181
182
183
184

185
185
187
194
200
205
210
213

215
216
216
218
220
221
222
225
229
232
233

vi

| Table of Contents

10.

Application Initialization
Communication Bridge
Backend Integration
Integrating Authentication in Micro-Frontends
Dependencies Management
Integrating a Design System
Sharing Components
Implementing Canary Releases
Localization
Summary

Introducing Micro-Frontends in Your Organization.c.oovvunnenn,
Why Should We Use Micro-Frontends?
The Link Between Organizations and Software Architecture
How Do Committees Invent?
Features Versus Components Teams
Implementing Governance for Easing the Communication Flows
Requests for Comments
Architectural Decision Records
Techniques for Enhancing the Communication Flow
Working Backward
Community of Practice and Town Halls
Managing External Dependencies
A Decentralized Organization
Decentralization Implications with Micro-Frontends
Summary

Appendix. What Does the Community Think About Micro-Frontends?...............

233
234
236
236
239
240
240
242
244
245

247
247
248
249
252
256
256
257
259
259
260
261
263
265
268

Table of Contents

vii

Foreword

Named architecture styles (such as microservices) are like art periods in history—no
one plans for them, no single person is responsible for the ideas, yet they suffuse
through a community. For example, no group of artists gathered in France in the late
19th century and decided to create impressionism. Rather, forces in the art world
(reacting to the introduction of primitive photography) drove artists toward repre-
sentation rather than capturing reality.

The same is true for styles of architecture—regardless of what some developers may
suspect, there is no ivory tower to which architects retreat to concoct the New Big
Thing. Instead, clever architects notice new capabilities appearing within the ecosys-
tem, and they identify ways to combine these emerging capabilities to solve old prob-
lems. For microservices, the advent of DevOps, programmatic control of machine
configuration (which led to containerization), and the need for faster turnaround
spawned this architecture style at several influential organizations.

In the past, the name of the architecture style would lag for several years as people
figured out that a trend was underway and identified the distinguishing characteris-
tics that would lead to a name. However, that story slightly differs for microservices.
Architects have become clever about noticing the development of new trends and
keep a keen eye out for them. In March 2014, Martin Fowler and James Lewis pub-
lished an iconic essay on Fowler’s website describing a new architecture style going by
the name microservices. They didn’t coin the term, but they certainly contributed to
the popularity of the new style. And I suspect the authors did the industry a favor as
well—their delineation of the characteristics of microservices quite early in their life
cycle helped teams hone in on what is and isn’t a microservice more quickly, avoiding
months or years of churn trying to figure out their real uses.

Because they were describing a new phenomenon, Fowler and Lewis necessarily
predicted a few things, including the impact microservices would have on user inter-
face design. They observed that one of the defining features of microservices is the

https://oreil.ly/mZEYB

decoupling of services, and they predicted that architects would partition user inter-
faces to match the level of decoupling.

Alas, the real world interfered with their prediction...until now. It turns out that user
interfaces are necessarily monolithic in nature: users expect to go to a single place to
interact with an application, and they expect certain unified behaviors—all the parts
of the user interface work in concert. While it is possible to create truly decoupled
user interfaces, this has proved challenging for developers, who have awaited proper
framework and tool support.

Fortunately, that support has finally arrived. You hold in your hand the definitive
guide to this important aspect of microservice development. Luca Mezzalira has done
an excellent job describing the problem in clear terms, following up with cutting-edge
support to solve common roadblocks.

This well-organized book begins by covering the frontend issues that developers cur-
rently face, then delves into the various aspects of micro-frontends. Luca provides not
only technical details but also critical ecosystem perspectives, including how to
untangle a monolith into a more decoupled user interface, and how common engi-
neering practices such as continuous integration can fit into teams’ use of this new
technology.

Every developer who builds microservices, regardless of whether they build user
interfaces, will benefit from this enjoyable guide to a critical subject.

— Neal Ford, Director/Software Architect/
Meme Wrangler at Thoughtworks, Inc.

x | Foreword

Preface

At the beginning of December 2016, I took my first trip to Tokyo. It lasted just a week
but, as I would discover, I would need to travel to the Japanese capital many more
times in the following weeks. I clearly remember walking to the airplane at London
Heathrow and mentally preparing my to-do list for the impending 12-hour flight. By
now I'd been traveling for a couple of weeks on the opposite side of the world: attend-
ing conferences in the San Francisco Bay Area and then another event in Las Vegas.

The project I was working on at that time was an over-the-top platform similar to
Netflix, but dedicated to sports, with daily live and on-demand content available in
multiple countries and on more than 30 different devices (web, mobile, consoles, set-
top boxes, and smart T'Vs). It was near the end of the year, and as a software architect,
I had to make a proposal for a new architecture that would allow the company to
scale to hundreds of developers distributed in different locations, without reducing
the current throughput and enhancing it as much as I could.

When I settled in my seat, I became relatively calm. I was still tired from the Vegas
trip and a bit annoyed about the 12 hours I would have to spend on the airplane, but I
was excited to see Japan for the first time. A few minutes later, I had my first glass of
champagne. For the first time in my life, I was in business class, with a very comforta-
ble seat and a lot of space for working.

At the end of the first hour, it was time to get my laptop out of my backpack and start
working on “the big plan”; I still had more than 10 hours of flight time during which I
could start on this huge project that would serve millions of customers around the
world. I didn’t know at that time that the following hours would deeply change the
way I would architect cross-platform applications for frontend.

In this book, I want to share my journey into the micro-frontend world, all the les-
sons and tips for getting a solid micro-frontend architecture up and running, and,
finally, the benefits and pitfalls of this approach. These lessons will allow you to eval-
uate whether this architecture would fit your current or next project.

Xi

Now it’s time for your journey to begin.

Why | Wrote This Book

I started thinking about micro-frontends in 2015, and during the following years I
had the opportunity to implement them in a large-scale organization with distributed
teams composed of hundreds of developers and to explain their benefits and their pit-
falls. During this time, I also had the opportunity to share this experience in confer-
ences, webinars, and meetups, which gave me the possibility to engage with the
community, listening to their stories, answering their questions, and engaging with
other companies that embraced this paradigm in different ways.

More recently, I suggested several of the practices presented in this book to enterprise
organizations all over the world, from Australia to North America. I was exposed to
multiple challenges during the design and implementation phase. All the learnings
are gathered in these pages as well.

This book represents my research, experiences, studies, and insights from the
trenches collected over several years of work. I want to share real examples and topics
that I believe are key for succeeding with micro-frontends. Finally, don’t expect to
find hundreds of lines of code: this book focuses on the architecture, mental models,
and methodologies learned while implementing micro-frontends. In my humble
opinion, it is by far more valuable to focus on multiple methods, understanding their
benefits and pitfalls, rather than only a single way to implement an architecture. This
is a book for everyone who is interested in learning how to use this architecture style
end to end, despite the inevitable evolution we are going to see in the next few years.
What you are going to learn in these pages will provide the North Star for creating
successful micro-frontend projects.

Who This Book Is For

This book is for developers, architects, and CTOs who are looking to scale their
organizations and frontend applications. It’s a collection of mental models and experi-
ences useful for approaching any micro-frontend architecture. In these pages, you
can find the principles and the solutions applied for every approach implemented
thus far. Following these practices, you will be able to achieve a micro-frontend
project with the right mindset and overcome common challenges your teams are
going to face during the journey.

In this book, you'll find technical architectures and implementation as well as end-to-
end coverage of implementing micro-frontends, from the design phase to how to
organize your teams for migrating existing or greenfield projects to micro-frontends.

xii | Preface

How This Book Is Organized

The chapters in this book cover specific topics so a reader can jump from one to
another without too many references across chapters. The best way to read this book
is sequentially. However, it’s also useful as a reference during working hours, so if you
need to jump to a specific topic, you can pick the chapter and read just the part you
are interested in.

The book covers the following:

Chapter 1, “The Frontend Landscape”
This chapter covers the thought process for arriving at micro-frontends and
provides an overview of the different architectures available for frontend
development.

Chapter 2, “Micro-Frontend Principles”
In this chapter, we analyze the principles behind microservices and how they are
applicable to frontend development. In particular, we dive deep into the micro-
frontend principles used as a North Star for our implementations.

Chapter 3, “Micro-Frontend Architectures and Challenges”
This chapter is a cornerstone for understanding micro-frontends. I introduce the
four key pillars for creating a successful micro-frontend architecture. The deci-
sions framework covers how to identify, compose, orchestrate, and communicate
the possibilities of micro-frontends. Once these decisions are made, we can easily
design the rest of the system from any perspective, such as automation strategy,
design system, and so on.

Chapter 4, “Discovering Micro-Frontend Architectures”
There are many implementations of micro-frontends, and in this chapter we are
going to explore all of them. I categorize and analyze the benefits and pitfalls of
micro-frontends but, more importantly, I try to find the right use case for every
architecture presented.

Chapter 5, “Micro-Frontend Technical Implementation”
After the architecture analysis in Chapter 4, we use what we have learned so far
to implement a micro-frontend project, using one of the many micro-frontend
architectures available following the decisions framework.

Chapter 6, “Build and Deploy Micro-Frontends”
This chapter covers the principles and the best practices for creating successful
automation strategies for micro-frontends. Specifically, we will see different
repository strategies, the key steps to include in a continuous integration pipe-
line, and how to deliver micro-frontends in production.

Preface | xiii

Chapter 7, “Automation Pipeline for Micro-Frontends: A Case Study”
After the theory shared in Chapter 6, this chapter discusses an example of auto-
mation strategy for micro-frontends. These are real insights from the trenches
that can be immediately applicable in existing automation pipelines.

Chapter 8, “Backend Patterns for Micro-Frontends”
This chapter covers different patterns for integrating a micro-frontend architec-
ture with a monolith API layer or with microservices. Backend for frontend
(BFF), API gateways, and services dictionary are the patterns covered with exam-
ples and best practices.

Chapter 9, “From Monolith to Micro-Frontends: A Case Study”
In this chapter, we analyze a potential use case, looking at the journey to migrate
a legacy frontend application to micro-frontends. We explore how ACME Inc.
teams start their migration to a frontend-distributed architecture and which
decisions they made for achieving their goals.

Chapter 10, “Introducing Micro-Frontends in Your Organization”
This chapter concludes the book by focusing on organization. Architecture is not
only technical implementation and guidance but also, and more importantly, a
mechanism for helping your teams to be successful.

Appendix, “What Does the Community Think About Micro-Frontends?”
There are plenty of stories and experiences that should be told. The community
has a lot to share, and in these pages, I gathered great experiences and good sug-
gestions from people who worked in the trenches developing micro-frontend
projects at scale.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

xiv | Preface

This element signifies a tip or suggestion.

This element signifies a general note.

0'Reilly Online Learning

o » For more than 40 years, O’Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O'Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/building-micro-frontends.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Preface | xv

http://oreilly.com
http://oreilly.com
https://oreil.ly/building-micro-frontends
mailto:bookquestions@oreilly.com
http://oreilly.com

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments

First of all, I'd like to thank my family, my girlfriend Maela, and my daughters for
everything they do and the strength I receive from them to move forward every sin-
gle day. Thanks to all the people who inspire me on a daily basis in any shape or form
of communication.

A huge thank-you to DAZN, who allowed me to apply a micro-frontends architecture
and to explore the benefits of it end to end, and who trusted my ideas and judgment.

Thanks to O’Reilly for the opportunity to write about micro-frontends. In particular,
thanks to Jennifer Pollock and Angela Rufino for all the support I had during these
months of writing and the constant feedback for improving the book. And thanks
also to Erin Brenner, my fantastic editor who spent a considerable amount of time
unwinding my thoughts and translating them in what you are about to read.

To my “virtual mentor;” Neal Ford, the person whom I called “the architect” for his
incredible knowledge, who gently agreed to write the foreword to this book.

Finally, thanks to all the people who reviewed this manuscript and provided funda-
mental suggestions for improving the book. Thanks also to all the attendees of my
talks and workshops who shared their experience and challenges that are probably
now present in these pages.

xvi | Preface

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

CHAPTER1
The Frontend Landscape

I remember a time when web applications were called rich internet applications
(RIAs) to differentiate them from traditional, more static corporate websites. Today,
we can find many RIAs, or web applications, across the World Wide Web. There is a
proliferation of online services that allow us to print business cards on demand,
watch our favorite movies or live events, order a pepperoni pizza, manage our bank
accounts from our comfortable sofas, and do many, many other things that make our
lives easier.

As CTOs, architects, tech leads, or developers, when we start a greenfield project, we
can create a single-page application or an isomorphic one, whose code can run in
both the server and the client, or even work with a bunch of static pages that run in
our cloud or on-premises infrastructure. While we now have such a broad range of
options, not all are fit for every job. To make the right decision for our projects, we
need to understand the challenges we will face along the way.

Before we jump into the topic of this book, let’s analyze the current architectures
available to us when we work on a frontend application.

Micro-Frontend Applications

Micro-frontends are an emerging architecture inspired by microservices architecture.
The main idea behind it is to break down a monolithic codebase into smaller parts,
allowing an organization to spread out the work among autonomous teams, whether
collocated or distributed, without the need to slow down their delivery throughput.

However, designing an API and encapsulating the logic into a microservice is actually
the easiest part. When we realize there is significantly more to take care of, we will
understand the complexity of the microservices architecture that adds not only high

flexibility and good encapsulation between domains but also an overall complexity
around the observability, automation, and discoverability of a system.

For instance, after creating the business logic of a service, we need to understand how
a client should access our API. If it’s an internal microservice that should communi-
cate with other microservices, we need to identify a security model. Then we need to
deal with the traffic that consumes our microservice, implementing techniques for
spike traffic like autoscaling or caching. We also need to understand how our micro-
service may fail. It may fail gracefully without affecting the consumers and just hiding
the functionality on the user interface. Otherwise, we need to have resilience across
multiple availability zones or regions.

Working with microservices simplifies the business logic, but we need to handle an
intrinsic complexity at different levels like networking, persistence layer, communica-
tion protocols, security, and many others. This is also true for micro-frontends. If
the business logic and the code complexity are reduced drastically, the overhead on
automation, governance, observability, and communication have to be taken into
consideration.

As with other architectures, micro-frontends might not be suitable for all projects;
existing architectures such as server-side rendering or Jamstack are still valid options.
Nevertheless, micro-frontends can provide a new way to structure our frontend
applications at scale, solving some key scalability challenges companies have encoun-
tered in the past from both a technical and organizational perspective.

Too often I have seen great architectures on paper that didn’t translate well into the
real world because the creator didn’t take into account the environment and its con-
text (company’s structure, culture, developers’ skills, timeline, etc.) where the project
would have been built.

Melvin Conway’s law put it best: “Any organization that designs a system (defined
more broadly here than just information systems) will inevitably produce a design
whose structure is a copy of the organization’s communication structure”* Conway’s
law could be mitigated with the inverse Conway maneuver, which recommends that
teams and organizations be structured according to our desired architecture and not
vice versa. I truly believe that mastering different architectures and investing time in
understanding how many systems work allow us to mitigate the impact of Conway’s
law, because it gives us enough tools in our belt to solve both technical and organiza-
tional challenges.

Micro-frontends, combined with microservices and a strong engineering culture
where everyone is responsible for their own domain, may help achieve organizational

1 Melvin E. Conway, “How Do Committees Invent?” Thompson Publications, Inc., 1968. Mel Conway’s Home
Page, accessed October 4, 2021, https://www.melconway.com/Home/Committees_Paper.html.

2 | Chapter 1: The Frontend Landscape

https://www.melconway.com/Home/Committees_Paper.html

agility and better time to market. This architecture can be used in combination with
other backend architecture, such as a monolith backend or service-oriented architec-
ture (SOA). However, micro-frontends are suited well when we can have a microser-
vices architecture, allowing us to define slices of an application that are evolving
together.

Single-Page Applications

Single-page applications (SPAs) consist of a single or a few JavaScript files that encap-
sulate the entire frontend application, usually downloaded up front. When the web
servers or the content delivery network (CDN) serves the HTML index page, the SPA
loads the JavaScript, CSS, and any additional files needed for displaying any part of
our application. Using SPAs has many benefits. For instance, the client downloads the
application code just once, at the beginning of its life cycle, and the entire application
logic is then available up front for the entire user’s session.

SPAs usually communicate with APIs by exchanging data with the persistent layer of
the backend, also known as the server side. They also avoid multiple round trips to
the server for loading additional application logic and render all the views instantane-
ously during the application life cycle.

Both features enhance the user experience and simulate what we usually have when
we interact with a native application for mobile devices or desktop, where we can
jump from one part of our application to another without waiting too long.

In addition, an SPA fully manages the routing mechanism on the client side. What
this means is, every time the application changes a view, it rewrites the URL in a
meaningful way to allow users to share the page link or bookmark the URL for start-
ing the navigation from a specific page. SPAs also allow us to decide how we are going
to split the application logic between server and client. We can have a “fat client” and
a “thin server;” where the client side mainly stores the logic and the server side is used
as a persistence layer, or we can have a “thin client” and a “fat server;” where the logic
is mainly delegated to the backend and the client doesn’t perform any smart logic but
just reacts to the state provided by the APIs.

Opver the past several decades, different schools of thought have prevailed on whether
fat or thin clients are a better solution. Despite these arguments, however, both
approaches have their pros and cons. The best choice always depends on the type of
application we are creating. For example, I found it very valuable to have a thin client
and a fat server when I was targeting cross-platform applications. It allowed me to
design a feature once and have all the clients deployed on multiple targets react to the
application state stored on the server.

When I had to create desktop applications in which storing some data offline was
an essential feature, I often used a fat client and a thin server instead. Rather than

Single-Page Applications | 3

managing the state logic in two places, I managed it in one place and used the server
for data synchronization.

However, SPAs have some disadvantages for certain types of applications. The first
load time may be longer than those of other architectures because we are download-
ing the entire application instead of only what the user needs to see. If the application
isn’t well designed, the download time could become a killer for our applications,
especially when they are loaded with an unstable or unreliable connection on mobile
devices such as smartphones and tablets.

Nowadays, we can cache the content directly on the client in several ways to mitigate
the problem. On top of most consolidated techniques like code splitting or lazy-
loading of JavaScript bundles, a technique worth a mention is using progressive web
apps. Progressive web apps provide a set of new capabilities based on service workers.
A service worker is a script that your browser runs in the background, separate
from a web page, for providing functionality such as offline experience or push
notifications.

Thanks to service workers, we can now create our caching strategy for a web applica-
tion, with native APIs available inside the browsers. This pattern is called offline first,
or cache first, and it’s the most popular strategy for serving content to the user. If a
resource is cached and available offline, return it first before trying to download it
from the server. If it isn’t in the cache already, download it and cache it for future
usage. It’s as simple as that but very powerful for enhancing the user experience in
our web application, especially on mobile devices.

Another disadvantage relates to search engine optimization (SEO). When a crawler—
a program that systematically browses the World Wide Web in order to create an
index of data—is trying to understand how to navigate the application or website, it
won't have an easy job indexing all the contents served by an SPA unless we prepare
alternative ways for fetching it.

Usually, when we want to provide better indexing for an SPA, we tend to create a cus-
tom experience strictly for the crawler. For instance, Netflix lowers its geofencing
mechanism when the user-agent requesting its web application is identified as a
crawler rather than serving content similar to what a user would watch based on the
country specified in the URL. This is a very handy mechanism, considering that the
crawler’s engine is often based in a single location from which it indexes a website all
over the world.

Downloading all the application logic in one go can be a disadvantage as well because
it can lead to potential memory leaks when the user is jumping from one view to
another if the code is not well implemented and does not correctly dispose of the
unused objects. This could be a serious problem in large applications, leading to sev-
eral days or weeks of code refactoring and improvements in order to make the SPA

4 | Chapter1:The Frontend Landscape

code functional. It could be even worse if the device that loads the SPA doesn’t have
great hardware, like a smart TV or a set-top box. Too often I have seen applications
run smoothly on a MacBook Pro quad-core and then fail miserably when running on
a low-end device.

An SPAS last disadvantage is on the organizational side. When an SPA is a large appli-
cation managed by distributed or colocated teams working on the same codebase, dif-
ferent areas of the same application could end up with a mix of approaches and
decisions that could confuse team members. The communication that overhead
teams use to coordinate between themselves is often a hidden cost of the application.

We often completely forget about calculating the inefficiency of our teams, not
because they are not capable of developing an application but because the company
structure or architecture doesn’t enable them to express it in the best way possible,
slowing down the operations, creating external dependencies, and overall generating
friction during the development of a new feature. Also, the developers may feel a lack
of ownership since many key decisions may not come from them and since the code-
base of a large SPA may be started months, if not years, before they join the company.

All of these situations are not presented in the form of an invoice at the end of the
month, but they might impact the teams’ throughput since a complex codebase may
slow down drastically the team’s potential for delivery.

Isomorphic Applications

Isomorphic or universal applications are web applications where the code between
server and client is shared and can run in both contexts. It is particularly beneficial
for the time to interaction, A/B testing, and SEO. Thanks to the possibility of generat-
ing the page on the server side, we are in charge of optimizing our code for the key
characteristics of our project.

These web applications share code between server and client, allowing the server, for
instance, to render the page requested by the browser, retrieve the data to display
from the database or from a microservice, aggregate it, and then prerender it with the
template system used for generating the view in order to serve to the client a page that
doesn’t need additional round trips for requesting data to display.

Because the page requested is prerendered on the server side and is partially or fully
interpreted on the backend, the time to interaction is enhanced. This avoids a lot of
round trips on the frontend, so we won’t need to load additional resources (vendors,
application code, etc.), and the browser can interpret a static page with almost every-
thing inside.

An SEO strategy can also be improved with isomorphic applications because the page
is rendered server side without the need for additional server requests. When served,

Isomorphic Applications | 5

it provides the crawler an HTML page with all the information inside ready to be
indexed immediately without additional round trips to the server.

Isomorphic applications share the code between contexts, but how much code is
really shared? The answer depends on the context. For instance, we can use this tech-
nique in a hybrid approach, where we render part of the page on the server side to
improve the time to interact and then lazy-load additional JavaScript files for the ben-
efits of both the isomorphic application and the SPA. The files loaded within the
HTML page served will add sophisticated behaviors to a static web page, transform-
ing this page into an SPA.

With this approach, we can decide how much code is shared on the backend based on
the project’s requirements. For example, we can render just the views, inlining the
CSS and the bare minimum JavaScript code to have an HTML skeleton that the
browser can load very quickly, or we can completely delegate the rendering and data
integration onto the server, perhaps because we have more static pages than heavy
interactivity on the client side. We can also have a mixed approach, where we divide
the application into multiple SPAs, with the first view rendered on the server side and
then some additional JavaScript downloaded for managing the application behaviors,
models, and routing inside the SPA.

Routing is another interesting part of an isomorphic application because we can
decide to manage it on the server side, only serving a static page any time the user
interacts with a link on the client.

Or we can have a mixed approach. We can use the benefits of server-side rendering
for the first view and then load an SPA, where the server will do a global routing that
serves different SPAs, each with its own routing system for navigating between views.
With this approach, we aren’t limited to template libraries; we can use virtual Docu-
ment Object Model (DOM) implementations like React or Preact. Many other libra-
ries and frameworks have started to offer server-side rendering out of the box, like
Vue with Nuxt.js, Meteor, and Angular.

The last thing to mention about isomorphic applications is that we can integrate A/B
testing platforms nicely without much effort. A/B testing is the act of running a
simultaneous experiment between two or more variants of a page to see which one
performs the best. In the past year or so, many A/B testing platforms had to catch up
with the frontend technologies in not only supporting UT libraries like jQuery but
also embracing virtual DOM libraries like React or Vue. Additionally, they had to
make their platforms ready for hybrid mobile applications as well as native ones.

The strategy these companies adopted is to manage the experiments on the server
side, leveraging the isomorphic characteristic of running on the server and client side.
This is obviously a great advantage if you are working with an isomorphic applica-
tion, because you can prerender on the server the specific experiment you want to

6 | Chapter 1: The Frontend Landscape

serve to a specific user. Those solutions can also communicate with the clients via
APIs with native mobile applications and SPAs for choosing the right experiment.

But isomorphic applications could suffer from scalability problems if a project is
really successful and visited by millions of users. Because we are generating the
HTML page prerendered on the server, we will need to create the right caching strat-
egy to minimize the impact on the servers. In this case, if the responses are highly
cacheable, CDNs like Akamai, Fastly, or Amazon CloudFront could definitely
improve the scalability of our isomorphic applications by avoiding all the requests
hitting origin servers. Organization-wise, an isomorphic application suffers similar
problems as an SPA whose codebase is unique and maintained by one or multiple
teams.

There are ways to mitigate the communication overhead if a team is working on a
specific area of the application without any overlap with other teams. In this case, we
can use architecture like backends for frontends (BFF) for decoupling the API imple-
mentation and allow each team to maintain their own layer of APIs specific to a
target.

Static-Page Websites

Another option for your project is the static-page website, where every time the user
clicks on a link, they are loading a new static page. This is fairly old school, but it’s
still in use—with some twists. A static-page website is useful for quick websites that
are not meant to be online for a long period, such as ones that advertise a specific
product or service we want to highlight without using the corporate website or that
are meant to be simple and easier to build and maintain by the end user.

In the last few years, this type of website has mutated into a single page that expands
vertically instead of loading different pages. Some of these sites also lazy-load the
content, waiting until the user scrolls to a specific position to load the content. The
same technique is used with hyperlinks, where all the links are anchored inside the
same page and the user is browsing quickly between bits of information available on
the website. These kinds of projects are usually created by small teams or individual
contributors. The investment on the technical side is fairly low, and it’s a good play-
ground for developers to experiment with new technologies or new practices or to
consolidate existing ones.

Jamstack

In recent years, a new frontend architecture called Jamstack (JavaScript, APIs, and
Markup) emerged with great results.Jamstack is intended to be a modern architecture
to help create fast and secure sites and dynamic apps with JavaScript/APIs and pre-
rendered markup, served without web servers. In fact, the final output is a static

Static-Page Websites | 7

https://jamstack.org

artifact composed of HTML, CSS, and JavaScript, basically the holy trinity of front-
end development. The artifact can be served directly by a CDN since the application
doesn’t require any server-side technology to work. One of the simplest ways for serv-
ing a Jamstack application is using GitHub pages for hosting the final result. In this
category, we can find popular solutions like Gatsby.js, Next.js, or Nuxt.js.

The key advantages of these architectures are better performance and cheaper infra-
structure and maintenance since they can be served directly by a CDN; great scalabil-
ity because they serve static files; higher security due to the decrease of attack surface;
and easy integration with headless CMS.

Jamstack is a great companion for many websites we have to create, especially consid-
ering the frictionless developer experience. In fact, frontend developers can focus
only on the frontend development and debugging, and this usually means a more
focused approach on the final result.

Summary

Over the years, the frontend ecosystem has evolved to include different architectures
for solving different problems. A piece has been missing, though: a solution that
would allow for the scaling of projects with tens or hundreds of developers working
on the same project. Micro-frontends are that missing piece.

Micro-frontends will never be the only architecture available for frontend projects.
Yet they provide us with multiple options for creating frontend projects at scale. Our
journey in learning micro-frontends starts with their principles, analyzing how these
principles should be leveraged inside an architecture and how much they resemble
microservices.

8 | Chapter 1: The Frontend Landscape

https://pages.github.com
https://www.gatsbyjs.org
https://nextjs.org
https://nuxtjs.org

CHAPTER 2
Micro-Frontend Principles

At the beginning of my career, I remember working on many software projects where
small or medium-size teams were developing a monolithic application with all the
functionalities of a platform available in a single artifact, and the product produced
during the development of a software and deployed to a web server.

When we have a monolith, we write a lot of code that should harmoniously work
together. In my experience, we tend to preoptimize or even over-engineer our appli-
cation logic. Abstracting reusable parts of our code can create a more complex code-
base, and sometimes the effort of maintaining a complex logic doesn’t pay off in the
long run. Unfortunately, something that looked straightforward at the time could
look very unwieldy a few months later.

In the past decade, public cloud providers like Amazon Web Services (AWS) or Goo-
gle Cloud started to gain traction. Nowadays they are popular for delegating what is
increasingly becoming a commodity, freeing up organizations to focus on what really
matters in a business: the services offered to the final users.

Although cloud systems allowed us to scale our projects in an easier way than before,
monoliths, unfortunately, require us to scale not just a single part of our system but
the entire system, causing many headaches if our system is not modularized or writ-
ten with high standards.

Furthermore, working on a monolith codebase with distributed teams and colocated
ones could be challenging, particularly after reaching medium or large team sizes
because of the communication overhead and centralized decisions where a few people
decide for everyone.

In the long run, organizations with large monoliths typically slow down all the opera-
tions necessary for advancing any new feature, losing the great momentum they had
at the beginning of a project where everything was easier and smaller, with few

complications and risks. Also, with monolith applications, we have to deploy the
entire codebase every single time, which comes with a higher chance of breaking the
APIs in production, introducing new bugs, and making more mistakes, especially
when the codebase is not rock solid or extensively tested. Solving these and many
other challenges its staff faces, a company might move from complex monolith code-
bases to multiple smaller codebases and scoped domains called microservices.

Nowadays, microservices architecture is a well-known, established pattern used by
many organizations across the world. Microservices split a unique codebase into
smaller parts, each of them with a subset of functionalities compared to a monolithic
architecture, where every part is independent from each other, allowing teams full
ownership and independent evolution of the codebase. This business logic is
embraced by developers because the problem solved by a microservice is simpler than
looking at thousands of lines of code. There is a concrete reduction of team cognitive
load compared to handling a monolithic codebase.

Another significant advantage is that we can scale part of the application and use the
right approach for a microservice instead of a one-size-fits-all approach similar to a
monolith. However, there are also some pitfalls to working with microservices. The
investment on automation, observability, and monitoring has to be completed to have
a distributed system under control. Another pitfall is the wrong definition of a micro-
service’s boundary, for instance, having a microservice that is too small for complet-
ing an action inside a system relying on other microservices, thereby causing a strong
coupling between services and forcing them to be deployed together every time.
When this phenomenon is extended across multiple services, we risk ending with a
big ball of mud or a system that is hard to extend due to its complexity.

Microservices bring many benefits to the table but can bring many drawbacks as well.
In particular, when we are embracing them in a project, the complexity of having a
microservices architecture could become more painful than beneficial. Considering
the amount of architecture available in software development, we should pick micro-
services only when needed and not choose them recklessly just because it is the latest
and greatest approach.

Micro-frontends are an emerging approach to defining software deliveries along
business and responsibility boundaries, in contrast to the monolithic approaches we
have taken with web development in the past. Keep in mind, however, that neither
microservices nor micro-frontends are a universal answer to all software decomposi-
tion. To understand where they fit in and even what they are, let’s look at some of the
forces that are pushing us in this direction.

10 | Chapter2: Micro-Frontend Principles

Monolith to Microservices

When we start a new project or even a new business offering a service online, the first
iteration should be used for understanding if our business could succeed or not. Usu-
ally, we start by identifying a tech stack—a list of tech services used to build and run a
single app—that is familiar to our team. By minimizing the bells and whistles around
the system and concentrating on the bare minimum, were able to quickly gather
information about our business idea directly from our users. This is also called an
MVP or minimum viable product.

Often, we design our API layer as a unique codebase (monolith), so we need to set up
one continuous integration or continuous delivery pipeline for the project. Integrat-
ing observability in a monolith application is quite easy; we just need to run an agent
per virtual machine or container for retrieving the health status of our application
servers. The deployment process is trivial, considering we need to handle one auto-
mation strategy for the entire API’s layer and one deployment and release strategy,
and when the traffic starts to increase, we can scale our machine horizontally, having
as many application servers as needed to fulfill the users’ requests. That’s also why
monolithic architectures are often a good choice for new projects since we can focus
more on the business logic of an application instead of investing too much effort on
other aspects, such as automation.

Where are we going to store our data? We have to decide which database better suits
our project needs—a graph, a NoSQL, or a SQL database? Another decision that must
be made is whether we want to host our database on a cloud service or on premises.
We should select the database that will fit our business case better. For instance, if we
need to create a concrete view of data to populate a user interface, probably having a
NoSQL database would make more sense than any other database. At the same time,
we can say that using a graph database for mapping relations between users, like in a
social network application, would be a better fit for this kind of database.

Finally, we need to choose a technology for representing our data, such as within a
browser or a mobile application. We can pick the best-known JavaScript framework
available or our favorite programming language; we can decide to use server-side ren-
dering or an SPA architecture; then we define our code conventions, linting, and CSS
rules.

At the end, we should end up with what you can see in Figure 2-1.

Monolith to Microservices | 11

Persistent layer

(=)
2
Y
o
o
wv
a

APl layer

Backend Backend

monolith Backend monolith
monolith

Frontend layer

Single-page application

___________________ T

Figure 2-1. Monolith application with single-page application

Hopefully, the business ideas and goals behind our project will be validated and more
users will subscribe to our online service or buy the products we sell.

Moving to Microservices

Now imagine that, thanks to the success of our system, our company decides to scale
up the tech team, hiring more engineers, QAs, scrum masters, and so on. While mon-
itoring our logs and dashboards, we realize not all our APIs are scaling organically.
Some of them are highly cacheable, so the CDNs are serving the vast majority of the
clients. Our origin servers are under pressure only when our APIs are not cacheable.
Luckily enough, they’re not all our APIs, just a small part of them.

