
Adam Bellemare

Building
Event-Driven
Microservices
Leveraging Organizational Data at Scale

Adam Bellemare

Building Event-Driven
Microservices

Leveraging Organizational Data at Scale

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05789-5

[LSI]

Building Event-Driven Microservices
by Adam Bellemare

Copyright © 2020 Adam Bellemare. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield
Development Editor: Corbin Collins
Production Editor: Christopher Faucher
Copyeditor: Rachel Monaghan
Proofreader: Kim Wimpsett

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: O’Reilly Media, Inc.

August 2020: First Edition

Revision History for the First Edition
2020-07-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492057895 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Building Event-Driven Microservices,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492057895

Table of Contents

Preface. xiii

1. Why Event-Driven Microservices. 1
What Are Event-Driven Microservices? 2
Introduction to Domain-Driven Design and Bounded Contexts 3

Leveraging Domain Models and Bounded Contexts 4
Aligning Bounded Contexts with Business Requirements 5

Communication Structures 6
Business Communication Structures 7
Implementation Communication Structures 7
Data Communication Structures 8
Conway’s Law and Communication Structures 9

Communication Structures in Traditional Computing 10
Option 1: Make a New Service 10
Option 2: Add It to the Existing Service 11
Pros and Cons of Each Option 11
The Team Scenario, Continued 13
Conflicting Pressures 13

Event-Driven Communication Structures 13
Events Are the Basis of Communication 14
Event Streams Provide the Single Source of Truth 14
Consumers Perform Their Own Modeling and Querying 14
Data Communication Is Improved Across the Organization 15
Accessible Data Supports Business Communication Changes 15

Asynchronous Event-Driven Microservices 15
Example Team Using Event-Driven Microservices 16

Synchronous Microservices 17

iii

Drawbacks of Synchronous Microservices 17
Benefits of Synchronous Microservices 19

Summary 20

2. Event-Driven Microservice Fundamentals. 21
Building Topologies 21

Microservice Topology 21
Business Topology 22

The Contents of an Event 23
The Structure of an Event 23

Unkeyed Event 24
Entity Event 24
Keyed Event 24

Materializing State from Entity Events 25
Event Data Definitions and Schemas 27
Microservice Single Writer Principle 28
Powering Microservices with the Event Broker 28

Event Storage and Serving 29
Additional Factors to Consider 30

Event Brokers Versus Message Brokers 31
Consuming from the Immutable Log 32
Providing a Single Source of Truth 34

Managing Microservices at Scale 34
Putting Microservices into Containers 35
Putting Microservices into Virtual Machines 35
Managing Containers and Virtual Machines 35

Paying the Microservice Tax 36
Summary 37

3. Communication and Data Contracts. 39
Event-Driven Data Contracts 39

Using Explicit Schemas as Contracts 40
Schema Definition Comments 41
Full-Featured Schema Evolution 41
Code Generator Support 42
Breaking Schema Changes 43

Selecting an Event Format 45
Designing Events 46

Tell the Truth, the Whole Truth, and Nothing but the Truth 46
Use a Singular Event Definition per Stream 46
Use the Narrowest Data Types 47

iv | Table of Contents

Keep Events Single-Purpose 47
Minimize the Size of Events 51
Involve Prospective Consumers in the Event Design 51
Avoid Events as Semaphores or Signals 51

Summary 52

4. Integrating Event-Driven Architectures with Existing Systems. 53
What Is Data Liberation? 54

Compromises for Data Liberation 55
Converting Liberated Data to Events 57

Data Liberation Patterns 57
Data Liberation Frameworks 58
Liberating Data by Query 58

Bulk Loading 59
Incremental Timestamp Loading 59
Autoincrementing ID Loading 59
Custom Querying 59
Incremental Updating 59
Benefits of Query-Based Updating 60
Drawbacks of Query-Based Updating 61

Liberating Data Using Change-Data Capture Logs 61
Benefits of Using Data Store Logs 63
Drawbacks of Using Data Base Logs 63

Liberating Data Using Outbox Tables 64
Performance Considerations 65
Isolating Internal Data Models 65
Ensuring Schema Compatibility 67
Capturing Change-Data Using Triggers 70

Making Data Definition Changes to Data Sets Under Capture 74
Handling After-the-Fact Data Definition Changes for the Query and CDC

Log Patterns 75
Handling Data Definition Changes for Change-Data Table Capture Patterns 75

Sinking Event Data to Data Stores 75
The Impacts of Sinking and Sourcing on a Business 76
Summary 78

5. Event-Driven Processing Basics. 79
Composing Stateless Topologies 80

Transformations 80
Branching and Merging Streams 81

Repartitioning Event Streams 81

Table of Contents | v

Example: Repartitioning an Event Stream 82
Copartitioning Event Streams 83

Example: Copartitioning an Event Stream 83
Assigning Partitions to a Consumer Instance 84

Assigning Partitions with the Partition Assignor 84
Assigning Copartitioned Partitions 85
Partition Assignment Strategies 85

Recovering from Stateless Processing Instance Failures 87
Summary 87

6. Deterministic Stream Processing. 89
Determinism with Event-Driven Workflows 90
Timestamps 90

Synchronizing Distributed Timestamps 92
Processing with Timestamped Events 92

Event Scheduling and Deterministic Processing 93
Custom Event Schedulers 94
Processing Based on Event Time, Processing Time, and Ingestion Time 94
Timestamp Extraction by the Consumer 95
Request-Response Calls to External Systems 95

Watermarks 95
Watermarks in Parallel Processing 96

Stream Time 97
Stream Time in Parallel Processing 98

Out-of-Order and Late-Arriving Events 99
Late Events with Watermarks and Stream Time 101
Causes and Impacts of Out-of-Order Events 101
Time-Sensitive Functions and Windowing 103

Handling Late Events 105
Reprocessing Versus Processing in Near-Real Time 106
Intermittent Failures and Late Events 107
Producer/Event Broker Connectivity Issues 108
Summary and Further Reading 109

7. Stateful Streaming. 111
State Stores and Materializing State from an Event Stream 111
Recording State to a Changelog Event Stream 112
Materializing State to an Internal State Store 113

Materializing Global State 114
Advantages of Using Internal State 114
Disadvantages of Using Internal State 116

vi | Table of Contents

Scaling and Recovery of Internal State 116
Materializing State to an External State Store 120

Advantages of External State 120
Drawbacks of External State 121
Scaling and Recovery with External State Stores 122

Rebuilding Versus Migrating State Stores 124
Rebuilding 124
Migrating 124

Transactions and Effectively Once Processing 125
Example: Stock Accounting Service 126
Effectively Once Processing with Client-Broker Transactions 127
Effectively Once Processing Without Client-Broker Transactions 128

Summary 133

8. Building Workflows with Microservices. 135
The Choreography Pattern 136

A Simple Event-Driven Choreography Example 137
Creating and Modifying a Choreographed Workflow 138
Monitoring a Choreographed Workflow 139

The Orchestration Pattern 139
A Simple Event-Driven Orchestration Example 141
A Simple Direct-Call Orchestration Example 142
Comparing Direct-Call and Event-Driven Orchestration 142
Creating and Modifying an Orchestration Workflow 143
Monitoring the Orchestration Workflow 144

Distributed Transactions 144
Choreographed Transactions: The Saga Pattern 145
Orchestrated Transactions 146

Compensation Workflows 149
Summary 149

9. Microservices Using Function-as-a-Service. 151
Designing Function-Based Solutions as Microservices 151

Ensure Strict Membership to a Bounded Context 151
Commit Offsets Only After Processing Has Completed 152
Less Is More 153

Choosing a FaaS Provider 153
Building Microservices Out of Functions 153
Cold Start and Warm Starts 155
Starting Functions with Triggers 155

Triggering Based on New Events: The Event-Stream Listener 155

Table of Contents | vii

Triggering Based on Consumer Group Lag 157
Triggering on a Schedule 158
Triggering Using Webhooks 159
Triggering on Resource Events 159

Performing Business Work with Functions 159
Maintaining State 160
Functions Calling Other Functions 160

Event-Driven Communication Pattern 161
Direct-Call Pattern 162

Termination and Shutdown 165
Tuning Your Functions 165

Allocating Sufficient Resources 165
Batch Event-Processing Parameters 166

Scaling Your FaaS Solutions 166
Summary 167

10. Basic Producer and Consumer Microservices. 169
Where Do BPCs Work Well? 170

Integration with Existing and Legacy Systems 170
Stateful Business Logic That Isn’t Reliant Upon Event Order 171
When the Data Layer Does Much of the Work 172
Independent Scaling of the Processing and Data Layer 173

Hybrid BPC Applications with External Stream Processing 174
Example: Using an External Stream-Processing Framework to Join Event

Streams 174
Summary 176

11. Heavyweight Framework Microservices. 177
A Brief History of Heavyweight Frameworks 178
The Inner Workings of Heavyweight Frameworks 179
Benefits and Limitations 181
Cluster Setup Options and Execution Modes 183

Use a Hosted Service 183
Build Your Own Full Cluster 183
Create Clusters with CMS Integration 184

Application Submission Modes 186
Driver Mode 186
Cluster Mode 186

Handling State and Using Checkpoints 186
Scaling Applications and Handling Event Stream Partitions 188

Scaling an Application While It Is Running 189

viii | Table of Contents

Scaling an Application by Restarting It 191
Autoscaling Applications 192

Recovering from Failures 192
Multitenancy Considerations 192
Languages and Syntax 193
Choosing a Framework 193
Example: Session Windowing of Clicks and Views 194
Summary 197

12. Lightweight Framework Microservices. 199
Benefits and Limitations 199
Lightweight Processing 200
Handling State and Using Changelogs 201
Scaling Applications and Recovering from Failures 201

Event Shuffling 202
State Assignment 202
State Replication and Hot Replicas 203

Choosing a Lightweight Framework 203
Apache Kafka Streams 203
Apache Samza: Embedded Mode 204

Languages and Syntax 204
Stream-Table-Table Join: Enrichment Pattern 205
Summary 209

13. Integrating Event-Driven and Request-Response Microservices. 211
Handling External Events 211

Autonomously Generated Events 212
Reactively Generated Events 212

Handling Autonomously Generated Analytical Events 213
Integrating with Third-Party Request-Response APIs 214
Processing and Serving Stateful Data 216

Serving Real-Time Requests with Internal State Stores 217
Serving Real-Time Requests with External State Stores 220

Handling Requests Within an Event-Driven Workflow 223
Processing Events for User Interfaces 224

Micro-Frontends in Request-Response Applications 231
The Benefits of Microfrontends 232

Composition-Based Microservices 232
Easy Alignment to Business Requirements 232

Drawbacks of Microfrontends 233
Potentially Inconsistent UI Elements and Styling 233

Table of Contents | ix

Varying Microfrontend Performance 233
Example: Experience Search and Review Application 234

Summary 237

14. Supportive Tooling. 239
Microservice-to-Team Assignment System 239
Event Stream Creation and Modification 240
Event Stream Metadata Tagging 240
Quotas 241
Schema Registry 241
Schema Creation and Modification Notifications 243
Offset Management 243
Permissions and Access Control Lists for Event Streams 244
State Management and Application Reset 245
Consumer Offset Lag Monitoring 246
Streamlined Microservice Creation Process 247
Container Management Controls 247
Cluster Creation and Management 248

Programmatic Bringup of Event Brokers 248
Programmatic Bringup of Compute Resources 248
Cross-Cluster Event Data Replication 249
Programmatic Bringup of Tooling 249

Dependency Tracking and Topology Visualization 250
Topology Example 251

Summary 254

15. Testing Event-Driven Microservices. 255
General Testing Principles 255
Unit-Testing Topology Functions 256

Stateless Functions 256
Stateful Functions 256

Testing the Topology 257
Testing Schema Evolution and Compatibility 258
Integration Testing of Event-Driven Microservices 258
Local Integration Testing 259

Create a Temporary Environment Within the Runtime of Your Test Code 261
Create a Temporary Environment External to Your Test Code 262
Integrate Hosted Services Using Mocking and Simulator Options 263
Integrate Remote Services That Have No Local Options 264

Full Remote Integration Testing 265
Programmatically Create a Temporary Integration Testing Environment 265

x | Table of Contents

Testing Using a Shared Environment 268
Testing Using the Production Environment 269

Choosing Your Full-Remote Integration Testing Strategy 270
Summary 270

16. Deploying Event-Driven Microservices. 273
Principles of Microservice Deployment 273
Architectural Components of Microservice Deployment 274

Continuous Integration, Delivery, and Deployment Systems 275
Container Management Systems and Commodity Hardware 276

The Basic Full-Stop Deployment Pattern 276
The Rolling Update Pattern 278
The Breaking Schema Change Pattern 279

Eventual Migration via Two Event Streams 280
Synchronized Migration to the New Event Stream 281

The Blue-Green Deployment Pattern 282
Summary 283

17. Conclusion. 285
Communication Layers 285
Business Domains and Bounded Contexts 286
Shareable Tools and Infrastructure 286
Schematized Events 287
Data Liberation and the Single Source of Truth 287
Microservices 288
Microservice Implementation Options 288
Testing 289
Deploying 289
Final Words 290

Index. 293

Table of Contents | xi

Preface

I wrote this book to be the book that I wish I’d had when I started out on my journey
into the world of event-driven microservices. This book is a culmination of my own
personal experiences, discussions with others, and the countless blogs, books, posts,
talks, conferences, and documentation related to one part or another of the event-
driven microservice world. I found that many of the works I read mentioned event-
driven architectures either only in passing or with insufficient depth. Some covered
only a specific aspect of the architecture and, while helpful, provided only a small
piece of the puzzle. Other works proved to be reductive and dismissive, asserting that
event-driven systems are really only useful for one system to send an asynchronous
message directly to another as a replacement for synchronous request-response sys‐
tems. As this book details, there is far more to event-driven architectures than this.

The tools that we use shape and influence our inventions significantly. Event-driven
microservice architectures are made possible by a whole host of technologies that
have only recently become readily accessible. Distributed, fault-tolerant, high-
capacity, and high-speed event brokers underpin the architectures and design pat‐
terns in this book. These technological solutions are based on the convergence of big
data with the need for near-real-time event processing. Microservices are facilitated
by the ease of containerization and the requisitioning of compute resources, allowing
for simplified hosting, scaling, and management of hundreds of thousands of micro‐
services.

The technologies that support event-driven microservices have a significant impact
on how we think about and solve problems, as well as on how our businesses and
organizations are structured. Event-driven microservices change how a business
works, how problems can be solved, and how teams, people, and business units com‐
municate. These tools give you a truly new way of doing things that has not been pos‐
sible until only recently.

xiii

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

xiv | Preface

http://oreilly.com

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/building-event-driven-
microservices.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
I’d like to express my respect and gratitude for the people at Confluent, who, along
with inventing Apache Kafka, are some of the first people who particularly “get it”
when it comes to event-driven architectures. I have been fortunate enough to have
one of their members, Ben Stopford (lead technologist, Office of the CTO), provide
ample and valuable feedback. Scott Morrison, CTO of PHEMI Systems, has also pro‐
vided me with valuable insights, feedback, and recommendations. I offer my thanks
and gratitude to both Scott and Ben for helping make this book what it is today. As
primary proofreaders and technical experts, they have helped me refine ideas, chal‐
lenged me to improve the content quality, prevented me from promoting incorrect
information, and helped me tell the story of event-driven architectures.

Preface | xv

http://oreilly.com
https://oreil.ly/building-event-driven-microservices
https://oreil.ly/building-event-driven-microservices
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

I would also like to extend my thanks to my friends Justin Tokarchuk, Gary Graham,
and Nick Green, who proofread and edited a number of my drafts. Along with Scott
and Ben, they helped me to identify the most significant weak points in my narrative,
suggested ways to improve them, and provided their insights and personal experience
in relation to the material.

My thanks also goes out to the folks at O’Reilly for helping me in innumerable ways. I
have worked with a number of excellent people during this experience, but in partic‐
ular I would like to thank my editor, Corbin Collins, for supporting me through some
difficult times and helping keep me on track. He has been a great collaborator during
this endeavor, and I appreciate the efforts he has put into supporting me.

Rachel Monaghan, my copyeditor, reminded me of my high school days, when my
essays would be returned colored with red highlights. I am extremely grateful for her
sharp eye and knowledge of the English language—she helped make this book far
easier to read and understand. Thank you, Rachel.

Christopher Faucher has been very patient with me, providing me with excellent
feedback and allowing me to make a number of nontrivial, last-minute changes to the
book without blinking an eye. Thank you, Chris.

Mike Loukides, VP of Content Strategy, was one of my first contacts at O’Reilly.
When I approached him with my exceptionally verbose and lengthy proposal, he
patiently worked with me to refocus it and refine it into the basis of the book before
you today. I am grateful that he took the time to work with me and eventually move
forward with this work. I have tried my best to heed his caution to avoid producing a
tome that rivals the dictionary in length.

To my mother and father, I thank you for giving me appreciation for the written
word. I am grateful for their love and support. My father introduced me to Marshall
McLuhan, and though I have largely failed to read most of his works, I have gained an
immense appreciation for his evaluation on how the medium affects the message.
This has transformed the way that I view and evaluate system architectures.

Finally, thanks to everyone else who contributed in some way large or small to sup‐
porting me and this work. There are so many people who have contributed in their
own way—through conversations, blog posts, presentations, open source code, anec‐
dotes, personal experiences, stories, and impromptu rants. Thank you, each and
every one of you.

It has been both a pleasure and a frustration to work on this book. There have been
many times where I cursed myself for starting it, but thankfully there were many
more times that I was glad I did. I hope that this book helps you, dear reader, in some
way to learn and grow.

xvi | Preface

CHAPTER 1

Why Event-Driven Microservices

The medium is the message.
—Marshall McLuhan

McLuhan argues that it is not the content of media, but rather engagement with its
medium, that impacts humankind and introduces fundamental changes to society.
Newspapers, radio, television, the internet, instant messaging, and social media have
all changed human interaction and social structures thanks to our collective
engagement.

The same is true with computer system architectures. You need only look at the his‐
tory of computing inventions to see how network communications, relational data‐
bases, big-data developments, and cloud computing have significantly altered how
architectures are built and how work is performed. Each of these inventions changed
not only the way that technology was used within various software projects, but also
the way that organizations, teams, and people communicated with one another. From
centralized mainframes to distributed mobile applications, each new medium has
fundamentally changed people’s relationship with computing.

The medium of the asynchronously produced and consumed event has been funda‐
mentally shifted by modern technology. These events can now be persisted indefi‐
nitely, at extremely large scale, and be consumed by any service as many times as
necessary. Compute resources can be easily acquired and released on-demand, ena‐
bling the easy creation and management of microservices. Microservices can store
and manage their data according to their own needs, and do so at a scale that was
previously limited to batch-based big-data solutions. These improvements to the
humble and simple event-driven medium have far-reaching impacts that not only
change computer architectures, but also completely reshape how teams, people, and
organizations create systems and businesses.

1

What Are Event-Driven Microservices?
Microservices and microservice-style architectures have existed for many years, in
many different forms, under many different names. Service-oriented architectures
(SOAs) are often composed of multiple microservices synchronously communicating
directly with one another. Message-passing architectures use consumable events to
asynchronously communicate with one another. Event-based communication is cer‐
tainly not new, but the need for handling big data sets, at scale and in real time, is new
and necessitates a change from the old architectural styles.

In a modern event-driven microservices architecture, systems communicate by issu‐
ing and consuming events. These events are not destroyed upon consumption as in
message-passing systems, but instead remain readily available for other consumers to
read as they require. This is an important distinction, as it allows for the truly power‐
ful patterns covered in this book.

The services themselves are small and purpose-built, created to help fulfill the neces‐
sary business goals of the organization. A typical definition of “small” is something
that takes no more than two weeks to write. By another definition, the service should
be able to (conceptually) fit within one’s own head. These services consume events
from input event streams; apply their specific business logic; and may emit their own
output events, provide data for request-response access, communicate with a third-
party API, or perform other required actions. As this book will detail, these services
can be stateful or stateless, complex or simple; and they might be implemented as
long-running, standalone applications or executed as a function using Functions-as-
a-Service.

This combination of event streams and microservices forms an interconnected graph
of activity across a business organization. Traditional computer architectures, com‐
posed of monoliths and intermonolith communications, have a similar graph struc‐
ture. Both of these graphs are shown in Figure 1-1.

2 | Chapter 1: Why Event-Driven Microservices

Figure 1-1. The graph structures of microservices and monoliths

Identifying how to make this graph structure operate efficiently involves looking at
the two major components: the nodes and connections. This chapter will examine
each in turn.

Introduction to Domain-Driven Design and Bounded
Contexts
Domain-driven design, as coined by Eric Evans in his book of the same title, introdu‐
ces some of the necessary concepts for building event-driven microservices. Given
the wealth of articles, books, and blogs-of-the-month readily available to talk about
this subject, I will keep this section brief.

The following concepts underpin domain-driven design:

Domain
The problem space that a business occupies and provides solutions to. This
encompasses everything that the business must contend with, including rules,
processes, ideas, business-specific terminology, and anything related to its prob‐
lem space, regardless of whether or not the business concerns itself with it. The
domain exists regardless of the existence of the business.

Subdomain
A component of the main domain. Each subdomain focuses on a specific subset
of responsibilities and typically reflects some of the business’s organizational
structure (such as Warehouse, Sales, and Engineering). A subdomain can be seen
as a domain in its own right. Subdomains, like the domain itself, belong to the
problem space.

Introduction to Domain-Driven Design and Bounded Contexts | 3

https://oreil.ly/3fGwK
https://oreil.ly/zAXqd
https://oreil.ly/zAXqd
https://oreil.ly/XwjR3

Domain (and subdomain) model
An abstraction of the actual domain useful for business purposes. The pieces and
properties of the domain that are most important to the business are used to gen‐
erate the model. The main domain model of an business is discernible through
the products the business provides its customers, the interfaces by which custom‐
ers interact with the products, and the various other processes and functions by
which the business fulfills its stated goals. Models often need to be refined as the
domain changes and as business priorities shift. A domain model is part of the
solution space, as it is a construct the business uses to solve problems.

Bounded context
The logical boundaries, including the inputs, outputs, events, requirements, pro‐
cesses, and data models, relevant to the subdomain. While ideally a bounded
context and a subdomain will be in complete alignment, legacy systems, technical
debt, and third-party integrations often create exceptions. Bounded contexts are
also a property of the solution space and have a significant impact on how micro‐
services interact with one another.

Bounded contexts should be highly cohesive. The internal operations of the context
should be intensive and closely related, with the vast majority of communication
occurring internally rather than cross-boundary. Having highly cohesive responsibili‐
ties allows for reduced design scope and simpler implementations.

Connections between bounded contexts should be loosely coupled, as changes made
within one bounded context should minimize or eliminate the impact on neighbor‐
ing contexts. A loose coupling can ensure that requirement changes in one context do
not propagate a surge of dependent changes to neighboring contexts.

Leveraging Domain Models and Bounded Contexts
Every organization forms a single domain between itself and the outside world.
Everyone working within the organization is operating to support the needs of its
domain.

This domain is broken down into subdomains—perhaps, for a technology-centric
company, an Engineering department, a Sales department, and a Customer Support
department. Each subdomain has its own requirements and duties and may itself be
subdivided. This division process repeats until the subdomain models are granular
and actionable and can be translated into small and independent services by the
implementing teams. Bounded contexts are established around these subdomains
and form the basis for the creation of microservices.

4 | Chapter 1: Why Event-Driven Microservices

Aligning Bounded Contexts with Business Requirements
It is common for the business requirements of a product to change during its lifetime,
perhaps due to organizational changes or new feature requests. In contrast, it’s rare
for a company to need to change the underlying implementation of any given prod‐
uct without accompanying business requirement changes. This is why bounded con‐
texts should be built around business requirements and not technological
requirements.

Aligning bounded contexts on business requirements allows teams to make changes
to microservice implementations in a loosely coupled and highly cohesive way. It pro‐
vides a team with the autonomy to design and implement a solution for the specific
business needs, which greatly reduces interteam dependencies and enables each team
to focus strictly on its own requirements.

Conversely, aligning microservices on technical requirements is problematic. This
pattern is often seen in improperly designed synchronous point-to-point microservi‐
ces and in traditional monolith-style computing systems where teams own specific
technical layers of the application. The main issue with technological alignment is
that it distributes the responsibility of fulfilling the business function across multiple
bounded contexts, which may involve multiple teams with differing schedules and
duties. Because no team is solely responsible for implementing a solution, each ser‐
vice becomes coupled to another across both team and API boundaries, making
changes difficult and expensive. A seemingly innocent change, a bug, or a failed ser‐
vice can have serious ripple effects to the business-serving capabilities of all services
that use the technical system. Technical alignment is seldomly used in event-driven
microservice (EDM) architectures and should be avoided completely whenever possi‐
ble. Eliminating cross-cutting technological and team dependencies will reduce a sys‐
tem’s sensitivity to change.

Figure 1-2 shows both scenarios: sole ownership on the left and cross-cutting owner‐
ship on the right. With sole ownership, the team is fully organized around the two
independent business requirements (bounded contexts) and has complete control
over its application code and the database layer. On the right, the teams have been
organized via technical requirements, where the application layer is managed separate
from the data layer. This creates explicit dependencies between the teams, as well as
implicit dependencies between the business requirements.

Introduction to Domain-Driven Design and Bounded Contexts | 5

Figure 1-2. Alignment on business contexts versus on technological contexts

Modeling event-driven microservices architectures around business requirements is
preferred, though there are tradeoffs with this approach. Code may be replicated a
number of times, and many services may use similar data access patterns. Product
developers may try to reduce repetition by sharing data sources with other products
or by coupling on boundaries. In these cases, the subsequent tight coupling may be
far more costly in the long run than repeating logic and storing similar data. These
tradeoffs will be examined in greater detail throughout this book.

Keep loose coupling between bounded contexts, and focus on min‐
imizing intercontext dependencies. This will allow bounded con‐
text implementations to change as necessary, without subsequently
breaking many (or any) other systems.

Additionally, each team may be required to have full stack expertise, which can be
complicated by the need for specialized skill sets and access permissions. The organi‐
zation should operationalize the most common requirements such that these vertical
teams can support themselves, while more specialized skill sets can be provided on a
cross-team, as-needed basis. These best practices are covered in more detail in
Chapter 14.

Communication Structures
An organization’s teams, systems, and people all must communicate with one another
to fulfill their goals. These communications form an interconnected topology of
dependencies called a communication structure. There are three main communication
structures, and each affects the way businesses operate.

6 | Chapter 1: Why Event-Driven Microservices

Business Communication Structures
The business communication structure (Figure 1-3) dictates communication between
teams and departments, each driven by the major requirements and responsibilities
assigned to it. For example, Engineering produces the software products, Sales sells to
customers, and Support ensures that customers and clients are satisfied. The organi‐
zation of teams and the provisioning of their goals, from the major business units
down to the work of the individual contributor, fall under this structure. Business
requirements, their assignment to teams, and team compositions all change over
time, which can greatly impact the relationship between the business communication
structure and the implementation communication structure.

Figure 1-3. Sample business communications structure

Implementation Communication Structures
The implementation communication structure (Figure 1-4) is the data and logic per‐
taining to the subdomain model as dictated by the organization. It formalizes busi‐
ness processes, data structures, and system design so that business operations can be
performed quickly and efficiently. This results in a tradeoff in flexibility for the busi‐
ness communication structure, as redefining the business requirements that must be
satisfied by the implementation requires a rewrite of the logic. These rewrites are
most often iterative modifications to the subdomain model and associated code,
which over time reflect the evolution of the implementation to fulfill the new busi‐
ness requirements.

Communication Structures | 7

The quintessential example of an implementation communication structure for soft‐
ware engineering is the monolithic database application. The business logic of the
application communicates internally via either function calls or shared state. This
monolithic application, in turn, is used to satisfy the business requirements dictated
by the business communication structure.

Figure 1-4. Sample implementation communication structure

Data Communication Structures
The data communication structure (Figure 1-5) is the process through which data is
communicated across the business and particularly between implementations.
Although a data communication structure comprising email, instant messaging, and
meetings is often used for communicating business changes, it has largely been
neglected for software implementations. Its role has usually been fulfilled ad hoc,
from system to system, with the implementation communication structure often
playing double duty by including data communication functions in addition to its
own requirements. This has caused many problems in how companies grow and
change over time, the impact of which is evaluated in the next section.

8 | Chapter 1: Why Event-Driven Microservices

Figure 1-5. Sample ad hoc data communication structure

Conway’s Law and Communication Structures
Organizations which design systems...are constrained to produce designs which are copies of
the communication structures of these organizations.

—Melvin Conway—How Do Committees Invent? (April 1968)

This quote, known as Conway’s law, implies that a team will build products according
to the communication structures of its organization. Business communication struc‐
tures organize people into teams, and these teams typically produce products that are
delimited by their team boundaries. Implementation communication structures pro‐
vide access to the subdomain data models for a given product, but also restrict access
to other products due to the weak data communication capabilities.

Because domain concepts span the business, domain data is often needed by other
bounded contexts within an organization. Implementation communication structures
are generally poor at providing this communication mechanism, though they excel at
supplying the needs of their own bounded context. They influence the design of
products in two ways. First, due to the inefficiencies of communicating the necessary
domain data across the organization, they discourage the creation of new, logically
separate products. Second, they provide easy access to existing domain data, at the
risk of continually expanding the domain to encompass the new business require‐
ments. This particular pattern is embodied by monolithic designs.

Data communication structures play a pivotal role in how an organization designs
and builds products, but for many organizations this structure has long been missing.
As noted, implementation communication structures frequently play this role in
addition to their own.

Communication Structures | 9

Some organizations attempt to mitigate the inability to access domain data from
other implementations, but these efforts have their own drawbacks. For example,
shared databases are often used, though these frequently promote anti-patterns and
often cannot scale sufficiently to accommodate all performance requirements. Data‐
bases may provide read-only replicas; however, this can expose their inner data mod‐
els unnecessarily. Batch processes can dump data to a file store to be read by other
processes, but this approach can create issues around data consistency and multiple
sources of truth. Lastly, all of these solutions result in a strong coupling between
implementations and further harden an architecture into direct point-to-point
relationships.

If you find that it is too hard to access data in your organization or
that your products are scope-creeping because all the data is loca‐
ted in a single implementation, you’re likely experiencing the
effects of poor data communication structures. This problem will
be magnified as the organization grows, develops new products,
and increasingly needs to access commonly used domain data.

Communication Structures in Traditional Computing
An organization’s communication structures greatly influence how engineering
implementations are created. This is true at the team level as well: the communication
structures of the team affect the solutions it builds for the specific business require‐
ments assigned to it. Let’s see how this works in practice.

Consider the following scenario. A single team has a single service backed by a single
data store. They are happily providing their business function, and all is well in the
world. One day the team lead comes in with a new business requirement. It’s some‐
what related to what the team is already doing and could possibly just be added on to
their existing service. However, it’s also different enough that it could go into its own
new service.

The team is at a crossroads: do they implement the new business requirement in a
new service or simply add it to their existing service? Let’s take a look at their options
in a bit more detail.

Option 1: Make a New Service
The business requirement is different enough that it could make sense to put it into a
new service. But what about data? This new business function needs some of the old
data, but that data is currently locked up in the existing service. Additionally, the
team doesn’t really have a process for launching new, fully independent services. On
the other hand, the team is getting to be a bit big, and the company is growing

10 | Chapter 1: Why Event-Driven Microservices

quickly. If the team has to be divided in the future, having modular and independent
systems may make divvying up ownership much easier.

There are risks associated with this approach. The team must figure out a way to
source data from their original data store and copy it to their new data store. They
need to ensure that they don’t expose the inner workings and that the changes they
make to their data structures won’t affect any other teams copying their data. Addi‐
tionally, the data being copied will always be somewhat stale, as they can only afford
to copy production data in real time every 30 minutes so as not to saturate the data
store with queries. This connection will need to be monitored and maintained to
ensure that it is running correctly.

There is also a risk in spinning up and running a new service. They will need to man‐
age two data stores, and two services, and establish logging, monitoring, testing,
deployment, and rollback processes for them. They must also take care to synchron‐
ize any data structure changes so as not to affect the dependent system.

Option 2: Add It to the Existing Service
The other option is to create the new data structures and business logic within the
existing service. The required data is already in the data store, and the logging, moni‐
toring, testing, deployment, and rollback processes are already defined and in use.
The team is familiar with the system and can get right to work on implementing the
logic, and their monolithic patterns support this approach to service design.

There are also risks associated with this approach, though they are a bit more subtle.
Boundaries within the implementation can blur as changes are made, especially since
modules are often bundled together in the same codebase. It is far too easy to quickly
add features by crossing those boundaries and directly couple across the module.
There is a major boon to moving quickly, but it comes at the cost of tight couplings,
reduced cohesion, and a lack of modularity. Though teams can guard against this, it
requires excellent planning and strict adherence to boundaries, which often fall by
the wayside in the face of tight schedules, inexperience, and shifting service
ownership.

Pros and Cons of Each Option
Most teams would choose the second option—adding the functionality to the existing
system. There is nothing wrong with this choice; monolithic architectures are useful
and powerful structures and can provide exceptional value to a business. The first
option runs head first into the two problems associated with traditional computing:

• Accessing another system’s data is difficult to do reliably, especially at scale and in
real time.

Communication Structures in Traditional Computing | 11

• Creating and managing new services has substantial overhead and risk associated
with it, especially if there is no established way to do so within the organization.

Accessing local data is always easier than accessing data in another data store. Any
data encapsulated in another team’s data store is difficult to obtain, as it requires
crossing both implementation and business communication boundaries. This
becomes increasingly difficult to maintain and scale as data, connection count, and
performance requirements grow.

Though copying the necessary data over is a worthy approach, it’s not foolproof. This
model encourages many direct point-to-point couplings, which become problematic
to maintain as an organization grows, business units and ownership change, and
products mature and phase out. It creates a strict technical dependency the imple‐
mentation communication structures of both teams (the team storing the data and
the team copying it), requiring them to work in synchronicity whenever a data
change is made. Special care must be taken to ensure that the internal data model of
an implementation is not unduly exposed, lest other systems tightly couple to it. Scal‐
ability, performance, and system availability are often issues for both systems, as the
data replication query may place an unsustainable load on the source system. Failed
sync processes may not be noticed until an emergency occurs. Tribal knowledge may
result in a team copying a copy of data, thinking that it’s the original source of truth.

Copied data will always be somewhat stale by the time the query is complete and the
data is transferred. The larger the data set and the more complex its sourcing, the
more likely a copy will be out of sync with the original. This is problematic when sys‐
tems expect each other to have perfect, up-to-date copies, particularly when commu‐
nicating with one another about that data. For instance, a reporting service may
report different values than a billing service due to staleness. This can have serious
downstream consequences for service quality, reporting, analytics, and monetary-
based decision making.

The inability to correctly disseminate data throughout a company is not due to a fun‐
damental flaw in the concept. Quite the contrary: it’s due to a weak or nonexistent
data communication structure. In the preceding scenario, the team’s implementation
communication structure is performing double duty as an extremely limited data
communication structure.

One of the tenets of event-driven microservices is that core busi‐
ness data should be easy to obtain and usable by any service that
requires it. This replaces the ad hoc data communication structure
in this scenario with a formalized data communication structure.
For the hypothetical team, this data communication structure
could eliminate most of the difficulties of obtaining data from
other systems.

12 | Chapter 1: Why Event-Driven Microservices

The Team Scenario, Continued
Fast-forward a year. The team decided to go with option 2 and incorporate the new
features within the same service. It was quick, it was easy, and they have implemented
a number of new features since then. As the company has grown, the team has grown,
and now it is time for it to be reorganized into two smaller, more focused teams.

Each new team must now be assigned certain business functions from the previous
service. The business requirements of each team are neatly divided based on areas of
the business that need the most attention. Dividing the implementation communica‐
tion structure, however, is not proving to be easy. Just as before, it seems that the
teams both require large amounts of the same data to fulfill their requirements. New
sets of questions arise:

• Which team should own which data?
• Where should the data reside?
• What about data where both teams need to modify the values?

The team leads decide that it may be best to just share the service instead, and both of
them can work on different parts. This will require a lot more cross-team communi‐
cation and synchronization of efforts, which may be a drag on productivity. And what
about in the future, if they double in size again? Or if the business requirements
change enough that they’re no longer able to fulfill everything with the same data
structure?

Conflicting Pressures
There are two conflicting pressures on the original team. It was influenced to keep all
of its data local in one service to make adding new business functions quicker and
easier, at the cost of expanding the implementation communication structure. Even‐
tually the growth of the team necessitated splitting up the business communication
structure—a requirement followed by the reassignment of business requirements to
the new teams. The implementation communication structure, however, cannot sup‐
port the reassignments in its current form and needs to be broken down into suitable
components. Neither approach is scalable, and both point to a need to do things dif‐
ferently. These problems all stem from the same root cause: a weak, ill-defined means
of communicating data between implementation communication structures.

Event-Driven Communication Structures
The event-driven approach offers an alternative to the traditional behavior of imple‐
mentation and data communication structures. Event-based communications are not
a drop-in replacement for request-response communications, but rather a completely

Event-Driven Communication Structures | 13

different way of communicating between services. An event-streaming data commu‐
nication structure decouples the production and ownership of data from the access to
it. Services no longer couple directly through a request-response API, but instead
through event data defined within event streams (this process is covered more in
Chapter 3). Producers’ responsibilities are limited to producing well-defined data into
their respective event streams.

Events Are the Basis of Communication
All shareable data is published to a set of event streams, forming a continuous, can‐
onical narrative detailing everything that has happened in the organization. This
becomes the channel by which systems communicate with one another. Nearly any‐
thing can be communicated as an event, from simple occurrences to complex, stateful
records. Events are the data; they are not merely signals indicating data is ready else‐
where or just a means of direct data transfer from one implementation to another.
Rather, they act both as data storage and as a means of asynchronous communication
between services.

Event Streams Provide the Single Source of Truth
Each event in a stream is a statement of fact, and together these statements form the
single source of truth—the basis of communication for all systems within the organi‐
zation. A communication structure is only as good as the veracity of its information,
so it’s critical that the organization adopts the event stream narrative as a single
source of truth. If some teams choose instead to put conflicting data in other loca‐
tions, the event stream’s function as the organization’s data communications back‐
bone is significantly diminished.

Consumers Perform Their Own Modeling and Querying
The event-based data communication structure differs from an overextended imple‐
mentation communication structure in that it is incapable of providing any querying
or data lookup functionality. All business and application logic must be encapsulated
within the producer and consumer of the events.

Data access and modeling requirements are completely shifted to the consumer, with
consumers each obtaining their own copy of events from the source event streams.
Any querying complexity is also shifted from the implementation communication
structure of the data owner to that of the consumer. The consumer remains fully
responsible for any mixing of data from multiple event streams, special query func‐
tionality, or other business-specific implementation logic. Both producers and con‐
sumers are otherwise relieved of their duty to provide querying mechanisms, data
transfer mechanisms, APIs (application programming interfaces), and cross-team

14 | Chapter 1: Why Event-Driven Microservices

services for the means of communicating data. They are now limited in their respon‐
sibility to only solving the needs of their immediate bounded context.

Data Communication Is Improved Across the Organization
The usage of a data communications structure is an inversion, with all shareable data
being exposed outside of the implementation communication structure. Not all data
must be shared, and thus not all of it needs to be published to the set of event streams.
However, any data that is of interest to any other team or service must be published to
the common set of event streams, such that the production and ownership of data
becomes fully decoupled. This provides the formalized data communication structure
that has long been missing from system architectures and better adheres to the boun‐
ded context principles of loose coupling and high cohesiveness.

Applications can now access data that would otherwise have been laborious to obtain
via point-to-point connections. New services can simply acquire any needed data
from the canonical event streams, create their own models and state, and perform any
necessary business functions without depending on direct point-to-point connec‐
tions or APIs with any other service. This unlocks the potential for an organization to
more effectively use its vast amounts of data in any product, and even mix data from
multiple products in unique and powerful ways.

Accessible Data Supports Business Communication Changes
Event streams contain core domain events that are central to the operation of the
business. Though teams may restructure and projects may come and go, the impor‐
tant core domain data remains readily available to any new product that requires it,
independent of any specific implementation communication structure. This gives the
business unparalleled flexibility, as access to core domain events no longer relies upon
any particular implementation.

Asynchronous Event-Driven Microservices
Event-driven microservices enable the business logic transformations and operations
necessary to meet the requirements of the bounded context. These applications are
tasked with fulfilling these requirements and emitting any of their own necessary
events to other downstream consumers. Here are a few of the primary benefits of
using event-driven microservices:

Granularity
Services map neatly to bounded contexts and can be easily rewritten when busi‐
ness requirements change.

Scalability
Individual services can be scaled up and down as needed.

Asynchronous Event-Driven Microservices | 15

Technological flexibility
Services use the most appropriate languages and technologies. This also allows
for easy prototyping using pioneering technology.

Business requirement flexibility
Ownership of granular microservices is easy to reorganize. There are fewer cross-
team dependencies compared to large services, and the organization can react
more quickly to changes in business requirements that would otherwise be impe‐
ded by barriers to data access.

Loosely coupling
Event-driven microservices are coupled on domain data and not on a specific
implementation API. Data schemas can be used to greatly improve how data
changes are managed, as will be discussed in Chapter 3.

Continuous delivery support
It’s easy to ship a small, modular microservice, and roll it back if needed.

High testability
Microservices tend to have fewer dependencies than large monoliths, making it
easier to mock out the required testing endpoints and ensure proper code
coverage.

Example Team Using Event-Driven Microservices
Let’s revisit the team from earlier but with an event-driven data communication
structure.

A new business requirement is introduced to the team. It’s somewhat related to what
their current products do, but it’s also different enough that it could go into its own
service. Does adding it to an existing service violate the single responsibility principle
and overextend the currently defined bounded context? Or is it a simple extension,
perhaps the addition of some new related data or functionality, of an existing service?

Previous technical issues—such as figuring out where to source the data and how to
sink it, handling batch syncing issues, and implementing synchronous APIs—are
largely removed now. The team can spin up a new microservice and ingest the neces‐
sary data from the event streams, all the way back to the beginning of time if needed.
It is entirely possible that the team mixes in common data used in their other services,
so long as that data is used solely to fulfill the needs of the new bounded context. The
storage and structure of this data are left entirely up to the team, which can choose
which fields to keep and which to discard.

Business risks are also alleviated, as the small, finer-grained services allow for single
team ownership, enabling the teams to scale and reorganize as necessary. When the
team grows too large to manage under a single business owner, they can split up as

16 | Chapter 1: Why Event-Driven Microservices

1 See, for example, Building Microservices by Sam Newman (O’Reilly, 2015) and Microservices for the Enterprise
by Kasun Indrasiri and Prabath Siriwardena (Apress, 2018).

required and reassign the microservice ownership. The ownership of the event data
moves with the producing service, and organizational decisions can be made to
reduce the amount of cross-team communication required to perform future work.

The nature of the microservice prevents spaghetti code and expansive monoliths
from taking hold, provided that the overhead for creating new services and obtaining
the necessary data is minimal. Scaling concerns are now focused on individual event-
processing services, which can scale their CPU, memory, disk, and instance count as
required. The remaining scaling requirements are offloaded onto the data communi‐
cation structure, which must ensure that it can handle the various loads of services
consuming from and producing to its event streams.

To do all of this, however, the team needs to ensure that the data is indeed present in
the data communication structure, and they must have the means for easily spinning
up and managing a fleet of microservices. This requires an organization-wide adop‐
tion of EDM architecture.

Synchronous Microservices
Microservices can be implemented asynchronously using events (the approach this
book advocates) or synchronously, which is common in service-oriented architec‐
tures. Synchronous microservices tend to be fulfilled using a request-response
approach, where services communicate directly through APIs to fulfill business
requirements.

Drawbacks of Synchronous Microservices
There are a number of issues with synchronous microservices that make them diffi‐
cult to use at large scale. This is not to say that a company cannot succeed by using
synchronous microservices, as evidenced by the achievements of companies such as
Netflix, Lyft, Uber, and Facebook. But many companies have also made fortunes
using archaic and horribly tangled spaghetti-code monoliths, so do not confuse the
ultimate success of a company with the quality of its underlying architecture. There
are a number of books that describe how to implement synchronous microservices,
so I recommend that you read those to get a better understanding of synchronous
approaches.1

Furthermore, note that neither point-to-point request-response microservices nor
asynchronous event-driven microservices are strictly better than the other. Both have
their place in an organization, as some tasks are far better suited to one over the

Synchronous Microservices | 17

https://www.oreilly.com/library/view/building-microservices/9781491950340
https://oreil.ly/FPtLm
https://oreil.ly/FPtLm

other. However, my own experience, as well as that of many of my peers and collea‐
gues, indicates that EDM architectures offer an unparalleled flexibility that is absent
in synchronous request-response microservices. Perhaps you’ll come to agree as you
proceed through this book, but at the very least, you’ll gain an understanding of their
strengths and drawbacks.

Here are some of the biggest shortcomings of synchronous request-response micro‐
services.

Point-to-point couplings
Synchronous microservices rely on other services to help them perform their busi‐
ness tasks. Those services, in turn, have their own dependent services, which have
their own dependent services, and so on. This can lead to excessive fanout and diffi‐
cultly in tracing which services are responsible for fulfilling specific parts of the busi‐
ness logic. The number of connections between services can become staggeringly
high, which further entrenches the existing communication structures and makes
future changes more difficult.

Dependent scaling
The ability to scale up your own service depends on the ability of all dependent serv‐
ices to scale up as well and is directly related to the degree of communications fanout.
Implementation technologies can be a bottleneck on scalability. This is further com‐
plicated by highly variable loads and surging request patterns, which all need to be
handled synchronously across the entire architecture.

Service failure handling
If a dependent service is down, then decisions must be made about how to handle the
exception. Deciding how to handle the outages, when to retry, when to fail, and how
to recover to ensure data consistency becomes increasingly difficult the more services
there are within the ecosystem.

API versioning and dependency management
Multiple API definitions and service versions will often need to exist at the same
time. It is not always possible or desirable to force clients to upgrade to the newest
API. This can add a lot of complexity in orchestrating API change requests across
multiple services, especially if they are accompanied by changes to the underlying
data structures.

Data access tied to the implementation
Synchronous microservices have all the same problems as traditional services when it
comes to accessing external data. Although there are service design strategies for

18 | Chapter 1: Why Event-Driven Microservices

mitigating the need to access external data, microservices will often still need to
access commonly used data from other services. This puts the onus of data access and
scalability back on the implementation communication structure.

Distributed monoliths
Services may be composed such that they act as a distributed monolith, with many
intertwining calls being made between them. This situation often arises when a team
is decomposing a monolith and decides to use synchronous point-to-point calls to
mimic the existing boundaries within their monolith. Point-to-point services make it
easy to blur the lines between the bounded contexts, as the function calls to remote
systems can slot in line-for-line with existing monolith code.

Testing
Integration testing can be difficult, as each service requires fully operational depend‐
ents, which require their own in turn. Stubbing them out may work for unit tests, but
seldom proves sufficient for more extensive testing requirements.

Benefits of Synchronous Microservices
There are a number of undeniable benefits provided by synchronous microservices.
Certain data access patterns are favorable to direct request-response couplings, such
as authenticating a user and reporting on an AB test. Integrations with external third-
party solutions almost always use a synchronous mechanism and generally provide a
flexible, language-agnostic communication mechanism over HTTP.

Tracing operations across multiple systems can be easier in a synchronous environ‐
ment than in an asynchronous one. Detailed logs can show which functions were
called on which systems, allowing for high debuggability and visibility into business
operations.

Services hosting web and mobile experiences are by and large powered by request-
response designs, regardless of their synchronous or asynchronous nature. Clients
receive a timely response dedicated entirely to their needs.

The experience factor is also quite important, especially as many developers in today’s
market tend to be much more experienced with synchronous, monolithic-style cod‐
ing. This makes acquiring talent for synchronous systems easier, in general, than
acquiring talent for asynchronous event-driven development.

A company’s architecture could only rarely, if ever, be based
entirely on event-driven microservices. Hybrid architectures will
certainly be the norm, where synchronous and asynchronous solu‐
tions are deployed side-by-side as the problem space requires.

Synchronous Microservices | 19

Summary
Communication structures direct how software is created and managed through the
life of an organization. Data communication structures are often underdeveloped and
ad hoc, but the introduction of a durable, easy-to-access set of domain events, as
embodied by event-driven systems, enables smaller, purpose-built implementations
to be used.

20 | Chapter 1: Why Event-Driven Microservices

CHAPTER 2

Event-Driven Microservice Fundamentals

An event-driven microservice is a small application built to fulfill a specific bounded
context. Consumer microservices consume and process events from one or more
input event streams, whereas producer microservices produce events to event streams
for other services to consume. It is common for an event-driven microservice to be a
consumer of one set of input event streams and a producer of another set of output
event streams. These services may be stateless (see Chapter 5) or stateful (see Chap‐
ter 7) and may also contain synchronous request-response APIs (see Chapter 13).
These services all share the common functionality of consuming events from or pro‐
ducing events to the event broker. Communication between event-driven microservi‐
ces is completely asynchronous.

Event streams are served by an event broker, which is covered in more detail in the
second half of this chapter. Running microservices at any meaningful scale often
necessitates using deployment pipelines and container management systems, also dis‐
cussed near the end of this chapter.

Building Topologies
The term topology comes up frequently in discussions of event-driven microservices.
This term is often used to mean the processing logic of an individual microservice. It
may also be used to refer to the graph-like relationship between individual microser‐
vices, event streams, and request-response APIs. Let’s look at each definition in turn.

Microservice Topology
A microservice topology is the event-driven topology internal to a single microser‐
vice. This defines the data-driven operations to be performed on incoming events,
including transformation, storage, and emission.

21

Figure 2-1 shows a single microservice topology ingesting from two input event
streams.

Figure 2-1. A simple microservice topology

The microservice topology ingests events from event stream A and materializes them
into a data store. The materialization operation is covered in greater detail later in this
chapter. Meanwhile, event stream B is ingested, and certain events are filtered out,
transformed, and then joined against the stored state. The results are output to a new
event stream. The ingestion, processing, and output of the microservice are part of its
topology.

Business Topology
A business topology is the set of microservices, event streams, and APIs that fulfill
complex business functions. It is an arbitrary grouping of services and may represent
the services owned by a single team or department or those that fulfill a superset of
complex business functionality. The business communication structures detailed in
Chapter 1 compose the business topology. Microservices implement the business
bounded contexts, and event streams provide the data communication mechanism
for sharing cross-context domain data.

A microservice topology details the inner workings of a single
microservice. A business topology, on the other hand, details the
relationships between services.

Figure 2-2 shows a business topology with three independent microservices and
event streams. Note that the business topology does not detail the inner workings of a
microservice.

22 | Chapter 2: Event-Driven Microservice Fundamentals

Figure 2-2. A simple business topology

Microservice 1 consumes and transforms data from event stream A and produces the
results to event stream B. Microservice 2 and microservice 3 both consume from
event stream B. Microservice 2 acts strictly as a consumer and provides a REST API
in which data can be accessed synchronously. Meanwhile, microservice 3 performs its
own transformations according to its bounded context requirements and outputs to
event stream C. New microservices and event streams can be added to the business
topology as needed, coupled asynchronously through event streams.

The Contents of an Event
An event can be anything that has happened within the scope of the business commu‐
nication structure. Receiving an invoice, booking a meeting room, requesting a cup of
coffee (yes, you can hook a coffee machine up to an event stream), hiring a new
employee, and successfully completing arbitrary code are all examples of events that
happen within a business. It is important to recognize that events can be anything
that is important to the business. Once these events start being captured, event-driven
systems can be created to harness and use them across the organization.

An event is a recording of what happened, much like how an application’s information
and error logs record what takes place in the application. Unlike these logs, however,
events are also the single source of truth, as covered in Chapter 1. As such, they must
contain all the information required to accurately describe what happened.

The Structure of an Event
Events are typically represented using a key/value format. The value stores the com‐
plete details of the event, while the key is used for identification purposes, routing,
and aggregation operations on events with the same key. The key is not a required
field for all event types.

The Contents of an Event | 23

Key Value
Unique ID Details pertaining to the Unique ID

There are three main event types, which will be used throughout this book and which
you’ll inevitably encounter in your own domains.

Unkeyed Event
Unkeyed events are used to describe an event as a singular statement of fact. An
example could be an event indicating that a customer interacted with a product, such
as a user opening a book entity on a digital book platform. As the name implies, there
is no key involved in this event.

Key Value
N/A ISBN: 372719, Timestamp: 1538913600

Entity Event
An entity is a unique thing and is keyed on the unique ID of that thing. The entity
event describes the properties and state of an entity—most commonly an object in
the business context—at a given point in time. For a book publisher, an example
could be a book entity, keyed on ISBN. The value field contains all the necessary
information related to the unique entity.

Key Value
ISBN: 372719 Author: Adam Bellemare

Entity events are particularly important in event-driven architectures. They provide a
continual history of the state of an entity and can be used to materialize state (covered
in the next section). Only the latest entity event is needed to determine the current
state of an entity.

Keyed Event
A keyed event contains a key but does not represent an entity. Keyed events are usually
used for partitioning the stream of events to guarantee data locality within a single
partition of an event stream (more on this later in the chapter). An example could be
a stream of events, keyed on ISBN, indicating which user has interacted with the
book.

24 | Chapter 2: Event-Driven Microservice Fundamentals

Key Value
ISBN: 372719 UserId: A537FE

ISBN: 372719 UserId: BB0012

Note that the events could be aggregated by key such that a list of users can be com‐
posed for each ISBN, resulting in a single entity event keyed on ISBN..

Materializing State from Entity Events
You can materialize a stateful table by applying entity events, in order, from an entity
event stream. Each entity event is upserted into the key/value table, such that the
most recently read event for a given key is represented. Conversely, you can convert a
table into a stream of entity events by publishing each update to the event stream.
This is known as the table-stream duality, and it is fundamental to the creation of
state in an event-driven microservice. This is illustrated in Figure 2-3, where AA and
CC both have the newest values in their materialized table.

Upserting means inserting a new row if it doesn’t already exist in
the table, or updating it if it does.

Figure 2-3. Materializing an event stream into a table

In the same way, you can have a table record all updates and in doing so produce a
stream of data representing the table’s state over time. In the following example, BB is
upserted twice, while DD is upserted just once. The output stream in Figure 2-4
shows three upsert events representing these operations.

Materializing State from Entity Events | 25

Figure 2-4. Generating an event stream from the changes applied to a table

A relational database table, for instance, is created and populated through a series of
data insertion, update, and deletion commands. These commands can be produced as
events to an immutable log, such as a local append-only file (like the binary log in
MySQL) or an external event stream. By playing back the entire contents of the log,
you can exactly reconstruct the table and all of its data contents.

This table-stream duality is used for communicating state between
event-driven microservices. Any consumer client can read an event
stream of keyed events and materialize it into its own local state
store. This simple yet powerful pattern allows microservices to
share state through events alone, without any direct coupling
between producer and consumer services.

The deletion of a keyed event is handled by producing a tombstone. A tombstone is a
keyed event with its value set to null. This is a convention that indicates to the con‐
sumer that the event with that key should be removed from the materialized data
store, as the upstream producer has declared that it is now deleted.

Append-only immutable logs may grow indefinitely unless they are compacted. Com‐
paction is performed by the event broker to reduce the size of its internal logs by
retaining only the most recent event for a given key. Older events of the same key will
be deleted, and the remaining events compacted down into a new and smaller set of
files. The event stream offsets are maintained such that no changes are required by
the consumers. Figure 2-5 illustrates the logical compaction of an event stream in the
event broker, including the total deletion of the tombstone record.

26 | Chapter 2: Event-Driven Microservice Fundamentals

Figure 2-5. After a compaction, only the most recent record is kept for a given key—all
tombstone records and their predecessors of the same key are deleted

Compaction reduces both disk usage and the number of events that must be pro‐
cessed to reach the current state, at the expense of eliminating the history of events
otherwise provided by the event stream.

Maintaining state for the processing of business logic is an extremely common pat‐
tern in an event-driven architecture. It is a near-certainty that your entire business
model will not be able to fit in a purely stateless streaming domain, as past business
decisions will influence decisions you make today. As a specific example, if your busi‐
ness is retail, you will need to know your stock level to identify when you need to
reorder and to avoid selling customers items you do not have. You also want to be
able to keep track of your accounts payable and accounts receivable. Perhaps you
want to have a weekly promotion sent to all the customers who have provided you
their email addresses. All of these systems require that you have the ability to materi‐
alize streams of events into current state representations.

Event Data Definitions and Schemas
Event data serves as the means of long term and implementation agnostic data stor‐
age, as well as the communication mechanism between services. Therefore, it is
important that both the producers and consumers of events have a common under‐
standing of the meaning of the data. Ideally, the consumer must be able to interpret
the contents and meaning of an event without having to consult with the owner of the
producing service. This requires a common language for communication between
producers and consumers and is analogous to an API definition between synchro‐
nous request-response services.

Schematization selections such as Apache Avro and Google’s Protobuf provide two
features that are leveraged heavily in event-driven microservices. First, they provide
an evolution framework, where certain sets of changes can be safely made to the sche‐
mas without requiring downstream consumers to make a code change. Second, they
also provide the means to generate typed classes (where applicable) to convert the

Event Data Definitions and Schemas | 27

https://avro.apache.org
https://oreil.ly/zth68

schematized data into plain old objects in the language of your choice. This makes the
creation of business logic far simpler and more transparent in the development of
microservices. Chapter 3 covers these topics in greater detail.

Microservice Single Writer Principle
Each event stream has one and only one producing microservice. This microservice
is the owner of each event produced to that stream. This allows for the authoritative
source of truth to always be known for any given event, by permitting the tracing of
data lineage through the system. Access control mechanisms, as discussed in Chap‐
ter 14, should be used to enforce ownership and write boundaries.

Powering Microservices with the Event Broker
At the heart of every production-ready event-driven microservice platform is the
event broker. This is a system that receives events, stores them in a queue or parti‐
tioned event stream, and provides them for consumption by other processes. Events
are typically published to different streams based on their underlying logical mean‐
ing, similar to how a database will have many tables, each logically separated to con‐
tain a specific type of data.

Event broker systems suitable for large-scale enterprises all generally follow the same
model. Multiple, distributed event brokers work together in a cluster to provide a
platform for the production and consumption of event streams. This model provides
several essential features that are required for running an event-driven ecosystem at
scale:

Scalability
Additional event broker instances can be added to increase the cluster’s produc‐
tion, consumption, and data storage capacity.

Durability
Event data is replicated between nodes. This permits a cluster of brokers to both
preserve and continue serving data when a broker fails.

High availability
A cluster of event broker nodes enables clients to connect to other nodes in the
case of a broker failure. This permits the clients to maintain full uptime.

High-performance
Multiple broker nodes share the production and consumption load. In addition,
each broker node must be highly performant to be able to handle hundreds of
thousands of writes or reads per second.

28 | Chapter 2: Event-Driven Microservice Fundamentals

Though there are different ways in which event data can be stored, replicated, and
accessed behind the scenes of an event broker, they all generally provide the same
mechanisms of storage and access to their clients.

Event Storage and Serving
These are the minimal requirements of the underlying storage of the data by the
broker:

Partitioning
Event streams can be partitioned into individual substreams, the number of
which can vary depending on the needs of the producer and consumer. This par‐
titioning mechanism allows for multiple instances of a consumer to process each
substream in parallel, allowing for far greater throughput. Note that queues do
not require partitioning, though it may be useful to partition them anyway for
performance purposes.

Strict ordering
Data in an event stream partition is strictly ordered, and it is served to clients in
the exact same order that it was originally published.

Immutability
All event data is completely immutable once published. There is no mechanism
that can modify event data once it is published. You can alter previous data only
by publishing a new event with the updated data.

Indexing
Events are assigned an index when written to the event stream. This is used by
the consumers to manage data consumption, as they can specify which offset to
begin reading from. The difference between the consumer’s current index and
the tail index is the consumer lag. This metric can be used to scale up the number
of consumers when it is high, and scale them down when it is low. Additionally, it
can also be used to awaken Functions-as-a-Service logic.

Infinite retention
Event streams must be able to retain events for an infinite period of time. This
property is foundational for maintaining state in an event stream.

Replayability
Event streams must be replayable, such that any consumer can read whatever
data it requires. This provides the basis for the single source of truth and is foun‐
dational for communicating state between microservices.

Powering Microservices with the Event Broker | 29

Additional Factors to Consider
There are a number of additional factors to consider in the selection of an event
broker.

