
Ford
, Pa

rsons,
Kua

 &
 Sa

d
a

la
g

e
B

uild
ing

 Evolutiona
ry A

rchitectures
B

uild
ing

 Evolutiona
ry A

rchitectures

2ND ED

Neal Ford,
Rebecca Parsons,

Patrick Kua & Pramod Sadalage
Forewords by Mark Richards & Martin Fowler

Building
Evolutionary
 Architectures
Automated Software Governance

2nd Edition

SOF T WARE ARCHITEC TURE

“As our expectations
of what software can
do changes at ever
increasing rates, we
must find ways to evolve
our architecture to
accommodate this truth.
This is the handbook
for understanding how
to view your system
architecture less as a
fixed impediment, and
more as a malleable
enabler.”

 —Sam Newman
Architect, Author of

Building Microservices

“This second edition
provides you with the
latest techniques,
knowledge, and tips to
make sure your software
architectures are agile
enough to keep up with
constant change.”

 —Mark Richards
developertoarchitect.com

Building Evolutionary Architectures

US $69.99 CAN $87.99
ISBN: 978-1-492-09754-9

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

With a constant stream of new tools, frameworks, techniques,
and paradigms, the software development ecosystem is
constantly changing. In the past five years alone, incremental
advances in core engineering practices for software
development have inspired the industry to recognize how
architecture itself must evolve to meet constantly changing
user demands. In this thoroughly updated edition, authors
Neal Ford, Rebecca Parsons, Patrick Kua, and Pramod
Sadalage provide real-world case studies that take into
account the recent, growing support for the evolution of
software development.

In three parts, this book covers:

• Mechanics: Part I includes chapters that define the
mechanics of evolutionary architecture—how teams use
techniques and tools to build fitness functions, deployment
pipelines, and other mechanisms for governing and evolving
software projects

• Structure: Part II includes coverage of architecture styles
and design principles around coupling, reuse, and other
pertinent structural considerations for cleaner evolution
over time

• Impact: Part III examines the intersection of the
engineering practices presented in Part I and the structural
considerations from Part II

Neal Ford is a director, software architect, and meme wrangler
at Thoughtworks. Dr. Rebecca Parsons is Thoughtworks’ chief
technology officer. Patrick Kua is a seasoned technology leader with
more than 20 years of experience. Pramod Sadalage bridges the
divide between database professionals and application developers
as director of data and DevOps at Thoughtworks.

Ford
, Pa

rsons,
Kua

 &
 Sa

d
a

la
g

e

2ND ED

Neal Ford, Rebecca Parsons, Patrick Kua,
and Pramod Sadalage

Building Evolutionary
Architectures

Automated Software Governance

2ND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-09754-9

[LSI]

Building Evolutionary Architectures
by Neal Ford, Rebecca Parsons, Patrick Kua, and Pramod Sadalage

Copyright © 2023 Neal Ford, Rebecca Parsons, Patrick Kua, and Pramod Sadalage. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield
Development Editor: Virginia Wilson
Production Editor: Christopher Faucher
Copyeditor: Audrey Doyle
Proofreader: Piper Editorial Consulting, LLC

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: O’Reilly Media, Inc.

October 2017: First Edition
December 2022: Second Edition

Revision History for the Second Edition
2022-11-22: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492097549 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Building Evolutionary Architectures, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492097549

Table of Contents

Foreword to the First Edition. ix

Foreword to the Second Edition. xi

Preface. xiii

Part I. Mechanics

1. Evolving Software Architecture. 1
The Challenges of Evolving Software 1
Evolutionary Architecture 5

Guided Change 5
Incremental Change 6
Multiple Architectural Dimensions 6

How Is Long-Term Planning Possible When Everything Changes All the
Time? 9

Once I’ve Built an Architecture, How Can I Prevent It from Degrading Over
Time? 10

Why Evolutionary? 11
Summary 12

2. Fitness Functions. 13
What Is a Fitness Function? 14
Categories 18

Scope: Atomic Versus Holistic 18
Cadence: Triggered Versus Continual Versus Temporal 19
Case Study: Triggered or Continuous? 21

iii

Result: Static Versus Dynamic 23
Invocation: Automated Versus Manual 23
Proactivity: Intentional Versus Emergent 24
Coverage: Domain-Specific Fitness Functions? 24

Who Writes Fitness Functions? 25
Where Is My Fitness Function Testing Framework? 25
Outcomes Versus Implementations 26
Summary 28

3. Engineering Incremental Change. 29
Incremental Change 29

Deployment Pipelines 32
Case Study: Adding Fitness Functions to PenultimateWidgets’ Invoicing

Service 36
Case Study: Validating API Consistency in an Automated Build 39

Summary 42

4. Automating Architectural Governance. 43
Fitness Functions as Architectural Governance 43
Code-Based Fitness Functions 45

Afferent and Efferent Coupling 46
Abstractness, Instability, and Distance from the Main Sequence 48
Directionality of Imports 52
Cyclomatic Complexity and “Herding” Governance 53

Turnkey Tools 55
Legality of Open Source Libraries 55
A11y and Other Supported Architecture Characteristics 56
ArchUnit 56
Linters for Code Governance 62
Case Study: Availability Fitness Function 62
Case Study: Load-Testing Along with Canary Releases 63
Case Study: What to Port? 64
Fitness Functions You’re Already Using 65