Splitting our monolith starts to make more sense at this point, considering the inter-
nal growth and our better understanding of how the system works.

Embracing microservices also means reviewing our database strategy and, therefore,
having multiple databases that are not shared across microservices; if needed, our
data is partially replicated, so each microservice reduces the latency for returning the

12 | Chapter2: Micro-Frontend Principles

response. Suddenly, we are moving toward a consistent ecosystem with many moving
parts that are providing more agility and less risk than before.

Each team is responsible for its set of microservices. Team members can make deci-
sions on the best database to choose, the best way to structure the schemas, how to
cache some information for making the response even faster, and which program-
ming language to pick for the job. Basically, we are moving to a world where each
team is entitled to make decisions and be responsible for the services they are run-
ning in production, where a generic solution for the entire system is not needed,
except for the key decisions, like logging and monitoring, as we can see in Figure 2-2.

Third-party _
system

< N\

Database

Database | Database

API layer with
microservices

Frontend layer

Single-page application

______________________________ e

Figure 2-2. Microservices with single-page application

However, we are still missing something here. We are able to scale our API’s layer and
our persistent layers with well-defined patterns and best practices, but what happens
when our business is growing and we need to scale our frontend teams, too?

Monolith to Microservices | 13

Introducing Micro-Frontends

Historically, on the frontend we didn't have many options for scaling our applica-
tions, for several reasons. Until a few years ago, there wasn't a strong need to do so
because having a fat server, where all the business logic runs, and a thin client, for
displaying the result of the computation made available by the servers, was the stan-
dard approach.

This has changed a lot in the past few years. Our users are looking for a better experi-
ence when they navigate our web platforms, including more interactivity and better
interactions. Companies have arisen that provide services with a subscription model,
and many people are embracing those services. Now it’s normal to watch videos on
demand instead of on a linear channel, to listen to our favorite music inside an appli-
cation instead of buying CDs, and to order food from a mobile app instead of calling
a restaurant.

This shift of behaviors requires us to improve our users’ experience and provide a
frictionless path to accomplish what a user wants without forgetting quality content
or services. In the past, we would have approached those problems by dividing parts
of our application in a shared components library, abstracting some business logic in
other libraries so they could be reused across different parts of the application. In
general, we would have tried to reuse as much code as possible.

I'm not advocating against solutions that are still valid and fit perfectly with many
projects, but we encounter quite a few challenges when embracing them. For
instance, when we have a medium or large team of developers, all the rules applied to
the codebase are often decided once, and we stick with them for months or even years
because changing a single decision would require a lot of effort across the entire
codebase and be a large investment for the organization. Also, many decisions made
during the development could result in trade-offs due to lack of time, ideal consis-
tency, or simply laziness. We must consider that a business, like technology, evolves at
a certain pace and it’s unavoidable.

Code abstraction is not a silver bullet either; prematurely abstracting code for reuse
often causes more problems than benefits. I have frequently seen abstractions make
code thousands of times more complicated than necessary, only to be reused just
twice inside the same project. Many developers are prone to over-engineering some
solutions, thinking they will reuse them tens if not hundreds of times, but in reality
they use them far fewer times. Using libraries across multiple projects and teams
could end up producing more complexity than benefits such as making the codebase
more complex or requiring more effort on manual testing or adding overhead in
communications.

14 | Chapter2: Micro-Frontend Principles

We also need to consider the monolith approach on the frontend. Such an approach
won't allow us to improve our architecture in the long run, particularly if we are
working on platforms meant to be available for our users for many years or if we have
distributed teams in different time zones.

Asking any business to extensively revise the tech it uses will cause a large investment
up front before it gets any results. Now the question becomes quite obvious: do we
have the opportunity to use a well-known pattern or architecture that offers the pos-
sibility of adding new features quickly, evolving with the business and delivering part
of the application autonomously without big-bang releases?

I picture something like Figure 2-3.

Third-party _
system

< N\

Database

Database | Database

API layer with
microservices

Frontend layer

Micro-frontend Micro-frontend Micro-frontend

e

i

Figure 2-3. Microarchitectures combined. This is a high-level diagram showing how
microservices and micro-frontends can live together.

Monolith to Microservices | 15

The answer is yes, we can definitely do it, and this is where micro-frontends come to
the rescue. This architecture makes more sense when we deal with mid-large compa-
nies, and during the following chapters, we are going to explore how to successfully
structure our micro-frontend architectures. However, first we need to understand
what the main principles behind micro-frontends are, to leverage as guidance during
the development of our projects.

Microservices Principles

At the beginning of my journey into micro-frontends, I stepped back from the techni-
cal side and looked at the principles behind other architectures for scaling a software
project. Would those principles be applicable to the frontend too? Microservices’
principles offer quite a few useful concepts. Sam Newman has highlighted these ideas
in his book Building Microservices (O’Reilly). I've summarized the theories in
Figure 2-4.

Culture of -
automation . Hide
implementation
details
Modeled around
business domains \
Principles of
microservices Decentralize
governance
Highl
observable

Deploy

independently

failure

Figure 2-4. Microservices principles

Let’s discuss these principles and see how they apply to the frontend.

Modeled Around Business Domains

Modeling around business domains is a key principle brought up by domain-driven
design (DDD). It starts from the assumption that each piece of software should reflect
what the organization does and that we should design our architectures based on
domains and subdomains, leveraging ubiquitous languages shared across the busi-
ness. When working from a business point of view, this provides several benefits,

16 | Chapter2: Micro-Frontend Principles

https://oreil.ly/yXw6y

including a better understanding of the system, an easier definition of a technical rep-
resentation of a business domain, and clear boundaries with which a team should
operate. We will discuss this topic extensively in the next chapters.

Culture of Automation

Considering that microservices are a multitude of services that should be autono-
mous, we need a robust culture of automating the deployment of independent units
in different environments. In my experience, this is a key process for leveraging
microservices architecture; having a strong automation culture allows us to move
faster and in a reliable way.

Hide Implementation Details

Hiding implementation details when releasing autonomously is crucial. If we are
sharing a database between microservices, we won't be able to change the database
schema without affecting all the microservices relying on the original schema. DDD
teaches us how to encapsulate services inside the same business domain, exposing
only what is needed via APIs and hiding the rest of the implementation. This allows
us to change internal logic at our own pace without impacting the rest of the system.

Decentralize Governance

Decentralizing the governance empowers developers to make the right decision at the
right stage to solve a problem. With a monolith, many key decisions are often made
by the most experienced people in the organization. These decisions, however, fre-
quently lead to trade-ofts alongside the software life cycle. Decentralizing these deci-
sions could have a positive impact on the entire system by allowing a team to take a
technical direction based on the problems they are facing instead of creating compro-
mises for the entire system.

Deploy Independently

Independent deployment is key for microservices. With monoliths, we are used to
deploying the entire system every time, with a greater risk of live issues and longer
times for deploying and rolling back our artifacts. With microservices, however, we
can deploy autonomously without increasing the possibility of breaking our entire
API layer. Furthermore, we have solid techniques, like blue-green deployment or can-
ary releases (more on these in Chapter 6) that allow us to release a new version of a
microservice with even less risk, which clears the path for new or updated APIs.

Microservices Principles | 17

Isolate Failure

Because we are splitting a monolith into tens—if not hundreds—of services, if one or
more microservices becomes unreachable due to network issues or service failures,
the rest of the system should be available for our users. There are several patterns for
providing graceful failures with microservices, and the fact that they are autonomous
and independent just reinforces the concept of isolating failure.

Highly Observable

One reason that you would favor monolithic architecture in comparison to microser-
vices is that it is easier to observe a single system than a system split into multiple
services. Microservices provide a lot of freedom and flexibility, but this doesn’t come
for free; we need to have an eye on everything through logs, monitors, and so on. For
example, we must be ready to follow a specific client request end to end inside our
system. Keeping the system highly observable is one of the main challenges of micro-
services.

Embracing these principles in a microservices environment will require a shift in
mindset not only for your software architecture but also for how your company is
organized. It involves moving from a centralized to a decentralized paradigm, ena-
bling cross-functional teams to own their business domains end to end. This can be a
particularly huge change for medium to large organizations.

Applying Principles to Micro-Frontends

Now that we've grasped the principles behind microservices, let’s find out how to
apply them to a frontend application.

Modeled Around Business Domains

Modeling micro-frontends to follow DDD principles is not only possible but also
very valuable. Investing time at the beginning of a project to identify the different
business domains and how to divide the application will be useful when you add new
functionalities or depart from the initial project vision in the future. DDD can pro-
vide a clear direction for managing backend projects, but we can also apply some of
these techniques on the frontend. Granting teams full ownership of their business
domain can be very powerful, especially when product teams are empowered to work
with technology teams.

18 | Chapter2: Micro-Frontend Principles

Culture of Automation

As for the microservices architecture, we cannot afford to have a poor automation
culture inside our organization; otherwise, any micro-frontend approach we are
going to take will end up a pure nightmare for all our teams. Considering that every
micro-frontend project contains tens or hundreds of different parts, we must ensure
that our continuous integration and deployment pipelines are solid and have a fast
feedback loop for embracing this architecture. Investing time in getting our automa-
tion right will result in the smooth adoption of micro-frontends.

Hide Implementation Details

Hiding implementation details and working with contracts are two essential practi-
ces, especially when parts of our application need to communicate with each other.
It’s crucial to define up front a contract between teams and for all parties to respect
that during the entire development process. In this way, each team will be able to
change the implementation details without impacting other teams unless there is an
API contract change. These practices allow a team to focus on the internal implemen-
tation details without disrupting the work of other teams. Each team can work at its
own pace, without external dependencies, creating a more effective integration.

Decentralize Governance

Decentralizing a team’s decisions finally moves us away from a one-size-fits-all
approach that often ends up being the lowest common denominator. Instead, the
team will use the right approach or tool for the job. As with microservices, the team is
in the best position to make certain decisions when it becomes an expert in the busi-
ness domain. This doesn’t mean each team should take its own direction but rather
that the tech leadership (architects, principal engineers, CTOs) should provide some
guardrails between which teams can operate without needing to wait for a central
decision. This leads to a sharing culture inside the organization becoming essential
for introducing successful practices across teams.

Deploy Independently

Micro-frontends allow teams to deploy independent artifacts at their own speed.
They don't need to wait for external dependencies to be resolved before deploying.
When we combine this approach with microservices, a team can own a business
domain end to end, with the ability to make technical decisions based on the chal-
lenges inside their business domain rather than finding a one-size-fits-all approach.

Applying Principles to Micro-Frontends | 19

Isolate Failure

Isolating failure in SPAs isn’t a huge problem due to their architecture, but it is with
micro-frontends. In fact, micro-frontends may require composing a user interface at
runtime, which may result in network failures or 404s for one or more files. To avoid
impacting the user experience, we must provide alternative content or hide a specific
part of the application.

Highly Observable

Frontend observability is becoming more prominent every day, with tools like Sentry
and LogRocket providing great visibility for every developer. Using these tools is
essential to understanding where our application is failing and why. For microservi-
ces, where anything can fail at any given point, being able to resolve the issue quickly
is far more important than preventing problems. This moves us toward a paradigm
where we can better invest our resources by remaining ready to address system fail-
ures than by trying to completely prevent them. As with all microservices principles,
this is applicable to the frontend, too.

The exciting part of recognizing these principles on the frontend and backend is that,
finally, we have a solution that will empower our development teams to own the
entire range of a business domain, offering a simpler way to divide labor across the
organization and iterate improvements swiftly in our system.

When we start this journey into the microworld, we need to be conscious of the level
of complexity we are adding to a project, which may not be required for any other
projects. There are plenty of companies that prefer using a monolith over microservi-
ces because of the intrinsic complexity they bring to the table. For the same reason,
we must understand when and how to use micro-frontends properly, as not all
projects are suitable for them.

Micro-Frontends Are Not a Silver Bullet

It’s very important that we use the right tool for the right job. Too often I have seen
projects failing or drastically delayed due to poor architectural decisions.

Micro-frontends are not appropriate for every application because of
their nature and the potential complexity they add at the technical
and organizational levels.

20 | Chapter2: Micro-Frontend Principles

Micro-frontends are a sensible option when we are working on software that requires
an iterative approach and long-term maintenance, when we have projects that require
multiple teams to work on the same application, or when we want to replace a legacy
project in an iterative way. However, they are not a silver bullet for all frontend appli-
cations, such as server-side rendering, SPAs, or even single HTML pages. Micro-
frontend architecture has plenty of benefits but also has plenty of drawbacks and
challenges. If the latter exceed the former, micro-frontends are not the right approach
for a project. We will explore the pros and cons of this architecture later in the book.

Summary

In this chapter, we introduced what micro-frontends are, what their principles are,
and how those principles are linked to the well-known, established microservices
architecture. Next, we will explore how to structure a micro-frontend project from an
architectural point of view and the key technical challenges to understand when we
design our frontend applications using micro-frontends.

Summary | 21

CHAPTER 3

Micro-Frontend Architectures
and Challenges

A micro-frontend represents a business domain that is autonomous, independently
deliverable, and owned by a single team. The key takeaways in this description, which
will be discussed later, are closely linked to the principles behind micro-frontends:

« Business domain representation
 Autonomous codebase
o Independent deployment

o Single-team ownership

Micro-frontends offer many opportunities. Choosing the right one depends on the
project requirements, the organization structure, and the developer’s experience. In
these architectures, we face some specific challenges to success bound by questions
such as how we want to communicate between micro-frontends, how we want to
route the user from one view to another, and, most importantly, how we identify the
size of a micro-frontend.

In this chapter, we will cover the key decisions to make when we initiate a project
with a micro-frontend architecture. We'll then discuss some of the companies using
micro-frontends in production and their approaches.

Micro-Frontends Decisions Framework

There are different approaches for architecting a micro-frontend application. To
choose the best approach for our project, we need to understand the context we'll be
operating in. Some architectural decisions will need to be made up front because they

23

will direct future decisions, like how to define a micro-frontend, how to orchestrate
the different views, how to compose the final view for the user, and how micro-
frontends will communicate and share data. These types of decisions are called the
micro-frontends decisions framework. It is composed of four key areas:

o Defining what a micro-frontend is in your architecture
« Composing micro-frontends
 Routing micro-frontends

« Communicating between micro-frontends

Define Micro-Frontends

Let’s start with the first key decision, which will have a heavy impact on the rest. We
need to identify how we consider a micro-frontend from a technical point of view. We
can decide to have multiple micro-frontends in the same view or have only one
micro-frontend per view (Figure 3-1).

TeamA TeamB
| HEADER (Team) | | HEADER [Nl HEADER |
B T T L
PRODUCT i PRODUCT PRODUCT PRODUCT VIDEO PLAYER
DETAILS /| CAROUSEL DETAILS CAROUSEL
(Team A) !| (TeamB) | CATALOG ‘
T T L
| FOOTER (Team C) | | FOOTER [Nl FOOTER |
Horizontal split Vertical split

Figure 3-1. Horizontal versus vertical split

With the horizontal split, multiple micro-frontends will be on the same view. Multiple
teams will be responsible for parts of the view and will need to coordinate their
efforts. This approach provides greater flexibility considering we can even reuse some
micro-frontends in different views, although it also requires more discipline and gov-
ernance for not ending up with hundreds of micro-frontends in the same project.

In the vertical split scenario, each team is responsible for a business domain, like the
authentication or the catalog experience. In this case, domain-driven design (DDD)
comes to the rescue. It's not often that we apply DDD principles on frontend architec-
tures, but in this case, we have a good reason to explore it.

DDD is an approach to software development that centers the development on pro-
gramming a domain model that has a rich understanding of the processes and rules
of a domain. Applying DDD for frontend is slightly different from what we can do on

24 | Chapter3: Micro-Frontend Architectures and Challenges

the backend. Certain concepts are definitely not applicable, although there are others
that are fundamental for designing a successful micro-frontend architecture. For
instance, Netflix’s core domain is video streaming; the subdomains within that core
domain are the catalog, the sign-up functionality, and the video player.

There are three subdomain types:

Core subdomains
These are the main reasons an application should exist. Core subdomains should
be treated as premium citizens in our organizations because they are the ones
that deliver value above everything else. The video catalog would be a core sub-
domain for Netflix.

Supporting subdomains
These subdomains are related to the core ones but are not key differentiators.
They could support the core subdomains but aren’t essential for delivering real
value to users. One example would be the voting system on Netflix’s videos.

Generic subdomains
These subdomains are used for completing the platform. Often companies decide
to go with off-the-shelf software for them because they’re not strictly related to
their domain. With Netflix, for instance, the payments management is not related
to the core subdomain (the catalog), but it is a key part of the platform because it
has access to the authenticated section.

Let’s break down Netflix with these categories (see Table 3-1).

Table 3-1. Subdomains examples

Subdomain type Example

Core subdomain (atalog
Supportive subdomain Voting system
Generic subdomain Sign-in or sign-up

Domain-Driven Design with Micro-Frontends

Another important term in DDD is the bounded context: a logical boundary that
hides the implementation details, exposing an API contract to consume data from the
model present in it.

Usually, the bounded context translates the business areas defined by domains and
subdomains into logical areas where we define the model, our code structure, and,
potentially, our teams. Bounded context defines the way different contexts are com-
municating with each other by creating a contract between them, often represented
by APIs. This allows teams to work simultaneously on different subdomains while
respecting the contract defined up front.

Micro-Frontends Decisions Framework | 25

Often in a new project, subdomains overlap bounded context because we have the
freedom to design our system in the best way possible. Therefore, we can assign a
specific subdomain to a team for delivering a certain business value defining the con-
tract. However, in legacy software, the bounded context can accommodate multiple
subdomains because often the design of those systems was not thought of with DDD
in mind.

The micro-frontend ecosystem offers many technical approaches. Some implementa-
tions are done with iframes, while others are done with components library or web
components. Too often we spend our time identifying a technical solution without
taking the business side into consideration.

Think about this scenario: three teams, distributed in three different locations, work-
ing on the same codebase. These teams may go for a horizontal split using iframes or
web components for their micro-frontends. After a while, they realized that micro-
frontends in the same view need to communicate somehow. One of those teams will
then be responsible for aggregating the different parts inside the view. The team will
spend more time aggregating different micro-frontends in the same view and debug-
ging to make sure everything works properly.

Obviously, this is an oversimplification. It could be worse when taking into consider-
ation the different time zones, cross-dependencies between teams, knowledge shar-
ing, or distributed team structure. All those challenges could escalate very easily to
low morale and frustration on top of delivery delays. Therefore, we need to be sure
the path we are taking won't let our teams down.

Approaching the project from a business point of view, however, allows you to create
an independent micro-frontend with less need to communicate across multiple sub-
domains. Let’s reimagine our scenario. Instead of working with components and
iframes, we are working with single page applications (SPAs) and single pages. This
approach allows a full team to design all the APIs needed to compose a view and to
create the infrastructure needed to scale the services according to the traffic. The
combination of microarchitectures, microservices, and micro-frontends provides
independent delivery without high risks for compromising the entire system for
release in production.

The bounded context helps design our systems, but we need to have a good under-
standing of how the business works to identify the right boundaries inside our
project. As architects or tech leads, our role is to invest enough time with the product
team or the customers so we can identify the different domains and subdomains,
working collaboratively with them.

After defining all the bounded contexts, we will have a map of our system represent-
ing the different areas that our system is composed of. In Figure 3-2, we can see a
representation of bounded context. In this example, the bounded context contains the

26 | Chapter3: Micro-Frontend Architectures and Challenges

catalog micro-frontends that consume APIs from a microservices architecture via a
unique entry point, a backend for frontend. We will investigate more about API inte-
gration in Chapter 8.

In DDD, the frontend is not taken into consideration, but when we work with micro-
frontends with a vertical split, we can easily map the frontend and the backend
together inside the same bounded context.

Trending
microservice

Y
Personalized
microservice
Images
t microservice
A
—
Catalog API Search API
Backend for)

frontend

i

Catalog
frontend

Catalog subdomain

Figure 3-2. A representation of bounded context

I've often seen companies design systems in accordance with Conway’s law, which
states, “Organizations which design systems are constrained to produce designs
which are copies of the communication structures of these organizations” These
companies needed their team structures to instead be flexible enough to adapt to the
best possible solution for the organization in order to reduce friction and move faster
toward the final goal: having a great product that satisfies customers! The inverse

1 Melvin E. Conway, “How Do Committees Invent?” Thompson Publications, Inc., 1968. Mel Conway’s Home
Page, accessed October 4, 2021, https://www.melconway.com/Home/Committees_Paper.html.

Micro-Frontends Decisions Framework | 27

https://www.melconway.com/Home/Committees_Paper.html

Conway maneuver recommends evolving your team and organizational structure to
promote your desired architecture.

How to Define a Bounded Context

Premature optimization is always around the corner, which can lead to our subdo-
mains decomposing where we split our bounded contexts to accommodate future
integrations. Instead, we need to wait until we have enough information to make an
educated decision.

Because our business evolves over time, we also need to review our decisions related
to bounded contexts. Sometimes we start with a larger bounded context. Over time,
the business evolves and eventually the bounded context becomes unmanageable or
too complex. So we decide to split it. Deciding to split a bounded context could result
in a large code refactor but could also simplify the codebase drastically, speeding up
new functionalities and development in the future.

To avoid premature decomposition, we will make the decision at the last possible
moment. This way, we have more information and clarity on which direction we need
to follow. We must engage up front with the product team or the domain experts
inside our organization as we define the subdomains. They can provide you with the
context of where the system operates. Always begin with data and metrics. For
instance, we can easily find out how our users are interacting with our application
and what the user journey is when a user is authenticated and when they’re not. Data
provides powerful clarity when identifying a subdomain and can help create an initial
baseline, from where we can see if we are improving the system or not.

If there isn't much observability inside our system, let’s invest time to create it. Doing
so will pay off the moment we start identifying our micro-frontends. Without dash-
boards and metrics, we are blind to how our users operate inside our applications.
Let’s assume we see a huge amount of traffic on the landing page, with 70% of those
users moving to the authentication journey (sign-in, sign-up, payment, etc.). From
here, only 40% of the traffic subscribes to a service or uses their credentials for access-
ing the service. These are good indications about our users’ behaviors on our plat-
form. Following DDD, we would start from our application’s domain model,
identifying the subdomains and their related bounded context and using behavioral
data to guide us on how to slice the frontend applications.

Allowing users to download only the code related to the landing page will give them a
faster experience because they won't have to download the entire application immedi-
ately, and the 40% of users who won’t move forward to the authentication area will
have just enough code downloaded to understand our service. Obviously, mobile
devices with slow connections benefit from this approach for multiple reasons: less
data is downloaded, less memory is used, and less JavaScript is parsed and executed,
resulting in a faster first interaction of the page.

28 | Chapter3: Micro-Frontend Architectures and Challenges

It’s important to remember that not all user sessions contain all the URLs exposed by
our platform. Therefore, a bit of research up front will help us provide a better user
experience. Usually, the decision to pick horizontal instead of vertical depends on the
type of project we have to build. In fact, horizontal split better serves static pages like
catalogs or ecommerce instead of a more interactive project that would require a ver-
tical split.

Another thing to consider is the skill sets of our teams. Usually, a vertical split is bet-
ter suited for a more traditional client-side development experience, while the hori-
zontal split requires a developer experience investment for creating a solid and fast
feedback loop for the teams.

Micro-Frontends Composition

There are different approaches for composing a micro-frontends application (see
Figure 3-3).

- QOO OO0 Po
L s 1
CDN <:><:>< OO
| O O
Client O O O O
Client-side Edge-side Server-side
composition composition composition

Figure 3-3. Micro-frontends composition diagram

In the diagram in Figure 3-3, we can see three different ways to compose a micro-
frontends architecture:

« Client-side composition
+ Edge-side composition
o Server-side composition
Starting from the left of our diagram, we have a client-side composition, where an

application shell loads multiple micro-frontends directly from a content delivery net-
work (CDN), or from the origin if the micro-frontend is not yet cached at the CDN

Micro-Frontends Decisions Framework | 29

level. In the middle of the diagram, we compose the final view at the CDN level,
retrieving our micro-frontends from the origin and delivering the final result to the
client. The right side of the diagram shows a micro-frontends composition at the ori-
gin level where our micro-frontends are composed inside a view, cached at the CDN
level, and finally served to the client.

Let’s now observe how we can technically implement each architecture.

Client-side composition

In the client-side composition case, where an application shell loads micro-frontends
inside itself, the micro-frontends should have a JavaScript or HTML file as an entry
point so the application shell can dynamically append the Document Object Model
(DOM) nodes in the case of an HTML file or initializing the JavaScript application
with a JavaScript file.

We can also use a combination of iframes to load different micro-frontends, or we
could use a transclusion mechanism on the client side via a technique called client-
side include. Client-side include lazy-loads components, substituting empty place-
holder tags with complex components. For example, a library called h-include uses
placeholder tags that will create an Ajax request to a URL and replace the inner
HTML of the element with the response of the request.

This approach gives us many options, but using client-side includes has a different
effect than using iframes. In the next chapters, we will explore this part in detail.

According to Wikipedia, in computer science, transclusion is the

inclusion of part or all of an electronic document into one
or more other documents by hypertext reference. Trans-
clusion is usually performed when the referencing docu-
ment is displayed, and it is normally automatic and
transparent to the end user. The result of transclusion is a
single integrated document made of parts assembled
dynamically from separate sources, possibly stored on dif-
ferent computers in disparate places.

An example of transclusion is the placement of images in HTML.
The server asks the client to load a resource at a particular location
and insert it into a particular part of the DOM.

Edge-side composition

With edge-side composition, we assemble the view at the CDN level. Many CDN pro-
viders give us the option of using an XML-based markup language called Edge Side
Includes (ESI). ESI is not a new language; it was proposed as a standard by Akamai
and Oracle, among others, in 2001. ESI allows a web infrastructure to be scaled in

30 | Chapter3: Micro-Frontend Architectures and Challenges

https://oreil.ly/8p1dS
https://oreil.ly/sdlhc

order to exploit the large number of points of presence around the world provided by
a CDN network, compared to the limited amount of data center capacity on which
most software is normally hosted. One drawback to ESI is that it’s not implemented in
the same way by each CDN provider; therefore, a multi-CDN strategy, as well as port-
ing our code from one provider to another, could result in a lot of refactors and
potentially new logic to implement.

Server-side composition

The last possibility we have is the server-side composition, which could happen at
runtime or at compile time. In this case, the origin server is composing the view by
retrieving all the different micro-frontends and assembling the final page. If the page
is highly cacheable, the CDN will then serve it with a long time-to-live policy. How-
ever, if the page is personalized per user, serious consideration will be required
regarding the scalability of the eventual solution, when there are many requests com-
ing from different clients. When we decide to use server-side composition, we must
deeply analyze the use cases we have in our application. If we decide to have a run-
time composition, we must have a clear scalability strategy for our servers in order to
avoid downtime for our users.

From these possibilities, we must choose the technique most suitable for our project
and team structure. As we will learn later in this journey, we also have the opportu-
nity to deploy an architecture that exploits both client-side and edge-side composi-
tion—that’s fine as long we understand how to structure our project.

Routing Micro-Frontends

The next important choice we have is how to route the application views. This deci-
sion is strictly linked to the micro-frontends composition mechanism we intend to
use for the project. We can decide to route the page requests in the origin, on the
edge, or at client side, as shown in Figure 3-4.

When we decide to compose micro-frontends at the origin, a server-side composition
on the right side of Figure 3-4, we are forced to route the requests at origin since the
entire application logic lives in the application servers. However, we need to consider
that scaling an infrastructure could be nontrivial, especially when we have to manage
burst traffic with many requests per second (RPS). Our servers need to be able to
keep up with all the requests and scale horizontally very rapidly. Each application
server then must be able to retrieve the micro-frontends for the composing page to be
served.

We can mitigate this problem with the help of a CDN. The main downside is that
when we have dynamic or personalized data, we won't be able to rely extensively on
the CDN serving our pages because the data would be outdated or not personalized.

Micro-Frontends Decisions Framework | 31

O
Origin <:> <:> <:> <:> <:> <:> OO Cﬁ}
L. = 1
Client Og Cﬁ} Og Og
Client-side Edge-side Server-side
composition composition composition

Figure 3-4. Micro-frontends routing diagram

When we decide to use edge-side composition in our architecture, the routing is
based on the page URL, and the CDN serves the page requested by assembling the
micro-frontends via transclusion at edge level. In this case, we won't have much room
for creating smart routing—something to remember when we pick this architecture.

The final option is to use client-side routing. In this instance, we will load our micro-
frontends according to the user state, such as loading the authenticated area of the
application when the user is already authenticated or loading just a landing page if the
user is accessing our application for the first time.

If we use an application shell that loads a micro-frontend as an SPA, the application
shell is responsible for owning the routing logic, which means the application shell
retrieves the routing configuration first and then decides which micro-frontend to
load. This is a perfect approach when we have complex routing, such as when our
micro-frontends are based on authentication, geolocalization, or any other sophisti-
cated logic. When we are using a multipage website, micro-frontends may be loaded
via client-side transclusion. There is almost no routing logic that applies to this kind
of architecture because the client relies completely on the URL typed by the user in
the browser or the hyperlink chosen in another page, similar to what we have when
we use the ESI approach.

We won't have any scalability issue in either case. The client-side routing is highly
recommended when your teams have stronger frontend skills so that it becomes nat-
ural having a client-side routing over a backend configuration.

Those routing approaches are not mutually exclusive, either. As we will see later
in this book, we can combine those approaches using CDN and origin or client-side
and CDN together. The important thing is determining how we want to route our

32 | Chapter3: Micro-Frontend Architectures and Challenges

application. This fundamental decision will affect how we develop our micro-
frontends application.

Micro-Frontends Communication

In an ideal world, micro-frontends wouldn’t need to communicate with each other
because all of them would be self-sufficient. In reality, it’s not always possible, because
we have to notify other micro-frontends about user interaction, especially when we
work with multiple micro-frontends on the same page.

When we have multiple micro-frontends on the same page, the complexity of manag-
ing a consistent, coherent user interface for our users may not be trivial. This is also
true when we want communication between micro-frontends owned by different
teams. Bear in mind that each micro-frontend should be unaware of the others on the
same page; otherwise, we are breaking the principle of independent deployment.

In this case, we have a few options for notifying other micro-frontends that an event
occurred. We can inject an eventbus, a mechanism that allows decoupled components
to communicate with each other via events sent via a bus, in each micro-frontend,
and notify the event to every micro-frontend. If some micro-frontends in the view
are interested in the event, they can listen and react, as shown in Figure 3-5.

To inject the eventbus, we need the micro-frontends container to instantiate the even-
tbus and inject it inside all of the page’s micro-frontends.

oriframe

.
........ 2

Component A N\
oriframe A

Component C
oriframe

Figure 3-5. Event emitter and custom events diagram

Micro-Frontends Decisions Framework | 33

Another solution is to use custom events. These are normal events but with a custom
body, which allows us to define the string that identifies the event and an optional
object custom for the event. Here’s an example:

new CustomEvent('myCustomEvent', { detail:{someObj: "customData" }})

The custom events should be dispatched via an object available to all the micro-
frontends, such as the window object, which is the representation of a window in a
browser. If you decide to implement your micro-frontends with iframes, using an
eventbus would allow you to avoid challenges like which window object to use from
inside the iframe, because each iframe has its own window object. No matter whether
we have a horizontal or a vertical split of our micro-frontends, we need to decide how
to pass data between views.

Imagine we have one micro-frontend for signing in a user and another for authenti-
cating the user on our platform. After being successfully authenticated, the sign-in
micro-frontend has to pass a token to the authenticated area of our platform. How
can we pass the token from one micro-frontend to another? We have several options.

We can use a web-storage-like session, local storage, or cookies (see Figure 3-6). In
this situation, we might use the local storage to store and retrieve the token inde-
pendently. The micro-frontend is loaded because the web storage is always available
and accessible, as long as the micro-frontends live in the same subdomain.

Shell application Shell application
Authentication
micro-frontend Catalog
S'toring token 0 Retrieving token
s > Web P ;
storage
Storing token Retrieving token
CSO—— »| Cookie [@----=--n-rnmrmmrumnnanns ;

Figure 3-6. Sharing data between micro-frontends in different views

34 | Chapter3: Micro-Frontend Architectures and Challenges

https://oreil.ly/maiME

Another option could be to pass some data via query strings. For example, in the
hypothetical URL http://www.acme.com/products/details?id=123, the text after the
question mark represents the query string—in this case, the “ID 123” of a specific
product selected by the user—and retrieves the full details to display via an API (see
Figure 3-7). However, using query strings is not the most secure way to pass sensitive
data, such as passwords and user IDs. There are better ways to retrieve that informa-
tion if it’s passed via the HTTPS protocol. Embrace this solution carefully.

Backend
API
A
Shell application Shell application
Requeét to API
for article details
(G catalogfarticlefsid | |

Figure 3-7. Micro-frontends communication via query strings or URL

To summarize, the micro-frontends decisions framework is composed of four key
decisions: identifying, composing, routing, and communicating. In Table 3-2 you can
find all the combinations available based on how you identify a micro-frontend.