Support tooling
Support tools are essential for effectively developing event-driven microservices.
Many of these tools are bound to the implementation of the event broker itself. Some
of these include:

• Browsing of event and schema data
• Quotas, access control, and topic management
• Monitoring, throughput, and lag measurements

See Chapter 14 for more information regarding tooling you may need.

Hosted services
Hosted services allow you to outsource the creation and management of your event
broker.

• Do hosted solutions exist?
• Will you purchase a hosted solution or host it internally?
• Does the hosting agent provide monitoring, scaling, disaster recovery, replica‐

tion, and multizone deployments?
• Does it couple you to a single specific service provider?
• Are there professional support services available?

Client libraries and processing frameworks
There are multiple event broker implementations to select from, each of which has
varying levels of client support. It is important that your commonly used languages
and tools work well with the client libraries.

• Do client libraries and frameworks exist in the required languages?
• Will you be able to build the libraries if they do not exist?
• Are you using commonly used frameworks or trying to roll your own?

30 | Chapter 2: Event-Driven Microservice Fundamentals

Community support
Community support is an extremely important aspect of selecting an event broker.
An open source and freely available project, such as Apache Kafka, is a particularly
good example of an event broker with large community support.

• Is there online community support?
• Is the technology mature and production-ready?
• Is the technology commonly used across many organizations?
• Is the technology attractive to prospective employees?
• Will employees be excited to build with these technologies?

Long-term and tiered storage
Depending on the size of your event streams and the duration of retention, it may be
preferable to store older data segments in slower but cheaper storage. Tiered storage
provides multiple layers of access performance, with a dedicated disk local to the
event broker or its data-serving nodes providing the highest performance tier. Subse‐
quent tiers can include options such as dedicated large-scale storage layer services
(e.g., Amazon’s S3, Google Cloud Storage, and Azure Storage).

• Is tiered storage automatically supported?
• Can data be rolled into lower or higher tiers based on usage?
• Can data be seamlessly retrieved from whichever tier it is stored in?

Event Brokers Versus Message Brokers
I have found that people may be confused about what constitutes a message broker
and what constitutes an event broker. Event brokers can be used in place of a message
broker, but a message broker cannot fulfill all the functions of an event broker. Let’s
compare them in more depth.

Message brokers have a long history and have been used in large-scale message-
oriented middleware architectures by numerous organizations. Message brokers
enable systems to communicate across a network through publish/subscribe message
queues. Producers write messages to a queue, while a consumer consumes these mes‐
sages and processes them accordingly. Messages are then acknowledged as consumed
and deleted either immediately or shortly thereafter. Message brokers are designed to
handle a different type of problem than event brokers.

Event brokers, on the other hand, are designed around providing an ordered log of
facts. Event brokers meet two very specific needs that are not satisfied by the message
broker. For one, the message broker provides only queues of messages, where the

Event Brokers Versus Message Brokers | 31

https://kafka.apache.org

consumption of the message is handled on a per-queue basis. Applications that share
consumption from a queue will each receive only a subset of the records. This makes
it impossible to correctly communicate state via events, since each consumer is
unable to obtain a full copy of all events. Unlike the message broker, the event broker
maintains a single ledger of records and manages individual access via indices, so
each independent consumer can access all required events. Additionally, a message
broker deletes events after acknowledgment, whereas an event broker retains them
for as long as the organization needs. The deletion of the event after consumption
makes a message broker insufficient for providing the indefinitely stored, globally
accessible, replayable, single source of truth for all applications.

Event brokers enable an immutable, append-only log of facts that
preserves the state of event ordering. The consumer can pick up
and reprocess from anywhere in the log at any time. This pattern is
essential for enabling event-driven microservices, but it is not
available with message brokers.

Keep in mind that queues, as used in message brokers, still have a role in event-driven
microservices. Queues provide useful access patterns that may be awkward to imple‐
ment with strictly partitioned event streams. The patterns introduced by message
broker systems are certainly valid patterns for EDM architectures, but they are not
sufficient for the full scope of duties such architectures require. The remainder of the
book focuses not on any message broker architectures or application design, but
instead on the usage of event brokers in EDM architectures.

Consuming from the Immutable Log
Though not a definitive standard, commonly available event brokers use an append-
only immutable log. Events are appended at the end of the log and given an autoincre‐
menting index ID. Consumers of the data use a reference to the index ID to access
data. Events can then be consumed as either an event stream or a queue, depending
on the needs of the business and the available functionality of the event broker.

Consuming as an event stream
Each consumer is responsible for updating its own pointers to previously read indices
within the event stream. This index, known as the offset, is the measurement of the
current event from the beginning of the event stream. Offsets permit multiple con‐
sumers to consume and track their progress independently of one another, as shown
in Figure 2-6.

32 | Chapter 2: Event-Driven Microservice Fundamentals

Figure 2-6. Consumer groups and their per-partition offsets

The consumer group allows for multiple consumers to be viewed as the same logical
entity and can be leveraged for horizontal scaling of message consumption. A new
consumer joins the consumer group, causing a redistribution of event stream parti‐
tion assignments. The new consumer consumes events only from its assigned parti‐
tions, just as older consumer instances previously in the group continue to consume
only from their remaining assigned partitions. In this way, event consumption can be
balanced across the same consumer group, while ensuring that all events for a given
partition are exclusively consumed by a single consumer instance. The number of
active consumer instances in the group is limited to the number of partitions in the
event stream.

Consuming as a queue
In queue-based consumption, each event is consumed by one and only one microser‐
vice instance. Upon being consumed, that event is marked as “consumed” by the
event broker and is no longer provided to any other consumer. Partition counts do
not matter when consuming as a queue, as any number of consumer instances can be
used for consumption.

Event order is not maintained when processing from a queue. Par‐
allel consumers consume and process events out of order, while a
single consumer may fail to process an event, return it to the queue
for processing at a later date, and move on to the next event.

Queues are not supported by all event brokers. For instance, Apache Pulsar currently
supports queues while Apache Kafka does not. Figure 2-7 shows the implementation
of a queue using individual offset acknowledgment.

Event Brokers Versus Message Brokers | 33

https://pulsar.apache.org

Figure 2-7. Consuming from an immutable log as a queue

Providing a Single Source of Truth
The durable and immutable log provides the storage mechanism for the single source
of truth, with the event broker becoming the only location in which services consume
and produce data. This way, every consumer is guaranteed to be given an identical
copy of the data.

Adopting the event broker as the single source of truth requires a culture shift in the
organization. Whereas previously a team may simply have written direct SQL queries
to access data in a monolith’s database, now the team must also publish the monolith’s
data to the event broker. The developers managing the monolith must ensure that the
data produced is fully accurate, because any disagreement between the event streams
and the monolith’s database will be considered a failure of the producing team. Con‐
sumers of the data no longer couple directly on the monolith, but instead consume
directly from the event streams.

The adoption of event-driven microservices enables the creation of services that use
only the event broker to store and access data. While local copies of the events may
certainly be used by the business logic of the microservice, the event broker remains
the single source of truth for all data.

Managing Microservices at Scale
Managing microservices can become increasingly difficult as the number of services
grows. Each microservice requires specific compute resources, data stores, configura‐
tions, environment variables, and a whole host of other microservice-specific proper‐
ties. Each microservice must also be manageable and deployable by the team that
owns it. Containerization and virtualization, along with their associated management
systems, are common ways to achieve this. Both options allow individual teams to
customize the requirements of their microservices through a single unit of
deployability.

34 | Chapter 2: Event-Driven Microservice Fundamentals

Putting Microservices into Containers
Containers, as recently popularized by Docker, isolate applications from one another.
Containers leverage the existing host operating system via a shared kernel model.
This provides basic separation between containers, while the container itself isolates
environment variables, libraries, and other dependencies. Containers provide most of
the benefits of a virtual machine (covered next) at a fraction of the cost, with fast
startup times and low resource overhead.

Containers’ shared operating system approach does have some tradeoffs. Container‐
ized applications must be able to run on the host OS. If an application requires a spe‐
cialized OS, then an independent host will need to be set up. Security is one of the
major concerns, since containers share access to the host machine’s OS. A vulnerabil‐
ity in the kernel can put all the containers on that host at risk. With friendly work‐
loads this is unlikely to be a problem, but current shared tenancy models in cloud
computing are beginning to make it a bigger consideration.

Putting Microservices into Virtual Machines
Virtual machines (VMs) address some of the shortcomings of containers, though
their adoption has been slower. Traditional VMs provide full isolation with a self-
contained OS and virtualized hardware specified for each instance. Although this
alternative provides higher security than containers, it has historically been much
more expensive. Each VM has higher overhead costs compared to containers, with
slower startup times and larger system footprints.

Efforts are under way to make VMs cheaper and more efficient.
Current initiatives include Google’s gVisor, Amazon’s Firecracker,
and Kata Containers, to mention just a few. As these technologies
improve, VMs will become a much more competitive alternative to
containers for your microservice needs. It is worth keeping an eye
on this domain should your needs be driven by security-first
requirements.

Managing Containers and Virtual Machines
Containers and VMs are managed through a variety of purpose-built software known
as container management systems (CMSes). These control container deployment,
resource allocation, and integration with the underlying compute resources. Popular
and commonly used CMSes include Kubernetes, Docker Engine, Mesos Marathon,
Amazon ECS, and Nomad.

Microservices must be able to scale up and down depending on changing workloads,
service-level agreements (SLAs), and performance requirements. Vertical scaling
must be supported, in which compute resources such as CPU, memory, and disk are

Managing Microservices at Scale | 35

https://www.docker.com
https://oreil.ly/0GwA4
https://oreil.ly/tqVmO
https://katacontainers.io
https://oreil.ly/GHaef
https://www.docker.com
https://oreil.ly/a5y5V
https://aws.amazon.com/ecs
https://www.nomadproject.io

increased or decreased on each microservice instance. Horizontal scaling must also
be supported, with new instances added or removed.

Each microservice should be deployed as a single unit. For many microservices, a sin‐
gle executable is all that is needed to perform its business requirements, and it can be
deployed within a single container. Other microservices may be more complex, with
multiple containers and external data stores requiring coordination. This is where
something like Kubernetes’s pod concept comes into play, allowing for multiple con‐
tainers to be deployed and reverted as a single action. Kubernetes also allows for
single-run operations; for example, database migrations can be run during the execu‐
tion of the single deployable.

VM management is supported by a number of implementations, but is currently
more limited than container management. Kubernetes and Docker Engine support
Google’s gVisor and Kata Containers, while Amazon’s platform supports AWS Fire‐
cracker. The lines between containers and VMs will continue to blur as development
continues. Make sure that the CMS you select will handle the containers and VMs
that you require of it.

There are rich sets of resources available for Kubernetes, Docker,
Mesos, Amazon ECS, and Nomad. The information they provide
goes far beyond what I can present here. I encourage you to look
into these materials for more information.

Paying the Microservice Tax
The microservice tax is the sum of costs, including financial, manpower, and opportu‐
nity, associated with implementing the tools and components of a microservice archi‐
tecture. This includes the cost of managing, deploying, and operating the event
broker, CMS, deployment pipelines, monitoring solutions, and logging services.
These expenses are unavoidable and are paid either centrally by the organization or
independently by each team implementing microservices. The former results in a
scalable, simplified, and unified framework for developing microservices, while the
latter results in excessive overhead, duplicate solutions, fragmented tooling, and
unsustainable growth.

Paying the microservice tax is not a trivial matter, and it is one of the largest impedi‐
ments to getting started with EDM. Small organizations would likely do best to stick
with an architecture that better suits their business needs, such as a modular mono‐
lith. Larger organizations need to account for the total costs of both the
implementation and maintenance of a microservice platform and determine if the
long-term roadmap of their business can accommodate the predicted work efforts.

36 | Chapter 2: Event-Driven Microservice Fundamentals

http://shop.oreilly.com/product/0636920043874.do
http://shop.oreilly.com/product/0636920153566.do
http://shop.oreilly.com/product/0636920039952.do
https://aws.amazon.com/ecs
https://www.nomadproject.io

Fortunately, both open source and hosted services have become far more available
and easy to use in recent years. The microservice tax is being steadily reduced with
new integrations between CMSes, event brokers, and other commonly needed tools.
Be sure that your organization is prepared to devote the necessary resources to pay
these up-front costs.

Summary
This chapter covered the basic requirements behind event-driven microservices. The
event broker is the main mechanism of data communication, providing real-time
event streams at scale for other services to consume. Containerization and container
management systems allow for running microservices at scale. Lastly, this chapter
also covered the important principles underlying events and event-driven logic and
provided a first look at managing state in an distributed event-driven world.

Summary | 37

CHAPTER 3

Communication and Data Contracts

The fundamental problem of communication is that of reproducing at one point either
exactly or approximately a message selected at another point.

—Claude Shannon

Shannon, known as the Father of Information Theory, identified the largest hurdle of
communication: ensuring that a consumer of a message can accurately reproduce the
producer’s message, such that both the content and meaning are correctly conveyed.
The producer and consumer must have a common understanding of the message;
otherwise, it may be misinterpreted, and the communication will be incomplete. In
the event-driven ecosystem, the event is the message and the fundamental unit of
communication. An event must describe as accurately as possible what happened and
why. It is a statement of fact and, when combined with all the other events in a sys‐
tem, provides a complete history of what has happened.

Event-Driven Data Contracts
The format of the data to be communicated and the logic under which it is created
form the data contract. This contract is followed by both the producer and the con‐
sumer of the event data. It gives the event meaning and form beyond the context in
which it is produced and extends the usability of the data to consumer applications.

There are two components of a well-defined data contract. First is the data definition,
or what will be produced (i.e., the fields, types, and various data structures). The sec‐
ond component is the triggering logic, or why it is produced (i.e., the specific business
logic that triggered the event’s creation). Changes can be made to both the data defi‐
nition and the triggering logic as the business requirements evolve.

39

You must take care when changing the data definition, so as not to delete or alter
fields that are being used by downstream consumers. Similarly, you must also be care‐
ful when modifying the triggering logic. It is far more common to change the data
definition than the triggering mechanism, as altering the latter often breaks the
meaning of the original event definition.

Using Explicit Schemas as Contracts
The best way to enforce data contracts and provide consistency is to define a schema
for each event. The producer defines an explicit schema detailing the data definition
and the triggering logic, with all events of the same type adhering to this format. In
doing so, the producer provides a mechanism for communicating its event format to
all prospective consumers. The consumers, in turn, can confidently build their micro‐
service business logic against the schematized data.

Any implementation of event-based communication between a
producer and consumer that lacks an explicit predefined schema
will inevitably end up relying on an implicit schema. Implicit data
contracts are brittle and susceptible to uncontrolled change, which
can cause much undue hardship to downstream consumers.

A consumer must be able to extract the data necessary for its business processes, and
it cannot do that without having a set of expectations about what data should be
available. Consumers must often rely on tribal knowledge and interteam communica‐
tion to resolve data issues, a process that is not scalable as the number of event
streams and teams increases. There is also substantial risk in requiring each con‐
sumer to independently interpret the data, as a consumer may interpret it differently
than its peers, which leads to inconsistent views of the single source of truth.

It may be tempting to build a common library that interprets any
given event for all services, but this creates problems with multiple
language formats, event evolutions, and independent release cycles.
Duplicating efforts across services to ensure a consistent view of
implicitly defined data is nontrivial and best avoided completely.

Producers are also at a disadvantage with implicit schemas. Even with the best of
intentions, a producer may not notice (or perhaps their unit tests don’t reveal) that
they have altered their event data definition. Without an explicit check of their serv‐
ice’s event format, this situation may go unnoticed until it causes downstream con‐
sumers to fail. Explicit schemas give security and stability to both consumers and
producers.

40 | Chapter 3: Communication and Data Contracts

Schema Definition Comments
Support for integrated comments and arbitrary metadata in the schema definition is
essential for communicating the meaning of an event. The knowledge surrounding
the production and consumption of events should be kept as close as possible to the
event definition. Schema comments help remove ambiguity about the data’s meaning
and reduce the chance of misinterpretation by consumers. There are two main areas
where comments are particularly valuable:

• Specifying the triggering logic of the event. This is typically done in a block
header at the top of the schema definition and should clearly state why an event
has been generated.

• Giving context and clarity about a particular field within the structured schema.
For example, a datetime field’s comments could specify if the format is UTC, ISO,
or Unix time.

Full-Featured Schema Evolution
The schema format must support a full range of schema evolution rules. Schema evo‐
lution enables producers to update their service’s output format while allowing con‐
sumers to continue consuming the events uninterrupted. Business changes may
require that new fields be added, old fields be deprecated, or the scope of a field be
expanded. A schema evolution framework ensures that these changes can occur
safely and that producers and consumers can be updated independently of one
another.

Updates to services become prohibitively expensive without schema evolution sup‐
port. Producers and consumers are forced to coordinate closely, and old, previously
compatible data may no longer be compatible with current systems. It is unreasonable
to expect consumers to update their services whenever a producer changes the data
schema. In fact, a core value proposition of microservices is that they should be inde‐
pendent of the release cycles of other services except in exceptional cases.

An explicit set of schema evolution rules goes a long way in enabling both consumers
and producers to update their applications in their own time. These rules are known
as compatibility types.

Forward compatibility
Allows for data produced with a newer schema to be read as though it were pro‐
duced with an older schema. This is a particularly useful evolutionary require‐
ment in an event-driven architecture, as the most common pattern of system
change begins with the producer updating its data definition and producing data
with the newer schema. The consumer is required only to update its copy of the
schema and code should it need access to the new fields.

Event-Driven Data Contracts | 41

Backward compatibility
Allows for data produced with an older schema to be read as though it were pro‐
duced with a newer schema. This enables a consumer of data to use a newer
schema to read older data. There are several scenarios where this is particularly
useful:

• The consumer is expecting a new feature to be delivered by the upstream
team. If the new schema is already defined, the consumer can release its own
update prior to the producer release.

• Schema-encoded data is sent by a product deployed on customer hardware,
such as a cell phone application that reports on user metrics. Updates can be
made to the schema format for new producer releases, while maintaining the
compatibility with previous releases.

• The consumer application may need to reprocess data in the event stream
that was produced with an older schema version. Schema evolution ensures
that the consumer can translate it to a familiar version. If backward compati‐
bility is not followed, the consumer will only be able to read messages with
the latest format.

Full compatibility
The union of forward compatibility and backward compatibility, this is the stron‐
gest guarantee and the one you should use whenever possible. You can always
loosen the compatibility requirements at a later date, but it is often far more diffi‐
cult to tighten them.

Code Generator Support
A code generator is used to turn an event schema into a class definition or equivalent
structure for a given programming language. This class definition is used by the pro‐
ducer to create and populate new event objects. The producer is required by the com‐
piler or serializer (depending on the implementation) to respect data types and
populate all non-nullable fields that are specified in the original schema. The objects
created by the producer are then converted into their serialized format and sent to the
event broker, as shown in Figure 3-1.

Figure 3-1. Producer event production workflow using a code generator

42 | Chapter 3: Communication and Data Contracts

The consumer of the event data maintains its own version of the schema, which is
often the same version as the producer’s but could be an older or newer schema,
depending on the usage of schema evolution. If full compatibility is being observed,
the service can use any version of the schema to generate its definitions. The con‐
sumer reads the event and deserializes it using the schema version that it was enco‐
ded with. The event format is stored either alongside the message, which can be
prohibitively expensive at scale, or in a schema registry and accessed on-demand (see
“Schema Registry” on page 241). Once deserialized into its original format, the event
can be converted to the version of the schema supported by the consumer. Evolution
rules come into play at this point, with defaults being applied to missing fields, and
unused fields dropped completely. Finally, the data is converted into an object based
on the schema-generated class. At this point, the consumer’s business logic may begin
its operations. This process is shown in Figure 3-2.

Figure 3-2. Consumer event consumption and conversion workflow using a code genera‐
tor; note that the consumer converts events from schema v2, as created by the producer,
to v1, the schema format used by the consumer

The biggest benefit of code generator support is being able to write your application
against a class definition in the language of your choice. If you are using a compiled
language, the code generator provides compiler checks to ensure that you aren’t mis‐
handling event types or missing the population of any given non-null data field. Your
code will not compile unless it adheres to the schema, and therefore your application
will not be shipped without adhering to the schema data definition. Both compiled
and noncompiled languages benefit from having a class implementation to code
against. A modern IDE will notify you when you’re trying to pass the wrong types
into a constructor or setter, whereas you would receive no notification if you’re
instead using a generic format such as an object key/value map. Reducing the risk of
mishandling data provides for much more consistent data quality across the
ecosystem.

Breaking Schema Changes
There are times when the schema definition must change in a way that results in a
breaking evolutionary change. This can happen for a number of reasons, including
evolving business requirements that alter the model of the original domain, improper
scoping of the original domain, and human error while defining the schema. While
the producing service can be fairly easily changed to accommodate the new schema,
the impacts to downstream consumers vary and need to be taken into account.

Event-Driven Data Contracts | 43

The most important thing when dealing with breaking schema
changes is to communicate early and clearly with downstream con‐
sumers. Ensure that any migration plans have the understanding
and approval of everyone involved and that no one is caught
unprepared.

While it may seem heavy-handed to require intense coordination between producers
and consumers, the renegotiation of the data contract and the alteration of the
domain model require buy-in from everyone. Aside from renegotiating the schema,
you need to take some additional steps to accommodate the new schema and new
event streams that are created from it. Breaking schema changes tend to be quite
impactful for entities that exist indefinitely, but less so for events that expire after a
given period of time.

Accommodating breaking schema changes for entities
Breaking changes to an entity schema are fairly rare, as this circumstance typically
requires a redefinition of the original domain model such that the current model can‐
not simply be extended. New entities will be created under the new schema, while
previous entities were generated under the old schema. This divergence of data defi‐
nition leaves you with two choices:

• Contend with both the old and new schemas.
• Re-create all entities in the new schema format (via migration, or by re-creating

them from source).

The first option is the easiest for the producer, but it simply pushes off the resolution
of the different entity definitions onto the consumer. This contradicts the goal of
reducing the need for consumers to interpret the data individually and increases the
risk of misinterpretation, inconsistent processing between services, and significantly
higher complexity in maintaining systems.

The reality is that the consumer will never be in a better position
than the producer for resolving divergent schema definitions. It is
bad practice to defer this responsibility to the consumer.

The second option is more difficult for the producer, but ensures that the business
entities, both old and new, are redefined consistently. In practice, the producer must
reprocess the source data that led to the generation of the old entities and apply the
new business logic to re-create the entities under the new format. This approach
forces the organization as a whole to resolve what these entities mean and how they
should be understood and used by producer and consumer alike.

44 | Chapter 3: Communication and Data Contracts

Leave the old entities under the old schema in their original event
stream, because you may need them for reprocessing validation
and forensic investigations. Produce the new and updated entities
using the new schema to a new stream.

Accommodating breaking schema changes for events
Nonentity events tend to be simpler to deal with when you are incorporating break‐
ing changes. The simplest option is to create a new event stream and begin producing
the new events to that stream. The consumers of the old stream must be notified so
that they can register themselves as consumers of the new event stream. Each con‐
suming service must also account for the divergence in business logic between the
two event definitions.

Don’t mix different event types in an event stream, especially event
types that are evolutionarily incompatible. Event stream overhead
is cheap, and the logical separation is important in ensuring that
consumers have full information and explicit definitions when
dealing with the events they need to process.

Given that the old event stream no longer has new events being produced to it, the
consumers of each consuming service will eventually catch up to the latest record. As
time goes on, the stream’s retention period will eventually result in a full purging of
the stream, at which point all consumers can unregister themselves and the event
stream can be deleted.

Selecting an Event Format
While there are many options available for formatting and serializing event data, data
contracts are best fulfilled with strongly defined formats such as Avro, Thrift, or Pro‐
tobuf. Some of the most popular event broker frameworks have support for serializ‐
ing and deserializing events encoded with these formats. For example, both Apache
Kafka and Apache Pulsar support JSON, Protobuf, and Avro schema formats. The
mechanism of support for both of the technologies is the schema registry, which is
covered in more detail in “Schema Registry” on page 241. Though a detailed evalua‐
tion and comparison of these serialization options is beyond the scope of this book,
there are a number of online resources available that can help you decide among
these particular options.

You may be tempted to choose a more flexible option in the form of plain-text events
using simple key/value pairs, which still offers some structure but provides no explicit
schema or schema evolution frameworks. Proceed cautiously with this approach,

Selecting an Event Format | 45

https://oreil.ly/oVUly
https://oreil.ly/oVUly
https://oreil.ly/UjE7L

however, as it can compromise microservices’ ability to remain isolated from one
another via a strong data contract, requiring far more interteam communication.

Unstructured plain-text events usually become a burden to both
the producer and the consumer, particularly as use cases and data
changes over time. As mentioned, I recommend instead choosing a
strongly defined, explicit schema format that supports controlled
schema evolution, such as Apache Avro or Protobuf. I do not rec‐
ommend JSON, as it does not provide full-compatibility schema
evolution.

Designing Events
There are a number of best practices to follow when you are creating event defini‐
tions, as well as several anti-patterns to avoid. Keep in mind that as the number of
architectures powered by event-driven microservices expands, so does the number of
event definitions. Well-designed events will minimize the otherwise repetitive pain
points for both consumers and producers. With that being said, none of the following
are hard-and-fast rules. You can break them as you see fit, though I recommend that
you think very carefully about the full scope of implications and the tradeoffs for
your problem space before proceeding.

Tell the Truth, the Whole Truth, and Nothing but the Truth
A good event definition is not simply a message indicating that something happened,
but rather the complete description of everything that happened during that event. In
business terms, this is the resultant data that is produced when input data is ingested
and the business logic is applied. This output event must be treated as the single
source of truth and must be recorded as an immutable fact for consumption by
downstream consumers. It is the full and total authority on what actually occurred,
and consumers should not need to consult any other source of data to know that such
an event took place.

Use a Singular Event Definition per Stream
An event stream should contain events representing a single logical event. It is not
advisable to mix different types of events within an event stream, because doing so
can muddle the definitions of what the event is and what the stream represents. It is
difficult to validate the schemas being produced, as new schemas may be added
dynamically in such a scenario. Though there are special circumstances where you
may wish to ignore this principle, the vast majority of event streams produced and
consumed within your architectural workflow should each have a strict, single
definition.

46 | Chapter 3: Communication and Data Contracts

Use the Narrowest Data Types
Use the narrowest types for your event data. This lets you rely on the code generators,
language type checking (if supported), and serialization unit tests to check the
boundaries of your data. It sounds simple, but there are many cases where ambiguity
can creep in when you don’t use the proper types. Here are a few easily avoidable real-
world examples:

Using string to store a numeric value
This requires the consumer to parse and convert the string to a numeric value
and often comes up with GPS coordinates. This is error prone and subject to fail‐
ures, especially when a null value or an empty string is sent.

Using integer as a boolean
While 0 and 1 can be used to denote false and true, respectively, what does 2
mean? How about -1?

Using string as an enum
This is problematic for producers, as they must ensure that their published values
match an accepted pseudo-enum list. Typos and incorrect values will inevitably
be introduced. A consumer interested in this field will need to know the range of
possible values, and this will require talking to the producing team, unless it’s
specified in the comments of the schema. In either case, this is an implicit defini‐
tion, since the producers are not guarded against any changes to the range of val‐
ues in the string. This whole approach is simply bad practice.

Enums are often avoided because producers fear creating a new enum token that isn’t
present in the consumer’s schema. However, the consumer has a responsibility to
consider enum tokens that it does not recognize, and determine if it should process
them using a default value or simply throw a fatal exception and halt processing until
someone can work out what needs to be done. Both Protobuf and Avro have elegant
ways of handling unknown enum tokens and should be used if either is selected for
your event format.

Keep Events Single-Purpose
One common anti-pattern is adding a type field to an event definition, where differ‐
ent type values indicate specific subfeatures of the event. This is generally done for
data that is “similar yet different” and is often a result of the implementer incorrectly
identifying the events as single-purpose. Though it may seem like a time-saving
measure or a simplification of a data access pattern, overloading events with type
parameters is rarely a good idea.

There are several problems with this approach. Each type parameter value usually
has a fundamentally different business meaning, even if its technical representation is

Designing Events | 47

nearly identical to the others. It is also possible for these meanings to change over
time and for the scope that an event covers to creep. Some of these types may require
the addition of new parameters to track type-specific information, whereas other
types require separate parameters. Eventually you could have a situation where there
are several very distinct events all inhabiting the same event schema, making it diffi‐
cult to reason about what the event truly represents.

This complexity affects not only the developers who must maintain and populate
these events, but also the data’s consumers, who need to have a consistent under‐
standing about what data is published and why. If the data contract changes, they
expect to be able to isolate themselves from those changes. Adding extra field types
requires them to filter for only data that they care about. There is a risk that the con‐
sumer will fail to fully understand the various meanings of the types, leading to
incorrect consumption and logically wrong code. For each consumer, additional pro‐
cessing must also be done to discard events that aren’t relevant to that consumer.

It is very important to note that adding type fields does not reduce
or eliminate the underlying complexity inherent in the data being
produced. In fact, this complexity is merely shifted from multiple
distinct event streams with distinct schemas to a union of all the
schemas merged into one event stream. It could be argued that this
actually increases the complexity. Future evolution of the schema
becomes more difficult, as does maintaining the code that produces
the events.

Remember the principles of the data contract definition. Events should be related to a
single business action, not a generic event that records large assortments of data. If it
seems like you need a generic event with various type parameters, that’s usually a tell-
tale sign that your problem space and bounded context is not well defined.

Example: Overloading event definitions
Imagine a simple website where a user can read a book or watch a movie. When the
user first engages the website, say by opening the book or starting the movie, a back‐
end service publishes an event of this engagement, named ProductEngagement, into
an event stream. The data structure of this cautionary tale event may look something
like this:

TypeEnum: Book, Movie
ActionEnum: Click

ProductEngagement {
 productId: Long,
 productType: TypeEnum,
 actionType: ActionEnum
}

48 | Chapter 3: Communication and Data Contracts

Now imagine a new business requirement comes in: you need to track who watched
the movie trailer before watching the movie. There are no previews for books, and
though a boolean would suit the movie-watching case, it must be nullable to allow for
book engagements.

ProductEngagement {
 productId: Long,
 productType: TypeEnum,
 actionType: ActionEnum,
 //Only applies to type=Movie
 watchedPreview: {null, Boolean}
}

At this point, watchedPreview has nothing to do with Books, but it’s added into the
event definition anyway since we’re already capturing product engagements this way.
If you’re feeling particularly helpful to your downstream consumers, you can add a
comment in the schema to tell them that this field is only related to type=Movie.

Another new business requirement comes in: you need to track users who place a
bookmark in their book, and log what page it is on. Again, because there is only a
single defined structure of events for product engagements, your course of action is
constrained to adding a new action entity (Bookmark) and adding a nullable PageId
field.

TypeEnum: Book, Movie
ActionEnum: Click, Bookmark

ProductEngagement {
 productId: Long,
 productType: TypeEnum,
 actionType: ActionEnum,
 //Only applies to productType=Movie
 watchedPreview: {null, Boolean},
 //Only applies to productType=Book,actionType=Bookmark
 pageId: {null, Int}
}

As you can see by now, just a few changes in business requirements can greatly com‐
plicate a schema that is trying to serve multiple business purposes. This adds com‐
plexity for the producer and the consumer of the data, as they both must check for
the validity of the data logic. The data to be collected and represented will always be
complex, but by following single responsibility principles you can decompose the
schema into something more manageable. Let’s see what this example would look like
if you split up each schema according to single responsibilities:

MovieClick {
 movieId: Long,
 watchedPreview: Boolean
}

Designing Events | 49

BookClick {
 bookId: Long
}

BookBookmark {
 bookId: Long,
 pageId: Int
}

The productType and actionType enumerations are now gone, and the schemas have
been flattened out accordingly. There are now three event definitions instead of just a
single one, and while the schema definition count has increased, the internal com‐
plexity of each schema is greatly reduced. Following the recommendation of one
event definition per stream would see the creation of a new stream for each event
type. Event definitions would not drift over time, the triggering logic would not
change, and consumers could be secure in the stability of the single-purpose event
definition.

The takeaway from this example is not that the original creator of the event definition
made a mistake. In fact, at the time, the business cared about any product engage‐
ments but no specific product engagement, so the original definition is quite reason‐
able. As soon as the business requirements changed to include tracking movie-
specific events, the owner of the service needed to re-evaluate whether the event
definition was still serving a single purpose, or if it was instead now covering multiple
purposes. Due to the business requiring lower-level details of an event, it became
clear that, while the event could serve multiple purposes, it soon would become com‐
plex and unwieldy to do so.

Avoid adding type fields in your events that overload the meaning
of the event. This can cause significant difficulty in evolving and
maintaining the event format.

Take some time to consider how your schemas may evolve. Identify the main busi‐
ness purpose of the data being produced, the scope, the domain, and whether you’re
building it as single-purpose. Validate that the schemas accurately reflect business
concerns, especially for systems that cover a broad scope of business function respon‐
sibility. It could be that the business scope and the technical implementation are mis‐
aligned. Finally, evolving business requirements may require you to revisit the event
definitions and potentially change them beyond just incremental definitions of a sin‐
gle schema. Events may need to be split up and redefined completely should sufficient
business changes occur.

50 | Chapter 3: Communication and Data Contracts

Minimize the Size of Events
Events work well when they’re small, well defined, and easily processed. Large events
can and do happen, though. Generally these larger events represent a lot of contextual
information. Perhaps they comprise many data points that are related to the given
event, and are simply a very large measurement of something that occurred.

There are several considerations when you’re looking at a design that produces a very
large event. Make sure that the data is directly related and relevant to the event. Addi‐
tional data may have been added to an event “just in case,” but it may not be of any
real use to the downstream consumers. If you find that all the event data is indeed
directly related, take a step back and look at your problem space. Does your microser‐
vice require access to the data? You may want to evaluate the bounded context to see
if the service is performing a reasonable amount of work. Perhaps the service could
be reduced in scope with additional functionality split off into its own service.

This scenario is not always avoidable, though—some event processors produce very
large output files (perhaps a large image) that are much too big to fit into a single
message of an event stream. In these scenarios you can use a pointer to the actual
data, but do this sparingly. This approach adds risk in the form of multiple sources of
truth and payload mutability, as an immutable ledger cannot ensure the preservation
of data outside of its system.

Involve Prospective Consumers in the Event Design
When designing a new event, it is important to involve any anticipated consumers of
this data. Consumers will understand their own needs and anticipated business func‐
tions better than the producers and may help in clarifying requirements. Consumers
will also get a better understanding of the data coming their way. A joint meeting or
discussion can shake out any issues around the data contract between the two
systems.

Avoid Events as Semaphores or Signals
Avoid using events as a semaphore or a signal. These events simply indicate that
something has occurred without being the single source of truth for the results.

Consider a very simple example where a system outputs an event indicating that
work has been completed for an arbitrary job. Although the event itself indicates the
work is done, the actual result of the work is not included in the event. This means
that to consume this event properly, you must find where the completed work
actually resides. Once there are two sources of truth for a piece of data, consistency
problems arise.

Designing Events | 51

Summary
Asynchronous event-driven architectures rely heavily upon event quality. High-
quality events are explicitly defined with an evolvable schema, have well-defined trig‐
gering logic, and include full schema definitions with comments and documentation.
Implicit schemas, while easier to implement and maintain for the producer, offload
much of the interpretation work onto the consumer. They are also more prone to
unexpected failures due to missing event data and unintentional changes. Explicit
schemas are an essential component for widespread adoption of event-driven archi‐
tectures, particularly as an organization grows and it becomes impossible to commu‐
nicate tribal knowledge organization-wide.

Event definitions should be narrow and closely focused on the domain of the event.
An event should represent a specific business occurrence and contain the appropriate
data fields to record what has happened. These events form the official narrative
about business operations and can be consumed by other microservices for their own
needs.

Schema evolution is a very important aspect of explicit schemas, as it allows for a
controlled mechanism of change for the event domain model. It is common for a
domain model to evolve, particularly as new business requirements emerge and the
organization expands. Schema evolution allows producers and consumers to isolate
themselves from changes that aren’t essential to their operations, while permitting
those services that do care about the changes to update themselves accordingly.

In some cases schema evolution is not possible, and a breaking change must occur.
The producer and consumer stakeholders must communicate the reasons behind the
breaking changes and come together to redefine the domain model going forward.
Migration of old events may or may not be necessary.

52 | Chapter 3: Communication and Data Contracts

CHAPTER 4

Integrating Event-Driven Architectures
with Existing Systems

Transitioning an organization to an event-driven architecture requires the integration
of existing systems into the ecosystem. Your organization may have one or more
monolithic relational database applications. Point-to-point connections between vari‐
ous implementations are likely to exist. Perhaps there are already event-like mecha‐
nisms for transferring bulk data between systems, such as regular syncing of database
dumps via an intermediary file store location. In the case that you are building an
event-driven microservice architecture from the ground up and have no legacy sys‐
tems, great! You can skip this section (though perhaps you should consider that EDM
may not be right for your new project). However, if you have existing legacy systems
that need to be supported, read on.

In any business domain, there are entities and events that are commonly required
across multiple subdomains. For example, an ecommerce retailer will need to supply
product information, prices, stock, and images to various bounded contexts. Perhaps
payments are collected by one system but need to be validated in another, with ana‐
lytics on purchase patterns performed in a third system. Making this data available in
a central location as the new single source of truth allows each system to consume it
as it becomes available. Migrating to event-driven microservices requires making the
necessary business domain data available in the event broker, consumable as event
streams. Doing so is a process known as data liberation, and involves sourcing the
data from the existing systems and state stores that contain it.

Data produced to an event stream can be accessed by any system, event-driven or
otherwise. While event-driven applications can use streaming frameworks and native
consumers to read the events, legacy applications may not be able to access them as
easily due to a variety of factors, such as technology and performance limitations. In

53

this case, you may need to sink the events from an event stream into an existing state
store.

There are a number of patterns and frameworks for sourcing and sinking event data.
For each technique, this chapter will cover why it’s necessary, how to do it, and the
tradeoffs associated with different approaches. Then, we’ll review how data liberation
and sinking fit in to the organization as a whole, the impacts they have, and ways to
structure your efforts for success.

What Is Data Liberation?
Data liberation is the identification and publication of cross-domain data sets to their
corresponding event streams and is part of a migration strategy for event-driven
architectures. Cross-domain data sets include any data stored in one data store that is
required by other external systems. Point-to-point dependencies between existing
services, and data stores often highlight the cross-domain data that should be liber‐
ated, as shown in Figure 4-1, where three dependent services are querying the legacy
system directly.

Figure 4-1. Point-to-point dependencies, accessing data directly from the underlying
service

Data liberation enforces two primary features of event-driven architecture: the single
source of truth and the elimination of direct coupling between systems. The liberated
event streams allow new event-driven microservices to be built as consumers, with
existing systems migrated in due time. Reactive event-driven frameworks and serv‐
ices may now be used to consume and process data, and downstream consumers are
no longer required to directly couple on the source data system.

By serving as a single source of truth, these streams also standardize the way in which
systems across the organization access data. Systems no longer need to couple
directly to the underlying data stores and applications, but instead can couple solely
on the data contracts of event streams. The post-liberation workflow is shown in
Figure 4-2.

54 | Chapter 4: Integrating Event-Driven Architectures with Existing Systems

Figure 4-2. Post-data-liberation workflow

Compromises for Data Liberation
A data set and its liberated event stream must be kept fully in sync, although this
requirement is limited to eventual consistency due to the latency of event propaga‐
tion. A stream of liberated events must materialize back into an exact replica of the
source table, and this property is used extensively for event-driven microservices (as
covered in Chapter 7). In contrast, legacy systems do not rebuild their data sets from
any event streams, but instead typically have their own backup and restore mecha‐
nisms and read absolutely nothing back from the liberated event stream.

In the perfect world, all state would be created, managed, maintained, and restored
from the single source of truth of the event streams. Any shared state should be pub‐
lished to the event broker first and materialized back to any services that need to
materialize the state, including the service that produced the data in the first place, as
shown in Figure 4-3.

Figure 4-3. Publish to stream before materializing

While the ideal of maintaining state in the event broker is accessible for new micro‐
services and refactored legacy applications, it is not necessarily available or practical
for all applications. This is particularly true for services that are unlikely to ever be

What Is Data Liberation? | 55

refactored or changed beyond initial integration with change-data capture mecha‐
nisms. Legacy systems can be both extremely important to the organization and pro‐
hibitively difficult to refactor, with the worst offenders being considered a big ball of
mud. Despite the complexity of a system, their internal data will still need to be
accessed by other new systems. While refactoring may absolutely be desirable, there
are a number of issues that prevent this from happening in reality:

Limited developer support
Many legacy systems have minimal developer support and require low-effort sol‐
utions to generate liberated data.

Expense of refactoring
Reworking the preexisting application workflows into a mix of asynchronous
event-driven and synchronous MVC (Model-View-Controller) web application
logic may be prohibitively expensive, especially for complex legacy monoliths.

Legacy support risk
Changes made to legacy systems may have unintended consequences, especially
when the system’s responsibilities are unclear due to technical debt and unidenti‐
fied point-to-point connections with other systems.

There is an opportunity for compromise here. You can use data liberation patterns to
extract the data out of the data store and create the necessary event streams. This is a
form of unidirectional event-driven architecture, as the legacy system will not be
reading back from the liberated event stream, as shown in Figure 4-3. Instead, the
fundamental goal is to keep the internal data set synchronized with the external event
stream through strictly controlled publishing of event data. The event stream will be
eventually consistent with the internal data set of the legacy application, as shown in
Figure 4-4.

Figure 4-4. Liberating and materializing state between two services

56 | Chapter 4: Integrating Event-Driven Architectures with Existing Systems

https://oreil.ly/8bJcw
https://oreil.ly/8bJcw

Converting Liberated Data to Events
Liberated data, much like any other event, is subject to the same recommendations of
schematization that were introduced in Chapter 3. One of the properties of a well-
defined event stream is that there is an explicitly defined and evolutionarily compati‐
ble schema for the events it contains. You should ensure that consumers have basic
data quality guarantees as part of the data contract defined by the schema. Changes to
the schema can only be made according to evolutionary rules.

Use the same standard format for both liberated event data and
native event data across your organization.

By definition, the data that is most relevant and used across the business is the data
that is most necessary to liberate. Changes made to the data definitions of the source,
such as creating new fields, altering existing ones, or dropping others, can result in
dynamically changing data being propagated downstream to consumers. Failing to
use an explicitly defined schema for liberated data will force downstream consumers
to resolve any incompatibilities. This is extremely problematic for the provision of the
single source of truth, as downstream consumers should not be attempting to parse
or interpret data on their own. It is extremely important to provide a reliable and up-
to-date schema of the produced data and to carefully consider the evolution of the
data over time.

Data Liberation Patterns
There are three main data liberation patterns that you can use to extract data from the
underlying data store. Since liberated data is meant to form the new single source of
truth, it follows that it must contain the entire set of data from the data store. Addi‐
tionally, this data must be kept up to date with new insertions, updates, and deletes.

Query-based
You extract data by querying the underlying state store. This can be performed
on any data store.

Log-based
You extract data by following the append-only log for changes to the underlying
data structures. This option is available only for select data stores that maintain a
log of the modifications made to the data.

Table-based
In this pattern, you first push data to a table used as an output queue. Another
thread or separate process queries the table, emits the data to the relevant event

Data Liberation Patterns | 57

stream, and then deletes the associated entries. This method requires that the
data store support both transactions and an output queue mechanism, usually a
standalone table configured for use as a queue.

While each pattern is unique, there is one commonality among the three. Each
should produce its events in sorted timestamp order, using the source record’s most
recent updated_at time in its output event record header. This will generate an event
stream timestamped according to the event’s occurrence, not the time that the pro‐
ducer published the event. This is particularly important for data liberation, as it
accurately represents when events actually happened in the workflow. Timestamp-
based interleaving of events is discussed further in Chapter 6.

Data Liberation Frameworks
One method of liberating data involves the usage of a dedicated, centralized frame‐
work to extract data into event streams. Examples of centralized frameworks for cap‐
turing event streams include Kafka Connect (exclusively for the Kafka platform),
Apache Gobblin, and Apache NiFi. Each framework allows you to execute a query
against the underlying data set with the results piped through to your output event
streams. Each option is also scalable, such that you can add further instances to
increase the capacity for executing change-data capture (CDC) jobs. They support
various levels of integration with the schema registry offered by Confluent (Apache
Kafka), but customization can certainly be performed to support other schema regis‐
tries. See “Schema Registry” on page 241 for more information.

Not all data liberation processes require a dedicated framework, and many systems
are better suited to taking direct ownership of their own event stream data produc‐
tion. In fact, these frameworks inadvertently encourage data access anti-patterns. One
of the most common anti-patterns is the exposure of internal data models to external
systems, further increasing coupling instead of decreasing it, as is one of the major
benefits of event-driven architectures. This will be covered further in the remainder
of the chapter.

Liberating Data by Query
Query-based data liberation involves querying the data store and emitting selected
results to an associated event stream. A client is used to request the specific data set
from the data store using the appropriate API, SQL, or SQL-like language. A data set
must be bulk-queried to provide the history of events. Periodic updates then follow,
ensuring that changes are produced to the output event stream.

There are several types of queries used in this pattern.

58 | Chapter 4: Integrating Event-Driven Architectures with Existing Systems

https://oreil.ly/v0cpx
https://oreil.ly/pFRM_
https://oreil.ly/9sDb1
https://oreil.ly/BkxyW
https://oreil.ly/BkxyW

Bulk Loading
Bulk loading queries and loads all of the data from the data set. Bulks loads are per‐
formed when the entire table needs to be loaded at each polling interval, as well as
prior to ongoing incremental updates.

Bulk loading can be expensive, as it requires obtaining the entire data set from the
data store. For smaller data sets this tends not to be a problem, but large data sets,
especially those with millions or billions of records, may be difficult to obtain. For
querying and processing very large data sets I recommend you research best practices
for your particular data store, since these can vary significantly with implementation.

Incremental Timestamp Loading
With incremental timestamp loading, you query and load all data since the highest
timestamp of the previous query’s results. This approach uses an updated-at column
or field in the data set that keeps track of the time when the record was last modified.
During each incremental update, only records with updated-at timestamps later
than the last processed time are queried.

Autoincrementing ID Loading
Autoincrementing ID loading involves querying and loading all data larger than the
last value of the ID. This requires a strictly ordered autoincrementing Integer or
Long field. During each incremental update, only records with an ID larger than the
last processed ID are queried. This approach is often used for querying tables with
immutable records, such as when using the outbox tables (see “Liberating Data Using
Change-Data Capture Logs” on page 61).

Custom Querying
A custom query is limited only by the client querying language. This approach is
often used when the client requires only a certain subset of data from a larger data set,
or when joining and denormalizing data from multiple tables to avoid over-exposure
of the internal data model. For instance, a user could filter business partner data
according to a specific field, where each partner’s data is sent to its own event stream.

Incremental Updating
The first step of any incremental update is to ensure that the necessary timestamp or
autoincrementing ID is available in the records of your data set. There must be a field
that the query can use to filter out records it has already processed from those it has
yet to process. Data sets that lack these fields will need to have them added, and the
data store will need to be configured to populate the necessary updated_at

Liberating Data by Query | 59

timestamp or the autoincrementing ID field. If the fields cannot be added to the data
set, then incremental updates will not be possible with a query-based pattern.

The second step is to determine the frequency of polling and the latency of the
updates. Higher-frequency updates provide lower latency for data updates down‐
stream, though this comes at the expense of a larger total load on the data store. It’s
also important to consider whether the interval between requests is sufficient to finish
loading all of the data. Beginning a new query while the old one is still loading can
lead to race conditions, where older data overwrites newer data in the output event
streams.

Once the incremental update field has been selected and the frequency of updates
determined, the final step is to perform a single bulk load before enabling incremen‐
tal updates. This bulk load must query and produce all of the existing data in the data
set prior to further incremental updates.

Benefits of Query-Based Updating
Query-based updating has a number of advantages, including:

Customizability
Any data store can be queried, and the entire range of client options for querying
is available.

Independent polling periods
Specific queries can be executed more frequently to meet tighter SLAs (service-
level agreements), while other more expensive queries can be executed less fre‐
quently to save resources.

Isolation of internal data models
Relational databases can provide isolation from the internal data model by using
views or materialized views of the underlying data. This technique can be used to
hide domain model information that should not be exposed outside of the data
store.

Remember that the liberated data will be the single source of truth.
Consider whether any concealed or omitted data should instead be
liberated, or if the source data model needs to be refactored. This
often occurs during data liberation from legacy systems, where
business data and entity data have become intertwined over time.

60 | Chapter 4: Integrating Event-Driven Architectures with Existing Systems

Drawbacks of Query-Based Updating
There are some downsides to query-based updating as well:

Required updated-at timestamp
The underlying table or namespace of events to query must have a column con‐
taining their updated-at timestamp. This is essential for tracking the last update
time of the data and for making incremental updates.

Untraceable hard deletions
Hard deletions will not show up in the query results, so tracking deletions is limi‐
ted to flag-based soft deletions, such as a boolean is_deleted column.

Brittle dependency between data set schema and output event schema
Data set schema changes may occur that are incompatible with downstream
event format schema rules. Breakages are increasingly likely if the liberation
mechanism is separate from the code base of the data store application, which is
usually the case for query-based systems.

Intermittent capture
Data is synced only at polling intervals, and so a series of individual changes to
the same record may only show up as a single event.

Production resource consumption
Queries use the underlying system resources to execute, which can cause unac‐
ceptable delays on a production system. This issue can be mitigated by the use of
a read-only replica, but additional financial costs and system complexity will
apply.

Variable query performance due to data changes
The quantity of data queried and returned varies depending on changes made to
the underlying data. In the worst-case scenario, the entire body of data is changed
each time. This can result in race conditions when a query is not finished before
the next one starts.

Liberating Data Using Change-Data Capture Logs
Another pattern for liberating data is using the data store’s underlying change-data
capture logs (binary logs in MySQL, write-ahead logs for PostgreSQL) as the source of
information. This is an append-only data logging structure that details everything
that has happened to the tracked data sets over time. These changes include the cre‐
ation, deletion, and updating of individual records, as well as the creation, deletion,
and altering of the individual data sets and their schemas.

The technology options for change-data capture are narrower than those for query-
based capturing. Not all data stores implement an immutable logging of changes, and

Liberating Data Using Change-Data Capture Logs | 61

of those that do, not all of them have off-the-shelf connectors available for extracting
the data. This approach is mostly applicable to select relational databases, such as
MySQL and PostgreSQL, though any data store with a set of comprehensive change‐
logs is a suitable candidate. Many other modern data stores expose event APIs that act
as a proxy for a physical write-ahead log. For example, MongoDB provides a Change
Streams interface, whereas Couchbase provides replication access via its internal rep‐
lication protocol.

The data store log is unlikely to contain all changes since the beginning of time, as it
can be a huge amount of data and is usually not necessary to retain. You will need to
take a snapshot of the existing data prior to starting the change-data capture process
from the data store’s log. This snapshot usually involves a large, performance-
impacting query on the table and is commonly referred to as bootstrapping. You must
ensure that there is overlap between the records in the bootstrapped query results and
the records in the log, such that you do not accidentally miss any records.

You must checkpoint progress when capturing events from the changelogs, though
depending on the tooling you use, this may already be built in. In the event that the
change-data capture mechanism fails, the checkpoint is used to restore the last stored
changelog index. This approach can only provide at-least-once production of records,
which tends to be suitable for the entity-based nature of data liberation. The produc‐
tion of an additional record is inconsequential since updating entity data is
idempotent.

There are a number of options available for sourcing data from changelogs.
Debezium is one of the most popular choices for relational databases, as it supports
the most common ones. Debezium can produce records to both Apache Kafka and
Apache Pulsar with its existing implementations. Support for additional brokers is
certainly possible, though it may require some in-house development work. Maxwell
is another example of a binary log reader option, though it is currently limited in sup‐
port to just MySQL databases and can produce data only to Apache Kafka.

Figure 4-5. The end-to-end workflow of a Debezium capturing data from a MySQL
database’s binary log, and writing it to event streams in Kafka

62 | Chapter 4: Integrating Event-Driven Architectures with Existing Systems

https://oreil.ly/v9gd0
https://oreil.ly/v9gd0
https://debezium.io
https://oreil.ly/oFSax
https://oreil.ly/oFSax
https://oreil.ly/Rr4Kp

Figure 4-5 shows a MySQL database emitting its binary changelog. A Kafka Connect
service, running a Debezium connector, is consuming the raw binary log. Debezium
parses the data and converts it into discrete events. Next, an event router emits each
event to a specific event stream in Kafka, depending on the source table of that event.
Downstream consumers are now able to access the database content by consuming
the relevant event streams from Kafka.

Benefits of Using Data Store Logs
Some benefits of using data store logs include:

Delete tracking
Binary logs contain hard record deletions. These can be converted into delete
events without the need for soft deletes as in query-based updates.

Minimal effect on data store performance
For data stores that use write-ahead and binary logs, change-data capture can be
performed without any impact to the data store’s performance. For those that use
change tables, such as in SQL Server, the impact is related to the volume of data.

Low-latency updates
Updates can be propagated as soon as the event is written to the binary and
write-ahead logs. This results in very low latency when compared to other data
liberation patterns.

Drawbacks of Using Data Base Logs
The following are some of the downsides to using data base logs:

Exposure of internal data models
The internal data model is completely exposed in the changelogs. Isolation of the
underlying data model must be carefully and selectively managed, unlike query-
based updating, where views can be used to provide isolation.

Denormalization outside of the data store
Changelogs contain only the event data. Some CDC mechanisms can extract
from materialized views, but for many others, denormalization must occur out‐
side of the data store. This may lead to the creation of highly normalized event
streams, requiring downstream microservices to handle foreign-key joins and
denormalization.

Brittle dependency between data set schema and output event schema
Much like the query-based data liberation process, the binary-log-based process
exists outside of the data store application. Valid data store changes, such as alter‐
ing a data set or redefining a field type, may be completely incompatible for the
specific evolution rules of the event schema.

Liberating Data Using Change-Data Capture Logs | 63

Liberating Data Using Outbox Tables
An outbox table contains notable changes made to the internal data of a data store,
with each significant update stored as its own row. Whenever an insert, update, or
delete is made to one of the data store tables marked for change-data capture, a corre‐
sponding record can be published to the outbox table. Each table under change-data
capture can have its own outbox table, or a single outbox can be used for all changes
(more on this shortly).

Both the internal table updates and the outbox updates must be bundled into a single
transaction, such that each occurs only if the entire transaction succeeds. A failure to
do may eventually result in divergence with the event stream as the single source of
truth, which can be difficult to detect and repair. This pattern is a more invasive
approach to change-data capture as it requires modification to either the data store or
the application layer, both of which require the involvement of the data store develop‐
ers. The outbox table pattern leverages the durability of the data store to provide a
write-ahead log for events awaiting to be published to external event streams.

Built-in Change-Data Tables
Some databases, such as SQL Server, do not provide change-data capture logs, but
instead provide change-data tables. These tables are often used to audit the operations
of the database and come as a built-in option. External services, such as the afore‐
mentioned Kafka Connect and Debezium, can connect to databases that use a CDC
table instead of a CDC log and use the query-based pattern to extract events and pro‐
duce them to event streams.

The records in outbox tables must have a strict ordering identifier, for the same pri‐
mary key may be updated many times in short order. Alternatively, you could over‐
write the previous update for that primary key, though this requires finding the
previous entry first and introduces additional performance overhead. It also means
that the overwritten record will not be emitted downstream.

An autoincrementing ID, assigned at insertion time, is best used to determine the
order in which the events are to be published. A created_at timestamp column
should also be maintained, as it reflects the event time that the record was created in
the data store and can be used instead of the wall-clock time during publishing to the
event stream. This will allow accurate interleaving by the event scheduler as discussed
in Chapter 6.

64 | Chapter 4: Integrating Event-Driven Architectures with Existing Systems

Figure 4-6. The end-to-end workflow of an outbox table CDC solution

Figure 4-6 shows the end-to-end workflow. Updates to internal tables made by the
data store client are wrapped in a transaction with an update to the outbox table, such
that any failures ensures data remains consistent between the two. Meanwhile, a sepa‐
rate application thread or process is used to continually poll the outboxes and pro‐
duce the data to the corresponding event streams. Once successfully produced, the
corresponding records in the outbox are deleted. In the case of any failure, be it the
data store, the consumer/producer, or the event broker itself, outbox records will still
be retained without risk of loss. This pattern provides at-least-once delivery
guarantees.

Performance Considerations
The inclusion of outbox tables introduces additional load on the data store and its
request-handling applications. For small data stores with minimal load, the overhead
may go completely unnoticed. Alternately, it may be quite expensive with very large
data stores, particularly those with significant load and many tables under capture.
The cost of this approach should be evaluated on a case-by-case basis and balanced
against the costs of a reactive strategy such as parsing the change-data capture logs.

Isolating Internal Data Models
An outbox does not need to map 1:1 with an internal table. In fact, one of the major
benefits of the outbox is that the data store client can isolate the internal data model
from downstream consumers. The internal data model of the domain may use a
number of highly normalized tables that are optimized for relational operations but
are largely unsuitable for consumption by downstream consumers. Even simple
domains may comprise multiple tables, which if exposed as independent streams,
would require reconstruction for usage by downstream consumers. This quickly
becomes extremely expensive in terms of operational overhead, as multiple down‐
stream teams will have to reconstruct the domain model and deal with handling rela‐
tional data in event streams.

Liberating Data Using Outbox Tables | 65

Exposing the internal data model to downstream consumers is an
anti-pattern. Downstream consumers should only access data for‐
matted with public-facing data contracts as described in Chapter 3.

The data store client can instead denormalize data upon insertion time such that the
outbox mirrors the intended public data contract, though this does come at the
expense of additional performance and storage space. Another option is to maintain
the 1:1 mapping of changes to output event streams and denormalize the streams
with a downstream event processor dedicated to just this task. This is a process that I
call eventification, as it converts highly normalized relational data into easy-to-
consume single event updates. This mimics what the data store client could do but
does it externally to the data store to reduce load. An example of this is shown in
Figure 4-7, where a User is denormalized based on User, Location, and Employer.

Figure 4-7. Eventification of public User events using private User, Location, and
Employer event streams

In this example, the User has a foreign-key reference to the city, state/province, and
country they live in, as well as a foreign-key reference to their current employer. It is
reasonable that a downstream consumer of a User event may simply want everything
about each user in a single event, instead of being forced to materialize each stream
into a state store and use relational tooling to denormalize it. The raw, normalized
events are sourced from the outboxes into their own event streams, but these streams
are kept in a private namespace from the rest of the organization (covered in “Event
Stream Metadata Tagging” on page 240) to protect the internal data model.

Eventification of the user is performed by denormalizing the User entity and shed‐
ding any internal data model structures. This process requires maintaining material‐
ized tables of User, Location, and Employer, such that any updates can re-exercise the
join logic and emit updates for all affected Users. The final event is emitted to the
public namespace of the organization for any downstream consumer to consume.

The extent to which the internal data models are isolated from external consumers
tends to become a point of contention in organizations moving toward event-driven

66 | Chapter 4: Integrating Event-Driven Architectures with Existing Systems

microservices. Isolating the internal data model is essential for ensuring decoupling
and independence of services and to ensure that systems need only change due to
new business requirements, and not upstream internal data-model changes.

Ensuring Schema Compatibility
Schema serialization (and therefore, validation) can also be built into the capture
workflow. This may be performed either before or after the event is written to the
outbox table. Success means the event can be proceed in the workflow, whereas a fail‐
ure may require manual intervention to determine the root cause and avoid data loss.

Serializing prior to committing the transaction to the outbox table provides the
strongest guarantee of data consistency. A serialization failure will cause the transac‐
tion to fail and roll back any changes made to the internal tables, ensuring that the
outbox table and internal tables stay in sync. This process is shown in Figure 4-8. A
successful validation will see the event serialized and ready for event stream publish‐
ing. The main advantage of this approach is that data inconsistencies between the
internal state and the output event stream are significantly reduced. The event stream
data is treated as a first-class citizen, and publishing correct data is considered just as
important as maintaining consistent internal state.

Figure 4-8. Serializing change-data before writing to outbox table

Serializing before writing to the outbox also provides you with the option of using a
single outbox for all transactions. The format is simple, as the content is predomi‐
nantly serialized data with the target output event stream mapping. This is shown in
Figure 4-9.

Figure 4-9. A single output table with events already validated and serialized (note the
output_stream entry for routing purposes)

Liberating Data Using Outbox Tables | 67

One drawback of serializing before publishing is that performance may suffer due to
the serialization overhead. This may be inconsequential for light loads but could have
more significant implications for heavier loads. You will need to ensure your perfor‐
mance needs remain met.

Alternately, serialization can be performed after the event has been written to the out‐
box table, as is shown in Figure 4-8.

Figure 4-10. Serializing change-data after writing to outbox table, as part of the publish‐
ing process

With this strategy you typically have independent outboxes, one for each domain
model, mapped to the public schema of the corresponding output event stream. The
publisher process reads the unserialized event from the outbox and attempts to serial‐
ize it with the associated schema prior to producing it to the output event stream.
Figure 4-11 shows an example of multiple outboxes, one for a User entity and one for
an Account entity.

Figure 4-11. Multiple outbox tables (note that the data is not serialized, which means
that it may not be compatible with the schema of the output event stream)

A failure to serialize indicates that the data of the event does not comply with its
defined schema and so cannot be published. This is where the serialization-after-
write option becomes more difficult to maintain, as an already completed transaction

68 | Chapter 4: Integrating Event-Driven Architectures with Existing Systems

will have pushed incompatible data into the outbox table, and there is no guarantee
that the transaction can be reversed.

In reality, you will typically end up with a large number of unserializable events in
your outbox. Human intervention will most likely be required to try to salvage some
of the data, but resolving the issue will be time-consuming and difficult and may even
require downtime to prevent additional issues. This is compounded by the fact that
some events may indeed be compatible and have already been published, leading to
possible incorrect ordering of events in output streams.

Before-the-fact serialization provides a stronger guarantee against
incompatible data than after-the-fact and prevents propagation of
events that violate their data contract. The tradeoff is that this
implementation will also prevent the business process from com‐
pleting should serialization fail, as the transaction must be rolled
back.

Validating and serializing before writing ensures that the data is being treated as a
first-class citizen and offers a guarantee that events in the output event stream are
eventually consistent with the data inside the source data store, while also preserving
the isolation of the source’s internal data model. This is the strongest guarantee that a
change-data capture solution can offer.

Benefits of event-production with outbox tables
Producing events via outbox tables allow for a number of significant advantages:

Multilanguage support
This approach is supported by any client or framework that exposes transactional
capabilities.

Before-the-fact schema enforcement
Schemas can be validated by serialization before being inserted into the outbox
table.

Isolation of the internal data model
Data store application developers can select which fields to write to the outbox
table, keeping internal fields isolated.

Denormalization
Data can be denormalized as needed before being written to the outbox table.

Liberating Data Using Outbox Tables | 69

Drawbacks of event production with outbox tables
Producing events via outbox tables has several disadvantages as well:

Required application code changes
The application code must be changed to enable this pattern, which requires
development and testing resources from the application maintainers.

Business process performance impact
The performance impact to the business workflow may be nontrivial, particularly
when validating schemas via serialization. Failed transactions can also prevent
business operations from proceeding.

Data store performance impact
The performance impact to the data store may be nontrivial, especially when a
significant quantity of records are being written, read, and deleted from the
outbox.

Performance impacts must be balanced against other costs. For
instance, some organizations simply emit events by parsing
change-data capture logs and leave it up to downstream teams to
clean up the events after the fact. This incurs its own set of expen‐
ses in the form of computing costs for processing and standardiz‐
ing the events, as well as human-labor costs in the form of
resolving incompatible schemas and attending to the effects of
strong coupling to internal data models. Costs saved at the pro‐
ducer side are often dwarfed by the expenses incurred at the con‐
sumer side for dealing with these issues.

Capturing Change-Data Using Triggers
Trigger support predates many of the auditing, binlog, and write-ahead log patterns
examined in the previous sections. Many older relational databases use triggers as a
means of generating audit tables. As their name implies, triggers are set up to occur
automatically on a particular condition. If it fails, the command that caused the trig‐
ger to execute also fails, ensuring update atomicity.

You can capture row-level changes to an audit table by using an AFTER trigger. For
example, after any INSERT, UPDATE, or DELETE command, the trigger will write a cor‐
responding row to the change-data table. This ensures that changes made to a specific
table are tracked accordingly.

Consider the example shown in Figure 4-12. User data is being upserted to a user
table, with a trigger capturing the events as they occur. Note that the trigger is also
capturing the time at which the insertion occurred as well as an autoincrementing
sequence ID for the event publisher process to use.

70 | Chapter 4: Integrating Event-Driven Architectures with Existing Systems

Figure 4-12. Using a trigger to capture changes to a user table

You generally cannot validate the change-data with the event schema during the exe‐
cution of a trigger, though it is not impossible. One main issue is that it may simply
not be supported, as triggers execute within the database itself, and many are limited
to the forms of language they can support. While PostgreSQL supports C, Python,
and Perl, which may be used to write user-defined functions to perform schema vali‐
dation, many other databases do not provide multilanguage support. Finally, even if a
trigger is supported, it may simply be too expensive. Each trigger fires independently
and requires a nontrivial amount of overhead to store the necessary data, schemas,
and validation logic, and for many system loads the cost is too high.

Figure 4-13 shows a continuation of the previous example. After-the-fact validation
and serialization is performed on the change-data, with successfully validated data
produced to the output event stream. Unsuccessful data would need to be error-
handled according to business requirements, but would likely require human
intervention.

The change-data capture table schema is the bridge between the internal table schema
and the output event stream schema. Compatibility among all three is essential for
ensuring that data can be produced to the output event stream. Because output
schema validation is typically not performed during trigger execution, it is best to
keep the change-data table in sync with the format of the output event schema.

Liberating Data Using Outbox Tables | 71

Figure 4-13. After-the-fact validation and production to the output event stream

Compare the format of the output event schema with the change-
data table during testing. This can expose incompatibilities before
production deployment.

That being said, triggers can work great in many legacy systems. Legacy systems tend
to use, by definition, old technology; triggers have existed for a very long time and
may very well be able to provide the necessary change-data capture mechanism. The
access and load patterns tend to be well defined and stable, such that the impact of
adding triggering can be accurately estimated. Finally, although schema validation is
unlikely to occur during the triggering process itself, it may be equally unlikely that
the schemas themselves are going to change, simply due to the legacy nature of the
system. After-the-fact validation is only an issue if schemas are expected to change
frequently.

Try to avoid the use of triggers if you can instead use more modern
functionality for generating or accessing change-data. You should
not underestimate the overhead performance and management
required for a trigger-based solution, particularly when many doz‐
ens or hundreds of tables and data models are involved.

72 | Chapter 4: Integrating Event-Driven Architectures with Existing Systems

Benefits of using triggers
Benefits of using triggers include the following:

Supported by most databases
Triggers exist for most relational databases.

Low overhead for small data sets
Maintenance and configuration is fairly easy for a small number of data sets.

Customizable logic
Trigger code can be customized to expose only a subset of specific fields. This can
provide some isolation into what data is exposed to downstream consumers.

Drawbacks of using triggers
Some cons of using triggers are:

Performance overhead
Triggers execute inline with actions on the database tables and can consume non-
trivial processing resources. Depending on the performance requirements and
SLAs of your services, this approach may cause an unacceptable load.

Change management complexity
Changes to application code and to data set definitions may require correspond‐
ing trigger modifications. Necessary modifications to underlying triggers may be
overlooked by the system maintainers, leading to data liberation results that are
inconsistent with the internal data sets. Comprehensive testing should be per‐
formed to ensure the trigger workflows operate as per expectations.

Poor scaling
The quantity of triggers required scales linearly with the number of data sets to
be captured. This excludes any additional triggers that may already exist in the
business logic, such as those used for enforcing dependencies between tables.

After-the-fact schema enforcement
Schema enforcement for the output event occurs only after the record has been
published to the outbox table. This can lead to unpublishable events in the out‐
box table.

Some databases allow for triggers to be executed with languages
that can validate compatibility with output event schemas during
the trigger’s execution (e.g., Python for PostgreSQL). This can
increase the complexity and expense, but significantly reduces the
risk of downstream schema incompatibilities.

Liberating Data Using Outbox Tables | 73

Making Data Definition Changes to Data Sets Under
Capture
Integrating data definition changes can be difficult in a data liberation framework.
Data migrations are a common operation for many relational database applications
and need to be supported by capture. Data definition changes for a relational data‐
base can include adding, deleting, and renaming columns; changing the type of a col‐
umn; and adding or removing defaults. While all of these operations are valid data set
changes, they can create issues for the production of data to liberated event streams.

Data definition is the formal description of the data set. For exam‐
ple, a table in a relational database is defined using a data definition
language (DDL). The resultant table, columns, names, types, and
indices are all part of its data definition.

For example, if full schema evolution compatibility is required, you cannot drop a
non-nullable column without a default value from the data set under capture, as con‐
sumers using the previously defined schema expect a value for that field. Consumers
would be unable to fall back to any default because none was specified at contract def‐
inition time, so they would end up in an ambiguous state. If an incompatible change
is absolutely necessary and a breach of data contract is inevitable, then the producer
and consumers of the data must agree upon a new data contract.

Valid alterations to the data set under capture may not be valid
changes for the liberated event schema. This incompatibility will
cause breaking schema changes that will impact all downstream
consumers of the event stream.

Capturing DDL changes depends on the integration pattern used to capture change-
data. As DDL changes can have a significant impact on downstream consumers of the
data, it’s important to determine if your capture patterns detect changes to the DDL
before or after the fact. For instance, the query pattern and CDC log pattern can
detect DDL changes only after the fact—that is, once they have already been applied
to the data set. Conversely, the change-data table pattern is integrated with the devel‐
opment cycle of the source system, such that changes made to the data set require
validation with the change-data table prior to production release.

74 | Chapter 4: Integrating Event-Driven Architectures with Existing Systems

Handling After-the-Fact Data Definition Changes for the Query and
CDC Log Patterns
For the query pattern, the schema can be obtained at query time, and an event
schema can be inferred. The new event schema can be compared with the output
event stream schema, with schema compatibility rules used to permit or prohibit
publishing of the event data. This mechanism of schema generation is used by
numerous query connectors, such as those provided with the Kafka Connect
framework.

For the CDC log pattern, data definition updates are typically captured to their own
part of the CDC log. These changes need to be extracted from the logs and inferred
into a schema representative of the data set. Once the schema is generated, it can be
validated against the downstream event schema. Support for this functionality, how‐
ever, is limited. Currently, the Debezium connector supports only MySQL’s data defi‐
nition changes.

Handling Data Definition Changes for Change-Data Table Capture
Patterns
The change-data table acts as a bridge between the output event stream schema and
the internal state schema. Any incompatibilities in the application’s validation code or
the database’s trigger function will prevent the data from being written to the change-
data table, with the error sent back up the stack. Alterations made to the change-data
capture table will require a schema evolution compatible with the output event
stream, according to its schema compatibility rules. This involves a two-step process,
which significantly reduces the chance of unintentional changes finding their way
into production.

Sinking Event Data to Data Stores
Sinking data from event streams consists of consuming event data and inserting it
into a data store. This is facilitated either by the centralized framework or by a stand‐
alone microservice. Any type of event data, be it entity, keyed events, or unkeyed
events, can be sunk to a data store.

Event sinking is particularly useful for integrating non-event-driven applications with
event streams. The sink process reads the event streams from the event broker and
inserts the data into the specified data store. It keeps track of its own consumption
offsets and writes event data as it arrives at the input, acting completely independ‐
ently of the non-event-driven application.

A typical use of event sinking is replacing direct point-to-point couplings between
legacy systems. Once the data of the source system is liberated into event streams, it

Sinking Event Data to Data Stores | 75

https://oreil.ly/9XRDv

can be sunk to the destination system with few other changes. The sink process oper‐
ates both externally and invisibly to the destination system.

Data sinking is also employed frequently by teams that need to perform batch-based
big-data analysis. They usually do this by sinking data to a Hadoop Distributed File
System, which provides big-data analysis tools.

Using a common platform like Kafka Connect allows you to specify sinks with simple
configurations and run them on the shared infrastructure. Standalone microservice
sinks provide an alternative solution. Developers can create and run them on the
microservice platform and manage them independently.

The Impacts of Sinking and Sourcing on a Business
A centralized framework allows for lower-overhead processes for liberating data. This
framework may be operated at scale by a single team, which in turn supports the data
liberation needs of other teams across the organization. Teams looking to integrate
then need only concern themselves with the connector configuration and design, not
with any operational duties. This approach works best in larger organizations where
data is stored in multiple data stores across multiple teams, as it allows for a quick
start to data liberation without each team needing to construct its own solution.

There are two main traps that you can fall into when using a centralized framework.
First, the data sourcing/sinking responsibilities are now shared between teams. The
team operating the centralized framework is responsible for the stability, scaling, and
health of both the framework and each connector instance. Meanwhile, the team
operating the system under capture is independent and may make decisions that alter
the performance and stability of the connector, such as adding and removing fields,
or changing logic that affects the volume of data being transmitted through the con‐
nector. This introduces a direct dependency between these two teams. These changes
can break the connectors, but may be detected only by the connector management
team, leading to linearly scaling, cross-team dependencies. This can become a
difficult-to-manage burden as the number of changes grows.

The second issue is a bit more pervasive, especially in an organization where event-
driven principles are only partially adopted. Systems can become too reliant upon
frameworks and connectors to do their event-driven work for them. Once data has
been liberated from the internal state stores and published to event streams, the orga‐
nization may become complacent about moving onward into microservices. Teams
can become overly reliant upon the connector framework for sourcing and sinking
data, and choose not to refactor their applications into native event-driven applica‐
tions. In this scenario they instead prefer to just requisition new sources and sinks as
necessary, leaving their entire underlying application completely ignorant to events.

76 | Chapter 4: Integrating Event-Driven Architectures with Existing Systems

CDC tools are not the final destination in moving to an event-
driven architecture, but instead are primarily meant to help boot‐
strap the process. The real value of the event broker as the data
communication layer is in providing a robust, reliable, and truthful
source of event data decoupled from the implementation layers,
and the broker is only as good as the quality and reliability of its
data.

Both of these issues can be mitigated through a proper understanding of the role of
the change-data capture framework. Perhaps counterintuitively, it’s important to min‐
imize the usage of the CDC framework and have teams implement their own change-
data capture (such as the outbox pattern) despite the additional up-front work this
may require. Teams become solely responsible for publishing and their system’s
events, eliminating cross-team dependencies and brittle connector-based CDC. This
minimizes the work that the CDC framework team needs to do and allows them to
focus on supporting products that truly need it.

Reducing the reliance on the CDC framework also propagates an “event-first” mind-
set. Instead of thinking of event streams as a way to shuffle data between monoliths,
you view each system as a direct publisher and consumer of events, joining in on the
event-driven ecosystem. By becoming an active participant in the EDM ecosystem,
you begin to think about when and how the system needs to produce events, about
the data out there instead of just the data in here. This is an important part of the cul‐
tural shift toward successful implementation of EDM.

For products with limited resources and those under maintenance-only operation, a
centralized source and sink connector system can be a significant boon. For other
products, especially those that are more complex, have significant event stream
requirements, and are under active development, ongoing maintenance and support
of connectors is unsustainable. In these circumstances it is best to schedule time to
refactor the codebase as necessary to allow the application to become a truly native
event-driven application.

Finally, carefully consider the tradeoffs of each of the CDC strategies. This often
becomes an area of discussion and contention within an organization, as teams try to
figure out their new responsibilities and boundaries in regard to producing their
events as the single source of truth. Moving to an event-driven architecture requires
investment into the data communication layer, and the usefulness of this layer can
only ever be as good as the quality of data within it. Everyone within the organization
must shift their thinking to consider the impacts of their liberated data on the rest of
the organization and come up with clear service-level agreements as to the schemas,
data models, ordering, latency, and correctness for the events they are producing.

The Impacts of Sinking and Sourcing on a Business | 77

Summary
Data liberation is an important step toward providing a mature and accessible data
communication layer. Legacy systems frequently contain the bulk of the core business
domain models, stored within some form of centralized implementation communica‐
tion structure. This data needs to be liberated from these legacy systems to enable
other areas of the organization to compose new, decoupled products and services.

There are a number of frameworks, tools, and strategies available to extract and
transform data from their implementation data stores. Each has its own benefits,
drawbacks, and tradeoffs. Your use cases will influence which options you select, or
you may find that you must create your own mechanisms and processes.

The goal of data liberation is to provide a clean and consistent single source of truth
for data important to the organization. Access to data is decoupled from the produc‐
tion and storage of it, eliminating the need for implementation communication struc‐
tures to serve double duty. This simple act reduces the boundaries for accessing
important domain data from the numerous implementations of legacy systems and
directly promotes the development of new products and services.

There is a full spectrum of data liberation strategies. On one end you will find careful
integration with the source system, where events are emitted to the event broker as
they are written to the implementation data store. Some systems may even be able to
produce to the event stream first before consuming it back for their own needs, fur‐
ther reinforcing the event stream as the single source of truth. The producer is cogni‐
zant of its role as a good data-producing citizen and puts protections in place to
prevent unintentional breaking changes. Producers seek to work with the consumers
to ensure a high-quality, well-defined data stream, minimize disruptive changes, and
ensure changes to the system are compatible with the schemas of the events they are
producing.

On the other end of the spectrum, you’ll find the highly reactive strategies. The own‐
ers of the source data in the implementation have little to no visibility into the pro‐
duction of data into the event broker. They rely completely on frameworks to either
pull the data directly from their internal data sets or parse the change-data capture
logs. Broken schemas that disrupt downstream consumers are common, as is expo‐
sure of internal data models from the source implementation. This model is unsus‐
tainable in the long run, as it neglects the responsibility of the owner of the data to
ensure clean, consistent production of domain events.

The culture of the organization dictates how successful data liberation initiatives will
be in moving toward an event-driven architecture. Data owners must take seriously
the need to produce clean and reliable event streams, and understand that data cap‐
ture mechanisms are insufficient as a final destination for liberating event data.

78 | Chapter 4: Integrating Event-Driven Architectures with Existing Systems

CHAPTER 5

Event-Driven Processing Basics

Most event-driven microservices follow, at a minimum, the same three steps:

1. Consume an event from an input event stream.
2. Process that event.
3. Produce any necessary output events.

There are also event-driven microservices that derive their input event from a syn‐
chronous request-response interaction, which is covered more in Chapter 13. This
chapter covers only microservices that source their events from event streams.

In stream-sourced event-driven microservices, the microservice instance will create a
producer client and a consumer client and register itself with any necessary consumer
groups, if applicable. The microservice starts a loop to poll the consumer client for
new events, processing them as they come in and emitting any required output
events. This workflow is shown in the following pseudocode. (Your implementation
will of course vary according to your language, stream-processing framework, event-
broker selection, and other technical factors.)

Consumer consumerClient = new consumerClient(consumerGroupName, ...);
Producer producerClient = new producerClient(...);

while(true) {
 InputEvent event = consumerClient.pollOneEvent(inputEventStream);
 OutputEvent output = processEvent(event);
 producerClient.produceEventToStream(outputEventStream, output);

 //At-least-once processing.
 consumerClient.commitOffsets();
}

79

The processEvent function is of particular interest. This is where the real event-
processing work gets done, primarily the application of business logic and which
events, if any, to emit. This processing function is best thought of as the entry point to
the processing topology of the microservice. From here, data-driven patterns trans‐
form and process the data for your bounded context’s business needs.

Composing Stateless Topologies
Building a microservice topology requires thinking in an event-driven way, as the
code executes in response to an event arriving at the consumer input. The topology of
the microservice is essentially a sequence of operations to perform on the event. It
requires choosing the necessary filters, routers, transformations, materializations,
aggregations, and other functions required to perform the necessary business logic of
the microservice. Those familiar with functional programming and big data map-
reduce-style frameworks may feel quite at home here. For others, this may be a bit of
a new concept.

Consider the topology in Figure 5-1. Events are consumed one at a time and are pro‐
cessed according to the transformations in stages 1 and 2.

Figure 5-1. A simple event processing topology

The events with key A and C both traverse the entire topology. They’re both larger
than 10.0, which gets them through stage 1, and stage 2 simply drops the decimal
point from the value of the event. The event keyed on B, however, is filtered out and
dropped because it does not meet the stage 1 criteria.

Transformations
A transform processes a single event and emits zero or more output events. Trans‐
forms, as you might guess, provide the bulk of the business logic operations requiring
transformations. Events may need to be repartitioned depending on the operations
(more on this shortly). Common transformations include, but are not limited to, the
following:

Filter
Propagate the event if it meets the necessary criteria. Emits zero or one events.

80 | Chapter 5: Event-Driven Processing Basics

Map
Changes the key and/or value of the event, emitting exactly one event. Note that
if you change the key, you may need to repartition to ensure data locality.

MapValue
Change only the value of the event, not the key. Emits exactly one event. Reparti‐
tioning will not be required.

Custom transforms
Apply custom logic, look up state, and even communicate with other systems
synchronously.

Branching and Merging Streams
A consumer application may need to branch event streams—that is, apply a logical
operator to an event and then output it to a new stream based on the result. One rela‐
tively common scenario is consuming a “firehose” of events and deciding where to
route them based on particular properties (e.g., country, time zone, origin, product,
or any number of features). A second common scenario is emitting results to differ‐
ent output event streams—for example, outputting events to a dead-letter stream in
case of a processing error, instead of dropping them completely.

Applications may also need to merge streams, where events from multiple input
streams are consumed, possibly processed in some meaningful way, and then output
to a single output stream. There aren’t too many scenarios where it’s important to
merge multiple streams into just one, since it is common for microservices to con‐
sume from as many input streams as necessary to fulfill their business logic. Chap‐
ter 6 discusses how to handle consuming and processing events from multiple input
streams in a consistent and reproducible order.

If you do end up merging event streams, define a new unified
schema representative of the merged event steam domain. If this
domain doesn’t make sense, then it may be best to leave the streams
unmerged and reconsider your system design.

Repartitioning Event Streams
Event streams are partitioned according to the event key and the event partitioner
logic. For each event, the event partitioner is applied, and a partition is selected for
the event to be written to. Repartitioning is the act of producing a new event stream
with one or more of the following properties:

Repartitioning Event Streams | 81

Different partition count
Increase an event stream’s partition count to increase downstream parallelism or
to match the number of partitions of another stream for copartitioning (covered
later in this chapter).

Different event key
Change the event key to ensure that events with the same key are routed to the
same partition.

Different event partitioner
Change the logic used to select which partition an event will be written to.

It’s rare that a purely stateless processor will need to repartition an event stream, bar‐
ring the case of increasing the partition count for increased downstream parallelism.
That being said, a stateless microservice may be used to repartition events that are
consumed by a downstream stateful processor, which is the subject of the next
example.

The partitioner algorithm deterministically maps an event’s key to
a specific partition, typically by using a hash function. This ensures
that all events with the same key end up in the same partition.

Example: Repartitioning an Event Stream
Suppose there is a stream of user data coming in from a web-facing endpoint. The
user actions are converted into events, with the payload of the events containing both
a user ID and other arbitrary event data, labeled x.

Consumers of this state are interested in ensuring that all of the data belonging to a
particular user is contained within the same partition, regardless of how the source
event stream is partitioned. This stream can be repartitioned to ensure this is the case,
as shown in Figure 5-2.

Producing all events for a given key into a single partition provides the basis for data
locality. A consumer need only consume events from a single partition to build a
complete picture of events pertaining to that key. This enables consumer microservi‐
ces to scale up to many instances, each consuming from a single partition, while
maintaining a complete stateful account of all events pertaining to that key. Reparti‐
tioning and data locality are essential parts of performing stateful processing at scale.

82 | Chapter 5: Event-Driven Processing Basics

Figure 5-2. Repartitioning an event stream

Copartitioning Event Streams
Copartitioning is the repartition of an event stream into a new one with the same par‐
tition count and partition assignor logic as another stream. This is required when
keyed events from one event stream need to be colocated (for data locality) with the
events of another stream. This is an important concept for stateful stream processing,
as numerous stateful operations (such as streaming joins) require that all events for a
given key, regardless of which stream they’re from, be processed through the same
node. This is covered in more detail in Chapter 7.

Example: Copartitioning an Event Stream
Consider again the repartition example of Figure 5-2. Say that you now need to join
the repartitioned user event stream with a user entity stream, keyed on that same ID.
These joining of these streams is shown in Figure 5-3.

Both streams have the same partition count, and both have been partitioned using the
same partitioner algorithm. Note that the key distribution of each partition matches
the distribution of the other stream and that each join is performed by its own con‐
sumer instance. The next section covers how partitions are assigned to a microservice
instance to leverage copartitioned streams, as was done in this join example.

Copartitioning Event Streams | 83

Figure 5-3. Copartitioned user event and user entity streams

Assigning Partitions to a Consumer Instance
Each microservice maintains its own unique consumer group representing the collec‐
tive offsets of its input event streams. The first consumer instance that comes online
will register with the event broker using its consumer group name. Once registered,
the consumer instance will then need to be assigned partitions.

Some event brokers, such as Apache Kafka, delegate partition assignment to the first
online client for each consumer group. As consumer group leader, this instance is
responsible for performing the partition assignor duties, ensuring that input event-
stream partitions are correctly assigned whenever new instances join that consumer
group.

Other event brokers, such as Apache Pulsar, maintain a centralized ownership of par‐
tition assignment within the broker. In this case, the partition assignment and reba‐
lancing are done by the broker, but the mechanism of identification via consumer
group remains the same. Partitions are assigned, and work can begin from the last
known offsets of consumed events.

Work is usually momentarily suspended while partitions are reassigned to avoid
assignment race conditions. This ensures that any revoked partitions are no longer
being processed by another instance before assignment to the new instance, eliminat‐
ing any potential duplicate output.

Assigning Partitions with the Partition Assignor
Multiple instances of a consumer microservice are typically required for processing
large volumes of data, whether it’s a dedicated stream-processing framework or a

84 | Chapter 5: Event-Driven Processing Basics

basic producer/consumer implementation. A partition assignor ensures that parti‐
tions are distributed to the processing instances in a balanced and equitable manner.

This partition assignor is also responsible for reassigning partitions whenever new
consumer instances are added or removed from the consumer group. Depending on
your event broker selection, this component may be built into the consumer client or
maintained within the event broker.

Assigning Copartitioned Partitions
The partition assignor is also responsible for ensuring that any copartitioning
requirements are met. All partitions marked as copartitioned must be assigned to the
same single consumer instance. This ensures that a given microservice instance will
be assigned the correct subset of event data to perform its business logic. It is good
practice to have the partition assignor implementation check to see that the event
streams have an equal partition count and throw an exception on inequality.

Partition Assignment Strategies
The goal of a partition assignment algorithm is to ensure that partitions are evenly
distributed across the consumer instances, assuming that the consumer instances are
equal in processing capabilities. A partition assignment algorithm may also have sec‐
ondary goals, such as reducing the number of partitions reassigned during a reba‐
lance. This is particularly important when you are dealing with materialized state
sharded across multiple data store instances, as the reassignment of a partition can
cause future updates to go to the wrong shard. Chapter 7 explores this concept fur‐
ther with regard to internal state stores.

There are a number of common strategies for assigning partitions. The default strat‐
egy may vary depending on your framework or implementation, but the following
three tend to be the most commonly used.

Round-robin assignment
All partitions are tallied into a list and assigned in a round-robin manner to each
consumer instance. A separate list is kept for copartitioned streams to ensure proper
copartitioned assignment.

Figure 5-4 shows two consumer instances, each with its own set of assigned parti‐
tions. C0 has two sets of copartitioned partitions compared to one for C1, since
assignment both began and ended on C0.

Assigning Partitions to a Consumer Instance | 85

Figure 5-4. Round-robin partition assignments for two consumer instances

When the number of consumer instances for the given consumer group increases,
partition assignments should be rebalanced to spread the load among the newly
added resources. Figure 5-5 shows the effects of adding two more consumer
instances.

Figure 5-5. Round-robin partition assignments for four consumer instances

C2 is now assigned the copartitioned P2s, as well as stream A’s P2. C3, on the other
hand, only has partition P3 from stream A because there are no additional partitions
to assign. Adding any further instances will not result in any additional
parallelization.

86 | Chapter 5: Event-Driven Processing Basics

Static assignment
Static assignment protocols can be used when specific partitions must be assigned to
specific consumers. This option is most useful when large volumes of stateful data are
materialized on any given instance, usually for internal state stores. When a con‐
sumer instance leaves the consumer group, a static assignor will not reassign the par‐
titions, but will instead wait until the missing consumer instance comes back online.
Depending on the implementation, partitions may be dynamically reassigned anyway,
should the original consumer fail to rejoin the consumer group within a designated
period of time.

Custom assignment
By leveraging external signals and tooling, custom assignments can be tailored to the
needs of the client. For example, assignment could be based on the current lag in the
input event streams, ensuring an equal distribution of work across all of your con‐
sumer instances.

Recovering from Stateless Processing Instance Failures
Recovering from stateless failures is effectively the same as simply adding a new
instance to a consumer group. Stateless processors do not require any state restora‐
tion, which means they can immediately go back to processing events as soon as
they’re assigned partitions and establish their stream time.

Summary
The basic stateless event-driven microservice consumes events, processes them, and
emits any new subsequent events. Each event is processed independently of the oth‐
ers. Basic transformations allow you to change events into more useful formats,
which you can then repartition into a newly keyed event stream with a new partition
count. Event streams with the same key, the same partitioner algorithm, and the same
partition count are said to be copartitioned, which guarantees data locality for a given
consumer instance. The partition assignor is used to ensure that partitions between
consumer instances are evenly distributed and that copartitioned event streams are
correctly coassigned.

Copartitioning and partition assignment are important concepts for understanding
stateful processing, which is covered in Chapter 7. First, though, you must consider
how to handle processing multiple partitions from multiple event streams. Out-of-
order events, late events, and the order in which events are selected for processing all
have a significant impact on the design of your services. This will be the topic of the
next chapter.

Recovering from Stateless Processing Instance Failures | 87

CHAPTER 6

Deterministic Stream Processing

Event-driven microservices usually have topologies that are more complex than those
introduced in the previous chapter. Events are consumed and processed from multi‐
ple event streams, while stateful processing (covered in the next chapter) is required
to solve many business problems. Microservices are also subject to the same faults
and crashes as nonmicroservice systems. It is not uncommon to have a mixture of
microservices processing events in near–real time while other, newly started micro‐
services are catching up by processing historical data.

Here are the three main questions addressed in this chapter:

• How does a microservice choose the order of events to process when consuming
from multiple partitions?

• How does a microservice handle out-of-order and late-arriving events?
• How do we ensure that our microservices produce deterministic results when

processing streams in near–real time versus when processing from the beginning
of the streams?

We can answer these questions by examining timestamps, event scheduling, water‐
marks, and stream times, and how they contribute to deterministic processing. Bugs,
errors, and changes in business logic will also necessitate reprocessing, making deter‐
ministic results important. This chapter also explores how out-of-order and late-
arriving events can occur, strategies for handling them, and mitigating their impact
on our workflows.

89

This chapter is fairly information-dense despite my best efforts to
find a simple and concise way to explain the key concepts. There
are a number of sections where I will refer you to further resources
to explore on your own, as the details often go beyond the scope of
this book.

Determinism with Event-Driven Workflows
An event-driven microservice has two main processing states. It may be processing
events at near–real time, which is typical of long-running microservices. Alternately,
it may be processing events from the past in an effort to catch up to the present time,
which is common for underscaled and new services.

If you were to rewind the consumer group offsets of the input event streams to the
beginning of time and start the microservice run again, would it generate the same
output as the first time it was run? The overarching goal of deterministic processing
is that a microservice should produce the same output whether it is processing in real
time or catching up to the present time.

Note that there are workflows that are explicitly nondeterministic, such as those
based on the current wall-clock time and those that query external services. External
services may provide different results depending on when they are queried, especially
if their internal state is updated independently of that from the services issuing the
query. In these cases there is no promise of determinism, so be sure to pay attention
to any nondeterministic operations in your workflow.

Fully deterministic processing is the ideal case, where every event arrives on time and
there is no latency, no producer or consumer failures, and no intermittent network
issues. Since we have no choice but to deal with these scenarios, the reality is that our
services can only achieve a best effort at determinism. There are a number of compo‐
nents and processes that work together to facilitate this attempt, and in most cases
best-effort determinism will be sufficient for your requirements. There are a few
things you need to achieve this: consistent timestamps, well-selected event keys, par‐
tition assignment, event scheduling, and strategies to handle late-arriving events.

Timestamps
Events can happen anywhere and at any time and often need to be reconciled with
events from other producers. Synchronized and consistent timestamps are a hard
requirement for comparing events across distributed systems.

An event stored in an event stream has both an offset and a timestamp. The offset is
used by the consumer to determine which events it has already read, while the time‐
stamp, which indicates when that event was created, is used to determine when an

90 | Chapter 6: Deterministic Stream Processing

event occurred relative to other events and to ensure that events are processed in the
correct order.

The following timestamp-related concepts are illustrated in Figure 6-1, which shows
their temporal positions in the event-driven workflow:

Event time
The local timestamp assigned to the event by the producer at the time the event
occurred.

Broker ingestion time
The timestamp assigned to the event by the event broker. You can configure this
to be either the event time or the ingestion time, with the former being much
more common. In scenarios where the producer’s event time is unreliable,
broker-ingestion time can provide a sufficient substitute.

Consumer ingestion time
The time in which the event is ingested by the consumer. This can be set to the
event time specified in the broker record, or it can be the wall-clock time.

Processing time
The wall-clock time at which the event has been processed by the consumer.

Figure 6-1. Event scheduler ordering the input events by timestamp

You can see that it’s possible to propagate the event time through the event broker to
the consumer, enabling the consumer logic to make decisions based on when an event
happened. This will help answer the three questions posed at the start of the chapter.
Now that we’ve mapped out the types of timestamps, let’s take a look at how they’re
generated.

Timestamps | 91

Synchronizing Distributed Timestamps
A fundamental limitation of physics is that two independent systems cannot be guar‐
anteed to have precisely the same system-clock time. Various physical properties limit
how precise system clocks can be, such as material tolerances in the underlying clock
circuitry, variations in the operating temperature of the chip, and inconsistent net‐
work communication delays during synchronization. However, it is possible to estab‐
lish local system clocks that are nearly in sync and end up being good enough for
most computing purposes.

Consistent clock times are primarily accomplished by synchronizing with Network
Time Protocol (NTP) servers. Cloud service providers such as Amazon and Google
offer redundant satellite-connected and atomic clocks in their various regions for
instant synchronization.

Synchronization with NTP servers within a local area network can provide very accu‐
rate local system clocks, with a drift of only a few mS after 15 minutes. This can be
reduced to 1 mS or less with more frequent synchronizations in best-case scenarios
according to David Mills, NTP’s inventor, though intermittent network issues may
prevent this target from being reached in practice. Synchronization across the open
internet can result in much larger skews, with accuracy being reduced to ranges of +/
− 100mS, and is a factor to be considered if you’re trying to resynchronize events
from different areas of the globe.

NTP synchronization is also prone to failure, as network outages, misconfiguration,
and transient issues may prevent instances from synchronizing. The NTP servers
themselves may also otherwise become unreliable or unresponsive. The clock within
an instance may be affected by multitenancy issues, just as in VM-based systems
sharing the underlying hardware.

For the vast majority of business cases, frequent synchronization to NTP servers can
provide sufficient consistency for system event time. Improvements to NTP servers
and GPS usage have begun to push NTP synchronization accuracy consistently into
the submillisecond range. The creation time and ingestion time values assigned as the
timestamps can be highly consistent, though minor out-of-order issues will still
occur. Handling of late events is covered later in this chapter.

Processing with Timestamped Events
Timestamps provide a way to process events distributed across multiple event streams
and partitions in a consistent temporal order. Many use cases require you to maintain
order between events based on time, and need consistent, reproducible results
regardless of when the event stream is processed. Using offsets as a means of compar‐
ison works only for events within a single event stream partition, while events quite
commonly need to be processed from multiple different event streams.

92 | Chapter 6: Deterministic Stream Processing

https://oreil.ly/J6Zmo
https://oreil.ly/oLEEs
https://oreil.ly/lBHD1

Example: Selecting order of events when processing multiple partitions
A bank must ensure that both deposit and withdrawal event streams are processed in
the correct temporal order. It keeps a stateful running tally of withdrawals and depos‐
its, applying an overdraft penalty when a client’s account balance drops below $0. For
this example, the bank has its deposits in one event stream and its withdrawals in
another stream, as shown in Figure 6-2.

Figure 6-2. In which order should events be processed?

A naive approach to consuming and processing records, perhaps a round-robin pro‐
cessor, might process the $10 deposit first, the $25 withdrawal second (incurring a
negative balance and overdraft penalties), and the $20 deposit third. This is incorrect,
however, and does not represent the temporal order in which the events occurred.
This example makes clear that you must consider the event’s timestamp when con‐
suming and processing events. The next section discusses this in greater detail.

Event Scheduling and Deterministic Processing
Deterministic processing requires that events be processed consistently, such that the
results can be reproduced at a later date. Event scheduling is the process of selecting
the next events to process when consuming from multiple input partitions. For an
immutable log-based event stream, records are consumed in an offset-based order.
However, as Figure 6-2 demonstrates, the processing order of events must be inter‐
leaved based on the event time provided in the record, regardless of which input par‐
tition it comes from, to ensure correct results.

The most common event-scheduling implementation selects and
dispatches the event with the oldest timestamp from all assigned
input partitions to the downstream processing topology.

Event Scheduling and Deterministic Processing | 93

Event scheduling is a feature of many stream-processing frameworks, but is typically
absent from basic consumer implementations. You will need to determine if it is
required for your microservice implementation.

Your microservice will need event scheduling if the order in which
events are consumed and processed matters to the business logic.

Custom Event Schedulers
Some streaming frameworks allow you to implement custom event schedulers. For
example, Apache Samza lets you implement a MessageChooser class, where you select
which event to process based on a number of factors, such as prioritization of certain
event streams over others, the wall-clock time, event time, event metadata, and even
content within the event itself. You should take care when implementing your own
event scheduler, however, as many custom schedulers are nondeterministic in nature
and won’t be able to generate reproducible results if reprocessing is required.

Processing Based on Event Time, Processing Time, and Ingestion Time
A time-based order of event processing requires you to select which point in time to
use as the event’s timestamp, as per Figure 6-1. The choice is between the locally
assigned event time and broker ingestion time. Both timestamps occur only once
each in a produce-consume workflow, whereas the wall-clock and consumer inges‐
tion time change depending on when the application is executed.

In most scenarios, particularly when all consumers and all producers are healthy and
there is no event backlog for any consumer group, all four points in time will be
within a few seconds of each other. Contrarily, for a microservice processing historic
events, event time and consumer ingestion time will differ significantly.

For the most accurate depiction events in the real world, it is best to use the locally
assigned event time provided you can rely on its accuracy. If the producer has unrelia‐
ble timestamps (and you can’t fix it), your next best bet is to set the timestamps based
on when the events are ingested into the event broker. It is only in rare cases where
the event broker and the producer cannot communicate that there may be a substan‐
tial delay between the true event time and the one assigned by the broker.

94 | Chapter 6: Deterministic Stream Processing

Timestamp Extraction by the Consumer
The consumer must know the timestamp of the record before it can decide how to
order it for processing. At consumer ingestion time, a timestamp extractor is used to
extract the timestamp from the consumed event. This extractor can take information
from any part of the event’s payload, including the key, value, and metadata.

Each consumed record has a designated event-time timestamp that is set by this
extractor. Once this timestamp has been set, it is used by the consumer framework for
the duration of its processing.

Request-Response Calls to External Systems
Any non-event-driven requests made to external systems from within an event-
driven topology may introduce nondeterministic results. By definition, external sys‐
tems are managed externally to the microservice, meaning that at any point in time
their internal state and their responses to the requesting microservice may differ.
Whether this is significant depends entirely on the business requirements of your
microservice and is up to you to assess.

Watermarks
Watermarking is used to track the progress of event time through a processing topol‐
ogy and to declare that all data of a given event time (or earlier) has been processed.
This is a common technique used by many of the leading stream-processing frame‐
works, such as Apache Spark, Apache Flink, Apache Samza, and Apache Beam. A
whitepaper from Google describes watermarks in greater detail and provides a good
starting point for anyone who would like to learn more about it.

A watermark is a declaration to downstream nodes within the same processing topol‐
ogy that all events of time t and prior have been processed. The node receiving the
watermark can then update its own internal event time and propagate its own water‐
mark downstream to its dependent topology nodes. This process is shown in
Figure 6-3.

Figure 6-3. Watermark propagation between nodes in a single topology

Watermarks | 95

https://oreil.ly/WO2OC
https://oreil.ly/WO2OC

In this figure, the consumer node has the highest watermark time because it’s con‐
suming from the source event stream. New watermarks are generated periodically,
such as after a period of wall-clock or event time has elapsed or after some minimum
number of events has been processed. These watermarks propagate downstream to
the other processing nodes in the topology, which update their own event time
accordingly.

This chapter only touches on watermarks to give you an under‐
standing of how they’re used for deterministic processing. If you
would like to dig deeper into watermarks, consider Chapters 2 and
3 of the excellent book Streaming Systems, by Tyler Akidau, Slava
Chernyak, and Reuven Lax (O’Reilly, 2018).

Watermarks in Parallel Processing
Watermarks are particularly useful for coordinating event time between multiple
independent consumer instances. Figure 6-4 shows a simple processing topology of
two consumer instances. Each consumer instance consumes events from its own
assigned partition, applies a groupByKey function, followed by an aggregate func‐
tion. This requires a shuffle, where all events with the same key are sent to a single
downstream aggregate instance. In this case, events from instance 0 and instance 1
are sent to each other based on the key to ensure all events of the same key are in the
same partition.

Figure 6-4. Watermark propagation between nodes in a single topology with multiple
processors

96 | Chapter 6: Deterministic Stream Processing

https://learning.oreilly.com/library/view/streaming-systems/9781491983867

There is a fair bit to unpack in this diagram, so let’s take a look at it from the start.

Watermarks are generated at the source function, where the events are consumed
from the event stream partition. The watermarks define the event time at that con‐
sumer and are propagated downstream as the event time of the consumer node is
incremented (#1 in Figure 6-4).

Downstream nodes update their event time as the watermarks arrive, and in turn
generate their own new watermark to propagate downstream to its successors. Nodes
with multiple inputs, such as aggregate, consume events and watermarks from mul‐
tiple upstream inputs. The node’s event time is the minimum of all of its input sour‐
ces’ event times, which the node keeps track of internally (#2 in Figure 6-4).

In the example, both aggregate nodes will have their event time updated from 13 to
15 once the watermark from the groupByKey-1 node arrives (#3 in Figure 6-4). Note
that the watermark does not affect the event scheduling of the node; it simply notifies
the node that it should consider any events with a timestamp earlier than the water‐
mark to be considered late. Handling late events is covered later in this chapter.

Spark, Flink, and Beam, among other heavyweight processing frameworks, require a
dedicated cluster of processing resources to perform stream processing at scale. This
is particularly relevant because this cluster also provides the means for cross-task
communications and centralized coordination of each processing task. Repartitioning
events, such as with the groupByKey + aggregate operation in this example, use
cluster-internal communications and not event streams in the event broker.

Stream Time
A second option for maintaining time in a stream processor, known simply as stream
time, is the approach favored by Apache Kafka Streams. A consumer application
reading from one or more event streams maintains a stream time for its topology,
which is the highest timestamp of processed events. The consumer instance con‐
sumes and buffers events from each event stream partition assigned to it, applies the
event-scheduling algorithm to select the next event to process, and then updates the
stream time if it is larger than the previous stream time. Stream time will never be
decreased.

Figure 6-5 shows an example of stream time. The consumer node maintains a single
stream time based on the highest event-time value it has received. The stream time is
currently set to 20 since that was the event time of the most recently processed event.
The next event to be processed is the smallest value of the two input buffers—in this
case, it’s the event with event time 30. The event is dispatched down to the processing
topology, and the stream time will be updated to 30.

Stream Time | 97

Figure 6-5. Stream time when consuming from multiple input streams

Stream time is maintained by processing each event completely through the topology
before processing the next one. In cases where a topology contains a repartition
stream, each topology is split into two, and each subtopology maintains its own dis‐
tinct stream time. Events are processed in a depth-first manner, such that only one
event is being processed in a subtopology at any given time. This is different than the
watermark-based approach where events can be buffered at the inputs of each pro‐
cessing node, with each node’s event time independently updated.

Stream Time in Parallel Processing
Consider again the same two-instance consumer example from Figure 6-4, but this
time with the stream time approach championed by Kafka Streams (see Figure 6-6).
A notable difference is that the Kafka Streams approach sends the repartitioned
events back to the event broker using what’s known as an internal event stream. This
stream is then reconsumed by the instances, with all repartitioned data colocated by
key within single partitions. This is functionally the same as the shuffle mechanism
within the heavyweight cluster, but does not require a dedicated cluster (note: Kafka
Streams is very microservice friendly).

98 | Chapter 6: Deterministic Stream Processing

Figure 6-6. Shuffling events via a repartition event stream

In this example, events from the input stream are repartitioned according to their key
and are written into the repartition event stream. The events keyed on A and B end up
in P1, while the events keyed on X and Z end up in P0. Also note that the event time
has been maintained for each event, and not overwritten by the current wall-clock
time. Recall that the repartition should be treated only as a logical shuffling of exist‐
ing event data. Rewriting the event time of an event would completely destroy the
original temporal ordering.

Notice the subtopologies shown in the figure. Because of the repartition event stream,
the processing topology is effectively cut in half, meaning that work on each subto‐
pology can be done in parallel. Subtopologies 1 and 3 consume from the repartition
stream and group events together, while subtopologies 0 and 2 produce the reparti‐
tioned events. Each subtopology maintains its own stream time, since both are con‐
suming from independent event streams.

Watermarking strategies can also use repartition event streams.
Apache Samza offers a standalone mode that is similar to Kafka
Streams, but uses watermarking instead of stream time.

Out-of-Order and Late-Arriving Events
In an ideal world, all events are produced without issue and available to the consumer
with zero latency. Unfortunately for all of us living in the real world, this is never the
case, so we must plan to accommodate out-of-order events. An event is said to be out
of order if its timestamp isn’t equal to or greater than the events ahead of it in the

Out-of-Order and Late-Arriving Events | 99

event stream. In Figure 6-7, event F is out of order because its timestamp is lower
than G’s, just as event H is out of order as its timestamp is lower than I’s.

Bounded data sets, such as historical data processed in batch, are typically fairly resil‐
ient to out-of-order data. The entire batch can be thought of as one large window, and
an event arriving out of order by many minutes or even hours is not really relevant
provided that the processing for that batch has not yet started. In this way, a bounded
data set processed in batch can produce results with high determinism. This comes at
the expense of high latency, especially for the traditional sorts of nightly batch big-
data processing jobs where the results are available only after the 24-hour period, plus
batch processing time.

For unbounded data sets, such as those in ever-updating event streams, the developer
must consider the requirements of latency and determinism when designing the
microservice. This extends beyond the technological requirements into the business
requirements, so any event-driven microservice developer must ask, “Does my
microservice handle out-of-order and late-arriving events according to business
requirements?” Out-of-order events require the business to make specific decisions
about how to handle them, and to determine whether latency or determinism takes
priority.

Consider the previous example of the bank account. A deposit followed by an imme‐
diate withdrawal must be processed in the correct order lest an overdraft charge be
incorrectly applied, regardless of the ordering of events or how late they may be. To
mitigate this, the application logic may need to maintain state to handle out-of-order
data for a time period specified by the business, such as a one-hour grace window.

Figure 6-7. Out-of-order events in an event stream partition

Events from a single partition should always be processed accord‐
ing to their offset order, regardless of their timestamp. This can
lead to out-of-order events.

100 | Chapter 6: Deterministic Stream Processing

An event can be considered late only when viewed from the perspective of the con‐
suming microservice. One microservice may consider any out-of-order events as late,
whereas another may be fairly tolerant and require many hours of wall-clock or event
time to pass before considering an event to be late.

Late Events with Watermarks and Stream Time
Consider two events, one with time t, the other with time t′. Event t′ has an earlier
timestamp than event t.

Watermarks
The event t′ is considered late when it arrives after the watermark W(t). It is up to
the specific node how to handle this event.

Stream time
The event t′ is considered late when it arrives after the stream time has been
incremented past t′. It is up to each operator in the subtopology how to handle
this event.

An event is late only when it has missed a deadline specific to the
consumer.

Causes and Impacts of Out-of-Order Events
There are several ways that out-of-order events can occur.

Sourcing from out-of-order data
The most obvious, of course, is when events are sourced from out-of-order data. This
can occur when data is consumed from a stream that is already out of order or when
events are being sourced from an external system with existing out-of-order
timestamps.

Multiple producers to multiple partitions
Multiple producers writing to multiple output partitions can introduce out-of-order
events. Repartitioning an existing event stream is one way in which this can happen.
Figure 6-8 shows the repartitioning of two partitions by two consumer instances. In
this scenario the source events indicate which product the user has interacted with.
For instance, Harry has interacted with products ID12 and ID77. Say that a data ana‐
lyst needs to rekey these events on the user ID, such that they can perform session-
based analysis of the user’s engagements. The resultant output streams may end up
with some out-of-order events.

Out-of-Order and Late-Arriving Events | 101

Figure 6-8. Shuffling events via a repartition event stream

Note that each instance maintains its own internal stream time and that there is no
synchronization between the two instances. This can cause a time skew that produces
out-of-order events, as shown in Figure 6-9.

Figure 6-9. Shuffling events via a repartition event stream

Instance 0 was only slightly ahead of instance 1 in stream time, but because of their
independent stream times, the events of time t = 90 and t = 95 are considered out of
order in the repartitioned event stream. This issue is exacerbated by unbalanced par‐
tition sizes, unequal processing rates, and large backlogs of events. The impact here is
that the previously in-order event data is now out of order, and thus as a consumer
you cannot depend on having consistently incrementing time in each of your event
streams.

A single-threaded producer will not create out-of-order events in
normal operation unless it is sourcing its data from an out-of-order
source.

102 | Chapter 6: Deterministic Stream Processing

Since the stream time is incremented whenever an event with a higher timestamp is
detected, it is possible to end up in a scenario where a large number of events are con‐
sidered late due to reordering. This may have an effect on processing depending on
how the consumers choose to handle out-of-order events.

Time-Sensitive Functions and Windowing
Late events are predominantly the concern of time-based business logic, such as
aggregating events in a particular time period or triggering an event after a certain
period of time has passed. A late event is one that arrives after the business logic has
already finished processing for that particular period of time. Windowing functions
are an excellent example of time-based business logic.

Windowing means grouping events together by time. This is particularly useful for
events with the same key, where you want to see what happened with events of that
key in that period of time. There are three main types of event windows, but again, be
sure to check your stream-processing framework for more information.

Windowing can be done using either event time or processing
time, though event-time windowing typically has more business
applications.

Tumbling windows
A tumbling window is a window of a fixed size. Previous and subsequent windows do
not overlap. Figure 6-10 shows three tumbling windows, each aligned on t, t + 1, and
so on. This sort of windowing can help answer questions such as “When is the peak
hour for product usage?”

Figure 6-10. Tumbling windows

Out-of-Order and Late-Arriving Events | 103

Sliding windows
A sliding window has a fixed window size and incremental step known as the window
slide. It must reflect only the aggregation of events currently in the window. A sliding
window can help answer questions such as “How many users clicked on my product
in the past hour?” Figure 6-11 shows an example of the sliding window, including the
size of the window and the amount that it slides forward.

Figure 6-11. Sliding windows

Session windows
A session window is a dynamically sized window. It is terminated based on a timeout
due to inactivity, with a new session started for any activity happening after the time‐
out. Figure 6-12 shows an example of session windows, with a session gap due to
inactivity for user C. This sort of window can help answer questions such as “What
does a user look at in a given browsing session?”

104 | Chapter 6: Deterministic Stream Processing

Figure 6-12. Session windows

Each of these window functions must deal with out-of-order events. You must decide
how long to wait for any out-of-order events before deeming them too late for con‐
sideration. One of the fundamental issues in stream processing is that you can never
be sure that you have received all of the events. Waiting for out-of-order events can
work, but eventually your service will need to give up, as it cannot wait indefinitely.
Other factors to consider include how much state to store, the likelihood of late
events, and the business impact of not using the late events.

Handling Late Events
The strategy for handling out-of-order and late-arriving events should be determined
at a business level prior to developing an engineering solution, as strategies will vary
depending on the importance of the data. Critical events such as financial transac‐
tions and system failures may be required to be handled regardless of their position in
the stream. Alternately, measurement-style events, such as temperature or force met‐
rics, may simply be discarded as no longer relevant.

Business requirements also dictate how much latency is acceptable, as waiting for
events to arrive may increase determinism but at the expense of higher latency. This
can negatively affect the performance characteristics of time-sensitive applications or
those with tight service-level agreements. Thankfully, microservices provide the flexi‐
bility necessary to tailor determinism, latency, and out-of-order event handling char‐
acterstics on a per-service basis.

There are several ways in which a late-arriving event can be handled, regardless of
whether your framework uses watermarks or stream time.

Drop event
Simply drop the event. The window is closed, and any time-based aggregations
are already complete.

Handling Late Events | 105

Wait
Delay output of the window results until a fixed amount of time has passed. This
incurs higher determinism at the expense of increased latency. The old win‐
dow(s) need to remain available for updating until the predetermined amount of
time has passed.

Grace period
Output the windowed result as soon as the window is deemed complete. Then,
keep the window(s) around and available for the predetermined grace period.
Whenever a late event arrives for that window, update the aggregation and out‐
put the newly updated aggregation. This is similar to the wait strategy, except
updates are generated as late events arrive.

Regardless of how long a microservice waits, eventually events will simply be too late
and will need to be discarded. There is no cut-and-dry technical rule for how your
microservice should handle late events; just ensure that your business requirements
are sufficiently met. If the protocol for handling late events is not specified in the
microservice’s business requirements, then the business must work to resolve that.

Here are a few questions to help you determine good guidelines for handling late
events:

• How likely are late events to occur?
• How long does your service need to guard against late events?
• What are the business impacts of dropping late events?
• What are the business benefits of waiting a long time to capture late events?
• How much disk or memory does it take to maintain state?
• Do the expenses incurred in waiting for late events outweigh the benefits?

Reprocessing Versus Processing in Near-Real Time
Immutable event streams provide the ability to rewind consumer group offsets and
replay processing from an arbitrary point in time. This is known as reprocessing, and
it’s something that every event-driven microservice needs to consider in its design.
Reprocessing is typically performed only on event-driven microservices that use
event time for processing events, and not those that rely on wall-clock time aggrega‐
tions and windowing.

Event scheduling is an important part of being able to correctly reprocess historical
data from event streams. It ensures that microservices process events in the same
order that they did during near–real time. Handling out-of-order events is also an
important part of this process, as repartitioning an event stream through the event

106 | Chapter 6: Deterministic Stream Processing

broker (instead of using a heavyweight framework like Spark, Flink, or Beam) can
cause out-of-order events.

Here are the steps to follow when you want to reprocess your event streams:

1. Determine the starting point. As a best practice, all stateful consumers should
reprocess events from the very beginning of each event stream that they are sub‐
scribed to. This applies to entity event streams in particular, as they contain
important facts about the entities under question.

2. Determine which consumer offsets to reset. Any streams that contain events used
in stateful processing should be reset to the very beginning, as it is difficult to
ensure that you will end up with a correct state if you start in the wrong location
(consider what would happen if you reprocessed someone’s bank balance and
accidentally omitted previous paychecks).

3. Consider the volume of data. Some microservices may process huge quantities of
events. Consider how long it may take to reprocess the events, and any bottle‐
necks that may exist. Quotas (see “Quotas” on page 241) may be needed to ensure
that your microservice doesn’t overwhelm the event broker with I/O. Addition‐
ally, you may need to notify any downstream consumers if you are expecting to
generate large amounts of reprocessed output data. They may need to scale their
services accordingly if autoscaling (see “Autoscaling Applications” on page 192) is
not enabled.

4. Consider the time to reprocess. It is possible that reprocessing may take many
hours to do, so it’s worth calculating how much downtime you may need. Ensure
that your downstream consumers are also okay with possibly stale data while
your service reprocesses. Scaling the number of consumer instances to maximum
parallelism can significantly reduce this downtime and can be scaled down once
reprocessing has completed.

5. Consider the impact. Some microservices perform actions that you may not want
to occur when reprocessing. For instance, a service that emails users when their
packages have shipped should not re-email users when reprocessing events, as it
would be a terrible user experience and completely nonsensical from a business
perspective. Carefully consider the impact of reprocessing on the business logic
of your system, as well as potential issues that may arise for downstream
consumers.

Intermittent Failures and Late Events
An event may be late during near-real-time processing (watermark or stream time is
incremented) but may be available as expected within the event stream during event-
stream reprocessing. This issue can be hard to detect, but it really illustrates the con‐

Intermittent Failures and Late Events | 107

nected nature of event-driven microservices and how upstream problems can affect
downstream consumers. Let’s take a quick look at how this can occur.

Producer/Event Broker Connectivity Issues
In this scenario, records are created in timestamp order but can’t be published until a
later time (see Figure 6-13). During normal operation, producers send their events as
they occur, and consumers consume them in near-real-time. This scenario is tricky to
identify when it’s happening and can go unnoticed even in retrospect.

Figure 6-13. Normal operation prior to producer/broker connection outage

Say a producer has a number of records ready to send, but it is unable to connect to
the event broker. The records are timestamped with the local time that the event
occurred. The producer will retry a number of times and either eventually succeed or
give up and fail (ideally a noisy failure so that the faulty connection can be identified
and rectified). This scenario is shown in Figure 6-14. Events from stream A are still
consumed, with the watermark/stream time incremented accordingly. However, upon
consuming from stream B, the consumer ends up with no new events, so it can sim‐
ply assume that no new data is available.

Figure 6-14. Temporary producer/broker connection outage

108 | Chapter 6: Deterministic Stream Processing

Eventually the producer will be able to write records to the event stream. These events
are published in the correct event-time order that they actually occurred, but because
of the wall-clock delay, near-real-time consumers will have marked them as late and
treat them as such. This is shown in Figure 6-15.

Figure 6-15. The producer is able to reconnect and publish its temporarily delayed
events, while the consumer has already incremented its event time

One way to mitigate this is to wait a predetermined amount of time before processing
events, though this approach does incur a latency cost and will only be useful when
production delays are shorter than the wait time. Another option is to use robust late-
event-handling logic in your code such that your business logic is not impacted by
this scenario.

Summary and Further Reading
This chapter looked at determinism and how best to approach it with unbounded
streams. It also examined how to select the next events to process between multiple
partitions to ensure best-effort determinism when processing in both near-real-time
and when reprocessing. The very nature of an unbounded stream of events combined
with intermittent failures means that full determinism can never be completely
achieved. Reasonable, best-effort solutions that work most of the time provide the
best tradeoff between latency and correctness.

Out-of-order and late-arriving events are factors that you must consider in your
designs. This chapter explored how watermarks and stream time can be used to iden‐
tify and handle these events. If you would like to read more about watermarks, check
out Tyler Akidau’s excellent articles, “The World Beyond Batch Streaming 101” and
102. Additional considerations and insights into distributed system time can be found
in Mikito Takada’s online book Distributed Systems for Fun and Profit.

Summary and Further Reading | 109

https://oreil.ly/XoqNE
https://oreil.ly/pkbAF
https://oreil.ly/IDT4D

CHAPTER 7

Stateful Streaming

Stateful streaming underpins the most important components of an event-driven
microservice, as most applications will need to maintain some degree of state for their
processing requirements. “Materializing State from Entity Events” on page 25 briefly
covered the principles of materializing an event stream into local state. This chapter
takes a much deeper look at how to build, manage, and use state for event-driven
microservices.

State Stores and Materializing State from an Event
Stream
Let’s start with some definitions:

Materialized state
A projection of events from the source event stream (immutable)

State store
Where your service’s business state is stored (mutable)

Both materialized state and state stores are required and used extensively in stateful
microservices, but it’s important to distinguish between them. Materialized states
enable you to use common business entities in your microservice applications,
whereas state stores enable you to store business state and intermediate
computations.

Each microservice design must also take into account where the service will store its
data. There are two main options for storing and accessing state:

• Internally, such that the data is stored in the same container as the processor,
allocated in memory or on disk.

111

• Externally, such that the data is stored outside of the processor’s container, in
some form of external storage service. This is often done across a network.

Figure 7-1 shows examples of both internal and external state storage.

Figure 7-1. Internal and external state stores

The choice of internal or external storage depends primarily on the microservice’s
business responsibilities and technical requirements. But before evaluating these two
options in greater depth, you’ll need to consider the role of the changelog.