Table 3-2. Micro-frontends decisions framework summary

Micro-frontends definition Composition Routing Communication

Horizontal Client side Client side Event emitter
Serverside Serverside Custom events
Edge side Edge side Web storage

Query strings
Vertical Client side Client side Web storage
Serverside Serverside Query strings

Edge side

Micro-Frontends Decisions Framework | 35

Micro-Frontends in Practice

Although micro-frontends are a fairly new approach in the frontend architecture eco-
system, they have been used for a few years at medium and large organizations. Many
well-known companies have made micro-frontends their main system for scaling
their business to the next level.

Zalando

The first one worth mentioning is Zalando, a European fashion and ecommerce com-
pany. I attended a conference presentation given by their technical leads and was
impressed by what they have created and released open source. More recently,
Zalando has replaced the well-known OSS project Tailor.js with Interface Framework.
Interface Framework is based on concepts similar to Tailor.js but is more focused on
components and GraphQL instead of fragments.

HelloFresh

HelloFresh, a digital service that provides ready-to-cook food boxes with a variety of
recipes from all over the world, is another good example. Inspired by Zalando’s work,
HelloFresh is now serving a multitude of SPAs orchestrated by URL. In an interesting
approach to flexibility of components, the SPAs are assembled and rendered on the
servers, then cached at the CDN level, providing flexibility for generating the SPAs.
This approach also allows the development teams to be responsible for their own
technology stacks; each SPA could have a different one, and each team is fully inde-
pendent from the others.

AllegroTech

In 2016, Polish retailer and auction site AllegroTech came up with OpBox, a project
that allows nontechnical people to merge UI representations (a.k.a. components) with
data sources inside the same page. At first, AllegroTech tried to work with multiple
components assembled at runtime with ESI lang, but the system didn’t provide the
desired level of consistency. Furthermore, they had a few problems with managing
specific library versions. For instance, one component could have been developed
with React v13 and another one with v15, both rendered on the same page.

In the OpBox project, Allegro’s teams had the opportunity to decouple the rendering
part of a component (the view) from the data in order to render. As long as the con-
tract between the component and the data source matched, they were able to assem-
ble data and different components together, which enhanced their ability to do A/B
testing and gather data from there. But it is the additional abstraction between how
the page is composed and the components to display that really stands out in this
implementation. In fact, a JSON file describes the page and the components needed,

36 | Chapter3: Micro-Frontend Architectures and Challenges

https://oreil.ly/Xl26d
https://oreil.ly/T01FH
https://oreil.ly/sdlhc

and the renderer then composes the page as configured inside the JSON file. Two or
more components on the same page could also react to a specific user interaction or
to a change in a set of data, thanks to an eventbus implementation that signals the
change to all the components that are listening to it.

Spotify

In this list of case histories, I can’t neglect to mention Spotify. For its desktop applica-
tion, Spotify has assembled multiple components living in separate iframes that com-
municate via a “bridge” for the low-level implementation made with C++. If we
inspect the desktop application, we can easily find the multiple parts composing it.
Each .spa file is composed of an HTML file, multiple CSS files, a manifest.json, and a
JavaScript bundle file minimized and optimized, as shown in Figure 3-8.

(N N J il concerts
< > =M= &= Q Search

Favourites
0 Downloads -
ﬁj lucamezzalira

H; Documents concerts.bundle.j index.html manifest.json
=) Desktop)

B Recents

#; Applications

@ AirDrop

Figure 3-8. Spotify micro-frontend artifact

Those files will be loaded inside an iframe to compose the final application UL This
approach was used at the beginning for the web instance of the Spotify player, but it
was abandoned due to its poor performance, and Spotify has since moved back to an
SPA architecture similar to what they have for the TV application. This doesn’t mean
the approach can’t work, but the way it was designed caused more issues than benefits
for the final users.

SAP

Another company using iframes for its applications is SAP. SAP released Luigi frame-
work, a micro-frontends framework used for creating an enterprise application that
interacts with SAP. Luigi works with Angular, React, Vue, and SAPUI—basically the
most modern and well-adopted frontend frameworks, plus a well-known one, like
SAPUI, for delivering applications interacting with SAP. Since enterprise applications
are B2B solutions, where SEO and bandwidth are not a problem, having the ability to
choose the hardware and software specifications where an application runs makes

Micro-Frontends in Practice | 37

https://oreil.ly/nyFr3

iframes adoption easy. If we think of the memory management provided by iframes
out of the box, the decision to use them makes sense for that specific context.

OpenTable

Another interesting approach is OpenTable’s Open Components project, embraced by
Skyscanner and other large organizations and released open source. Open Compo-
nents are using a really interesting approach to micro-frontends: a registry similar to
the Docker registry gathers all the available components encapsulating the data and
Ul, exposing an HTML fragment that can then be encapsulated in any HTML
template.

A project using this technique receives many benefits, such as the team’s independ-
ence, the rapid composition of multiple pages by reusing components built by other
teams, and the option of rendering a component on the server or on the client. When
I have spoken with people who work at OpenTable, they told me that this project
allowed them to scale their teams around the world without creating a large commu-
nication overhead. For instance, using micro-frontends allowed them to smooth the
process by repurposing parts developed in the United States for use in Australia—
definitely a huge competitive advantage.

DAIN

Last but not least is DAZN, a live and video-on-demand sports platform that uses a
combination of SPAs and components orchestrated by a client-side agent called Boot-
strap. DAZN’s approach focuses on targeting not only the web but also multiple smart
TVs, set-top boxes, and consoles. Its approach is fully client side, with an orchestrator
always available during the navigation of the video platform to load different SPAs at
runtime when there is a change of business domain.

These are just some of the possibilities micro-frontends offer for scaling up our colo-
cated and/or distributed teams. More and more companies are embracing this para-
digm, including New Relic, Starbucks, and Microsoft.

Summary

In this chapter, we discovered the different high-level architectures for designing
micro-frontends applications. We dove deep into the key decisions to make: define,
compose, orchestrate, and communicate. Finally, we discovered that many organiza-
tions are already embracing this architecture in production, with successful software
not merely available inside the browsers but also in other end uses, like desktop appli-
cations, consoles, and smart TVs. It’s fascinating how quickly this architecture has
spread across the globe. In the next chapter, I will discuss how to technically develop
micro-frontends, providing real examples you can use within your own projects.

38 | Chapter3: Micro-Frontend Architectures and Challenges

https://oreil.ly/pMI9L

CHAPTER 4
Discovering Micro-Frontend Architectures

In the previous chapter, we learned about decisions framework, the foundation of any
micro-frontend architecture. In this chapter, we will review the different architecture
choices, applying what we have learned so far.

Micro-Frontend Decisions Framework Applied

The decisions framework helps you to choose the right approach for your micro-
frontend project based on its characteristics (see Figure 4-1). Your first decision will
be between a horizontal and vertical split.

Horizontal Vertical | .
:}7777' Identlfy
1 H
¢ v } '
Client-side Edge-side Server-side Edgeside .
composition composition composition composition » Compose
Client-side Edge-side Server-side Edgeside | .
routing routing routing routing > Route
e v N v N (2 v ™ e v N
Application shell - Server-side includes — ! .
Web components S?;‘c’ﬁ]r dsége Server-side Ap[;lil]c;}ltlon bee-o Igfln?éc[lasl
iframes rendering :
VAN AN J - J

Figure 4-1. The micro-frontends decisions framework

39

The micro-frontends decisions framework helps you determine the
best architecture for a project.

Vertical Split

A vertical split offers fewer choices, and because they are likely well known by front-
end developers who are used to writing single-page applications (SPAs), only the
client-side choice is shown in Figure 4-1. You'll find a vertical split helpful when your
project requires a consistent user interface evolution and a fluid user experience
across multiple views. That’s because a vertical split provides the closest developer
experience to an SPA, and therefore the tools, best practices, and patterns can be used
for the development of a micro-frontend.

Although technically you can serve vertical-split micro-frontends with any composi-
tion, so far all the explored implementations have a client-side composition in which
an application shell is responsible for mounting and unmounting micro-frontends,
leaving us with one composition method to choose from. The relation between a
micro-frontend and the application shell is always one to one, so therefore the appli-
cation shell loads only one micro-frontend at a time. You'll also want to use client-
side routing. The routing is usually split in two parts, with a global routing used for
loading different micro-frontends being handled by the application shell (see
Figure 4-2).

Authentication Catalog Customer support
micro-frontend micro-frontend micro-frontend
mysite.com/signup mysite.com/catalog mysite.com/help

Application shell

Figure 4-2. The application shell is responsible for global routing between micro-
frontends

Although the local routing between views inside the same micro-frontend is managed
by the micro-frontend itself, you’ll have full control of the implementation and evolu-
tion of the views present inside it since the team responsible for a micro-frontend is
also the subject-matter expert on that business domain of the application
(Figure 4-3).

40 | Chapter4: Discovering Micro-Frontend Architectures

All products Product details Purchase summary

mysite.com/catalog

Application shell

Figure 4-3. A micro-frontend is responsible for routing between views available inside
the micro-frontend itself

Finally, for implementing an architecture with a vertical-split micro-frontend, the
application shell loads HTML or JavaScript as the entry point. The application shell
shouldn’t share any business domain logic with the other micro-frontends and should
be technology agnostic to allow future system evolution, so you don't want to use any
specific UI framework for building an application shell. Try Vanilla JavaScript if you
built your own implementation.

The application shell is always present during users’ sessions because it’s responsible
for orchestrating the web application as well as exposing some life cycle APIs for
micro-frontends in order to react when they are fully mounted or unmounted.

When vertical-split micro-frontends have to share information with other micro-
frontends, such as tokens or user preferences, we can use query strings for volatile
data, or web storages for tokens or user preferences, similar to how the horizontal
split ones do between different views.

Horizontal Split

A horizontal split works well when a business subdomain should be presented across
several views and therefore reusability of the subdomain becomes key for the project;
when search engine optimization is a key requirement of your project and you want
to use a server-side rendering approach; when your frontend application requires
tens if not hundreds of developers working together and you have to split more gran-
ular our subdomains; or when you have a multitenant project with customer custom-
izations in specific parts of your software.

The next decision you’ll make is between client-side, edge-side, and server-side com-
positions. Client side is a good choice when your teams are more familiar with the

Micro-Frontend Decisions Framework Applied | 41

frontend ecosystem or when your project is subject to high traffic with significant
spikes, for instance. You'll avoid dealing with scalability challenges on the frontend
layer because you can easily cache your micro-frontends, leveraging a content deliv-
ery network (CDN).

You can use edge-side composition for a project with static content and high traffic in
order to delegate the scalability challenge to the CDN provider instead of having to
deal with it in your infrastructure. As we discussed in Chapter 3, embracing this
architecture style has some challenges, such as its complicated developer experience
and the fact that not all CDNs support it. But projects like online catalog with no per-
sonalized content may be a good candidate for this approach.

Server-side composition gives us the most control of our output, which is great for
highly indexed websites, such as news sites or ecommerce. It’s also a good choice for
websites that require great performance metrics, similar to PayPal and American
Express, both of which use server-side composition.

Next is your routing strategy. While you can technically apply any routing to any
composition, its common to use the routing strategy associated with your chosen
composition pattern. If you choose a client-side composition, for example, most of
the time, routing will happen at the client-side level. You might use computation logic
at the edge (using Lambda@Edge in case of AWS or Workers in CloudFlare) to avoid
polluting the application shell’s code with canary releases or to provide an optimized
version of your web application to search engine crawlers leveraging the dynamic
rendering capability.

On the other hand, an edge-side composition will have an HTML page associated
with each view, so every time a user loads a new page, a new page will be composed in
the CDN, which will retrieve multiple micro-frontends to create that final view.
Finally, with server-side routing, the application server will know which HTML tem-
plate is associated with a specific route; routing and composition happen on the
server side.

Your composition choice will also help narrow your technical solutions for building a
micro-frontends project. When you use client-side composition and routing, your
best implementation choice is an application shell loading multiple micro-frontends
in the same view with the webpack plug-in called Module Federation, with iframes, or
with web components, for instance. For the edge-side composition, the only solution
available is using edge-side includes (ESI). We are seeing hints that this may change
in the future, as cloud providers extend their edge services to provide more computa-
tional and storage resources. For now, though, ESI is the only option. And when you
decide to use server-side composition, you can use server-side includes (SSI) or one
of the many SSR frameworks for your micro-frontend applications. Note that SSRs
will give you greater flexibility and control over your implementation.

42 | Chapter4: Discovering Micro-Frontend Architectures

Missing from the decisions framework is the final pillar: how the micro-frontends
will communicate when they are in the same or different views. This is mainly
because when you select a horizontal split, you have to avoid sharing any state across
micro-frontends; this approach is an antipattern. Instead, you'll use the techniques
mentioned in Chapter 3, such as an event emitter, custom events, or reactive streams
using an implementation of the publish/subscribe (pub/sub) pattern for decoupling
the micro-frontends and maintaining their independent nature. When you have to
communicate between different views, you'll use a query string parameter to share
volatile data, such as product identifiers, and web storage/cookies for persistent data,
such as users’ tokens or local users’ settings.

Observer Pattern

The observer pattern (also known as publish/subscribe pattern) is a behavioral design
pattern that defines a one-to-many relationship between objects such that, when one
object changes its state, all dependent objects are notified and updated automatically.
An object with a one-to-many relationship with other objects that are interested in its
state is called the subject or publisher. Its dependent objects are called observers or
subscribers. The observers are notified whenever the state of the subject changes, and
then they act accordingly. The subject can have any number of dependent observers.

Architecture Analysis

To help you better choose the right architecture for your project, we'll now analyze
the technical implementations, looking at challenges and benefits. We'll review the
different implementations in detail and then assess the characteristics for each archi-
tecture. The characteristics we'll analyze for every implementation:

Deployability
Reliability and ease of deploying a micro-frontend in an environment.

Modularity
Ease of adding or removing micro-frontends and ease of integrating with shared
components hosted by micro-frontends.

Simplicity
Ease of being able to understand or do. If a piece of software is considered sim-
ple, it has likely been found to be easy to understand and to reason about.

Testability
Degree to which a software artifact supports testing in a given test context. If the
testability of the software artifact is high, then finding faults in the system by
means of testing is easier.

Architecture Analysis | 43

Performance
Indicator of how well a micro-frontend would meet the quality of user experi-
ence described by web vitals, essential metrics for a healthy site.

Developer experience
The experience developers are exposed to when they use your product, be it cli-
ent libraries, SDKs, frameworks, open source code, tools, API, technology, or
services.

Scalability
The ability of a process, network, software, or organization to grow and manage
increased demand.

Coordination
Unification, integration, or synchronization of group members’ efforts in order
to provide unity of action in the pursuit of common goals.

Characteristics are rated on a five-point scale, with one point indicating that the spe-
cific architecture characteristic isn't well supported and five points indicating that the
architecture characteristic is one of the strongest features in the architectural pattern.
The score indicates which architecture characteristic shines better with every
approach described. It’s almost impossible having all the characteristics working per-
fectly in an architecture due to the tension they exercise with each other. Our role
would be to find the trade-off suitable for the application we have to build, hence the
decision to create a score mechanism to evaluate all of these architectural approaches.

Architecture and Trade-offs

As I pointed out elsewhere in this book, I firmly believe that the perfect architecture
doesn’t exist; it's always a trade-off. The trade-offs are not only technical but also
based on business requirements and organizational structure. Modern architecture
considers other forces that contribute to the final outcome as well as technical
aspects. We must recognize the sociotechnical aspects and optimize for the context
we operate in instead of searching for the “perfect architecture” (which doesn’t exist)
or borrowing the architecture from another context without researching whether it
would be appropriate for our context.

In Fundamentals of Software Architecture, Neal Ford and Mark Richards highlight
very well these new architecture practices and invite the readers to optimize for the
“least worst” architecture. As they state, “Never shoot for the best architecture, but
rather the least worst architecture”

Before settling on a final architecture, take the time to understand the context you
operate in, your teams structures, and the communication flows between teams.
When we ignore these aspects, we risk creating a great technical proposition that’s
completely unsuitable for our company. It’s the same when we read case studies from

44 | Chapter 4: Discovering Micro-Frontend Architectures

https://oreil.ly/mHFq9
https://oreil.ly/xTCe8

other companies embracing specific architectures. We need to understand how the
company works and how that compares to how our company works. Often the case
studies focus on how a company solved a specific problem, which may or may not
overlap with your challenges and goals. It’s up to you to find out if the case study’s
challenges match your own.

Read widely and talk with different people in the community to understand the forces
behind certain decisions. Taking the time to research will help you avoid making
wrong assumptions and become more aware of the environment you are working in.

Every architecture is optimized for solving specific technical and organizational chal-
lenges, which is why we see so many approaches to micro-frontends. Remember:
there isn't right or wrong in architecture, just the best trade-off for your own context.

Vertical-Split Architectures

For a vertical-split architecture, a client-side composition, client-side routing, and an
application shell, as described above, are fantastic for teams with a solid background
of building SPAs for their first foray into micro-frontends, because the development
experience will be mostly familiar. This is probably also the easiest way to enter the
micro-frontend world for developers with a frontend background.

Application Shell

A persistent part of a micro-frontend application, the application shell is the first
thing downloaded when an application is requested. It will shepherd a user session
from the beginning to the end, loading and unloading micro-frontends based on the
endpoint the user requests. The main reasons to load micro-frontends inside an
application shell include:

Handling the initial user state (if any)
If a user tries to access an authenticated route via a deep link but the user token is
invalid, the application shell redirects the user to the sign-in view or a landing
page. This process is needed only for the first load, however. After that, every
micro-frontend in an authenticated area of a web application should manage the
logic for keeping the user authenticated or redirecting them to an unauthentica-
ted page.

Retrieving global configurations
When needed, the application shell should first fetch a configuration that con-
tains any information used across the entire user sessions, such as the user’s
country if the application provides different experiences based on country.

Vertical-Split Architectures | 45

Fetching the available routes and associated micro-frontends to load
To avoid needlessly deploying the application shell, the route configurations
should be loaded at runtime with the associated micro-frontends. This will guar-
antee control of the routing system without deploying the application shell multi-
ple times.

Setting logging, observability, or marketing libraries
Because these libraries are usually applied to the entire application, it’s best to
instantiate them at the application shell level.

Handling errors if a micro-frontend cannot be loaded
Sometimes micro-frontends are unreachable due to a network issue or bug in the
system. It’s wise to add an error message (a 404 page, for instance) to the applica-
tion shell or load a highly available micro-frontend to display errors and suggest
possible solutions to the user, like suggesting similar products or asking them to
come back later.

You could achieve similar results by using libraries in every micro-frontend rather
than using an orchestrator like the application shell. However, ideally you want just
one place to manage these things from. Having multiple libraries means ensuring
they are always in sync between micro-frontends, which requires more coordination
and adds complexity to the entire process. Having multiple libraries also creates risk
in the deployment phase, where there are breaking changes, compared to centralizing
libraries inside the application shell.

Never use the application shell as a layer to interact constantly with micro-frontends
during a user session. The application shell should only be used for edge cases or ini-
tialization. Using it as a shared layer for micro-frontends risks having a logical cou-
pling between micro-frontends and the application shell, forcing testing and/or
redeployment of all micro-frontends available in an application. This situation is also
called a distributed monolith and is a developer’s worst nightmare.

In this pattern, the application shell loads only one micro-frontend at a time. That
means you don’t need to create a mechanism for encapsulating conflicting dependen-
cies between micro-frontends because there won't be any clash between libraries or
CSS styles (see Figure 4-4), as long as both are removed from the window object
when a micro-frontend is unloaded.

The application shell is nothing more than a simple HTML page with logic wrapped
in a JavaScript file. Some CSS styles may or may not be included in the application
shell for the initial loading experience, such as for showing a loading animation like a
spinner. Every micro-frontend entry point is represented by a single HTML page
containing the logic and style of a single view or a small SPA containing several routes
that include all the logic needed to allow a user to consume an entire subdomain of
the application without a new micro-frontend needing to load. A JavaScript file could

46 | Chapter4: Discovering Micro-Frontend Architectures

be loaded instead as a micro-frontend entry point, but in this case we are limited by
the initial customer experience, because we have to wait until the JavaScript file is
interpreted before it can add new elements into the domain object model (DOM).

Components

MFE

I A

load/unload

Application shell

Figure 4-4. Vertical-split architecture with client-side composition and routing using the
application shell

The vertical split works well when we want to create a consistent user experience
while providing full control to a single team. A clear sign that this may be the right
approach for your application is when you don’t have many repetitions of business
subdomains across multiple views but every part of the application may be repre-
sented by an application itself.

Identifying micro-frontends becomes easy when we have a clear understanding of
how users interact with the application. If you use an analytics tool like Google Ana-
Iytics, you'll have access to this information. If you don’t have this information, you'll
need to get it before you can determine how to structure the architecture, business
domains, and your organization. With this architecture, there isn’t a high reusability
of micro-frontends, so it’s unlikely that a vertical-split micro-frontend will be reused
in the same application multiple times.

However, inside every micro-frontend we can reuse components (think about a
design system), generating a modularity that helps avoid too much duplication. It’s
more likely, though, that micro-frontends will be reused in different applications
maintained by the same company. Imagine that in a multitenant environment, you
have to develop multiple platforms and you want to have a similar user interface with
some customizations for part of every platform. You will be able to reuse vertical-split
micro-frontends, reducing code fragmentation and evolving the system independ-
ently based on the business requirements.

Vertical-Split Architectures | 47

Challenges

Of course, there will be some challenges during the implementation phase, as with
any architecture pattern. Apart from domain-specific ones, we’ll have common chal-
lenges, some of which have an immediate answer, while others will depend more on
context. Let’s look at four major challenges: a sharing state, the micro-frontends com-
position, a multiframework approach, and the evolution of your architecture.

Sharing state

The first challenge we face when we work with micro-frontends in general is how to
share states between micro-frontends. While we don’t need to share information as
much with a vertical-split architecture, the need still exists.

Some of the information that we may need to share across multiple micro-frontends
are fine when stored via web storage, such as the audio volume level for media the
user played or the fonts recently used to edit a document.

When information is more sensitive, such as personal user data or an authentication
token, we need a way to retrieve this information from a public API and then share
across all the micro-frontends interested in this information. In this case, the first
micro-frontend loaded at the beginning of the user’s session would retrieve this data,
stored in a web storage with a retrieval time stamp. Then every micro-frontend that
requires this data can retrieve it directly from the web storage, and if the time stamp
is older than a preset amount of time, the micro-frontend can request the data again.
And because the application loads only one micro-frontend at a time and every
micro-frontend will have access to the selected web storage, there is no strong
requirement to pass through the application shell for storing data in the web storage.

However, let’s say that your application relies heavily on the web storage, and you
decide to implement security checks to validate the space available or type of message
stored. In this scenario, you may want to instead create an abstraction via the applica-
tion shell that will expose an API for storing and retrieving data. This will centralize
where the data validation happens, providing meaningful errors to every micro-
frontend in case a validation fails.

Composing micro-frontends

You have several options for composing vertical-split micro-frontends inside an
application shell. Remember, however, that vertical-split micro-frontends are com-
posed and routed on the client side only, so we are limited to what the browser’s
standards offer us. There are four techniques for composing micro-frontends on the
client side:

48 | Chapter4: Discovering Micro-Frontend Architectures

ES modules
JavaScript modules can be used to split our applications into smaller files to be
loaded at compile time or at runtime, fully implemented in modern browsers.
This can be a solid mechanism for composing micro-frontends at runtime using
standards. To implement an ES module, we simply define the module attribute in
our script tag and the browser will interpret it as a module:

<script type="module" src="catalogMFE.js"></script>

This module will be always deferred and can implement cross-origin resource
sharing (CORS) authentication. ES modules can also be defined for the entire
application inside an import map, allowing us to use the syntax to import a mod-
ule inside the application. As of publication time, the main problem with import
maps is that they are not supported by all the browsers. You'll be limited to Goo-
gle Chrome, Microsoft Edge (with Chromium engine), and recent versions of
Opera, limiting this solution’s viability.

System]S
This module loader supports import maps specifications, which are not natively
available inside the browser. This allows them to be used inside the System]S
implementation, where the module loader library makes the implementation
compatible with all the browsers. This is a handy solution when we want our
micro-frontends to load at runtime, because it uses a syntax similar to import
maps and allows System]S to take care of the browser’s API fragmentation.

Module Federation

This is a plug-in introduced in webpack 5 used for loading external modules,
libraries, or even entire applications inside another one. The plug-in takes care of
the undifferentiated heavy lifting needed for composing micro-frontends, wrap-
ping the micro-frontends’ scope and sharing dependencies between different
micro-frontends or handling different versions of the same library without run-
time errors. The developer experience and the implementation are so slick that it
would seem like writing a normal SPA. Every micro-frontend is imported as a
module and then implemented in the same way as a component of a UI frame-
work. The abstraction made by this plug-in makes the entire composition chal-
lenge almost completely painless.

HTML parsing
When a micro-frontend has an entry point represented by an HTML page, we
can use JavaScript for parsing the DOM elements and append the nodes needed
inside the application shells DOM. At its simplest, an HTML document is really
just an XML document with its own defined schema. Given that, we can treat the
micro-frontend as an XML document and append the relevant nodes inside the
shellls DOM using the DOMParser object. After parsing the micro-frontend
DOM, we then append the DOM nodes using adoptNode or cloneNode

Vertical-Split Architectures | 49

https://oreil.ly/q9X8P
https://oreil.ly/oopaw
https://oreil.ly/RVMKg

methods. However, using cloneNode or adoptNode doesn’t work with the script
element, because the browser doesn’t evaluate the script element, so in this case
we create a new one, passing the source file found in the micro-frontend’s HTML
page. Creating a new script element will trigger the browser to fully evaluate the
JavaScript file associated with this element. In this way, you can even simplify the
micro-frontend developer experience because your team will provide the final
results knowing how the initial DOM will look. This technique is used by some
frameworks, such as giankun, which allows HTML documents to be micro-
frontend entry points.

All the major frameworks composed on the client side implement these techniques,
and sometimes you even have options to pick from. For example, with single SPA you
can use ES modules, System]S with import maps, or Module Federation.

All these techniques allow you to implement static or dynamic routes. In the case of
static routes, you just need to hardcode the path in your code. With dynamic path,
you can retrieve all the routes from a static JSON file to load at the beginning of the
application or create something more dynamic by developing an endpoint that can be
consumed by the application shell and where you apply logic based on the user’s
country or language for returning the final routing list.

Multiframework approach

Using micro-frontends for a multiframework approach is a controversial decision,
because many people think that this forces them to use multiple UI frameworks, like
React, Angular, Vue, or Svelte. But what is true for frontend applications written in a
monolithic way is also true for micro-frontends.

Although technically you can implement multiple UI frameworks in an SPA, it cre-
ates performance issues and potential dependency clashes. This applies to micro-
frontends as well, so using a multiframework implementation for this architecture
style isn't recommended.

Instead, follow best practices like reducing external dependencies as much as you can,
importing only what you use rather than entire packages that may increase the final
JavaScript bundle. Many JavaScript tools implement a tree-shaking mechanism to
help achieve smaller bundle sizes.

There are some use cases in which the benefits of having a multiframework approach
with micro-frontends outweigh the challenges, such as when we can create a healthy
flywheel for developers, reducing the time to market of their business logic without
affecting production traffic.

Imagine you start porting a frontend application from an SPA to micro-frontends.
Working on a micro-frontend and deploying the SPA codebase alongside it would
help you to provide value for your business and users.

50 | Chapter4: Discovering Micro-Frontend Architectures

First, we would have a team finding best practices for approaching the porting (such
as identifying libraries to reuse across micro-frontends), setting up the automation
pipeline, sharing code between micro-frontends, and so on. Second, after creating the
minimum viable product (MVP), the micro-frontend can be shipped to the final user,
retrieving metrics and comparing with the older version. In a situation like this, ask-
ing a user to download multiple UI frameworks is less problematic than developing
the new architecture for several months without understanding if the direction is
leading to a better result. Validating your assumptions is crucial for generating the
best practices shared by different teams inside your organization. Improving the feed-
back loop and deploying code to production as fast as possible demonstrates the best
approach for overcoming future challenges with microarchitectures in general.

You can apply the same reasoning to other libraries in the same application but with
different versions, such as when you have a project with an old version of Angular
and you want to upgrade to the latest version.

Remember, the goal is creating the muscles for moving at speed with confidence and
reducing the potential mistakes automating what is possible and fostering the right
mindset across the teams. Finally, these considerations are applicable to all the micro-
frontend architecture shared in this book.

Architecture evolution and code encapsulation

Perfectly defining the subdomains on the first try isn’t always feasible. In particular,
using a vertical-split approach may result in coarse-grained micro-frontends that
become complicated after several months of work because of broadening project
scope as the team’s capabilities grow. Also, we can have new insights into assumptions
we made at the beginning of the process. Fear not! This architecture’s modular nature
helps you face these challenges and provides a clear path for evolving it alongside the
business. When your team’s cognitive load starts to become unsustainable, it may be
time to split your micro-frontend. One of the many best practices for splitting a
micro-frontend is code encapsulation, which is based on a specific user flow. Let’s
explore it!

The concept of encapsulation comes from object-oriented programming (OOP) and
is associated with classes and how to handle data. Encapsulation binds together the
attributes (data) and the methods (functions and procedures) that manipulate the
data in order to protect the data. The general rule, enforced by many languages, is
that attributes should only be accessed (that is, retrieved or modified) using methods
that are contained (encapsulated) within the class definition.

Imagine your micro-frontend is composed of several views, such as a payment form,
sign-up form, sign-in form, and email and password retrieval form, as shown in
Figure 4-5.

Vertical-Split Architectures | 51

Authentication

micro-frontend

Forgot email

Payment Sign-up Sign-in or password

Figure 4-5. Authentication micro-frontend composed of several views that may create a
high cognitive load for the team responsible for this micro-frontend

An existing user accessing this micro-frontend is more likely to sign in to the authen-
ticated area or want to retrieve their account email or password, while a new user is
likely to sign up or make a payment. A natural split for this micro-frontend, then,
could be one micro-frontend for authentication and another for subscription. In this
way, you'll separate the two according to business logic without having to ask the
users to download more code than the flow would require (see Figure 4-6).

Authentication

Subscription
micro-frontend

micro-frontend

Forgot email

Payment Sign-up Sign-in or password

Figure 4-6. Splitting the authentication micro-frontend to reduce the cognitive load, fol-
lowing customer experience more than technical constraints

This isn’t the only way to split this micro-frontend, but however you split it, be sure
youre prioritizing a business outcome rather than a technical one. Prioritizing the
customer experience is the best way to provide a final output that your users will
enjoy.

Encapsulation helps with these situations. For instance, avoid having a unique state
representing the entire micro-frontend. Instead, prefer state management libraries
that allow composition of state, like MobX-State-Tree does. The data will be
expressed in tree structure, which you can compose at will. Spend the time evaluating
how to implement the application state, and you may save time later while also
reducing your cognitive load. It is always easier to think when the code is well

52 | Chapter4: Discovering Micro-Frontend Architectures

https://oreil.ly/ayXTf

identified inside some boundaries than when it’s spread across multiple parts of the
application.

When libraries or even logic are used in multiple domains, such as in a form valida-
tion library, you have a few options:

Duplicate the code

Code duplication isn't always a bad practice; it depends on what you are optimiz-
ing for and overall impact of the duplicated code. Let’s say that you have a com-
ponent that has different states based on user status and the view where it’s
hosted, and that this component is subject to new requirements more often in
one domain than in others. You may want to centralize it. Keep in mind, though,
that every time you have a centralized library or component, you have to build a
solid governance for making sure that when this shared code is updated, it also
gets updated in every micro-frontend that uses this shared code as well. When
this happens, you also have to make sure the new version doesn’t break anything
inside each micro-frontend and you need to coordinate the activity across multi-
ple teams. In this case, the component isn’t difficult to implement and it will
become easier to build for every team that uses it, because there are fewer states
to take care of. That allows every implementation to evolve independently at its
own speed. Here, were optimizing for speed of delivery and reducing the exter-
nal dependencies for every team. This approach works best when you have a
limited amount of duplication. When you have dozens of similar components,
this reasoning doesn't scale anymore; youll want to abstract into a library
instead.

Abstract your code into a shared library

In some situations, you really want to centralize the business logic to ensure that
every micro-frontend is using the same implementation, as with integrating pay-
ment methods. Imagine implementing in your checkout form multiple payment
methods with their validation logic, handling errors, and so on. Duplicating such
a complex and delicate part of the system isn't wise. Creating a shared library
instead will help maintain consistency and simplify the integration across the
entire platform. Within the automation pipelines, you’ll want to add a version
check on every micro-frontend to review the latest library version. Unfortunately,
while dealing with distributed systems helps you scale the organization and
deliver with speed, sometimes you need to enforce certain practices for the
greater good.

Delegate to a backend API
The third option is to delegate the common part to be served to all your vertical-
split micro-frontends by the backend, thus providing some configuration and
implementation of the business logic to each micro-frontend. Imagine you have
multiple micro-frontends that are implementing an input field with specific

Vertical-Split Architectures | 53

validation that is simple enough to represent with a regular expression. You
might be tempted to centralize the logic in a common library, but this would
mean enforcing the update of this dependency every time something changes.
Considering the logic is easy enough to represent and the common part would be
using the same regular expression, you can provide this information as a configu-
ration field when the application loads and make it available to all the micro-
frontends via the web storage. That way, if you want to change the regular
expression, you won't need to redeploy every micro-frontend implementing it.
You'll just change the regular expression in the configuration, and all the micro-
frontends will automatically use the latest implementation.