Recording State to a Changelog Event Stream
A changelog is a record of all changes made to the data of the state store. It is the
stream in the table-stream duality, with the table of state transformed into a stream of
individual events. As a permanent copy of the state maintained outside of the micro‐
service instance, the changelog can be used to rebuild state, as shown in Figure 7-2,
and serve as a way of checkpointing event processing progress.

Changelogs optimize the task of rebuilding failed services because
they store the results of previous processing, allowing a recovering
processor to avoid reprocessing all input events.

112 | Chapter 7: Stateful Streaming

Figure 7-2. A state store with changelogging enabled

Changelog streams are stored in the event broker just like any other stream and, as
noted, provide a means of rebuilding the state store. Changelog streams should be
compacted since they only need the most recent key/value pair to rebuild the state.

Changelogs can scale and recover state in a highly performant manner, especially for
internal state stores. In both cases, the newly created application instance just needs
to load the data from the associated changelog partitions, as shown in Figure 7-3.

Figure 7-3. State store being restored from a changelog

Changelogs are either provided as a built-in feature, such as in the Kafka Streams cli‐
ent, or implemented by the application developer. Basic producer/consumer clients
tend not to provide any changelogging or stateful support.

Materializing State to an Internal State Store
Internal state stores coexist in the same container or VM environment as the micro‐
service’s business logic. Specifically, the existence of the internal state store is tied to
the existence of the microservice instance, with both running on the same underlying
hardware.

Each microservice instance materializes the events from its assigned partitions, keep‐
ing each partition’s data logically separate within the store. These logically separate

Materializing State to an Internal State Store | 113

https://oreil.ly/4hh3y
https://oreil.ly/4hh3y

materialized partitions permit a microservice instance to simply drop the state for a
revoked partition after a consumer group rebalance. This avoids resource leaks and
multiple sources of truth by ensuring that materialized state exists only on the
instance that owns the partition. New partition assignments can be rebuilt by con‐
suming the input events from the event stream or from the changelog.

High-performance key/value stores, such as RocksDB, are typically used to imple‐
ment internal state stores and are optimized to be highly efficient with local solid-
state drives (SSDs), enabling performant operations on data sets that exceed main
memory allocation. While key/value stores tend to be the most common implemen‐
tation for internal state stores, any form of data store can be used. A relational or
document data store implementation would not be unheard of, but again, it would
need to be instantiated and contained within each individual microservice instance.

Materializing Global State
A global state store is a special form of the internal state store. Instead of materializing
only the partitions assigned to it, a global state store materializes the data of all parti‐
tions for a given event stream, providing a complete copy of the event data to each
microservice instance. Figure 7-4 illustrates the difference between global and non‐
global materialized state.

Figure 7-4. Global materialized state and nonglobal materialized state

Global state stores are useful when a full data set is required by each instance, and
tend to comprise small, commonly used, and seldom-changing data sets. Global
materialization cannot be effectively used as the driver for event-driven logic, as each
microservice instance possesses a full copy of the data and thus would produce dupli‐
cate outputs and nondeterministic results. For this reason, it is best to reserve global
materialization for common data set lookup and dimension tables.

Advantages of Using Internal State

Scalability requirements are offloaded from the developer
A major benefit of using internal state stores on local disk is that all scalability
requirements are fully offloaded to the event broker and compute resource clusters.

114 | Chapter 7: Stateful Streaming

This allows the application development team to focus strictly on writing application
logic while relying on the microservices capability teams to provide the scaling mech‐
anisms common to all event-driven microservices. This approach ensures a single
unit of scalability, where each application can be scaled simply by increasing and
decreasing the instance count.

It’s important to understand your application’s performance requirements when
you’re considering internal state storage. With modern cloud computing, local disk
does not necessarily mean disk that is physically attached, as network-attached stor‐
age can mimic local disk and provide the same logical support for your applications.
A high-throughput stateful streaming microservice can easily consume hundreds of
thousands of events per second. You must carefully consider the performance charac‐
teristics required by the application to ensure it can meet its latency requirements.

High-performance disk-based options
Maintaining all state within main memory is not always possible in an event-driven
microservice, especially if costs are to be kept low. Physically attached local disk can
be quite performant for the majority of modern microservice use cases. Local disk
implementations tend to favor high random-access patterns, generally supported by
SSDs. For instance, the latency for a random-access read from an SSD using RocksDB
is approximately 65 microseconds, which means a single thread will have a sequential
access ceiling of approximately 15.4k requests/second. In-memory performance is
significantly faster, serving millions of random-access requests per second as the
norm. The local-disk and local-memory approach allows for extremely high through‐
put and significantly reduces the data-access bottleneck.

Flexibility to use network-attached disk
Microservices may also use network-attached disk instead of local disk, which signifi‐
cantly increases the read/write latency. Since events typically must be processed one at
a time to maintain temporal and offset order, the single processing thread will spend
a lot of time awaiting read/write responses, resulting in significantly lower through‐
put per processor. This is generally fine for any stateful service that doesn’t need high-
performance processing, but can be problematic if event volumes are high.

Accessing “local” data stored on network-attached disk has a much higher latency
than accessing physically local data stored in the system’s memory or attached disk.
While RocksDB paired with a local SSD has an estimated throughput of 15.4k
request/second, introducing a network latency of only 1 mS round-trip time to an
identical access pattern reduces the throughput cap to just 939 requests/second.
While you might be able to do some work to parallelize access and reduce this gap,
remember that events must be processed in the offset sequence in which they are con‐
sumed and that parallelization is not possible in many cases.

Materializing State to an Internal State Store | 115

https://oreil.ly/60t6J
https://oreil.ly/QEbW3
https://oreil.ly/rsl6a

One major benefit of network-attached disk is that the state can be maintained in the
volume and migrated to new processing hardware as needed. When the processing
node is brought back up, the network disk can be reattached and processing can
resume where it left off, instead of being rebuilt from the changelog stream. This
greatly reduces downtime since the state is no longer completely ephemeral as with a
local disk, and also increases the flexibility of microservices to migrate across com‐
pute resources, such as when you are using inexpensive on-demand nodes.

Disadvantages of Using Internal State

Limited to using runtime-defined disk
Internal state stores are limited to using only disk that is defined and attached to the
node at the service’s runtime. Changing either the size or quantity of attached vol‐
umes typically requires that the service be halted, the volumes adjusted, and the ser‐
vice restarted. In addition, many compute resource management solutions allow only
for volume size to be increased, as decreasing a volume’s size means that data would
need to be deleted.

Wasted disk space
Data patterns that are cyclical in nature, such as the traffic generated to a shopping
website at 3 p.m. versus 3 a.m., can require cyclical storage volume. That is, these pat‐
terns may require a large maximum disk for peak traffic but only a small amount
otherwise. Reserving full disk for the entire time can waste both space and money
when compared to using external services that charge you only per byte of data
stored.

Scaling and Recovery of Internal State
Scaling processing up to multiple instances and recovering a failed instance are iden‐
tical processes from a state recovery perspective. The new or recovered instance
needs to materialize any state defined by its topology before it can begin processing
new events. The quickest way to do so is to reload the changelog topic for each state‐
ful store materialized in the application.

Using hot replicas
While it is most common to have only a single replica of materialized state for each
partition, additional replicas can be created through some careful state management
or leveraged directly by the client framework. Apache Kafka has this functionality
built into its Streams framework via a simple configuration setting. This setting pro‐
vides highly available state stores and enables the microservice to tolerate instance
failures with zero downtime.

116 | Chapter 7: Stateful Streaming

https://oreil.ly/VGbuo
https://oreil.ly/VGbuo

Figure 7-5 shows a three-instance deployment with an internal state store replication
factor of 2. Each stateful partition is materialized twice, once as the leader and once as
a replica. Each replica must manage its own offsets to ensure that it is keeping up
with the offsets of the leader replica. Instance 0 and instance 1 are processing stream
B events and joining them on the copartitioned materialized state. Instance 1 and
instance 2 are also maintaining hot replicas of stream A-P0 and A-P1, respectively,
with instance 2 otherwise not processing any other events.

Figure 7-5. Stream-table join with three instances and two hot replicas per materialized
input partition

Materializing State to an Internal State Store | 117

When the leader is terminated, the consumer group must rebalance the assignment of
partitions. The partition assignor determines the location of the hot replica (it previ‐
ously assigned all partitions and knows all partition-to-instance mappings) and reas‐
signs the partitions accordingly. In Figure 7-6, instance 1 has terminated, and the
remaining microservice instances are forced to rebalance their partition assignments.
Instances with hot replicas are given priority to claim partition ownership and
resume processing immediately. The partition assignor has selected instance 2 to
resume processing of stream B-P1.

Figure 7-6. Rebalance due to instance 1 termination

Once processing has resumed, new hot replicas must be built from the changelog to
maintain the minimum replica count. The new hot replicas are built and added to the
remaining instances, as shown in Figure 7-7.

118 | Chapter 7: Stateful Streaming

Figure 7-7. Normal processing with two instances and two hot replicas per materialized
input partition

One of the main tradeoffs with a hot-replica approach is the use of
additional disk to maintain the replicas in exchange for the reduc‐
tion in downtime due to an instance failure.

Restoring and scaling from changelogs
When a newly created microservice instance joins the consumer group, any stateful
partitions that it is assigned can be reloaded simply by consuming from its changelog.
During this time the instance should not be processing new events, as doing so could
produce nondeterministic and erroneous results.

Restoring and scaling from input event streams
If no changelog is maintained, the microservice instance can rebuild its state stores
from the input streams. It must re-consume all of its input events from the very
beginning of its assigned event stream partitions. Each event must be consumed and
processed in strict incrementing order, its state updated, and any subsequent output
events produced.

Materializing State to an Internal State Store | 119

Consider the impact of events produced during a full reprocessing.
Downstream consumers may need to process these idempotently
or eliminate them as duplicates.

This process can take much longer to rebuild state than restoring from a changelog.
So, it’s best to employ this strategy only for simple topologies where duplicate output
is not a concern, input event stream retention is short, and the entity event streams
are sparse.

Materializing State to an External State Store
External state stores exist outside of a microservice’s container or virtual machine, but
are typically located within the same local network. You can implement an external
data store using your preferred technology, but you should select it based on the
needs of the microservice’s problem space. Some common examples of external store
services include relational databases; document databases; a Lucene-based geospatial
search system; and distributed, highly available key/value stores.

Keep in mind that while a specific microservice’s external state store may use a com‐
mon data storage platform, the data set itself must remain logically isolated from all
other microservice implementations. Sharing materialized state between microservi‐
ces is a common anti-pattern for implementers of external data stores who seek to use
a common materialized data set to serve multiple business needs. This can lead to
tight coupling between otherwise completely unrelated products or features and
should be avoided.

Do not share direct state access with other microservices. Instead,
all microservices must materialize their own copy of state. This
eliminates direct couplings and isolates microservices against unin‐
tentional changes, but at the expense of extra processing and data
storage resources.

Advantages of External State

Full data locality
Unlike internal state stores, external state stores can provide access to all materialized
data for each microservice instance, though each instance is still responsible for
materializing its own assigned partitions. A single materialized data set eliminates the
need for partition locality when you are performing lookups, relational queries on
foreign keys, and geospatial queries between a large number of elements.

120 | Chapter 7: Stateful Streaming

Use state stores with strong read-after-write guarantees to elimi‐
nate inconsistent results when using multiple instances.

Technology
External data stores can leverage technology that the organization is already familiar
with, reducing the time and effort it takes to deliver a microservice to production.
Basic consumer/producer patterns are especially good candidates for using external
data stores, as covered in Chapter 10. Function-as-a-Service solutions are also excel‐
lent external data store candidates, as covered in Chapter 9.

Drawbacks of External State

Management of multiple technologies
External state stores are managed and scaled independently of the microservice busi‐
ness logic solution. One of the risks of an external data store is that the microservice
owner is now on the hook for ensuring that it is maintained and scaled appropriately.
Each team must implement proper resource allocation, scaling policies, and system
monitoring to ensure that their data service is suitable and resilient for the microser‐
vice’s load. Having managed data services provided by the organization’s capabilities
team or by a third-party cloud platform vendor can help distribute some of this
responsibility.

Each team must fully manage the external state stores for its micro‐
services. Do not delegate responsibility of external state store man‐
agement to its own team, as this introduces a technical cross-team
dependency. Compose a list of acceptable external data services
with guides on how to properly manage and scale them. This will
prevent each team from having to independently discover its own
management solutions.

Performance loss due to network latency
Accessing data stored in an external state store has a much higher latency than
accessing data stored locally in memory or on disk. In “Advantages of Using Internal
State” on page 114, you saw that using a network-attached disk introduces a slight
network delay and can significantly reduce throughput and performance.

While caching and parallelization may reduce the impact of the network latency, the
tradeoff is often added complexity and an increased cost for additional memory and
CPU. Not all microservice patterns support caching and parallelization efforts either,

Materializing State to an External State Store | 121

with many requiring the processing thread to simply block and wait for a reply from
the external data store.

Financial cost of external state store services
Financial costs tend to be higher with external data stores than with similarly sized
internal data stores. Hosted external state store solutions often charge by the number
of transactions, the size of the data payload, and the retention period for the data.
They may also require over-provisioning to handle bursty and inconsistent loads.
On-demand pricing models with flexible performance characteristics may help
reduce costs, but you must be sure they still meet your performance needs.

Full data locality
Though also listed as a benefit, full data locality can present some challenges. The
data available in the external state store originates from multiple processors and mul‐
tiple partitions, each of which is processing at its own rate. It can be difficult to reason
about (and debug) the contributions of any particular processing instance to the col‐
lective shared state.

Race conditions and nondeterministic behavior must also be carefully avoided, as
each microservice instance operates on its own independent stream time. The stream
time guarantees of a single microservice instance do not extend to all of them.

For example, one instance may attempt to join an event on a foreign key that has not
yet been populated by a separate instance. Reprocessing the same data at a later time
may execute the join. Because the stream processing of each instance is completely
separate from the others, any results obtained through this approach are likely to be
nondeterministic and nonreproducible.

Scaling and Recovery with External State Stores
Scaling and recovery of microservices using an external state store simply require that
you add a new instance with the necessary credentials to access the state store. In
contrast, scaling and recovery of the underlying state store are dependent completely
upon the selected technology and are much more complicated.

To reiterate an earlier point, having a list of acceptable external data services with
guides on how to properly manage, scale, back up, and restore them is essential for
providing developers a sustainable way forward. Unfortunately, the number of state
store technologies is prohibitively large and effectively impossible to discuss in this
book. Instead, I’ll simply generalize the strategies of building state into three main
techniques: rebuilding from the source streams, using changelogs, and creating
snapshots.

122 | Chapter 7: Stateful Streaming

Using the source streams
Created by consuming events from the beginning of time from the source streams
creates a fresh copy of the state store. The consumer group input offsets are rewound
to the beginning of time for all input streams. This method incurs the longest down‐
time of all options, but is easily reproducible and relies only on the persistent storage
of the event broker to maintain the source data. Keep in mind that this option is
really a full application reset and will also result in the reproduction of any output
events according to the business logic of the microservice.

Using changelogs
External state stores typically do not rely on using broker-stored changelogs to record
and restore state, though there is no rule preventing this. Much like an internal state
store, external state stores can be repopulated from a changelog. Just like when
rebuilding from source streams, you must create a fresh copy of the state store. If
rebuilding from changelogs, the microservice consumer instances must ensure they
rebuild the entire state as stored in the changelog before resuming processing.

Rebuilding external state stores from source event streams or
changelogs can be prohibitively time-consuming due to network
latency overhead. Make sure you can still meet the microservice
SLAs in such a scenario.

Using snapshots
It is far more typical for external state stores to provide their own backup and restora‐
tion process, and many hosted state store services provide simple “one-click” solu‐
tions to do so. Best practices for capturing and restoring state should be followed
depending on the given state store implementation.

If the stored state is idempotent, there is no need to ensure that the offsets are pre‐
cisely in line with the materialized state. In this case, setting the consumer offsets to
values from a few minutes before the snapshot was taken should ensure that no data
is missed. This also ensures that events are processed with an “at-least-once”
guarantee.

If the stored state is not idempotent and any duplicate events are not acceptable, then
you should store your consumer’s partition offsets alongside the data within the data
store. This ensures that the consumer offsets and the associated state are consistent.
When state is restored from the snapshot, the consumer can set its consumer group
offsets to those found in the snapshot from the exact time that the snapshot was cre‐
ated. This is covered in more detail in “Maintaining consistent state” on page 132.

Materializing State to an External State Store | 123

Rebuilding Versus Migrating State Stores
Changes to existing state store data structures frequently need to accompany new
business requirements. A microservice may need to add new information to existing
events, perform some extra join steps with another materialized table, or otherwise
store newly derived business data. In such an event, the existing state store will need
to be updated to reflect the data, either through rebuilding or migration.

Rebuilding
Rebuilding the microservice’s state stores is typically the most common method of
updating the internal state of an application. The microservice is first stopped, with
the consumer input stream offsets reset to the beginning. Any intermediate state,
such as that stored in a changelog or located in the external state store, must be
deleted. Lastly, the new version of the microservice is started up, and the state is
rebuilt as events are read back in from the input event streams. This approach ensures
that the state is built exactly as specified by the new business logic. All new output
events are also created and propagated downstream to the subscribing consumers.
These are not considered duplicate events, as the business logic and output format
may have changed, and these changes must be propagated downstream.

Rebuilding state requires that all necessary input event stream events still exist, par‐
ticularly anything that requires materialization of state and aggregations. If your
application is critically reliant upon a set of input data, you must ensure that such
source data is readily available outside of your microservice implementation’s data
store.

Rebuilding takes time, and it’s important to account for that in the
microservice’s SLA. One of the main benefits of practicing rebuild‐
ing is that it helps you test your disaster recovery preparedness by
running through the recovery process required when a microser‐
vice fails and all state is lost.

Finally, some business requirements absolutely require you to reprocess data from the
beginning of time, such as those that extract fields that are present only in the input
events. You cannot obtain this data in any other way than replaying the input events,
at which point rebuilding the state store is the only viable option.

Migrating
Large state stores can take a long time to rebuild or can result in prohibitively expen‐
sive data transfer costs when compared to the impact of the change. For instance,
consider a business requirement change where an additional, yet optional, field is to
be added to a microservice’s output event stream. This change may require you to add

124 | Chapter 7: Stateful Streaming

another column or field to the microservice’s state store. However, it could be that the
business has no need to reprocess older data and wants only to apply the logic to new
input events going forward. For a state store backed by a relational database, you’d
just need to update the business logic alongside the associated table definition. You
can perform a simple insertion of a new column with a nullable default, and after a
quick series of tests you can redeploy the application.

Migrations become much riskier when the business need and the data being changed
are more complex. Complex migrations are error-prone and can yield results that are
incorrect compared to the results of a complete rebuild of the data store. The data‐
base migration logic is not a part of the business logic, so inconsistencies can be
introduced that would otherwise not arise during a full rebuild of the application.
These types of migration errors can be hard to detect if not caught during testing and
can lead to inconsistent data. When following a migration-based approach, be sure to
perform strict testing and use representative test data sets to compare that approach
with a rebuild-based one.

Transactions and Effectively Once Processing
Effectively once processing ensures that any updates made to the single source of truth
are consistently applied, regardless of any failure to the producer, the consumer, or
the event broker. Effectively once processing is also sometimes described as exactly
once processing, though this is not quite accurate. A microservice may process the
same data multiple times, say due to a consumer failure and subsequent recovery, but
fail to commit its offsets and increment its stream time. The processing logic will be
executed each time the event is processed, including any side effects that the code may
create, such as publishing data to external endpoints or communicating with a third-
party service. That being said, for most event brokers and most use cases, the terms
exactly once and effectively once are used interchangeably.

Idempotent writes are one commonly supported feature among event broker imple‐
mentations such as Apache Kafka and Apache Pulsar. They allow for an event to be
written once, and only once, to an event stream. In the case that the producer or
event broker fails during the write, the idempotent write feature ensures that a dupli‐
cate of that event is not created upon retry.

Transactions may also be supported by your event broker. Currently, full transactional
support is offered only by Apache Kafka, though Apache Pulsar is making progress
towards its own implementation. Much like a relational database can support multita‐
ble updates in a single transaction, an event broker implementation may also support
the atomic writing of multiple events to multiple separate event streams. This allows a
producer to publish its events to multiple event streams in a single, atomic transac‐
tion. Competing event broker implementations that lack transactional support
require that the client ensure its own effectively once processing. The next section

Transactions and Effectively Once Processing | 125

covers both of these options and evaluates how you can leverage them for your own
microservices.

Transactions are extremely powerful and give Apache Kafka a sig‐
nificant advantage over its competitors. In particular, they can
accommodate new business requirements that would otherwise
require a complex refactoring to ensure atomic production.

Example: Stock Accounting Service
The stock accounting service is responsible for issuing a notification event when
stock of any given item is low. The microservice must piece together the current stock
available for each product based on a chain of additions and subtractions made over
time. Selling items to customers, losing items to damage, and losing items to theft are
all events that reduce stock, whereas receiving shipments and accepting customer
returns increase it. These events are shown in the same event stream for simplicity in
this example, as illustrated in Figure 7-8.

Figure 7-8. A simple stock accounting service

This stock accounting service is quite simple. It calculates the current running total of
stock based off of the event stream changes and stores it in its data store. The busi‐
ness logic filters on a threshold value and decides whether to issue a notification to
stock management about low or oversold stock. It must be ensured that each input

126 | Chapter 7: Stateful Streaming

event is applied effectively once to the aggregated state, as applying it more than once
is incorrect, as is not applying it at all. This is where effectively once processing comes
into play.

Effectively Once Processing with Client-Broker Transactions
Effectively once processing can be facilitated by any event broker that supports trans‐
actions. With this approach, any output events, updates made to internal state backed
by a changelog, and the incrementing of the consumer offsets are wrapped together
within a single atomic transaction. This is possible only if all three of these updates
are stored within their own specific event stream in the broker. The offset update, the
changelog update, and the output event are committed atomically within a single
transaction as shown in Figure 7-9.

Figure 7-9. Client-broker transactions—committing offsets and changelogs

The atomic transaction between the producer client and the event broker will publish
all events to their corresponding event streams. In the case of permanent failure by
the producer, as in Figure 7-10, the broker will ensure that none of the events in the
transaction is committed. Event stream consumers typically abstain from processing
events that are in uncommitted transactions. The consumer must respect offset order,
and so it will block, wait for the transaction to complete, and then proceed to process
the event. In the case of transient errors, the producer can simply retry committing its
transaction, as it is an idempotent operation.

Transactions and Effectively Once Processing | 127

Figure 7-10. Failed commit for a client-broker transaction

In the case that the producer suffers a fatal exception during a transaction, its replace‐
ment instance can simply be rebuilt by restoring from the changelogs as shown in
Figure 7-11. The consumer group offsets of the input event streams are also reset
according to the last known good position stored in the offset event stream.

New transactions can begin once the producer is recovered, and all previous incom‐
plete transactions are failed and cleaned up by the event broker. The transactional
mechanisms will vary to some extent depending on the broker implementation, so
make sure to familiarize yourself with the one you are using.

Figure 7-11. Restoring the state from the broker using changelogs and previous offsets

Effectively Once Processing Without Client-Broker Transactions
Effectively once processing of events is also possible for implementations that do not
support client-broker transactions, though it requires more work and a careful con‐
sideration of duplicate events. First, if upstream services are not able to provide effec‐
tively once event production guarantees, then it is possible that they may produce

128 | Chapter 7: Stateful Streaming

duplicate records. Any duplicate events created by upstream processes need to be
identified and filtered out. Second, state and offset management need to be updated
in a local transaction to ensure that the event processing is applied only once to the
system state. By following this strategy, clients can be assured that the internal state
generated by their processor is consistent with the logical narrative of the input event
streams. Let’s take a look at these steps in more detail.

It is better to use an event broker and client that support idempo‐
tent writes than it is to try to solve deduplication after the fact. The
former method scales well to all consumer applications, whereas
the latter is expensive and difficult to scale.

Generating duplicate events
Duplicate events are generated when a producer successfully writes the events to an
event stream, but either fails to receive a write acknowledgment and retries, or
crashes before updating its own consumer offsets. These scenarios are slightly
different:

Producer fails to receive acknowledgment from broker and retries
In this scenario, the producer still has the copies of the events to produce in its
memory. These events, if published again, may have the same timestamps (if they
use event creation time) and same event data, but will be assigned new offsets.

Producer crashes immediately after writing, before updating its own consumer offsets
In this case, the producer will have successfully written its events, but will not
have updated its consumer offsets yet. This means that when the producer comes
back up, it will repeat the work that it had previously done, creating logically
identical copies of the events but with new timestamps. If processing is determin‐
istic, then the events will have the same data. New offsets will also be assigned.

Idempotent production is supported by numerous event brokers and
can mitigate failures due to crashes and retries, such as in the two
preceding scenarios. It cannot mitigate duplicates introduced
through faulty business logic.

Identifying duplicate events
If idempotent production of events is not available and there are duplicates (with
unique offsets and unique timestamps) in the event stream, then it is up to you to
mitigate their impact. First, determine if the duplicates actually cause any problems.
In many cases duplicates have a minor, if not negligible, effect and can simply be
ignored. For those scenarios where duplicate events do cause problems, you will need
to figure out how to identify them. One way to do this is to have the producer

Transactions and Effectively Once Processing | 129

generate a unique ID for each event, such that any duplicates will generate the same
unique hash.

This hash function is often based on the properties of the internal event data, includ‐
ing the key, values, and creation time of the event. This approach tends to work well
for events that have a large data domain, but poorly for events that are logically equiv‐
alent to one another. Here are a few scenarios where you could generate a unique ID:

• A bank account transfer, detailing the source, destination, amount, date, and time
• An ecommerce order, detailing each product, the purchaser, date, time, total

amount, and payment provider
• Stock debited for shipment purposes, where each event has an associated
orderId (uses an existing unique data ID)

One factor these examples have in common is that each ID is composed of elements
with a very high cardinality (that is, uniqueness). This significantly reduces the chan‐
ces of duplicates between the IDs. The deduplication ID (dedupe ID) can either be
generated with the event or be generated by the consumer upon consumption, with
the former being preferable for distribution to all consumers.

Guarding against duplicate events produced without a key is
extremely challenging, as there is no guarantee of partition locality.
Produce events with a key, respect partition locality, and use idem‐
potent writes whenever possible.

Guarding against duplicates
Any effectively once consumer must either identify and discard duplicates, perform
idempotent operations, or consume from event streams that have idempotent pro‐
ducers. Idempotent operations are not possible for all business cases, and without
idempotent production you must find a way to guard your business logic against
duplicate events. This can be an expensive endeavor, as it requires that each consumer
maintain a state store of previously processed dedupe IDs. The store can grow very
large depending on the volume of events and the offset or time range that the applica‐
tion must guard against.

Perfect deduplication requires that each consumer indefinitely maintain a lookup of
each dedupe ID already processed, but time and space requirements can become pro‐
hibitively expensive if an attempt is made to guard against too large a range. In prac‐
tice, deduplication is generally only performed for a specific rolling time-window or
offset-window as a best-effort attempt.

130 | Chapter 7: Stateful Streaming

Keep deduplication stores small by using time-to-live (TTL), a
maximum cache size, and periodic deletions. The specific settings
needed will vary depending on the sensitivity of your application to
duplicates and the impact of duplicates occurring.

Deduplication should be attempted only within a single event stream partition, as
deduplication between partitions will be prohibitively expensive. Keyed events have
an added benefit over unkeyed events, since they will consistently be distributed to
the same partition.

Figure 7-12 shows a deduplication store in action. In this figure you can see the work‐
flow that an event goes through before being passed off to the actual business logic. In
this example the TTL is arbitrarily set to 8,000 seconds, but in practice would need to
be established based on business requirements.

Figure 7-12. Deduplication using persisted state

A maximum cache size is used in the deduplication store to limit
the number of events maintained, particularly during reprocessing.

Note that you are responsible for maintaining durable backups of the deduplication
table, just as for any other materialized table. In the case of a failure, the table must be
rebuilt prior to resuming the processing of new events.

Transactions and Effectively Once Processing | 131

Maintaining consistent state
A microservice can leverage the transactional capabilities of its state store instead of
the event broker to perform effectively once processing. This requires moving the
consumer group’s offset management from the event broker and into the data service,
allowing a single stateful transaction to atomically update both the state and input
offsets. Any changes made to the state coincide completely with those made to the
consumer offsets, which maintains consistency within the service.

In the case of a service failure, such as a timeout when committing to the data service,
the microservice can simply abandon to transaction and revert to the last known
good state. All consumption is halted until the data service is responsive, at which
point consumption is restored from the last known good offset. By keeping the offi‐
cial record of offsets synchronized with the data in the data service, you have a con‐
sistent view of state that the service can recover from. This process is illustrated in
Figures 7-13, 7-14, and 7-15.

Figure 7-13. Normal transactional processing of events

Figure 7-14. Failure occurs in transactional processing

132 | Chapter 7: Stateful Streaming

Figure 7-15. Recovery of offsets during state restoration process

Note that this approach gives your processor effectively once processing, but not effec‐
tively once event production. Any events produced by this service are subject to the
limitations of at-least-once production, as the nontransactional client-broker produc‐
tion of events is subject to the creation of duplicates.

If you must have events transactionally produced alongside updates to the state store,
refer to Chapter 4. Using a change-data table can provide eventually consistent, effec‐
tively once updates to the state store with at-least-once production to the output
event stream.

Summary
This chapter looked at internal and external state stores, how they work, their advan‐
tages, their disadvantages, and when to use them. Data locality plays a large role in
the latency and throughput of systems, allowing them to scale up in times of heavy
load. Internal state stores can support high-performance processing, while external
state stores can provide a range of flexible options for supporting the business needs
of your microservices.

Changelogs play an important role in the backup and restoration of microservice
state stores, though this role may also be performed by transaction-supporting data‐
bases and regularly scheduled snapshots. Event brokers that support transactions can
enable extremely powerful effectively once processing, offloading the responsibility of
duplication prevention from the consumer, while deduplication efforts can enable
effectively once processing in systems without such support.

Summary | 133

CHAPTER 8

Building Workflows with Microservices

Microservices, by their very definition, operate on only a small portion of the overall
business workflow of an organization. A workflow is a particular set of actions that
compose a business process, including any logical branching and compensatory
actions. Workflows commonly require multiple microservices, each with its own
bounded context, performing its tasks and emitting new events to downstream con‐
sumers. Most of what we’ve looked at so far has been how single microservices oper‐
ate under the hood. Now we’re going to take a look at how multiple microservices can
work together to fulfill larger business workflows, and some of the pitfalls and issues
that arise from an event-driven microservice approach.

Here are some of the main considerations for implementing EDM workflows.

Creating and modifying workflows
• How are the services related within the workflow?
• How can I modify existing workflows without:

— Breaking work already in progress?
— Requiring changes to multiple microservices?
— Breaking monitoring and visibility?

Monitoring workflows
• How can I tell when the workflow is completed for an event?
• How can I tell if an event has failed to process or is stuck somewhere in the

workflow?
• How can I monitor the overall health of a workflow?

135

Implementing distributed transactions
• Many workflows require that a number of actions happen together or not at all.

How do I implement distributed transactions?
• How do I roll back distributed transactions?

This chapter covers the two main workflow patterns, choreography and orchestra‐
tion, and evaluates them against these considerations.

The Choreography Pattern
The term choreographed architectures (also known as reactive architectures) commonly
refers to highly decoupled microservice architectures. Microservices react to their
input events as they arrive, without any blocking or waiting, in a manner fully inde‐
pendent from any upstream producers or subsequent downstream consumers. This is
much like a dance performance, where each dancer must know his or her own role
and perform it independently, without being controlled or told what to do during the
dance.

Choreography is common in event-driven microservice architectures. Event-driven
architectures focus strictly on providing reusable event streams of relevant business
information, where consumers can come and go without any disruption to the
upstream workflow. All communications are done strictly through the input and out‐
put event streams. A producer in a choreographed system does not know who the
consumers of its data are, nor what business logic or operations they intend to per‐
form. The upstream business logic is fully isolated from the downstream consumers.

Choreography is desirable in the majority of interteam communications, as it allows
for loosely coupled systems and reduces coordination requirements. Many business
workflows are independent of one another and do not require strict coordination,
which makes a choreographed approach ideal for communication. New microservi‐
ces can be easily added to a choreographed architecture, while existing ones can be
removed just as easily.

The relationships between the microservices define the workflow of a choreographed
architecture. A series of microservices operating together can be responsible for pro‐
viding the business functionality of the workflow. This choreographed workflow is a
form of emergent behavior, where it is not just the individual microservices that dic‐
tate the workflow, but the relationships between them as well.

136 | Chapter 8: Building Workflows with Microservices

Direct-call microservice architectures focus on providing reusable
services, to be used as building blocks for business workflows.
Event-driven microservice architectures, on the other hand, focus
on providing reusable events, with no foreknowledge of down‐
stream consumption. The latter architecture enables the usage of
highly decoupled, choreographed architectures.

It is important to note that choreography belongs to the domain of event-driven
architectures, because the decoupling of the producer and consumer services allows
them to carry out their responsibilities independently. Contrast this with the direct-
call microservice architecture, where the focus is on providing reusable services to
compose more extensive business functionality and workflows, and where one micro‐
service directly calls the API of another. By definition, this means the calling micro‐
service must know two things:

• Which service needs to be called
• Why the service needs to be called (the expected business value)

As you can see, a direct-call microservice is tightly coupled and fully dependent on
the existing microservice’s bounded contexts.

A Simple Event-Driven Choreography Example
Figure 8-1 shows the output of a choreographed workflow in which service A feeds
directly into service B, which in turn feeds into service C. In this particular case, you
can infer that the services have a dependent workflow of A → B → C. The output of
service C indicates the result of the workflow as a whole.

Figure 8-1. Simple event-driven choreographed workflow

Now, say that the workflow needs to be rearranged such that the business actions in
service C must be performed before those in service B, as shown in Figure 8-2.

The Choreography Pattern | 137

Figure 8-2. Business changes required by the simple event-driven choreographed
workflow

Both services C and B must be edited to consume from streams 1 and 2, respectively.
The format of the data within the streams may no longer suit the needs of the new
workflow, requiring breaking schema changes that may significantly affect other con‐
sumers (not shown) of event stream 2. A whole new event schema may need to be
created for event stream 2, with the old data in the event stream ported over to the
new format, deleted, or left in place. Finally, you must ensure that processing has
completed for all of the output events of services A, B, and C before swapping the
topology around, lest some events be incompletely processed and left in an inconsis‐
tent state.

Creating and Modifying a Choreographed Workflow
While choreography allows for simple addition of new steps at the end of the work‐
flow, it may be problematic to insert steps into the middle or to change the order of
the workflow. The relationships between the services may also be difficult to under‐
stand outside the context of the workflow, a challenge that is exacerbated as the num‐
ber of services in the workflow increases. Choreographed workflows can be brittle,
particularly when business functions cross multiple microservice instances. This can
be mitigated by carefully respecting the bounded contexts of services and ensuring
that full business functionality remains local to a single service. However, even when
correctly implemented, small business logic changes may require you to modify or
rewrite numerous services, especially those that change the order of the workflow
itself.

138 | Chapter 8: Building Workflows with Microservices

Monitoring a Choreographed Workflow
When monitoring a choreographed workflow, you need to take into account its scale
and scope. In isolation, distributed choreographed workflows can make it difficult to
discern the processing progress of a specific event. For event-driven systems, moni‐
toring business-critical workflows may necessitate listening to each output event
stream and materializing it into a state store, to account for where an event may have
failed to process or have gotten stuck in processing.

For example, modifying the workflow order in Figure 8-2 requires also changing the
workflow visibility system. This assumes that observers care about each event stream
in that workflow and want to know everything about each event. But what about visi‐
bility into workflows where you may not care about each event stream in the work‐
flow? What about workflows spread out across an entire organization?

Consider now a much larger-scale example, such as an order fulfillment process at a
large multinational online retailer. A customer views items, selects some for purchase,
makes a payment, and awaits a shipping notification. There may be many dozens or
even hundreds of services involved in supporting this customer workflow. Visibility
into this workflow will vary depending on the needs of the observer.

The customer may only really care where the order is in the progression from pay‐
ment to fulfillment to shipping notification. You could reasonably monitor this by
tapping off events from three separate event streams. It would be sufficiently resilient
to change due to both the “public” nature and the low number of event streams it is
consuming from. Meanwhile, a view into the full end-to-end workflow could require
consuming from dozens of event streams. This may be more challenging to accom‐
plish due to both the volume of events and the independence of event streams, partic‐
ularly if the workflow is subject to regular change.

Be sure you know what it is you’re trying to make visible in the
choreographed workflow. Different observers have different
requirements, and not all steps of a workflow may require explicit
exposure.

The Orchestration Pattern
In the orchestration pattern a central microservice, the orchestrator, issues com‐
mands to and awaits responses from subordinate worker microservices. Orchestra‐
tion can be thought of much like a musical orchestra, where a single conductor
commands the musicians during the performance. The orchestrator microservice
contains the entire workflow logic for a given business process and sends specific
events to worker microservices to tell them what to do.

The Orchestration Pattern | 139

The orchestrator awaits responses from the instructed microservi‐
ces and handles the results according to the workflow logic. This is
in contrast to the choreographed workflow, in which there is no
centralized coordination.

The orchestration pattern allows for a flexible definition of the workflow within a sin‐
gle microservice. The orchestrator keeps track of which parts of the workflow have
been completed, which are in process, and which have yet to be started. The work‐
flow orchestrator issues command events to subordinate microservices, which per‐
form the required task and provide the results back to the orchestrator, typically by
issuing requests and responses through an event stream.

If a payment microservice attempts to fulfill payment three times before failing, it
must make those three attempts internal to the payment microservice. It does not
make one attempt and notify the orchestrator that it failed and wait to be told to try
again or not. The orchestrator should have no say about how payments are processed,
including how many attempts to make, as that is part of the bounded context of the
payment microservice. The only thing the orchestrator needs to know is if the pay‐
ment has completely succeeded or if it has completely failed. From there, it may act
accordingly based on the workflow logic.

Ensure the orchestrator’s bounded context is limited strictly to
workflow logic and that it contains minimal business fulfillment
logic. The orchestrator contains only the workflow logic, while the
services under orchestration contain the bulk of the business logic.

Note that the business responsibilities of a nonorchestrator microservice in an orch‐
estrated pattern are identical to those of the same microservice in the choreographed
pattern. The orchestrator is responsible only for orchestration and workflow logic,
and not at all for the fulfillment of business logic of any of the microservices them‐
selves. Let’s look at a simple example that illustrates these boundaries.

140 | Chapter 8: Building Workflows with Microservices

A Simple Event-Driven Orchestration Example
Figure 8-3 shows an orchestration version of the architecture in Figure 8-1.

Figure 8-3. Simple orchestrated event-driven workflow

The orchestrator keeps a materialization of the events issued to services A, B, and C,
and updates its internal state based on the results returned from the worker microser‐
vice (see Table 8-1).

Table 8-1. Materialization of events issued from orchestration service

Input event ID Service A Service B Service C Status
100 <results> <results> <results> Done

101 <results> <results> Dispatched Processing

102 Dispatched null null Processing

Event ID 100 has been successfully processed, while event IDs 101 and 102 are in dif‐
ferent stages of the workflow. The orchestrator can make decisions based on these
results and select the next step according to the workflow logic. Once the events are
processed, the orchestrator can also take the necessary data from service A, B, and C’s
results and compose the final output. Assuming the operations in services A, B, and
C are independent of one another, you can make changes to the workflow simply by
changing the order in which events are sent. In the following orchestration code,
events are simply consumed from each input stream and processed according to the
workflow business logic:

while (true) {
 Event[] events = consumer.consume(streams)

 for (Event event : events) {
 if (event.source == "Input Stream") {
 //process event + update materialized state

The Orchestration Pattern | 141

 producer.send("Stream 1", ...) //Send data to stream 1
 } else if (event.source == "Stream 1-Response") {
 //process event + update materialized state
 producer.send("Stream 2", ...) //Send data to stream 2
 } else if (event.source == "Stream 2-Response") {
 //process event + update materialized state
 producer.send("Stream 3", ...) //Send data to stream 3
 } else if (event.source == "Stream 3-Response") {
 //process event, update materialized state, and build output
 producer.send("Output", ...) //Send results to output
 }
 }
 consumer.commitOffsets()
}

A Simple Direct-Call Orchestration Example
Orchestration can also use a request-response pattern, where the orchestrator syn‐
chronously calls the microservice’s API and awaits a response for results. The topol‐
ogy shown in Figure 8-4 is nearly identical to the one in Figure 8-3, aside from
substitution of direct calls.

Figure 8-4. Simple direct-call orchestrated workflow

The normal benefits and restrictions of direct-call services apply here as well. That
being said, this pattern is particularly useful for implementing workflows with
Function-as-a-Service solutions (see Chapter 9).

Comparing Direct-Call and Event-Driven Orchestration
Direct-call and event-driven orchestration workflows are fairly similar when exam‐
ined close-up. For instance, it might seem that the event-driven system is really just a
request-response system, and in these simple examples, it certainly is. But when you

142 | Chapter 8: Building Workflows with Microservices

zoom out a bit, there are a number of factors to consider when choosing which
option to use.

Event-driven workflows:

• Can use the same I/O monitoring tooling and lag scaling functionality as other
event-driven microservices

• Allow event streams to still be consumed by other services, including those out‐
side of the orchestration

• Are generally more durable, as both the orchestrator and the dependent services
are isolated from each other’s intermittent failures via the event broker

• Have a built-in retry mechanism for failures, as events can remain in the event
stream for retrying

Direct-call workflows:

• Are generally faster, as there’s no overhead in producing to and consuming from
event streams

• Have intermittent connectivity issues that may need to be managed by the
orchestrator

To summarize, direct-call aka synchronous request-response workflows are generally
faster than event-driven ones, provided all dependent services are operating within
their SLAs. They tend to work well when very quick responses are required, such as
in real-time operations. Meanwhile, event-driven workflows have more durable I/O
streams, producing slower but more robust operations, and are particularly good at
handling intermittent failures.

Keep in mind that there’s quite a lot of opportunity to mix and match these two
options. For example, an orchestration workflow may be predominantly event-
driven, but require that a request-response call be made directly to an external API or
preexisting service. When mixing these two options together, make sure that each
service’s failure modes are handled as expected.

Creating and Modifying an Orchestration Workflow
The orchestrator can keep track of events in the workflow by materializing each of
the incoming and outgoing event streams and response-request results. The work‐
flow itself is defined solely within the orchestration service, allowing a single point of
change for altering the workflow. In many cases, you can incorporate changes to a
workflow without disrupting partially processed events.

Orchestration results in a tight coupling between services. The relationship between
the orchestrator and the dependent worker services must be explicitly defined.

The Orchestration Pattern | 143

It is important to ensure that the orchestrator is responsible only for orchestrating the
business workflow. A common anti-pattern is creating a single “God” service that
issues granular commands to many weak minion services. This anti-pattern spreads
workflow business logic between the orchestrator and the worker services, making
for poor encapsulation, ill-defined bounded contexts, and difficulty in scaling owner‐
ship of the workflow microservices beyond a single team. The orchestrator should
delegate full responsibility to the dependent worker services to minimize the amount
of business logic it performs.

Monitoring the Orchestration Workflow
You gain visibility into the orchestration workflow by querying the materialized state,
so it’s easy to see the progress of any particular event and any issues that may have
arisen in the workflow. You can implement monitoring and logging at the orchestra‐
tor level to detect any events that result in workflow failures.

Distributed Transactions
A distributed transaction is a transaction that spans two or more microservices. Each
microservice is responsible for processing its portion of the transaction, as well as
reversing that processing in the case that the transaction is aborted and reverted.
Both the fulfillment and reversal logic must reside within the same microservice, both
for maintainability purposes and to ensure that new transactions cannot be started if
they can’t also be rolled back.

It is best to avoid implementing distributed transactions whenever
possible, as they can add significant risk and complexity to a work‐
flow. You must account for a whole host of concerns, such as syn‐
chronizing work between systems, facilitating rollbacks, managing
transient failures of instances, and network connectivity, to name
just a few.

While it is still best to avoid implementing distributed transactions whenever possi‐
ble, they still have their uses and may be required in some circumstances, particularly
when such avoidance would otherwise result in even more risk and complexity.

Distributed transactions in an event-driven world are often known as sagas and can
be implemented through either a choreographed pattern or an orchestrator pattern.
The saga pattern requires that the participating microservices be able to process
reversal actions to revert their portion of the transaction. Both the regular processing
actions and the reverting actions should be idempotent, such that any intermittent
failures of the participating microservices do not leave the system in an inconsistent
state.

144 | Chapter 8: Building Workflows with Microservices

Choreographed Transactions: The Saga Pattern
Distributed transactions with choreographed workflows can be complex affairs, as
each service needs to be able to roll back changes in the event of a failure. This creates
strong coupling between otherwise loosely coupled services and can result in some
unrelated services having strict dependencies on one another.

The choreographed saga pattern is suitable for simple distributed transactions, partic‐
ularly those with strong workflow ordering requirements that are unlikely to change
over time. Monitoring the progress of a choreographed transaction can be difficult,
because it requires a full materialization of each participating event stream, as in the
orchestrated approach.

Choreography Example
Continuing with the previous choreographed workflow example, consider the series
of microservices A, B, C. The input event stream to service A kicks off a transaction,
with the work of services A, B, and C being fully completed, or consequently canceled
and rolled back. A failure at any step in the chain aborts the transaction and begins
the rollback. The resultant workflow is shown in Figure 8-5.

Figure 8-5. Choreographed transaction success

Suppose now that service C is unable to complete its part of the transaction. It must
now reverse the workflow, either by issuing events or by responding to the previous
service’s request. Services B and A must revert their portion of the transaction, in
order, as shown in Figure 8-6.

Figure 8-6. Choreographed transaction failure with rollbacks

Distributed Transactions | 145

Service A, the original consumer of the input event, must now decide what to do with
the failed transaction results. A curious situation is already evident in the preceding
two figures. The status of a successful transaction comes from the output of microser‐
vice C. However, the status of the aborted transaction comes out of microservice A,
so a consumer would need to listen to both the output of C and the failed transaction
stream from A to get a complete picture of finalized transactions.

Remember the single-writer principle. No more than one service
should publish to an event stream.

Even when consuming from both the output and failed transactions streams, the con‐
sumer will still not be able to get the status of ongoing transactions or of transactions
that have gotten stuck in processing. This would require that each event stream be
materialized, or that the internal state of each microservice be exposed via API, as
discussed earlier in this chapter. Making changes to the workflow of a choreographed
transaction requires dealing with the same challenges as a nontransactional workflow,
but with the added overhead of rolling back changes made by the previous microser‐
vice in the workflow.

Choreographed transactions can be somewhat brittle, generally require a strict order‐
ing, and can be problematic to monitor. They work best in services with a very small
number of microservices, such as a pair or a trio with very strict ordering and a low
likelihood of needing workflow changes.

Orchestrated Transactions
Orchestrated transactions build on the orchestrator model, with the addition of logic
to revert the transaction from any point in the workflow. You can roll back these
transactions by reversing the workflow logic and ensuring that each worker microser‐
vice can provide a complementary reversing action.

Orchestrated transactions can also support a variety of signals, such as timeouts and
human inputs. You can use timeouts to periodically check the local materialized state
to see how long a transaction has been processing. Human inputs via a REST API (see
Chapter 13) can be processed alongside other events, handling cancellation instruc‐
tions as required. The centralized nature of the orchestrator allows for close monitor‐
ing of the progress and state of any given transaction.

The transaction can be aborted at any point in the workflow due to a return value
from one of the worker microservices, a timeout, or an interrupt sent from a human
operator.

146 | Chapter 8: Building Workflows with Microservices

A simple two-stage orchestrated transaction topology is shown in Figure 8-7.

Figure 8-7. Simple orchestrated transaction topology

Events are consumed from the input stream and processed by the orchestrator. In this
example, the orchestrator is using direct request-response calls to the workflow’s
microservices. A request is made to service A, and the orchestrator blocks while
awaiting a response. Once it obtains the response, the orchestrator updates its inter‐
nal state and calls service B, as shown in Figure 8-8.

Figure 8-8. Simple orchestrated transaction with a failure in the transaction

Service B cannot perform the necessary operation and, after exhausting its own
retries and error-handling logic, eventually returns a failure response to the orches‐
trator. The orchestrator must now enact its rollback logic based on the current state of
that event, ensuring that it issues rollback commands to all required microservices.

Each microservice is fully responsible for ensuring its own retry
policy, error handling, and intermittent failure management. The
orchestrator does not manage any of these.

Distributed Transactions | 147

Figure 8-9 demonstrates the orchestrator issuing a rollback command to service A
(service B’s failure response indicates it did not write anything to its internal data
store). In this example, Service A performs the rollback successfully, but if it were to
fail during its rollback, it would be up to the orchestrator to determine what to do
next. The orchestrator could reissue the command a number of times, issue alerts via
monitoring frameworks, or terminate the application to prevent further issues.

Figure 8-9. Issuing the rollback commands in an orchestrated transaction

Once the transaction has been rolled back, it is up to the orchestrator to decide what
to do next to finalize the processing of that event. It may retry the event a number of
times, discard it, terminate the application, or output a failure event. The orchestra‐
tor, being the single producer, publishes the transaction failure to the output stream
and lets a downstream consumer handle it. This differs from choreography, where
there is no single stream from which to consume all output without discarding the
single writer principle.

Just as each microservice is fully responsible for its own state
changes, it is also responsible for ensuring that its state is consistent
after a rollback. The orchestrator’s responsibility in this scenario is
limited to issuing the rollback commands and awaiting confirma‐
tions from the dependent microservices.

The orchestrator can also expose the status of transactions in progress in the same
output stream, updating the transaction entity as worker services return results. This
can provide high visibility into the state of underlying transactions and allows for
stream-based monitoring.

Orchestrated transactions offer better visibility into workflow dependencies, more
flexibility for changes, and clearer monitoring options than choreographed transac‐
tions. The orchestrator instance adds overhead to the workflow and requires

148 | Chapter 8: Building Workflows with Microservices

management, but can provide to complex workflows the clarity and structure that
choreographed transactions cannot provide.

Compensation Workflows
Not all workflows need to be perfectly reversible and constrained by transactions.
There are many unforeseen issues that can arise in a given workflow, and in many
cases you might just have to do your best to complete it. In case of failure, there are
actions you can take after the fact to remedy the situation.

Ticketing and inventory-based systems often use this approach. For example, a web‐
site that sells physical products may not have sufficient inventory at the time of pur‐
chase to handle a number of concurrent transactions. Upon settling the payments and
evaluating its available inventory, the retailer may discover that there is insufficient
stock to fulfill the orders. It has several options at this point.

A strict transaction-based approach would require that the most recent transactions
be rolled back—that is, the money returned to the payment provider, and the cus‐
tomer alerted that the item is now out of stock and the order has been cancelled.
While technically correct, this could lead to a poor customer experience and a lack of
trust between the customer and the retailer. A compensating workflow can remedy the
situation based on the business’s customer satisfaction policies.

As a form of compensation, the business could order new stock, notify the customer
that there has been a delay, and offer a discount code for the next purchase as an
apology. The customer could be given the option to cancel the order or wait for the
new stock to arrive. Music, sport, and other performance venues often use this
approach in the case of oversold tickets, as do airlines and other ticket-based travel
agencies. Compensation workflows are not always possible, but they are often useful
for handling distributed workflow operations with customer-facing products.

Summary
Choreography allows for loose coupling between business units and independent
workflows. It is suitable for simple distributed transactions and simple nontransac‐
tional workflows, where the microservice count is low and the order of business oper‐
ations is unlikely to ever change.

Orchestrated transactions and workflows provide better visibility and monitoring
into workflows than choreography. They can handle more complicated distributed
transactions than choreography and can often be modified in just a single location.
Workflows that are subject to changes and contain many independent microservices
are well suited to the orchestrator pattern.

Compensation Workflows | 149

Finally, not all systems require distributed transactions to successfully operate. Some
workflows can provide compensatory actions in the case of failure, relying on non‐
technical parts of the business to solve customer-facing issues.

150 | Chapter 8: Building Workflows with Microservices

CHAPTER 9

Microservices Using Function-as-a-Service

Functions-as-a-Service (FaaS) is a “serverless” solution that has become increasingly
popular in recent years. FaaS solutions enable individuals to build, manage, deploy,
and scale application functionality without having to manage infrastructural over‐
head. They can provide significant value in event-driven systems as a means of imple‐
menting simple to moderately complex solutions.

A function is a piece of code that is executed when a specific triggering condition
occurs. The function starts up, runs until completion, and then terminates once its
work is completed. FaaS solutions can easily scale the number of function executions
up and down depending on load, providing close tracking for highly variable loads.

It may be helpful to think of a FaaS solution as a basic consumer/producer implemen‐
tation that regularly fails. A function will always end after a predetermined amount of
time, and any connections and state associated with it will go away. Keep this in mind
as you design your functions.

Designing Function-Based Solutions as Microservices
FaaS solutions may comprise many different functions, with the sum of their opera‐
tions constituting the solution to the business bounded context. There are many ways
to create function-based solutions, far more than this chapter can cover, but there are
a few general design principles that will help guide you through the process.

Ensure Strict Membership to a Bounded Context
The functions and internal event streams composing a solution must strictly belong
to a bounded context, such that the owner of the function and data is clearly identi‐
fied. It is common for an organization to have ownership questions around functions,
services, and event streams when implementing microservice solutions in large

151

numbers. While many microservice solutions map 1:1 to a bounded context, an n:1
mapping is not uncommon, as multiple functions may be used for a single bounded
context. It’s important to identify which function belongs to which bounded context,
because the high granularity of functions can blur those lines.

Some practical ways of maintaining bounded contexts with functions include:

• Ensure that data stores are kept private from external contexts.
• Use standard request-response or event-driven interfaces when coupling to other

contexts.
• Maintain strict metadata around which function belongs to which context (a 1:1

mapping of function to product).
• Maintain function code within a repository mapped to the bounded context.

Commit Offsets Only After Processing Has Completed
Offsets are committed at one of two times: when the function starts or when the
function has completed its processing. Committing offsets only after processing has
completed for a given event or batch of events is a FaaS best practice. It is important
for you to understand how offsets for your specific function-based solutions are han‐
dled, so let’s take a look at the implications of each approach.

When the function has completed its processing
The approach of committing offsets after processing has completed aligns with how
other microservice implementations commit offsets, whether they’re based on a basic
producer/consumer or stream-processing framework. This strategy provides the
strongest guarantee that events will be processed at least once and is equivalent to the
offset management strategies used with non-FaaS solutions.

When the function has first started
Offsets may be committed once the batch of events to process has been passed off to
the function. This simple approach is used in many FaaS frameworks that rely on
framework-specific retry mechanisms and alerting to mitigate repetitive event pro‐
cessing failures. Functions that call other functions in a choreography pattern often
rely on this strategy, as it greatly simplifies the tracking of event processing.

Committing offsets before processing has completed can be problematic, however. If
the function is unable to successfully process an event, and numerous retries fail, then
data loss is likely. The event will typically be shunted into a dead-letter queue or sim‐
ply discarded. While many function-based microservices are not sensitive to data
loss, those that are should not use this strategy.

152 | Chapter 9: Microservices Using Function-as-a-Service

Less Is More
An often-cited feature of FaaS frameworks is that they make it easy to write a single
function and reuse it in multiple services. Following this approach, however, can lead
to a highly fragmented solution that makes it difficult to discern exactly what is going
on within the bounded context. Additionally, ownership of a given function becomes
ambiguous, and it may not be clear if changes to a function could negatively affect
other services. While versioning of functions can help with this issue, it can also lead
to conflicts when multiple products need to maintain and improve different versions
of a function.

FaaS solutions may incorporate multiple functions to solve the business requirements
of the bounded context, and while this is not an uncommon or bad practice, a good
rule of thumb for FaaS solutions is that fewer functions are better than many granular
functions. Testing, debugging, and managing just one function is much easier than
doing the same for multiple functions.

Choosing a FaaS Provider
Just like the event brokers and container management systems (CMSes), FaaS frame‐
works are available as both free-to-use open source solutions and paid third-party
cloud providers. An organization that runs its own in-house CMS for its microservice
operations can also benefit from using an in-house FaaS solution. There are a number
of free open source options available, such as OpenWhisk, OpenFaaS, and Kubeless,
that can leverage existing container management services. Apache Pulsar offers its
own built-in FaaS solution that runs alongside its event broker. By leveraging a com‐
mon resource-provisioning framework, your FaaS solution can align with your
microservice solution.

Third-party service providers such as Amazon Web Services (AWS), Google Cloud
Platform (GCP), and Microsoft Azure also have their own proprietary FaaS frame‐
works, each of which offers attractive features and functionality but remains tightly
integrated with its provider’s proprietary event broker. This is a significant issue only
because currently all three providers limit retention within their event brokers to
seven days. Integrations between cloud providers and open source event brokers do
exist (such as Kafka Connect), but may require additional effort to set up and man‐
age. That being said, if your organization is already a subscriber to AWS, GCP, or
Azure services, then the overhead to start experimenting is low.

Building Microservices Out of Functions
There are four main components you must consider when working with function-
based solutions, regardless of your FaaS framework or event broker:

Choosing a FaaS Provider | 153

https://oreil.ly/74sum

• The function
• Input event stream
• Triggering logic
• Error and scaling policies, with metadata

The first component of a FaaS implementation is the function itself. It can be imple‐
mented in any code supported by the FaaS framework.

 public int myfunction(Event[] events, Context context) {
 println ("hello world!");
 return 0;
 }

The events parameter contains the array of individual events to be processed, with
each event containing a key, value, timestamp, offset, and partition_id. The Con
text parameter contains information about the function and its context, such as its
name, the event stream ID, and the function’s remaining lifespan.

Next, you need to wire up some triggering logic for the function. This will be covered
in greater detail in the next section, but for now, say that the function is triggered
whenever a new event arrives in one of its subscribed event streams. The triggering
logic is often associated with a function by way of a function-trigger map, which is
usually concealed behind the scenes of your FaaS framework. Here is an example:

Function Event stream(s) Trigger Policies and metadata

myFunction myInputStream onNewEvent < … >

You can see that myFunction is set to trigger when a new event is delivered to myInput
Stream. You’ll also notice that there is a column named Policies and Metadata, which
is a bit of a catch all that includes configurations such as the following:

• Consumer group
• Consumer properties, such as batch size and batch window
• Retry and error handling policies
• Scaling policies

Once the triggers, metadata, and policies are established, the function is ready to pro‐
cess incoming events. When a new event arrives in its input event stream, the func‐
tion will be started by the FaaS framework, get passed a batch of events, and begin
processing. Upon completion, the function will terminate and wait for more events to
come in. This is a typical implementation of the event-stream listener pattern, which
is discussed more in the next section.

154 | Chapter 9: Microservices Using Function-as-a-Service

Each function-based microservice implementation must have its
own independent consumer group, just as with other non-FaaS
microservices.

Now keep in mind that this is just a logical representation of the components needed
to successfully trigger and operate a function. A FaaS framework’s function coding
requirements, function management, and triggering mechanisms vary by provider
and implementation, so be sure to refer to the documentation for your FaaS
framework.

There is also a moderately complex interplay between triggering mechanisms, event
consumption, consumer offsets, nested functions, failures, and at-least-once event
processing. These are the subject of the remainder of this chapter.

Cold Start and Warm Starts
A cold start is the default state of the function upon starting for the first time, or after
a sufficient period of inactivity. A container must be started and the code loaded,
event broker connections may need to be created, and any other client connections to
external resources need to be established. Once everything is stable and ready to pro‐
cess, the function is now in a warm state and ready to process events. The warm func‐
tion begins processing events, and upon expiry or completion, is suspended and put
into hibernation.

Most FaaS frameworks attempt to reuse terminated functions whenever possible. In
many scenarios, a function processing a steady stream of events will hit the timeout
expiry and be briefly terminated, just to be brought back a moment later by a trigger‐
ing mechanism. The suspended instance is simply reused, and provided that the con‐
nections to the event broker and any state stores haven’t expired during the interim,
processing can resume immediately.

Starting Functions with Triggers
Triggers are used to tell a function to start up and begin processing. The supported
triggers vary depending on your FaaS framework, but tend to all fall into the same
general categories, as described shortly. For now, let’s take a look at which signals can
be used to kick off functions, to give you an idea of when you may want to use them.