Code Duplication over Wrong Abstractions

Many well-known people in the industry have started to realize that abstracting code
is not always a benefit, especially in the long run. In certain cases, code duplication
brings more benefits to a premature or a hasty abstraction. Moreover, duplicated code
can be easily abstracted if and when needed; it's more challenging to try to move away
from abstractions once theyre present in the code. If you are interested in this topic,
read “The Wrong Abstraction”, a 2016 blog post by Sandi Metz. Kent Dodds's AHA
programming or “Avoid Hasty Abstractions” concept is strongly inspired by the work
Metz describes in his blog and talk. Also, the well-known DRY principle (don’t repeat
yourself) appears to be misapplied by many developers, who just looked in the code
for duplicated lines of code and abstracted them. In the second edition of Pragmatic
Programmer (Addison-Wesley), where the DRY principle was first introduced, the
authors provide a great explanation of this point:

In the first edition of this book we did a poor job of explaining just what we meant by
Don't Repeat Yourself. Many people took it to refer to code only: they thought that
DRY means “don’t copy-and-paste lines of source”

That is part of DRY, but it’s a tiny and fairly trivial part. DRY is about the duplication
of knowledge, of intent. It’s about expressing the same thing in two different places,
possibly in two totally different ways. [emphasis added]

It's important to understand that no solution fits everything. Consider the context
your implementation should represent and choose the best trade-off in the guardrails
you are operating with. Could you have designed the micro-frontends in this way
from the beginning? Potentially, you could have, but the whole point of this architec-
ture is to avoid premature abstractions, optimize for fast delivery, and evolve the
architecture when it is required due to complexity or just a change of direction.

54 | Chapter4: Discovering Micro-Frontend Architectures

https://oreil.ly/s4xcD
https://oreil.ly/VGJwa
https://oreil.ly/VGJwa

Implementing a Design System

In a distributed architecture like micro-frontends, design systems may seem a diffi-
cult feature to achieve, but in reality the technical implementation doesn’t differ too
much from that of a design system in an SPA. When thinking about a design system
applied to micro-frontends, imagine a layered system composed of design tokens,
basic components, user interface library, and the micro-frontends that host all these
parts together, as shown in Figure 4-7.

| Design tokens |

/ | Basic components |

Ul components

| Micro-frontend I

Figure 4-7. How a design system fits inside a micro-frontends architecture

The first layer, design tokens, allows you to capture low-level values to then create the
styles for your product, such as font families, text colors, text size, and many other
characteristics used inside our final user interface. Generally, design tokens are listed
in JSON or YAML files, expressing every detail of our design system.

We don’t usually distribute design tokens across different micro-frontends because
each team will implement them in their own way, risking the introduction of bugs in
some areas of the application and not in others, increasing the code duplication
across the system, and, in general, slowing down the maintenance of a design system.
However, there are situations when design tokens can be an initial step for creating a
level of consistency for iterating later on, with basic components shared across all the
micro-frontends. Often, teams do not have enough space for implementing the final
design system components inside every micro-frontend. Therefore, make sure if you
go down this path that you have the time and space for iterating on the design system.

The next layer is basic components. Usually, these components don't hold the applica-
tion business logic and are completely unaware of where they will be used. As a
result, they should be as generic as can be, such as a label or button, which will pro-
vide the consistency we are looking for and the flexibility to be used in any part of the
application.

Vertical-Split Architectures | 55

This is the perfect stage for centralizing the code that will be used across multiple
micro-frontends. In this way, we create the consistency needed in the UI to allow
every team to use components at the level they need.

The third layer is a UI components library, usually a composition of basic compo-
nents that contain some business logic that is reusable inside a given domain. We may
be tempted to share these components as well, but be cautious in doing so. The gover-
nance to maintain and the organization structure may cause many external depen-
dencies across teams, creating more frustration than efficiencies. One exception is
when there are complex UI components that require a lot of iterations and there is a
centralized team responsible for them. Imagine, for instance, building a complex
component such as a video player with several functionalities, such as closed cap-
tions, a volume bar, and trick play. Duplicating these components is a waste of time
and effort; centralizing and abstracting your code is by far more efficient.

Note, though, that shared components are often not reused as much as we expect,
resulting in a wasted effort. Therefore, think twice before centralizing a component.
When in doubt, start duplicating the component and, after a few iterations, review
whether these components need to be abstracted. The wrong abstraction is way more
expensive than duplicated code.

The final layer is the micro-frontend that is hosting the UI components library. Keep
in mind the importance of a micro-frontends independence. The moment we get
more than three or four external dependencies, we are heading toward a distributed
monolith. That’s the worst place to be because we are treating a distributed architec-
ture like a monolith that we wanted to move away from, no longer creating independ-
ent teams across the organization.

To ensure we are finding the right trade-offs between development speed and inde-
pendent teams and Ul consistency, consider validating the dependencies monthly or
every two months throughout the project life cycle. In the past, I've worked at compa-
nies where this exercise was done every two weeks at the end of every sprint, and it
helped many teams postpone tasks that may not have been achievable during a sprint
due to blocks from external dependencies. In this way, you'll reduce your teams’ frus-
tration and increase their performance.

On the technical side, the best investment you can make for creating a design system
is in web components. Since you can use web components with any UI framework,
should you decide to change the UI framework later, the design system will remain
the same, saving you time and effort. There are some situations in which using web
components is not viable, such as projects that have to target old browsers. Chances
are, though, you won't have such strong requirements and you can target modern
browsers, allowing you to leverage web components with your micro-frontend
architecture.

56 | Chapter4: Discovering Micro-Frontend Architectures

While getting the design system ready to be implemented is half the work, to accom-
plish the delivery inside your micro-frontends architecture, you'll need a solid gover-
nance to maintain that initial investment. Remember, dealing with a distributed
architecture is not as straightforward as you can imagine. Usually, the first implemen-
tation happens quite smoothly because there is time allocated to that. The problems
come with subsequent updates. Especially when you deal with distributed teams, the
best approach is to automate the system design version validation in the continuous
integration (CI) phase. Every time a micro-frontend is built, the package.json file
should check that the design system library is up to date with the latest version.

Implementing this check in CI allows you to be as strict as needed. You may decide to
provide a warning in the logs, asking to update the version as soon as possible, or
prevent artifact creation if the micro-frontend is one or more major versions behind.

Some companies have custom dashboards for dealing with this problem, not only for
design systems but also for other libraries, such as logging or authentication. In this
way, every team can check in real time whether their micro-frontend implements the
latest versions.

Finally, let’s consider the team’s structure. Traditionally, in enterprise companies, the
design team is centralized, taking care of all the aspects of the design system, from
ideation to delivery, and the developers just implement the library the design team
provides. However, some companies implement a distributed model wherein the
design team is a central authority that provides the core components and direction
for the entire design system, but other teams populate the design system with new
components or new functionalities of existing ones. In this second approach, we
reduce potential bottlenecks by allowing the development teams to contribute to the
global design system. Meanwhile, we keep guardrails in place to ensure every compo-
nent respects the overall plan, such as regular meetings between design and develop-
ment, office hours during which the design team can guide development teams, or
even collaborative sessions where the design team sets the direction but the develop-
ers actually implement the code inside the design system.

Developer Experience

For vertical-split micro-frontends, the developer’s experience is very similar to SPAs.
However, there are a couple of suggestions that you may find useful to think about up
front. First of all, create a command line tool for scaffolding micro-frontends with a
basic implementation and common libraries you would like to share in all the micro-
frontends such as a logging library. While not an essential tool to have from day one,
it’s definitely helpful in the long term, especially for new team members. Also, create a
dashboard that summarizes the micro-frontend version you have in different envi-
ronments. In general, all the tools you are using for developing an SPA are still rele-
vant for a vertical-split micro-frontend architecture. We will discuss this topic more

Vertical-Split Architectures | 57

in depth in Chapter 7, where we review how to create automation pipelines for
micro-frontend applications.

Search Engine Optimization

Some projects require a strong SEO strategy, including micro-frontend projects. Let’s
look at two major options for a good SEO strategy with vertical-split micro-
frontends. The first one involves optimizing the application code in a way that is
easily indexable by crawlers. In this case, the developer’s job is implementing as many
best practices as possible for rendering the entire DOM in a timely manner (usually
under five seconds). Time matters with crawlers, because they have to index all the
data in a view and also structure the UI in a way that exposes all the meaningful
information without hiding behind user interactions. Another option is to create an
HTML markup that is meaningful for crawlers to extract the content and categorize it
properly. While this isn't impossible, in the long run, this option may require a bit of
effort to maintain for every new feature and project enhancement.

Another option would be using dynamic rendering to provide an optimized version
of your web application for all the crawlers trying to index your content. Google
introduced dynamic rendering to allow you to redirect crawler requests to an opti-
mized version of your website, usually prerendered, without penalizing the position-
ing of your website in the search engine results (see Figure 4-8).

YES

Static website

Is the user-agent
from a crawler?

v

Application server
(www.acme.com)

Application

shell

Figure 4-8. When a crawler requests a specific page, the application server should
retrieve the user-agent and serve the crawler’s requests to a prerendered version of the
website, otherwise serving the micro-frontend implementation

There are a couple of solutions for serving a prerendered version of your application
to a crawler. First, for the prerendering phase, you can create a customized version of
your website that fetches the same data of the website your users will consume. For
instance, you can create a server-side rendering output stored in an objects storage
that translates a template into static HTML pages at compile time, maintaining the

58 | Chapter 4: Discovering Micro-Frontend Architectures

same user-facing URL structure. Amazon S3 is a good choice for this. You can also
decide to server-side render at runtime, eliminating the need to store the static pages
and serving the crawlers a just-in-time version created ad hoc for them. Although
this solution requires some effort to implement, it allows you the best customization
and optimization for improving the final output to the crawler.

A second option would be using an open source solution like Puppeteer or Render-
tron to scrape the code from the website created for the users and then deploy a web
server that generates static pages regularly.

After generating the static version of your website, you need to know when the
request is coming from a browser and when from a crawler. A basic implementation
would be using a regular expression that identifies the crawler’s user-agents. A good
Node.js library for that is crawler-user-agents. In this case, after identifying the user-
agent header, the application server can respond with the correct implementation.
This solution can be applied at the edge using technologies like AWS Lambda@Edge
or Cloudflare Workers. In this case, CDNs of some cloud providers allow a computa-
tion layer after receiving a request. Because there are some constraints on the maxi-
mum execution time of these containers, the user-agent identification represents a
good reason for using these edge technologies. Moreover, they can be used for addi-
tional logic, introducing canary releases or blue-green deployment, as we will see in
Chapter 6.

Performance and Micro-Frontends

Is good performance achievable in a micro-frontend architecture? Definitely! Perfor-
mance of a micro-frontend architecture, like in any other frontend architecture, is
key for the success of a web application. And a vertical-split architecture can achieve
good performance thanks to the split of domains and, therefore, the code to be
shared with a client.

Think for a moment about an SPA. Typically, the user has to download all the code
specifically related to the application, the business logic, and the libraries used in the
entire application. For simplicity, let'’s imagine that an entire application code is 500
KB. The unauthenticated area, composed of sign-in, sign-up, the landing page, cus-
tomer support, and few other views, requires 100 KB of business logic, while the
authenticated area requires 150 KB of business logic. Both use the same bundled
dependencies that are each 250 KB (see Figure 4-9).

A new user has to download all 500 KB, despite the action having to fulfill inside the
SPA. Maybe one user just wants to understand the business proposition and visits just
the landing page, another user wants to see the payment methods available, or an
authenticated user is interested mainly in the authenticated area where the service or
products are available. No matter what users are trying to achieve, they are forced to
download the entire application.

Vertical-Split Architectures | 59

https://oreil.ly/sB59e

, app.js vendor.js ,
i 250KB 250KB i

Figure 4-9. Any user of an SPA has to download the entire application regardless of the
action they intend to perform in the application

In a vertical-split architecture, however, our unauthenticated user who wants to see
the business proposition on the landing page will be able to download the code just
for that micro-frontend, while the authenticated user will download only the code-
base for the authenticated area. We often don’t realize that our users’ behaviors are
different from the way we interpret the application, because we often optimize the
application’s performance as a whole rather than by how users interact with the site.
Optimizing our site according to user experiences results in a better outcome.

Applying the previous example to a vertical-split architecture, a user interested only
in the unauthenticated area will download less than 100 KB of business logic plus the
shared dependencies, while an authenticated user will download only the 250 KB plus
the shared dependencies.

Clearly a new user who moves beyond the landing page will download almost 500
KB, but this approach will still save some kilobytes if we have properly identified the
application boundaries because it’s unlikely a new user will go through every single
application view. In the worst-case scenario, the user will download 500 KB as they
would for the SPA, but this time not everything up front. Certainly, there is additional
logic to download due to the application shell, but usually the size is only in the dou-
ble digits, making it meaningless for this example. Figure 4-10 shows the advantages
of a vertical-split micro-frontend in terms of performance.

A good practice for managing performance on a vertical-split architecture is intro-
ducing a performance budget. A performance budget is a limit for micro-frontends
that a team is not allowed to exceed. The performance budget includes the final bun-
dle size, multimedia content to load, and even CSS files. Setting a performance budget
is an important part of making sure every team optimizes its own micro-frontend

60 | Chapter4: Discovering Micro-Frontend Architectures

properly and can even be enforced during the CI process. You won't set a perfor-
mance budget until later in the project, but it should be updated every time there
is a meaningful refactoring or additional features introduced in the micro-frontend

codebase.

auth.js catalog.js

20KB 50 KB
—_ Second step:
! download micro-frontend !
v helpjs landingpage.js
30KkB First step: BKB
B . download depen.dencies
vendor.js application-shell.js
i 250KB 15KB |

User looking for
customer support

Figure 4-10. A vertical-split micro-frontend enables the user to download only the appli-
cation code needed to accomplish the action the user is looking for

Time to display the final result to the user is a key performance indicator, and metrics
to track include time-to-interactive or first contentful paint, the size of the final arti-
fact, font size, and JavaScript bundle size, as well as metrics like accessibility and SEO.
A tool like Lighthouse is useful for analyzing these metrics and is available in a
command-line version to be used in the continuous integration process. Although
these metrics have been discussed extensively for SPA optimization, bundle size may
be trickier when it comes to micro-frontends.

With vertical-split architectures, you can decide either to bundle all the shared libra-
ries together or to bundle the libraries for each micro-frontend. The former can pro-
vide greater performance because the user downloads the bundle only once, but
you’ll need to coordinate the libraries to update for every change across all the micro-
frontends. While this may sound like an easy task, it can be more complicated than
you think when it happens regularly. Imagine you have a breaking change on a
specific shared UI framework; you can’t update the new version until all the
micro-frontends have done extensive tests on the new framework version. So while
we gain in performance in this scenario, we must first overcome some organizational

Vertical-Split Architectures | 61

https://oreil.ly/ip4Ap
https://oreil.ly/3aPf5

challenges. The latter solution—maintaining every micro-frontend independently—
reduces the communication overhead for coordinating the shared dependencies but
might increase the content the user must download. As seen before, however, a user
may decide to stay within the same micro-frontend for the entire session, resulting in
the exact same kilobytes downloaded.

Once again, there isn’t right or wrong in any of these strategies. Make a decision on
the requirements to fulfill and the context you operate in. Don’t be afraid to make a
call and monitor how users interact with your application. You may discover that,
overall, the solution you picked, despite some pitfalls, is the right one for the project.
Remember, you can easily reverse this decision, so spend the right amount of time
thinking which path your project requires, but be aware that you can change direc-
tion if a new requirement arises or the decision causes more harm than benefits.

Available Frameworks

There are some frameworks available for embracing this architecture. However,
building an application shell on your own won't require too much effort, as long as
you keep the application shell decoupled from any micro-frontend business logic.
Polluting the application shell codebase with domain logic is not only a bad practice
but also may invalidate all effort and investment of using micro-frontends in the long
run due to code and logic coupling.

Two frameworks that are fully embracing this architecture are single-spa and gian-
kun. The concept behind single-spa is very simple: it’s a lightweight library that pro-
vides undifferentiated heavy lifting for the following:

Registration of micro-frontends
The library provides a root configuration to associate a micro-frontend to a spe-
cific path of your system.

Life cycle methods
Every micro-frontend is exposed to many stages when mounted. Single-spa
allows a micro-frontend to perform the right task for the life cycle method. For
instance, when a micro-frontend is mounted, we can apply logic for fetching an
API. When unmounted, we should remove all the listeners and clean up all
DOM elements.

Single-spa is a mature library, with years of refinement and many integrations in pro-
duction. It’s open source and actively maintained and has a great community behind
it. In the latest version of the library, you can develop horizontal-split micro-
frontends, too, including server-side rendering ones. Qiankun is built on top of
single-spa, adding some functionality from the latest releases of single-spa.

Module Federation may also be a good alternative for implementing a vertical-
split architecture, considering that the mounting and unmounting mechanism,

62 | Chapter4: Discovering Micro-Frontend Architectures

https://single-spa.js.org
https://qiankun.umijs.org
https://qiankun.umijs.org
https://oreil.ly/E5nO2

dependencies management, orchestration between micro-frontends, and many other
features are already available to use. Module Federation is typically used for compos-
ing multiple micro-frontends in the same view (horizontal split). However, nothing is
preventing us from using it for handling vertical-split micro-frontends. Moreover, it’s
a webpack plug-in. If your projects are already using webpack, it may help you avoid
learning new frameworks for composing and orchestrating your project’s micro-
frontends. In the next chapter, we will explore the Module Federation for implement-
ing vertical and horizontal split architectures.

Use Cases

The vertical-split architecture is a good solution when your frontend developers have
experience with SPA development. It will also scale up to a certain extent, but if you
have hundreds of frontend developers working on the same frontend application, a
horizontal split may suit your project better, because you can modularize your appli-
cation even further.

Vertical-split architecture is also great when you want UI and UX consistency. In this
situation, every team is responsible for a specific business domain, and a vertical split
will allow them to develop an end-to-end experience without the need to coordinate
with other teams.

Another reason to choose this architecture pattern is the level of reusability you want
to have across multiple micro-frontends. For instance, if you reuse mainly compo-
nents of your design system and some libraries, like logging or payments, a vertical
split may be a great architecture fit. However, if part of your micro-frontend is repli-
cated in multiple views, a horizontal split may be a better solution. Again, let the con-
text drive the decision for your project.

Finally, this architecture is my first recommendation when you start embracing
micro-frontends because it doesn’t introduce too much complexity. It has a smooth
learning curve for frontend developers, it distributes the business domains to dozens
of frontend developers without any problem, and it doesn’t require huge upfront
investment in tools but more in general in the entire developer experience.

Architecture Characteristics

Deployability (5/5)
Because every micro-frontend is a single HTML page or an SPA, we can easily
deploy our artifacts on a cloud storage or an application server and stick a CDN
in front of it. It’s a well-known approach, used for several years by many frontend
developers for delivering their web applications. Even better, when we apply a
multi-CDN strategy, our content will always be served to our user no matter
which fault a CDN provider may have.

Vertical-Split Architectures | 63

Modularity (2/5)

This architecture is not the most modular. While we have a certain degree of
modularization and reusability, it's more at the code level, sharing components or
libraries but less on the features side. For instance, it’s unlikely a team responsible
for the development of the catalog micro-frontend shares it with another micro-
frontend. Moreover, when we have to split a vertical-split micro-frontend in two
or more parts because of new features, a bigger effort will be required for decou-
pling all the shared dependencies implemented, since it was designed as a unique
logical unit.

Simplicity (4/5)

Taking into account that the primary aim of this approach is reducing the team’s
cognitive load and creating domain experts using well-known practices for front-
end developers, the simplicity is intrinsic. There aren’t too many mindset shifts
or new techniques to learn to embrace this architecture. The overhead for start-
ing with single-spa or Module Federation should be minimal for a frontend
developer.

Testability (4/5)

Compared to SPAs, this approach shows some weakness in the application shell’s
end-to-end testing. Apart from that edge case, however, testing vertical-split
micro-frontends doesn’t represent a challenge with existing knowledge of unit,
integration, or end-to-end testing.

Performance (4/5)

You can share the common libraries for a vertical-split architecture, though it
requires a minimum of coordination across teams. Since it’s very unlikely that
you’ll have hundreds of micro-frontends with this approach, you can easily create
a deployment strategy that decouples the common libraries from the micro-
frontend business logic and maintains the commonalities in sync across multiple
micro-frontends. Compared to other approaches, such as server-side rendering,
there is a delay on downloading the code of a micro-frontend because the appli-
cation shell should initialize the application with some logic. This may impact the
load of a micro-frontend when it’s too complex or makes many roundtrips to the
server.

Developer experience (4/5)

A team familiar with SPA tools won’t need to shift their mindset to embrace the
vertical split. There may be some challenges during end-to-end testing, but all
the other engineering practices, as well as tools, remain the same. Not all
the tools available for SPA projects are suitable for this architecture, so your
developers may need to build some internal tools to fill the gaps. However, the
out-of-the-box tools available should be enough to start development, allowing
your team to defer the decisions to build new tools.

64

Chapter 4: Discovering Micro-Frontend Architectures

Scalability (5/5)

The scalability aspect of this architecture is so great that we can even forget about
it when we serve our static content via a CDN. We can also configure the time-
to-live according to the assets we are serving, setting a higher time for assets that
don’t change often, like fonts or vendor libraries, and a lower time for assets that
change often, like the business logic of our micro-frontends. This architecture
can scale almost indefinitely based on CDN capacity, which is usually great
enough to serve billions of users simultaneously. In certain cases, when you abso-
lutely must avoid a single point of failure, you can even create a multiple-CDN
strategy, where your micro-frontends are served by multiple CDN providers.
Despite being more complicated, it solves the problem elegantly without invest-
ing too much time creating custom solutions.

Coordination (4/5)
This architecture, compared to others, enables a strong decentralization of deci-
sion making, as well as autonomy of each team. Usually, the touching points
between micro-frontends are minimal when the domain boundaries are well
defined. Therefore, there isn’t too much coordination needed, apart from an ini-
tial investment for defining the application shell APIs and keeping them as
domain unaware as possible.

Table 4-1 gathers the architecture characteristics and its associated score for this

micro-frontend architecture.

Table 4-1. Architecture characteristics summary for developing a micro-frontends
architecture using vertical split and application shell as composition and orchestrator

Architecture characteristics Score (1 = lowest, 5 = highest)

Deployability 5/5
Modularity 2/5
Simplicity 4/5
Testability 4/5
Performance 4/5
Developer experience 4/5
Scalability 5/5
Coordination 4/5

Horizontal-Split Architectures

Horizontal-split architectures provide a variety of options for almost every need a
micro-frontend application has. These architectures have a very granular level of
modularization thanks to the possibility to split the work of any view among multiple
teams. In this way, you can compose views reusing different micro-frontends built by
multiple teams inside your organization. Horizontal-split architectures are suggested

Horizontal-Split Architectures | 65

not only to companies that already have a sizable engineering department but also to
projects that have a high level of code reusability, such as a multitenant business-to-
business (B2B) project in which one customer requests a customization or ecom-
merce with multiple categories with small differences in behaviors and user interface.
Your team can easily build a personalized micro-frontend just for that customer and
for that domain only. In this way, we reduce the risk of introducing bugs in different
parts of the applications, thanks to the isolation and independence that every micro-
frontend should maintain.

At the same time, due to this high modularization, horizontal-split architecture is one
of the most challenging implementations because it requires solid governance and
regular reviews for getting the micro-frontends boundaries rights. Moreover, these
architectures challenge the organization’s structure unless they are well thought out
up front. It’s very important with these architectures that we review the communica-
tion flows and the team’s structure to enable the developers to do their job and avoid
too many external dependencies across teams. Also, we need to share best practices
and define guidelines to follow to maintain a good level of freedom while providing a
unique, consolidated experience for the user.

One of the recommended practices when we use horizontal-split architectures is to
reduce the number of micro-frontends in the same view, especially when multiple
teams have to merge their work together. This may sound obvious, but there is a real
risk of over-engineering the solution to have several tiny micro-frontends living
together in the same view, which creates an antipattern. This is because you are blur-
ring the line between a micro-frontend and a component, where the former is a busi-
ness representation of a subdomain and the latter is a technical solution used for
reusability purposes.

Components Versus Micro-Frontends

A good rule of thumb to understand if we are building a component or a micro-
frontend is that, with a component, we tend to extend for different use cases, exposing
multiple properties for covering all the use cases for different scenarios. Instead, with
a micro-frontend, we encapsulate the logic, allowing communication via events.

Moreover, managing the output of multiple teams in the same view requires addi-
tional coordination in several stages of the software development life cycle. Another
sign of over-engineering a page is having multiple micro-frontends fetching from the
same API In that case, there is a good chance that you have pushed the division of a
view too far and need to refactor. Remember that embracing these architectures pro-
vides great power, and therefore we have great responsibility for making the right
choices for the project. In the next sections we will review the different implementa-
tions of horizontal-split architectures: client side, edge side, and server side.

66 | Chapter4: Discovering Micro-Frontend Architectures

Client Side

A client-side implementation of the horizontal-split architecture is similar to the
vertical-split one in that there is an application shell used for composing the final
view. The key difference is that, here, a view is composed of multiple micro-
frontends, which can be developed by the same or different teams. Due to the hori-
zontal splits modular nature, it's important not to fall into the trap of thinking too
much about components. Instead, stick to the business perspective.

Imagine, for example, you are building a video-streaming website and you decide to
use a horizontal-split architecture using a client-side composition. There are several
teams involved in this project; however, for simplicity, we will only consider two
views: the landing page and the catalog. The bulk of work for these two experiences
involve the following teams:

Foundation team
This team is responsible for the application shell and the design system, working
alongside the UX team but from a more technical perspective.

Landing page team
The landing page team is responsible for supporting the marketing team to pro-
mote the streaming service and creating all the different landing pages needed.

Catalog team
This team is responsible for the authenticated area where a user can consume a
video on demand. It works in collaboration with other teams for providing a
compelling experience to the service subscribers.

Playback experience team
Considering the complexity for building a great video player available in multiple
platforms, the company decides to have a team dedicated to the playback experi-
ence. The team is responsible for the video player, video analytics, implementa-
tion of the digital rights management (DRM), and additional security concerns
related to the video consumption from unauthorized users.

When it comes to implementing one of the many landing pages, three teams are
responsible for the final view presented to every user. The foundation team provides
the application shell, footer, and header and composes the other micro-frontends
present in the landing page. The landing page team provides the streaming service
offering, with additional details about the video platform. The playback experience
team provides the video player for delivering the advertising needed to attract new
users to the service. Figure 4-11 shows the relationship between these elements.

Horizontal-Split Architectures | 67

Header » Foundation

Video player » Playback
experience

—» Service
characteristics

[Footer]

Figure 4-11. The landing page view is composed by the application shell, which loads two
micro-frontends: the service characteristics and the playback experience

This view doesn’t require particular communication between micro-frontends, so
once the application shell is loaded, it retrieves the other two micro-frontends and
provides the composed view to the user. When a subscriber wants to watch any video
content, after being authenticated, they will be presented with the catalog that
includes the video player (see Figure 4-12).

In this case, every time a user interacts with a tile to watch the content, the catalog
micro-frontend has to communicate with the playback micro-frontend to provide the
ID of the video selected by the user. When an error has to be displayed, the catalog
team is responsible for triggering a modal with the error message for the user. And
when the playback has to trigger an error, the error will need to be communicated to
the catalog micro-frontend, which will display it in the view. This means we need a
strategy that keeps the two micro-frontends independent but allows communication
between them when there is a user interaction or an error occurs.

68 | Chapter4: Discovering Micro-Frontend Architectures

e)
Header » Foundation

\ J

' \

Video player » Playback

experience

| 7
T — N ——— — N ——— N — S

\ J \\ J \\ J U J \\ J

s N N N N\ N

» (Catalog

v | 7 \ 7 | J | 7

'S N O N N N N

| v | 7 \ 7 J | 7
espe T s R KRR T e

Footer
. 7

Figure 4-12. The catalog view is composed by the application shell, which loads two
micro-frontends: the playback experience and the catalog itself

There are many strategies available to solve this problem, like using custom events or
an event emitter, but we will discuss the different approaches later on in this chapter.
Why wasn’t there a specific composition strategy for this example? Mainly because
every client-side architecture has its own way of composing a view. Also, in this case
we will see, architecture by architecture, the best practice for doing so.

Do you want to discover where the horizontal-split architecture really shines? Let’s
fast-forward a few months after the release of the video-streaming platform. The
product team asks for a nonauthenticated version of the catalog to improve the dis-
coverability of the platform assets, as well as providing a preview of their best shows
to potential customers. This boils down to providing a similar experience of the cata-
log without the playback experience. The product team would also like to present
additional information on the landing page so users can make an informed decision
about subscribing to the service. In this case, the foundation team, catalog team, and
landing page team will be needed to fulfill this request (see Figure 4-13).

Horizontal-Split Architectures | 69

[Header]——> Foundation
— Service
characteristics
T 4)\ 4 3\ 4 N\ 4 3\ ' S
. J VAN J U J L 7
(\ N\ N\ N\)
» (Catalog
. J VAN J U J U 7
s \ N\ N\ N\)
. J U J U J U J J
sefeoziroooeerooeerioiriooieen ot o EERttaERREE
Footer
7

Figure 4-13. This new view is composed by the catalog (owned by the catalog team) and
the marketing message (owned by the landing page team)

Evolving a web application is never easy, for both technical and collaboration reasons.
Having a way to compose micro-frontends simultaneously and then stitching them
together in the same view, with multiple teams collaborating without stepping on
each other’s toes, makes life easier for everyone and enables the business to evolve at
speed and in any direction.

Challenges

As with every architecture, horizontal splits have benefits and challenges that are
important to recognize to ensure theyre a good fit for your organization and projects.
Evaluating the trade-offs before embarking on a development puts you one step
closer to delivering a successful project.

Micro-frontend communication

Embracing a horizontal-split architecture requires understanding how micro-
frontends developed by different teams share information, or states, during the user
session. Inevitably, micro-frontends will need to communicate with each other. For
some projects, this may be minimal, while in others, it will be more frequent. Either

70 | Chapter4: Discovering Micro-Frontend Architectures

way, you need a clear strategy up front to meet this specific challenge. Many develop-
ers may be tempted to share states between micro-frontends, but this results in a
socio-technical antipattern. On the technical side, working with a distributed system
that has shared code with other micro-frontends owned by different teams means
that the shared state requires it to be designed, developed, and maintained by multi-
ple teams (see Figure 4-14).

Team Burrito Team Fajitas Team Tacos
MFEA MFEB MFEC
v v v
Shared state

Figure 4-14. Shared state between multiple micro-frontends represents an antipattern

Every time a team makes a change to the shared state, all the others must validate the
change and ensure it won’t impact their micro-frontends. Such a structure breaks the
encapsulation micro-frontends provide, creating an underlying coupling between
teams that has frequent, if not constant, external dependencies to take care of.

Moreover, we risk jeopardizing the agility and the evolution of our system because a
key part of one micro-frontend is now shared among other micro-frontends. Even
worse is when a micro-frontend is reused across multiple views and a team is respon-
sible for maintaining multiple shared states with other micro-frontends. On the orga-
nization side, this approach risks coupling teams, resulting in the need for a lot of
coordination that can be avoided while maintaining intact the boundaries of every
micro-frontend.

The coordination between teams doesn't stop on the design phase, either. It will be
even more exasperating during testing and release phases because now all the micro-
frontends in the same view depend on the same state that cannot be released inde-
pendently. Having constant coordination to handle instead of maintaining a micro-
frontend’s independent nature can be a team’s worst nightmare. In the microservices
world, this is called a distributed monolith: an application deployed like a microser-
vice but built like a monolith.

Horizontal-Split Architectures | 71

One of micro-frontends’ main benefits is the strong boundaries that allow every team
to move at the speed they need, loosely coupling the organization, reducing the time
of coordination, and allowing developers to take destiny in their hands. In the micro-
services world, to achieve a loose coupling between microservices and therefore
between teams, we use the choreography pattern, which uses an asynchronous com-
munication, or event broker, to notify all the consumers interested in a specific event.
With this approach we have:

« Independent microservices that can react to (or not react to) external events trig-
gered by one or more producers

« Solid, bounded context that doesn’t leak into multiple services
+ Reduced communication overhead for coordinating across teams

« Agility for every team so they can evolve their microservice based on their cus-
tomers’ needs

With micro-frontends, we should think in the same way to gain the same benefits.
Instead of using a shared state, we maintain our micro-frontends’ boundaries and
communicate any event that should be shared on the view using asynchronous mes-
sages, something we’re used to dealing with on the frontend.

Other possibilities are implementing either an event emitter or a reactive stream (if
you are in favor of the reactive paradigm) and sharing it across all the micro-
frontends in a view (see Figure 4-15).

ol 4R

Team Burrito Team Fajitas Team Tacos
MFEA MFEB MFEC
+ + +
State management State management State management

EventEmitter/CustomEvent/Reactive stream

L J

Figure 4-15. Every micro-frontend in the same view should own its own state and
should communicate changes via asynchronous communication using an event emitter
or CustomEvent or reactive streams

72 | Chapter 4: Discovering Micro-Frontend Architectures

In Figure 4-15, Team Fajitas is working on a micro-frontend (MFE B) that needs to
react when a user interacts with an element in another micro-frontend (MFE A), run
by Team Burrito. Using an event emitter, Team Fajitas and Team Burrito can define
how the event name and the associated payload will look and then implement them,
working in parallel (see Figure 4-16).