Triggering Based on New Events: The Event-Stream Listener
Functions can be triggered when an event is produced into an event stream. The
event-stream listener trigger isolates event consumption behind a predefined con‐
sumer, reducing the amount of overhead code that a developer must write. Events are

Cold Start and Warm Starts | 155

injected directly into the function in a form of an array of events, in sequential order
from an event stream, or as a cluster of unordered events if consuming from a queue.
You can create multiple mappings from event streams to functions, such that a func‐
tion can consume events from many different streams.

FaaS solutions from Google, Microsoft, and Amazon provide this trigger for usage
with their proprietary event brokers, but currently do not support triggering directly
from open source brokers. The generalized structure of this approach is shown in
Figure 9-1.

Figure 9-1. Integrated event-stream listener with FaaS framework

Conversely, open source solutions such as OpenFaaS, Kubeless, Nuclio, and others
provide a variety of triggering plug-ins with various event brokers, such as Kafka,
Pulsar, and NATS, to name a few. For instance, Apache Kafka Connect allows you to
trigger the functions of third-party FaaS frameworks. Since Kafka Connect runs out‐
side of the FaaS framework, you would end up with an event-stream listener as per
Figure 9-2.

Figure 9-2. External event-stream listener application provided by Kafka Connect

Though not shown in the previous examples, function results can be output to their
own event streams, not just for the purpose of outputting data but also for tracking
the function’s success.

Synchronous triggers require the function to complete before they issue the next
events. This is particularly important for maintaining the processing order and is
limited by the parallelism of the event stream being processed. Conversely, asynchro‐
nous triggering can issue multiple events to multiple functions, each one reporting

156 | Chapter 9: Microservices Using Function-as-a-Service

https://oreil.ly/y6zYz

back as it is completed. This will not maintain the processing order, however, and
should be used only when processing order is not important to the business logic.

Batch size and batch window are two important properties to consider in stream-
listener triggers. The batch size dictates the maximum number of events to dispatch
for processing, while the batch window indicates the maximum amount of time to
wait for additional events, instead of triggering the function immediately. Both of
these parameters are used to ensure that the overhead of starting the function is
spread among the batch of records to reduce costs.

A function executed by a stream-listener trigger looks something like the following:

 public int myEventfunction(Event[] events, Context context) {
 for(Event event: events)
 try {
 println (event.key + ", " + event.value);
 } catch (Exception e) {
 println ("error printing " + event.toString);
 }
 //Indicates to the FaaS framework that batch processing was completed.
 context.success();
 return 0;
 }

Much like a containerized microservice, triggers for the event-
stream listener pattern can be configured to start processing events
from a stream’s latest offsets, earliest offsets, or anywhere in
between.

Triggering Based on Consumer Group Lag
A consumer group’s lag metric is another way to trigger functions. You can detect lag
by periodically polling the offsets of an individual application’s consumer groups and
computing the delta between the current consumer offset and the head offset of the
stream (see “Consumer Offset Lag Monitoring” on page 246 for more on lag moni‐
toring). While similar to the stream listener trigger, lag monitoring can also be used
for scaling non-FaaS microservices.

Lag monitoring typically involves computing and reporting lag metrics to your moni‐
toring framework of choice. The monitoring framework can then call the FaaS frame‐
work to tell it to start up the functions registered on the event stream. A high lag
value can indicate that multiple function instances can be started to more quickly
process the load, while a low lag value may require only a single function instance to
process the backlog. You can tailor the relationship between lag quantity and function
startup on a microservice-by-microservice basis, ensuring compliance with SLAs.

Starting Functions with Triggers | 157

One of the major differences between the previously mentioned event-stream listener
trigger and this one is that with lag triggering, the function does not consume the
events until after it is started. Functions started by the lag trigger have a wider
domain of responsibilities, including establishing a client connection with the event
broker, consuming the events, and committing back any offset updates. This makes
functions triggered by lag much more similar to basic producer/consumer clients,
albeit with a limited lifespan. The following example function illustrates this
workflow:

 public int myLagConsumerfunction(Context context) {
 String consumerGroup = context.consumerGroup;
 String streamName = context.streamName;

 EventBrokerClient client = new EventBrokerClient(consumerGroup, ...);

 Event[] events = client.consumeBatch(streamName, ...);

 for(Event event: events) {
 // Do event processing work
 doWork(event);
 }
 //Commit the offsets back to the event broker
 client.commitOffsets();

 //Indicates to the FaaS framework that the function succeeded.
 context.success();

 //Return, letting the lag-triggering system know it was a success
 return 0;
 }

The consumer group and stream name are passed in as parameters in the context.
The client is created, events are consumed and processed, and the offsets are commit‐
ted back to the event broker. The function indicates a success result back to the FaaS
framework and then returns.

If the function is frequently triggered by the lag monitor, there is a good chance that
it will still be warm from the last iteration, and the overhead of connecting to the
event broker client may not be a factor. This, of course, depends on the timeouts used
by the client and event broker configurations. For longer periods of inactivity, con‐
sumer group rebalancing and client cold starts will slightly reduce the amount of
work that a function instance can process.

Triggering on a Schedule
Functions can also be scheduled to start up periodically and at specific datetimes. The
scheduled functions start up at the specified interval, poll the source event-streams
for new events, and process them or shut down as necessary. The polling period

158 | Chapter 9: Microservices Using Function-as-a-Service

should be kept low so that SLAs are maintained, but polling too frequently may put
undue load on both the FaaS framework and event broker.

Client code for a time-based trigger looks identical to that of the consumer group lag
trigger example.

Triggering Using Webhooks
Functions can also be triggered by direct invocation, allowing custom integration
with monitoring frameworks, schedulers, and other third-party applications.

Triggering on Resource Events
Changes made to resources can also be a source of triggers. For instance, creating,
updating, or deleting a file in a filesystem can trigger functions, as can the same mod‐
ifications made to a row in a data store. Since most of the events in the event-driven
microservice domain are generated via event streams, this particular resource trigger
isn’t often used in most business workflows. It is, however, quite useful when you are
integrating with external sources of data that require an FTP or other file service to
drop their files into.

Performing Business Work with Functions
FaaS approaches work particularly well for solutions that can leverage the on-
demand, flexible nature of processing resource provisioning. Simple topologies are a
great candidate, as are those that are stateless, those that do not require deterministic
processing of multiple event streams, and those that scale very wide, such as queue-
based processing. Anything with a highly variable volume can benefit from FaaS solu‐
tions, as their horizontal scaling capabilities and on-demand characteristics allow for
rapid provisioning and release of compute resources.

FaaS solutions can perform extremely well when concurrency and determinism are
not concerns. However, once determinism comes into play, you must take great care
to ensure correctness and consistency in the event stream processing. Much like the
basic consumer solutions in the next chapter, FaaS solutions require that you provide
an event scheduler to ensure consistent processing results. Copartitioned data can
only be successfully and consistently processed by a single function at a time, similar
to how the full-featured lightweight and heavyweight frameworks must use only a
single thread.

Performing Business Work with Functions | 159

Maintaining State
Given the short lifespan of functions, most stateful FaaS-based solutions require the
use of an external stateful service. Part of the reason is the goal of many FaaS provid‐
ers to supply quick, highly scalable units of processing power independent of the
data’s location. Having functions that require local state from previous executions
limits current execution to the nodes that have that state co-located. This greatly
reduces the flexibility of FaaS providers, so they often enforce a “no local state” policy
and require that everything stateful be stored external to the executors.

Although previous local state may be available if a function starts in a warm state,
there is no guarantee that this will always be the case. Functions connect to external
state stores exactly as any other client would—by creating a connection to the state
store and using the corresponding API. Any state must be persisted and retrieved
explicitly by the function.

Be sure to use strict access permissions for your function’s state,
such that nothing outside of its bounded context is allowed access.

Some FaaS frameworks have added durable stateful function support, such as Micro‐
soft Azure’s Durable Functions, which abstracts away the explicit management of
state and allows you to use local memory, which is automatically persisted to external
state. This allows developers to suspend functions and bring them back to life
without needing to write code to explicitly store and retrieve the state. This greatly
simplifies stateful workflows and provides the option to standardize state manage‐
ment across function implementations.

FaaS frameworks will continue to grow and include new features. Simple manage‐
ment of state is a common need in function-based solutions, so keep a lookout for
state handling improvements in the FaaS frameworks of your choice.

Functions Calling Other Functions
Functions are often used to execute other functions and may also be used for both
choreographed and orchestrated workflows. Communication between functions can
be facilitated asynchronously through events, via request-response calls, or with a
combination of both. These choices depend highly on the FaaS framework and the
problem space of the bounded context. It’s common to use choreography and orches‐
tration design patterns when implementing a multifunction solution.

160 | Chapter 9: Microservices Using Function-as-a-Service

https://oreil.ly/ShsMl
https://oreil.ly/ShsMl

To avoid out-of-order processing issues, ensure that all processing
is completed for one event before processing the next event.

Event-Driven Communication Pattern
The output of one function can be produced into an event stream for another con‐
suming function. A bounded context may be made up of many functions and many
internal event streams, with varying triggering and scaling logic for each function
definition. Each function processes incoming events at its own rate, with events being
consumed, work being performed, and outputs produced accordingly. An example of
this design is shown in Figure 9-3.

Figure 9-3. Multifunction event-driven FaaS topology representing a single microservice

In this example, function A is triggered independently of the triggers for functions B
and C. Event streams 2 and 3 are considered internal event streams, with access to
their contents completely restricted to any functions outside of the bounded context.
Each function consumes events from its source stream using the same consumer
group, as the functions are all colocated within the same bounded context. This
ensures that the functions are effectively operating in the same way as a non-FaaS-
based microservice.

There are several benefits of using an event-based communication pattern. Each
function within the topology can manage its own consumer offsets, committing each
offset once its work is done. No coordination between functions needs to occur out‐
side of the event stream processing. The preceding figure shows a choreography-
based design pattern, though orchestration can also be used. Additionally, any failures
in the event processing will not result in any data loss, as the events are durably stored
in the event broker and will simply be reprocessed by the next function instance.

Functions Calling Other Functions | 161

Direct-Call Pattern
In the direct-call pattern, a function can call other functions directly from its own
code. Direct invocation of other functions can be performed asynchronously, which is
essentially a “fire-and-forget” approach, or synchronously, where the calling function
awaits for a return value.

Choreography and asychronous function calling
Asychronous direct calls lead to a choreography-based FaaS solution. One function
simply invokes the next one based on its business logic, leaving it up to that function
and the FaaS framework to handle the next steps, including any failures or errors. An
asynchronous direct-call function topology is a simple way to chain function calls
together. Figure 9-4 illustrates an example.

Figure 9-4. Choreographed asynchronous function calls within a bounded context

Function A invokes function B as it processes its batch of events, and once done,
function A can simply update its consumer offsets and terminate. Meanwhile, func‐
tion B continues its processing and produces any outputs to the output event stream.

One major downside to asynchronous direct calls is in ensuring that the consumer
offsets are updated only in the case of successful processing. In the example, function
B has no feedback to function A, and so only errors in function A will prevent the
workflow from incorrectly committing the consumer group offsets. However, losing
events may not matter to some workflows, and in those cases this problem can be
dismissed.

Another potentially major issue is that events may be processed out of order due to
multiple invocations of function B. Consider the code for function A:

 public int functionA(Event[] events, Context context) {
 for(Event event: events) {
 //Do function A's processing work

 //Invoke function B asynchronously per event
 //Does not wait for return value
 asyncfunctionB(event);
 }
 context.success();
 return 0;
 }

162 | Chapter 9: Microservices Using Function-as-a-Service

Function B is called inline with the work from function A. Depending on your FaaS
framework, this may result in multiple instances of function B being created, each of
which runs independently of the others. This will create a race condition where some
executions of function B will finish before others, potentially leading to out-of-order
processing of events.

Similarly, writing your code as follows will not solve ordering problems either. Pro‐
cessing will still happen out of order, as function A’s processing work will be executed
for all events in the batch prior to function B’s execution.

 public int functionA(Event[] events, Context context) {
 for(Event event: events) {
 //Do function A's processing work
 }
 //Invoke function B asynchronously with entire batch of events
 asyncFunctionB(events);

 context.success()
 return 0;
 }

In-order processing requires strictly executing function A before B, for each event,
before processing the next event. An event must be completely processed before the
next one can be started; otherwise, nondeterministic behavior will likely result. This
is particularly true if functions A and B are acting on the same external data store, as
function B may rely on data written by function A.

In many cases, asynchronous calls are not sufficient for the needs of the bounded
context. In these cases, consider whether using synchronous calls in an orchestrated
manner is more suitable.

Orchestration and synchronous function calling
Synchronous function calls allow you to invoke other functions and await the results
before proceeding with the remaining business logic. This allows for the implementa‐
tion of the orchestration pattern, as covered in Chapter 8.

Event stream—triggered processing. In the following example, a single orchestration
function is triggered when new events arrive in a partitioned event stream. The func‐
tion starts up and begins processing the input batch of events, dispatching event
sequentially for each function. Figure 9-5 shows an example of function-based
orchestration within a single bounded context.

Functions Calling Other Functions | 163

Figure 9-5. Orchestrated synchronous function calls within a bounded context

Here is an example of the orchestration code:

 public int orchestrationFunction(Event[] events, Context context) {
 for(Event event: events) {
 //Synchronous function Calls
 Result resultFromA = invokeFunctionA(event);
 Result resultFromB = invokeFunctionB(event, resultFromA);
 Output output = composeOutputEvent(resultFromA, resultFromB);
 //Write to the output stream
 producer.produce("Output Stream", output);
 }
 //This will tell the FaaS framework to update the consumer offsets
 context.success();
 return 0;
 }

The orchestration function invokes functions A and B in order and awaits the results
from each function. The output of function A can be sent to B if needed. Each event
is fully processed through the workflow before the next one is started, ensuring that
offset order is respected. Once the consumer function has completed processing each
event in the batch, it can issue a success message and update the offsets accordingly.

Queue-triggered event processing. If you use a queue with individual commit capabili‐
ties, the triggering mechanism can simply trigger an individual orchestration func‐
tion for each event. The orchestrator will need to commit the processing
confirmation back to the queue after it has completed its work. In the case that the
orchestrator fails to process the work, it will simply be picked up by the next orches‐
trator instance created.

164 | Chapter 9: Microservices Using Function-as-a-Service

Termination and Shutdown
A function is terminated once it has completed its work or it reaches the end of its
allocated lifespan, generally in the range of 5–10 minutes. The function instance is
suspended and enters a state of hibernation, where it may be immediately revived.
The suspended function may also eventually be evicted from the hibernation cache
due to resource or time constraints.

You will need to decide how to handle any open connections and resource assign‐
ments made to a function prior to its termination. In the case of a consumer client,
the function instance may be assigned specific event stream partitions. Terminating
the function instance without revoking these assignments may result in processing
delays, as ownership in the consumer group won’t be reassigned until a timeout is
reached. Events from those partitions won’t be processed until a consumer group
rebalance is performed, or the terminated function instance comes back online and
resumes processing.

If your function is almost always online and processing events, closing connections
and rebalancing the consumer group may not be necessary. The function will likely
only be momentarily suspended at the end of it lifespan, go briefly into hibernation,
and be restored to runtime immediately. Conversely, for a consumer function that
runs only intermittently, it is best to close down all connections and relinquish
assignment of the event stream partitions. The next function instance will have to re-
create the connection regardless of whether it’s a warm start or cold start. When in
doubt, cleaning up connections is generally a good idea; it lightens the load on exter‐
nal data stores and on the event broker and reduces the chances that suspended func‐
tions are laying claim to partition ownership.

Tuning Your Functions
Each function has specific needs based on its workload. Optimizing the resources that
a function uses during its execution can ensure that performance remains high while
costs remain low. There are a few things to consider when establishing the resources
and tuning the parameters of your functions.

Allocating Sufficient Resources
Each function can be allocated a specific amount of CPU and memory. It is important
to tune these parameters to the needs of your function; overallocation can be expen‐
sive, while underallocation may result in your functions crashing or taking too long
to complete.

Termination and Shutdown | 165

Maximum execution time is another factor, as it limits how long a function may run.
This parameter is closely related to the batch size, as the time a function needs to pro‐
cess events is very often linearly related, on average, with the number of events to
process. Set the maximum execution time higher than the maximum expected time to
process a specific batch size of events to avoid unnecessary function timeout errors.

Lastly, you must consider any external I/O to state stores belonging within the boun‐
ded context of the function-based solution. The workload of a function varies with
the flow of input events, with some workloads requiring consistent I/O to external
state, and other workloads requiring only sporadic I/O. A failure to provide sufficient
I/O resources can result in degraded throughput and performance.

Batch Event-Processing Parameters
If a function is unable to process its assigned batch of events during its execution life‐
span, the execution of the function is considered to have failed and the batch must be
processed again. However, barring any changes to the function’s allocated execution
time or the batch size of input events, it is likely to simply fail again. Therefore, one of
two things must occur:

• Increase the maximum execution time of the function.
• Decrease the maximum batch size of events processed by the function.

Functions that establish their own connections to the event broker
and manage the consumption of events can also periodically com‐
mit offsets during execution, ensuring partial completion of the
batch. This does not work when the function is passed the batch of
consumed events, as it has no way to update the consumer offsets
during processing.

Additionally, some event-listener triggering systems, such as those provided by Ama‐
zon and Microsoft, give you the option to automatically halve the batch size on fail‐
ure and re-execute the failed function. Subsequent errors result in the input batch
being halved again and the function re-executed, until it reaches the point where it
can complete its processing on time.

Scaling Your FaaS Solutions
FaaS solutions provide exceptional capabilities for the parallelization of work, espe‐
cially for queues and event streams where the order in which data is processed is not
important. For partitioned event streams, if the order of events is indeed important,

166 | Chapter 9: Microservices Using Function-as-a-Service

the maximum level of parallelization is limited by the number of partitions in your
event streams, just as it is for all microservice implementations.

Scaling policies are typically the domain of the FaaS framework, so check your frame‐
work documentation to see what options are offered. Typical options involve scaling
based on consumer input lag, time of day, processing throughput, and performance
characteristics.

For functions that instantiate and manage their own event broker connections,
beware the impact of partition assignment rebalancing when a consumer enters or
leaves the consumer group. A consumer group can end up in a state of near-constant
rebalancing if consumers are frequently joining and leaving the consumer group, pre‐
venting progress from being made. In extreme circumstances it is possible to get
stuck in a virtual deadlock of rebalancing, where the functions spend their life cycle
repeatedly having partitions assigned and removed. This problem can occur when
you use many short-lived functions with small consumer batch sizes and can be made
worse by scaling policies that are overly sensitive to delay. Instituting a step-based
scaling policy or using a hysteresis loop can provide sufficient scaling responsiveness
without putting the consumer group into a state of excessive rebalancing.

Static partition assignments eliminate the rebalancing overhead of dynamically
assigned consumer groups and can also be used to copartition event streams. Func‐
tions will start with the foreknowledge of which partitions they will consume from;
there will be no rebalancing, and events can simply be consumed whenever the func‐
tion is triggered. This approach does require a more careful consideration of the work
that your function is performing, as you need to ensure that each partition is being
consumed.

Be careful about thrashing triggers and scaling policy. Frequent
rebalancing of partition assignments can be expensive for event
brokers. Try to scale your function count up or down at most once
every few minutes.

Summary
Function-as-a-Service is an area of cloud computing that is growing rapidly. Many
FaaS frameworks offer a variety of function development, management, deployment,
triggering, testing, and scalability tools that allow you to build your microservices
using functions. Functions can be triggered by new events in an event stream, con‐
sumer group lag status, wall-clock time, or custom logic.

Function-based solutions are particularly useful in handling stateless and simple
stateful business problems that do not require event scheduling. The orchestration
pattern allows multiple functions to be called in strict sequential order, while also

Summary | 167

respecting the order of events from the event stream. Since the FaaS framework space
is growing and evolving rapidly, it’s important to keep up with the newest features of
the platforms of interest to you and your organization.

168 | Chapter 9: Microservices Using Function-as-a-Service

CHAPTER 10

Basic Producer and Consumer Microservices

Basic producer and consumer (BPC) microservices ingest events from one or more
event streams, apply any necessary transformations or business logic, and emit any
necessary events to output event streams. Synchronous request-response I/O may
also be a part of this workflow, but that topic is covered in more detail in Chapter 13.
This chapter focuses strictly on event-driven components.

BPC microservices are characterized by the use of basic consumer and producer cli‐
ents. Basic consumer clients do not include any event scheduling, watermarks, mech‐
anisms for materialization, changelogs, or horizontal scaling of processing instances
with local state stores. These capabilities typically belong only to more full-featured
frameworks, which Chapters 11 and 12 will discuss in more depth. While it is cer‐
tainly possible for you to develop your own libraries to provide these features, doing
this is quite beyond the scope of this chapter. Thus, you must carefully consider if the
BPC pattern will work for your business requirements.

Producer and consumer clients are readily available in most commonly used lan‐
guages, lowering the cognitive overhead in getting started with event-driven micro‐
services. The entire workflow of the bounded context is contained within the code of
the single microservice application, keeping the responsibilities of the microservice
localized and easy to understand. The workflow can also easily be wrapped into one
or more containers (depending on the complexity of the implementation), which can
then be deployed and executed with the microservice’s container management
solution.

169

Where Do BPCs Work Well?
BPC microservices can fulfill a wide range of business requirements despite lacking
most of the full-featured framework components. Simple patterns such as stateless
transformations are easily implemented, as are stateful patterns where deterministic
event scheduling is not required.

External state stores are more commonly used than internal state stores in BPC
implementations, as scaling local state between multiple instances and recovering
from instance failures is difficult without a full-featured streaming framework. Exter‐
nal state stores can provide multiple microservice instances with uniform access as
well as data backup and recovery mechanisms.

Let’s look at a few use cases in which basic BPC implementations work particularly
well.

Integration with Existing and Legacy Systems
Legacy systems can participate in event-driven architectures by integrating a basic
producer/consumer client into their codebase. This integration often begins early in
the adoption of event-driven microservices and may even be part of your strategy for
bootstrapping legacy systems into the event-driven ecosystem (see Chapter 4). Legacy
systems produce their own data to the event broker’s single source of truth as
required and consume back any events that they need from other event streams.

In some scenarios it’s not possible to safely modify the legacy codebase to produce
and consume data from event streams. The sidecar pattern is particularly applicable
to this scenario, as it enables some event-driven functionality without affecting the
source codebase.

Example: Sidecar pattern
An ecommerce store has a frontend that displays all the stock and product data it
contains. Previously, the frontend service would source all of its data by synchroniz‐
ing with a read-only subordinate data store using a scheduled batch job, as in
Figure 10-1.

Figure 10-1. Scheduled batch between monoliths

170 | Chapter 10: Basic Producer and Consumer Microservices

Today, there are two event streams, one with product information and one with prod‐
uct stock levels. You can use a sidecar implementation to sink this data into the data
store, where a BPC consumes the events and upserts them into the associated data
sets. The frontend gains access to a near-real time data feed of product updates,
without having to change any of the system code, as in Figure 10-2.

Figure 10-2. Using the sidecar to upsert data into the frontend data store

The sidecar resides inside its own container but must be part of the single deployable
of the frontend service. Additional tests must be performed to ensure that the integra‐
ted sidecar operates as expected. The sidecar pattern allows you to add new function‐
ality to a system without requiring significant changes to the legacy codebase.

Stateful Business Logic That Isn’t Reliant Upon Event Order
Many business processes do not have any requirements regarding the order in which
events arrive, but do require that all necessary events eventually arrive. This is known
as a gating pattern and is one in which the BPC works well as an implementation.

Example: Book publishing
Say that you work for a book publisher and there are three things that must be done
before a book is ready to be sent to the printer. It is not important in which order
these events occur, but it is important that each one occurs prior to releasing the book
to the printers:

Contents
The contents of the book must have been written.

Cover art
The cover art for the book must have been created.

Pricing
The prices must be set according to regions and formats.

Each of these event streams acts as a driver of logic. When a new event comes in on
any of these streams, it is first materialized in its proper table and subsequently used
to look up every other table to see if the other events are present. Figure 10-3 illus‐
trates an example.

Where Do BPCs Work Well? | 171

Figure 10-3. Gating the readiness of a book

In this example, the book ending with ISBN 0010 will already have been published to
the output book event stream. Meanwhile, the book ending with ISBN 0011 is cur‐
rently waiting for cover art to be available and has not been published to the output
stream.

Explicit approval from a human being may also be required in the
gating pattern. This is covered in more detail in “Example: News‐
paper publishing workflow (approval pattern)” on page 225.

When the Data Layer Does Much of the Work
The BPC is also a suitable approach when the underlying data layer performs most of
the business logic, such as a geospatial data store; free-text search; and machine learn‐
ing, AI, and neural network applications. An ecommerce company may ingest new
products scraped from websites and perform classification using a BPC microservice,
with the backend data layer being a batch-trained machine learning categorizer.
Alternately, user behavior events, such as opening the application, may be correlated
with a geospatial data store to determine the nearest retailers from which to show
advertisements. In these scenarios, the complexity of processing the event is offloaded
entirely to the underlying data layer, with the producer and consumer components
acting as simple integration mechanisms.

172 | Chapter 10: Basic Producer and Consumer Microservices

Independent Scaling of the Processing and Data Layer
The processing needs and the data storage needs of a microservice are not always lin‐
early related. For instance, the volume of events that a microservice must process may
vary with time. One common load pattern, which is incorporated into the following
example, mirrors the sleep/wake cycle of a local population, with intensive activity
during the day and very low activity during the night.

Example: Perform aggregations on event data to build user engagement profiles
Consider a scenario where user behavior events are aggregated into 24-hour sessions.
The data from these sessions is used to determine which products are the most
recently popular and in turn used to drive advertisements for sales. Once the 24-hour
aggregation session is completed, it is flushed from the data store and emitted to an
output event stream, freeing up the data storage space. Each user has an aggregation
maintained in an external data store, which looks something like this:

Key Value

userId, timestamp List(productId)

The processing needs of the service change with the sleep/wake cycles of the people
using the product. At nighttime, when most users are asleep, very little processing
power is needed to perform the aggregations compared to what’s required during the
day. In the interest of saving money on processing power, the service is scaled down
in the night.

The partition assignor can reassign the input event stream partitions to a single pro‐
cessor instance, as it can handle the consumption and processing of all user events.
Note that despite the volume of events being low, the domain of potential users
remains constant and so the service requires full access to all user aggregations. Scal‐
ing down the processing has no impact on the size of state that the service must
maintain.

During the day, additional processing instances can be brought online to handle the
increased event load. The query rate of the data store will also increase in this particu‐
lar scenario, but caching, partitioning, and batching can help keep the load lighter
than the linear increase in processing requirements.

Service providers such as Google, Amazon, and Microsoft offer
highly scalable pay-per-read/write data stores that accommodate
this pattern very well.

Where Do BPCs Work Well? | 173

Hybrid BPC Applications with External Stream Processing
BPC microservices can also leverage external stream-processing systems to do work
that may otherwise be too difficult to do locally. This is a hybrid application pattern,
with business logic spread between the BPC and the external stream-processing
framework. The heavyweight frameworks of Chapter 11 are excellent candidates for
this, as they can provide large-scale stream processing with simple integrations.

The BPC implementation can perform operations that would otherwise be unavail‐
able to it, while still having access to any necessary language features and libraries.
For example, you could use the external stream-processing framework to perform
complex aggregations across multiple event streams, while using the BPC microser‐
vice to populate a local data store with the results and serve up request-response
queries.

Example: Using an External Stream-Processing Framework to Join
Event Streams
Say your BPC service needs to leverage the joining capabilities of a stream-processing
framework, which is particularly good at joining large sets of materialized event
streams. The external stream processor will simply materialize event streams into
tables and join those rows together that have the same key. This simple join operation
is shown in Figure 10-4.

Figure 10-4. A typical outsourceable operation performed at scale by a stream-processing
framework

174 | Chapter 10: Basic Producer and Consumer Microservices

The hybrid BPC needs to use a compatible client to start up the work on the external
stream processing framework. This client will transform the code into instructions
for the framework, which will itself handle consuming, joining, and producing events
into the joined output event stream. This design outsources the work to an external
processing service that will return the results in the form of an event stream. The
workflow for this would look like Figure 10-5.

Figure 10-5. A hybrid workflow showing an external stream-processing application
sending results back to the BPC via an intermediate event stream

The BPC instantiates a client to run the external stream processing
work. When the BPC is terminated, the external stream processing
instance should also be terminated to ensure that no ghost pro‐
cesses are left running.

The major advantage of this pattern is that it unlocks stream-processing features that
may otherwise be unavailable to your microservice. Availability is limited to lan‐
guages with corresponding stream-processing clients, and not all features may be
supported for all languages. This pattern is frequently used in tandem with both
lightweight and heavyweight frameworks; for example, it’s one of the primary use
cases for SQL-based stream operations, such as those provided by Confluent’s KSQL.
Technology options like these provide a way to augment the offerings of the BPC, giv‐
ing it access to powerful stream-processing options that it would not have otherwise.

The main drawbacks of this pattern relate to the increase in complexity. Testing the
application becomes much more complex, as you must also find a way to integrate the
external stream-processing framework into your testing environment (see
Chapter 15). Debugging and development complexity also increase, because the

Hybrid BPC Applications with External Stream Processing | 175

https://oreil.ly/iSLYt

introduction of the streaming framework increases the number of moving parts and
potential for bugs. Finally, handling the bounded context of the microservice may
become more difficult, as you need to ensure that you can easily manage the deploy‐
ment, rollback, and operations with hybrid application deployments.

Summary
The BPC pattern is simple yet powerful. It forms the foundation of many stateless and
stateful event-driven microservice patterns. You can easily implement stateless
streaming and simple stateful applications using the BPC pattern.

The BPC pattern is also flexible. It pairs well with implementations where the data
storage layer does most of the business work. You can use it as an interfacing layer
between event streams and legacy systems, as well as leverage external stream pro‐
cessing systems to augment its capabilities.

Due to its basic nature, however, it does require you to invest in libraries to access
mechanisms such as simple state materialization, event scheduling, and timestamp-
based decision making. These components intersect with the offerings found in
Chapters 11 and 12, and thus you will need to decide how much in-house develop‐
ment you would like to do versus adopting more purpose-built solutions.

176 | Chapter 10: Basic Producer and Consumer Microservices

CHAPTER 11

Heavyweight Framework Microservices

This chapter and the next cover the full-featured frameworks most commonly used in
event-driven processing. Frequently referred to as streaming frameworks, they provide
mechanisms and APIs for handling streams of data and are often used for consuming
and producing events to an event broker. These frameworks can be roughly divided
into heavyweight frameworks, which are covered in this chapter, and lightweight
frameworks, covered in the next. These chapters aren’t meant to compare the tech‐
nologies, but rather to provide a generalized overview of how these frameworks work.
However, some sections examine framework-specific features, especially as they per‐
tain to implementing applications in a microservice-like way. For the purposes of
evaluating heavyweight frameworks, this chapter covers aspects of Apache Spark,
Apache Flink, Apache Storm, Apache Heron, and the Apache Beam model as exam‐
ples of the sorts of technology and operations commonly provided.

One defining characteristic of a heavyweight streaming framework is that it requires
an independent cluster of processing resources to perform its operations. This cluster
typically constitutes a number of shareable worker nodes, along with some master
nodes that schedule and coordinate work. Additionally, the leading Apache solutions
traditionally rely on Apache Zookeeper, another clustered service, to provide high-
availability support and coordinate cluster leader elections. Though Zookeeper is not
absolutely essential for bringing a heavyweight cluster to production, you should
carefully evaluate whether you need it should you create your own cluster.

A second defining characteristic is that the heavyweight framework uses its own
internal mechanisms for handling failures, recovery, resource allocation, task distri‐
bution, data storage, communication, and coordination between processing instances
and tasks. This is in contrast to the lightweight framework, FaaS, and BPC
implementations that rely heavily on the container management system (CMS) and
the event broker for these functions.

177

https://spark.apache.org
https://flink.apache.org
https://storm.apache.org
https://heron.apache.org
https://beam.apache.org

These two characteristics are the main reasons why these frameworks are dubbed
“heavyweight.” Having to manage and maintain additional clustered frameworks
independently of the event broker and the CMS is no small task.

Some heavyweight frameworks are moving toward lightweight-like
execution modes. These lightweight modes integrate well with the
CMS used to operate other microservice implementations.

You may have noticed that the heavyweight framework does a lot of things that are
already handled by the CMS and event broker. The CMS can manage resource alloca‐
tion, failures, recovery, and scaling of systems, while the event broker can provide
event-based communication between the instances of a single microservice. The
heavyweight framework is a single solution that merges those capabilities of the CMS
and event broker. We’ll explore this topic a bit further in the next chapter on light‐
weight frameworks.

A Brief History of Heavyweight Frameworks
Heavyweight stream-processing frameworks are directly descended from their heavy‐
weight batch-processing predecessors. One of the most widely known, Apache
Hadoop, was released in 2006, providing open source big-data technologies for any‐
one to use. Hadoop bundled a number of technologies together to offer massive par‐
allel processing, failure recovery, data durability, and internode communication,
allowing users to access commodity hardware cheaply and easily to solve problems
requiring many thousands of nodes (or more).

MapReduce was one of the first widely available means of processing extremely large
batches of data (aka big data), but, while powerful, it executes slowly in comparison
to many of today’s options. The size of big data has steadily increased over time;
although workloads of hundreds (or thousands) of gigabytes were common in the
early days, workloads today have scaled to sizes in the terabyte and petabyte range. As
these data sets have grown so has the demand for faster processing, more powerful
options, simpler execution options, and solutions that can provide near-real-time
stream-processing capabilities.

178 | Chapter 11: Heavyweight Framework Microservices

This is where Spark, Flink, Storm, Heron, and Beam come in. These solutions were
developed to process streams of data and provide actionable results much sooner
than those provided by batch-based MapReduce jobs. Some of these, like Storm and
Heron, are streaming-only technologies and do not currently provide batch process‐
ing. Others, like Spark and Flink, merge batch and streaming processing into a single
solution.

These technologies are undoubtedly familiar to most big-data aficionados and are
likely already being used to some extent in the data science and analytics branches of
many organizations. In fact, this is how many organizations start dabbling in event-
driven processing, as these teams convert their existing batch-based jobs into
streaming-based pipelines.

The Inner Workings of Heavyweight Frameworks
The aforementioned heavyweight open source Apache frameworks all operate in a
fairly similar manner. Proprietary solutions, like Google’s Dataflow, which executes
applications written using Apache Beam’s API, probably operate in a similar fashion,
but this is only an assumption, given that the source is closed and the backend is not
described in detail. One of the challenges of describing heavyweight frameworks in
detail is that each has its own operational and design nuances, and full coverage of
each framework is far beyond the scope of this chapter.

Make sure that you thoroughly read and understand the docu‐
ments detailing how your specific heavyweight framework
operates.

A heavyweight stream processing cluster is a grouping of dedicated processing and
storage resources, broken down into two primary roles. The first role is the master
node, which prioritizes, assigns, and manages executors and tasks performed by the
workers. The second role, the executor, completes these tasks using the processing
power, memory, local, and remote disk available to that worker node. In event-driven
processing, these tasks will connect to the event broker and consume events from
event streams. Figure 11-1 shows a rough breakdown of how this works.

The Inner Workings of Heavyweight Frameworks | 179

Figure 11-1. A generic view of a heavyweight stream-processing framework

This figure also shows Apache Zookeeper, which plays a supporting role for this
streaming cluster. Zookeeper provides highly reliable distributed coordination and is
used to determine which master node is in charge (as it is not uncommon for nodes
to fail, be they workers, masters, or Zookeeper nodes). Upon failure of a master node,
Zookeeper helps decide which of the remaining masters is the new leader to ensure
continuity of operations.

Zookeeper has historically been a major component in providing
coordination of distributed heavyweight frameworks. Newer
frameworks may or may not use Zookeeper. In either case, dis‐
tributed coordination is essential for reliably running distributed
workloads.

A job is a stream-processing topology that is built using the framework’s software
development kit (SDK) and designed to solve problems of the particular bounded
context. It runs on the cluster indefinitely, processing events as they arrive, just like
any other microservice described in this book.

Upon acceptance by the cluster, the defined stream processing topology is broken
down into tasks and assigned to the worker nodes. The task manager monitors the
tasks and ensures that they are completed. When a failure occurs, the task manager
restarts the work in one of the available executors. Task managers are usually set up

180 | Chapter 11: Heavyweight Framework Microservices

with high-availability, such that if the node on which the task manager is operating
fails, a backup can take over, preventing all running jobs from failing.

Figure 11-2 shows a job being submitted to the cluster via master node 1, which in
turn is translated into tasks for processing by the executors. These long-running tasks
establish connections to the event broker and begin to consume events from the event
stream.

Figure 11-2. Submitting a stream processing job to read from an event stream

Though this example shows a 1:1 mapping between tasks and stream partitions, you
can configure the amount of parallelism that you would like your application to use.
One tasks can consume from all the partitions, or many tasks could consume from
the same partition, say in the case of a queue.

Benefits and Limitations
The heavyweight frameworks discussed in this chapter are predominantly analytical
technologies. They provide significant value around analyzing large volumes of
events in near–real time to enable quicker decision making. Some fairly common pat‐
terns of usage include the following:

• Extract data, transform it, and load it into a new data store (ETL)
• Perform session- and window-based analysis
• Detect abnormal patterns of behavior

Benefits and Limitations | 181

• Aggregate streams and maintain state
• Perform any sort of stateless streaming operations

These frameworks are powerful and fairly mature, with many organizations using
them and contributing back to their source code. There are numerous books and blog
posts, excellent documentation, and many sample applications available to you.

There are, however, several fairly significant shortcomings that limit, but not com‐
pletely preclude, microservice applications based on these frameworks.

First, these heavyweight frameworks were not originally designed with microservice-
style deployment in mind. Deploying these applications requires a dedicated resource
cluster beyond that of the event broker and CMS, adding to the complexity of manag‐
ing large numbers of applications at scale. There are ways to mitigate this complexity,
along with new technological developments for deployment, some of which are cov‐
ered in detail later in this chapter.

Second, most of these frameworks are JVM (Java Virtual Machine)-based, which lim‐
its the implementation languages you can use to create singular microservice applica‐
tions. A common workaround is to use the heavyweight framework to perform
transformations as its own standalone application, while another standalone applica‐
tion in another language serves the business functionality from the transformed state
store.

Third, materializing an entity stream into an indefinitely retained table is not sup‐
ported out of the box by all frameworks. This can preclude creating table-table joins
and stream-table joins and implementing patterns such as the gating pattern shown
earlier in Figure 10-3.

Even when heavyweight frameworks do support stream materialization and joins,
that is often not immediately apparent in the documentation. A number of these
frameworks focus heavily on time-based aggregations, with examples, blog posts, and
advertisements emphasizing time-series analysis and aggregations based on limited
window sizes. Some careful digging reveals that the leading frameworks provide a
global window, which allows for the materialization of event streams. From here, you
can implement your own custom join features, though I find that these are still far
less well documented and exhibited than they should be, considering their impor‐
tance in handling event streams at scale in an organization.

182 | Chapter 11: Heavyweight Framework Microservices

Again, these shortcomings are indicative of the types of analytical workloads that
were envisioned for these frameworks when they were being designed and imple‐
mented. Technological improvements to individual implementations and investment
into common APIs that are independent of implementation (e.g., Apache Beam) are
driving continual changes in the heavyweight framework domain, and it is worth
keeping an eye on the leaders to see what new releases bring.

Cluster Setup Options and Execution Modes
There are a number of options when it comes to building and managing your heavy‐
weight stream processing cluster, each with its own benefits and drawbacks.

Use a Hosted Service
The first, and simplest, way to manage a cluster is to just pay someone to do it for
you. Just as there are a number of compute service providers, there are also providers
who will be happy to host and possibly manage most of your operational needs for
you. This is usually the most expensive option in terms of dollars spent when com‐
pared to the projected costs of starting your own cluster, but it significantly reduces
the operational overhead and removes the need for in-house expertise. For example,
Amazon offers both managed Flink and Spark services; Google, Databricks, and
Microsoft offer their own bundling of Spark; and Google offers Dataflow, its own
implementation of an Apache Beam runner.

One thing to note about these services is that they seem to be continually moving
toward a full serverless-style approach, where the entire physical cluster is invisible to
you as a subscriber. This may or may not be acceptable depending on your security,
performance, and data isolation needs. Be sure that you understand what is and is not
offered by these service providers, as they may not include all of the features of an
independently operated cluster.

Build Your Own Full Cluster
A heavyweight framework may have its own dedicated scalable resource cluster inde‐
pendent of the CMS. This deployment is the historical norm for heavyweight clusters,
as it closely models the original Hadoop distributions. It is common in situations
where the heavyweight framework will be used by services requiring a large number
(hundreds or thousands) of worker nodes.

Cluster Setup Options and Execution Modes | 183

https://beam.apache.org
https://databricks.com

Create Clusters with CMS Integration
A cluster can also be created in conjunction with the container management system.
The first mode involves just deploying the cluster on CMS-provisioned resources,
whereas the second mode involves leveraging the CMS itself as the means of scaling
and deploying individual jobs. Some of the major benefits of deploying your cluster
on the CMS is that you gain the monitoring, logging, and resource management it
provides. Scaling the cluster then becomes a matter of simply adding or removing the
necessary node types.

Deploying and running the cluster using the CMS
Deploying the heavyweight cluster using the CMS has many benefits. The master
nodes, worker nodes, and Zookeeper (if applicable) are brought up within their own
container or virtual machines. These containers are managed and monitored like any
other container, providing visibility into failures as well as the means to automatically
restart these instances.

You can enforce static assignment of master nodes and any other
services that you require to be highly available, to prevent the CMS
from shuffling them around as it scales the underlying compute
resources. This prevents excessive alerts from the cluster monitor
about missing master nodes.

Specifying resources for a single job using the CMS
Historically, the heavyweight cluster has been responsible for assigning and managing
resources for each submitted application. The introduction of the CMS in recent
years gives you an option that can do the same thing, but that can also manage all of
other microservice implementations. When the heavyweight cluster requires more
resources to scale up, it must first request and obtain the resources from the CMS.
These can then be added to the cluster’s pool of resources and finally assigned as
needed to the applications.

Spark and Flink enable you to directly leverage Kubernetes for scalable application
deployment beyond their original dedicated cluster configuration, where each appli‐
cation has its own set of dedicated worker nodes. For example, Apache Flink allows
for applications to run independently within their own isolated session cluster using
Kubernetes. Apache Spark offers a similar option, allowing Kubernetes to play the
role of the master node and maintain isolated worker resources for each application.
A basic overview of how this works is shown in Figure 11-3.

184 | Chapter 11: Heavyweight Framework Microservices

https://oreil.ly/bAydL
https://oreil.ly/bAydL
https://oreil.ly/sQGkQ

Figure 11-3. Single job deployed on and managed by Kubernetes cluster

This deployment mode is nearly identical to how you would deploy
non-heavyweight microservices and merges lightweight and BPC
deployment strategies.

There are several advantages to this deployment pattern:

• It leverages the CMS resource acquisition model, including scaling needs.
• There is complete isolation between jobs.
• You can use different frameworks and versions.
• Heavyweight streaming applications can be treated just like microservices and

use the same deployment processes.

And of course, there are also several disadvantages:

• Support is not available for all leading heavyweight streaming frameworks.
• Integration is not available for all leading CMSes.
• Features available in full cluster mode, such as automatic scaling, may not yet be

supported.

Cluster Setup Options and Execution Modes | 185

Application Submission Modes
Applications can be submitted to the heavyweight cluster for processing in one of two
main ways: driver mode and cluster mode.

Driver Mode
Driver mode is supported by Spark and Flink. The driver is simply a single, local,
standalone application that helps coordinate and execute the application, though the
application itself is still executed within the cluster resources. The driver coordinates
with the cluster to ensure the progress of the application and can be used to report on
errors, perform logging, and complete other operations. Notably, termination of the
driver will result in termination of the application, which provides a simple mecha‐
nism for deploying and terminating heavyweight streaming applications. The applica‐
tion driver can be deployed as a microservice using the CMS, and the worker
resources can be acquired from the heavyweight cluster. To terminate the driver, sim‐
ply halt it as if it were any other microservice.

Cluster Mode
Cluster mode is supported by Spark and Flink and is the default mode of deployment
for Storm and Heron jobs. In cluster mode, the entire application is submitted to the
cluster for management and execution, whereupon a unique ID is returned to the
calling function. This unique ID is necessary for identifying the application and issu‐
ing orders to it through the cluster’s API. With this deployment mode, commands
must be directly communicated to the cluster to deploy and halt applications, which
may not be suitable for your microservice deployment pipeline.

Handling State and Using Checkpoints
Stateful operations may be persisted using either internal or external state (Chap‐
ter 7), though most heavyweight frameworks favor internal state for its high perfor‐
mance and scalability. Stateful records are kept in memory for fast access, but are also
spilled to disk for data durability purposes and when state grows beyond available
memory. Using internal state does carry some risks, such as state loss due to disk fail‐
ure, node failures, and temporary state outages due to aggressive scaling by the CMS.
However, the performance gains tend to far outweigh the potential risks, which can
be mitigated with careful planning.

Checkpoints, snapshots of the application’s current internal state, are used to rebuild
state after scaling or node failures. A checkpoint is persisted to durable storage exter‐
nal to the application worker nodes to guard against data loss. Checkpointing can be
done using any sort of store that is compatible with the framework, such as Hadoop
Distributed File System (HDFS, a common option) or a highly available external data

186 | Chapter 11: Heavyweight Framework Microservices

store. Each partitioned state store can then restore itself from the checkpoint, provid‐
ing both full restoration capabilities in the case of a total application failure, and par‐
tial restoration capabilities in the case of scaling and worker node failures.

There are two main states that the checkpointing mechanism must consider when
consuming and processing partitioned event streams:

Operator state
The pairs of <partitionId, offset>. The checkpoint must ensure that the inter‐
nal key state (see next item) matches up with the consumer offsets of each parti‐
tion. Each partitionId is unique among all input topics.

Key state
The pairs of <key, state>. This is the state pertaining to a keyed entity, such as
during aggregations, reductions, windowing, joins, and other stateful operations.

Both the operator and keyed state must be synchronously recorded such that the
keyed state accurately represents the processing of all the events marked as consumed
by the operator state. A failure to do so may result in events either not being pro‐
cessed at all or being processed multiple times. An example of this state as recorded
into a checkpoint is shown in Figure 11-4.

Figure 11-4. A checkpoint with operator and key state

Restoring from a checkpointed state is functionally equivalent to
using snapshots to restore external state stores, as covered in
“Using snapshots” on page 123.

The state associated with the application task must be completely loaded from the
checkpoint before you can process any new data. The heavyweight framework must
also verify that the operator state and the associated keyed state match for each task,

Handling State and Using Checkpoints | 187

ensuring the correct assignment of partitions among tasks. Each of the major heavy‐
weight frameworks discussed at the start of this chapter implements checkpoints in
its own way, so be sure to check the corresponding documentation for the particulars.

Scaling Applications and Handling Event Stream
Partitions
The maximum parallelism of a heavyweight application is constrained by the same
factors discussed in Chapter 5. A typical stateful stream processor will be limited by
the input count of the lowest partitioned stream. Because heavyweight processing
frameworks are particularly well suited for computing massive amounts of user-
generated data, it is quite common to see cyclical patterns with significant computa‐
tional requirements during the day and very few in the middle of the night. An
example of a daily cyclical pattern is shown in Figure 11-5.

Figure 11-5. Sample of daily cyclical data volume

Applications that process such data benefit greatly from the ability to scale up with
increasing demand and down with decreasing demand. Proper scaling can ensure
that the application has sufficient capacity to process all events in a timely manner,
without wasting resources by overprovisioning. Ideally, the latency between when an
event is received and when it is fully processed should be minimized, though many
applications are not that sensitive to temporarily increased latency.

Scaling an application is separate from scaling a cluster. All scaling
discussed here assumes that there are sufficient cluster resources to
increase parallelism for the application. Refer to your framework’s
documentation for scaling of cluster resources.

Stateless streaming applications are very easily scaled up or down. New processing
resources for an application can simply join or leave the consumer group, upon
which resources are rebalanced and streaming is resumed. Stateful applications can
be more difficult to handle; not only does state need to be loaded into the workers

188 | Chapter 11: Heavyweight Framework Microservices

assigned to the application, but the loaded state needs to match the input event
stream partition assignments.

There are two main strategies for scaling stateful applications, and while the specifics
vary depending on the technology, they share a common goal of minimizing applica‐
tion downtime.

Scaling an Application While It Is Running
The first strategy allows you to remove, add, or reassign application instances without
stopping the application or affecting processing accuracy. It is available only in some
heavyweight streaming frameworks, as it requires careful handling of both state and
shuffled events. The addition and removal of instances requires redistributing any
assigned stream partitions and reloading state from the last checkpoint. Figure 11-6
shows a regular shuffle, where each downstream reduce operation sources its shuffled
events from the upstream groupByKey operations. If one of the instances were
abruptly terminated, the reduce nodes would no longer know where to source the
shuffled events from, leading to a fatal exception.

Figure 11-6. Logical representation of a regular shuffle

Spark’s dynamic resource allocation implements this scaling strategy. However, it
requires using coarse-grained mode for cluster deployment and using an external
shuffle service (ESS) as an isolation layer. The ESS receives the shuffled events from
the upstream tasks and stores them for consumption by the downstream tasks, as
shown in Figure 11-7. The downstream consumers access the events by asking the
ESS for the data that is assigned to them.

Scaling Applications and Handling Event Stream Partitions | 189

https://oreil.ly/RvBg2

Figure 11-7. Logical representation of a shuffle using an external shuffle service

Executor/instances of tasks can now be terminated, since the downstream operations
are no longer dependent on a specific upstream instance. The shuffled data remains
within the ESS, and a scaled-down service, as shown in Figure 11-8, can resume pro‐
cessing. In this example, instance 0 is the only remaining processor and takes on both
partitions, while the downstream operations seamlessly continue processing via the
interface with the ESS.

Figure 11-8. Downscaled application using an external shuffle service (note instance 1 is
gone)

190 | Chapter 11: Heavyweight Framework Microservices

Shuffles in real-time event stream continue to be an area of devel‐
opment for heavyweight frameworks. In the next chapter, we take a
look at how lightweight frameworks directly leverage the event
broker to play the role of the external shuffle service.

Google Dataflow, which executes applications written with the Beam API, provides
built-in scaling of both resources and worker instances. Heron provides a (currently
experimental) Health Manager that can make a topology dynamic and self-regulating.
This feature is still under development but is meant to enable real-time, stateful scal‐
ing of topologies.

Ongoing Improvements of Heavyweight Frameworks
Shortly before this book went to press, Apache Spark 3.0.0 release was announced.
One of the major changes of this release is the ability to dynamically scale the
instance count without the use of an ESS.

This mode works by tracking the stages that generate shuffle files, and keeping execu‐
tors that generate that data alive while downstream jobs that use them are still active.
In effect, the sources play the role of their own external shuffle service. They also
allow themselves to be cleaned up once all downstream jobs no longer require their
shuffle files.

Having dedicated and persistent separate storage for the ESS prevents the CMS from
fully scaling the job, as it must always dedicate enough resources to ensuring the ESS
is available. This new dynamic scaling option in Spark illustrates the further integra‐
tion of heavyweight frameworks with CMSs like Kubernetes, and in fact, is one of the
main use-cases mentioned in the JIRA ticket describing the new feature.

Scaling an Application by Restarting It
The second strategy, scaling an application by restarting it, is supported by all heavy‐
weight streaming frameworks. Consumption of streams is paused, the application is
checkpointed, and then it is stopped. Next, the application is reinitialized with the
new resources and parallelism, with stateful data reloaded from the checkpoints as
required. For example, Flink provides a simple REST mechanism for these purposes,
while Storm provides its own rebalance command.

Scaling Applications and Handling Event Stream Partitions | 191

https://oreil.ly/T_rsI
https://oreil.ly/T_rsI
https://oreil.ly/-E6bm
https://oreil.ly/-E6bm
https://oreil.ly/Bvygj
https://oreil.ly/ivlYe
https://oreil.ly/g6Q3y

Autoscaling Applications
Autoscaling is the process of automatically scaling applications in response to specific
metrics. These metrics may include processing latency, consumer lag, memory usage,
and CPU usage, to name a few. Some frameworks may have autoscaling options built
in, such as Google’s Dataflow engine, Heron’s Health Manager, and Spark Streaming’s
dynamic allocation functionality. Others may require you to collect your own perfor‐
mance and resource utilization metrics and wire them up to the scaling mechanism
of your framework, such as the lag monitor tooling discussed in “Consumer Offset
Lag Monitoring” on page 246.

Recovering from Failures
Heavyweight clusters are designed to be highly tolerant to the inevitable failures of
long-running jobs. Failures of the master nodes, worker nodes, and Zookeeper nodes
(if applicable) can all be mitigated to allow applications to continue virtually uninter‐
rupted. These fault-tolerance features are built into the cluster framework, but can
require you to configure additional steps when deploying your cluster.

In the case of a worker node failure, the tasks that were being executed on that node
are moved to another available worker. Any required internal state is reloaded from
the most recent checkpoint along with the partition assignments. Master node fail‐
ures should be transparent to applications already being executed, but depending on
your cluster’s configuration you may be unable to deploy new jobs during a master
node outage. High-availability mode backed by Zookeeper (or similar technology)
can mitigate the loss of a master node.

Make sure you have proper monitoring and alerting for your mas‐
ter and worker nodes. While a single cluster node failure won’t nec‐
essarily halt processing, it can still degrade performance and
prevent applications from recovering from successive failures.

Multitenancy Considerations
Aside from the overhead of cluster management, you must account for multitenancy
issues as the number of applications on a given cluster grows. Specifically, you should
consider the priority of resource acquisition, the ratio of spare to committed resour‐
ces, and the rate at which applications can claim resources (i.e., scaling). For instance,
a new streaming application starting from the beginning of time on its input topics
may request and acquire the majority of free cluster resources, restricting any cur‐
rently running applications from acquiring their own. This can cause applications to
miss their service-level objectives (SLOs) and create downstream business issues.

192 | Chapter 11: Heavyweight Framework Microservices

Here are a couple of methods to mitigate these challenges:

Run multiple smaller clusters
Each team or business unit can have its own cluster, and these can be kept fully
separate from one another. This approach works best when you can requisition
clusters programmatically to keep operational overhead low, either through in-
house development work or by using a third-party service provider. This
approach may incur higher financial costs due to the overhead of running a clus‐
ter, both in terms of coordinating nodes (e.g., master and Zookeeper nodes) and
monitoring/managing the clusters.

Namespacing
A single cluster can be divided into namespaces with specific resource allocation.
Each team or business group can be assigned its own resources within their own
namespace. Applications executed within that namespace can acquire only those
resources, preventing them from starving applications outside of the namespace
through aggressive acquisition. A downside to this option is that spare resources
must be allocated to each namespace even when they’re not needed, potentially
leading to a larger fragmented pool of unused resources.

Languages and Syntax
Heavyweight stream processing frameworks are rooted in the JVM languages of their
predecessors, with Java being the most common, followed by Scala. Python is also
commonly represented, as it is a popular language among data scientists and machine
learning specialists, who make up a large portion of these frameworks’ traditional
users. MapReduce-style APIs are commonly used, where operations are chained
together as immutable operations on data sets. Heavyweight frameworks are fairly
restrictive in the languages their APIs support.

SQL-like languages are also becoming more common. These allow for topologies to
be expressed in terms of SQL transformations, and reduce the cognitive overhead of
learning the specific API for a new framework. Spark, Flink, Storm, and Beam all
provide SQL-like languages, though they differ in features and syntax and not all
operations are supported.

Choosing a Framework
Choosing a heavyweight stream-processing framework is much like selecting a CMS
and event broker. You must determine how much operational overhead your organi‐
zation is willing to authorize, and if that support is sufficient for running a full pro‐
duction cluster at scale. This overhead includes regular operational duties such as
monitoring, scaling, troubleshooting, debugging, and assigning costs, all of which are
peripheral to implementing and deploying the actual applications.

Languages and Syntax | 193

https://spark.apache.org/sql
https://oreil.ly/jskNu
https://oreil.ly/kKg_M
https://oreil.ly/ijfYX

Software service providers may offer these platforms as a service, though the options
tend to be more limited than selecting providers for your CMS and event broker.
Evaluate the options available to you and choose accordingly.

Lastly, the popularity of a framework will inform your decision. Spark is extremely
popular, with Flink and Storm being less popular but still actively used. Applications
can be written independently of heavyweight framework runtime execution through
Apache Beam, though this may not be of use or concern to your organization. Heron,
a revised form of Storm that offers more advanced features, appears to be the least
popular of the options. Apply the same considerations you gave to the selection of
your CMS and event broker to the selection of, or abstention from, a heavyweight
framework.

Keep in mind that a heavyweight streaming framework is not rea‐
sonably capable of implementing all event-driven microservices.
Verify that it is the correct solution for your problem space before
committing to it.

Example: Session Windowing of Clicks and Views
Imagine that you are running a simple online advertising company. You purchase ad
space across the internet and resell it to your own customers. These customers want
to see their return on investment, which in this case is measured by the click-through
rate of users who are shown an advertisement. Additionally, customers can be billed
on a per-session basis, with a session defined as continuous user activity with breaks
no longer than 30 minutes.

In this example there are two event streams: user advertisement views and user adver‐
tisement clicks. The goal is to aggregate these two streams into session windows and
emit them once an event time (not wall-clock time) of 30 minutes has passed without
the user performing any new actions. Refer to Chapter 6 for a refresher on stream
time and watermarks.

Normally when collecting these behavioral events, you could expect to see additional
information in the value field, such as where the advertisement was published, the
user’s web browser or device information, or other various contexts or metadata. For
the sake of this example, both the view and click event streams have been simplified
down into this basic schema format:

Key Value Timestamp

String userId Long advertisementId Long createdEventTime

(the local time the event was created)

194 | Chapter 11: Heavyweight Framework Microservices

https://oreil.ly/-_HDF
https://oreil.ly/-_HDF

You need to perform the following operations:

1. Group all of the keys together, such that all events for a given user are local to a
processing instance.

2. Aggregate the events together using a window with a 30-minute timeout.
3. Emit the window of events once the 30-minute limit has been reached.

The output stream adheres to the following format:

Key Value

<Window windowId, String userId> Action[] sequentialUserActions

The Window object indicates the time that the window started and the time that it
ended. This is part of the composite key, as users will have multiple session windows
over time, and session windows may be duplicated between users. This composite key
ensures uniqueness. The Action object array in the value is used to store the actions
in sequential order and permits the microservice to calculate which advertisement
views lead its users to billable click-throughs. This Action class can be represented as:

Action {
 Long eventTime;
 Long advertisementId;
 Enum action; //one of Click, View
}

This abbreviated Apache Flink source code shows the topology using its MapReduce-
style API:

DataStream clickStream = ... //Create stream of click events
DataStream viewStream = ... //Create stream of view events

clickStream
 .union(viewStream)
 .keyBy(<key selector>)
 .window(EventTimeSessionWindows.withGap(Time.minutes(30)))
 .aggregate(<aggregator function>)
 .addSink(<producer to output stream>)

A visual representation of this topology is shown in Figure 11-9, with a parallelism of
2 (note the 2 separate instances).

Example: Session Windowing of Clicks and Views | 195

Figure 11-9. Session-generating processing topology from user views and clicks

Stage 1
The executors for each instance are assigned their tasks, which are in turn
assigned the input event stream partitions for processing. Both the click and view
streams are unioned into a single stream logical stream, and then grouped by the
userId key.

Stage 2
The keyBy operator, in conjunction with the downstream window and aggregate
operators, requires shuffling the now-merged events to the correct downstream
instances. All events for a given key are consumed into the same instance, pro‐
viding the necessary data locality for the remaining operations.

Stage 3
Session windows for each user can be generated now that each user’s events are
local to a single instance. Events are added to the local state store in sequential
timestamp order, with the aggregation function applied to each event, until a
break of 30 minutes or more is detected. At this point the event store evicts the
completed session and purges the memory of the <windowId,userId> key and
value.

Your framework may allow for additional control over windowing
and time-based aggregations. This can include retaining sessions
and windows that have closed for a period of time, so that late-
arriving events can be applied and an update emitted to the output
stream. Check the documentation of your framework for more
information.

196 | Chapter 11: Heavyweight Framework Microservices

Next, Figure 11-10 illustrates the effects of scaling down to just a single degree of par‐
allelism. Assuming no dynamic scaling, you would need to halt the stream processor
before restoring it from a checkpoint with the new parallelism setting. Upon startup,
the service reads the stateful keyed data back from the last known good checkpoint
and restores the operator state to the assigned partitions. Once state is restored, the
service can resume normal stream processing.

Figure 11-10. Session-generating processing topology with no parallelism

Stage 1 operates as before, though in this case all of the partitions are assigned for
consumption by tasks in instance 0. Grouping and shuffling are still performed,
though the source and destination remain the same instance as seen in stage 2. Keep
in mind that the individual tasks running on instance 0 must each consume their
assigned shuffled events, though all communication here is entirely local. The last
stage of the topology, stage 3, windows and aggregates the events as normal.

Summary
This chapter introduced heavyweight stream processing frameworks, including a
brief history of their development and the problems they were created to help solve.
These systems are highly scalable and allow you to process streams according to a
variety of analytical patterns, but they may not be sufficient for the requirements of
some stateful event-driven microservice application patterns.

Heavyweight frameworks operate using centralized resource clusters, which may
require additional operational overhead, monitoring, and coordination to integrate
successfully into a microservice framework. Recent innovations in cluster and appli‐
cation deployment models have provided better integration with container manage‐
ment solutions such as Kubernetes, allowing for more granular deployment of
heavyweight stream processors similar to that of fully independent microservices.

Summary | 197

CHAPTER 12

Lightweight Framework Microservices

Lightweight frameworks provide similar functionality to heavyweight frameworks,
but in a way that heavily leverages the event broker and the container management
system (CMS). Unlike heavyweight frameworks, lightweight frameworks have no
additional dedicated resource cluster for managing framework-specific resources.
Horizonal scaling, state management, and failure recovery are provided by the event
broker and the CMS. Applications are deployed as individual microservices, just as
any BPC microservice would be deployed. Parallelism is controlled by consumer
group membership and partition ownership. Partitions are redistributed as new
application instances join and leave the consumer group, including copartitioned
assignments.

Benefits and Limitations
Lightweight frameworks offer stream processing features that rival those of heavy‐
weight frameworks, and in a number of cases, exceed them. Materialization of
streams into tables, along with simple out-of-the-box join functionality, makes it easy
to handle streams and the relational data that inevitably ends up in them. Note that
while table materializing functionality is not unique to lightweight frameworks, its
ready inclusion and ease of use are indicative of the complex stateful problems that
lightweight frameworks can address.

The lightweight model relies upon the event broker to provide the mechanisms for
data locality and copartitioning through the use of internal event streams. The event
broker also acts as the mechanism of durable storage for a microservice’s internal
state via the use of changelogs, as discussed in “Recording State to a Changelog Event
Stream” on page 112. By leveraging the CMS, you deploy lightweight microservices
like any other event-driven application. You handle application parallelism simply by
adding and removing instances, using the CMS to provide the scaling and failure

199

management mechanisms. Figure 12-1 illustrates the basic lightweight model, includ‐
ing an internal event stream used to communicate between instances.

Figure 12-1. The lightweight framework model, showcasing the usage of internal event
streams for repartitioning data

The main limitations for lightweight frameworks relate mostly to the currently avail‐
able options, covered later in this chapter.

Lightweight Processing
The lightweight framework closely mirrors the processing methodology of the heavy‐
weight framework. Individual instances process events according to the topology,
with the event broker providing an inter-instance communication layer for scalability
beyond a single instance.

Data of the same key must be local to a given processing instance for any key-based
operations, such as a join, or a groupByKey operation followed by a subsequent
reduce/aggregation. These shuffles involve sending the events through an internal
event stream, with each event of a given key written into a single partition (see
“Copartitioning Event Streams” on page 83), instead of using direct instance-to-
instance communication.

The lightweight framework leverages the event broker to provide this communication
path and illustrates the deeper integration of the lightweight application with the
event broker. Contrast this with the heavyweight framework, where shuffling requires
extensive coordination directly between the nodes. When combined with application
management options provided by the CMS, the lightweight framework is much more
aligned than the heavyweight framework with the application deployment and man‐
agement required of modern-day microservices.

200 | Chapter 12: Lightweight Framework Microservices

Handling State and Using Changelogs
The default mode of operation for lightweight frameworks is to use internal state
backed by changelogs stored in the event broker. Using internal state allows for each
microservice to control the resources it acquires using deployment configurations.

Since every lightweight application is fully independent of the oth‐
ers, one application could request to run on instances with very
high-performance local disk, while another could request to run on
instances with extremely large, albeit perhaps much slower, hard-
disk drives.

Different storage engines can also be plugged in, allowing you to use external state
stores with alternative models and querying engines. This reaps all the benefits of the
lightweight framework functionality, while also enabling options such as graph data‐
bases and document stores.

In contrast to the checkpoint model of the heavyweight frameworks, lightweight
frameworks using internal state stores leverage the event broker to store their change‐
logs. These changelogs provide the durability required for both scaling and failure
recovery.

Scaling Applications and Recovering from Failures
Scaling a microservice and recovering from failures are effectively the same process.
Adding an application instance, due to intentional scaling of a long-running process
or due to a failed instance recovering, requires that partitions be correctly assigned
alongside any accompanying state. Similarly, removing an instance, deliberately or
due to failure, requires that partition assignments and state be reassigned to another
live instance so that processing can continue uninterrupted.

One of the main benefits of the lightweight framework model is that applications can
be dynamically scaled as they are under execution. There is no need to restart an
application just to change parallelism, though there may be a delay in processing due
to consumer group rebalancing and rematerialization of state from the changelog.
Figure 12-2 illustrates the process of scaling an application up. The assigned input
partitions are rebalanced (including any internal streams) and the state is restored
from the changelogs prior to continuation of work.

Handling State and Using Changelogs | 201

Figure 12-2. Scaling up a lightweight microservice

Let’s look at the main considerations of scaling a lightweight application.

Event Shuffling
Event shuffling in lightweight framework microservices is simple, as events are repar‐
titioned into an internal event stream for downstream consumption. This internal
event stream isolates the upstream instances that create the shuffled events from the
downstream ones that consume them, acting as a shuffle service similar to that
required by heavyweight frameworks to perform dynamic scaling. Any dynamic scal‐
ing requires only that the consumers be reassigned to the internal event stream,
regardless of the producers.

State Assignment
Upon scaling, an instance with new internal state assignments must load the data
from the changelog before processing any new events. This process is similar to how
checkpoints are loaded from durable storage in heavyweight solutions. The operator
state (the mappings of <partitionId, offset>) for all event stream partitions, both
input and internal, is stored within the consumer group for the individual applica‐
tion. The keyed state (pairs of <key, state>) is stored within the changelog for each
state store in the application.

When reloading from a changelog, the application instance must prioritize consump‐
tion and loading of all internal stateful data prior to processing any new events. This
is the state restoration phase, and any processing of events before state is fully
restored risks creating nondeterministic results. Once state has been fully restored for
each state store within the application topology, consumption of both input and
internal streams may be safely resumed.

202 | Chapter 12: Lightweight Framework Microservices

State Replication and Hot Replicas
A hot replica, as introduced in “Using hot replicas” on page 116, is a copy of a state
store materialized off of the changelog. It provides a standby fallback for when the
primary instance serving that data fails, but can also be used to gracefully scale down
stateful applications. When an instance is terminated and a consumer group is reba‐
lanced, partitions can be assigned to leverage the hot replica’s state and continue pro‐
cessing without interruption. Hot replicas allow you to maintain high availability
during scaling and failures, but they do come at the cost of additional disk and pro‐
cessor usage.

Similarly, you can use hot replicas to seamlessly scale up the instance count without
having to suffer through processing pauses due to state rematerialization on the new
node. One of the current issues facing lightweight frameworks is that scaling an
instance up typically follows the current workflow:

1. Start a new instance.
2. Join the consumer group and rebalance partition ownership.
3. Pause while state is materialized from the changelog (this can take some time).
4. Resume processing.

One option is to populate a replica of the state on the new instance, wait until it’s
caught up to the head of the changelog, and then rebalance to assign it ownership of
the input partitions. This mode reduces outages due to materializing the changelog
streams and only requires extra bandwidth from the event broker to do so. This func‐
tionality is currently under development for Kafka Streams.

Choosing a Lightweight Framework
Currently, there are two main options that fit the lightweight framework model, both
of which require the use of the Apache Kafka event broker. Both frameworks provide
indefinitely retained materialized streams in their high-level APIs, unlocking options
such as primary-key joins and foreign-key joins. These join patterns permit you to
handle relational data without having to materialize to external state stores and there‐
fore reduce the cognitive overhead of writing join-based applications.

Apache Kafka Streams
Kafka Streams is a feature-rich stream processing library that is embedded within an
individual application, where the input and output events are stored in the Kafka
cluster. It combines the simplicity of writing and deploying standard JVM-based
applications with a powerful stream-processing framework leveraging deep integra‐
tion with the Kafka cluster.

Choosing a Lightweight Framework | 203

https://oreil.ly/pGqFs
https://oreil.ly/pGqFs

Apache Samza: Embedded Mode
Samza offers many of the same features as Kafka Streams, though it lags behind in
some features related to independent deployment. Samza predates Kafka Streams,
and its original deployment model is based on using a heavyweight cluster. It is only
relatively recently that Samza released an embedded mode, which closely mirrors
Kafka Streams’ application writing, deployment, and management lifecycle.

Samza’s embedded mode allows you to embed this functionality within individual
applications, just like any other Java library. This deployment mode removes the need
for a dedicated heavyweight cluster, instead relying on the lightweight framework
model discussed in the previous section. By default, Samza does rely on using Apache
Zookeeper for coordination across individual instances, but you can modify this to
use other coordination mechanisms such as Kubernetes.

Apache Samza’s embedded mode may not provide all of the func‐
tionality that it has in cluster mode.

Lightweight frameworks are not as common as heavyweight frameworks or con‐
sumer/producer libraries for the basic consumer/producer pattern. Lightweight
frameworks do rely extensively on integration with the event broker, which limits
their portability to other event broker technologies. The lightweight framework
domain is still fairly young, but is sure to grow and develop as the EDM space
matures.

Languages and Syntax
Both Kafka Streams and Samza are based in Java, which limits their use to JVM-based
languages. The high-level APIs are expressed as a form of MapReduce syntax, as is
the case in the heavyweight framework languages. Those who are experienced with
functional programming, or any of the heavyweight frameworks discussed in the pre‐
vious chapter, will feel right at home using either of these frameworks.

Apache Samza supports a SQL-like language out of the box, though its functionality
is currently limited to simple stateless queries. Kafka Streams doesn’t have first-party
SQL support, though its enterprise sponsor, Confluent, provides KSQL under its own
community license. Much like the heavyweight solutions, these SQL solutions are
wrappers on top of the underlying stream libraries and may not provide the entirety
of functions and features that would otherwise be available from the stream libraries
directly.

204 | Chapter 12: Lightweight Framework Microservices

https://oreil.ly/Dv6Ov
https://oreil.ly/Dv6Ov
https://oreil.ly/qeLIK
https://oreil.ly/LJVOv

Stream-Table-Table Join: Enrichment Pattern
Say you are working for the same large-scale advertising company as in “Example:
Session Windowing of Clicks and Views” on page 194, but you are a downstream
consumer of the session windows. As a quick reminder, the format of the windowed
session events is shown in Table 12-1.

Table 12-1. Advertisement-Sessions stream key/value definitions

Key Value

WindowKey<Window windowId, String userId> Action[] sequentialUserActions

Here, an action constitutes the following:

Action {
 Long eventTime;
 Long advertisementId;
 Enum action; //one of Click, View
}

Your team’s goal is to take the Advertisement-Sessions stream and do the following:

1. For each advertisement view action, determine if there is a click that comes after
it. Sum each view-click pair and output as a conversion event, as formatted by
Table 12-2:

Table 12-2. Advertisement-Conversions stream key/value definitions
Key Value

Long advertisementId Long conversionSum

2. Group all of the advertisement conversion events by advertisementId, and sum
their values into a grand total.

3. Join all conversion events by advertisementId on the materialized advertisement
entity stream so that your service can determine which customer owns the adver‐
tisement for billing purposes, as shown in Table 12-3:

Table 12-3. Advertisement entity stream key/value definitions
Key Value

Long advertisementId Advertisement<String name, String address, …>

Stream-Table-Table Join: Enrichment Pattern | 205

Here’s an example of some Kafka Streams source code that you could expect to see for
this operation. A KStream is the high-level abstraction of a stream, while a KTable is a
high-level abstraction of a table, generated by materializing the advertisement entity
stream.

KStream<WindowKey,Actions> userSessions = ...

//Transform 1 userSession into 1 to N conversion events, rekey on AdvertisementId
KTable<AdvertisementId,Long> conversions = userSessions
 .transform(...) //transform userSessions into conversion events
 .groupByKey()
 .aggregate(...) //Creates an aggregate KTable

//Materialize the advertisement entities
KTable<AdvertisementId,Advertisement> advertisements = ...

//The tables are automatically co-partitioned by including
//the join operation in the topology.
conversions
 .join(advertisements, joinFunc) //See stage 4 for more details.
 .to("AdvertisementEngagements")

The topology represented by the code is as follows, illustrated in Figure 12-3.

Figure 12-3. Processing topology for advertising engagement-sessions

206 | Chapter 12: Lightweight Framework Microservices

Stage 1a and 2a
The Advertisement-Sessions stream contains too many events for a single
instance to process, so the code needs to parallelize using multiple processing
instances. In this example, the maximum level of parallelization is initially 3, as
that is the partition count of the Advertisements entity stream. During off-peak
hours it may be possible to just use one or two instances, but during periods of
heavy user activity the application will fall behind.

Fortunately, the Advertisements entity stream can be repartitioned up to a
matching 12 partitions by means of an internal stream. The events are simply
consumed and repartitioned into a new 12-partition internal stream. The adver‐
tisement entities are colocated based on advertisementId with the conversion
events from stages 1b and 2b.

Stage 1b and 2b
Events are consumed from the Advertisement-Sessions event stream, with con‐
version events tabulated and emitted (key = Long advertisementId, value =
Long conversionSum). Note that for a given session event there can be multiple
conversion events created, one for each pair of view-click events per advertise
mentId. These events are colocated based on advertisementId with the adver‐
tisement entities from stages 1a and 2a.

Stage 3
The Advertisement-Conversions events must now be aggregated into the mate‐
rialized table format shown in Table 12-4, since the business is interested in keep‐
ing an indefinitely retained record of the engagements with each Advertisement
entity. The aggregation is a simple sum of all values for a given advertisementId.

Table 12-4. Total-Advertisement-Conversions stream key/value definition
Long advertisementId Long conversionSum

AdKey1 402

AdKey2 600

AdKey3 38

Thus, a new Advertisement-Conversions event of key (AdKey1, 15) processed
by this aggregation operator would increment the internal state store value of
AdKey1 from 402 to 417.

Stage 4
The last step of this topology is to join the materialized Total-Advertisement-
Conversions table created in stage 3 with the repartitioned Advertisement entity
stream. You’ve already established the groundwork for this join by copartitioning

Stream-Table-Table Join: Enrichment Pattern | 207

the input streams in stages 2a and 2b, ensuring that all advertisementId data is
local to its processing instance. The entities in the Advertisement stream are
materialized into their own partition-local state stores and subsequently joined
with the Total-Advertisement-Conversions.

A join function is used to specify the desired results from the join, much like a select
statement is used in SQL to select only the fields that the application requires. A Java
join function for this scenario may look something like this:

public EnrichedAd joinFunction (Long sum, Advertisement ad) {
 if (sum != null || ad != null)
 return new EnrichedAd(sum, ad.name, ad.type);
 else
 //Return a tombstone, as one of the inputs is null,
 //possibly indicating a deletion.
 return null;
}

The preceding joinFunction assumes that either input may be null, indicating an
upstream deletion of that event. Accordingly, you need to ensure that your code out‐
puts a corresponding tombstone downstream to its consumers. Thankfully, most
frameworks (both lightweight and heavyweight) differentiate between inner, left,
right, outer, and foreign-key joins, and do some behind-the-scenes operations to save
you from propagating tombstones through your join functions. However, for the pur‐
poses of instruction, it’s important that you consider the effects of tombstone events
in your microservice topology.

The Kafka Streams topology and joinFunction is identical to the selection expres‐
sion in SQL:

SELECT adConversionSumTable.sum, adTable.name, adTable.type
FROM adConversionSumTable FULL OUTER JOIN adTable
ON adConversionSumTable.id = adTable.id

In this case, the materialized view of the Enriched-Advertising-Engagements out‐
put event stream looks like Table 12-5.

Table 12-5. Enriched-Advertising-Engagements stream key/value definitions

AdvertisementId (Key) Enriched advertisements (value)

AdKey1 sum=402, name="Josh’s Gerbils", type="Pets"

AdKey2 sum=600, name="David’s Ducks", type="Pets"

AdKey3 sum=38, name="Andrew’s Anvils", type="Metalworking"

AdKey4 sum=10, name="Gary’s Grahams", type="Food"

AdKey5 sum=10, name=null, type=null

208 | Chapter 12: Lightweight Framework Microservices

This sample table shows the expected aggregations from stage 3, joined with the
Advertising entity data. AdKey4 and AdKey5 each show the results of a full outer join:
no conversions have yet occurred for AdKey4, while there is no advertising entity data
yet available for AdKey5.

Check your documentation to validate which types of joins are
available for your framework. Kafka Streams supports foreign-key
table-table joins, which can be extremely useful for handling rela‐
tional event data.

Summary
This chapter introduced lightweight stream processing frameworks, including their
major benefits and tradeoffs. These are highly scalable processing frameworks that
rely extensively on integration with the event broker to perform large-scale data pro‐
cessing. Heavy integration with the container management system provides the scala‐
bility requirements for each individual microservice.

Lightweight frameworks are still relatively new compared to heavyweight frame‐
works. However, the features they provide tend to be well suited for building long-
running, independent, stateful microservices, and are certainly worth exploring for
your own business use cases.

Summary | 209

CHAPTER 13

Integrating Event-Driven and
Request-Response Microservices

As powerful as event-driven microservice patterns are, they cannot serve all of the
business needs of an organization. Request-response endpoints provide the means to
serve important data in real time, particularly when you are:

• Collecting metrics from external sources, such as an application on a user’s cell
phone or Internet of Things (IoT) devices

• Integrating with existing request-response applications, particularly third-party
ones outside of the organization

• Serving content in real time to web and mobile device users
• Serving dynamic requests based on real-time information, such as location, time,

and weather

Event-driven patterns still play a large role in this domain, and integrating them with
request-response solutions will help you leverage the best features of both.

For the purposes of this chapter, the term request-response services
refers to services that communicate with each other directly, typi‐
cally through a synchronous API. Two services communicating via
HTTP is a prime example of request-response communication.

Handling External Events
Due to history, precedence, familiarity, convenience, and a whole host of other rea‐
sons, external events are predominantly sent from the outside via a request-response
API. While it is possible to expose an event broker and its streams to an external

211

client, it is largely unreasonable to do so, as you would need to resolve a number of
issues relating to access and security. And that is fine. Request-response APIs work
wonderfully for these scenarios, just as they have for many decades before. There are
two main types of externally generated events to consider.

Autonomously Generated Events
The first type of events are those sent from client to server autonomously by your
products. These requests are usually defined as a metric or measurement from the
product, such as information about what a user is doing, periodic measurements of
activity, or sensor readings of some sort. Collectively known as analytical events, these
describe measurements and statements of fact about the operation of the product
(“Example: Overloading event definitions” on page 48 shows such an event in action).
An application installed on a customer’s cell phone is a good example of an external
event source. Consider a media streaming service like Netflix, where analytical events
can be independently sent back to measure things such as which movies you have
started and how much of them you’ve watched. Any request from an external prod‐
uct, based on actions originating from that product, counts as an externally generated
event.

Now, you may be wondering if, say, requests to load the next 60s of the current movie
count as an externally generated event. Absolutely, they do. But the real question to
ask is, “Are these events important enough to the business such that they must go into
their own event stream for additional processing?” In many cases the answer is no,
and you would not collect and store those events in an event stream. But for those
cases where the answer is yes, you can simply parse the request into an event and
route it into its own event stream.

Reactively Generated Events
The second type of externally generated event is a reactive event, which is generated
in response to a request from one of your services. Your service composes a request,
sends it to the endpoint, and awaits a response. In some cases, it’s really only impor‐
tant that the request is received, and the requesting client doesn’t need any other
details from the response. For example, if you need to issue requests to send adver‐
tisement emails, collecting the response from the third-party service handling the
requests may not be useful if turned into events. Once the request is successfully
issued (HTTP 202 response), you can assume that the third-party email application
will make it happen. Collecting the responses and converting them into events may
not be necessary if there is no action to take from the results.

212 | Chapter 13: Integrating Event-Driven and Request-Response Microservices

On the other hand, your business requirements may expect significant detail from the
response of the request. A prime example of this is the use of a third-party payment
service, where the input event states the amount that is due to be paid by the cus‐
tomer. The response payload from the third-party API is extremely important, as it
specifies whether the payment succeeded or not, any error messages, and any addi‐
tional details such as a unique, traceable number indicating the payment information.
This data is important to put into an event stream, as it allows downstream account‐
ing services to reconcile accounts payable with received payments.

Handling Autonomously Generated Analytical Events
Analytical events may be bundled together and periodically sent in a batch or they
may be sent as they occur. In either case, they will be sent to a request-response API,
where they can then be routed on to the appropriate event streams. This is illustrated
in Figure 13-1, where an external client application sends analytical events to an event
receiver service that routes them to the correct output event stream.

Figure 13-1. Collecting analytical events from an external source

Use schemas to encode events when generating them on the client
side. This ensures a high-fidelity source that reduces misinterpreta‐
tion by downstream consumers, while giving producers detailed
requirements for creating and populating their events.

Schematized events are essential for consuming analytical events at scale. Schemas
clarify exactly what is collected so users can make sense of the event at a later date.
They also provide a mechanism for version control and evolution, and put the onus
of populating, validating, and testing the event on the producer of that data (the
application developers) and not the consumers (backend recipients and analysts).
Ensuring that the event adheres to a schema at creation time means that the receiver
service no longer needs to interpret and parse the event, as could be the case with a
format such as plain text.

Handling Autonomously Generated Analytical Events | 213

There are a number of restrictions that you must account for when ingesting analyti‐
cal events from devices running multiple versions of code. For instance, this is a par‐
ticularly common scenario for any application running on an end user’s moble
device. Adding new fields to collect new data, or ceasing the collection of other event
data is certainly reasonable. However, while you could force users to upgrade their
applications by locking out older versions, it’s not realistic to make them update their
application for every small change. Plan for multiple versions of analytical events, as
shown in Figure 13-2.

Figure 13-2. External sources generating analytical events with different versions

Think of external event sources as a set of microservice instances.
Each instance produces schematized events into the event stream
via the event receiver service.

Finally, it’s important to sort the incoming events into their own defined event
streams based on their schemas and event definitions. Separate these events
according to business purposes just as you would the event streams of any other
microservice.

Integrating with Third-Party Request-Response APIs
Event-driven microservices often need to communicate with third-party APIs via
request-response protocols. The request-response pattern fits in nicely with event-
driven processing; the request and response are treated simply as a remote function
call. The microservice calls the API based on the event-driven logic and awaits the
reply. Upon receipt of the reply, the microservice parses it, ensures it adheres to an
expected schema, and continues applying business logic as though it were any other
event. A generalized example of this process is shown in Figure 13-3.

214 | Chapter 13: Integrating Event-Driven and Request-Response Microservices

Figure 13-3. Integrating request-response APIs into event-driven workflows

The following source code illustrates the logical operation of the microservice using a
blocking call:

while (true) { //endless processing loop
 Event[] eventsToProcess = Consumer.consume("input-event-stream");
 for (Event event: eventsToProcess) {
 // Apply business logic to current event to generate whatever
 // request is necessary
 Request request = generateRequest(event, ...);

 // Make a request to the external endpoint. Indicate timeouts,
 // retries, etc.
 // This code uses a blocking call to wait for a response.
 Response response =
 RequestService.makeBlockingRequest(request, timeout, retries, ...);

 // HTTP response. If success, parse + apply business logic.
 if (response.code == 200) {
 // Parse the results into an object for use in this application
 <Class Type> parsedObj = parseResponseToObject(response);

 // Apply any more business logic if necessary.
 OutputEvent outEvent = applyBusinessLogic(parsedObj, event, ...);
 // Write results to the output event stream.
 Producer.produce("output-stream-name", outEvent);
 } else {
 // Response is not 200.
 // You must decide how to handle these conditions.
 // Retry, fail, log, and skip, etc.
 }
 }
// Commit the offsets only when you are satisfied with the processing results.
consumer.commitOffsets();
}

Integrating with Third-Party Request-Response APIs | 215

There are a number of benefits to using this pattern. For one, it allows you to mix
event processing with request-response APIs while applying business logic. Second,
your service can call whatever external APIs it needs, however it needs to. You can
also process events in parallel by making many nonblocking requests to the end‐
points. Only when each of the requests has been sent does the service wait for the
results; once it obtains them, it updates the offsets and proceeds to the next event
batch. Note that parallel processing is valid only for queue-style streams, since pro‐
cessing order is not preserved.

There are also a number of drawbacks to this approach. As discussed in Chapter 6,
making requests to an external service introduces nondeterministic elements into the
workflow. Reprocessing events, even just a failed batch, may give different results
than the call made during original processing. Make sure to account for this when
designing the application. In cases where the request-response endpoint is controlled
by a third party external to your organization, making changes to the API or the
response format can cause the microservice to fail.

Finally, consider the frequency at which you make requests to an endpoint. For
instance, say that you discover a bug in your microservice and need to rewind the
input stream for reprocessing. Event-driven microservices typically consume and
process events as fast as they can execute the code, which could lead to a massive
surge in requests going to the external API. This can cause the remote service to fail
or perhaps reactively block traffic coming from your IP addresses, resulting in many
failed requests and tight retry loops by your microservice. You can somewhat address
this issue by using quotas (see “Quotas” on page 241) to limit consumption and pro‐
cessing rates, but it will also require tight throttling by the microservice handling the
requests. In the case of an external API outside of your organization’s control, the
throttling responsibility may lie with you and may need to be implemented in your
microservice. This is particularly common when the external API is capable of pro‐
viding high-volume burst service, but charges you disproportionately for the volume
exceeding the baseline, as can be the case with some logging and metric services.

Processing and Serving Stateful Data
You can also create event-driven microservices that provide a request-response end‐
point for the random access of state by using the EDM principles discussed so far in
this book. The microservice consumes events from input event streams, processes
them, applies any business logic, and stores state either internally or externally
according to application needs. The request-response API, which is often contained
within the application (more on this later in the chapter), provides access to these
underlying state stores. This approach can be broken down into two major sections:
serving state from internal state stores, and serving state from external state stores.

216 | Chapter 13: Integrating Event-Driven and Request-Response Microservices

Serving Real-Time Requests with Internal State Stores
Microservices can serve the results sourced from their internal state, as demonstrated
in Figure 13-4. The client’s request is delivered to a load balancer that routes the
request on to one of the underlying microservice instances. In this case, there is only
one microservice instance, and since it is materializing all of the state data for this
application, all of its application data is available within the instance. This state is
materialized via the consumption of the two input event streams (A and B), with the
changelog backed up to the event broker.

Figure 13-4. Overview of an EDM with a REST API serving content to a client

Now, it is quite common that multiple microservice instances are required to handle
the load and that internal state may be split up between instances. When using multi‐
ple microservice instances, you must route requests for state to the correct instance
hosting that data, as all internal state is sharded according to key, and a keyed value
can only ever be assigned to one partition. Figure 13-5 shows a client making a
request that is then forwarded to the correct instance containing the necessary state.

Processing and Serving Stateful Data | 217

Figure 13-5. Using partition assignments to determine where materialized state for a
given key is located

Hot replicas of state stores (see “Using hot replicas” on page 116)
may also be used to serve direct-call requests, should your frame‐
work support their use. Keep in mind that hot-replica data may be
stale in proportion to the replication lag from the primary state
store.

There are two properties of event-driven processing that you can rely on to deter‐
mine which instance contains a specific key/value pair:

• A key can only be mapped to a single partition (see “Repartitioning Event
Streams” on page 81)

• A partition can only be assigned to a single consumer instance (see “Consuming
as an event stream” on page 32)

A microservice instance within a consumer group knows its partition assignments
and those of its peers. All events of a given key must reside inside a single partition
for an event stream to be materialized. By applying the partitioner logic to the key of
the request, the microservice can generate the partition ID assignment of that key. It
can then cross-reference that partition ID with the partition assignments of the

218 | Chapter 13: Integrating Event-Driven and Request-Response Microservices

consumer group to determine which instance contains the materialized data associ‐
ated with the key (if the data for that key exists at all).

For example, Figure 13-6 illustrates using the properties of the partitioner assignment
to route a REST GET request.

Figure 13-6. Workflow illustrating the routing of a request to the correct instance

The partitioner indicates that the key is in P1, which is assigned to instance 1. If a
new instance is added and the partitions are rebalanced, subsequent routing may
need to go to a different instance, which is why the consumer group assignments are
instrumental in determining the location of the partition assignments.

One drawback of serving sharded internal state is that the larger the microservice
instance count, the more spread out the state between individual instances. This
reduces the odds of a request hitting the correct instance on the first try, without
needing a redirect. If the load balancer is simply operating on a round-robin distribu‐
tion pattern and assuming an even distribution of keys, then the chance of a request
being a hit on the first try can be expressed as:

success‐rate = 1/ number of instances

In fact, for a very large number of instances, almost all requests will result in a miss
followed by a redirect, increasing the latency of the response and load on the applica‐
tion (as each request will likely require up to two network calls to process it, instead
of one). Luckily, a smart load balancer can perform the routing logic before sending
the initial request to the microservices, as demonstrated in Figure 13-7.

Processing and Serving Stateful Data | 219

Figure 13-7. Using the load balancer to correctly forward requests based on consumer
group ownership and partitioner logic

The smart load balancer applies the partitioner logic to obtain the partition ID, com‐
pares it against its internal table of consumer group assignments, and then forwards
the request accordingly. Partition assignments will need to be inferred from the inter‐
nal repartition streams or the changelog streams for a given state store. This approach
does entangle the logic of your application with the load balancer, such that renaming
state stores or changing the topology will cause the forwarding to fail. It’s best if any
smart load balancers are part of the single deployable and testing process of your
microservice so that you can catch these errors prior to production deployment.

Using a smart load balancer is just a best effort to reduce latency.
Due to race conditions and dynamic rebalancing of internal state
stores, each microservice instance must still be able to redirect
incorrectly forwarded requests.

Serving Real-Time Requests with External State Stores
Serving from an external state store has two advantages over the internal state store
approach. For one, all state is available to each instance, meaning that the request
does not need to be forwarded to the microservice instance hosting the data as per
the internal storage model. Second, consumer group rebalances also don’t require the
microservice to rematerialize the internal state in the new instance, since again, all
state is maintained external to the instance. This allows the microservice to provide
seamless scaling and zero-downtime options that can be difficult to provide with
internal state stores.

220 | Chapter 13: Integrating Event-Driven and Request-Response Microservices

Ensure that state is accessed via the request-response API of the
microservice and not through a direct coupling with the state store.
Failure to do so introduces a shared data store, resulting in tight
coupling between services, and makes changes difficult and risky.

Serving requests via the materializing event-driven microservice
Each microservice instance consumes and processes events from its input event
streams and materializes the data to the external state store. Each instance also pro‐
vides the request-response API for serving the materialized data back to the request‐
ing client. This pattern, shown in Figure 13-8, mirrors that of serving state from an
internal state store. Note that each microservice instance can serve the entire domain
of keyed data from the state store and thus can handle any request passed to it.

Figure 13-8. An all-in-one microservice serving from external state store; note that
either instance could serve the request

Both input event stream processing and request-response serving capacity scale by
increasing or decreasing the instance count, as with internal state store microservices.
The number of instances can be scaled beyond the count of the event stream parti‐
tions. These extra instances won’t be assigned partitions to process, but they can still
process external requests from the request-response API. Furthermore, they exist as
standby instances ready to be assigned a partition in the case that one of the other
instances is lost.

One of the main advantages of this pattern is that it doesn’t require much in the way
of deployment coordination. This is a single all-in-one microservice that can con‐
tinue to serve state from the external state store regardless of the current instance
count.

Processing and Serving Stateful Data | 221

Serving requests via a separate microservice
In this pattern, the request-response API is completely separate from the executable
of the event-driven microservice that materializes the state to the external state store.
The request-response API remains independent from the event processor, though
both have the same bounded context and deployment patterns. This pattern is exem‐
plified in Figure 13-9. You can see how the requests are served via a single REST API
endpoint, while events are processed using two event processing instances.

Figure 13-9. A microservice composed of separate executables—one for serving requests,
the other for processing events

While this pattern has two microservices operating on a single data
store, there’s still just a single bounded context. These two micro‐
services are treated as a single composite service. They reside within
the same code repository and are tested, built, and deployed
together.

One of the main advantages of this model is that because the request-response API is
fully independent of the event processor, you can choose the implementation lan‐
guages and scaling needs independently. For instance, you could use a lightweight
stream framework to populate the materialized state, but use a language and associ‐
ated libraries that are already commonly used in your organization to deliver a con‐
sistent web experience to your customers. This approach can give you the best of
both worlds, though it does come with the additional overhead of managing multiple
components in your codebase.

A second major advantage of this pattern is that it isolates any failures in the event
processing logic from the request-response handling application. This eliminates the
chance that any bugs or data-driven issues in the event processing code could bring
down the request-response handling instance, thereby reducing downtime (note that
the state will become stale).

222 | Chapter 13: Integrating Event-Driven and Request-Response Microservices

The main disadvantages of this pattern are complexity and risk. Coordinating
changes between two otherwise independent applications is risky, as altering the data
structures, topologies, and request patterns can necessitate dependent changes in
both services. Additionally, coupling services invalidates some of the EDM principles,
such as not sharing state via common data stores and using singular deployables for a
bounded context.

All that being said, this is still a useful pattern for serving data in real time, and it is
often successfully used in production. Careful management of deployments and com‐
prehensive integration testing is key for ensuring success.

Handling Requests Within an Event-Driven Workflow
Request-response APIs form the basis of communications between many systems,
and as a result, you need to ensure that your applications can handle these data inputs
in a way that integrates with event-driven microservice principles. One way to handle
requests is just as you would with any non-event-driven system: perform the reques‐
ted operation immediately and return the response to the client. Alternately, you can
also convert the request into an event, inject it into its own event stream, and process
it just as any other event in the system. Finally, the microservice may also perform a
mix of these operations, by turning only requests that are important to the business
into events (that can be shared outside the bounded context), while handling other
requests synchronously. Figure 13-10 illustrates this concept, which will be expanded
on shortly in “Example: Newspaper publishing workflow (approval pattern)” on page
225.

Figure 13-10. Handling requests directly versus turning them into events first

The leftmost portion of the preceding figure shows a traditional object creation oper‐
ation being performed, with the results written directly to the database. Alternately,
the rightmost portion shows an event-first solution, where the request is parsed into

Handling Requests Within an Event-Driven Workflow | 223

an event and published to a corresponding event stream, prior to the event-driven
workflow consuming it, applying business logic, and storing it in the database.

The major benefit of first writing to the event stream is that it provides a durable
record of the event, and allows any service to materialize off of that data. The biggest
tradeoff, however, is the latency incurred, and that the service must wait for the result
to be materialized into the data store to be used (eventually-consistent read-after-
write). One way to mitigate this delay is to keep the value in memory after success‐
fully writing it to the object stream, allowing you to use it in application-side
operations. This will not, however, work for operations that require the data to be
present in the database (e.g., joins), as the event must be materialized first.

Processing Events for User Interfaces
A user interface (UI) is the means by which people interact with the bounded context
of a service. Request-response frameworks are exceedingly common for a UI applica‐
tion, with many options and languages available to serve users’ needs. Integrating
these frameworks into the event-driven domain is important for unlocking their
intrinsic value.

There are a number of concerns to address when processing user input as an event
stream. Application designs that process requests as events must incorporate an asyn‐
chronous UI. You must also ensure that the application behavior manages user expect‐
ations. For example, in a synchronous system, a user that clicks a button may expect
to receive a failure or success response in very short order, perhaps in 100 ms or less.
In an asynchronous event processing system, it may take the processing service
longer than 100 ms to process and handle the response, especially if the event stream
has a large number of records to process.

Research and implement best practices for asynchronous UIs when
handling user input as events. Proper UI design prepares the user
to expect asynchronous results.

There are certain asynchronous UI techniques you can use to help manage your
users’ expectations. For example, you can update the UI to indicate that their request
has been sent, while simultaneously discouraging them from performing any more
actions until it has completed. Airline booking and automobile rental websites often
display a “please wait” message with a spinning wheel symbol, blanking out the rest of
the web page from user input. This informs users that the backend service is process‐
ing the event and that they can’t do anything else until it has completed.

Another factor to consider is that the microservice may need to continually process
incoming nonuser events while awaiting further user input. You must decide when

224 | Chapter 13: Integrating Event-Driven and Request-Response Microservices

the service’s event processing has progressed sufficiently for an update to be pushed
to the UI. In fact, you must also decide when the initial processing of events from the
beginning of time has caught up to the present, despite the ongoing updates that most
EDM services must handle.

There are no hard-and-fast rules dictating when you must update your interface. The
business rules of the bounded context can certainly guide you, predominantly around
the impact of users making decisions based on the current state. Answering the fol‐
lowing questions may help you decide how and when to update your UI:

• What is the impact of the user making a decision based on stale state?
• What is the performance/experience impact of pushing a UI update?

Intermittent network failures causing request retries can introduce
duplicate events. Ensure that your consumers can handle dupli‐
cates idempotently, as covered in “Generating duplicate events” on
page 129.

This next example demonstrates some of the benefits of converting requests directly
to events prior to processing.

Example: Newspaper publishing workflow (approval pattern)
A newspaper publisher has an application that manages the layout of its publications.
Each publication relies upon customizable templates to determine how and where
articles and advertisements are placed.

A graphical user interface (GUI) allows the newspaper designers to arrange and place
articles according to the publisher’s business logic. The hottest news is placed on the
front pages, with less important articles placed further in. Advertisements are also
positioned according to their own specific rules, usually dependent on size, content,
budget, and placement agreements. For example, some advertisers may not want their
ads placed next to specific types of stories (e.g., a children’s toy company would want
to avoid having its ad placed alongside a story about a kidnapping).

The newspaper designer is responsible for placing the articles and advertisements
according to the layout template. The newspaper editor is responsible for ensuring
that the newspaper is cohesive, that the articles are ordered by category and projected
importance to the reader, and that the advertisements are placed according to the
contracts. The newspaper editor must approve the work performed by the designer
before it can be published, or reject the work in the case that a re-organization is
required. Figure 13-11 illustrates this workflow.

Handling Requests Within an Event-Driven Workflow | 225

Figure 13-11. Workflow for populating a newspaper, with gating based on approval by
editor and advertiser

Both the editor and the advertiser can reject a proposed newspaper, though the
advertiser will get the chance to do so only if the editor has already approved the lay‐
out. Furthermore, the newspaper is interested only in obtaining approval from the
most important advertisers, those whose ad spend is a significant source of revenue.

The design and the approval of the newspaper are two separate bounded contexts,
each concerned with its own business functionality. This can be mirrored by two
microservices, as shown in Figure 13-12. For simplicity’s sake, the figure omits
accounts, account management, authentication, and login details.

Figure 13-12. Newspaper design and approval workflow as microservices

There is a fair bit to unpack in this example, so let’s start with the newspaper popula‐
tor microservice. This service consumes layout templates, advertisements, and arti‐
cles streams into a relational database. Here, the employee responsible for layout
performs their tasks, and when the newspaper is ready for approval, they compile the
populated newspaper into a PDF, save it to an external store, and produce it to the
populated newspaper event stream. The format for the populated newspaper event is
as follows:

226 | Chapter 13: Integrating Event-Driven and Request-Response Microservices

//Populated newspaper event

Key: String pn_key //Populated newspaper key
Value: {
 String pdf_uri //Location of the stored PDF
 int version //Version of the populated newspaper
 Pages[] page_metadata //Metadata about what is on each page
 - int page_number
 - Enum content //Ad, article
 - String id //ID of the ad or article
}

Because the PDF may be too large to store in an event, it can be
stored in an external file store, with access provided via a universal
resource identifier, or URI (see “Minimize the Size of Events” on
page 51).

You may have noticed that this microservice does not translate the human interac‐
tions of the newspaper populator GUI into events—why is this? Despite “human
interactions as events” being one of the main themes of this example, it is not neces‐
sary to convert all human interaction into events. This particular bounded context is
really only concerned with producing the final populated newspaper event, but it isn’t
particularly important how it came to be. This encapsulation of responsibility allows
you to leverage a monolithic framework with synchronous GUI patterns for building
this microservice, and to use patterns and software technologies that you or your
developers may already be familiar with.

The populated newspaper stream might get out of sync with the
state within the newspaper populator microservice. See “Data Lib‐
eration Patterns” on page 57 for details on atomic production from
a monolith, particularly using the outbox table pattern or change-
data capture logs.

Approvals are handled by a separate microservice, where the populated newspaper
event is loaded by the editor to view and approve. The editor can mark up a copy of
the PDF as necessary, add comments, and provide tentative approval to move it on to
the next step: advertiser approval. The editor may also reject it at any point of the
workflow, before, during, or after obtaining advertiser review. The event structure is
as follows:

//Editor approval event

Key: String pn_key //Populated newspaper key
Value: {
 String marked_up_pdf_uri //Optional URI of the marked-up PDF
 int version //Version of the populated newspaper

Handling Requests Within an Event-Driven Workflow | 227

 Enum status //awaiting_approval, approved, rejected
 String editor_id
 String editor_comments
 RejectedAdvertisements[] rejectedAds //Optional, if rejected
 - int page_number
 - String advertisement_id
 - String advertiser_id
 - String advertiser_comments
}

Advertisers are provided with a UI for approving their advertisement size and place‐
ment. This service is responsible for determining which advertisements require
approval and which do not, and for cutting up the PDF into appropriate pieces for
the advertiser to view. It is important to not leak information about news stories or
competitors’ advertisements. Approval events are written to an advertiser’s approval
stream, similar to that of the editor:

//Advertiser approval event

Key: String pn_key //Populated newspaper key
Value: {
 String advertiser_pdf_uri //The PDF piece shown to the advertiser
 int version //Version of the populated newspaper
 int page_number
 boolean approved //Approved or not
 String advertisement_id
 String advertiser_id //ID of the approver
 String advertiser_comments
}

You may have noticed that the advertiser approvals are keyed on pn_key and that
there will be multiple advertiser events with this same key per newspaper. In this case
the advertiser approvals are being treated as events and not entities, and it is the aggre‐
gate of these events that determines the complete approval by an advertiser for the
newspaper. Keep in mind that each advertiser logs into their GUI and approves their
ads separately, and it’s not until they have all replied (or perhaps, failed to reply in
time) that the process can move on to the final approval. If you take a look at the edi‐
tor approval event definition, you can see that the aggregation of rejected events is
represented as an array of RejectedAdvertisements objects.

One benefit of having populated newspaper, editor approval, and advertiser approval
as events is that together they form the canonical narrative of newspapers, rejections,
comments, and approvals. You can audit this narrative at any point in time to see the
history of submissions and approvals, and pinpoint where things may have gone
wrong. Another benefit is that by writing directly to events, the approval microser‐
vice can use a pure stream processing library, like Apache Kafka or Samza, to materi‐
alize the state directly from the event stream whenever the application starts up.
There is no need to create an external state store for managing this data.

228 | Chapter 13: Integrating Event-Driven and Request-Response Microservices

Separating the editor and advertiser approval services
Business requirements demand that the editor approval service and advertiser appro‐
val service be separated. Each of these serves a related, though separate, business con‐
text. In particular, the advertiser components of the currently combined service are
responsible for:

• Determining which advertisers to ask for approval
• Slicing up the PDF into viewable chunks
• Managing advertiser-facing components, controls, and branding
• Handling public-facing exposure to the wider internet, particularly around secu‐

rity practices and software patches

The editor components of the combined service, on the other hand, do not need to
address public-facing concerns such as image, branding, and security. It is primarily
concerned with:

• Approving overall layout, design, and flow
• Assessing the summary of retailer responses (not each one individually)
• Providing suggestions to the newspaper designer on how to accommodate adver‐

tiser rejections

A mock-up of the new microservice layout is shown in Figure 13-13.

Figure 13-13. Independent advertiser and editor approval services

Handling Requests Within an Event-Driven Workflow | 229

There are two new event streams to consider. The first is in step 2, the editor-
approved p.n. stream. The format of this stream is identical to that of the populated
newspaper stream, but this event is produced only after the editor is satisfied with the
overall newspaper and releases it for advertiser approval.

The populated newspaper stream is the single source of truth for all
candidate newspapers. The editor-approved p.n. stream is the sin‐
gle source of truth only for newspapers that have been approved for
advertiser review, having been filtered by the editor system’s logic.
The two event streams do not have the same business meaning.

A major advantage of this design is that all editor gating logic stays completely within
the editor approval service. Note that updates to the populated newspaper stream are
not automatically forwarded on, but rely on the editor releasing them for approval.
Multiple versions of the same newspaper (pn_key) are contained entirely within the
editor service. This arrangement lets the editor control which versions are sent on for
approval, while gating any further revisions until they are satisfied with the initial
advertiser feedback.

The second new event stream is in step 3, the ad-approvals summary stream. It con‐
tains the summaries of the results from the advertiser approval service, designed to
provide both a historical record and the current status of each of the responses for a
given newspaper. Keep in mind that as a separate service, the editor approval service
has no way to know which advertisers have been sent instructions to approve their
advertisements. That information is strictly the domain of the advertising approval
system, though it can communicate a summary of the results to the editor. The for‐
mat of the ad-approval summary event is as follows:

//Ad-approval summary event

Key: String pn_key
Value: {
 int version //Version of the populated newspaper
 AdApprovalStatus[] ad_app_status
 - Enum status //Waiting, Approved, Rejected, Timedout
 - int page_number
 - String advertisement_id
 - String advertiser_id
 - String advertiser_comments
}

This ad-approval summary event definition demonstrates the encapsulation of adver‐
tiser approval state into the advertiser approval service. The editor can make deci‐
sions on the approval of the newspaper based on the statuses of the ad-approval
summary event, without having to manage or handle any of the work of obtaining
those results.

230 | Chapter 13: Integrating Event-Driven and Request-Response Microservices

Micro-Frontends in Request-Response Applications
Frontend and backend services coordinate in three primary ways to bring business
value to users. Monolithic backends are common in many organizations of any size.
Microservice backends have become more popular with the growing adoption of
microservices, both synchronous and event-driven. In both of these first two
approaches, the frontend and backend services are owned and operated by separate
teams, such that the end-to-end business functionality crosses team boundaries. In
contrast, a microfrontends approach aligns implementations completely on business
concerns, from backend to frontend. These three approaches are illustrated in
Figure 13-14.

Figure 13-14. Three main approaches to organizing products and teams for customer-
facing content

The monolithic backend approach is one that most software developers are familiar
with, at least to some extent. In many cases, a dedicated backend team, usually com‐
posed of many subteams for very large monoliths, performs most of the work on the
monolith. Head count increases as the monolith grows.

The frontend team is completely separate from the backend, and they communicate
via a request-response API to obtain the necessary data for rendering the customer’s
UI. A product implemented in this architecture has to coordinate efforts between
teams and across technical implementations, making it potentially one of the most
expensive ways of delivering functionality.

The microservice backend approach is one where many teams migrating to microser‐
vices eventually end up, and for better or worse, it is where many of them stay. The
major advantage of this approach is that the backend is now composed of independ‐
ent, product-focused microservices, with each microservice (or set of product-
supporting microservices) independently owned by a single team. Each microservice

Micro-Frontends in Request-Response Applications | 231

materializes the necessary data, performs its business logic, and exposes any neces‐
sary request-response APIs and event streams up to the aggregation layer.

A major downside of the microservice backend approach is that it still depends heav‐
ily on an aggregation layer, where numerous problems can pop up. Business logic can
creep into this layer due to attempts to resolve product boundary issues, or to achieve
“quick wins” by merging features of otherwise separate products. This layer often suf‐
fers from the tragedy of the commons, whereby everyone relies on it but no one is
responsible for it. While this can be resolved to some extent by a strict stewardship
model, accumulations of minor, seemingly innocent changes can still let an inappro‐
priate amount of business logic leak through.

The third approach, the microfrontend, splits up the monolithic frontend into a ser‐
ies of independent components, each backed by supporting backend microservices.

The Benefits of Microfrontends
Microfrontend patterns match up very well with event-driven microservice backends,
and inherit many of their advantages, such as modularity; separation of business con‐
cerns; autonomous teams; and deployment, language, and code-base independence.

Let’s look at some of the other notable benefits of microfrontends.

Composition-Based Microservices
Microfrontends are a compositional pattern, meaning you can add services as needed
to an existing UI. Notably, microfrontends pair extremely well with event-driven
backends, which are also intrinsically composition-based. Event streams enable the
microservice to pull in the events and entities needed to support the backend boun‐
ded context. The backend service can construct the necessary state and apply busi‐
ness logic specifically for the business needs of the product provided by the
microfrontend. The state store implementation can be selected to specifically suit the
requirements of the service. This form of composition provides tremendous flexibil‐
ity in how frontend services can be built, as you’ll see in “Example: Experience Search
and Review Application” on page 234.

Easy Alignment to Business Requirements
By aligning microfrontends strictly on business bounded contexts, just as you’d do
with other microservices operating in the backend, you can trace specific business
requirements directly to their implementations. This way, you can easily inject experi‐
mental products into an application without adversely affecting the codebase of
existing core services. And should their performance or user uptake not be as
expected, you can just as easily remove them. This alignment and isolation ensures
that product requirements from various workflows do not bleed into one another.

232 | Chapter 13: Integrating Event-Driven and Request-Response Microservices

Drawbacks of Microfrontends
While microfrontends enable separation of business concerns, you have to account
for features that you may take for granted in a monolithic frontend, such as consis‐
tent UI elements and total control over each element’s layout. Microfrontends also
inherit some of the issues common to all microservices, such as potential for duplica‐
ted code and the operational concerns of managing and deploying microservices.
This section covers a few microfrontend-specific considerations.

Potentially Inconsistent UI Elements and Styling
It’s important that the applications’ visual style remains consistent, and this can be
challenging when a frontend experience is composed of many independent micro‐
frontends. Each microfrontend is another potential point of failure—that is, where
the UI design might be inconsistent with the desired user experience. One method to
remedy this is to provide a strong style guide, in conjunction with a lean library of
common UI elements to be used in each microfrontend.

The downside to this approach is that it requires closely maintaining ownership of
both the style guide and the elements. Adding new elements and modifying existing
ones can be a bit difficult to coordinate across multiple teams using the element
library in their products. Accommodating these assets using a stewardship model,
similar to that used in many popular open source projects, can help ensure that
changes are done in a measured and deliberate way. This requires participation and
dialogue between the asset users and, as a result, incurs an overhead cost.

Ensure common UI element libraries are free of any bounded-
context-specific business logic. Keep all business logic encapsulated
within its own proper bounded context.

Finally, making changes to the common UI elements of the application may require
that each microfrontend be recompiled and redeployed. This can be operationally
expensive, as each microfrontend team will need to update its application, test to
ensure that the UI adheres to the new requirements, and verify that it integrates as
expected with the UI layer that stitches it together (more on this next). This expense
is somewhat mitigated by the infrequency of sweeping UI changes.

Varying Microfrontend Performance
Microfrontends, as pieces of a composite framework, can be problematic at times.
These separate frontends may load at different rates, or worse, may not load anything
at all during a failure. You must ensure that the composite frontend can handle these

Drawbacks of Microfrontends | 233

scenarios gracefully and still provide a consistent experience for the parts of it that are
still working. For example, you may want to use spinning “loading” signs for ele‐
ments that are still awaiting results from slow microfrontends. Stitching these micro‐
frontends together is an exercise in proper UI design, but the deeper details and
nuances of this process are beyond the scope of this book.

Example: Experience Search and Review Application
“An experience is something you’ll never forget!” claim the makers of the application,
which connects vacationers with local guides, attractions, entertainment, and culi‐
nary delights. Users can search for local experiences, obtain details and contact infor‐
mation, and leave reviews.

The first version of this application has a single service that materializes both the
experience entities and customer reviews into a single endpoint. Users can input their
city name to see a list of available experiences in their area. Once they select an
option, the experience information along with any associated reviews are displayed,
as in the simple mockup in Figure 13-15.

Figure 13-15. Experiences search and review application, GUI mockup version 1 with
monolithic frontend

In the first version of the application, data is stored in a basic key/value state store
that offers only limited searching capabilities. Searching based on the user’s geoloca‐
tion is not yet available, though it is something your users have been requesting.
Additionally, it would be a good idea for version 2 to split off reviews into their own
microservice, as they have sufficiently distinct business responsibilities to form their
own bounded context. Finally, you should create the product microfrontend to stitch
these two products together and act as the aggregation layer for each business service.
Each of these three microfrontends may be owned and managed by their own team,
or the same team, though the separation of concerns allows for scaling ownership just

234 | Chapter 13: Integrating Event-Driven and Request-Response Microservices

as in backend microservices. A new mockup of the GUI showing the separated front‐
end responsibilities is shown in Figure 13-16.

Figure 13-16. Experiences search and review application, GUI mockup version 2 with
microfrontends

Now the product boundary encapsulates both the search and review microfrontends
and contains all the logic necessary to stitch these two services together. It does not,
however, contain any business logic pertaining to these services. This updated UI also
illustrates how the microfrontend’s responsibilities have changed, as it must now sup‐
port geolocation search functionality. The user’s address is transposed into lat-lon
coordinates, which can be used to compute the distance to nearby experiences. Mean‐
while, the review microfrontend’s responsibilities remain the same, but it is freed of
its coupling to the search service. Figure 13-17 shows how this migration into micro‐
frontends could look.

Drawbacks of Microfrontends | 235

Figure 13-17. The flexibility of microfrontends paired with backend event-driven micro‐
services

There are a few notable points about this figure. First, as discussed earlier in this
chapter, the reviews are being published first as events to the review event stream, and
then subsequently ingested back into the data store. This is true for both versions of
the service, and it illustrates the importance of keeping core business data external to
the implementation. In this way you can easily break out the review service into its
own microservice, without performing unnecessary and error-prone operations with
data synchronization.

If the reviews were kept internal to version 1’s data store, you would instead have to
look into liberating them for version 2’s use (Chapter 4) and then come up with a
migration plan for its long-term storage in an event stream.

The ability to materialize and consume any stream of business
events, however the service needs them, is what makes
event-driven microservice backends pair so effectively with
microfrontends.

Second, the review service has been broken out into its own microservice, fully sepa‐
rating its bounded context and implementation from those of search. Third, the
search service has replaced its state store with one capable of both plain-text and
geolocation search functionality. This change supports the business requirements of
the search service, which can now be addressed independently of the review service
business requirements. This solution illustrates how composition-based backends

236 | Chapter 13: Integrating Event-Driven and Request-Response Microservices

give development teams the flexibility to use the best tools to support the microfron‐
tend product.

In this new version, the search microservice consumes events from the user profile
entity stream to personalize search results. While version 1 of the backend service
could certainly also consume and use this data, the increased granularity of the serv‐
ices in version 2 clarifies which business functions are using the user data. An
observer can tell which streams are consumed and used for each part of the frontend
just by looking at the input streams for the bounded contexts. Conversely, in version
1, without digging into the code, an observer would have no idea whether it’s the
search or the review portion using the user events.

Finally, note that all necessary data for both the old and new versions are sourced
from the exact same event streams. Because these event streams are the single source
of truth you can change the application backends without having to worry about
maintaining a specific state store implementation or about migrating data. This is in
stark contrast to a monolithic backend, where the database also plays the role of data
communication layer and cannot be easily swapped out. The combination of an
event-driven backend paired with a microfrontend is limited only by the granularity
and detail of the available event data.

Summary
This chapter has covered the integration of event-driven microservices with request-
response APIs. External systems predominantly communicate via request-response
APIs, be they human or machine driven, and their requests and responses may have
to be converted into events. Machine input can be schematized ahead of time, to emit
events that can be collected server-side via the request-response API. Third-party
APIs typically require parsing and wrapping the responses into their own event defi‐
nition and tend to be more brittle with change.

Human interactions can also be converted into events, to be processed asynchro‐
nously by the consuming event-driven microservice. This requires an integrated
design, where the user interface cues the user that their request is being handled asyn‐
chronously. By treating all essential user inputs as streams of events, the implementa‐
tion of the bounded context is effectively decoupled from the user data. This allows
for significant flexibility in the architectural evolution of the design and permits com‐
ponents to be altered without undue hardship.

Finally, microfrontends provide an architecture for full-stack development of prod‐
ucts based on event-driven microservices. Backend event-driven microservices are
compositional by nature, drawing together events and entities to apply business logic.
This pattern is extended to the frontend, where user experiences need not be one
large monolithic application, but instead can compromise a number of purpose-built

Summary | 237

microfrontends. Each microfrontend serves its particular business logic and func‐
tionality, with an overall compositional layer to stitch the various applications
together. This architectural style mirrors the autonomy and deployment patterns of
the backend microservices, providing full product alignment and allowing flexible
frontend options for experimentation, segmentation, and delivery of custom user
experiences.

238 | Chapter 13: Integrating Event-Driven and Request-Response Microservices

CHAPTER 14

Supportive Tooling

Supportive tooling enables you to efficiently manage event-driven microservices at
scale. While many of these tools can be provided by command-line interfaces exe‐
cuted by administrators, it is best to have a gamut of self-serve tools. These provide
the DevOps capabilities that are essential for ensuring a scalable and elastic business
structure. The tools covered in this chapter are by no means the only ones available,
but they are tools that I and others have found useful in our experience. Your organi‐
zation will need to decide what to adopt for its own use cases.

Unfortunately, there is a dearth of freely available open source tooling for managing
event-driven microservices. Where applicable, I have listed specific implementations
that are available, but many of them have been privately written for the businesses I
have worked for. You will likely need to write your own specific tools, but I encourage
you to use open source tooling when available and to contribute back to it when
possible.

Microservice-to-Team Assignment System
When a company has a small number of systems, it’s easy to use tribal knowledge or
informal methods to keep track of who owns which systems. In the microservice
world, however, it is important to explicitly track ownership of microservice imple‐
mentations and event streams. By following the single writer principle (see “Micro‐
service Single Writer Principle” on page 28), you can attribute event stream
ownership back to the microservice that owns the write permissions.

You can use a simple microservice developed in-house to track and manage all of the
dependencies between people, teams, and microservices. This system is the founda‐
tion for many of the other tools within this chapter, so I strongly suggest that you
look into finding or developing it. Assigning microservice ownership this way helps

239

ensure that fine-grained DevOps permissions are correctly assigned to the teams that
need them.

Event Stream Creation and Modification
Teams will need the ability to create new event streams and modify them accordingly.
Microservices should have the right to automatically create their own internal event
streams and have full control over important properties such as the partition count,
retention policy, and replication factor.

For instance, a stream that contains highly important, extremely sensitive data that
cannot be lost under any circumstances may have an infinite retention policy and a
high replication factor. Alternately, a stream containing a high volume of individually
unimportant updates may have a high partition count with a low replication factor
and a short retention policy. Upon creating an event stream, it is customary to assign
ownership of it to a particular microservice or even an external system. This is cov‐
ered in the next section.

Event Stream Metadata Tagging
One useful technique for assigning ownership is to tag streams with metadata. Then,
only teams that own the production rights to a stream can add, modify, or remove
metadata tags. Some examples of useful metadata include, but are not limited to, the
following:

Stream owner (service)
The service that owns a stream. This metadata is regularly used when communi‐
cating change requests or auditing which streams belong to which services. It
adds clarity to ownership and the business communications structure of any
microservice or event stream in your organization.

Personally identifiable information (PII)
Information that requires stricter security handling because it can identify users
either directly or indirectly. One of the basic use cases of this metadata is to
restrict access to any event stream marked as PII unless the team owning the data
explicitly gives approval.

Financial information
Anything pertaining to money, billing, or other important revenue-generating
events. Similar but not identical to PII.

Namespace
A descriptor aligned with the nested bounded context structures of the business.
A stream with a namespace assigned could be hidden from services outside of the
namespace, but available for services within the namespace. This helps reduce

240 | Chapter 14: Supportive Tooling

data discovery overload by concealing inaccessible event streams to a user brows‐
ing through available event streams.