MFEA MFEB MFEC

EventEmitter

\ J

Figure 4-16. MFE A emits an event using the EventEmitter as a communication bus; all
the micro-frontends interested in that event will listen and react accordingly

When the payload changes for additional features implemented in the platform, Team
Fajitas will need to make a small change to its logic and can then start integrating
these features without waiting for other teams to make any change and maintaining
its independence.

The third micro-frontend in our example (MFE C, run by Team Tacos) doesn’t care
about any event shared in that view because its content is static and doesn’t need to
react to any user interactions. Team Tacos can continue to do its job knowing its part
won't be affected by any state change associated with a view.

A few months later a new team, Team Nachos, is created to build an additional fea-
ture in the application. Team Nachos’ micro-frontend (MFE D) lives alongside MFE
A and MFE B (see Figure 4-17).

MFEA MFEB MFEC MFED

A A

EventEmitter

\ J

Figure 4-17. A new micro-frontend was added in the same view and has to integrate
with the rest of the application reacting to the event emitted by MFE A. Because of the
loose coupling nature of this approach, MFE D just listens to the events emitted by MFE
A. In this way, all micro-frontends and teams maintain their independence.

Horizontal-Split Architectures | 73

Because every micro-frontend is well encapsulated and the only communication pro-
tocol is a pub/sub system like the event emitter, the new team can easily listen to all
the events it needs to for plugging in the new feature alongside the existing micro-
frontends. This approach not only enhances the technical architecture but also pro-
vides a loose coupling between teams while allowing them to continue working
independently.

Once again, we notice how important our technology choices are when it comes to
maintaining independent teams and reducing external dependencies that would
cause more frustration than anything else. As well, having the team document all the
events in input and output for every horizontal-split micro-frontend will help facili-
tate the asynchronous communication between teams. Providing an up-to-date, self-
explanatory list of contracts for communicating in and out of a micro-frontend will
result in clear communication and better governance of the entire system. What these
processes help achieve is speed of delivery, independent teams, agility, and a high
degree of evolution for every micro-frontend without affecting others.

(Clashes with CSS classes and how to avoid them

One potential issue in horizontal-split architecture during implementation is CSS
classes clash. When multiple teams work on the same application, there is a strong
possibility of having duplicate class names, which would break the final application
layout. To avoid this risk, we can prefix each class name for every micro-frontend,
creating a strong rule that prevents duplicate names and, therefore, undesired out-
comes for our users. Block Element Modifier, or BEM, is a well-known naming con-
vention for creating unique names for CSS classes. As the name suggests, we use three
elements to assign to a component in a micro-frontend:

Block
An element in a view. For example, an avatar component is composed of an
image, the avatar name, and so on.

Element
A specific element of a block. In the previous example, the avatar image is an ele-
ment.

Modifier
A state to display. For instance, the avatar image can be active or inactive.

Based on the example described, we can derive the following class names:

.avatar {}

.avatar__1image {}
.avatar__1image--active {}
.avatar__1image--inactive {}

74 | Chapter4: Discovering Micro-Frontend Architectures

http://getbem.com

While following BEM can be extremely beneficial for architecting your CSS strategy,
it may not be enough for projects with multiple micro-frontends. So we build on the
BEM structure by prefixing the micro-frontend name to the class.

For our avatar example, when it's used in the “My account” micro-frontend, the
names become:

.myaccount_avatar {}
.myaccount_avatar__image {}
.myaccount_avatar__image--active {}
.myaccount_avatar__image--inactive {}

Although this makes names long, it guarantees the isolation needed and makes clear
what every class refers to. Any other naming convention for CSS class names you
want to create is also acceptable, but just remember to add prefixes when used with
micro-frontends.

For a good guide to starting with BEM, check out Inna Belaya’s
article “BEM for Beginners: Why You Need BEM” at Smashing
magazine. You can read additional content on the topic at Smashing
as well.

Multiframework approach

Using multiple frameworks isn’t great for vertical-split architectures due to perfor-
mance issues. On horizontal-split architectures, it's even more dangerous. When this
problem is not addressed in the design phase, it can cause runtime errors in the final
view.

Imagine having multiple versions of React in the same view. It does not lead to a great
experience for the user. When the browser downloads two versions for a rendering
view, performance issues can crop up. Consider, too, the potential variables clashing
when we load the libraries or append new components in the view.

There are many ways to address this problem. For instance, iframes create a sandbox
so that what loads inside one iframe doesn’t clash with another iframe. Module Feder-
ation allows you to share libraries and provides a mechanism for avoiding clashing
dependencies. Import maps allow us to define scopes for every dependency so
we can define different versions of the same libraries to different scopes. And web
components can “hide” behind the shadow DOM the frameworks need for a
micro-frontend.

Still, using a multiframework approach is strongly discouraged due to performance
issues. Having more kilobytes to download in order to render a page is not a great
customer experience, and our job as developers and architects should be to provide

Horizontal-Split Architectures | 75

https://oreil.ly/NGTiB
https://oreil.ly/KzYGh
https://oreil.ly/bG4Or

the best user experience possible. Multiframework isn't acceptable in other frontend
architectures, like SPAs, and micro-frontends should not be an exception.

The only acceptable time to use a multiframework strategy is when we have to
migrate a legacy application to a new one, resulting in the micro-frontends being iter-
atively released rather than releasing all at once. In this case, the multiframework
strategy allows you to provide customer value and lowers risks in deploying your
artifacts.

Authentication

Horizontal-split architectures present an interesting challenge when it comes to sys-
tem authentication, because, more often than not, multiple teams are working on the
same view, and they need to maintain a unique experience for the customer. When a
user enters into an authenticated area of a web application, all the micro-frontends
composing the page have to communicate with the respective APIs providing tokens.

Lets say we have three different teams creating a micro-frontend, each composing a
view for the customer. These micro-frontends have to fetch data from the backend,
which is a distributed system composed of multiple microservices (see Figure 4-18).

How can different micro-frontends retrieve and store a token safely without multiple
round trips to the backend? The best option we have is storing the token in the local-
Storage, the sessionStorage, or a cookie. In this case, all the micro-frontends will
retrieve the same token in the defined web storage solution by convention.

Different security restrictions will be applied based on the web storage selected for
hosting the token. For instance, if we use localStorage or sessionStorage, all the
micro-frontends have to be hosted in the same subdomain; otherwise the localStor-
age or sessionStorage where the token is stored won't be accessible. In the case of
cookies, we can use multiple subdomains but must use the same domain.

We also have to consider when we have multiple micro-frontends consuming the
same API with the same request body that it’s very likely that these micro-frontends
can be merged into a unique micro-frontend.

Don’t be afraid to review the domain boundaries of micro-frontends, because they
will evolve alongside the business. Additionally, because there isn't a scientific way to
define boundaries, taking a step back and reassessing the direction taken can some-
times be more beneficial than ignoring the problem. The longer we ignore the prob-
lem, the more disruption the teams will experience. It’s far better to invest time at the
beginning of the project for refactoring a bunch of micro-frontends.

Finally, this approach is applicable also to the vertical-split architecture, and we don’t
even have to be worried about multiple teams looking for a token considering we
load just one micro-frontend per time.

76 | Chapter 4: Discovering Micro-Frontend Architectures

Microservice Microservice Microservice

A B C
Authentication yY x r
service

r

S API gateway

4 4 4
G G G
token token token

1 O :
Lt
MFEA
MFEB MFEC [| i

Figure 4-18. Every micro-frontend in a horizontal-split architecture has to fetch data
from an API passing a JWT token to the backend to validate that the user is entitled to
retrieve the data requested

Micro-frontends refactoring

Another benefit of the horizontal-split architecture is the ability to refactor specific
micro-frontends when the code becomes too complicated to be manageable by a sin-
gle team or a new team starts owning a micro-frontend they didn’t develop. While
you can do this with a vertical split as well, the horizontal-split micro-frontends have
far less logic to maintain, making them a great benefit, especially for enterprise
organizations that have to work on the same platform for many years.

Because every micro-frontend is independent, refactoring the code to make it more
understandable for the team is a benefit because this activity won’t impact anyone else
in the company. While you need to keep tech leadership’s guidelines in mind, refac-
toring a well-designed micro-frontend requires far less time than refactoring a large
monolithic codebase. This characteristic makes micro-frontends more maintainable
in the long run. Additionally, when a complete rewrite is needed, having the domain
experts—the team—in charge of rewriting something they know inside out requires

Horizontal-Split Architectures | 77

significantly less work than rewriting an unfamiliar application from scratch. And
because of the micro-frontends’ nature, you can decide to rewrite them iteratively and
ship them in production to gain immediate benefits of your work, instead of working
for several months before releasing everything all at once.

I'm not encouraging refactoring or rewriting just because they’re easier. But some-
times the team gains additional business knowledge, or they have to implement a tac-
tical solution due to a hard delivery date; making a refactor or a rewrite from scratch
can make life easier in the long run, speeding up new-feature development or reduc-
ing the possibility of bugs in the production environment.

Search Engine Optimization

Dynamic rendering is another valid technique for this architecture, especially when
we decide to use iframes for encapsulating our micro-frontends. In that situation,
redirecting a crawler to an optimized version of static HTML pages helps with the
search engine’s ranking. Overall, what has been discussed so far about dynamic ren-
dering is also valid for client-side horizontal-split architectures.

Developer Experience

The developer experience (DX) of the horizontal-split architecture with a client-side
composition is very similar to the vertical split when a team is developing its own
micro-frontend. However, it becomes more complex when the team needs to test
micro-frontends inside a view with other micro-frontends. The main challenge is
keeping up with the versions and having a quick turnaround for assembling a view
on the developer’s laptop.

As we will describe in Chapter 7, we can use webpack DevServer Proxy for testing
locally, with micro-frontends available in testing, staging, or production environ-
ments. Often, companies that embrace this architecture create tools for improving
their teams’ feedback loop, often in the form of command line tools that can enhance
the standard tools available for the frontend developers’ community, like Rollup, web-
pack, or Snowpack. It's important to note that it’s very likely this architecture will
require some internal investments to create a solid DX. Currently, frameworks and
tools (webpack Module Federation, for instance) are trying an opinionated approach;
while this isn’t necessarily a bad thing, in large companies, additional effort will most
likely be required to maintain the guidelines and standards the tech leadership
designed based on the industry the company operates in.

Maintaining control with effective communication

Although horizontal-split architectures are the most versatile, they also present
intrinsic implementation challenges from an organizational point of view, with
coordinating a final output for the use being the main one. When we have multiple

78 | Chapter 4: Discovering Micro-Frontend Architectures

micro-frontends owned by different teams composed in the same view, we have to
create a social mechanism for avoiding runtime issues in production due to depend-
ency clashes or CSS classes overriding each other. As well, observability tools must be
added to quickly identify which micro-frontends are failing in production and
provide the team with clear information so they can diagnose the issue in their
micro-frontend.

The best way to avoid issues is to keep the communication channels open and main-
tain a fast feedback loop that keeps all teams in sync, such as a weekly or biweekly
meeting with a member from every micro-frontend team responsible for a view.
Synching the work between teams has to happen either in a live meeting or via asyn-
chronous communication, such as emails or instant messaging clients.

We must also reduce the number of teams working on the same page and make one
team responsible for the final output presented to the users. This doesn’t mean that
the team responsible for the final look and feel of a view should do all the work. How-
ever, shared responsibilities often lead to misunderstandings, so having one team lead
the effort creates a better experience for your users.

As we saw in our client-side video player example, we have three teams involved in
delivering the catalog page. It’s very likely that the catalog team would perform any
additional checks on the playback experience because after a user clicks on a movie or
a show, it should play in the video player. In this case, then, the catalog team should
be responsible for the final outcome and should coordinate the effort with the play-
back experience team for providing the best output for their users.

When possible, reducing external dependencies should be a periodic job for an engi-
neer manager or a team lead. Don’t blindly accept the status quo. Instead, embrace a
continuous improvement mindset and challenge the work done so far to find better
ways to serve your customers.

Strongly encourage your teams to document their micro-frontend inputs and out-
puts, the events a micro-frontend expects to receive, and those that will trigger to
keep the teams in sync and to allow the discussion of potential breaking changes.
Especially for the latter case, keeping track of breaking changes using requests for
comments (RFCs) or similar documents is strongly recommended for several rea-
sons. First, it creates asynchronous communication between teams, which is espe-
cially when teams are distributed across time zones. It also maintains a record of
decisions with the context the company was operating in when the decision was
made. Finally, not everyone performs well during meetings; sometimes one person
will monopolize the discussion, preventing others from sharing their opinion. Mov-
ing from verbal to written communications helps everyone have their voice be heard.

Horizontal-Split Architectures | 79

Use Cases

One reason to embrace the horizontal-split architecture is the micro-frontends’
reusability across the application or multiple applications. Imagine a team responsible
for the payment micro-frontend of an ecommerce website, and the micro-frontend
contains different states based on the type of view and payments available. The pay-
ment micro-frontend is present in every view in which the user wants to perform a
payment action, including a landing page, a product detail view, or even a subscrip-
tion page for another product. This situation is applicable at a larger scale on a B2B
application, where similar UX constructs are replicated in several system views.

Another use case for this architecture is for enterprise applications, for which we
often deal with dashboards containing a variety of data that we want to collect into
different views for different purposes, such as financial and monitoring. New Relic
uses this approach to provide monitoring tools for cloud services, as well as a front-
end one that implements micro-frontends for scaling the organization, allowing mul-
tiple teams to contribute different data representations, all collected into a unique
dashboard.

In Figure 4-19, you can see how New Relic divided its application so that a small
number of teams work in the same view, reducing the amount of communication
needed for composing the final view but allowing the team to be well encapsulated
inside its business domain.

[Header J [Header]

MFE1 MFE1
MFE3 ™. view MFE 3y,
-y A
4 4
. J J . J
Team Team
Burrito Nachos

Figure 4-19. New Relic micro-frontend implementation. Every team is responsible for
their own domain, and when a user selects a dashboard, the related micro-frontend is
lazy-loaded inside the application shell.

80 | Chapter4: Discovering Micro-Frontend Architectures

https://oreil.ly/j29Du
https://oreil.ly/j29Du

This approach allows New Relic teams to work on their own micro-frontends, and by
following some contracts for deploying micro-frontends in production, they can see
the final results in their web application.

The final use case for this architecture is when we are developing a multitenant appli-
cation for which the vast majority of the interface is the same but allowing customers
to build specific features to make the software suitable for their specific organization.
For example, let’s say we are developing a digital till system for restaurants, and we
want to configure the tables on the floor on a customer-by-customer basis. The appli-
cation will have the same functionality for every single customer, but a restaurant
chain can request specific features in the digital till system. The micro-frontend team
responsible for the application can implement these features without forking the code
for every customer; instead, they will create a new micro-frontend for handling the
specific customer’s needs and deploy it in their tenant.

Module Federation

Micro-frontend architectures received a great gift with the release of webpack 5: a
new native plug-in called Module Federation. Module Federation allows chunks of
JavaScript code to load synchronously or asynchronously, meaning multiple develop-
ers or even teams can work in isolation and take care of the application composition,
lazy-loading different JavaScript chunks behind the scenes at runtime, as shown in
Figure 4-20.

A Module Federation application is composed of two parts:

The host

Represents the container of one or more micro-frontends or libraries loaded.

The remote
Represents the micro-frontend or library that will be loaded inside a host at run-
time. A remote exposes one or more objects that can be used by the host when
the remote is lazy-loaded into an application.

The part of Module Federation that really shines is the simplicity of exposing differ-
ent micro-frontends, or even shared libraries such as a design system, allowing a sim-
ple asynchronous integration. The developer experience is incredibly smooth. As
when youre working with a monolithic codebase, you can import remote micro-
frontends and compose a view in the way you need.

Horizontal-Split Architectures | 81

MFEA

MFEB
MFEC Chunk97.js Chunk65.js Chunk 3.js

WebPack with

. Module Federation
Application
shell

& o |
—INI =

|
Chunk14.js Chunk 33.js Chunk14.js Chunk 33.js
Chunk10.js Chunk 97.js Chunk 65.js
Chunk83.js
Catalog My account

Figure 4-20. Module Federation allows multiple micro-frontends to be loaded asynchro-
nously, providing the user with a seamless experience

Testing locally or pointing to a specific endpoint online doesn’t make a difference
because we can work in a similar way to handle multiple environments, with webpack
having a common configuration augmented by a specific one for every environment
(test, stage, or production).

Another important feature of webpack with Module Federation is the ability to share
external libraries across multiple micro-frontends without the fear of potential
clashes happening at runtime. In fact, we can specify which libraries are shared across
multiple micro-frontends, and Module Federation will load just one version for all
the micro-frontends using the library.

Imagine that all your micro-frontends are using Vue.js 3.0.0. With Module Federa-
tion, you will just need to specify that Vue version 3 is a shared library; at compile
time, webpack will export just one Vue version for all the micro-frontends using it.
And if you wanted to intentionally work with different versions of Vue in the same

82 | Chapter4: Discovering Micro-Frontend Architectures

project? Module Federation will wrap the two libraries in different scopes to avoid the
clashes that could happen at runtime, or you can even specify the scope for a different
version of the same library using Module Federation APIs.

Module Federation is available not only when we want to run an application fully cli-
ent side but also when we want to use it with server-side rendering. In fact, we can
asynchronously load different components without needing to deploy the application
server that composes the page again and serve the final result to a client request.

Unfortunately, the great simplicity of code sharing across projects is also the weakest
point of this plug-in. When you work in a team that’s not disciplined enough, sharing
libraries, code snippets, and micro-frontends across multiple views can result in a
very complicated architecture to maintain, thanks to the frictionless integration. So
it’s critical to create guidelines that follow the micro-frontend decisions framework in
order not to regret the freedom Module Federation provides.

Performance

With webpack, you can use a long list of official plug-ins to optimize your code when
it is bundled, as well as even more plug-ins from independent developers and compa-
nies on GitHub.

Module Federation benefits from this ecosystem because many of these plug-ins can
manipulate a micro-frontend’s output and work in conjunction with the plug-in. One
of the main challenges we face when working with micro-frontends is how to share
dependencies across this distributed architecture, and Module Federation can help
there too. Let’s say you have multiple teams working in the same application. Each
team owns a single micro-frontend, and the teams have agreed to use the same UI
library for the entire application. You can share these libraries automatically with
Module Federation from the plug-in configuration, and they’ll be loaded only once at
the beginning of the project.

You can also load micro-frontends dynamically inside JavaScript logic instead of
defining all of them in the webpack configuration file.

Optimizing the micro-frontends code from webpack is definitely a great option,
mainly because, while the tool was created for bundling JavaScript, now it can opti-
mize other static assets, such as CSS or HTML files.

With so many organizations and independent developers using webpack, the ecosys-
tem is more alive than ever, and the community-created enhancements are great for
supporting any type of workload.

Horizontal-Split Architectures | 83

Composition

Using Module Federation for a micro-frontend architecture is as simple as importing
an external JavaScript chunk lazy-loaded inside a project. Composition takes place at
runtime either on the client side, when we use an application shell for loading differ-
ent micro-frontends, or on the server side, when we use server-side rendering. When
we load a micro-frontend on an application shell at runtime, we can fetch the micro-
frontend directly from a CDN or from an application server. And the same is true
when we are working with a server-side rendering architecture. In this case, composi-
tion takes place at the origin, and we can load micro-frontends at runtime before
serving them to a client request.

In the next chapter, we will dive deeply into Module Federation composition, provid-
ing more insights into how to achieve horizontal- and vertical-split composition with
code examples.

Shared code

Module Federation makes sharing code very simple, providing a frictionless devel-
oper experience. However, we have to carefully consider why we are embracing
micro-frontends in the first place. This plug-in allows you to have bidirectional shar-
ing across micro-frontends, therefore flattening the hierarchical nature of an applica-
tion where a host micro-frontend can share code with a remote micro-frontend and
vice versa. I tend to discourage this practice because a unidirectional implementation
brings several advantages, such as the following:

o Code is easier to debug, as we know what code is coming from where.
o It’s less prone to errors, as we have more control over our code.

o It's more efficient, as the micro-frontend knows the boundaries of each part of
the system.

In the past, we have seen a similar approach with frontend architecture moving from
a bidirectional data flow to a unidirectional one with the release of Facebook’s Flux,
which made developers’ lives easier and the applications more stable. The same rea-
soning was applied to React and how we deal with props objects injected from the
parent component to one or more child components. Additionally, reactive architec-
tures have fully embraced this pattern with interesting implementations, like Model-
View-Intent (MVI) applied on Elm or Cycle.js.

84 | Chapter4: Discovering Micro-Frontend Architectures

https://oreil.ly/4FflK
https://elm-lang.org
https://oreil.ly/iU68m

Unidirectional Data Flow

One of the more recent and largest revolutions in frontend architecture is the intro-
duction of unidirectional data flow. Compared to previous architectures, such as
Model-View-ViewModel, Model-View-Presenter, or even the popular Model-View-
Controller, unidirectional data flow completely changed the evolution of many state
management systems.

André Staltz’s website is a great resource for seeing how unidirectional data flow was
applied in several recent frontend architectures. Staltz did an amazing job researching
the topic and creating MV, a fully reactive, unidirectional architecture based on Rx]JS
Observables.

Developer experience

Webpack with Module Federation makes developers’ lives easier, especially when
they’re familiar with the main tool. The people behind the plug-in did an incredible
job abstracting all the complexity needed to create a smooth DX, and now developers
can load asynchronously or synchronously shared code in the form of libraries or
micro-frontends. Even better, Module Federation fits perfectly inside the webpack
ecosystem and can be used with other plug-ins or configurations available in the web-
pack configuration file.

By default, this plug-in produces small JavaScript chunks for every micro-frontend,
enabling dependencies to be shared across micro-frontends when specified in the
plug-in’s configuration. However, when we use the optimization capability webpack
offers out of the box, we can instruct the output to use fewer but larger chunks,
maybe dividing our output in vendor and business logic files. These two files can then
be cached in different ways, which is valuable since the business logic will be iterated
more frequently than a project’s external dependencies will be changed or upgraded.

Use cases

Because this plug-in provides such extensive flexibility, we can apply to it any
horizontal- or vertical-split micro-frontend use case. We can compose an application
on the client or server side and then easily route using any available routing libraries
for our favorite UI framework. Finally, we can use an event emitter library or custom
events for communications across micro-frontends. Webpack with Module Federa-
tion covers almost all micro-frontends use cases, providing a great DX for every team
or developer used to working with webpack.

Horizontal-Split Architectures | 85

https://oreil.ly/FAbFi

Architecture characteristics

Deployability (4/5)
Webpack divides a micro-frontend into JavaScript chunks, making them easy to
deploy in any cloud service from any automation pipeline. And because they are
all static files, they are highly cacheable. While we have to handle the scalability
of the application servers responding to any client requests in an SSR approach,
the ease of integration and rapid feedback are definitely big pluses for this
approach.

Modularity (4/5)
This plug-in’s level of modularity is very high, but so is its risk. If we're not care-
ful, we can create many external dependencies across teams; therefore, we have to
use Module Federation wisely to avoid creating organizational friction.

Simplicity (5/5)
WebpacK’s new system solves many problems behind the scenes, but the abstrac-
tion created by Module Federation makes the integration of micro-frontends
very similar to other, more familiar frontend architectures like SPA or SSR.

Testability (4/5)
Although Module Federation offers an initial version of a federated test using Jest
for integration testing, we can still apply unit and end-to-end testing similar to
how we're used to working with other frontend architectures.

Performance (4/5)

With Module Federation, we gain a set of capabilities, such as sharing common
libraries or UI frameworks, that won’t compromise the final artifact’s perfor-
mance. Bear in mind that the mapping between a micro-frontend and its output
files could be one to many, so a micro-frontend may be represented by several
small JavaScript files, which may increase the initial chattiness between a client
and a CDN performing multiple roundtrips for loading all the files needed for
rendering a micro-frontend.

Developer experience (5/5)
This is probably one of the best developer experiences currently available for
working with micro-frontends. Module Federation integrates very nicely in the
webpack ecosystem, hiding the complexity of composing micro-frontends and
enabling the implementation of more traditional features, taking care of tedious
topics like code sharing and asynchronous import of our static artifacts or
libraries.

Scalability (5/5)
Module Federation’s approach makes scaling easy, especially when the application
is fully client side. The static JavaScript chunks easily served via a CDN make this
approach extremely scalable for a vertical-split architecture.

86 | Chapter4: Discovering Micro-Frontend Architectures

Coordination (3/5)
When we follow the decisions framework shared in the first chapters of this book
in conjunction with Module Federation, we can really facilitate the life of our
enterprise organization. However, the accessible approach provided by this plug-
in can lead to abuse of the modularity, resulting in increased coordination and
potential refactors in the long term.

Table 4-2 gathers the architecture characteristics and their associated score for this

micro-frontend architecture.

Table 4-2. Architecture characteristics summary for developing a micro-frontend architecture
using webpack with Module Federation

Architecture characteristics Score (1 = lowest, 5 = highest)

Deployability 4/5
Modularity 4/5
Simplicity 5/5
Testability 4/5
Performance 4/5
Developer experience 5/5
Scalability 5/5
Coordination 3/5
Iframes

Iframes are probably not the first thing that comes to mind in relation to micro-
frontends, but they provide an isolation between micro-frontends that none of the
other solutions can offer.

An iframe is an inline frame used inside a webpage to load another HTML document
inside it. When we want to represent a micro-frontend as an independent artifact
completely isolated from the rest of the application, iframes are one of the strongest
isolations we can have inside a browser. An iframe gives us granular control over
what can run inside it. The less-privileged implementation using the sandbox
attribute prevents any JavaScript logic from executing or any forms from being
submitted:

<iframe sandbox src="https://mfe.mywebsite.com/catalog/">

An iframe gives us access to specific functionalities, combining sandbox with other
sandbox attribute values, such as allow-forms or allow-scripts, to ease the sand-
box attribute restrictions, allowing form submission or JavaScript file execution,
respectively:

<iframe sandbox="allow-scripts allow-forms" «
src="https://mfe.mywebsite.com/catalog"/>

Horizontal-Split Architectures | 87

https://oreil.ly/Q6tIb
https://oreil.ly/Q6tIb

Additionally, the iframe can communicate with the host page when we use the post
Message method. In this way, the micro-frontend can notify the broader application
when there is a user interaction inside its context, and the application can trigger
other activities, such as sharing the event with other iframes or changing part of the
Ul interface present in the host application.

Iframes aren’t new, but they are still in use for specific reasons and have found a place
within the micro-frontend ecosystem. So far, the main use cases for implementing
micro-frontends with iframes are coming from desktop applications and B2B appli-
cations, when we control the environment where the application is consumed. Note,
though, that this approach is strongly discouraged for consumer websites because
iframes are really bad for performance. They are CPU-intensive, especially when
multiple iframes are used in the same view.

A proposal for adding a ShadowRealm, a sandbox like iframes that is lighter and
closer to modern web APIs, is in draft to the TC39, the committee responsible for
evolving the ECMAScript programming language and authoring the specification. A
ShadowRealm object would abstract the notion of a distinct global environment with
its own global object, copy of the standard library, and intrinsics. This is the dynamic
equivalent of a same-origin iframe without DOM. Basically, this is a lighter imple-
mentation of an iframes sandbox with the same isolation capabilities but without the
performance issues that multiple iframes can have when rendered inside the same
view.

We can find a list of use cases where ShadowRealms can be used in the proposal
repository. Sandboxing is just one of them, and there are some interesting scenarios
possible. The proposal may never go beyond the draft stage, but it looks very interest-
ing and could be a great fit for the micro-frontend ecosystem.

Best practices and drawbacks

There are some best practices to follow when we want to compose micro-frontends in
a horizontal split with iframes. First, we must define a list of templates where the
iframes will be placed; having a few layouts can help simplify managing an applica-
tion with iframes (see Figure 4-21).

Using templates allows your teams to understand how to implement their micro-
frontends’ UI and minimizes edge cases thanks to some guardrails to follow.

Try to avoid too many interactions across micro-frontends; too many interactions can
increase the complexity of the code to be maintained. If you need to share a lot of
information across micro-frontends, iframes may not be the right approach for the
project. This architecture allows teams to build their micro-frontends in isolation
without any potential clash between libraries. However, to create a Ul consistency,
you will need to share the design system at build-time.

88 | Chapter4: Discovering Micro-Frontend Architectures

https://oreil.ly/9EJnL
https://oreil.ly/9EJnL
https://oreil.ly/h29kZ
https://tc39.es
https://oreil.ly/UGmNC
https://oreil.ly/UGmNC

Navigation [Navigation Header]

,
N
\
p-

iframe A iframe B iframe Navigation iframe

Layout A Layout B Layout C

Figure 4-21. Different layouts for composing micro-frontends with iframes. Minimizing
the number of iframes in a page would result in better performance despite there being
an intrinsic performance overhead when we integrate one or more iframes into a view.

Using iframes for responsive websites can be challenging, as dealing with a fluid lay-
out with iframes and their content can be fairly complicated. Try to stick with fixed
dimensions as much as you can. If fixed dimensions aren’t possible, one of the other
architectures in this chapter may work better for you.

When you have to store data in webstorage or a cookie, use the webstorage or cookie
in the application shell to avoid issues with retrieving data across multiple iframes. In
this situation, communication between the host page and every micro-frontend living
inside an iframe has to be well implemented and thoroughly tested.

When using a pub/sub pattern between iframes and the host page, you have to share
an event emitter instance between the main actors of a page. To do this, create an
event emitter and append it to the iframe contentWindow object so that you can com-
municate via the emit or dispatch method across all the micro-frontends listening to
it. Alternatively, you can rely on an open source library such as Poster, which
abstracts the communication API between the host and every micro-frontend in an
iframe:

index.js

var iframe = document.getElementById("myIframe");
var poster = new Poster(iframe.contentWindow);

poster.post("msg", "hello, world!");
catalog-mfe.js
var poster = new Poster(window.parent);

poster.on("msg", function (msg) {
console.log("msg = " + msg); // "msg = hello, world"
H;

Frameworks such as Luigi from SAP provide solutions for the pitfalls listed so far,
which we'll discuss in more depth in the “Available framework” section that follows.

Horizontal-Split Architectures | 89

https://oreil.ly/UwZS1

Developer experience

Dealing with iframes makes developers’ lives easier, considering the sandboxed envi-
ronment they use. One of the main challenges of using this approach is with end-to-
end testing, when retrieving objects programmatically across multiple iframes can
result in a huge effort due to object nesting. Overall, a micro-frontend will be repre-
sented by an HTML entry point, with additional resources loaded such as JavaScript
or CSS files—very similar to what we are used to in other frontend architectures, like
SPAs.

Available framework

There aren’t many options available for simplifying the developer experience of
micro-frontends inside iframes; usually we can create an in-house strategy, or you
can use Luigi framework. Luigi from SAP is a micro-frontends framework used for
building intranet applications, which simplifies integration with SAP, but it also can
be used outside an SAP context and provides a set of libraries for managing common
challenges like routing or localization.

The Luigi framework uses iframes for encapsulating micro-frontends and having a
true sandbox around the code. Luigi is the main framework for applications that need
to extract data from SAP and aggregate it in a more user-friendly interface. These
applications are also mainly running in intranet environments, where it’s possible to
control which browser version a micro-frontend application runs in without needing
to index the content on the main search engines. Given these things, iframes are
probably a good fit for using some web standards without the need to create propriet-
ary solutions to handle micro-frontend challenges. In fact, out of the box, Luigi pro-
vides a typical implementation for an enterprise application, composed in two main
parts:

Main view
An application shell that provides an abstraction for handling authentication
integration with an authentication provider, navigation between views, localiza-
tion, and general application settings

Luigi client
A micro-frontend that can interact with the main view via a postMessage mecha-
nism abstracted by the Luigi APIs and several other APIs to allow capabilities like
web storage integration or life cycle hooks

After implementing these two parts, a developer then can implement a micro-
frontend without the risk of interfering with other parts of the application because the
implementation uses iframes to create the requested isolation between key elements
of the architecture (see Figure 4-22).

90 | Chapter4: Discovering Micro-Frontend Architectures

https://oreil.ly/oZFTr

Luigi.js API

!

Product details

Navigation frame

Micro-frontends container
Product form

Luigi client

Luigi main view

Web application

Figure 4-22. A micro-frontend architecture (at left) with the Luigi framework is com-
posed of two parts: the main view and a Luigi client. The Luigi.js API provides an
abstraction for common operations, such as communication between a micro-frontend
and the host.

Use cases

Iframes are definitely not the solution for every project, yet iframes can be handy in
certain situations. Iframes shine when there isnt much communication between
micro-frontends and we must enforce the encapsulation of our system using a sand-
box for every micro-frontend. The sandboxes release the memory, and there won't be
dependency clashes between micro-frontends, removing some complexities of other
implementations.

Drawbacks include accessibility, performance, and lack of indexability by crawlers, so
best use cases for iframes are in desktop, B2B, or intranet applications. For example,
Spotify used to use iframes to encapsulate its micro-frontends in desktop applica-
tions, preventing teams from leaking anything outside an iframe while allowing com-
munication between them via events. That helps a desktop application to not
download all the dependencies for rendering a micro-frontend; they are all available
with the executable download. If you have a desktop application to develop, then, and
multiple teams will contribute to specific domains, iframes might be a possible solu-
tion. (Note that Spotify recently decided to add its web modular architecture to the
desktop application to unify the codebase and allow reusability across multiple
targets.)