Deprecation
A way of indicating that a stream is outdated or has been superseded for some
reason. Tagging an event stream as deprecated allows for grandfathered systems
to continue using it while new microservices are blocked from requesting a sub‐
scription. This tag is generally used when breaking changes must be made to the
data format of an existing event stream. The new events can be put into the new
stream, while the old stream is maintained until dependent microservices can be
migrated over. Finally, the deprecated event stream owner can be notified when
there are no more registered consumers of the deprecated stream, at which point
it may be safely deleted.

Custom tags
Any other metadata that may be suitable to your business can and should be
tracked with this tool. Consider which tags may be important to your organiza‐
tion and ensure they are available.

Quotas
Quotas are generally established by the event broker at a universal level. For instance,
an event broker may be set to allow only 20% of its CPU processing time to go toward
serving a single producer or consumer group. This quota prevents accidental denial
of service due to an unexpectedly chatty producer or a highly parallelized consumer
group beginning from the start of a very large event stream. In general, you want to
ensure at the very least that your entire cluster won’t be saturated by one service’s I/O
requests. You can simply limit how many resources a consumer or producer can use,
resulting in it being throttled.

You may need to set up quotas at a more granular level, preventing surge-prone sys‐
tems from being throttled while still ensuring a minimum amount of processing
power and network I/O for steady-state consumers. You may want to set up different
quotas or remove them entirely for producers producing data from sources outside
the event broker cluster. For instance, a producer publishing events based on third-
party input streams or external synchronous requests may simply end up dropping
data or crashing if its production rate is throttled below the incoming message rate.

Schema Registry
Explicit schemas provide a strong framework for modeling events. Precise definitions
of data, including names, types, defaults, and documentation, provide clarity to both
producers and consumers of the event. The schema registry is a service that allows

Quotas | 241

your producers to register the schemas they have used to write the event. This pro‐
vides several distinct benefits:

• The event schema does not need to be transported with the event. A simple
placeholder ID can be used, significantly reducing bandwidth usage.

• The schema registry provides the single point of reference for obtaining the sche‐
mas for an event.

• Schemas enable data discovery, particularly with free-text search.

The workflow for a schema registry is shown in Figure 14-1.

Figure 14-1. Schema registry workflow for producing and consuming an event

The producer, upon serializing the event prior to production, registers the schema
with the schema registry to obtain the schema’s ID (step 1). It then appends the ID to
the serialized event (step 2) and caches the information in the producer cache (step 3)
to avoid querying the registry again for that schema. Remember, the producer must
complete this process for each event, so eliminating the external query for known
event formats is essential.

The consumer receives the event and gets the schema (step 4) for that specific ID
from either its cache or the schema registry. It then swaps the ID out for the schema
(step 5) and deserializes the event into the known format. The schema is cached if
new (step 6), and the deserialized event can now be used by the consumer’s business
logic. At this stage the event could also have schema evolution applied.

Confluent has provided an excellent implementation of a schema registry for Apache
Kafka. It supports Apache Avro, Protobuf, and JSON formats and is freely available
for production use.

242 | Chapter 14: Supportive Tooling

https://oreil.ly/5HT00
https://oreil.ly/5HT00

Registering the schemas to a dedicated event stream frees the
schema registry implementation from having to provide durable
storage. This is the design choice Confluent made with its schema
registry.

Schema Creation and Modification Notifications
Event stream schemas are important in terms of standardizing communication. One
issue that can arise, particularly with large numbers of event streams, is that it can be
problematic to notify other teams that a schema they depend on has evolved (or will
be evolving). This is where schema creation and modification notifications come into
play.

The goal of a notification system is simply to alert consumers when their input sche‐
mas have evolved. Access control lists (ACLs, discussed later in this chapter) are a
great way to determine which microservice consumes from which event stream and,
by association, which schemas it depends on.

Schema updates can be consumed from the schema stream (if you’re using the Con‐
fluent schema registry) and cross-referenced to their associated event streams. From
here, the ACLs provide information about which services are consuming which event
streams and then notify the corresponding teams that own the services via the
microservice-to-team assignment system.

There are a number of benefits to a notification system. While in a perfect world,
every consumer would be able to fully review every upstream change to the schema, a
notification system provides a safety net for identifying detrimental or breaking
changes before they become a crisis. Lastly, a consumer may want to just follow all
publicly available schema changes across a company, allowing them greater insight
into the data as new event streams come online.

Offset Management
Event-driven microservices require that you manage offsets before they proceed with
data processing. In normal operation, the microservice will advance its consumer off‐
set as it processes messages. There are, however, cases where you’ll have to manually
adjust the offset.

Application reset: Resetting the offset
Changing the logic of the microservice may require that you reprocess events
from a previous point in time. Usually reprocessing requires starting at the begin‐
ning of the stream, but your selection point may vary depending on your service’s
needs.

Schema Creation and Modification Notifications | 243

Application reset: Advancing the offset
Alternately, perhaps your microservice doesn’t need old data and should con‐
sume only the newest data. You can reset the application offset to be the latest
offset, instead of the earliest.

Application recovery: Specifying the offset
You may want to reset the offset to a specific point in time. This often comes into
play with multicluster failover, where you want to ensure you haven’t missed any
messages but don’t want to start at the beginning. One strategy includes resetting
the offset to a time N minutes prior to the crash, ensuring that no replicated mes‐
sages are missed.

For production-grade DevOps, a team must own the microservice in order to modify
its offsets, a feature provided by the microservice-to-team assignment system.

Permissions and Access Control Lists for Event Streams
Access control to data is important not only from a business security standpoint, but
also as a means of enforcing the single writer principle. Permissions and access con‐
trol lists ensure that bounded contexts can enforce their boundaries. Access permis‐
sions to a given event stream should be granted only by the team that owns the
producing microservice, a restriction you can enforce by using the microservice-to-
team assignment system. Permissions usually fall into these common categories
(depending, of course, on the event broker implementation): READ, WRITE,
CREATE, DELETE, MODIFY, and DESCRIBE.

ACLs rely on individual identification for each consumer and pro‐
ducer. Ensure that you enable and enforce identification for your
event broker and services as soon as possible, preferably from day
one. Adding identification after the fact is extremely painful, as it
requires updating and reviewing every single service that connects
to the event broker.

ACLs enforce bounded contexts. For instance, a microservice should be the only
owner of CREATE, WRITE, and READ permissions for its internal and changelog
event streams. At no point should a microservice couple on the internal event streams
of another microservice. Additionally, this microservice should be the only service
assigned WRITE permissions to its output stream, according to the single writer
principle. The output streams may be made publicly available such that any other sys‐
tem can consume the data, or it may have restricted access because it contains sensi‐
tive financial or PII data or is part of a nested bounded context.

244 | Chapter 14: Supportive Tooling

A typical microservice will be individually assigned a set of permissions following the
format shown in Table 14-1.

Table 14-1. Typical event stream permissions for a given microservice

Component Permissions for microservice
Input event streams READ

Output event streams CREATE, WRITE (and maybe READ, if used internally)

Internal and changelog event streams CREATE, WRITE, READ

One particularly helpful feature is to provide individual teams with the means of
requesting consumer access for a specific microservice, offloading the responsibilities
of access control enforcement to them. Alternately, depending on business require‐
ments and metadata tags, you could centralize this process so that teams go through a
security review whenever requesting access to sensitive information. The granting
and revoking of permissions can be kept as its own stream of events, providing a
durable and immutable record of data access for auditing purposes.

Discovering Orphaned Streams and Microservices
In the normal course of business growth, new microservices and streams will be cre‐
ated, and deprecated ones will be removed. Cross-referencing the list of access per‐
missions with the existing streams and microservices can help in detecting orphans.
If a stream has no consumers, it may be marked for deletion. If the producing micro‐
service of that event stream produces no other data in other event streams under
active consumption, it too may be removed. In this way you can leverage the permis‐
sions list to keep the event stream and business topology healthy and up to date.

State Management and Application Reset
It is common to reset the internal state of the application when changing a stateful
application’s implementation. Any changes to the data structures stored in the inter‐
nal and changelog event streams, as well as any changes to the topology workflow,
will require that the streams be deleted and re-created according to the new
application.

Some of the stateful microservice patterns discussed in Chapter 7 use state stores
external to the processing node. Depending on the capabilities supported by your
company’s microservice platform organization, it may be possible (and is certainly
advisable) to reset these external state stores when requested by the microservice
owner. For example, if a microservice is using an external state store, such as Ama‐
zon’s DynamoDB or Google’s Bigtable, it would be best to purge the associated state

State Management and Application Reset | 245

when resetting the application. This reduces operational overhead and ensures that
any stale or erroneous data is automatically removed. Any external stateful services
outside the domain of “officially supported capabilities” will likely need to be man‐
ually reset.

It’s important to note that while this tool should be self-serve, in no way should
another team be able to delete the event streams and state owned by another team.
Again, I recommend using the microservice-to-team assignment system discussed in
this chapter to ensure that an application can be reset only by its owner or an admin.

In summary, this tool needs to:

• Delete a microservice’s internal streams and changelog streams
• Delete any external state store materializations (if applicable)
• Reset the consumer group offsets to the beginning for each input stream

Consumer Offset Lag Monitoring
Consumer lag is one of the best indicators that an event-driven microservice needs to
scale up. You can monitor for this by using a tool that periodically computes the lag
of consumer groups in question. Though the mechanism may vary between broker
implementations, the definition of lag is the same: the difference in event count
between the most recent event and the last processed event for a given microservice
consumer group. Basic measurements of lag, such as a threshold measurement, are
fairly straightforward and easy to implement. For instance, if a consumer’s offset lag
is greater than N events for M minutes, trigger a doubling of consumer processors
and rebalance the workload. If the lag is resolved and the number of processors cur‐
rently running is higher than the minimum required, scale the processor count down.

Some monitoring systems, such as Burrow for Apache Kafka, consider the history of
offset lag when computing the lag state. This approach can be useful in cases where
you have a large volume of events entering a stream, such that the amount of lag is
only ever at 0 for a split second before the next event arrives. Since lag measurements
tend to be periodic in nature, it is possible that the system will always appear to be
lagging by a conventional measurement. Therefore, using deviation from historical
norms can be a useful mechanism for determining if a system is falling behind or
catching up.

Remember that while microservices should be free to scale up and down as required,
generally some form of hysteresis—a tolerance threshold—is used to prevent a system
from scaling up and down endlessly. This hysteresis loop needs to be part of the logic
that evaluates the signal and can often be accommodated by modern cloud platforms
such as AWS CloudWatch and Google Cloud Operations (formerly Stackdriver).

246 | Chapter 14: Supportive Tooling

Streamlined Microservice Creation Process
Creating a code repository for a new business requirement is a typical task in a
microservice environment. Automating this task into a streamlined process will
ensure that everything fits together and integrates into the common tooling provided
by the capabilities teams.

Here is a typical microservice creation process:

1. Create a repository.
2. Create any necessary integrations with the continuous integration pipeline (dis‐

cussed in “Continuous Integration, Delivery, and Deployment Systems” on page
275).

3. Configure any webhooks or other dependencies.
4. Assign ownership to a team using the microservice-to-team assignment system.
5. Register for access permissions from input streams.
6. Create any output streams and apply ownership permissions.
7. Provide the option for applying a template or code generator to create the skele‐

ton of the microservice.

Teams will complete this process many times over, so streamlining it in this way will
save significant time and effort. The newly automated workflow includes an injection
point for up-to-date templates and code generators, ensuring that new projects
include the latest supported code and tools instead of simply copying an older
project.

Container Management Controls
Container management is handled by the container management service (CMS), as
discussed in Chapter 2. I recommend exposing certain aspects of the CMS so teams
can provide their own DevOps capabilities, such as:

• Setting environment variables for their microservices
• Indicating which cluster to run a microservice on (e.g., testing, integration,

production)
• Managing CPU, memory, and disk resources, depending on the needs of their

microservices
• Increasing and decreasing service count manually, or depending on service-level

agreements and processing lag
• Autoscaling on CPU, memory, disk or lag metrics

Streamlined Microservice Creation Process | 247

The business will need to determine how many container management options
should be exposed to developers, versus how many should be managed by a dedicated
operations team. This typically depends on the culture of DevOps within the
organization.

Cluster Creation and Management
Cluster creation and management tends to come up as a company scales around
event-driven microservices. Generally speaking, a small to medium-sized company
can often get away with using a single event broker cluster for all of its serving needs.
However, larger companies often find themselves under pressure to provide multiple
clusters for various technical and legal reasons. International companies may need to
keep certain data within the country of origin. Data sizes may grow so large that it
cannot all be practically kept within a single cluster, despite modern event brokers’
excellent horizontal scaling qualities. Various business units in an organization may
require their own clusters for isolation purposes. Perhaps most commonly, data must
be replicated across multiple clusters in multiple regions to provide redundancy in
case of a total cluster outage.

Multicluster management, including dynamic cross-region communication and dis‐
aster recovery, is a complex topic that could very well fill its own book. It is also
highly dependent on the services in question and the prevention and recovery strate‐
gies being used. Some businesses, like Capital One, have significant custom libraries
and code built around their Apache Kafka implementations to allow for native multi‐
cluster replication. As a bank, the company cannot afford to lose any financial trans‐
action events whatsoever. Your needs may vary. For these reasons, this book doesn’t
cover multicluster service and data management strategies.

Programmatic Bringup of Event Brokers
The team responsible for managing the event broker clusters will often also provide
tooling for creating and managing new clusters. That being said, commercial cloud
providers are also moving into this domain; for instance, Apache Kafka clusters can
now be created on-demand in AWS (as of November 2018), joining a number of
other cloud service providers. Different event broker technologies may require vary‐
ing amounts of work to support and should be examined closely by your domain
experts. In either case, the goal is to have an event broker cluster management tool
that the entire organization can use to easily create and scale event brokers.

Programmatic Bringup of Compute Resources
You’ll often need to bring up a set of compute resources that are independent of all
other resources. It is not always necessary to create an entirely new container man‐
agement service, as usually the existing one can serve multiple namespaces. As with

248 | Chapter 14: Supportive Tooling

event brokers, cloud computing providers commonly provide hosted services that
can give you these capabilities on-demand, such as Google’s and Amazon’s hosted
Kubernetes solutions.

The same technical and legal requirements that apply to event brokers extend to com‐
pute resources. Avoid regional failures by distributing processing across data centers,
process data locally if it cannot leave the country, and save money by dynamically
shifting compute-heavy workloads to cheaper service providers.

Generally you can use the same continuous integration and continuous delivery (CI
and CD) tools to perform this task, but you will need a selection mechanism to deter‐
mine where to deploy the microservices. Additionally, you will need to ensure that
the required event data is available to the compute resources, generally through colo‐
cation within the same region or availability zone. Cross-region communication is
always possible, but it tends to be expensive and slow.

Cross-Cluster Event Data Replication
Replicating event data between clusters is important for scaling up event-driven
microservices beyond the confines of a single cluster—examples include for the pur‐
poses of disaster recovery, regular cross-cluster communication, and programmati‐
cally generated testing environments.

The specifics of how data is replicated between clusters vary with event broker and
replication tool implementations. When selecting a replication tool implementation,
consider the following:

• Does it replicate newly added event streams automatically?
• How does it handle the replication of deleted or modified event streams?
• Is the data replicated exactly, with the same offsets, partitions, and timestamps, or

approximately?
• What is the latency in replication? Is it acceptable to the business needs?
• What are the performance characteristics? Can it scale according to business

needs?

Programmatic Bringup of Tooling
Last, but certainly not least, the same sets of tools discussed thus far should also be
programmatically brought up for new clusters. This provides a common set of tools
you can deploy to any cluster deployment without relying on any data stores besides
the event broker itself. There are a number of benefits to using tooling in this manner.
First, the tooling gets used far more often and helps reveal bugs or necessary features
to be added. Second, it lowers the barrier to entry for using new clusters, as users will

Cluster Creation and Management | 249

already be familiar with the tooling interfaces. Lastly, when the cluster is terminated,
the tools can be terminated alongside it with no additional cleanup required.

Dependency Tracking and Topology Visualization
Tracking the data dependencies between microservices can be extremely useful in
helping run an event-driven microservice organization. The only requirement is that
the organization must know which microservices are reading and writing to which
event streams. To achieve this, it could employ a self-reporting system where con‐
sumers and producers report on their own consumption and production patterns.
The problem with any sort of self-reporting solution, however, is that it is effectively
voluntary, and there will always be a number of teams that forget, opt out, or simply
are unwilling to report. Determining dependencies without full compliance is not
particularly useful, as gaps in the communication structure and incomplete topolo‐
gies limit insight. This is where the permissions structure and ACLs discussed earlier
in this chapter come into play.

Leveraging the permissions structure to determine dependencies guarantees two
things. First, a microservice cannot operate without registering its permissions
requirements, as it would not be able to read from or write to any event streams. Sec‐
ond, if any changes are made to the permissions structure, the associated permissions
used to determine dependencies and topology generation are also updated. No other
changes are required to ensure proper dependency tracking.

Here are some other uses of such a tool:

Determine data lineage
One problem that data scientists and data engineers regularly encounter is how
to determine where data came from and which route it took. With a full graph of
the permissions structure, they can identify each ancestor service and stream of
any given event. This can help them trace bugs and defects back to the source
and determine all services involved in a given data transformation. Remember
that it is possible to go back in time in the permissions event stream and the
microservice-to-team assignment event streams to generate a view of the topol‐
ogy at that point in time. This is often quite useful when you are auditing old
data.

Overlay team boundaries
The teams owning the microservices and streams can be mapped onto the topol‐
ogy. When rendered with a proper visualization tool, the topology will clearly
show which teams are directly responsible for which services.

250 | Chapter 14: Supportive Tooling

Discover data sources
Visualizers are a useful tool for data discovery. A prospective consumer can see
which streams are available and who their producers and consumers are. If more
information is needed about the stream data, the prospective consumer can con‐
tact the producers.

Measure interconnectedness and complexity
Just as it is ideal for microservices to be highly cohesive and loosely coupled, so
too it is for teams. With this tooling in place, a team can measure how many
internal connections between microservices and how many cross-boundary con‐
nections it has. A general rule of thumb is that the fewer external connections,
the better; but a simple count of connections is a very basic metric. However,
even a consistent application of a basic metric can reveal the relative interde‐
pendence between teams.

Map business requirements to microservices
Aligning microservices along business requirements enables a mapping of imple‐
mentation to business requirement. It is reasonable to explicitly state each micro‐
service’s business requirements alongside its code, perhaps in the repository
README or in the microservice metadata store. In turn, this can be mapped to
the owning teams.

A business owner could look at this overlay and ask themselves, “Does this imple‐
mentation structure align with the goals and priorities of this team?” This is one of
the most important tools a business can have at its disposal to ensure that its technical
teams are aligned with the business communication structure.

Topology Example
Figure 14-2 shows a topology with 25 microservices, overlaid with the ownership of
four teams. For purposes of clarity, each arrow represents the production of data to
an event stream as well as consumption by the consuming process. Thus, microser‐
vice 3 is consuming a stream of data from microservice 4.

Dependency Tracking and Topology Visualization | 251

Figure 14-2. Topology map of service connections

The mapping shows that team 2 is responsible for two microservices that are not part
of its main bounded context (bottom right). This may be of concern if the business
goals of team 2 do not align with the functions being served by microservices 2 and 7.
Additionally, both microservices 2 and 7 have a number of dependencies on teams 1,
3, and 4, which increases the “surface area” that team 2 exposes to the outside world.
A measure of interconnectedness is shown in Table 14-2.

Table 14-2. Topology graph measure of interconnectedness

Incoming
streams

Outgoing
streams

Incoming team
connections

Outgoing team
connections

Services
owned

Team 1 1 3 1 (Team 2) 2 (Teams 2,3) 5

Team 2 8 2 3 (Teams 1,3,4) 2 (Teams 1,4) 8

Team 3 3 3 2 (Teams 1,4) 1 (Team 2) 6

Team 4 1 5 1 (Team 1) 2 (Teams 2,3) 8

Let’s see what happens if we reduce the number of interteam connections and the
number of incoming and outgoing streams at the team boundary. Microservices 2
and 7 are good candidates for being reassigned simply due to their ownership island
in the topology, and can be reassigned to reduce the number of cross-team dependen‐
cies. Microservice 7 can be assigned to team 1 (or to team 3), and microservice 2 can
be assigned to team 4. It is also more apparent now that microservice 1 may also be

252 | Chapter 14: Supportive Tooling

assigned to team 4 to further reduce the cross-boundary communication. This result
is shown in Figure 14-3 and Table 14-3.

Figure 14-3. Topology map of service connections after reassignment of microservices

Table 14-3. New measure of interconnectedness; differences are shown in brackets

Incoming
streams

Outgoing
streams

Incoming team
connections

Outgoing team
connections

Services
owned

Team 1 1 3 1 (Team 3) 1 (Team 3) (–1) 5

Team 2 4 (–4) 0 (–2) 2 (Teams 3,4) (–1) 0 (–2) 6 (–2)

Team 3 3 3 2 (Teams 1,4) 2 (Teams 1,2) (+1) 6

Team 4 1 3 (–2) 1 (Team 1) 2 (Teams 3,4) 8 (+2)

Computing the cross-boundary dependencies has a positive result: cross-team
incoming and outgoing stream counts are reduced, with a net decrease of three con‐
nections between teams. Minimizing the number of cross-boundary connections
helps optimize the assignment of microservices to teams. This is not sufficient, how‐
ever, for determining the assignment of microservices to a team. You must also take
into account a variety of factors, such as the team’s head count, areas of expertise, and
implementation complexities.

Most importantly of all, though, you must account for the business functions that a
microservice is performing. Consider a scenario where one team produces a whole
host of event data, perhaps consumed from a number of external sources. It could be

Dependency Tracking and Topology Visualization | 253

that the business responsibility of that team is limited simply to sourcing and organ‐
izing the data into events, with business logic being performed downstream by other
consumers. In this case, the team would have many stream connections and team
connections. This is where it is useful to be able to view the business functions associ‐
ated with the microservices owned by the team.

In the preceding example, there are a number of questions worth asking. For one, do
the business function implementations of microservice 2 align closer to the goals of
team 2 or team 4? What about microservice 7: is it aligned closer with team 1’s goals
than team 2’s? And in general, which services align best with which team? These
answers tend to be qualitative and must be carefully evaluated against the goals of the
team. It is natural that team goals change as business needs evolve, and it is important
to ensure that the microservices assigned to those teams align with the overarching
business goals. This tooling provides insight into these allocations and helps provide
clarity to business owners.

Summary
Having multiple autonomous services requires that you carefully consider how you’re
going to manage these systems. The tools described in this chapter are designed to
help your organization manage its services.

As the number of services increases, the ability of any one person to know how every‐
thing works and how each service and stream fit into the big picture diminishes.
Keeping explicit track of properties such as service and stream ownership, schemas,
and metadata allows organizations to organize and track change across time. Reduc‐
ing tribal knowledge and formally codifying otherwise simple stream and service
properties should be priorities for your organization. After all, any ambiguity around
the properties of a service or stream will be amplified for each additional instance
created.

Autonomy and control over your team’s services are important aspects of managing
microservices at scale. In accordance with DevOps principles, you should be able to
reset consumer group offsets and microservice state stores.

Schemas foster a common understanding of the meaning of events. The schema reg‐
istry provides a mechanism for streamlining schema management and can be used to
notify interested parties about any changes to a particular schema.

254 | Chapter 14: Supportive Tooling

CHAPTER 15

Testing Event-Driven Microservices

One of the great things about testing event-driven microservices is that they’re very
modular. Input to the service is provided by event streams or by requests from a
request-response API. State is materialized to its own independent state store, and
output events are written to a service’s output streams. Microservices’ small and
purpose-built nature make them far easier to test than larger and more complex serv‐
ices. There are fewer moving parts, a relatively standard methodology of handling
I/O and state, and plenty of opportunity to reuse testing tooling with other microser‐
vices. This chapter covers testing principles and strategies, including unit testing,
integration testing, and performance testing.

General Testing Principles
Event-driven microservices share the testing best practices that are common to all
applications. Functional testing, such as unit, integration, system, and regression test‐
ing, ensures that the microservice does what it is supposed to and that it doesn’t do
what it should not do. Nonfunctional testing, such as performance, load, stress, and
recovery testing, ensures that it behaves as expected under various environmental
scenarios.

Now, before going much further, it’s important to note that this chapter is meant to be
a companion to more extensive works on the principles and how-tos of testing. After
all, many books, blogs, and documents have been written on testing, and I certainly
can’t cover testing to the extent that they do. This chapter primarily looks at event-
driven-specific testing methodologies and principles and how they integrate into the
overall testing picture. Consult your own sources on language-specific testing frame‐
works and testing best practices to complement this chapter.

255

Unit-Testing Topology Functions
Unit tests are used to test the smallest pieces of code in an application to ensure that
they work as expected. These small testing units provide a foundation for which
larger, more comprehensive tests can be written to test higher functionality of the
application. Event-driven topologies often apply transformation, aggregation, map‐
ping, and reduction functions to events, making these functions ideal candidates for
unit testing.

Make sure to test boundary conditions, such as null and maximum
values, for each of your functions.

Stateless Functions
Stateless functions do not require any persistent state from previous function calls,
and so are quite easy to test independently. The following code shows an example of
an EDM topology similar to one that you would find in a map-reduce-style
framework:

myInputStream
 .filter(myFilterFunction)
 .map(myMapFunction)
 .to(outputStream)

myMapFunction and myFilterFunction are independent functions, neither of which
keeps state. Each function should be unit-tested to ensure that it correctly handles the
range of expected input data, particularly corner cases.

Stateful Functions
Stateful functions are generally more complicated to test than stateless ones. State can
vary with both time and input events, so you must take care to test all of the necessary
stateful edge cases. Stateful unit testing also requires that persistent state, whether in
the form of a mocked external data store or a temporary internal data store, is avail‐
able for the duration of the test.

Here is an example of a stateful aggregation function that might be found in a basic
producer-consumer implementation:

256 | Chapter 15: Testing Event-Driven Microservices

public Long addValueToAggregation(String key, Long eventValue) {
 //The data store needs to be made available to the unit-test environment
 Long storedValue = datastore.getOrElse(key, 0L);
 //Sum the values and load them back into the state store
 Long sum = storedValue + eventValue;
 datastore.upsert(key, sum);
 return sum;
}

This function is used to sum all eventValues for each key. Mocking the endpoint is
one way of providing a reliable implementation of the data store for the duration of
the test. Another option is creating a locally available version of the data store, though
this is more akin to integration testing, which will be covered in more detail shortly.
In either case, you must carefully consider what this data store needs to do and how it
relates to the actual implementation used at runtime. Mocking tends to work well,
because it allows for very high-performance unit testing that isn’t burdened by the
overhead of spinning up a full implementation of the data store.

Testing the Topology
The full-featured lightweight and heavyweight frameworks typically provide the
means to locally test your entire topology. If your framework does not, the commu‐
nity of users and contributors may have created a third-party option that provides
this functionality (this is another reason to choose a framework with a strong com‐
munity). For example, Apache Spark has two separate third-party options for unit
tests, StreamingSuiteBase and spark-fast-tests, in addition to providing a built-in
MemoryStream class for fine-grained control over stream input and output. Apache
Flink provides its own topology testing options, as does Apache Beam. As for light‐
weight stream frameworks, Kafka Streams provides the means to test topologies
using the TopologyTestDriver, which mocks out the functionality of the framework
without requiring you to set up an entire event broker.

Topology testing is more complex than a single unit test and exercises the entire top‐
ology as specified by your business logic. You can think of your topology as a single,
large, complex function with many moving parts. The topology testing frameworks
allow you to fully control which events are produced to the input streams as well as
when they are created. You can generate events with specific values; events that are
out of order, contain invalid timestamps, or include invalid data; and events that are
used to exercise corner-case logic. By doing so, you can ensure that operations such
as time-based aggregations, event scheduling, and stateful functions perform as
expected.

Testing the Topology | 257

https://oreil.ly/1e4lr
https://oreil.ly/jkoI5
https://oreil.ly/5Ao0U
https://oreil.ly/5Ao0U
https://oreil.ly/dHZb5
https://oreil.ly/dHZb5
https://oreil.ly/hnMRJ
https://oreil.ly/R0fg9
https://oreil.ly/R0fg9

For example, consider the following map-reduce-style topology definition:

myInputStream
 .map(myMapFunction)
 .groupByKey()
 .reduce(myReduceFunction)

In this topology, consumed events are represented by the variable myInputStream. A
mapping function is applied, the results are grouped together by key, and then finally
they are reduced into a single event per key. While unit tests can be implemented for
myMapFunction and myReduceFunction, they can’t easily reproduce the framework
operations of map, groupByKey, and reduce, as these operations (among others) are
inherently part of the framework.

This is where topology testing comes into play. Each stream framework has varying
levels of support for testing the topology, and you must explore the options available
to you. These testing frameworks do not require you to create an event broker to hold
input events or to set up a heavyweight framework cluster for processing.

Testing Schema Evolution and Compatibility
To ensure that any output schemas are compatible with previous schemas according
to any event stream schema evolutionary rules (see “Full-Featured Schema Evolution”
on page 41), you can pull in the schemas from the schema registry and perform evo‐
lutionary rule checking as part of the code submission process. Some applications
may use schema-generating tools to automatically generate the schemas from the
classes or structs defined in the code at compile time, resulting in a programmatically
generated schema that can be compared to previous versions.

Integration Testing of Event-Driven Microservices
Microservice integration testing comes in two main flavors: local integration testing,
where testing is performed on a localized replica of the production environment, and
remote integration testing, where the microservice is executed on an environment
external to the local system. Each of these solutions has a number of advantages and
disadvantages, which we will explore shortly.

A third flavor is a hybrid option, where certain parts of your microservice and its test
environment are hosted or executed locally and others done remotely. Since it’s tech‐
nically impossible to evaluate all combinations and permutations of this hybrid pat‐
tern, I’ll just focus on the two main cases and leave it up to you to determine your
own requirements should they differ.

258 | Chapter 15: Testing Event-Driven Microservices

There are several overarching questions that you should keep in mind for the remain‐
der of this chapter:

• What are you hoping to get out of your integration testing? Is it as simple as
“does this run?” Is it a smoke test with production data? Or are there more com‐
plex workflows that need to be tested and validated?

• Does your microservice need to support restarting from the beginning of input
stream time, as in the case of full data loss or reprocessing due to a bug? If so,
what do you need to know to test if this functionality works as expected? You
may also need to validate that your input event streams are capable of supporting
this requirement.

• What data do you need to determine success or failure? Is manually crafted event
data sufficient? Programmatically created? Does it need to be real production
data? If so, how much?

• Do you have any performance, load, throughput, or scaling concerns that need to
be tested?

• How will you go about ensuring that each microservice you build doesn’t require
a full home-grown solution to integration testing?

The next sections will help you understand some of the options available to you, so
you can formulate your own answers to these questions.

Local Integration Testing
Local integration testing allows for a significant range of functional and nonfunc‐
tional testing. This form of testing uses a local copy of the production environment
where the microservice will be deployed. At a minimum this means creating an event
broker, schema registry, any microservice-specific data stores, the microservice itself,
and any required processing framework, such as when you are using a heavyweight
framework or FaaS. You could also introduce containerization, logging, and even the
container management system, but they are not strictly related to the business logic of
the microservice and so are not absolutely necessary.

The biggest benefit of spinning up your own locally controllable environment is that
you get to control each system independently. You can programmatically create sce‐
narios that replicate actual production situations, such as intermittent failures, out-
of-order events, and loss of network access. You also get to test the integration of the
framework with your business logic. Local integration testing also provides the means
to test the basic functionality of horizontal scaling, particularly where copartitioning
and state are concerned.

Local Integration Testing | 259

Another significant benefit of local integration testing is that you can effectively test
both event-driven and request-response logic at the same time, in the same work‐
flows. You have full control over when events are injected into the input streams, and
can issue requests at any point before, during, or after the events have been processed.
It may be helpful to think of the request-response API as just another source of events
for the purposes of testing your microservice.

Let’s take a look at some of the options provided by each system component.

The event broker
• Create and delete event streams
• Apply selective event ordering for input streams to exercise time-based logic,

out-of-order events, and upstream producer failures
• Modify partition counts
• Induce broker failures and recovery
• Induce event stream availability failures and recovery

The schema registry
• Publish evolutionary-compatible schemas for a given event stream and use them

to produce input events
• Induce failures and recovery

The data stores
• Make schema changes to existing tables (if applicable)
• Make changes to stored procedures (if applicable)
• Rebuild internal state (if applicable) when the application instance count is

modified
• Induce failures and recovery

The processing framework (if applicable)
The application and the processing framework are typically intertwined, and you
may need to provide a full-framework implementation for testing, as in the case
of FaaS and heavyweight framework solutions. The framework provides func‐
tionality such as:

• Shuffling via internal event streams (lightweight) or shuffle mechanism
(heavyweight) to ensure proper copartitioning and data locality

• Checkpointing, failures, and recovery from checkpoints
• Inducing a worker instance failure to mimic losing an application instance

(heavyweight frameworks)

260 | Chapter 15: Testing Event-Driven Microservices

The application
Application-level control predominantly involves managing the number of
instances running at any given time. Integration testing should include scaling
the instance count (dynamically, if supported) to ensure that:

• Rebalancing occurs as expected
• Internal state is restored from checkpoints or changelog streams, and data

locality is preserved
• External state access is unaffected
• Request-response access to the stateful data is unaffected by changes in

application instance count

The point of having full control over all of these systems is to ensure that your micro‐
service will still work as intended through various failure modes, adverse conditions,
and with varying processing capacity.

There are two main ways to perform local integration tests. The first involves embed‐
ding testing libraries that can live strictly in your code. These are not available for all
microservice solutions and tend to depend heavily on both language and framework
support. The second option involves creating a local environment where each of the
necessary components is installed and can be controlled as required. We’ll take a look
at these first, then follow up by investigating options for testing microservices that
rely on hosted services.

Create a Temporary Environment Within the Runtime
of Your Test Code
Embedding testing libraries into your code is by far the narrowest of the options,
though it can work very well depending on how your client, broker, and framework
programming language compatibilities line up. In this approach, the test code starts
the necessary components within the same executable as the application.

For example, the test code of a Kafka Streams application starts its own Kafka broker,
schema registry, and microservice topology instances. The test code can then start
and stop topology instances, publish events, await responses, incur broker outages,
and induce other failure modes. Upon termination, all of the components are termi‐
nated, and the state is cleaned up. Consider the following pseudocode (declarations
and instantiations skipped for brevity):

broker.start(brokerUrl, brokerPort, ...);
schemaRegistry.start(schemaRegistryUrl, srPort, ...);
//The first instance of the microservice
topologyOne.start(brokerUrl, schemaRegistryUrl,
 inputStreamOne, inputStreamTwo ...);

Local Integration Testing | 261

//A second instance of the same microservice
topologyTwo.start(brokerUrl, schemaRegistryUrl,
 inputStream, inputStreamTwo, ...);

//Publish some test data to input stream 1
producer.publish(inputStreamOne, ...);
//Publish some test data to input stream 2
producer.publish(inputStreamTwo, ...);
//Wait a short amount of time. Not the best way to do it, but you get the idea
Thread.sleep(5000);

//Now mimic topologyOne failing
topologyOne.stop();

//Check the output of the output topic. Is it as expected?
event = consumer.consume(outputTopic, ...)

//Shut down the remaining components if no more testing is to be done
topologyTwo.stop()
schemaRegistry.stop()
broker.stop()

if (event ...) //validate the consumer output
 //pass the test if correct
else
 //fail the test.

Kafka Streams is a particularly relevant example because it illustrates the limited
nature of this approach. The application code, the broker, and the Confluent schema
registry are all JVM-based, so you need a JVM-based application to programmatically
control everything within the same runtime. Other open source heavyweight frame‐
works may also work, though some extra overhead is required to handle creating
both the master instance and the worker instance. Keep in mind that because these
heavyweight frameworks are also almost universally JVM-based, this strategy is pre‐
dominantly a JVM-only approach at the time of this writing. While it is certainly pos‐
sible to use workarounds to test non-JVM-based applications in this manner, that
process is not nearly as simple.

Create a Temporary Environment External to Your Test Code
One option for setting up an environment to perform these tests is simply to install
and configure all required systems locally. This is a low-overhead approach particu‐
larly if you’re just starting out with microservices, but if every teammate must do the
same, it becomes expensive and complex to debug if they’re each running slightly dif‐
ferent versions. As with most things microservices, it’s often best to avoid duplicating
steps and instead provide supportive tooling that eliminates the overhead.

A more flexible option is to create a single container that has all of the necessary
components installed and configured. This container can be used by any team that

262 | Chapter 15: Testing Event-Driven Microservices

wants to test its application in this way. You can maintain an open source contribu‐
tion model (even if internal to the organization), allowing fixes, updates, and new
features to be added back for the benefit of all teams. This model is flexible enough to
be used with any programming language, though it’s far easier to use with a program‐
matic API that allows for easy communication with the system components in the
container. A lightweight processing framework example is shown in Figure 15-1, with
the schema registry, event broker, and necessary topics created internally to the con‐
tainer. The microservice instance itself is executed externally to the container, and
simply references the addresses of the broker and schema registry from its testing
config file.

Figure 15-1. Lightweight microservice using containerized testing dependencies for local
integration testing

Integrate Hosted Services Using Mocking and Simulator Options
A local integration testing environment may also need to provide hosted services,
such as a hosted event broker, heavyweight framework, or FaaS platform. While some
hosted services may have open source options you can run instead (such as open
source Kafka instead of hosted Kafka), not all hosted services have these alternatives.
For example, Microsoft’s Event Hubs, Google’s PubSub, and Amazon’s Kinesis are all
proprietary and closed, with full implementations unavailable for download. In this
situation, the best you can do is use whatever emulators, libraries, or components are
available from these companies or open source initiatives.

Google’s PubSub, for example, has an emulator that can provide sufficient local test‐
ing functionality, as does an open source version of Kinesis (and many other Amazon
services) provided by LocalStack. Unfortunately, Microsoft Azure’s Event Hubs does
not currently have an emulator, nor is an implementation of it available in the open
source world. Azure Event Hub clients do, however, allow you to use Apache Kafka in
its place, though not all features are supported.

Applications using FaaS platforms can leverage local testing libraries provided by the
hosting service. Google Cloud functions can be tested locally, as can Amazon’s

Local Integration Testing | 263

https://oreil.ly/pC5GC
https://oreil.ly/PqA9b
https://oreil.ly/PqA9b
https://oreil.ly/Mkx2b
https://oreil.ly/Mkx2b
https://oreil.ly/sNCP4
https://oreil.ly/PmNyT

Lambda functions and Microsoft Azure’s functions. The open source solutions Open‐
Whisk, OpenFaaS, and Kubeless, as discussed in Chapter 9, provide similar testing
mechanisms, which you can find via a quick web search. These options allow you to
configure a complete FaaS environment locally, such that you can test on a platform
configured to be as similar to production as possible.

Establishing an integration testing environment for applications using heavyweight
frameworks is similar to the process of establishing one for FaaS frameworks. Each
requires that the framework be installed and configured, with the application submit‐
ting the processing job directly to the framework. With heavyweight frameworks, a
typical single-container installation will just need to run the master and worker
instances side-by-side along with the event broker and any other dependencies. With
the heavyweight framework set up, you simply need to submit the processing job to
the master and await test output on the output event streams. An example is illustra‐
ted in Figure 15-2, where the entire set of dependencies has been containerized for
easy distribution among developers.

Figure 15-2. Heavyweight microservice using containerized testing dependencies for local
integration testing

Integrate Remote Services That Have No Local Options
Some services used in production may simply not have any locally available options,
and this is a disadvantage for both development and integration testing. A current
example is the absence of any emulator for Microsoft Azure’s Event Hub. The lack of a
locally available implementation means that remote environments must be provi‐
sioned for each developer, in addition to integration testing environments for these
applications. This is also where lines can begin to blur, as integration testing up to this
point has been primarily about isolating a single application instance in a disposable,
easily managed, local environment. The overhead incurred in this scenario can be a
real impediment to independent development and integration testing efforts, so be
sure to give it careful consideration before moving forward.

264 | Chapter 15: Testing Event-Driven Microservices

https://oreil.ly/PmNyT
https://oreil.ly/G-MZz

Alleviating this issue generally requires close coordination with infrastructure teams
to ensure either that independent testing environments can be independently provi‐
sioned via access controls or that a large, common environment can be created for all
to use (this has its own issues, as discussed later in the chapter). Security issues may
arise from developers having to connect their local staging environment to remote
resources. Cleanup and management of the remote staging environment(s) can also
become problematic. There are many ways to approach this challenge, but the prob‐
lems that the situation may pose are too large to comprehensively tackle here.

The good news is that most of the biggest closed source service providers are making
strong efforts to provide local options for development and testing, so in time the
forerunners will all have these available. In the meantime, be cautious about your
selection of services and consider whether a local option for development and inte‐
gration testing is available.

Full Remote Integration Testing
Full remote integration testing enables you to perform specific tests that are difficult
to conduct in local environments. For example, performance and load testing are
essential for ensuring that the microservice under test achieves its service-level objec‐
tives. Event processing throughput, request-response latency, instance scaling, and
failure recovery are all enabled by full integration testing.

The goal of full integration testing is to create an environment as
close to possible as that of production, including event streams,
event data volume, event schemas, and request-response patterns
(if applicable), in which to run the application.

Full integration testing is generally done in one of three following ways. You can use a
temporary integration environment and discard it once testing is complete. You can
use a common testing environment, which persists between integration tests and is
used by multiple teams. Finally, you can use the production environment itself for
testing.

Programmatically Create a Temporary Integration Testing
Environment
“Cluster Creation and Management” on page 248 examined the advantages of having
programmatically generated event brokers and compute resource managers. You can
leverage these tools to generate temporary environments for your integration testing.
A separate set of brokers can be created along with individually reserved compute
resources to run the containerized microservices under test. One added benefit of
using this approach for full integration testing is that it regularly exercises the process

Full Remote Integration Testing | 265

of creating new brokers and compute environments. This ensures that any breakages
that occur in the scripts or any bugs in the configuration will be exposed at the next
integration test.

The next issue in a newly brought-up environment is that it lacks both event streams
and event data. These are, of course, both essential for testing your microservice. You
can obtain the names of the event streams to create either by directly asking the user
or by using a configuration file within the microservice codebase to be accessed by
the tooling. The partition count must mirror that of the production system to ensure
that the microservice’s scaling, copartitioning, and repartitioning logic is correctly
exercised.

Once the event streams have been generated, the next step is to populate them with
events. This can be done using production data, specially curated testing data sets, or
ad hoc, programmatically generated data.

Populating with events from production
Events can be copied from the production cluster over to the newly created event
streams in the testing cluster. This is where the replication tooling described in
“Cross-Cluster Event Data Replication” on page 249 comes into play, as this same
tooling can be used to replicate specific event streams from production and load the
events. You must account for any security and access restrictions that may prevent
production from obtaining the data.

Advantages
• It accurately reflects production data.
• You can copy as many or as few events as required.
• The fully isolated environment prevents other microservices under test from

inadvertently affecting your testing.

Disadvantages
• Copying data may affect production performance unless you have adequately

planned and established broker quotas.
• It may require copying substantial amounts of data, especially in the case of long-

lived entities.
• You must account for event streams containing sensitive information.
• It requires significant investment in streamlining the creation and copying pro‐

cess to reduce barriers to usage.
• It may expose sensitive production events.

266 | Chapter 15: Testing Event-Driven Microservices

Populating with events from a curated testing source
Curated events allow you to use events with specific properties, values, and relation‐
ships to other events in integration testing. These events need to be stored somewhere
stable and secure, where they can’t be accidentally or inadvertently overwritten, cor‐
rupted, or lost. This strategy is often used in single shared testing environments (more
on this later), but you can also apply it by loading the events out of a durable data
store into the user-specified streams, similar to copying events from production.

Advantages
• It involves a smaller set of data.
• It’s carefully curated to ensure specific values and relationships.
• It has no impact on production.

Disadvantages
• There’s significant overhead to maintain.
• Data can become stale.
• New event streams must be handled.
• Schema changes must be handled.
• Lesser-used event streams may not be available.

While many of these disadvantages can be mitigated through strict operational pro‐
cesses, this strategy often ends up following the same pathway that documentation
tends to at many organizations. It is well intentioned but remains out-of-date, not
necessarily relevant, and seemingly always a lower priority than other work.

Creating mock events using schemas
Programmatic creation of mock events is another possibility for populating event
streams. You can obtain the schema from the schema registry and generate events
that adhere to this schema definition. You can even take older versions of that schema
and generate events for those too.

The complexity of this approach comes from ensuring that there are events with the
proper relationships to other events, particularly if any of the services are doing joins
between streams or aggregations across different types of events. A microservice that
joins multiple events together will require that events with matching primary/foreign
keys have been created to properly exercise the joining logic of the service. While this
is not typically a significant issue (especially since the microservice code expresses
which relationships the business logic requires), it does leave it up to the creators of
this data to ensure that it is properly scoped and that all data falls into the expected
ranges and values.

Full Remote Integration Testing | 267

Advantages
• It doesn’t require the production cluster to provide any data and can’t negatively

affect production performance.
• You can use fuzzing tools to create event data, testing boundary conditions, and

other potential malformed and semiformed fields.
• You can create specific test cases that aren’t available in production data, ensuring

corner cases are covered.
• It allows you to leverage third-party tools for programmatically creating testing

data (for example, Confluent Avro tools).

Disadvantages
• It requires much more attention to creating realistic data than other options.
• The created data is still not fully accurate when compared to the production dis‐

tribution. For example, production data may have a serious disparity in data vol‐
ume due to key distribution that doesn’t show up in mock data.

• The created data may inaccurately represent certain fields. For example, parsing a
string field in a particular way for business operations may pass with the created
test data, but fail in a subset of production data.

Testing Using a Shared Environment
Another option involves creating a single testing environment with a shared pool of
event streams all residing within the same event broker. These streams are populated
by testing data that represents a subset of production data, or carefully crafted testing
data as previously discussed. This option provides a low-overhead a testing environ‐
ment, but offloads the management of the event streams and the data onto the appli‐
cation developers.

Advantages
• It’s easy to get started.
• You only need to maintain infrastructure for one testing environment.
• It is isolated from production workloads.

Disadvantages
• It is subject to the “tragedy of the commons.” Fragmented and abandoned event

streams can make it difficult to distinguish which streams are valid for testing
input and which are simply the output of previous tests that were not cleaned up.

• Systems under test are not necessarily isolated. For example, services running
simultaneous large-scale performance testing can affect each other’s results.

• Incompatible events may be produced to other services’ input event streams.

268 | Chapter 15: Testing Event-Driven Microservices

https://oreil.ly/HTQhX

• Event stream data inevitably becomes stale and must be updated with newer
events.

• It inaccurately represents the entire range of events found in production.

This strategy is the worst of the options in terms of usability, as the
event broker eventually becomes a dumping ground of confusing
event streams and broken data.

Isolation from other application testing is difficult to achieve, particularly as the out‐
put stream of one microservice is usually the input to another service. Careful cura‐
tion of data streams, strict naming conventions, and restrictions to writing to event
streams can help mitigate the disadvantages, but environment maintainers and users
will need to exercise diligence and discipline.

Testing Using the Production Environment
You can also test microservices in the production environment (note: be careful). The
microservice can be spun up, consume from its input event streams, apply business
logic, and produce output. The most common approach is to have the microservice
use its own designated output event streams and state stores, such that it doesn’t affect
the existing production systems. This is particularly important when a previous ver‐
sion of the same microservice is running alongside the new one under test.

Advantages
• You have complete access to production events.
• It leverages production security models to ensure proper access protocols are

followed.
• It is excellent for smoke-testing an application.
• You do not need to maintain a separate testing environment.

Disadvantages
• There’s a risk of affecting production capacity, especially if workload is high. It’s

not suitable for load and performance testing.
• You must carefully clean up any resources created during testing, such as event

streams, consumer groups, access control permissions, and state stores. This is
similar to the requirements for the common staging environment option.

• It requires tooling support to keep microservices and event streams under test
separate from “true production” microservices, particularly when you are testing
over a long period of time. This includes the resources used to manage and
deploy microservices, as each observer to the production environment must be

Full Remote Integration Testing | 269

able to identify which services are the true production ones and which are those
under test.

Choosing Your Full-Remote Integration Testing Strategy
The nice thing about the modularity of microservices is that you don’t have to choose
just one way to perform your tests. You can use any option as needed switch to a dif‐
ferent one for other projects, and update your testing methodology as requirements
change. Investments in supportive tooling for multicluster event brokers and event
copying capabilities will largely determine your testing options.

If you have little to no supportive tooling, you’re most likely going to end up with a
single, shared testing event broker with a hodge-podge of event streams generated by
various teams and systems. You’ll likely see a mixture of “good” event streams that
you can use for testing, and event streams with suffixes like “-testing-01,” “-
testing-02,” “-testing-02-final,” and “-testing-02-final-v2.” Event data may or may not
be reliable, up-to-date, or in the correct schema format. Tribal knowledge plays a
large role in this world, and it can be difficult to ensure your testing sufficiently
reflects your service’s production environment. In addition, costs are much higher for
a continuously available staging cluster that must also enable performance testing,
load large amounts of data, and provide event stores with indefinite duration.

With proper investment in tooling, each microservice can bring up its own dedicated
cluster, populate it with event streams, copy some production data into it, and run the
test in a nearly identical production environment. The cluster can be torn down once
testing is completed, eliminating testing artifacts that would otherwise stick around
in a shared cluster. The overhead for getting to this stage is significant, but the invest‐
ment unlocks multicluster efforts, redundancy, and disaster recovery options that are
difficult to obtain otherwise (see Chapter 14 for more details).

This isn’t to say a single shared testing cluster is inherently bad. Diligence in marking
clean and reliable source streams is important, as is deleting unused testing artifacts.
Specific, codified responsibilities can ensure that expectations around staging event-
data reliability are managed by the teams that own the production event data. Teams
must also coordinate performance and load testing to ensure they do not affect each
other’s results. As your team improves its multicluster and event copying tooling,
teams can begin to migrate to their own dynamically created testing clusters.

Summary
Event-driven microservices predominantly source their input data from event
streams. You can create and populate these streams in a variety of ways, including
copying data from production, curating specific data sets, and automatically generat‐
ing events based on the schema. Each method has its own advantages and disadvan‐

270 | Chapter 15: Testing Event-Driven Microservices

tages, but all of them rely on supportive tooling to create, populate, and manage these
event streams.

Establishing an environment in which to test your microservice should be a collabo‐
rative effort. Other developers and engineers in your organization will undoubtedly
benefit from a common testing platform, so you should consider investing in tooling
to streamline your testing processes. Programmatic bringup of environments, includ‐
ing the population of event streams, can significantly reduce the overhead of setting
up environments for each microservice under test.

A single shared testing environment is a common strategy to employ when invest‐
ment in tooling is low. The tradeoff is the increased difficulty in managing the event
data, ensuring validity, and clarifying ownership. Disposable environments are a pref‐
erable alternative, as they provide isolation for services under test and reduce the
risks and shortcomings caused by multiple tenancy issues. These options tend to
require more investment in common supportive tooling, but save significant time
and effort in the long run. As an added benefit, using programmatic environment
bringup and event copying tooling can better prepare your organization for disaster
recovery.

Summary | 271

CHAPTER 16

Deploying Event-Driven Microservices

Deploying event-driven microservices can be challenging. As the number of micro‐
services within an organization increases, so does the importance of having standard‐
ized deployment processes in place. An organization managing only a few dozen
services can get away with a few custom deployment processes, but any organization
seriously invested in microservices, event-driven or otherwise, must invest in stand‐
ardization and streamlining its deployment processes.

Principles of Microservice Deployment
There are a number of principles that drive deployment processes:

Give teams deployment autonomy
Teams should control their own testing and deployment process and have the
autonomy to deploy their microservices at their discretion.

Implement a standardized deployment process
The deployment process should be consistent between services. A new microser‐
vice should be created with a deployment process already available to it. This is
commonly accomplished with a continuous integration framework, as is discussed
shortly.

Provide necessary supportive tooling
Deployments may require teams to reset consumer group offsets, purge state
stores, check and update schema evolution, and delete internal event streams.
Supportive tooling provides these functions to enable further automation of
deployment and support team autonomy.

273

Consider event stream reprocessing impacts
Reconsuming input event streams can be time-consuming, leading to stale results
for downstream consumers. Additionally, this microservice may subsequently
generate a large volume of output events, causing another high load for down‐
stream consumers. Very large event streams and those with large amounts of
consumers may see nontrivial surges in processing power requirements. You
must also consider side effects, particularly those that can be disruptive to cus‐
tomers (e.g., resending multiple years’ worth of promotional emails).

Adhere to service-level agreements (SLAs)
Deployments may be disruptive to other services. For instance, rebuilding state
stores can result in a significant amount of downtime, while reprocessing input
event streams may generate a significant number of events. Ensure that all SLAs
are honored during the deployment process.

Minimize dependent service changes
Deployments may require that other services change their APIs or data models,
such as when interacting with a REST API or introducing a domain schema
change. These changes should be minimized whenever possible, as they violate
the other team’s autonomy for deploying their services only when required by
shifting business requirements.

Negotiate breaking changes with downstream consumers
Breaking schema changes may be inevitable in some circumstances, requiring the
creation of new event streams and a renegotiation of the data contract with
downstream consumers. Ensure that these discussions happen before any
deployment and that a migration plan for consumers is in place.

Microservices should be independently deployable, and it is an
anti-pattern if they are not. If a particular microservice deployment
regularly requires other microservices to synchronize their deploy‐
ments, it is an indicator that their bounded contexts are ill-defined
and should be reviewed.

Architectural Components of Microservice Deployment
There are several major components of the microservice deployment architecture,
each of which plays a pivotal role. This architecture can be roughly broken down into
two main components: the system used to build and deploy the code, and the com‐
pute resources used by the microservices.

274 | Chapter 16: Deploying Event-Driven Microservices

Continuous Integration, Delivery, and Deployment Systems
Continuous integration, delivery, and deployment systems allow for microservices to
be built, tested, and deployed as code changes are committed to the repository. This is
part of the microservice tax that you must pay to successfully manage and deploy
microservices at scale. These systems allow microservice owners to decide when to
deploy their microservices, which is essential for scaling up the number of microser‐
vices used in an organization.

Continuous integration (CI) is the practice of automating the integration of code
changes from multiple contributors into a single software project. Changes from code
are integrated at the discretion of the team managing the microservice, with the
intent of reducing the amount of time between when code changes are made to when
they are deployed in production. CI frameworks allow for processes to be executed
automatically when code is merged into the main branch, including build operations,
unit testing, and integration testing operations. Other CI processes may include vali‐
dating code style and performing schema evolution validation. A ready-to-deploy
container or virtual machine is the final output of the CI pipeline.

Continuous delivery is the practice of keeping your codebase deployable. Microservi‐
ces that adhere to continuous delivery principles use a CI pipeline to validate that the
build is ready for deployment. The deployment itself is not automated, however, and
requires some manual intervention on the service owner’s part.

Continuous deployment is the automated deployment of the build. In an end-to-end
continuous deployment, a committed code change propagates through the CI pipe‐
line, reaches a deliverable state, and is automatically deployed to production accord‐
ing to the deployment configuration. This contributes to a tight development loop
with a short turnaround time, as committed changes quickly enter production.

Figure 16-1. A CI pipeline showcasing the difference between continuous delivery and
continuous deployment

Continuous deployment is difficult to do in practice. Stateful serv‐
ices are particularly challenging, as deployments may require
rebuilding state stores and reprocessing event streams, which are
especially disruptive to dependent services.

Architectural Components of Microservice Deployment | 275

Container Management Systems and Commodity Hardware
The container management system (CMS) provides the means of managing, deploy‐
ing, and controlling the resource use of containerized applications (see “Managing
Containers and Virtual Machines” on page 35). The container built during the CI
process is deposited into a repository, where it awaits deployment instructions from
the CMS. Integration between your CI pipeline and the CMS is essential to a stream‐
lined deployment process and is usually provided by all of the leading CMS provid‐
ers, as discussed in Chapter 2.

Commodity hardware is typically used for the deployment of event-driven microser‐
vices, as it is inexpensive, performs reliably, and enables horizontal scaling of services.
You can add and remove hardware to and from the resource pools as required, while
recovery from failed instances requires only that you redeploy the failed microservice
instances to the new hardware. Though your microservice implementations may
vary, many event-driven microservices do not require any specialized hardware to
operate. For those that do, you can allocate specialized resources into their own inde‐
pendent pools, such that the associated microservices can be deployed accordingly.
Examples might include memory-intensive computing instances for caching purpor‐
ses, or processor-intensive computing instances for applications demanding signifi‐
cant processing power.

The Basic Full-Stop Deployment Pattern
The basic full-stop deployment pattern is the basis of all other patterns, and this sec‐
tion outlines the steps involved (illustrated in Figure 16-1). You may have additional
steps in your pipeline depending on the specific requirements of your domain, but I
am keeping these steps lean for space purposes. Use your own judgment and domain
knowledge to insert any steps specific to your use cases.

1. Commit code. Merge the latest code into the master branch, kicking off the CI
pipeline. The specifics depend upon your repository and CI pipeline, but you
typically do this using commit hooks that can execute arbitrary logic when code
is committed to the repository.

2. Execute automated unit and integration tests. This step is part of the CI pipe‐
line to validate that the committed code passes all the unit and integration tests
necessary for merging. Integration tests may require that you spin up transient
environments and populate them with data to perform more complex tests. This
requires integration of the CI pipeline with the tooling described in “Local Inte‐
gration Testing” on page 259 so that each service can bring up its own integration
testing environment.

276 | Chapter 16: Deploying Event-Driven Microservices

It’s best to have independent integration testing environments
for any sort of automated integration, as it allows you to run
tests for a given service in isolation from other services. This
significantly reduces multitenancy issues that arise from hav‐
ing a long-running and shared integration test environment.

3. Run predeployment validation tests. This step ensures that your microservice
will deploy properly by validating common issues before release. Validations may
include:

Event stream validation
Validate that input event streams exist, output streams exist (or can be cre‐
ated, if automatic creation is enabled), and your microservice has the proper
read/write permissions to access them.

Schema validation
Validate that both the input and output schemas follow schema evolution
rules. A simple way to do this is by convention, with your input and output
schemas contained within a specific directory structure, along with a map of
schemas to event streams. This step of the pipeline can simply ingest the
schemas and run the comparisons for you, detecting any incompatibilities.

4. Deployment. The currently deployed microservice needs to be halted before the
new one can be deployed. This process consists of two major steps:
a. Stop instances and perform any clean-up before deploying. Stop the micro‐

service instances. Perform any necessary state store resets and/or consumer
group resets, and delete any internal streams. If rebuilding state in the case
deployment failure is expensive, you may instead want to leave your state,
consumer group, and internal topics alone, and instead deploy as a new ser‐
vice. This will enable you to roll back quickly in the case of a failure.

b. Deploy. Perform the actual deployment. Deploy the containerized code and
start the required number of microservice instances. Wait for them to boot up
and signal that they are ready before moving on to the next step. In the case of
a failure, abandon this step and deploy the previous working version of the
code.

5. Run post-deployment validation tests. Validate that the microservice is operat‐
ing normally, that consumer lag is returning to normal, that there are no logging
errors, and that endpoints are working as expected.

The Basic Full-Stop Deployment Pattern | 277

Consider the impacts to all dependent services, including SLAs,
downtime, stream processing catch-up time, output event load,
new event streams, and breaking schema changes. Communicate
with dependent service owners to ensure that the impacts are
acceptable.

The Rolling Update Pattern
The rolling update pattern can be used to keep a service running while updating the
individual microservice instances. Its prerequisites include the following:

• No breaking changes to any state stores
• No breaking changes to the internal microservice topology (particularly relevant

for implementations using lightweight frameworks)
• No breaking changes to internal event schemas

So long as the prerequisites are met, this deployment pattern works well for scenarios
such as when:

• New fields have been added to the input events and need to be reflected in the
business logic

• New input streams are to be consumed
• Bugs need to be fixed but don’t require reprocessing

Inadvertently altering the internal microservice topology is one of
the most common mistakes people make when trying to use this
deployment pattern. Doing so is a breaking change and will require
a full application reset instead of a rolling update.

During a rolling update, only step 4 of “The Basic Full-Stop Deployment Pattern” on
page 276 is changed. Instead of stopping each instance at the same time, only one
instance at a time is stopped. The stopped instance is then updated and started back
up, such that a mixture of new and old instances are running during the deployment
process. This rolling update means that for a short period of time, both old and new
logic will be operating simultaneously.

Smart implementations will run a test that checks compatibility of a
release to notify you if the rolling update is valid. Doing this man‐
ually is quite error-prone and should be avoided.

278 | Chapter 16: Deploying Event-Driven Microservices

The main benefit of this pattern is that services can be updated while near-real-time
processing continues uninterrupted, eliminating downtime. The main drawback of
this pattern is its prerequisites, which limits its usage to specific scenarios.

The Breaking Schema Change Pattern
A breaking schema change is sometimes inevitable, as covered in “Breaking Schema
Changes” on page 43. Deployments involving breaking schema changes must take
into account a number of dependencies, including both consumer and producer
responsibilities, coordination of migration efforts, and reprocessing downtime.

Deploying a breaking schema change is a fairly straightforward technical process.
The difficult part is renegotiating the schema definition, communicating that with
stakeholders, and coordinating deployment and migration plans. Each of these steps
requires clear communication between parties and well-defined timelines for action.

The impacts of a breaking schema change vary depending on the type of event.
Breaking entity schema changes are more complex than those of nonentity events, as
entities require a consistent definition for consumer materialization. Entities are also,
by definition, durable units of data that will be reconsumed whenever a consumer
rematerializes the entity stream from its source. Entity streams must be re-created
under the new schema, incorporating both the new business logic and schema
definitions.

Re-creating the entities for the new stream will require reprocessing the necessary
source data for the producer, whether a batch source or its own input event streams.
This logic can be built into the same producer, or a new producer can be built and
deployed alongside it. The former option keeps all logic encapsulated within its own
service, whereas the latter option allows the original producer to continue its opera‐
tions uninterrupted, reducing impact to downstream consumers. These options are
illustrated in Figure 16-2.

Breaking schema changes often reflect a fundamental shift in the domain of an entity
or event. These usually don’t happen too often, but when they do, the change is usu‐
ally significant enough that consumers must be updated to reflect the shifted business
meaning of the domain.

The Breaking Schema Change Pattern | 279

Figure 16-2. Breaking schema change producer options for re-creating events with new
schema

Breaking changes for nonentity events, on the other hand, may not require reprocess‐
ing. This is predominantly because many event streaming applications don’t regularly
reprocess event streams in the same way that a service may need to rematerialize its
entity streams. Consumers can often simply add the new event definition as a new
event stream and modify their business logic to handle both old and new events.
Once the old events expire out of the event stream, the old event stream can simply be
dropped from the business logic.

There are two main options for migrating a breaking schema change:

• Eventual migration via two event streams, one with the old schema and one with
the new schema

• Synchronized migration to a single new stream, with the old one removed

Eventual Migration via Two Event Streams
Eventual migration via two event streams requires that the producer write events with
both the old and new format, each to its respective stream. The old stream is marked
as deprecated, and the consumers of it will, in their own time, migrate to the new

280 | Chapter 16: Deploying Event-Driven Microservices

stream instead. Once all of the consumers have migrated, the old stream can be
removed or offloaded into long-term data storage.

This strategy makes a couple of assumptions:

• Events can be produced to both the old and new streams. The producer must
have the necessary data available to create events of both the old and new format.
The domain of the produced event will have changed significantly enough to
require a breaking change, while remaining similar enough that a 1:1 mapping of
old to new event format still makes sense. This may not be the case with all
breaking schema changes.

• Eventual migration will not cause downstream inconsistencies. Downstream
services will continue consuming two different definitions, but there will not be
consequential effects, or those effects will be limited. Again, the breaking change
in the schema suggests the domain has been altered enough that the redefinition
was necessary to the organization. It is seldom the case that the breaking change
is necessary for the business but largely inconsequential to the consumers that
use the events.

One of the main risks of eventual migration is that the migration is
never finished, and similar-yet-different data streams remain in use
indefinitely. Additionally, new services created during the migra‐
tion may inadvertently register themselves as consumers on the old
stream instead of the new one. Use metadata tagging (see “Event
Stream Metadata Tagging” on page 240) to mark streams as depre‐
cated and keep migration windows small.

Synchronized Migration to the New Event Stream
Another option is to update the producer to create events strictly with the new format
and to cease providing updates to the old stream. This is a simpler option—techno‐
logically speaking—than maintaining two event streams, but it requires more inten‐
sive communication between the producer and consumers of the data. Consumers
must update their definitions to accommodate breaking changes introduced by the
producer.

This strategy also makes a few assumptions:

• The event definition change is significant enough that the old format is no
longer usable. The domain of the entity or event has changed so much that the
old and new format cannot be maintained concurrently.

• Migration must happen synchronously to eliminate downstream inconsisten‐
cies. The domain has changed so significantly that services need to update to

The Breaking Schema Change Pattern | 281

ensure that business requirements can be met. Downstream services could have
major inconsistencies otherwise. For example, consider an entity where the selec‐
tion criteria for creation of the event has changed.

The biggest risk of this deployment plan is that consumers may fail in their migration
to the new event stream, but be unable to gracefully fall back to the old source of data
as they would using the eventual migration strategy. Integration testing (preferably
using programmatically generated environments and source data) can reduce this
risk by providing an environment in which to completely exercise the migration pro‐
cess. You can create and register the producer and the consumers together in the test
environment to validate the migration prior to performing it in production.

Synchronized migrations tend to be rare in practice, as they require
significant breaking changes or even the destruction of the event’s
previous domain model. Core business entities usually have very
stable domain models, but when major breaking changes occur, a
synchronous migration may be unavoidable.

The Blue-Green Deployment Pattern
The main goal of blue-green deployment is to provide zero downtime while deploy‐
ing new functionality. This pattern is predominantly used in synchronous request-
response microservice deployments, as it allows for synchronous requests to continue
while the service is updated. An example of this pattern is shown in Figure 16-3.

Figure 16-3. Blue-green deployment pattern

282 | Chapter 16: Deploying Event-Driven Microservices

In this example, a full copy of the new microservice (blue) is brought up in parallel
with the old microservice (green). The blue service has a fully isolated instance of its
external data store, its own event stream consumer group, and its own IP addresses
for remote access. It consumes input events until monitoring indicates that it is suffi‐
ciently caught up to the green service, at which point traffic from the green instances
can begin to be rerouted.

The switchover of traffic is performed by the router in front of the services. A small
amount of traffic can be diverted to the new blue instance, such that the deployment
can be validated in real time. If the deployment process detects no failures or abnor‐
malities, more and more traffic can be diverted until the green side is no longer
receiving any traffic.

At this point, depending on the sensitivity of your application and the need to pro‐
vide a quick fallback, the green instances can be turned off immediately or left to idle
until sufficient time without incident has passed. In the case that an error occurs dur‐
ing this cooldown period, the router can quickly reroute the traffic back to the green
instances.

Monitoring and alerting—including resource usage metrics, con‐
sumer group lag, autoscaling triggers, and system alerts—need to
be integrated as part of the color switching process.

Blue-green deployments work well for microservices that consume from event
streams. They can also work well when events are produced only due to request-
response activity, such as when the request is converted directly into an event (see
“Handling Requests Within an Event-Driven Workflow” on page 223).

Blue-green deployments do not work when the microservice pro‐
duces events to an output stream in reaction to an input event
stream. The two microservices will overwrite each other’s results in
the case of entity streams or will create duplicated events in the case
of event streams. Use either the rolling update pattern or the basic
full-stop deployment pattern instead.

Summary
Streamlining the deployment of microservices requires your organization to pay the
microservice tax and invest in the necessary deployment systems. Due to the large
number of microservices that may need to be managed, it is best to delegate deploy‐
ment responsibilities to the teams that own the microservices. These teams will need
supportive tooling to control and manage their deployments.

Summary | 283

Continuous integration pipelines are an essential part of the deployment process.
They provide the framework for setting up and executing tests, validating builds, and
ensuring that the containerized services are ready to deploy to production. The con‐
tainer management system provides the means for managing the deployment of the
containers into the compute clusters, allocating resources, and providing scalability.

There are a number of ways to deploy services, with the simplest being to stop the
microservice fully and redeploy the newest code. This can incur significant down‐
time, however, and may not be suitable depending on the SLAs. There are several
other deployment patterns, each with its own benefits and drawbacks. The patterns
discussed in this chapter are by no means a comprehensive list, but should give you a
good starting point for determining the needs of your own services.

284 | Chapter 16: Deploying Event-Driven Microservices

CHAPTER 17

Conclusion

Event-driven microservice architectures provide a powerful, flexible, and well-
defined approach to solving business problems. Here is a quick recap of the things
that have been covered in this book, as well as some final words.

Communication Layers
The data communication structure allows for universal access of important business
events across the organization. Event brokers fulfill this need extremely well, as they
permit the strict organization of data, can propagate updates in near–real time, and
can operate at big-data scale. The communication of data remains strictly decoupled
from the business logic that transforms and utilizes it, offloading these requirements
into individual bounded contexts. This separation of concerns allows the event
broker to remain largely agnostic of the business logic requirements (aside from sup‐
porting reads and writes), enabling it focus strictly on storing, preserving, and dis‐
tributing the event data to consumers.

A mature data communication layer decouples the ownership and production of data
from the access and consumption of it. Applications no longer need to perform dou‐
ble duty by serving internal business logic while also providing synchronization
mechanisms and outside direct access for other services.

Any service can leverage the durability and resiliency of the event broker to makes its
data highly available, including those that use the event broker to store changelogs of
its internal state. A failed service instance no longer means that data is inaccessible,
but simply that new data will be delayed until the producer is back online. Mean‐
while, consumers are free to consume from the event broker during any producer
outages, decoupling the failure modes between the services.

285

Business Domains and Bounded Contexts
Businesses operate in a specific domain, which can be broken down into subdomains.
Solutions to business problems are informed by bounded contexts, which identify the
boundaries—including the inputs, outputs, events, requirements, processes, and data
models—relevant to the subdomain.

Microservice implementations can be built to align with these bounded contexts. The
resultant services and workflows thus align with the problems and business require‐
ments. The universal data communication layer helps facilitate these alignments by
ensuring that the microservice implementations are flexible enough to adapt to
changes within the business domain and subsequent bounded contexts.

Shareable Tools and Infrastructure
Event-driven microservices require an investment in the systems and tools that per‐
mit its operation at scale, known as the microservice tax. The event broker is at the
heart of the system, as it provides the fundamental communication between services
and absolves each service from managing its own data communication solution.

Microservice architectures amplify all of the issues surrounding creating, managing,
and deploying applications, and benefit from a standardization and streamlining of
these processes. This becomes more critical as the number of microservices grow,
because while each new microservice incurs an overhead, the nonstandardized ones
can incur significantly more than those following a protocol.

The essential services that make up the microservice tax include:

• The event broker
• Schema registry and data exploration service
• Container management system
• Continuous integration, delivery, and deployment service
• Monitoring and logging service

Paying the microservice tax is unlikely to be an all-or-nothing process. An organiza‐
tion will typically start with either an event broker service or a container management
system, and work toward adding other pieces as needed. Fortunately, a number of
computing service providers, such as Google, Microsoft, and Amazon, have created
services that significantly reduce the overhead. You must weigh your options and
choose between outsourcing these operations to a service provider or building your
own systems in-house.

286 | Chapter 17: Conclusion

Schematized Events
Schemas play a pivotal role in communicating the meaning of events. Strongly typed
events force both producers and consumers to contend with the realities of the data.
Producers must ensure that they produce events according to the schema, while con‐
sumers must ensure that they handle the types, ranges, and definitions of the con‐
sumed events. Strongly defined schemas significantly reduce the chance of consumers
misinterpreting events and provide a contract for future changes.

Schema evolution provides a mechanism for events and entities to change in response
to new business requirements. It enables the producer to generate data with new and
altered fields, while also allowing consumers that don’t care about the change to con‐
tinue using older schemas. This significantly reduces the frequency and risk of nones‐
sential change. Meanwhile, the remaining consumers can independently upgrade
their code to consume and process events using the latest schema format, enabling
them to access the latest data fields.

Finally, schemas also allow for useful features such as code generation and data dis‐
covery. Code generators can create classes/structures relevant to producing and con‐
suming applications. These strongly defined classes/structures can help detect
formatting errors in production and consumption either at compile time or during
local testing, ensuring that events can be seamlessly produced and consumed. This
allows developers to focus strictly on the business logic of handling and transforming
these events, and far less on the plumbing. Meanwhile, a schema registry provides a
searchable means of figuring out which data is attributed to which event stream, ena‐
bling easier discovery of the stream’s contents.

Data Liberation and the Single Source of Truth
Once the data communication layer is available, it’s time to get the business-critical
data into it. Liberating data from the various services and data stores in your organi‐
zation can be a lengthy process, and it will take some time to get all necessary data
into the event broker. This is an essential step in decoupling systems from one
another and for moving toward an event-driven architecture. Data liberation decou‐
ples the production and ownership of data from the accessing of it by downstream
consumers.

Start by liberating the data that is most commonly used and most critical to your
organization’s next major goals. There are various ways to extract information from
the various services and data stores, and each method has benefits and drawbacks. It’s
important to weigh the impact on the existing service against the risks of stale data,
lack of schemas, and exposure of internal data models in the liberated event streams.

Schematized Events | 287

Having readily available business data in the form of event streams
allows for services to be built by composition. A new service needs
only to subscribe to the event streams of interest via the event
broker, rather than directly connecting to each service that would
otherwise provide the data.

Microservices
As the implementation of the bounded context, microservices are focused on solving
the business problems of the bounded context, and aligned accordingly. Business
requirement changes are the primary driver of updates to a microservice, with all
other unrelated microservices remaining unchanged.

Avoid implementing microservices based on technical boundaries. These are gener‐
ally created as a short-term optimization for serving multiple business workflows, but
in doing so, they couple themselves to each workflow. The technical microservice
becomes sensitive to business changes and couples otherwise unrelated workflows
together. A failure or inadvertent change in the technical microservice can bring
down multiple business workflows. Steer clear of technical alignment whenever pos‐
sible, and focus instead on fulfilling the business’s bounded context.

Lastly, not all microservices need be “micro.” It is reasonable for an organization to
instead use several larger services, particularly if it has not paid the microservice tax,
in part or in full. This is a normal evolution of an organization’s architecture. If your
business is using numerous large services, following these principles will help enable
the creation of new, fine-grained services decoupled from the existing large services:

• Put important business entities and events into the event broker.
• Use the event broker as the single source of truth.
• Avoid using direct calls between services.

Microservice Implementation Options
There’s a wide range of options available, all with pros and cons, for building event-
driven microservices. Currently, lightweight frameworks tend to have the greatest
out-of-the-box functionality. Streams can be materialized to tables and maintained
indefinitely. Joins, including those on foreign keys, can be performed for numerous
streams and tables. Hot replicas, durable storage, and changelogs provide resiliency
and scalability.

Heavyweight frameworks provide similar functionality to lightweight frameworks,
but fall short in terms of processing independence because they require a separate
dedicated cluster of resources. New cluster management options are becoming more
popular, such as direct integration with Kubernetes, one of the leading container

288 | Chapter 17: Conclusion

management systems. Heavyweight frameworks are often already in use in mid-sized
and larger organizations, typically by the individuals performing big-data analysis.

Basic producer/consumer (BPC) and Function-as-a-Service (FaaS) solutions provide
flexible options for many languages and runtimes. Both options are limited to basic
consumption and production patterns. Ensuring deterministic behavior is difficult, as
neither option comes with built-in event scheduling, so complex operations require
either a significant investment in your own custom libraries to provide that function‐
ality, or limiting the usage to simple use-case patterns.

Testing
Event-driven microservices lend themselves very well to full integration and unit test‐
ing. As the predominant form of inputs to an event-driven microservice, events can
be easily composed to cover whatever cases may arise. Event schemas constrain the
range of values that need to be tested and provide the necessary structure for com‐
posing input test streams.

Local testing can include both unit and integration testing, with the latter relying on
the dynamic creation of an event broker, schema registry, and any other dependencies
required by the service under test. For example, an event broker can be created to run
within the same executable as the test, as is the case with numerous JVM-based solu‐
tions, or to run within its own container alongside the application under test. With
full control of the event broker, you can simulate load, timing conditions, outages,
failures, or any other broker-application interactions.

You can conduct production integration testing by dynamically creating a temporary
event broker cluster, populating it with copies of production event streams and events
(barring information-security concerns) and executing the application against it. This
can provide a smoke test prior to production deployment to ensure that nothing has
been overlooked. You can also execute performance tests in this environment, testing
both the performance of a single instance and the ability of the application to hori‐
zontally scale. The environment can simply be discarded once testing is complete.

Deploying
Deploying microservices at scale requires that microservice owners can quickly and
easily deploy and roll back their services. This autonomy allows for teams to move
and act independently and to eliminate bottlenecks that would otherwise exist in an
infrastructural team responsible solely for deployments. Continuous integration,
delivery, and deployment pipelines are essential in providing this functionality, as
they allow a streamlined yet customizable deployment process that reduces manual
steps and intervention, and can be scaled out to other microservices. Depending on

Testing | 289

your selection, the container management system may provide additional functional‐
ity to help with deployments and rollbacks, further simplifying the process.

The deployment process must take into account service-level agreements (SLAs),
rebuilding of state, and reconsumption of input event streams. SLAs are not simply
matters of downtime, but also must take into account the impact of deployment on all
downstream consumers, and the health of the event broker service. A microservice
that must rebuild its entire state and propagate new output events may place a con‐
siderable load on the event broker, as well as cause downstream consumers to sud‐
denly need to scale up to many more processing instances. It is not uncommon for a
rebuilding service to process millions or billions of events in short order. Quotas can
mitigate the impact, but depending on downstream service requirements, a rebuild‐
ing service may be in an inconsistent state for an unacceptable period of time.

There are always tradeoffs between SLAs, impact to downstream consumers, impact
to the event broker, and impact to monitoring and alerting frameworks. For instance,
a blue-green deployment requires two consumer groups, which must be considered
for monitoring and alerting, including lag-based autoscaling. While you can certainly
perform the work necessary to accommodate this deployment pattern, another
option is to simply change the application’s design. An alternative to blue-green
deployments is to use a thin, always-on serving layer to serve synchronous requests,
while the backend event processor can be swapped out and reprocess in its own time.
While your service layer may serve stale data for a period of time, it doesn’t require
any augmentations to tooling or more complex swapping operations and can possibly
still meet the SLAs of dependent services.

Final Words
Event-driven microservices require you to rethink what data really is and how serv‐
ices go about accessing and using it. The amount of data attributed to any specific
domain grows in leaps and bounds every year and shows no signs of stopping. Data is
becoming larger and more ubiquitous, and gone are the days when it could simply be
shoved into one large data store and used for all purposes. A robust and well-defined
data communication layer relieves services of performing double duty and allows
them to focus instead on serving just their own business functionality, not the data
and querying needs of other bounded contexts.

Event-driven microservices are a natural evolution of computing to handle these
large and diverse data sets. The compositional nature of event streams lends itself to
unparalleled flexibility and allows individual business units to focus on using what‐
ever data is necessary to accomplish their business goals. Organizations running a
handful of services can benefit greatly from the data communications provided by the
event broker, which paves the way for building new services, fully decoupled from old
business requirements and implementations.

290 | Chapter 17: Conclusion

Regardless of the future of event-driven microservices themselves, this much is clear:
The data communication layer extends the power of an organization’s data to any ser‐
vice or team that requires it, eliminates access boundaries, and reduces unnecessary
complexity related to the production and distribution of important business
information.

Final Words | 291

Index

A
ACLs (access control lists) for event streams,

244, 250
AFTER trigger, 70
aggregation layer, challenges of, 232, 234
Akidau, Tyler

Streaming Systems, 96
Amazon Web Services (see AWS)
analytical events, 212-214
Apache Avro, 45
Apache Beam, 177, 179, 194, 257
Apache Flink, 177, 179, 184, 191, 257
Apache Gobblin, 58
Apache Hadoop, 178
Apache Heron, 177, 179, 191
Apache Kafka, 31, 33, 45, 58, 62, 84, 125, 153,

242
Apache NiFi, 58
Apache Pulsar, 33, 45, 84, 125, 153
Apache Samza, 94, 99, 204
Apache Spark, 177, 179, 184, 189, 194, 257
Apache Storm, 177, 179, 191
Apache Zookeeper, 177, 180, 192
API versioning and dependency management,

18
application layer, testing, 261
asynchronous direct-function calling, 162-163
asynchronous microservices, 15-17, 224
asynchronous triggers, FaaS, 156
asynchronous UI, 224
autoincrementing ID, 59, 64
autonomously generated events, 212-214
autonomy, microservices’ role in providing

design, 5

autoscaling applications, 192
AWS (Amazon Web Services) ECS, 35
AWS (Amazon Web Services) Firecracker, 36
AWS (Amazon Web Services) Kinesis, 263
AWS (Amazon Web Services) Lambda, 263

B
backend and frontend services, coordination of,

231-237
backward compatibility, schema evolution

rules, 42
basic full-stop deployment pattern, 276-278
basic producer and consumer (BPC) microser‐

vices (see BPC)
batch event-processing parameters, tuning your

functions, 166
batch size and batch window in event-stream

listener triggers, 157
big data, 178
binary logs, 61, 63
blue-green deployment pattern, 282-283, 290
bootstrapping, 62
bounded contexts, 4

ACLs as enforcers of, 244
aligning microservice implementation to, 5,

151, 286, 288
business domains, 3-6, 286
consumer responsibilities in communica‐

tion structure, 14
FaaS and designing solutions as microservi‐

ces, 151
function access permissions, 160
introduction, 4
leveraging domain models, 4

293

loose coupling of, 5, 6, 16
bounded versus unbounded data sets, out-of-

order event processing, 100
BPC (basic producer and consumer) microser‐

vices, 169-176, 289
branching of event streams, 81
breaking schema change pattern, 43-45,

279-282
broker ingestion time, 91
bulk loading of data by query, 59
business domains

and bounded contexts, 3-6, 286, 288
centralized frameworks for CDC, 76-77
communication structures, 7-15, 40, 285
FaaS advantages for, 159, 289
topology of, 22

business logic
in event processing, 80
freeing UI element libraries from bounded-

context-specific, 233
not reliant on event order, 171
windowing, 103-105

business requirements
aligning bounded contexts with, 5-6
BPC microservices’ capabilities, 171-173
data definitions and triggering logic, 39
EDM’s flexibility and, 16
mapping to microservices, 251
out-of-order and late event handling, 105
rebuilding state stores, 124
request-response and EDM integration, 232
schema evolution rules for, 41
temporal order, 93

C
CDC (change data capture), 61-77

business considerations, 76-77
change-data capture logs, 61-63
change-data tables, 75
data definition changes, 74-75
data liberation benefits and drawbacks, 63
outbox tables, 64-73
strategy tradeoffs, 77

changelogs, 112
lightweight framework, 201
recording state to, 112-113
restoring and scaling internal state from,

119

scaling and recovery with external state
stores, 123

sourcing data for, 62
checkpoints

changelog progress, 62
in heavyweight framework, 186

Chernyak, Slava
Streaming Systems, 96

choreography design pattern, 136-139
asynchronous function calling, 162-163
distributed systems, 138, 145-146
multifunction solutions, 161
transactions, 145-146

CI (continuous integration), 275, 289
cluster mode, for heavyweight cluster, 186
clusters

application submission modes, 186
in heavyweight framework, 177-192
multicluster management, 248
replication with cross-cluster event data,

249, 266
setup options and execution modes,

183-185
supportive tooling, 248-250

CMSes (container management systems), 35
deployment role of, 276
in heavyweight framework, 183-185
in lightweight framework, 177, 199
as supportive tool, 247

code generator support for event schema, 42
cold start and warm start, FaaS, 155
comments, in schema definition, 41
committing code, deployment, 276
commodity hardware in deployment, 276
communication structures, 6-15, 40, 285
community support, function of, 31
compaction of changelogs, 112
compatibility types, schema evolution rules, 41
compensation workflows, 149
composite service, multiple microservices as,

222
composition-based microservices, 232, 288
compute resources, programmatic bringup of,

248
Confluent KSQL, 175, 204
consumer group, 33
consumer group lag, 157
consumer ingestion time, 91
consumer offset lag monitoring, 246

294 | Index

consumers, 21
access data limitations in data model, 66
assigning partitions to consumer instance,

84-87
in BPC microservices, 169-176
breaking schema changes, 44
and communication layers, 285
data access and modeling requirements

based on, 14
decoupling of services, 136
in EDM process, 79
implicit versus explicit data contracts, 40
involvement in designing events, 51
negotiating breaking changes with, 274
notifications of schema creation and modi‐

fication, 243
in queue-based consumption, 31, 33, 216
responsibilities for using event stream, 32
timestamp extraction by, 95

container management systems (see CMSes)
continuous delivery, 275, 289
continuous deployment, 275, 289
continuous integration (see CI)
Conway’s Law, 9
copartitioning event streams, 83, 85
Couchbase, 62
created-at timestamp, 64
cross-cluster event data replication, 249, 266
cross-cutting versus sole ownership of applica‐

tion, 5
curated testing source, 267
custom event schedulers, 94
custom partition assignment strategy, 87
custom querying of data, 59
custom tags, metadata tag, 241
Custom transforms, 81

D
data access, EDM versus request-response

microservices, 18
data communication structure, 6-15, 40, 285
data contracts, 39-45
data definition language (see DDL)
data definitions, 39, 74

changing, 40, 40, 57, 74-75
events, 27
in schema, 40, 44
updating, 41

data dependency, 18, 61, 63, 250-254

data layer performing business logic, using
BPC, 172

data liberation, 54-73
change-data capture logs, 61-63
converting to events, 57
data definition changes, 74-75
frameworks, 58
outbox tables, 64-73
patterns of, 57
query-based, 58-61
and single source of truth, 60, 287
sinking event data to data stores, 76-77

data lineage, determining, 250
data models

benefit of event-production with outbox
tables, 69

exposure from change-data log data libera‐
tion pattern, 58, 63

graph, 2
isolating with outbox tables, 66

data source discovery, determining, 251
data stores

change-data capture logs for data liberation,
61

in EDM topology, 22
mocked external data store, for testing, 256
sinking event data to, 76-77
testing, 260

data types
keeping single purpose, 47-50
maintaining respect for, 42

database logs (see CDC)
DDL (data definition language), 74
Debezium, 62, 75
decoupling of producer and consumer services,

136
dedicated versus shared databases, 10
dedup ID (deduplication ID), 130
deduplication of events, 129-131
deletions

database log updating pattern, 63
tracking with query-based updating, 61

denormalization, 63, 66, 69
dependency, data, 18, 61, 63, 250-254
dependent scaling, request-response microser‐

vices, 18
dependent service changes

deployment considerations, 278
minimizing, 274

Index | 295

deployment considerations, 273-283
architectural components, 274-276
basic full-stop deployment pattern, 276-278
blue-green deployment pattern, 282-283
breaking schema change pattern, 279-282
heavyweight framework cluster, 182, 184
principles, 273-274
rolling update pattern, 278
summary, 289

deprecation, metadata tag, 241
designing events, 46-51
deterministic processing, 89-109

connectivity issues, 108-109
event scheduling and, 93-95
FaaS caution, 159
late-arriving events, 101, 105
out-of-order events, 99-100, 101-103
reprocessing historical data, 106-107
stream time, 97-99
timestamps, 90-93
watermarks, 95-97

DevOps capabilities, 239
direct coupling, avoiding, 54, 120, 221
direct-call communication pattern

functions calling other functions, 162-164
microservice architectures, 137
orchestration workflow, 142-143

distributed systems
choreographed workflows, 138, 145-146
heavyweight framework, 180
lightweight framework, 199
monoliths, request-response microservices,

19
orchestrated workflows, 146-149
timestamps, 90, 92, 92
transactions, 136, 144-149

Docker, 35
Docker Engine, 35
domain, 3
domain models, 4, 4
domain-driven design, 3, 15
Domain-Driven Design (Evans), 3
driver mode, heavyweight cluster, 186
duplicate events, processing, 128-131, 225
durable and immutable log, consuming from,

32-33, 93
durable stateful function support, 160

E
EDM (event-driven microservice) architecture,

2-3
advantages of, 15
asynchronous, 15-17, 224
BPC microservices, 169-176
communication structures, 6-15, 40, 285
costs of, 36
data contracts, 39-45
deployment, 273-283
designing events, 46-51
deterministic stream processing, 89-109
versus direct-call, 142-144
event format, 45
existing systems, integrating with, 53-77
FaaS, 151-167
fundamentals, 21-37
heavyweight framework, 177-197
implementation options, 288
lightweight framework, 199-209
processing basics, 79-87
request-response, integrating with, 211-237
stateful streaming, 111-133
supportive tooling, 239-254
synchronous, 17-19, 19
testing, 255-270
workflows, building, 135-149

effectively once processing, 125-133
emergent behavior, 136
encapsulation, 14, 227, 233, 279
entities, accommodating breaking schema

changes for, 44, 279
entity events, 24, 25-27
ESS (external shuffle service), 189
Evans, Eric, 3
event brokers, 21

client libraries and processing frameworks,
30

community support, 31
connectivity issues for, 108-109
deployment impacts, 290
differences in queue support, 33
features for running EDM ecosystem, 28-29
heavyweight versus lightweight frameworks,

177, 199, 204
hosted services, 30
ingestion time in deterministic processing,

94
long-term and tiered storage, 31

296 | Index

versus message brokers, 31-34
programmatic bringup of, 248
and quotas, 241
role of, 285
as single sources of truth for all data, 34
storage and serving of events, 29
support tooling, 30
testing, 260, 265
transactional support and effectively once

processing, 125, 127-128
event keys

in repartitioning, 81
selecting, 96-97

event streams
ACLs and permissions for, 244, 250
assigning partitions to a consumer instance,

84-87
branching and merging stateless topologies,

81
consumer role in using, 32
creating and modifying, 240
data liberation, 55
deterministic processing, 89-109
joining with external stream processing,

174-176
materializing a state from, 25-27, 55,

113-123, 182, 199, 221, 236
metadata tagging, 240
migration of, 280, 281
partitioning of, 29, 81-87, 101, 188-192
processing basics, 79-87
repartitioning of, 81-83, 97, 98, 101-103
reprocessing historical data from, 106-107
role in microservice processes, 21
as single source of truth, 14
single writer principle, 28
singular event definition per stream, 46
sinking event data to data stores, 76
state stores from, 111-125
validating, 277

event time, 91, 93, 94, 97
event-driven communication pattern, 161
event-driven microservices (see EDM)
event-stream listener, 155-157
eventification, 66
events

accommodating breaking schema changes
for, 45

as basis of communication, 14, 39

contents of, 23
converting liberated data to, 57
converting requests into, 223, 225-230
data definitions, 27, 46-51
designing, 46-51
formatting, 45
materializing state from entity events, 25-27
mock events using schemas, 267
scheduling, 93-95, 106-107
shuffling, 96, 99, 102, 200, 202
as single source of truth, 14, 23, 34, 46, 287
storage and serving of, 29
structure of, 23-25
types of, 24

evolution rules, schema, 41-42, 50, 287
exactly once processing (see effectively once

processing)
executor, heavyweight stream processing clus‐

ter, 179
existing systems, integration with, 53-77

BPC microservices, 170
data liberation, 54-73
sinking event data to data stores, 76-77

explicit versus implicit data contracts, 40
external events, handling with request-

response, 211-213
external services, nondeterministic, 90
external shuffle service (see ESS)
external state store, 112

application reset, 245
BPC microservices, 170
lightweight framework, 201
materializing state from an event stream,

120-123
serving real-time requests, 220-223

external systems, request-response calls to, 95
external to test code, temporary environment,

262

F
FaaS (Function-as-a-Service), 151-167

building microservices out of functions,
153-155

business solutions with, 159, 289
choosing a provider, 153
cold start and warm start, 155
designing solutions as microservices,

151-153
functions calling other functions, 160-164

Index | 297

maintaining state, 160
scaling your solutions, 166
termination and shutdown, 165
testing libraries, 264
triggering logic, starting functions with,

155-159
tuning your functions, 165

Filter transformations, 80
financial cost of materializing state from exter‐

nal store, 122
financial information, metadata tag, 240
formatting events, 23, 45
forward compatibility, schema evolution rules,

41
frontend and backend services, coordination of,

231-237
full compatibility, schema evolution rules, 42
full date locality in materializing state from

external store, 120, 122
full remote integration testing, 265-270
function, 151
Function-as-a-Service (see FaaS)
function-trigger map, 154
functional testing, 255, 258-265

G
gating pattern, 171
GCP (Google Cloud Platform), 153, 263
global state store, 114
global window, 182
Google Cloud Platform (see GCP)
Google Dataflow, 179, 191
Google gVisor, 36
Google PubSub, 263
GPS and NTP synchronization, 92
graph data models, 2
groupByKey operation, 96

H
HDFS (Hadoop Distributed File System), 76
heavyweight framework, 177-197

application submission modes, 186
benefits and limitations, 181-183, 288
choosing a framework, 193
clusters, 177-192
history, 178
inner workings, 179-181
languages and syntax, 193
multitenancy considerations, 192

recovering from failures, 192
scaling applications, 188-192
session windowing example, 194-197
state and checkpoints, 186-188
testing, 257
testing applications, 264

high availability
cluster task manager’s role in providing, 180
enforcing static master node assignment in

cluster, 184
event broker’s role in providing, 28

high performance
in disk-based options, 115
event broker’s role in providing, 28

historical event processing, 90, 99
hosted services (see managed services)
hot replicas, 116-119, 203, 218
hybrid BPC applications with external stream

processing, 174-176
hybrid integration testing, 258
hybrid microservice architectures, 19

I
idempotent writes, 125, 129
immutability of event data, 29

(see also durable and immutable log)
implementation communication structures,

7-10, 13, 15
implicit versus explicit data contracts, 40
incremental timestamp data loading by query,

59
incremental updating of data sets, 59
indexing of events, 29, 32
infinite retention of events, 29
ingestion time, 94
integrations

capturing DDL changes, 74
CMS in heavyweight framework, 184-185
continuous, 275, 289
with existing systems, 53-77, 170
with request-response, 211-237
testing environment, 258-270, 276, 282, 289

interconnectedness and complexity measure‐
ment, 251

intermittent capture, query-based updating, 61
intermittent failures and late events, 107
intermonolith communication, 2
internal data model, isolating with outbox, 66
internal state store, 111

298 | Index

application reset, 245
lightweight framework, 201
materializing state from an event stream,

113-120
serving real-time requests, 217-220

J
Java (JVM) microservice, 182, 193, 203, 204

K
Kafka Connect, 75, 76, 156
Kafka Streams, 98, 116, 203, 261
Kata Containers, 36
key state, checkpointing mechanism, 187
key/value format for events, 23, 114
keyed event, 24
Kubernetes, 36, 184

L
lag monitoring/triggering, 157, 246
late-arriving events, 101, 105
Lax, Reuven

Streaming Systems, 96
legacy systems, integration with EDMs, 53-77,

170
lightweight framework, 199-209

benefits and limitations, 199, 288
changelog usage, 201
choosing a framework, 203
languages and syntax, 204
processing, 200
scaling applications, 201-203
state handling, 201
stream-table-table join, 205-209
testing, 257, 262

load balancers, 217
local integration testing, 258, 289
LocalStack, 263
log-based data liberation, 57
long-term tiered storage, function of, 31
loose coupling of bounded contexts, 5, 6, 16

M
managed services (hosted services)

cloud computing, 248
function of, 30
heavyweight framework cluster setup, 183
mocking and simulator options, 263

Map transformations, 81
mapping of business requirements to microser‐

vices, 251
MapReduce, 178, 193
MapValue transformations, 81
master node, heavyweight stream processing

cluster, 179, 184, 192
materialized state, 111
materializing state from an event stream

data liberation compromise, 55
external state store, 120-123
from entity events, 25-27
frontend/backend coordination, 236
heavyweight framework, 182
internal state store, 113-120
lightweight framework, 199
serving requests via, 221

Maxwell, 62
MemoryStream class, 257
merging of event streams, 81
Mesos Marathon, 35
message brokers versus event brokers, 31-34
message-passing architectures, 2
MessageChooser class, 94
metadata tagging of event streams, 240
metadata, in schema definition, 41
micro-frontends in request-response applica‐

tions, 231-237
microservice tax, 36, 275, 286
microservice-to-team assignment system, 239
microservices (see EDM)
Microsoft Azure, 153, 160, 263
Microsoft Azure Event Hub, 263, 264
migration, 287

(see also data liberation)
data definition changes to data sets, 74
eventual migration via two event streams,

280
versus rebuilding state stores, 124-125
synchronized migration to new event

stream, 281
Mills, David, 92
mock events using schemas, 267
mocked external data store, 256
mocking and simulator options for hosted serv‐

ices, 263
MongoDB, 62
monolith communication, 2, 11, 227, 231
multicluster management, 248

Index | 299

multilanguage support, outbox tables, 69
multitenancy considerations, 92, 192
MySQL, 62, 75

N
namespace, metadata tag, 240
namespacing, heavyweight framework clusters,

193
near-real-time event processing, 90
network latency, performance loss due to, 121
Network Time Protocol (see NTP)
network-attached disk, materializing state to

internal state store, 115
Nomad, 35
nondeterministic workflows, 90
nonentity events, accommodating breaking

schema changes for, 280
nonfunctional testing, 255
notifications of schema creation and modifica‐

tion, 243
NTP (Network Time Protocol) synchroniza‐

tion, 92

O
offsets, 32

batch event-processing with FaaS, 166
choreographed asynchronous function calls,

162
committing offsets, timing of, 152
deterministic processing, 90, 93
manual adjustment of, 243
offset lag monitoring, 246
reprocessing event streams, 107

operator state, checkpointing mechanism, 187
orchestration design pattern, 139-144

direct-call workflow in request-response,
142-144

multifunction solutions, 161
synchronous function calling, 163
transactions, 146-149

orphaned streams and microservices, 245
out-of-order events, 33, 99-100, 101-103, 162
overlay team boundaries, determining, 250

P
partition assignment

to consumer instance, 84-87
deterministic processing, 93, 96, 97

lightweight framework, 202
request-response microservices integration,

217, 220
scaling of FaaS solutions, 167

partition assignor, 84
partition count, 82
partitioning of event streams, 81-87

copartitioning, 83, 85
out-of-order events and multiple partitions,

101
repartitioning, 81-83, 97, 98, 101-103
scaling in heavyweight framework, 188-192
strict ordering of partitions, 29

permissions for event streams, 244, 250
PII (personally identifiable information), meta‐

data tag, 240
point-to-point couplings, request-response

microservices, 18
post-deployment validation tests, 277
PostgreSQL, 62, 71
predeployment validation tests, 277
processing logic (see topologies)
processing of events, 21

(see also event streams)
deterministic, 89-109
duplicate events, 128-131, 225
effectively once processing, 125-133
overview, 79-87
versus reprocessing, 106-107, 216, 274
testing framework, 260
for user interface, 224-230

processing time, 91
producers, 21

BPC microservices, 169-176
breaking schema changes, 44, 279
connectivity issues for, 108-109
decoupling of services, 136
duplicate event generation, 129
event-driven role of, 14, 79
implicit versus explicit data contracts, 40
out-of-order event impact for multiple, 101

product-focused microservices, 231
production environment, for testing, 266, 269,

289
Protobuf, 45
Python, 193

Q
query-based data liberation, 57, 58-61

300 | Index

after-the-fact data definition changes in, 75
autoincrementing ID, 59
benefits of, 60
bulk loading of data by query, 59
custom querying of data, 59
drawbacks of, 61
timestamp data loading by query, 59
updating of data sets, 59

queue-based event consumption, 32, 33, 216
queue-triggered event processing, 164
quotas, 216, 241, 290

R
reactive architectures (see choreography design

pattern)
reactively generated events, 212
rebuilding versus migrating state stores,

124-125, 290
recovery (see scaling and scalability)
refactoring of legacy systems, challenges of, 56
relational databases

events in, 26
sourcing of data options for, 62

remote integration testing, 258, 264-270
repartitioning event streams, 81-83, 97, 98,

101-103
replayability of events, 29
replication

cross-cluster event data, 249, 266
event broker’s role in, 28
hot replicas, 116-119, 203, 218

reprocessing, 106-107, 216, 274
request-response microservices, 211-237

autonomously generated events, 212-214
calls to external systems in event scheduling,

95
direct-call orchestration workflow, 142-144
versus event-driven structures, 13, 17, 19
event-driven workflow to handle requests,

223-230
external event handling, 211-213
integrations with, 214-216
local testing of logic, 260
microfrontends, 231-237
stateful data processing and serving,

216-223
testing, 19

resources
allocating function, 165

production challenges in query-based
updating, 61

programmatic bringup of, 248
specifying for CMS heavyweight framework

job, 184
triggering logic, starting functions with, 159

restarting applications for scaling, 191
reusable event streams, 136
rollback command, orchestrated transactions,

147
rolling update pattern, 278
round-robin partition assignment strategy, 85
runtime of test code, temporary environment

within, 261

S
sagas (distributed transactions), 136, 144-149
Scala, 193
scaling and scalability

dependent scaling, 18
event broker’s role in, 28
FaaS, 166
heavyweight framework cluster, 183,

188-192
independent scaling of processing and data

layer, 173
with internal state stores, 114, 116-120
lightweight framework, 201-203
managing microservices at scale, 15, 34-36
materializing state to internal state store,

114
offset lag monitoring, 246
recovery with external state stores, 122-123
request-response API and EDM, 18, 221
as trigger disadvantage, 73

scheduling
events, 93-95, 106-107
functions for triggering logic, 158

schema registry, 58, 241-243, 258, 260
schemas

breaking schema change pattern, 43-45,
279-282

brittle dependency consideration, 61, 63
code generator support for, 42, 287
creating mock events using, 267
creation and modification notifications, 243
data definitions and, 27, 287
defining for data contracts, 40-45
for event encoding in generating events, 213

Index | 301

evolution rules, 41-42, 50, 287
merged event streams, 81
outbox table compatibility, 67-70
serializing, 67-69
summary, 287
testing, 72, 258
validating, 67-69, 277

semaphores or signals, avoiding events as, 51
separate microservices and request-response

API, 222
serialization options for events, 45
serializing schemas, 67-69
service failure handling, request-response

microservices, 18
service-level agreements (see SLAs)
service-oriented architectures (see SOAs)
session windows, 104, 194-197
Shannon, Claude, 39
shared environment for testing, 268, 270
shared versus dedicated databases, 10
shuffling, event, 96, 99, 102, 200, 202
sidecar pattern, 170
single source of truth

contents of event, 23, 46
designing events, 46
event broker as, 34
legacy database challenge for, 57
liberated data as, 60, 287

single writer principle, 28, 239
singular event definition per stream, 46
sinking event data to data stores, 76-77
SLAs (service-level agreements), 274, 290
sliding windows, 104
smart load balancer, 219
snapshots, in scaling and recovery with external

state stores, 123
SOAs (service-oriented architectures), 2, 17
sole versus cross-cutting ownership of applica‐

tion, 5
source streams, in scaling and recovery with

external state stores, 123
spark-fast-tests, 257
SQL and related languages, 61, 71, 75, 175, 193,

204
SQL Server, 64
state

changelogs, 112-113, 119, 123, 201
consistency of, 132-133

handling in heavyweight framework,
186-188

maintaining, 27, 55, 160
management and application reset, 245
replication, 203
scaling applications and recovering from

failures, 202
state stores, 111

effectively once processing to maintain
state, 132

external, 112, 120-123, 170, 201, 220-223,
245

global, 114
internal, 111, 113-120, 201, 217-220, 245
rebuilding versus migrating, 124-125

stateful streaming, 111-133
business logic not reliant on event order, use

of BPC for, 171
effectively once processing of transactions,

125-133
FaaS, 160
heavyweight framework, 186-192
lightweight framework, 202
materializing from event stream, 25-27, 55,

113-123, 182, 199, 221, 236
request-response microservices, 216-223
state stores from an event stream, 111-125
testing, 256

stateless streaming
composing topologies, 80-82
limitations of, 27
recovering from processing instance fail‐

ures, 87
scaling of, 188
testing functions, 256
transformations, 80

static partition assignment strategy, 87
stream owner (service), metadata tag, 240
stream time, 97-99, 101, 122
stream-table-table join, 205-209
streaming frameworks, 177-197, 199-209
Streaming Systems (O’Reilly), 96
StreamingSuiteBase, 257
streamlined microservice creation process, 247
strict ordering of partitions, 29
subdomain, 3, 4
supportive tooling, 239-254

cluster creation and management, 248-250
consumer offset lag monitoring, 246

302 | Index

container management controls, 247
dependency tracking and topology visuali‐

zation, 250-254
event streams, creating and modifying, 240
function of, 30
metadata tagging event streams, 240
and microservice deployment, 273
microservice-to-team assignment system,

239
offset management, 243
permissions and ACLs for event streams,

244
quotas, 241
schema creation and modification notifica‐

tions, 243
schema registry, 241-243
state management and application reset, 245
streamlined microservice creation process,

247
synchronized migration to new event stream,

281
synchronizing distributed timestamps, 92
synchronous function calling, 163
synchronous microservices, 17-19, 19
synchronous triggers, FaaS, 156

T
table-based data liberation, 57
table-stream duality, 25-27
task manager, heavyweight stream processing

cluster, 180
tax, microservice, 36, 275, 286
technological versus business requirements, 5
temporary integration testing environment,

261-263, 265-268
termination and shutdown of functions, 165
testing, 255-270

deployment pattern, 276, 282
high testability characteristic of EDM, 16
local integration, 259-264
remote integration, 258, 265-270
schemas, 72, 258
summary, 289
topology (as a whole), 257
unit-testing of topology functions, 256-257

third-party request-response APIs, integrating
with, 214-216

tight coupling, avoiding, 6, 11, 120, 143, 221

time-based aggregations, heavyweight frame‐
work, 182

time-sensitive functions and windowing, late-
arriving events, 103-105

timestamp extractor, 95
timestamps

deterministic stream processing, 90-93
in distributed systems, 90, 92, 92
incremental data loading by query, 59
outbox pattern, 64

topologies, 21
business, 22
composing stateless, 80-82
microservice, 21
processing topology, 80
recovering from instance failures, 87
testing of, 256-258
visualization tool, 250-254

transactional support for event processing
distributed systems, 136, 144-149
effectively once processing, 125, 127-128,

132
transformations, stateless topologies, 80
triggering logic, 39

capturing change-data using triggers, 70-73
comments in, 41
consumer group lag, 157
event-stream listener pattern, 155-157
orchestration function calling, 164
on resource events, 159
on schedule, 158
with webhooks, 159

tumbling windows, 103

U
UI (user interface)

inconsistent elements or styling in micro‐
frontend, 233

processing events for, 224-230
unit-testing of topology functions, 256-257, 276
unkeyed event, 24
updated-at timestamp, 59, 61
upserting, 25

V
validation of data

outbox tables, 67-69
testing, 277
trigger execution challenge to, 71, 73

Index | 303

version accommodation, analytical events, 213
visibility system, workflow, 139, 144, 148
VMs (virtual machines), 35-36

W
warm start and cold start, FaaS, 155
wasted disk space, materializing state to inter‐

nal state store, 116
watermarks, 95-97, 101
webhooks, 159

worker nodes, heavyweight stream processing
cluster, 179-181, 192

workflows, 135-149
choreography pattern, 136-139, 145-146
compensation, 149
distributed transactions, 144-149
orchestration pattern, 139-144, 146-149, 163
request-response, 142-144, 223-230

write-ahead logs, 62

304 | Index

About the Author
Adam Bellemare is a staff engineer for the data platform at Shopify. He’s held this
position since 2020. Previously, he worked at Flipp from 2014 to 2020 as a staff engi‐
neer. Prior to that, he held a software developer position at BlackBerry, where he first
got started in event-driven systems.

His expertise includes DevOps (Kafka, Spark, Mesos, Kubernetes, Solr, Elasticsearch,
HBase, and Zookeeper clusters, programmatic building, scaling, monitoring); techni‐
cal leadership (helping businesses organize their data communication layer, integrate
existing systems, develop new systems, and focus on delivering products); software
development (building event-driven microservices in Java and Scala using Beam,
Flink, Spark, and Kafka Streams libraries); and data engineering (reshaping the
way that behavioral data is collected from user devices and shared within the
organization).

Colophon
The animal on the cover of Building Event-Driven Microservices is a yellow-cheeked
tit (Machlolophus spilonotus). This bird can be found in the broadleaf and mixed-hill
forests, as well as in the human-made parks and gardens, of southeast Asia.

The striking bright yellow face and nape of the yellow-cheeked tit in contrast with its
black crest, throat, and breast make it easily identifiable. The male, depicted on the
cover, has a gray body and black wings peppered with white spots and bars; the
female has an olive-colored body and pale yellow wing-bars.

Yellow-cheeked tits dine on small invertebrates, spiders, and some fruits and berries,
foraging in the low- and mid-levels of the forest. Like other birds in the chickadee, tit,
and titmice family, the yellow-cheeked tit travels via short, undulating flights with
rapidy fluttering wings.

While the yellow-cheeked tit’s conversation status is listed as of Least Concern, many
of the animals on O’Reilly covers are endangered; all of them are important to the
world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Pictorial Museum of Animated Nature. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com/online-learning

	Cover
	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Why Event-Driven Microservices
	What Are Event-Driven Microservices?
	Introduction to Domain-Driven Design and Bounded Contexts
	Leveraging Domain Models and Bounded Contexts
	Aligning Bounded Contexts with Business Requirements

	Communication Structures
	Business Communication Structures
	Implementation Communication Structures
	Data Communication Structures
	Conway’s Law and Communication Structures

	Communication Structures in Traditional Computing
	Option 1: Make a New Service
	Option 2: Add It to the Existing Service
	Pros and Cons of Each Option
	The Team Scenario, Continued
	Conflicting Pressures

	Event-Driven Communication Structures
	Events Are the Basis of Communication
	Event Streams Provide the Single Source of Truth
	Consumers Perform Their Own Modeling and Querying
	Data Communication Is Improved Across the Organization
	Accessible Data Supports Business Communication Changes

	Asynchronous Event-Driven Microservices
	Example Team Using Event-Driven Microservices

	Synchronous Microservices
	Drawbacks of Synchronous Microservices
	Benefits of Synchronous Microservices

	Summary

	Chapter 2. Event-Driven Microservice Fundamentals
	Building Topologies
	Microservice Topology
	Business Topology

	The Contents of an Event
	The Structure of an Event
	Unkeyed Event
	Entity Event
	Keyed Event

	Materializing State from Entity Events
	Event Data Definitions and Schemas
	Microservice Single Writer Principle
	Powering Microservices with the Event Broker
	Event Storage and Serving
	Additional Factors to Consider

	Event Brokers Versus Message Brokers
	Consuming from the Immutable Log
	Providing a Single Source of Truth

	Managing Microservices at Scale
	Putting Microservices into Containers
	Putting Microservices into Virtual Machines
	Managing Containers and Virtual Machines

	Paying the Microservice Tax
	Summary

	Chapter 3. Communication and Data Contracts
	Event-Driven Data Contracts
	Using Explicit Schemas as Contracts
	Schema Definition Comments
	Full-Featured Schema Evolution
	Code Generator Support
	Breaking Schema Changes

	Selecting an Event Format
	Designing Events
	Tell the Truth, the Whole Truth, and Nothing but the Truth
	Use a Singular Event Definition per Stream
	Use the Narrowest Data Types
	Keep Events Single-Purpose
	Minimize the Size of Events
	Involve Prospective Consumers in the Event Design
	Avoid Events as Semaphores or Signals

	Summary

	Chapter 4. Integrating Event-Driven Architectures with Existing Systems
	What Is Data Liberation?
	Compromises for Data Liberation
	Converting Liberated Data to Events

	Data Liberation Patterns
	Data Liberation Frameworks
	Liberating Data by Query
	Bulk Loading
	Incremental Timestamp Loading
	Autoincrementing ID Loading
	Custom Querying
	Incremental Updating
	Benefits of Query-Based Updating
	Drawbacks of Query-Based Updating

	Liberating Data Using Change-Data Capture Logs
	Benefits of Using Data Store Logs
	Drawbacks of Using Data Base Logs

	Liberating Data Using Outbox Tables
	Performance Considerations
	Isolating Internal Data Models
	Ensuring Schema Compatibility
	Capturing Change-Data Using Triggers

	Making Data Definition Changes to Data Sets Under Capture
	Handling After-the-Fact Data Definition Changes for the Query and CDC Log Patterns
	Handling Data Definition Changes for Change-Data Table Capture Patterns

	Sinking Event Data to Data Stores
	The Impacts of Sinking and Sourcing on a Business
	Summary

	Chapter 5. Event-Driven Processing Basics
	Composing Stateless Topologies
	Transformations
	Branching and Merging Streams

	Repartitioning Event Streams
	Example: Repartitioning an Event Stream

	Copartitioning Event Streams
	Example: Copartitioning an Event Stream

	Assigning Partitions to a Consumer Instance
	Assigning Partitions with the Partition Assignor
	Assigning Copartitioned Partitions
	Partition Assignment Strategies

	Recovering from Stateless Processing Instance Failures
	Summary

	Chapter 6. Deterministic Stream Processing
	Determinism with Event-Driven Workflows
	Timestamps
	Synchronizing Distributed Timestamps
	Processing with Timestamped Events

	Event Scheduling and Deterministic Processing
	Custom Event Schedulers
	Processing Based on Event Time, Processing Time, and Ingestion Time
	Timestamp Extraction by the Consumer
	Request-Response Calls to External Systems

	Watermarks
	Watermarks in Parallel Processing

	Stream Time
	Stream Time in Parallel Processing

	Out-of-Order and Late-Arriving Events
	Late Events with Watermarks and Stream Time
	Causes and Impacts of Out-of-Order Events
	Time-Sensitive Functions and Windowing

	Handling Late Events
	Reprocessing Versus Processing in Near-Real Time
	Intermittent Failures and Late Events
	Producer/Event Broker Connectivity Issues
	Summary and Further Reading

	Chapter 7. Stateful Streaming
	State Stores and Materializing State from an Event Stream
	Recording State to a Changelog Event Stream
	Materializing State to an Internal State Store
	Materializing Global State
	Advantages of Using Internal State
	Disadvantages of Using Internal State
	Scaling and Recovery of Internal State

	Materializing State to an External State Store
	Advantages of External State
	Drawbacks of External State
	Scaling and Recovery with External State Stores

	Rebuilding Versus Migrating State Stores
	Rebuilding
	Migrating

	Transactions and Effectively Once Processing
	Example: Stock Accounting Service
	Effectively Once Processing with Client-Broker Transactions
	Effectively Once Processing Without Client-Broker Transactions

	Summary

	Chapter 8. Building Workflows with Microservices
	The Choreography Pattern
	A Simple Event-Driven Choreography Example
	Creating and Modifying a Choreographed Workflow
	Monitoring a Choreographed Workflow

	The Orchestration Pattern
	A Simple Event-Driven Orchestration Example
	A Simple Direct-Call Orchestration Example
	Comparing Direct-Call and Event-Driven Orchestration
	Creating and Modifying an Orchestration Workflow
	Monitoring the Orchestration Workflow

	Distributed Transactions
	Choreographed Transactions: The Saga Pattern
	Orchestrated Transactions

	Compensation Workflows
	Summary

	Chapter 9. Microservices Using Function-as-a-Service
	Designing Function-Based Solutions as Microservices
	Ensure Strict Membership to a Bounded Context
	Commit Offsets Only After Processing Has Completed
	Less Is More

	Choosing a FaaS Provider
	Building Microservices Out of Functions
	Cold Start and Warm Starts
	Starting Functions with Triggers
	Triggering Based on New Events: The Event-Stream Listener
	Triggering Based on Consumer Group Lag
	Triggering on a Schedule
	Triggering Using Webhooks
	Triggering on Resource Events

	Performing Business Work with Functions
	Maintaining State
	Functions Calling Other Functions
	Event-Driven Communication Pattern
	Direct-Call Pattern

	Termination and Shutdown
	Tuning Your Functions
	Allocating Sufficient Resources
	Batch Event-Processing Parameters

	Scaling Your FaaS Solutions
	Summary

	Chapter 10. Basic Producer and Consumer Microservices
	Where Do BPCs Work Well?
	Integration with Existing and Legacy Systems
	Stateful Business Logic That Isn’t Reliant Upon Event Order
	When the Data Layer Does Much of the Work
	Independent Scaling of the Processing and Data Layer

	Hybrid BPC Applications with External Stream Processing
	Example: Using an External Stream-Processing Framework to Join Event Streams

	Summary

	Chapter 11. Heavyweight Framework Microservices
	A Brief History of Heavyweight Frameworks
	The Inner Workings of Heavyweight Frameworks
	Benefits and Limitations
	Cluster Setup Options and Execution Modes
	Use a Hosted Service
	Build Your Own Full Cluster
	Create Clusters with CMS Integration

	Application Submission Modes
	Driver Mode
	Cluster Mode

	Handling State and Using Checkpoints
	Scaling Applications and Handling Event Stream Partitions
	Scaling an Application While It Is Running
	Scaling an Application by Restarting It
	Autoscaling Applications

	Recovering from Failures
	Multitenancy Considerations
	Languages and Syntax
	Choosing a Framework
	Example: Session Windowing of Clicks and Views
	Summary

	Chapter 12. Lightweight Framework Microservices
	Benefits and Limitations
	Lightweight Processing
	Handling State and Using Changelogs
	Scaling Applications and Recovering from Failures
	Event Shuffling
	State Assignment
	State Replication and Hot Replicas

	Choosing a Lightweight Framework
	Apache Kafka Streams
	Apache Samza: Embedded Mode

	Languages and Syntax
	Stream-Table-Table Join: Enrichment Pattern
	Summary

	Chapter 13. Integrating Event-Driven and
Request-Response Microservices
	Handling External Events
	Autonomously Generated Events
	Reactively Generated Events

	Handling Autonomously Generated Analytical Events
	Integrating with Third-Party Request-Response APIs
	Processing and Serving Stateful Data
	Serving Real-Time Requests with Internal State Stores
	Serving Real-Time Requests with External State Stores

	Handling Requests Within an Event-Driven Workflow
	Processing Events for User Interfaces

	Micro-Frontends in Request-Response Applications
	The Benefits of Microfrontends
	Composition-Based Microservices
	Easy Alignment to Business Requirements

	Drawbacks of Microfrontends
	Potentially Inconsistent UI Elements and Styling
	Varying Microfrontend Performance
	Example: Experience Search and Review Application

	Summary

	Chapter 14. Supportive Tooling
	Microservice-to-Team Assignment System
	Event Stream Creation and Modification
	Event Stream Metadata Tagging
	Quotas
	Schema Registry
	Schema Creation and Modification Notifications
	Offset Management
	Permissions and Access Control Lists for Event Streams
	State Management and Application Reset
	Consumer Offset Lag Monitoring
	Streamlined Microservice Creation Process
	Container Management Controls
	Cluster Creation and Management
	Programmatic Bringup of Event Brokers
	Programmatic Bringup of Compute Resources
	Cross-Cluster Event Data Replication
	Programmatic Bringup of Tooling

	Dependency Tracking and Topology Visualization
	Topology Example

	Summary

	Chapter 15. Testing Event-Driven Microservices
	General Testing Principles
	Unit-Testing Topology Functions
	Stateless Functions
	Stateful Functions

	Testing the Topology
	Testing Schema Evolution and Compatibility
	Integration Testing of Event-Driven Microservices
	Local Integration Testing
	Create a Temporary Environment Within the Runtime
of Your Test Code
	Create a Temporary Environment External to Your Test Code
	Integrate Hosted Services Using Mocking and Simulator Options
	Integrate Remote Services That Have No Local Options

	Full Remote Integration Testing
	Programmatically Create a Temporary Integration Testing Environment
	Testing Using a Shared Environment
	Testing Using the Production Environment

	Choosing Your Full-Remote Integration Testing Strategy
	Summary

	Chapter 16. Deploying Event-Driven Microservices
	Principles of Microservice Deployment
	Architectural Components of Microservice Deployment
	Continuous Integration, Delivery, and Deployment Systems
	Container Management Systems and Commodity Hardware

	The Basic Full-Stop Deployment Pattern
	The Rolling Update Pattern
	The Breaking Schema Change Pattern
	Eventual Migration via Two Event Streams
	Synchronized Migration to the New Event Stream

	The Blue-Green Deployment Pattern
	Summary

	Chapter 17. Conclusion
	Communication Layers
	Business Domains and Bounded Contexts
	Shareable Tools and Infrastructure
	Schematized Events
	Data Liberation and the Single Source of Truth
	Microservices
	Microservice Implementation Options
	Testing
	Deploying
	Final Words

	Index
	About the Author
	Colophon