Many large organizations also use iframes in intranet applications as strong security
boundaries between teams. For instance, when a company has dozens of teams
working on the same project and it wants to enforce the teams independence,

Horizontal-Split Architectures | 91

https://oreil.ly/qg6GJ

iframes could be a valid solution to avoid code or dependency clashes without creat-
ing too many tools to work with.

Imagine you have to build a dashboard where multiple teams will contribute their
micro-frontends, composing a final view with a snapshot of different metrics and
data points to consult. Iframes can help isolate the different domains without the risk
of potential clashes between codebases from different teams. They can even prevent
specific features inside an iframe using the sandbox attribute.

The final use case is when we have to maintain a legacy application that isn't actively
developed but is just in support mode and it has to live alongside the development of
a new application, which will both have to be presented to users. In this case, the leg-
acy application can be easily isolated in an iframe living alongside a micro-frontends
architecture without the risk of polluting it.

Architecture characteristics

Deployability (5/5)
The deployability of this architecture is nearly identical to the vertical-split one,
with the main difference being we will have more micro-frontends in the hori-
zontal split because we will be dealing with multiple micro-frontends per view.

Modularity (3/5)
Iframes provide a good level of modularity, thanks to the ability to organize a
view in multiple micro-frontends. At the same time, we will need to find the right
balance to avoid abusing this characteristic.

Simplicity (3/5)
For a team working on a micro-frontend, iframes are not difficult. The challenge
is in communicating across iframes, orchestrating iframe sizes when the page is
resized without breaking the layout. In general, dealing with the big picture in
absence of frameworks may require a bit of work.

Testability (3/5)
Testing in iframes doesn’t have any particular challenges apart from the one
described for horizontal-split architectures. However, end-to-end testing may
become verbose and challenging due to the DOM tree structure of iframes inside
a view.

Performance (2/5)
Performance is probably the worst characteristic of this architecture. If not man-
aged correctly, performance with iframes may be far from great. Although
iframes solve a huge memory challenge and prevent dependency clashing, these
features don’t come free. In fact, iframes aren’t a solution for accessible websites
because they aren’t screen-reader-friendly. Moreover, iframes don’t allow search

92 | Chapter4: Discovering Micro-Frontend Architectures

engines to index the content. If either of these is a key requirement for your
project, it’s better to use another approach.

Developer experience (3/5)

The iframes DX experience is similar to the SPA one. Automation pipelines are
set up in a similar manner, and final outputs are static files, like an SPA. The
main challenge is creating a solid client-side composition that allows every team
working with micro-frontends to test their artifacts in conjunction with other
micro-frontends. Some custom tools for speeding up our teams DX may be
needed. The most challenging part, though, is creating end-to-end testing due to
the DOM replication across multiple iframes and the verbosity for selecting an
object inside it.

Scalability (5/5)
The content served inside an iframe is highly cacheable at the CDN level, so we
won't suffer from scalability challenges at all. At the end, we are serving static
content, like CSS, HTML, and JavaScript files.

Coordination (3/5)
As with all horizontal-split architectures, it’s important to avoid too many teams
collaborating in the same view. Thanks to the sandbox nature of iframes, code
clashes aren’t a concern, but we can’t have interactions spanning across the screen
when we have multiple iframes, because coordinating these kinds of experiences
is definitely not suitable for this architecture.

Table 4-3 gathers the architecture characteristics and their associated score for this
micro-frontend architecture.

Table 4-3. Architecture characteristics summary for developing a micro-frontend architecture
using horizontal split and iframes

Architecture characteristics Score (1 = lowest, 5 = highest)

Deployability 5/5
Modularity 3/5
Simplicity 3/5
Testability 3/5
Performance 2/5
Developer experience 3/5
Scalability 5/5
Coordination 3/5

Horizontal-Split Architectures | 93

Web Components

Web components are a set of web platform APIs that allow you to create custom,
reusable, and encapsulated HTML tags for use in web pages and web apps. You may
argue that web components are not the first thing that comes to mind when thinking
about micro-frontends. However, they have interesting characteristics that make web
components a suitable solution for building micro-frontend architecture. For
instance, we can encapsulate our styles inside web components without fear of leak-
ing in the main application. As well, all the major UI frameworks, like React, Angular,
and Vue, are capable of generating web components, and the number of open source
libraries to simplify creating this web standard is increasing, particularly with projects
like Svelte, which can compile to web components, and LitElement from Google. Web
components are also great tools for creating shared libraries for micro-frontend
projects used with the same or different UI framework. In fact, in several 2019 sur-
veys about the state of frontend development, web components were one of the most
used solutions for building micro-frontends. They play a pivotal role in micro-
frontend architecture, either for sharing components across micro-frontends or for
encapsulating micro-frontends.

Web components technologies

Web components consist of three main technologies, which can be used together to
create custom elements with encapsulated functionality that can be reused wherever
you like without fear of code collisions.

Custom elements
They are an extension of HTML components. We can use them as containers of
our micro-frontends, allowing us to interact with the external world via callbacks
or events, for instance. Moreover, we can configure exposed properties to config-
ure our micro-frontends accordingly when needed.

Shadow DOM
A set of JavaScript APIs for attaching an encapsulated “shadow” DOM tree to an
element, rendered separately from the main DOM. In this way, you can keep an
element’s features private, so they can be scripted and styled without the fear of
collision with other parts of the document.

HTML templates
The template and slot elements enable you to write markup templates that are
not displayed in the rendered page. These can then be reused multiple times as
the basis of a custom elements structure.

Among these three technologies, custom elements and shadow DOM are those that
make web components useful for micro-frontend architectures. Both elements allow
encapsulation of the code needed in a subdomain without affecting the application

94 | Chapter4: Discovering Micro-Frontend Architectures

shell. Custom elements are used as wrappers of a micro-frontend, while the shadow
DOM allows us to encapsulate the micro-frontend’s styles without causing them to
override another style of micro-frontend.

An important aspect to consider when we are working with web components as
wrappers of our micro-frontends is avoiding domain logic leaks. The moment we are
allowing the container of our micro-frontends, wrapped inside web components, to
customize their behaviors, we are exposing the domain logic to the external world,
causing the container of a micro-frontend to know how to interact with a specific API
contract via attributes.

It’s essential to make sure the communication between a micro-frontend wrapped by
a web component and the rest of the view happens in a decoupled and unified way.
We may risk blurring the line between components and micro-frontends, where the
former should be open to extension, while the latter should be close to extension but
open to communication.

Compatibility challenges

Before choosing web components for our next micro-frontend project, we need to
take into consideration if the requirements are suitable for them. When we have to
target many versions of web browsers, including the old ones and Internet Explorer,
the only option provided by web components are polyfills. There are two ways for
integrating polyfills for web components. The first is including them all. The package
size would be quite large, but you are bulletproof, extending the retrocompatibility of
your code for older browsers. The second option is loading at runtime only the poly-
fills needed. In this case, the package size is by far smaller, but it could require a bit of
time before loading the right polyfills, considering we have to identify which ones are
needed on the browser in which we are running the application.

Another compatibility challenge to be aware of is that there are some bugs on WebKit
engine that affect web components’ customized built-in elements. Also, older versions
of Safari (7 and 8, for instance) don’t support importNode or cloneNode methods for
appending HTML templates to the DOM. For more information about the web com-
ponents’ fragmentation across all the major browsers divided by vendor and version,
I recommend checking out the Can I Use website.

SEO0 and web components

When our micro-frontend project requires search engine optimization, dealing with
web components may be nontrivial. In fact, the best way to allow a crawler indexing
the content rendered inside a web component is exposing its content in the light
DOM:

Horizontal-Split Architectures | 95

https://oreil.ly/ypFGt
https://oreil.ly/vIM7J
https://oreil.ly/ESH4s

<my-account-mfe>
<h2>Welcome to My Account</h2>
</my-account-mfe>

In this way, the vast majority of the crawlers available worldwide would be capable of
indexing the content of your application. The usage of content inside the shadow
DOM is discouraged when you deploy an application that should not be indexed only
by major search engines like Google. Therefore, when a SEO is a key requirement for
your micro-frontend project, dynamic rendering can be an option if you have to use
web components.

Use cases

Embracing web components for your micro-frontend architecture is a great choice
when you need to support multitenant environments. Given their broad compatibil-
ity with all the major frameworks, web components are the perfect candidate for use
in multiple projects with the same or different frontend stack, as with multitenant
projects. In multitenant projects, our micro-frontends should be integrated in multi-
ple versions of the same application or even in multiple applications, which makes
web components a simple, effective solution.

Lets say your organization is selling a customer-support solution in which the chat
micro-frontend should be live alongside any frontend technology your customers
use. Web components can also play an important role in shared libraries. In a design
system, for instance, using a web standard allows you to evolve your applications
without having to start from scratch every time, because part of the work is reusable
no matter what direction your tech teams or business will take. This is a great invest-
ment to make.

Architecture characteristics

Deployability (4/5)
Loading web components at runtime is easily doable. We just need a CDN for
serving them, and they can then be integrated everywhere. They are also easy to
integrate with compile time integration; we add them as we import libraries in
JavaScript. Although technically you can render them server side, the DX is not
as sleek as other solutions proposed by UI frameworks like React.

Modularity (3/5)
Web components’ high degree of modularity allows you to decompose an appli-
cation into well-encapsulated subdomains. Moreover, because they are a web
standard, we can use them in several situations without too many problems when
we operate inside browsers that support them. The risk of using them as a micro-
frontend wrapper is that it can confuse new developers who are joining a project,
blurring the line between components and micro-frontends. This often results in

96 | Chapter4: Discovering Micro-Frontend Architectures

»1

a proliferation of “micro-frontends
nano-frontends.

in a view, but probably we should call them

Simplicity (4/5)
Using web components should be a simple task for anyone who is familiar with
frontend technologies. The main challenge is not splitting our micro-frontends
too granularly. Because web components can also be used for building compo-
nent libraries, the line between micro-frontends and components can be blurred.
However, focusing on the business side of our application should lead us to cor-
rectly identify micro-frontends from components in our applications.

Testability (4/5)
Leveraging different testing strategies using web components doesn’t present too
many challenges, but we have to be familiar with their APIs. Web components’
APIs differ from UI frameworks, making it challenging to do what we are used to
doing with our favorite framework.

Performance (4/5)
One of the main benefits of web components is that we are extending HTML
components, meaning we aren’t making them extremely dense with external code
from libraries. As a result, they should be one of the best solutions for rendering
your micro-frontends client side.

Developer experience (4/5)
The DX of your projects shouldn’t be too different from your favorite framework.
You have to learn another framework to simplify your life, though there aren’t
too many differences in the development life cycle, especially in the syntax, but
that’s why there are web component frameworks for simplifying the developer’s
life.

Scalability (5/5)
Whether we implement our web components at compile or runtime, we will be
delivering static files. A simple infrastructure can easily serve millions of custom-
ers without the bother of maintaining complex infrastructure solutions to handle
traffic.

Coordination (3/5)
The main challenge is making sure we have the micro-frontends’ granularity
right, because this will impact application delivery speed and avoid external
dependencies that may lead to developer frustrations. We need to have a strong
sense of discipline when identifying what is represented by a component or by a
micro-frontend.

Table 4-4 gathers the architecture characteristics and their associated score for this
micro-frontend architecture.

Horizontal-Split Architectures | 97

Table 4-4. Architecture characteristics summary for developing a micro-frontends
architecture using web components

Architecture characteristics Score (1 = lowest, 5 = highest)

Deployability 4/5
Modularity 3/5
Simplicity 4/5
Testability 4/5
Performance 4/5
Developer experience 4/5
Scalability 5/5
Coordination 3/5
Server Side

Horizontal-split architectures with a server-side composition are the most flexible
and powerful solutions available in the micro-frontend ecosystem, thanks to cloud,
which is the perfect environment for developers wanting to focus on the value stream
more than infrastructure operationalization. In the cloud, we have the agility to spin
up the infrastructure as requests increase and reduce it again when traffic goes back
to normal. We can also set up our baseline without too many headaches, focusing on
what really matters: the value created for our users.

Server-side composition is usually chosen when our applications have a strong
requirement for SEO because this technique speeds up the page load time and the
page is fully rendered without the need of any JavaScript logic. Server-side rendering
also helps with the position of your application on search engine results pages, con-
sidering every search engine takes into account the page load speed.

In a server-side composition, the final view is created on the server side, where we
can control the speed of the final output using techniques like caching in different
layers (e.g., in a service, in-memory, or CDN), reducing the hops between services to
retrieve all the micro-frontends, as well as the type of compute used for running the
logic to compose our micro-frontends. Nowadays we have all the tools and resources
needed to impact how fast a view is composed and served to our users.

Many of the challenges described in the horizontal split with client-side composition
are challenges on the server side too, so rather than repeating them here, let’s focus on
a few additional challenges this approach creates.

Scalability and response time

Despite the infrastructure flexibility cloud provides, we have to set up the infrastruc-
ture correctly in the first place based on our application’s traffic patterns. While a
cloud provider’s auto-scaling functionalities can help you to achieve this goal, the

98 | Chapter4: Discovering Micro-Frontend Architectures

type of compute layer you choose will affect how fast you can ramp up your applica-
tion. Containers are faster to run than virtual machines, and managed containers like
serverless ones delegate the operationalization of our infrastructure to the cloud pro-
vider, so we just need to focus on comparing different services’ implementations and
plug-and-play options to achieve our goals.

Of course, not all web applications behave in the same way, so there’s a risk that our
chosen auto-scaling solution will not be fast enough to copy with our specific traffic
surges. A classic example would be the beginning of Black Friday sales or a global live
event available only on our platform. In these cases, we would need to ensure that we
meet the predictive load by manually increasing our solution’s baseline infrastructure
before the users join our platform.

Another challenge we face with this architecture is understanding how we can speed
up the response time of services and maybe microservices, and whether we need to
consume them every time or if we can cache the response for specific micro-
frontends instead of embracing eventual consistency. An in-memory cache solution
like Redis can be a great ally in this situation, allowing us to store the microservice
response for a short time, thereby increasing our micro-frontend composition’s
throughput. We can also store the entire micro-frontend DOM inside an in-memory
cache and fetch it from there instead of composing it every time.

Alternatively, we can use a CDN, which can increase a web page’s delivery speed,
reducing the latency between the client and the content requested.

Latency, response time, cache eviction, and similar metrics become our measure of
success in these situations, but creating the right infrastructure is not a trivial process,
especially when there is a lack of knowledge or experience.

Infrastructure ownership

Composition layer ownership is another challenge with this architecture. In the best
implementations, a cross-functional team of frontend and backend developers work
together to manage the micro-frontend composition layer end to end. In this way,
they can collaborate on the best outputs at the composition layer level, improving
how data flows through it.

Some companies may decide to split the composition layer from micro-frontend
development. The risk here is that a frontend developer will be working in a silo,
requiring additional mechanisms to keep the teams in sync to consolidate the inte-
gration of the two layers. Frontend developers must clearly understand whats going
on in the composition layer and be able to help enhance it on code, infrastructure,
monitoring, and logging levels. In this way, they can optimize the micro-frontend
code written based on the implementation made in the composition layer.

Horizontal-Split Architectures | 99

Composing micro-frontends

Composing micro-frontends in a server-side architecture may deviate from what we
have seen till now, but deviations are in the details, not the substance. As we can see
from Figure 4-23, the typical architecture is composed of three layers.

MFEA MFEB MFE C MFED

v

Micro-frontends composer

Client

Figure 4-23. A typical high-level architecture for a server-side micro-frontend architec-
ture, where a composer is responsible for stitching together the different micro-frontends
at runtime. A CDN can be used for offloading traffic to the origin.

The three layers are as follows:

Micro-frontends
These can be deployed as static assets, maybe prepared at compile time during
the automation pipeline, or as dynamic assets in which an application server pre-
pares a template and its associated data for every user’s requests.

Composer
This layer is used to assemble all the micro-frontends before returning the final
view to a user. In this case, we can have an NGINX or HTTPd instance for lever-
aging SST’s directives or a more complex scenario leveraging Kubernetes and cus-
tom application logic for stitching everything together.

100 | Chapter 4: Discovering Micro-Frontend Architectures

CDN
Whenever possible, you should add a CDN layer in front of your application
server in order to cache as many requests as possible. And if you can cache a page
for a few minutes, you can offload a lot of traffic from the composer and increase
your web application’s performance, thanks to the shorter roundtrip for the
response.

Many frameworks out there will do the undifferentiated heavy lifting of implement-
ing this type of architecture. To choose the best one for your project, you’ll have to
understand the project’s business goals to evaluate the frameworks against the busi-
ness requirements and architecture characteristics you aim for.

In the next section, I'll cover some of these frameworks so that you can see how they
align with the pattern described above. However, every framework emphasizes differ-
ent aspects than others, and not all the DXs are first class, so you may end up invest-
ing more time streamlining the DX before realizing the expected outcome from your
chosen framework.

Micro-frontend communication

When you choose the server-side approach, you likely won't have many communica-
tions inside the view but instead have communication between the view and the APIs.
This is because at the end, the page will reload after every significant user action on it.
Still, there are situations in which one micro-frontend has to notify another that
something happened in the session, such as a user adding a product to the cart. The
micro-frontend that owns the domain will need to show the new product on a drop-
down to show the user that the change was made in the cart. To accomplish this, we
will add some logic on the frontend, and, using an event emitter or custom event, we
will keep the micro-frontends loosely coupled while allowing them to communicate
when something happens inside the application. In Figure 4-24, we can see how this
mechanism works in practice:

1. A user adds a product to the cart. This event is communicated to the backend,
which acknowledges the added product within the user’s session.

2. The product micro-frontend notifies the checkout experience micro-frontend
that a new product was added to the cart.

3. The checkout experience micro-frontend fetches the new list of products in the
cart and displays the new information in the UL

Horizontal-Split Architectures | 101

Products MFE Checkout experience MFE APIs

| User adds product ID: ABC123 to the cart
|

|

:

| |
1 2000K ettt et e s e e e e e !

|

|

1

|

|

|

|

|

|
1 Notify a new product was added to the cart

Request the list of productsin the cart

'« Response with products list
... ,

| BumB up the total :
1number of products w
linthe cart !
| |
|
|

Products MFE Checkout experience MFE APIs

Figure 4-24. An example of how the product’s micro-frontend notifies the checkout expe-
rience micro-frontend to refresh the cart interface when a user adds a product to the cart

There aren’t many of these types of interactions per view in most web applications, so
the code won’t negatively impact performance or the maintainability of the final
solution.

Available frameworks

Some of the available frameworks for this category include Podium, Mosaic, Puzzle.js,
and Ara Framework, with Mosaic probably being one of the most famous because it
was one of the first open source frameworks to embrace this architecture style.
Mosaic is really a collection of frameworks and tools made famous by Zalando, a
fashion ecommerce site, one of the first to leverage the concept of micro-frontends.
There are many forks of Tailor.js, the tool used to stitch together different HTML
fragments in the Mosaic suite, which testifies how good the solution was. As of publi-
cation time, however, Zalando had decided to create a new version of Mosaic with a
more opinionated approach based on React and GraphQL.

To implement a micro-frontend architecture with a server-side composition, we
explore the high-level architectures of a couple other frameworks that are currently in
use by American Express (Amex), OpenTable, and Skyscanner, well-known brands
that decided to scale their organizations and frontend development using micro-
frontends. Then we'll spend some time revisiting a well-known approach, SSI, since it
falls in this category and there are still organizations leveraging this approach for
their micro-frontend applications.

102 | Chapter4: Discovering Micro-Frontend Architectures

https://podium-lib.io
https://www.mosaic9.org
https://oreil.ly/eXf6w
https://oreil.ly/AtnzZ

Amex released the open source project OneApp, a Node.js server used for serving
server-side rendered micro-frontends on a single HTML page by using Holocron
modules, another open source project from Amex. Every module represents a micro-
frontend implementation with a set of utilities for simplifying the development expe-
rience, as well as for augmenting existing libraries such as Redux for store
management. The view is a combination of Holocron modules called the Holocron
roots.

As we can see in Figure 4-25, when a user requests a page, OneApp retrieves the asso-
ciated root module, triggering the retrieval of the associated micro-frontends in order
to render the final view. Next, the view is server-side rendered and served to the user.
For performance reasons, the OneApp server periodically pulls the modules map
JSON from the CDN, storing it in memory as a fast way to retrieve the module asso-
ciated with a view without introducing too much latency in every request.

(m(ftiﬁ?(;g'ule) Sign-in MFE Sign-up MFE

v

Holocron registry

A

ModulesMap.json CDN

?

ModulesMap.json request
]

OneApp
7\

acme.com

Client

Figure 4-25. Holocron is a server-side rendering system for micro-frontends

The pain point of this architecture is the use of Redux as global state management for
sharing the application state between micro-frontends. As discussed, every micro-
frontend should be completely independent, but in Holocron this isn't the case.
Instead, custom events are used for communication between micro-frontends.

Horizontal-Split Architectures | 103

Although this isn’t the most common communication technique for React applica-
tions, it’s definitely a step closer to fully embracing micro-frontend principles. And
because Holocron modules can be stored anywhere and don’t necessarily need to be
retrieved from a CDN, a virtual machine, an object storage, or a container may also
be a suitable solution.

OpenComponents is another micro-frontend framework for server-side horizontal-
split architectures. This opinionated framework provides several features out of the
box, including prewarming of a CDN via runtime agents, a micro-frontend registry,
and tools for simplifying the DX. Every micro-frontend is encapsulated inside a com-
putational layer completely isolated from the others. This approach enables each team
to focus on the implementation of their own domain without taking into account the
entire application. Moreover, every micro-frontend has a set of utilities, such as
observability, monitoring, or dashboards. For managing burst traffic at specific times
of the day, such as from a constant flow of people reserving tables at restaurants, the
traffic prewarming the CDN in use is offloaded every time a new micro-frontend is
created or when a change to an existing one is made (see Figure 4-26).

Micro-f;\ontend Micro-féontend Micro-frontend

v

OpenComponents registry

y

OpenComponents

CDN runtime agent

A

Figure 4-26. The OpenComponents architecture shows how a server-side rendered
micro-frontend is flowing from development to an environment

Interestingly, OpenComponents allows not only server-side rendering but also client-
side rendering, so you can choose the right technique for every use case. When SEO
is a key goal of a project, for example, you can choose SSR, while when you need a
more SPA-like experience, you can use client-side rendering. Once again, you can see
how all these frameworks had to make an investment in the developer experience to
accelerate their adoption. As you compare frameworks, keep in mind that the vast
majority of the time, these frameworks were built by midsize to large organizations,
for which the final benefits definitely overcame the initial investment of resources
and time.

104 | Chapter 4: Discovering Micro-Frontend Architectures

https://oreil.ly/0ETxx

SSI are used for dividing a final view into multiple parts, usually called fragments,
that are composed by a server before returning a static page to the client request.
Back in the 1990s, SSI were used to decouple an HTML page’s static content from
other parts that may or not have been dynamic. SSI have directives—placeholders
that the server interprets in order to perform a specific action on a page. That action
might be including a micro-frontend or running logic, like including different frag-
ments based on specific parameters, such as providing different Uls based on the user
status.

SSI directives look like this:
<!--# include virtual="acme.com/mfe/catalog" -->

In particular, the include directive is very important for micro-frontends because
when the server interprets this directive, it will add the fragment into the final DOM.
Figure 4-27 summarizes how the logic applied by a server, like NGINX or HTTPd,
composes micro-frontends using SSI.

Client Server Micro-frontends

| I
| Home-pagerequest |

n!

|
1 Server fetches the home-page container
|

'€ Home-page response

v

L
loop J[Serverretrieves all the MFEs to include]

|
1Server fetches another micro-frontend and adds it to the home page

|
' _ Micro-frontend response

)

v

Home-page response

Client Server Micro-frontends

Figure 4-27. The sequence diagram shows how a client request is handled by a server
when SSI are used

When a client requests a page, the server retrieves the page containing the different
directives. The server interprets all the directives and fetches the different fragments
in parallel. When the directives are fully loaded, the server returns the final response
to the client.

Clearly, when a fragment takes time to return, the page’s time to the first byte is affec-
ted. Luckily for us, we can set up timeouts as well as stub content to replace a frag-
ment that times out or returns an empty body. Another challenge of this approach is
avoiding overlaps in our CSS classes. As discussed before, creating prefixes for every

Horizontal-Split Architectures | 105

class can help avoid undesired outcomes for your customers. Finally, it'’s important to
highlight that SSI won't enrich your user’s website experience, so you will need to add
some JavaScript logic to the page to run on the client side if you want the benefits of
both s and page interactivity.

The main benefit of SSI is the server-side composition of the final page, which makes
it easier for a search engine crawler to index the page. This is a plus for all server-side
composition frameworks, but considering SSI were created several years ago, we can
say they were the first technique to integrate this feature out of the box.

Use cases

The typical use cases for this architecture are business-to-consumer (B2C) websites,
for which the content has to be highly discoverable by search engines, or B2B solu-
tions with modular layouts, such as dashboards where the user interface doesn’t
require too many drifts in the layout, as with a customer-facing solution. A tangible
example of these types of implementations is OpenTable, an online restaurant-
reservation service company based in San Francisco, with offices all over the world.
The platform contains a host of tools that streamline the DX, making it easy to build
micro-frontends thanks to OpenComponents.

This architecture is recommended for B2B applications, with many modules that are
reused across different views. It's important, however, that full stack or backend devel-
opers with the appropriate skills facilitate the introduction of this implementation.
This architecture generally isn't a good choice for very interactive, fluid layouts,
mainly due to the coordination needed across teams to create a cohesive final result
or when there are bugs in production that may require more effort in discovering
their root cause.

Architecture characteristics

Deployability (4/5)
These architectures may be challenging when you have to handle burst traffic or
with high-volume traffic. When we decide to deploy a new micro-frontend, we’ll
also likely have to deploy some API to fetch the data, creating more infrastruc-
ture and configuration to handle. To limit the extra work and avoid production
issues, automate repetitive tasks as much as possible.

Modularity (5/5)
This architecture key characteristic is the control we have over not only how we
compose micro-frontends but also how we manage different levels of caching
and final output optimization. Because we can control every aspect of the front-
end with this approach, it's important to modularize the application to fully
embrace this approach.

106 | Chapter 4: Discovering Micro-Frontend Architectures

Simplicity (3/5)
This architecture isn’t the easiest to implement. There are many moving parts,
and observability tools on both the frontend and backend need to be configured
so that you’ll understand what’s happening when the application doesn’t behave
as expected. Taking into account the architectures seen so far, this is the most
powerful and the most challenging, especially on large projects with burst traffic.

Testability (4/5)
This is probably the easiest architecture to test, considering it doesn’t differ too
much from server-side rendering applications. There may be some challenges
when we expect every micro-frontend to hydrate the code on the client side
because we'll have some additional logic to test, but since we're talking about
micro-frontends, it won’t be too much additional effort.

Performance (5/5)
With this implementation, we have full control of the final result being served to
a client, allowing us to optimize every single aspect of our application, down to
the byte. That doesn’t mean optimization is easier with this approach, but it defi-
nitely provides all the possibilities needed to make a micro-frontend application
highly performant.

Developer experience (3/5)

There are frameworks that provide an opinionated way to create a smooth devel-
oper experience, but it’s very likely you will need to invest time creating custom
tools to improve project management and introducing dashboards, additional
command line tools, and so on. Also, a frontend developer may need to boost
their backend knowledge, learning how to run servers locally, scale them in pro-
duction, work in the cloud or on premises efficiently, manage the observability of
the composition layer, and more. Full stack developers are more likely to
embrace this approach but not always.

Scalability (3/5)

Scalability may be a nontrivial task for high-volume projects because you’ll need
to scale the backend that composes the final view to the user. A CDN can work,
but you will have to deal with different levels of caching. CDNs are helpful with
static content, but less so with personalized ones. Moreover, when you need to
maintain a low response latency and you aren’t in control of the API you are con-
suming, you will have another challenge to solve on top of the scalability of the
micro-frontend composition layer.

Coordination (3/5)
Considering all the moving parts included in this architecture, the coordination
has to be well designed. The structure has to enable different teams to work
independently, reducing the risks of too many external dependencies that can

Horizontal-Split Architectures | 107

jeopardize a sprint and cause frustration for developers. Furthermore, developers
have to keep both the big picture and the implementation details in mind, mak-
ing the organization structure a bit more complicated, especially with large
organizations and distributed teams.

Table 4-5 gathers the architecture characteristics and their associated score for this

micro-frontend architecture.

Table 4-5. Architecture characteristics summary for developing a micro-frontend architecture
using horizontal split and server-side composition

Architecture characteristics Score (1 = lowest, 5 = highest)

Deployability 4/5
Modularity 5/5
Simplicity 3/5
Testability 4/5
Performance 5/5
Developer experience 3/5
Scalability 3/5
Coordination 3/5

Edge Side

Edge Side Includes, or ESI, was created in 2001 by companies like Akamai and Ora-
cle. It's a markup language used for assembling different HTML fragments into an
HTML page and serving the final result to a client. Usually, ESI is performed at the
CDN level, where it offers great scalability options because of the CDN’s architecture.
Different points of presence across the globe serve every user requesting static con-
tent. Every request is redirected to the closest point of presence, reducing the latency
between the user and where the content is stored. Additionally, because CDNs are
great for caching static assets, this combination of capillarity across the globe and
cacheability makes ESI a potential solution for developing micro-frontends that don’t
require dynamic content, such as catalog applications.

Another alternative for using ESI is using proxies like NGINX or Varnish, both of
which offer ESI implementations. Unfortunately, ESI specifications are not fully sup-
ported everywhere. We often find only a subset of the features available in CDN pro-
vider or a proxy solution, which may compromise the flexibility needed for a
business, reducing the possibility of the frontend architecture evolution. Moreover,
the frontend community hasn’t embraced this standard as it has with others, such as
React, Vue, or Angular. The fragmentation between vendors, the lack of tools, and the
friction on the developer experience have all played a pivotal role in the adoption of
this technology.

108 | Chapter 4: Discovering Micro-Frontend Architectures

Implementation details

As we said, every micro-frontend is composed with an HTML page as entry point
with either a reverse proxy or a CDN provider. ESI language and composition are
very similar to SSI, except that the markup is interpreted before the page is served to
a client. ESI is composed by a template containing multiple fragments that represent,
in this case at least, our micro-frontends. Here are the main functionalities:

Inclusion
ESI can compose pages by assembling included content, which is fetched from
the network. The template uses transclusion to replace the placeholder tag within
it with the micro-frontend it has retrieved.

Variable support
ESI supports the use of variables based on HTTP request attributes. These vari-
ables can be used by ESI statements or written directly into the processed
markup.

Conditional processing
ESI allows conditional logic with Boolean comparisons to influence how a tem-
plate is processed.

Exception and error handling
ESI allows you to handle errors or exceptions with alternative content to create a
smoother user experience.

This is how ESI looks before being served to a browser:

<html>

<body>

Welcome to MFE with ESI

<esi:include src="https://www.myorigin.com/MFE_A.html"/>

<esi:include src="https://www.myorigin.com/MFE_B.html"/>

</body>

</html>
When the markup language is interpreted, the final result will be a static HTML page
completely renderable by a browser.

Transclusion

ESI uses a technique called transclusion for including existing content inside a new
document without the need to duplicate it. In early 2000, this mechanism was used to
reduce the cut-and-paste process that every developer was using to create web pages.
Now we can use it to reuse content and generate new views based on simple con-
structs like conditional processing or variable support. This provides a useful mecha-
nism to reduce the time it takes to build websites despite the poor developer
experience.

Horizontal-Split Architectures | 109

Client-side includes (CSI) also leverage transclusion, such as the h-include. Applying
transclusion inside the browser uses the same logic for interpreting an ESI tag. In
fact, each <h-include> element will create a request to the URL and replace the
innerHTML of the element with the response of the request. Using CSI with EST will
help supplement ESI’s limitation, adding the possibility of serving dynamic content
inside a predefined template. In this way, we can use ESI to leverage a CDN’s scalabil-
ity. When we further combine this with JavaScript’s ability to load HTML fragments
directly on the client side, we can make our websites far more interactive.

Challenges

While ESI may seem like a viable option, there are some challenges to be aware of.
First, ESI specifications are not implemented in all CDN providers or proxy servers
the way Varnish and NGINX are. This lack of adoption increases the chance that you
will have to evolve your infrastructure in the future. Your web application requires a
certain resilience, and if you are considering a multi-CDN strategy, ESI probably
won't be the right solution for you.

Another problem that ESI won't solve is the integration of dynamic contents. Let’s say
you want to integrate personalized content in your micro-frontends. A caching strat-
egy won't help because you may end up with a list of personalized content per user,
and segmenting your content for a group of users may result in segments too large to
be meaningfully cached by a CDN. In these cases, ESI should be integrated in con-
junction with JavaScript running inside the browser and consuming some APIs.
Depending on the business requirements, you might also use the CSI transclusion
mechanism. CSI leverages the same mechanism as ESI but on the client side, so that
once the application is loaded inside a browser, a JavaScript code will scan the DOM
to find and replace tags and then mount new DOM elements instead of the place-
holders. However, you may want to just load some DOM elements or even some
external JavaScript files that would run the logic to render personalized content inside
an ESI application. Obviously, all these roundtrips may impact micro-frontend appli-
cation performance, so you'll want to find the right balance to implement micro-
frontends with a combination of ESI and CSI, and you’ll need to spend the time
finding the best way to stitch everything together.

Last but not least, ESI doesn’t shine for a frictionless developer experience, with the
poor adoption contributing to the lack of investment in this markup language.

Developer experience

The DX is one of ESI’s main challenges. It’s very important to create a smooth, func-
tional environment for developers so that they can concentrate on developing new
features, hardening algorithms, and, in general, striving in their daily job. However,
ESI requires developers to use different tools to ensure the final result is the one
expected by the user.

110 | Chapter 4: Discovering Micro-Frontend Architectures

https://oreil.ly/cWgCr

Imagine we decide to embrace ESI and use Akamai for handling the transclusion at
the CDN level. Akamai implements the full specifications for using ESI, but how
would you test that locally? Akamai offers an ESI test server provided as a Docker
container for local development and for integration with your automation pipelines.
The testing server mimics the Akamai servers’ behaviors when receiving a request,
fetching the page to serve, interpreting the ESI tags, and serving the final HTML page
to a browser. Other CDN providers don’t implement the entire specification, so you
risk using a technique that could end up with false positives and invalidate the quick
feedback loop for your developers.

Finally, this architecture is not widely embraced by the frontend community, result-
ing in a lack of documentation, tools, and support compared to more modern solu-
tions described in this chapter.

Use cases

One of the main use cases for edge-side composition is for managing large static web-
sites where multiple teams are contributing to the same final application. The IKEA
catalog was implemented in some countries using a combination of ESI and CSI in
this way.

Another potential application would be using ESI for the static part of a website and
serving the rest with micro-frontends rendered at client side. This technique is also
known as micro-caching, but it is complicated to put in place as well as to debug.
Because of the poor developer experience, not many companies have implemented
this technology, and despite its age, it has never seen the mainstream.

Architecture characteristics

Deployability (3/5)

Similar to the client-side composition, this approach guarantees an easy deploy-
ment and artifacts consumptions via CDN. Because we are talking about a hori-
zontal split, we need to increase the effort of managing potential network errors
that would prevent a micro-frontend from being composed on the CDN level.
Finally, not all the CDN supports ESI, which could be a problem in the long run
for your project, especially when you have to change CDN providers. However,
managing multiple environments and deploying micro-frontends in local envi-
ronment is not a smooth experience.

Modularity (4/5)
Transclusion facilitates modular design, so we can reuse micro-frontends in mul-
tiple pages. ESI becomes even more interesting when mixed with CSI, covering
the static parts with ESI and the more dynamic ones with CSI.

Horizontal-Split Architectures | 111

https://oreil.ly/tBS78

Simplicity (2/5)
If horizontal-split architectures can become quite complex in the long run, the
edge-side ones can be even more complex because of the poor developer experi-
ence and the need of a CDN or Varnish to test your code.

Testability (3/5)
ESI doesn't shine in testing either. Unit testing may be similar to what we’re used
to implementing for other architectures, but to implement an integration and
end-to-end testing strategy, we need to rely on a more complex infrastructure,
which could slow down the feedback loop for a team.

Performance (3/5)
Since ESI is a composition on the CDN level most of the time, the application can
have great performance out of the box thanks to the cache for static content.
However, we need to consider that when a micro-frontend hangs due to network
issues, none of the pages will be served until the request timed out—not exactly
the best customer experience.

Developer experience (2/5)

The DX of any solution is a key factor in adoption; the more complicated a solu-
tion is, the less developers will embrace it. ESI is definitely a complicated solu-
tion. To locally test your implementation, you will need a Varnish, NGINX, or
Akamai testing server inside a virtual machine or a docker container. And if you
are using a CDN, be ready for a long feedback loop on whether your code is
behaving correctly. There are other tools available, but it’s still a clunky experi-
ence compared to the other architectures.

Scalability (4/5)
If your project is static content, ESI is probably one of the best solutions you can
have, thanks to the composition at the CDN level. And with a mix of static and
dynamic content, using ESI in conjunction with CSI, the scalability of your solu-
tion will be bulletproof.

Coordination (3/5)
Edge-side composition allows you to leverage micro-frontend principles, allow-
ing you to have independent teams and artifacts. However, due to the poor DX,
you may need more coordination across teams, especially when there are changes
in the production environment that affect all the teams. Similar to the recom-
mendation for server-side composition, plan your team structure accordingly
and be sure to iterate to validate decisions.

Table 4-6 gathers the architecture characteristics and their associated score for this
micro-frontend architecture.

112 | Chapter4: Discovering Micro-Frontend Architectures

Table 4-6. Architecture characteristics summary for developing a micro-frontends
architecture using horizontal split and edge-side composition

Architecture characteristics Score (1 = lowest, 5 = highest)

Deployability 3/5
Modularity 4/5
Simplicity 2/5
Testability 3/5
Performance 3/5
Developer experience 2/5
Scalability 4/5
Coordination 3/5
Summary

In this chapter, we have applied the micro-frontend decisions framework to multiple
architectures. Defining the four pillars (defining, composing, routing, and communi-
cating) offered by the micro-frontends decisions framework helps us to filter our
choices and select the right architecture for a project. We have analyzed different
micro-frontend architectures, highlighting their challenges and scoring the architec-
ture characteristics so that we can easily select the right architecture based on what
we have to optimize for. Finally, because we understand that the perfect architecture
doesn’t exist, we realized that we have to find the less worse architecture based on the
context we operate in. In the next chapter, we will analyze a technical implementation
and focus our attention on the main challenges we may encounter in a micro-
frontend implementation.

Summary | 113

CHAPTER 5
Micro-Frontend Technical Implementation

In this chapter, we will use the micro-frontend decisions framework to build a basic
ecommerce website using one of the technical approaches discussed in Chapter 4. As
we've discussed, there isn't a one-size-fits-all solution when it comes to architecture.
The project’s goals, the organization’s structure and communications, and the techni-
cal skills available with the company are some of the factors we have to consider when
we need to choose an approach.

After identifying the context we'll operate in, we can use the micro-frontend deci-
sions framework to help define the key pillars for our architecture’s technical direc-
tion. Instead of creating the same example in multiple frameworks, I'll focus on
helping you build the right mental model, which will allow you to master any micro-
frontend framework rather than memorizing only one or two of the options available.

We will definitely explore some code, but I will stress the importance of understand-
ing why a decision is made. This way, despite the approach and framework you use in
your next project, you will be able to decide what the right direction is, independent
of how familiar you are with a specific micro-frontend framework.

Remember the old saying “Give a man a fish, and you feed him for a day. Teach a man
to fish, and you feed him for a lifetime”? Let’s learn to fish.

The Project

Our project is an internal swag ecommerce website for an enterprise organization.
The site is composed of several subdomains, including:

» Login

» Payment

115

o Swag catalog

o Account management
« Employee support

« FAQ

For our example in this chapter, we'll use only three of them: authentication, catalog,
and account management. The ecommerce site must have a consistent user interface
so that users will have a cohesive experience while they shop for their favorite swag.
We will have several teams responsible for delivering this project. To hit the project
deadline, the tech department decides to reuse an internal engine developed for its
B2C ecommerce solutions. It's a monolithic backend architecture that’s been battle-
tested after several years of development and hardening in production environments.
However, the tech department wants to move away from siloing the frontend and
backend expertise, so it decides to use micro-frontends and to set up independent
teams responsible for a subdomain of the new ecommerce site. It will also use back-
end developers to rearchitect the backend using microservices and incorporate agility
at the business and technical levels.

The next step is to assign the teams responsible for the different subdomains:

o Team Sashimi will be responsible for the authentication subdomain. Because this
is an internal ecommerce site, the team will implement the sign-in form using the
centralized authentication system available, which employees use to access every
system inside the organization. It will also be responsible for the user authentica-
tion and personal details for the account details micro-frontend. One team mem-
ber will be a full stack developer, and the rest will focus on the backend
integration with Microsoft Active Directory (AD).

o Team Maki will own the core domain—the swag catalog. It’s the largest team and
will be responsible for the main user experience. The team will be split between
frontend and backend developers.

o Team Nigiri will cover the payments subdomain. It will integrate different pay-
ment methods, such as credit cards and PayPal.

The flow we'll implement is composed of three sections. Figure 5-1 shows that the
authentication and catalog micro-frontends will be vertical-split micro-frontends,
while the account management will be composed of two horizontal-split micro-
frontends. We can have just one developer working on the authentication frontend
because the heavier part of the implementation is on the backend. For the catalog,
however, we want a richer user experience, so we will have a team with deep knowl-
edge of frontend practices. Finally, because account management is an intersection of
different subdomains, the two teams responsible for those subdomains will help
develop this view.

116 | Chapter 5: Micro-Frontend Technical Implementation

https://oreil.ly/KgqEp

[Header] [Header] [Header]

Account details

| micro-frontend |:

N sgnin - Catalogand |
Navigation|| . % htend Navigation ce_ltalt?fgde:alls:1 Navigation | Payment details |}
micro-fronten il micro-frontend |

My account

Application shell Application shell Application shell

Figure 5-1. The swag ecommerce sections: sign-in, catalog with product details, and
account management

Following the micro-frontend decisions framework and testing their assumptions

with proof of concepts, the teams have decided to use:

A hybrid approach for identifying micro-frontends

Instead of using either a horizontal or vertical split for the whole project, the
teams decided to use the right approach for each subdomain. A vertical split is
more suitable for achieving the business requirements for authentication and the
catalog, while a horizontal split for the account management subdomain fulfills
the business need to have multiple subdomains.

A client-side composition

A client-side composition supports the requirements of the internal ecommerce
site and is within the team’s skill sets. This composition also allows future evolu-
tions to other platforms, like a desktop application and even a progressive web
application.

Client-side routing

Once we decide to use client-side composition, the decisions framework helps us
easily decide that the routing should happen on the client side as well. We also
have to consider that there will be two types of routing: a global routing handled
by the micro-frontend container (also called the application shell), which will be
responsible for routing between micro-frontends, and a local routing inside the
catalog subdomains, where the Maki team will develop micro-frontends with
multiple views.

Communication between micro-frontends embracing decisions framework suggestions

Again following the decisions framework suggestions, the team will use web
storage for sharing the JSON web token (JWT) needed for consuming authenti-
cated APIs. Because the account management view will have two micro-
frontends and could have more in the future, we want to maintain the teams and
the artifacts independently from each other. As a result, we'll use an event emitter

The Project | 117

to communicate between micro-frontends present in the same view, defining up
front the events triggered by every micro-frontend and the related payload.

The technology chosen for the ecommerce site is webpack with Module Federation.
After several proofs of concept, the teams felt that Module Federation would provide
everything they needed to successfully release this project. The main reasons for
embracing Module Federation over other solutions are:

Existing webpack knowledge
Webpack is widely used inside the organization. Many developers have used this
JavaScript bundler for other projects, so they don’t have to learn a new frame-
work. Module Federation fits nicely in their technology stack, considering it’s just
a plug-in of a well-known tool for the company.

Client-side composition
With the micro-frontend composition based on the client side, Module Federa-
tion will provide a simple way to asynchronously load JavaScript bundles. It was
developed initially for this specific use case and then extended to server-side ren-
dering, so if in the future the requirements change, the teams will be able to
change the micro-frontend implementation while maintaining Module Federa-
tion as stable assets for the evolution of their platform.

A seamless developer experience
The teams have significant expertise with webpack. As well, the implementation
in the automation pipeline and the local development tools remain the same, so
it’s a great way for the teams to be immediately productive.

Module Federation was chosen for specific reasons for this project. For other projects,
Module Federation may or may not be the right choice. When we are designing an
architecture, we have to think about the trade-offs before blindly selecting a technol-
ogy. Analyze your team structures, developers’ skills, the tech stack used in other
projects by the company, and the projects business goals before deciding which
micro-frontend architecture is suitable for your use case. After analyzing the context
youre working in, use the micro-frontend decisions framework to create a solid
foundation for future decisions for your project.

Module Federation 101

Before jumping into the technical implementation, we need to understand a few basic
concepts to appreciate the reasoning behind some technical decisions. Module Feder-
ation allows a JavaScript application to dynamically run code from another bundle or
build on both the client and server. It’s a plug-in available for webpack 5 and to some
extent for webpack 4 and Rollup, with limited functionalities. Module Federation
provides two key concepts that we have to understand before working with it:

118 | Chapter5: Micro-Frontend Technical Implementation

Host
The container that loads shared libraries, micro-frontends, or components at
runtime

Remote
The JavaScript bundle we want to load inside a host

As we can see in Figure 5-2, a host can load multiple remotes. In our case, the host
represents the application shell, while a remote represents a micro-frontend.

- ~
(A
Remote
L J
(3
Remote
\ J
(Y 4 Y
Remote Remote
. J \ J
| J
Host

Figure 5-2. Module Federation is composed of two key elements: the host, which is
responsible for loading some JavaScript bundles at runtime, and the remote, which is
responsible for any type of JavaScript bundles, such as shared libraries, micro-frontends,
or even components

With Module Federation, sharing can be bidirectional, allowing a remote to share
parts or the whole bundle with a host and vice versa. However, bidirectional sharing
can complicate your architecture very quickly. The best approach is sharing unidirec-
tionally, so that a host never shares anything with remotes. This makes debugging
easier and will reduce the potential for domain leaks to the host, which could cause
design coupling between hosts and remotes.

Behind the scenes, Module Federation orchestrates two webpack plug-ins: Container-
Plugin and ContainerReferencePlugin. The first is responsible for creating a container
to asynchronously load and synchronously evaluate a module, while the second is
responsible for overriding the container created as placeholder with the remote mod-
ule and making the code acting as present in the initial bundle.

Module Federation 101 | 119

Leveraging this architecture allows us to not only specify remotes in the webpack
configuration but also load them using JavaScript in our code. For instance, we can
fetch the routes from an API and generate a dynamic view of remotes based on the
user’s country or role.

Because Module Federation is a webpack plug-in, we can use other webpack capabili-
ties to optimize our code in the best way for our project. For instance, Module Feder-
ation creates many JavaScript chunk files by default, but we may prefer a less chatty
implementation for our remote, loading just two or three files. In this case, we could
use the MinChunkSizePlugin that forces webpack to slice the chunks with a minimum
of kilobytes per file. We could also use the DefinePlugin to replace variables in your
code with other values or expressions at compile time. Using this plug-in, we can
easily create some logic to provide the right base path when we are testing code
locally or when it’s running on our development environments. Combined with other
plug-ins available in the webpack ecosystem, Module Federation can be a powerful,
suitable way to tweak your outputs for your context.

Meanwhile, the frontend community has started to embrace Module Federation for
their projects, and new dedicated tools are being released to improve the developer
experience, including dashboards for understanding the relations between shared
dependencies across remotes like Atriom and a live reloading plug-in to use in con-
junction with Module Federation.

We should have enough Module Federation knowledge to dive deeply into the imple-
mentation details. The project we're exploring here shares many of the configurations
available for Module Federation in a micro-frontend project. For more details, check
out the official documentation.

Technical Implementation

Now that we've reviewed the context where the application will be developed and
applied the decisions framework and selected the technical strategy, it’s time to look at
the implementation details. The swag ecommerce repository is available on GitHub,
so you can review the entire project or clone and play with it. I intentionally devel-
oped the example without any server interaction so that you can run it locally without
any external dependencies.

Just to recap, the application is composed of an application shell that is available dur-
ing the entire user’s session, loading different micro-frontends, such as the authenti-
cation, the catalog, and the account management micro-frontends. For the
technology stack, the teams chose React with webpack and Module Federation, ena-
bling every team to create independent micro-frontends. Using Module Federation,
they can share common dependencies and load them only once during a user’s

120 | Chapter 5: Micro-Frontend Technical Implementation

https://oreil.ly/XHstO
https://oreil.ly/LvYkc
https://oreil.ly/pEnOx
https://oreil.ly/wnRKo
https://oreil.ly/E5nO2
https://oreil.ly/dMnO2

session. This creates a seamless experience for users without compromising developer
experience. Let’s dive deeply into the key aspects of the main parts of this application.

Project Structure

Before going ahead with the case study, I want to say a few words on the structure I
created for the swag ecommerce project. When you clone the repository, you will see
multiple folders, as shown in Figure 5-3.

modulefederation

> [accountdetails

> @ appshell

> [l catalogue

> [myaccount

* [paymentdetails
> [signin

Figure 5-3. The swag ecommerce project folder structure

Every folder represents an independent project. Because they are present in the same
repository, this is a monorepo approach, but they could easily be extracted in a poly-
repo approach. More information about the differences between these two versions of
control strategies is covered in Chapter 6.

All the folders have the same structure, as you can see in Figure 5-4.

~ [signin
> | dist
> [node_modules
B package-lock.json

B package.json
> M sre

B webpack.config.js

Figure 5-4. Micro-frontend structure

Technical Implementation | 121

Every micro-frontend folder contains the following:

dist folder
After building a micro-frontend, we can find all the optimized files to be
deployed in an environment.

node_modules folder
This folder contains all the micro-frontend dependencies.

package.json
This file gathers all the metadata about the project and defines functional
attributes of the project that npm uses to install dependencies, run scripts, and
identify the entry point to our package.

src folder
This folder contains all the micro-frontend business logic.

webpack.config.js
This file is the webpack configuration used to configure the Module Federation
plug-in for serving our micro-frontends.

This is really a typical JavaScript project folder structure; Module Federation doesn't
require you to change the way you usually work. It orchestrates all the dependencies
and the logic for loading and removing dependencies behind the scenes without you
having to change your favorite folder structure.

Application Shell

As described before, the application shell is present for the entire user’s session. Con-
sidering it's necessary for orchestrating micro-frontends and doesn't fit in with any
business subdomain, the teams decided to assign implementation of the shell to a
new team formed by principal engineers, called Sasazushi. Because building this part
of the system won't require a lot of effort and maintenance should be minimal, thanks
to the fact that the application shell doesn’t own any business domain, the principal
engineers were chosen to be on this team as well as their main teams.

Sasazushi is responsible for:

+ Avoiding domains leak in the application shell
« Implementing the global routing between micro-frontends
« Making sure the micro-frontends are mounted and unmounted correctly

« Generating the cross-domain dependencies in one or multiple JavaScript chunks

Additionally, because the team is composed of principal engineers, the team will be
responsible for the overall performance of the system, creating such mechanisms as

122 | Chapter5: Micro-Frontend Technical Implementation

recurring meetings with the teams to share optimization best practices or review spe-
cific bottlenecks they identify during the performance assessment.

Let’s start analyzing the webpack configuration. Since Module Federation is a web-
pack plug-in, we just need to import it as we would any other JavaScript library:

const { ModuleFederationPlugin } = require('"webpack").container;

The most basic webpack configuration is composed by an entry file, an output folder,
and the mode we want our code transpiled to, such as development or production:

module.exports = {
entry: "./src/index",
mode: "development",
output: {
publicPath: "auto",

1,
// additional configuration

}
Then usually we add rules to support specific language features. For instance, before
ES6 was available in browsers, we would have had to transpile specific features, like
generators, in code that browsers would interpret. In our case, we are using Babel
with the React preset to add JSX support:

/) ...
module: {
rules: [
{
test: /\.jsx?$/,
loader: "babel-loader",
exclude: /node modules/,
options: {
presets: ["@babel/preset-react"],
1,
1,
1,
}
/) ...

However, the most important part for our micro-frontend architecture is configuring
Module Federation to load remote micro-frontends. Since the application shell is the
container for our micro-frontends, it’s the host, to use Module Federation vocabulary.
That means we'll have to configure all the remote micro-frontends we want to lazy-
load inside our application shell. In our example, the plug-in was configured like that
in the following code snippet:

plugins: [
new ModuleFederationPlugin({
name: "AppShell",

Technical Implementation | 123

https://oreil.ly/xPYtn

remotes: {
MyAccount: "MyAccount@http://localhost:3004/remoteEntry.js",
Catalog: "Catalog@http://localhost:3002/remoteEntry.js",
SignIn: "SignIn@http://localhost:3003/remoteEntry.js"
// you can also specify a remote entry from a web server URL
//SignIn:"SignIn@http://www.mysite.com/signin/remoteEntry.js"
1,
shared: {

react: {

singleton: true,

1,
"react-dom": {
singleton: true,

1,
"react-router-dom": {
singleton: true

%ématerial-ui/core”: {

singleton: true

%ématerial—ui/icons”: {

singleton: true

}

}
H
1
}

After defining the name—in this case AppShell—in a host, we list all the remotes we
want to load in our application inside the remote object. Every remote is composed of
an ID and the URL where a JavaScript file that contains a map of all the JavaScript
chunks generated for that micro-frontend will be fetched from; these two values are
separated by an @ symbol. Looking at our configuration, we see that the catalog
micro-frontend has an ID called Catalog and a local URL like http://localhost:3002/
remoteEntry.js. This means that when the application shell loads the catalog micro-
frontend, Module Federation will fetch the remoteEntry.js file to understand which
JavaScript chunks have to be loaded and which dependencies are shared, right after it
loads our code from a remote server. In this case, the server is running in our devel-
opment environment, but it can easily be a remote URL, like what we see in the com-
mented code for the sign-in micro-frontends.

The next part of the plug-in’s configuration specifies which libraries we want to share
across the micro-frontends. When we work with other micro-frontend frameworks,
we have to consider how to share dependencies across micro-frontends.

Oftentimes developers will create an independent repository to commit the shared
libraries and dependencies to. They then create a new automation pipeline for build-
ing and deploying the shared code and create a governance on updates responsibility,
package dimensions, rollback and deployment strategy, and so on. With Module

124 | Chapter5: Micro-Frontend Technical Implementation

Federation, though, we just have to specify the dependencies we want to share in
every remote and host. In our case, that’s all the micro-frontends and the application
shell. Then webpack and Module Federation will create multiple JavaScript files,
downloading them only once for every user’s session across all micro-frontends.

It may seem obvious but, trust me, it'’s not always the case. The simplicity Module
Federation provides when we attempt to optimize our micro-frontends is really
phenomenal.

Defining shared libraries in the Module Federation configuration is as simple as pre-
sented in the following code snippet:

/.

shared: {
react: {
singleton: true,

}’
"react-dom": {
singleton: true,

1,
"react-router-dom": {
singleton: true

1.

"@material-ui/core": {
singleton: true

1,

"@material-ui/icons": {
singleton: true

}

}

/...

In the shared object, we list all the libraries we want to share. We can also use the
Module Federation advanced APIs for the following:

« Loading the library just once, using the singleton property, as in our example

 Loading all the shared libraries before the application code is fetched, using
eager property

« Configuring the version of the libraries to be loaded, using the requiredversion
property

« Configuring the variable name and the scope in which a shared library should be
instantiated, using shareKey and shareScope properties, respectively

These are just some of the configurations we can apply to the shared modules. Con-
sidering the extensibility of the API provided, I wouldn't be surprised if more capabil-
ities will be added to the shared code feature in the future.

Technical Implementation | 125

Shared Library Versions

By default, Module Federation loads the greatest version of a shared library config-
ured in a project. Therefore, if we have an application shell loading React 18 and a
micro-frontend using React 17, React 18 will be loaded unless we specify the version
we want to use with the requiredVersion property. If we don't pay attention, this
could create bugs in production and runtime errors. Using shareKey and shareScope,
we can maintain different versions of the same library in the same application speci-
fying different containers for our dependencies.

Module Federation allows us to load our dependencies either synchronously, using
the eager property in the plug-in configuration, or asynchronously. It's reccommended
to load them asynchronously, so that the user won’t need to load all the dependencies
in a larger bundle up front and metrics like time to first byte (TTFB) and time to
interactive (TTI) won’t be degraded. To asynchronously load our dependencies, we
have to split the initialization of our application into multiple files. We'll split the
application shell into three main files: index.js, bootstrap.js, and app.js. The file
index.js will be the entry point of our application, requiring just one line of code:

import("./bootstrap");

Bootstrap.js will be responsible for instantiating the application shell and appending
the React application in a div element present in the HTML template called “root™:

import React from "react";

import ReactDOM from "react-dom";

import App from "./App";

ReactDOM.render(<App />, document.getElementById("root"));

Finally, app.js will contain two important elements. The first, the Main component,
will implement the application’s basic user interface with a header and a side menu.
The second, React Router, one of the popular routing solutions for React applications,
will handle the application’s global routing:

import React from "react";
import {BrowserRouter as Router} from "react-router-dom";
import Main from "./Main";

const App = () => {
return(
<Router>
<Main></Main>
</Router>
)
}

export default App;

126 | Chapter5: Micro-Frontend Technical Implementation

https://oreil.ly/UJgHD

Bear in mind that for the global routing strategy, you can use other libraries with
React or even create your own router library—although reinventing the wheel may
not be very productive. The important thing to remember is that we don’t have to use
specific routing libraries for building micro-frontend architecture.

There are a few key concepts to explore inside the Main component code. Let’s start
with the global routing. With an application shell, the routing happens on the client
side, making the application shell responsible for routing the user between micro-
frontends. Usually, we have different level in a URL, for instance: https://
www.mysite.com. The root is always level 0 of URL depth. When the user clicks a link
to another page, we move to level 1: https://www.mysite.com/catalog. Every additional
link clicked in the catalog will add one or more levels in the URL.

The application shell only has to maintain the logic for the root and the first level.
Usually, the moment a user selects a link from the home page, we move into a new
website area, which represents a new business subdomain, resulting in a micro-
frontend being loaded. This is exactly how the swag ecommerce site we are exploring
is structured:

<main className={clsx(classes.content, {
[classes.contentShift]: open,
D}
<div className={classes.drawerHeader} />
<Switch>
<Route path="/myaccount" render={_ => renderMFE(MyAccount)}/>
<Route path="/shop" render={_ => renderMFE(Catalog)}/>
<Route path="" render={_ => renderMFE(SignIn)}/>
</Switch>
</main>

As we can see, the Route object is composed by the path (first level) and the corre-
sponding micro-frontend to load. Since version 16, React has used an experimental

API called Suspense to signal to the framework that some code has to be loaded and
in the meanwhile provides a component to be rendered as placeholder:

<Suspense fallback={<Spinner />}>
<CatalogMFE />
</Suspense>

With the Suspense component and with the possibility to lazy-load a component, we
can use the following syntax to load remote micro-frontends, and Module Federation
will fetch the module and make it available to the application shell. In fact, the
renderMFE function used in the Route object leverages this technique:

const Catalog = React.lazy(() => import("Catalog/Catalog"));
const SignIn = React.lazy(() => import("SignIn/SignIn"));
const MyAccount = React.lazy(() => import("MyAccount/MyAccount"));
const renderMFE = (MFE) => {
return(

Technical Implementation | 127

https://oreil.ly/kpvjw

<React.Suspense fallback="Loading...">
<MFE />
</React.Suspense>
)
}

When the user selects the new area of ecommerce from the home page, the router
will load the new micro-frontend similarly to how we would lazy-load a normal React
component in a single-page application (SPA). The import contains the identifier
specified in the Module Federation configuration we wrote in webpack.config.js file,
which specifies which micro-frontend to load. Module Federation will take care of
importing the remote module for you.

The last part in the application shell worth highlighting is the implementation of the
design system. Material-Ul, a popular design system framework, is used in all our
micro-frontends. We don’t have to understand the Material-UI APIs in depth, but we
do need to make sure our styles won’t clash once we load micro-frontends inside the
application shell. To achieve this, we will use prefixes, as described in Chapter 4. With
Material-UI, the trick is adding a prefix for every micro-frontend, including the
application shell, using the seed property:

const generateClassName = createGenerateClassName({
seed: 'appshell’
s

Configuring the seed property will prefix every CSS class name with the value
present in the seed. In our example, all our styles in the application shell will have the
prefix appshell. For example, a heading 6 element customized with Material-UI will
have a class name similar to the following:

appshell-MuiTypography-hé

In this way, we can make sure that every team works with its own micro-frontend
implementation without the risk of clashing with other micro-frontends living in the
same or other views. There are other design system libraries that you could apply the
same approach to, but this system provides you the safety of working in parallel
without stepping on the other teams’ toes.

Authentication Micro-Frontend

Because the authentication micro-frontend doesn't require too much work on the
frontend side, Team Sashimi is largely skilled in backend integration. In fact, authen-
tication has to be integrated with the single sign-on (SSO) system used inside the
company to authorize employees’ access to internal applications. A centralized SSO is
a typical approach within enterprise organizations, but it’s also strongly recom-
mended for smaller entities because it provides greater control over access to a com-
pany’s vital systems.

128 | Chapter5: Micro-Frontend Technical Implementation

https://material-ui.com

The authentication micro-frontend is the first Module Federation remote we
describe, so we'll start with its configuration. A remote configuration doesn't differ
too much from the host, but it has some additional fields, such as those we can see in
the following code snippet:

// additional code before

{
name: "SignIn",
filename: "remoteEntry.js",
exposes:{
"./SignIn": "./src/SignIn"
1,
shared: {
// all the dependencies we want to share in this micro-frontend

3
}

// additional code after

The filename field is for specifying a remote’s entry point. Within the file specified in
this field, we have a map of all the chunks generated by webpack and loaded by Mod-
ule Federation when a micro-frontend should be rendered in the application shell.
The exposes field is used to list all the modules we want to expose to a host for inte-
gration inside an application. For micro-frontends, it is very likely that this field will
have just one entry because every micro-frontend is represented by an independent
artifact. However, when we expose a federated library, such as a design system, we can
list all the available entry points so that every host consuming the library will be able
to select only what it needs and nothing more. The shared field has exactly the same
logic described for the application shell configuration.

We won't review the remote configuration for every micro-
frontend. They're similar to the authentication one, with the main
changes being the values of fields based on the subdomain a micro-
frontend represents. If you want to take a deeper look, feel free to
review the GitHub repository for a full demo.

The part to highlight in the authentication micro-frontend is how the JWT token is
shared with other micro-frontends. For micro-frontends that consume a private API,
we need a mechanism to retrieve the token quickly and use it to fetch the data needed
to populate the user interface.

Sharing a token on web storage or cookie is a common pattern that’s also described in
the decisions framework, and that’s exactly what we are going to do in the authentica-
tion micro-frontend. In fact, after calling the sign-in API, we receive a JWT token
that is stored in the session storage:

Technical Implementation | 129

https://oreil.ly/ECQqm

// additional code before

const SignIn = () => {
let history = useHistory();

const onSignIn = () => {
window.sessionStorage.setItem("token", token);
history.push("/shop");

}

// additional code after

}

By convention, all the micro-frontends retrieve the token from the session storage
and use it to consume the private API for their domain. It should go without saying
that every micro-frontend that should be displayed after a user is authenticated
should implement some logic to validate the token and ensure the user is entitled to
access the content. In a horizontal-split architecture, where we have multiple micro-
frontends on the same page, the micro-frontend container should validate the user
and then either load the page’s micro-frontends for authorized users or show an error
message to unauthorized users. In a vertical-split architecture, before rendering any
component, each micro-frontend should evaluate whether the token is valid and
whether the user’s role, if any, is entitled to access that content.

Catalog Micro-Frontend

The catalog domain is probably the most complex and largest of all the micro-
frontends. It’s the reason users are going to the website, so it has to not only be simple
to use but also provide all the information the user is looking for. Team Maki is
responsible for this micro-frontend, and its goal is to implement multiple views so
users can discover what’s available in the catalog and get the details of each product.
In the future, the team may have to add new functionalities, such as sharing product
images taken by a buyer or adding a review score with comments.

The team will implement all these features and prepare the codebase in a modular
fashion, such that, in the future, it will be easy to hand over part of the domain to
another team if needed. Strong encapsulation and a solid modularity will allow Team
Maki to easily decouple part of the domain and collaborate with other teams to pro-
vide a great user experience.

This vertical-split micro-frontend’s peculiarity is that we have to handle multiple
views inside the same micro-frontend, a sort of SPA specific to the catalog domain.
This shouldn’t preclude the possibility of adding shared or domain-specific compo-
nents, such as a personalized products component, implemented by other teams
inside this domain. Although the application shell is responsible for the global rout-
ing, for this micro-frontend we have to implement a local routing (that is, a routing

130 | Chapter5: Micro-Frontend Technical Implementation

implemented at a micro-frontend level) that works in conjunction with the global
one. In our example, the local routing doesn't differ much from the global routing, as
shown in the following code snippet:

// additional code before

const Catalog = () => {
let { path } = useRouteMatch();

return(
<div>
<h1>
Shop
</h1>
<Switch>
<Route exact path={"${path}'} component={Home}/>
<Route exact path={"${path}/product/:productId'} component={Details}/>
</Switch>
</div>
)
}

// additional code after

Using the React Router library, we initially retrieve the first level of URL depth. We
then incrementally append the product ID to the depth level when a user selects a
specific product. From the second level onward, the structure and management are
usually fully handled inside the micro-frontend, so the domain can evolve autono-
mously, eliminating the need to coordinate its enhancements with other teams. This
also prevents domains creating overlapping first-level URLs because only one team is
responsible for the global routing. When we implement the details page, we can use
the product ID to request from an API the data to display:

// additional code before

const Details = () => {
// we retrieve the product ID from the URL
const {productId} = useParams()
// we can add some logic for fetching the product details from an API
return(
<div>
// we display the product ID
{ Details page, product id: ${productId}'}
<Link to="/shop">All products</Link>
</div>
)
}

// additional code after

Technical Implementation | 131

In this way, we prepare our codebase for potential future splits without too much
effort. Query strings are a good way to hand over ephemeral information to another
view or even to another micro-frontend. Since this type of data is consumed in the
flush by another part of the system and doesn’t need to be stored for long, using
query strings for passing them across the system is strongly recommended.

Account Management Micro-Frontend

Team Nigiri, responsible for the payment subdomain, and Team Sashimi, responsible
for authentication, authorization, and the user’s account, have to collaborate for the
account management view, with part of the payment information and part of the
user’s details converging in the same view. Because these domains are assigned to dif-
ferent teams, we need a different approach from the other micro-frontends. Instead
of a vertical-split micro-frontend architecture, we'll use a horizontal split to compose
the final view and allow the two domains to communicate with each other for specific
user interactions. To achieve this, we'll need to create a new host and two remotes. We
know every remote is associated with a team, but what about the new host? Together,
Teams Nigiri and Sashimi define the strategy for evaluating this common container of
their subdomains. The new host has a clear implementation path that consists of:

« Loading two micro-frontends: a user’s details and payment details

o Verifying whether a user is authenticated or not, presenting an error message or
redirecting the user to the sign-in page

Because of that, Team Nigiri decides to take ownership of the new host and collabo-
rate with Team Sashimi to define mechanisms to ensure the developer experience is
as smooth as possible and the releases of the host don’t cause any issues with Team
Sashimi’s work.

You may be asking yourself where the new host will technically be presented to the
user. Module Federation allows us to nest multiple hosts, and there isn’t a strong hier-
archical structure. In fact, there is a very thin line between remote and host because a
remote can expose some libraries used by the host and vice versa. As mentioned in
Chapter 4, we need to pay attention to this thin line: when it’s crossed and we start to
share dependencies bidirectionally, we risk creating unmaintainable code that offers
more problems than benefits in the long run. My recommendation is to force a hier-
archical relation between host and remote where the sharing is always unidirectional
so that the host will never expose any module with its remotes. This simple but effec-
tive practice simplifies a micro-frontends architecture implementation, reducing the
risk of potential bugs. Moreover, it improves application debugging, which reduces
the coupling between modules and avoids creating a big ball of mud in which multi-
ple modules depend on each other. When we reduce the coupling and external
dependencies in this way, each team will have the power to make the right decisions

132 | Chapter5: Micro-Frontend Technical Implementation

for the project, taking into account that we sometimes have to compromise to achieve
the organization’s business goals.

On the technical side, we have to account for some small changes to handle the hori-
zontal approach. First, we need a container for the two micro-frontends. We'll create
a host called MyAccount, which will have a different Module Federation configura-
tion from the others. This container has to be a host, because it concerns the user’s
details and payment micro-frontends, but it also must be a remote for the application
shell. To do this, we add the remotes and exposes objects, as seen in the following
code snippet:

// additional code before

name: "MyAccount",
filename: "remoteEntry.js",
exposes:{

", /MyAccount": "./src/MyAccount"
1,

remotes: {
AccountDetails: "AccountDetails@http://localhost:3005/remoteEntry.js",
PaymentDetails: "PaymentDetails@http://localhost:3006/remoteEntry.js"
1,

// additional code after

With just this change, we can have a host that is also a remote. We should avoid abus-
ing this practice, however, because you can quickly end up with many small applica-
tions that represent components rather than the entire business domain. It’s critical to
design the boundaries correctly. When we aren’t sure whether to add a new micro-
frontend or incorporate a new feature inside an existing one, we need to go back to
the whiteboard and ensure our decision respects the principles behind micro-
frontends (review Chapter 2 if needed). A good rule of thumb described in Chapter 4
is understanding how extensible a micro-frontend is: when the business domain leaks
into its container, you have to review whether you are implementing a micro-
frontend or a component.

Important to note in this implementation is the communication between micro-
frontends. As the micro-frontend decisions framework states, we need to share infor-
mation between micro-frontends without code shared across different domains, as
with a global state. An ideal solution is leveraging the publish/subscribe pattern for
maintaining the domains decoupled. The teams decide to implement an event emitter
that decouples the two micro-frontends present in the account management view but
allows them to communicate using each other’s emitting events, as shown in
Figure 5-5.

Technical Implementation | 133

User's details

Team Sashimi

Event emitter

Payment details

Team Nigiri

My account

Figure 5-5. Teams Sashimi and Nigiri are implementing an event emitter shared between
micro-frontends for communicating the domain’s boundaries

In the host, we instantiate the event emitter and then inject the instance to the two
micro-frontends, leveraging the properties mechanism:

// more code before

const AuthenticatedView = (props) => {
return(
<React.Suspense fallback="Loading...">
<AccountDetails emitter={props.emitter}/>
<PaymentDetails emitter={props.emitter}/>
</React.Suspense>
)
}

/e
let view;
// simply checking the token but it has to be a more robust «
authorization strategy to implement
if(token){
const emitter = createNanoEvents();
view = <AuthenticatedView emitter={emitter}/>
} else {
// share a different view if the user is not authenticated

}

// more code after

134

| Chapter 5: Micro-Frontend Technical Implementation

AuthenticatedView uses the same pattern implemented for the application shell, in
which we lazy-load our micro-frontends and use React Suspense until the micro-
frontends are ready. The micro-frontends are loaded only when the token is available
in sessionStorage. To simplify this example, I didn’t present a specific authorization
implementation, but you should add any authorization strategy implemented for the
rest of the application. Finally, the event emitter is assigned in a property called
emitter, which is available in both micro-frontends.

All micro-frontends use the event emitter to notify us that something has happened
inside its business domain. In this way, a micro-frontend can evolve while maintain-
ing the compatibility needed in the system. With this approach, it’s critical that we
document correctly the events every micro-frontend is listening to and emitting.
When we do, the work required to add a new micro-frontend inside a view becomes
trivial, because the documentation should cover the event name as well as the payload
passed through the event. We should take a similar approach when we use reactive
streams or custom events. The technical implementation becomes very simple
because in the payment micro-frontend we can emit an event when a user changes
the payment method:

const onPaymentChanged = () => {
props.emitter.emit("paymentChanged", "May 2021");
}

The account details micro-frontend, meanwhile, has listened for the paymentChanged
event in order to apply the change in its code:

const [lastPaymentDate, setPaymentChanged] = useState('"Jan 2021")
props.emitter.on("paymentChanged", date => setPaymentChanged(date))

return (
<div>
<h3>Account Details</h3>

<i>name:</1> Luca
<i>surname:</i> Mezzalira
<i>email:</i> guesswho@acme.com</1i>
<i>member since:</i> Jan 2021</1i>
<i>payment changed: </i>{lastPaymentDate}
Change account details

</div>
);
When a micro-frontend picks up an event, React hooks modify the lastPaymentDate
variable, which is used to show the last date a user changes its payment method. I rec-

ommend using typed event objects as a best practice. This will reduce the risk of
typos in the codebase, which is critical because were sharing strings across multiple

Technical Implementation | 135

teams. If you are not using TypeScript, you can achieve a similar result by creating an
object with constant properties, which will help developers use the right contract for
communicating or listening to an event in the application:

const PaymentEvents = {

PAYMENT_CHANGED: "paymentMethodChanged";
// other events
}

You can then freeze the object to prevent changes to the object structure and prevent
adding or removing properties at runtime.

When we have multiple micro-frontends in the same view and they communicate
with each other via events, we must ensure that all the events are captured by the
interested micro-frontends. For example, imagine we have three micro-frontends in
the same view and two of them load immediately, while the third takes a while due to
a networking issue. When the first two are emitting events, the third one isn’t able to
capture any events that occur while it’s loading. One possible solution is to create a
buffer of events in the application container and replay them when the third micro-
frontend is fully loaded. It would require a bit of effort to create something that mon-
itors every micro-frontend’s state, gathers all the events in an array or similar data
structure, and then replays all of them to one or more micro-frontends without emit-
ting the full list of events to every micro-frontend (which could cause some internal
state mismatching). Having multiple micro-frontends in the same view requires some
more thoughts on how to handle failure or partial failure states. But we must think
about these scenarios because, as AWS’s CTO Werner Vogels said, “Everything fails,
all the time.”

Project Evolution

We don’t want to create a project that works just for a short period of time. We want
to create one that can evolve over time, eliminating the need to start from scratch in
order to advance our organization’s business goals. Let’s explore, then, some potential
ways this project could evolve and how we can create a coherent implementation
across different subdomains.

Embedding a Legacy Application

Imagine that we have to add a tool for customizing existing products, like T-shirts,
hoodies, and mugs, to our ecommerce project. The tool is a legacy application that
was developed several years ago with an old version of Angular. Only one person
from the team that developed this solution is still with the company, and she is keep-
ing the lights on for this project, fixing bugs and optimizing the codebase where pos-
sible. To reduce the feature’s time to market, the business and the tech department
decide to integrate the legacy tool with the existing micro-frontend architecture and

136 | Chapter5: Micro-Frontend Technical Implementation

https://oreil.ly/2QUAg

ship them for a limited time. Later, a new team will take ownership of the project and
revamp it to natively embrace micro-frontends. The application is well encapsulated,
not requiring any particular information about the environment that is running, and
we can pass the configuration needed to render a file to the configurator via a query
string. Additionally, we want to minimize possible clashes with other parts of the
codebase, such as with the application shell.

We can solve this problem by wrapping the legacy application inside an iframe, as in
Figure 5-6, which will prevent any possible clash with the existing micro-frontend
system.

Header

L Legacy app wrappedin an iframe
Navigation

Legacy app container

Application shell

Figure 5-6. The application shell loads a micro-frontend that acts as an adapter between
the new and old worlds. The legacy application is wrapped in an iframe to minimize the
impact with the existing micro-frontend codebase.

However, if we want to communicate with the legacy application and vice versa, such
as with displaying errors across the entire interface instead of only in the iframe, we
should create a communication bridge between the legacy application and the appli-
cation shell in order to reuse the alerting system. We could directly integrate the
application shell with the legacy application, but this would mean polluting the appli-
cation shell codebase. We can implement a better strategy than that. Instead, we
will apply an adapter pattern using a micro-frontend as a container for the iframe
that contains the legacy application. The micro-frontend will be responsible for

Project Evolution | 137

orchestrating the iframe using query strings and intercepting any messages from the
legacy application, translating it into events emitted in the event bus.

The adapter pattern is a software design pattern (also known as
wrapper) that allows an existing class’s interface to be used as
another interface. It is often used to make existing classes work
with others without modifying their source code.

By using a micro-frontend as adapter, we can prepare our project for future evolu-
tions. We can also reduce any refactoring in the application shell, first for integrating
the legacy application and then for substituting with the new micro-frontend imple-
mentation. Within the application shell, we will maintain a business-unaware logic,
since the communication will be translated to events via the event emitter. This pro-
cess acts as an anticorruption layer between the inner and the outer systems. This
pattern also comes in handy when we want to consolidate multiple applications under
the same system and slowly but steadily replace every legacy application, with micro-
frontends implementing a strangler pattern, which allows the micro-frontend appli-
cation to live alongside the legacy ones.

Developing the Checkout Experience

Let’s say the project is finally getting traction inside the organization and Team Nigiri
is developing the checkout process. The product owner and the UX team have deci-
ded to place a cart inside the application shell’s header. The cart should be shown only
when a user is authenticated in the shop, so therefore that component should be visi-
ble only in certain views. When the cart button is clicked, the new checkout micro-
frontend will guide the user to process the order correctly inside the system.

The cart component (see Figure 5-7) has different responsibilities:

« Hide and reveal the cart based on the area a user is navigating to
« Display the total number of items in the cart

o Start the checkout experience

Because the cart component will be present in the application shell, we have to create
a logic for hiding it when a user is not authenticated and sharing it when they are. We
could have the application shell orchestrate the component’s visibility, but the check-
out domain logic would leak into the application shell, which could pollute the code-
base. Additionally, every time we want to change the visibility logic, wed need to
release a new application shell version. And because the checkout experience and the
application shell are owned by different teams, creating such dependencies can only
cause more troubles than benefits.

138 | Chapter 5: Micro-Frontend Technical Implementation

https://oreil.ly/cCGmk

Cart
Header componeant %
(. “ J
'a N 'S \
Item addled tocart
Product1 Product 2
Navigation
Product3 Product4
Catalog micro-frontend

Application shell

Figure 5-7. The cart component is created and maintained by Team Nigiri. The compo-
nent is loaded inside the application shell and uses an event emitter for listening for
when an object should be added to the cart and showing the total number of elements
the user has selected.

A better solution is to ask the team responsible for the application shell to add the
component, and the component itself will handle its own visibility based on a set of
conditions, such as page URL. In this way, any logic change or improvement will hap-
pen inside the component and not leak these implementation details to the applica-
tion shell. The application shell team will need to upgrade the library used for loading
the component if they used a compile time implementation. In the case of Module
Federation, they won't need to do anything else because the new component will be
loaded at runtime.

To display the total number of items in the cart, we first need to add the product to
the cart via an API exposed by the backend and then notify the cart component to
update the value displayed in the interface. The best way to achieve this is by emitting
an event via the event emitter instance. When the cart component receives the event,

Project Evolution | 139

it will consume an API to retrieve the number of items currently in the cart (as we
explained in Chapter 4).

Finally, when the user starts the checkout experience by clicking on the cart compo-
nent, all that’s required is changing the URL, notifying the application shell to move
on to the checkout micro-frontend.

As you can see, investing a bit of time up front to think through the implementation
of a simple element like a cart component can make a great difference in the long run.
This cart component will maintain strong encapsulation despite living inside a differ-
ent domain (the application shell). It will receive events from other parts of the sys-
tem via the event emitter and route the user to the checkout experience. Following
the principles of micro-frontends makes us reason in new ways, enhancing our devel-
oper experience and avoiding domain leaks in other application areas.

Implementing Dynamic Remotes Containers

In this example, we have seen how to implement remotes specifying their path in the
webpack configuration. However, Module Federation allows us to dynamically load
remotes directly from JavaScript without having to list every micro-frontend available
in the application at compile time. The interesting part of this approach is the possi-
bility of extending our application easily, without recompiling the application shell
that contains a list of all the micro-frontends. For instance, we can consume an API
or a static JSON for retrieving all the available micro-frontends and compose the
global routing system logic in the application shell.

We could also shape the traffic toward a specific version of a micro-frontend to
reduce the risk of a new version causing any major bugs in front of a large audience.
The possibilities of dynamic remote containers are incredible and can really help
introduce advanced logic inside your architecture. To see this implementation in
practice, check out the GitHub repository maintained by the webpack team working
on Module Federation.

Webpack Lock-in

I bet some of you by now are thinking that going all in with Module Federation may
be risky considering Module Federation is fully supported only on webpack 5 at the
moment. Let’s look more closely at that. Since it was released in Autumn 2020, Mod-
ule Federation has gained a lot of admirers in the developer community. The friction-
less learning curve and the simplicity of implementing it in new and existing projects
are definitely its main strengths. Moreover, the fact that it’s solving complex chal-
lenges like dependencies management and micro-frontend composition is definitely
well received by the community.

140 | Chapter 5: Micro-Frontend Technical Implementation

https://oreil.ly/J5YsI

There is also a framework called Fronts, which is used for building micro-frontends
using Module Federation or limited features of it without using the webpack plug-in.
Many organizations started using Module Federation in production, and frontend
frameworks like Angular have started showing interesting examples using Module
Federation. It's important to understand whether our fear of relying so heavily on
webpack with Module Federation is a real problem or not. How much time will it
take to refactor your code using another solution? How long will your project last in
production without the possibility of refactoring it? How critical is the project you are
developing? In the next three to five years, how likely is a technology change for the
project?

One of the strengths of micro-frontends is incremental code refactoring. Micro-
frontends are a great solution for evolving your projects from a business and techni-
cal perspective, allowing you to try new ideas and solutions and then incrementally
improving your codebase. When you choose to avoid a framework or a technology
that provides some level of lock-in, you have to think about what you are going to
lose and when you decide to build it in house, and you have to estimate how much
effort building and, more importantly, maintaining that solution would cost instead
of having an open source project maintained and evolved by the community. Some-
times the fear of lock-in is mitigated when you run proper due diligence and see what
the alternative paths are.

Summary

In this chapter, we have seen the micro-frontend decisions framework in action.
Every team identified the right approach to achieve the requirements presented by
the product teams. They maintained a decoupled approach, knowing that this path
will guarantee independence and faster response time to any business shift. During
this journey, we have also seen a technical implementation of a micro-frontend archi-
tecture using webpack and Module Federation.

This is one of the many approaches mentioned in Chapter 4. Every framework and
technology will have its own implementation challenges; walking you through the
reasoning behind certain decisions is far more valuable than evaluating each imple-
mentation. With this approach, you will have a mental model that allows you to move
from one framework to another easily, just by following what you learned during this
journey.

Summary | 141

https://oreil.ly/KYRSi

CHAPTER 6
Build and Deploy Micro-Frontends

In this chapter, we discuss another key topic for distributed systems like micro-
frontends: the importance of a solid automation strategy. The microservices architec-
ture adds great flexibility and scalability to our architecture, allowing our APIs to
scale horizontally based on the traffic our infrastructure receives and allowing us to
implement the right pattern for the right job instead of having a common solution
applied to all our APIs, as in a monolithic architecture. Despite these great capabili-
ties, microservices increase the complexity of managing the infrastructure, requiring
an immense number of repetitive actions to build and deploy them. Any company
embracing the microservices architecture, therefore, must invest a considerable
amount of time and effort on their continuous integration (CI) or continuous deploy-
ment (CD) pipelines (more on these to come). Given how fast a business can drift
direction nowadays, improving a CI/CD pipeline is not only a concern at the begin-
ning of a project; it’s a constant incremental improvement throughout the entire
project life cycle. One of the key characteristics of a solid automation strategy is that
it creates confidence in artifacts’ replicability and provides fast feedback loops for
developers.

This is also true for micro-frontends. Having solid automation pipelines will allow
our micro-frontend projects to be successful, creating a reliable solution for develop-
ers to experiment, build, and deploy. In fact, for certain projects, micro-frontends
could proliferate in such a way that it would become nontrivial to manage them. One
of the key decisions listed in the micro-frontend decisions framework, discussed in
Chapter 3, is the possibility to compose multiple micro-frontends in the same view
(horizontal split) or having just one micro-frontend at a time (vertical split). With the
horizontal split, we could end up with tens or even hundreds of artifacts to manage in
our automation pipelines. Therefore, we have to invest in solutions to manage such
scenarios. Vertical splits also require work but are close to the traditional way to set
up automation for single-page applications (SPAs). The major difference is you'll

143

have more than one artifact and potentially different ways to build and optimize your
code.

We will dive deep into these challenges in this chapter, starting with the principles
behind a solid and fast automation strategy and how we can improve the developer
experience with some simple but powerful tools. Then we'll analyze best practices for
continuous integration and micro-frontend deployment. Finally, we conclude with an
introduction to fitness functions for automating and testing architecture characteris-
tics during different stages of the pipelines.

Automation Principles

Working with micro-frontends requires constantly improving the automation pipe-
line. Skipping this work may hamper the delivery speed of every team working on the
project and decrease their confidence to deploy in production or, worse, frustrate the
developers as well as the business when the project fails. Nailing the automation part
is fundamental if you're going to have a clear idea of how to build a successful contin-
uous integration, continuous delivery, or continuous deployment strategy.

Continuous Integration Versus Continuous Delivery
Versus Continuous Deployment

An in-depth discussion about continuous integration, continuous delivery, and con-
tinuous deployment is beyond the scope of this book. However, it's important to
understand the differences between these three strategies. Continuous integration
defines a strategy where an automation pipeline kicks in for every merge into the
main branch, extensively testing the codebase before the code is merged in the release
branch. Continuous delivery is an extension of continuous integration where, after
the tests, we generate the artifact ready to be deployed with a simple click from a
deployment dashboard. Continuous deployment goes one step further, deploying in
production the artifacts built after the code is committed in the version control sys-
tem. If you are interested in learning more, I recommend reading Continuous Deliv-
ery by David Farley and Jez Humble (Addison-Wesley Professional).

To get automation speed and reliability right, we need to keep the following princi-
ples in mind:

+ Keep the feedback loop as fast as possible.

o Iterate often to enhance the automation strategy.

« Empower your teams to make the right decisions for the micro-frontends they
are responsible for.

144 | Chapter 6: Build and Deploy Micro-Frontends

o Identify some boundaries, also called guardrails, where teams operate and make
decisions while maintaining tools standardization.

o Define a solid testing strategy.

Let’s discuss these principles to get a better understanding of how to leverage them.

Keep a Feedback Loop Fast

One of the key features for a solid automation pipeline is fast execution. Every auto-
mation pipeline provides feedback for developers. Having a quick turnaround on
whether our code has broken the codebase is essential for developers for creating
confidence in what they have written. Good automation should run often and pro-
vide feedback in a matter of seconds or minutes, at the most. It's important for devel-
opers to receive constant feedback so they will be encouraged to run the tests and
checks within the automation pipeline more often. It’s essential, then, to analyze
which steps may be parallelized and which are serialized. A technical solution that
allows both is ideal. For example, we may decide to parallelize the unit testing step so
we can run our tests in small chunks instead of waiting for hundreds, if not thou-
sands, of tests to pass before moving to the next step. Yet some steps cannot be paral-
lelized. So we need to understand how we can optimize these steps to be as fast as
possible.

Working with micro-frontends, by definition, should simplify optimizing the auto-
mation strategy. Because we are dividing an entire application into smaller parts,
there is less code to test and build, for instance, and every stage of a CI should be very
fast. However, there is a complexity factor to consider. Due to maintaining many sim-
ilar automation pipelines, we should embrace infrastructure as code (IaC) principles
for spinning new pipelines without manually creating or modifying several pipelines.

Infrastructure as Code

Infrastructure as code represents the management of infrastructure (networks, virtual
machines, load balancers, and so on) in a descriptive model. It uses the same princi-
ples of source code but applied to infrastructure. Like the principle that the same
source code generates the same binary, an IaC model generates the same environment
every time it is applied. For instance, AWS CDK allows the use of TypeScript or Java-
Script for defining a project infrastructure in an AWS account. Let’s take as an exam-
ple this code snippet, which shows how to create an Amazon CloudFront distribution
with an Amazon S3 bucket as an origin associated to it:

const cdk = require('@aws-cdk/core');

const cf = require('@aws-cdk/aws-cloudfront');

const origins = require('@aws-cdk/aws-cloudfront-origins');
const s3 = require('@aws-cdk/aws-s3");

Automation Principles | 145

class CfcliStack extends cdk.Stack {

constructor(scope, id, props) {
super(scope, id, props);

const bucket = new s3.Bucket(this, "my-unique-bucket", {
websiteIndexDocument: 'index.html'

s

const distribution = new cf.Distribution(this, "my-CF-distro", {
defaultBehavior:{

origin: new origins.S30rigin(bucket)

}

1))

}
}

In this way, we describe our infrastructure that is replicable in multiple AWS accounts
or development environments without the need of manual configurations. When we
are defining our automation pipelines for micro-frontends, using IaC as a mechanism
for replicating consistent pipelines across teams is an essential task for making sure
every team is following the infrastructure-recommended practices defined by the
organization, and they speed up the configuration of their infrastructure instead of
reinventing it for every new micro-frontend.

In fact, IaC leverages the concept of automation for configuring and provisioning
infrastructure in the same way we do for our code. In this way, we can reliably create
an infrastructure without the risk of forgetting a configuration or misconfiguring part
of our infrastructure. Everything is mapped inside configuration files, or code, pro-
viding us with a concrete way to generate our automation pipelines when they need
to be replicated. This becomes critical when you work with large teams and especially
with distributed teams, because you can release modules and scripts that are reusable
between teams.

Iterate Often

An automation pipeline is not a piece of infrastructure that, once defined, remains as
it is until the end of a life cycle project. Every automation pipeline has to be reviewed,
challenged, and improved. It’s essential to maintain a very quick automation pipeline
to empower our developers to get fast feedback loops. In order to constantly improve,
we need to visualize our pipelines. Screens near the developers” desks can show how
long building artifacts take, making clear to everyone on the team how healthy the
pipelines are (or aren’t) and immediately letting everyone know if a job failed or suc-
ceeded. When we notice our pipelines taking more than 8 to 10 minutes, it’s time to
review them and see if we can optimize certain practices of an automation strategy.
Review the automation strategy regularly: monthly if the pipelines are running
slowly, and then every three to four months once they’re healthy. Don’t stop reviewing

146 | Chapter 6: Build and Deploy Micro-Frontends

your pipelines after defining the automation pipeline. Continue to improve and pur-
sue better performance and a quicker feedback loop; this investment in time and
effort will pay off very quickly.

Empower Your Teams

At several companies I worked for, the automation strategy was kept out of capable
developers’ hands. Only a few people inside the organization were aware of how the
entire automation system worked and even fewer were allowed to change the infra-
structure or take steps to generate and deploy an artifact. This is the worst nightmare
of any developer working in an organization with one or more teams. The developer
job shouldn’t be just writing code; it should include a broad range of tasks, including
how to set up and change the automation pipeline for the artifacts they are working
on, whether it’s a library, a micro-frontend, or the entire application.

Empowering our teams when we are working with micro-frontends is essential
because we cannot always rely on all the micro-frontends having the same build pipe-
line due to the possibility of maintaining multiple stacks at the same time. Certainly,
the deployment phase will be the same for all the micro-frontends in a project. How-
ever, the build pipeline may use different tools or different optimizations, and central-
izing these decisions could result in a worse final result than one from enabling the
developers to work in the automation pipeline.

Ideally, the organization should provide some guardrails for the development team.
For instance, the CI/CD tool should be the company’s responsibility, but all the
scripts and steps to generate an artifact should be owned by the team because they
know the best way to produce an optimized artifact with the code they have written.
This doesn't mean creating silos between a team and the rest of the organization but
empowering them to make certain decisions that would result in a better outcome.

Last but not least, encourage a culture of sharing and innovation by creating
moments for the teams to share their ideas, proof of concepts, and solutions. This is
especially important when you work in a distributed environment. Remote meetings
lack everyday casual work conversations we have around the coffee machine. Creat-
ing a virtual moment for enjoying these conversations again may seem an overkill at
the beginning, but it helps the morale and the connections between team members.

Define Your Guardrails

An important principle for empowering teams and having a solid automation strat-
egy is creating some guardrails for them, so we can make sure they are heading in the
right direction.

Automation Principles | 147

Guardrails for the automation strategy are boundaries identified by tech leadership,
in collaboration with architects and/or platform or cloud engineers, between which
teams can operate and add value for the creation of micro-frontends.

In this situation, guardrails might include the tools used for running the automation
strategy, the dashboard used for deployment in a continuous delivery strategy, or the
fitness functions for enforcing architecture characteristics that we discuss extensively
during this chapter.

Introducing guardrails won't mean reducing developers’ freedom. Instead, it will
guide them toward using the company’s standards, abstracting them as much as we
can from their world, and allowing the team to innovate inside these boundaries. We
need to find the right balance when we define these guardrails, and we need to make
sure everyone understands the why of them more than the how. Usually, creating doc-
umentation helps to scale and spread the information across teams and new employ-
ees. As with other parts of the automation strategy, guardrails shouldn't be static.
They need to be revised, improved, or even removed, as the business evolves.

Define Your Test Strategy

Investing time on a solid testing strategy is essential, specifically end-to-end testing,
for instance, when we have multiple micro-frontends per view with multiple teams
contributing to the final results and we want to ensure our application works end to
end. In this case, we must also ensure that the transition between views is covered
and works properly before deploying our artifacts in production.

While unit and integration testing are important, with micro-frontends there aren’t
particular challenges to face. Instead end-to-end testing has to be revised for applying
it to this architecture. Because every team owns a part of the application, we need to
make sure the critical path of our applications is extensively covered and we achieve
our final desired result. End-to-end testing will help ensure those things.

Developer Experience

A key consideration when working with micro-frontends is the developer experience
(DX). While not all companies can support a DX team, even a virtual team across the
organization can be helpful. Such a team is responsible for creating tools and improv-
ing the experience of working with micro-frontends to prevent frictions in develop-
ing new features.

At this stage, it should be clear that every team is responsible for part of the applica-
tion and not for the entire codebase. Creating a frictionless developer experience will
help our developers feel comfortable building, testing, and debugging the part of the
application they are responsible for. We need to guarantee a smooth experience for
testing a micro-frontend in isolation, as well as inside the overall web application,

148 | Chapter 6: Build and Deploy Micro-Frontends

because there are always touch points between micro-frontends, no matter which
architecture we decide to use. A bonus would be creating an extensible experience
that isn’t closed to the possibility of embracing new or different tools during the
project life cycle.

What Does Developer Experience Mean?

DX is usually one or more teams dedicated to studying, analyzing, and improving
how developers get their work done. Specifically, such teams observe which tools and
processes developers use to accomplish their daily work providing support for
improving the development life cycle across the entire organization. One of DXs
main goals is to simplify the development and process of building, testing, and
deploying artifacts in different environments.

Many companies have created end-to-end solutions that they maintain alongside the
projects they are working on, which more than fills the gaps of existing tools when
needed. This seems like a great way to create the perfect developer experience for our
organization, although businesses aren't static, nor are tech communities. As a result,
we need to account for the cost of maintaining our custom developers’ experience, as
well as the cost of onboarding new employees. It may still be the right decision for
your company, depending on its size or the type of the project you are working on,
but I encourage you to analyze all the options before committing to building an in-
house solution to make sure you maximize the investment.

Horizontal Versus Vertical Split

The decision between a horizontal and vertical split with your new micro-frontends
project will definitely impact the developer’s experience. A vertical split will represent
the micro-frontends as single HTML pages or SPAs owned by a single team, resulting
in a developer experience very similar to the traditional development of an SPA. All
the tools and workflows available for SPA will suit the developers in this case. You
may want to create some additional tools specifically for testing your micro-frontend
under certain conditions as well. For instance, when you have an application shell
loading a vertical micro-frontend, you may want to create a script or tool for testing
the application shell version available on a specific environment to make sure your
micro-frontend works with the latest or a specific version.

The testing phases are very similar to a normal SPA, where we can set unit, integra-
tion, and end-to-end testing without any particular challenges. Therefore, every team
can test its own micro-frontends, as well as the transition between micro-frontends,
such as when we need to make sure the next micro-frontend is fully loaded. However,
we also need to make sure all micro-frontends are reachable and loadable inside the
application shell. One solution I've seen work very well is having the team that owns

Developer Experience | 149

the application shell do the end-to-end testing for routing between micro-frontends
so they can perform the tests across all the micro-frontends.

Horizontal splits come with a different set of considerations. When a team owns mul-
tiple micro-frontends that are part of one or more views, we need to provide tools for
testing a micro-frontend inside the multiple views assembling the page at runtime.
These tools need to allow developers to review the overall picture, potential depen-
dencies clash, the communication with micro-frontends developed by other teams,
and so on. These aren't standard tools, and many companies have had to develop cus-
tom tools to solve this challenge. Keep in mind that the right tools will vary, depend-
ing on the environment and context we operate in, so what worked in one company
may not fit in another. Some solutions associated with the framework we decided to
use will work, but more often than not, we will need to customize some tools to pro-
vide our developers with a frictionless experience.

Another challenge with a horizontal split is how to run a solid testing strategy. We
will need to identify which team will run the end-to-end testing for every view and
how specifically the integration testing will work, given that an action happening in a
micro-frontend may trigger a reaction with another. We do have ways to solve these
problems, but the governance behind them may be far from trivial. The developer
experience with micro-frontends is not always straightforward. The horizontal split
in particular is challenging because we need to answer far more questions and make
sure our tools are constantly up to date to simplify the life of our developers.

Frictionless Micro-Frontends Blueprints

The micro-frontend developer experience isn’t only about development tools; we
must also consider how the new micro-frontends will be created. The more micro-
frontends we have and the more we have to create, the more speeding up and auto-
mating this process will become mandatory. Creating a command-line tool for
scaffolding a micro-frontend will not only cover implementation, allowing a team to
have all the dependencies for starting to write code, but also take care of collecting
and providing best practices and guardrails inside the company. For instance, if we
are using a specific library for observability or logging, adding the library to the scaf-
folding can speed up creating a micro-frontend—and it guarantees that your compa-
ny’s standards will be in place and ready to use.

Another important item to provide out of the box would be a sample of the automa-
tion strategy, with all the key steps needed for building a micro-frontend. Imagine
that we have decided to run static analysis and security testing inside our automation
strategy. Providing a sample of how to configure it automatically for every micro-
frontend would increase developers’ productivity and help get new employees up to
speed faster. This scaffolding would need to be maintained in collaboration with
developers learning the challenges and solutions directly from the trenches. A sample

150 | Chapter 6: Build and Deploy Micro-Frontends

can help communicate new practices and specific changes that arise during the devel-
opment of new features or projects, further saving your team time and helping them
work more efficiently.

Environments Strategies

Another important consideration for the DX is enabling teams to work within the
company’s environments strategy. The most commonly used strategy across midsize
to large organizations is a combination of testing, staging, and production environ-
ments. The testing environment is often the most unstable of the three because it’s
used for quick attempts made by the developers. As a result, staging should resemble
the production environment as much as possible, the production environment should
be