Integration Architecture 66
Communication Governance in Microservices 66
Case Study: Choosing How to Implement a Fitness Function 69

DevOps 71
Enterprise Architecture 73

Case Study: Architectural Restructuring While Deploying 60 Times
per Day 76

Fidelity Fitness Functions 78
Fitness Functions as a Checklist, Not a Stick 78

iv | Table of Contents

Documenting Fitness Functions 79
Summary 82

Part II. Structure

5. Evolutionary Architecture Topologies. 85
Evolvable Architecture Structure 85

Connascence 85
Connascence Intersection with Bounded Context 90

Architectural Quanta and Granularity 91
Independently Deployable 92
High Functional Cohesion 93
High Static Coupling 94
Dynamic Quantum Coupling 100

Contracts 103
Case Study: Microservices as an Evolutionary Architecture 107

Reuse Patterns 112
Effective Reuse = Abstraction + Low Volatility 113
Sidecars and Service Mesh: Orthogonal Operational Coupling 114
Data Mesh: Orthogonal Data Coupling 119

Summary 123

6. Evolutionary Data. 125
Evolutionary Database Design 125

Evolving Schemas 126
Shared Database Integration 128

Inappropriate Data Entanglement 132
Two-Phase Commit Transactions 133
Age and Quality of Data 134
Case Study: Evolving PenultimateWidgets’ Routing 135

From Native to Fitness Function 137
Referential Integrity 137
Data Duplication 138
Replacing Triggers and Stored Procedures 140
Case Study: Evolving from Relational to Nonrelational 142

Summary 143

Table of Contents | v

Part III. Impact

7. Building Evolvable Architectures. 147
Principles of Evolutionary Architecture 147

Last Responsible Moment 147
Architect and Develop for Evolvability 148
Postel’s Law 148
Architect for Testability 149
Conway’s Law 149

Mechanics 149
Step 1: Identify Dimensions Affected by Evolution 150
Step 2: Define Fitness Function(s) for Each Dimension 150
Step 3: Use Deployment Pipelines to Automate Fitness Functions 150

Greenfield Projects 151
Retrofitting Existing Architectures 151

Appropriate Coupling and Cohesion 151
COTS Implications 153

Migrating Architectures 154
Migration Steps 155
Evolving Module Interactions 158

Guidelines for Building Evolutionary Architectures 162
Remove Needless Variability 162
Make Decisions Reversible 164
Prefer Evolvable over Predictable 165
Build Anticorruption Layers 165
Build Sacrificial Architectures 167
Mitigate External Change 169
Updating Libraries Versus Frameworks 170
Version Services Internally 171
Case Study: Evolving PenultimateWidgets’ Ratings 172

Fitness Function-Driven Architecture 174
Summary 175

8. Evolutionary Architecture Pitfalls and Antipatterns. 177
Technical Architecture 177

Antipattern: Last 10% Trap and Low Code/No Code 177
Case Study: Reuse at PenultimateWidgets 178
Antipattern: Vendor King 179
Pitfall: Leaky Abstractions 181
Pitfall: Resume-Driven Development 183

Incremental Change 184
Antipattern: Inappropriate Governance 184

vi | Table of Contents

Case Study: “Just Enough” Governance at PenultimateWidgets 186
Pitfall: Lack of Speed to Release 186

Business Concerns 188
Pitfall: Product Customization 188
Antipattern: Reporting Atop the System of Record 189
Pitfall: Excessively Long Planning Horizons 190

Summary 191

9. Putting Evolutionary Architecture into Practice. 193
Organizational Factors 193

Don’t Fight Conway’s Law 193
Culture 204
Culture of Experimentation 205
CFO and Budgeting 207

The Business Case 208
Hypothesis- and Data-Driven Development 208
Fitness Functions as Experimental Media 210

Building Enterprise Fitness Functions 215
Case Study: Zero-Day Security Vulnerability 216
Carving Out Bounded Contexts Within Existing Integration Architecture 217

Where Do You Start? 220
Low-Hanging Fruit 220
Highest Value First 221
Testing 221
Infrastructure 222
Case Study: Enterprise Architecture at PenultimateWidgets 223

Future State? 223
Fitness Functions Using AI 224
Generative Testing 224

Why (or Why Not)? 224
Why Should a Company Decide to Build an Evolutionary Architecture? 224
Why Would a Company Choose Not to Build an Evolutionary

Architecture? 227
Summary 229

Index. 231

Table of Contents | vii

Foreword to the First Edition

For a long time, the software industry followed the notion that architecture was
something that ought to be developed and completed before writing the first line of
code. Inspired by the construction industry, it was felt that the sign of a successful
software architecture was something that didn’t need to change during development,
often a reaction to the high costs of scrap and rework that would occur due to a
re-architecture event.

This vision of architecture was rudely challenged by the rise of agile software
methods. The preplanned architecture approach was founded on the notion that
requirements should also be fixed before coding began, leading to a phased (or water‐
fall) approach where requirements were followed by architecture which itself was
followed by construction (programming). The agile world, however, challenged the
very notion of fixed requirements, observing that regular changes in requirements
were a business necessity in the modern world and providing project planning
techniques to embrace controlled change.

In this new agile world, many people questioned the role of architecture. And cer‐
tainly the preplanned architecture vision couldn’t fit in with modern dynamism. But
there is another approach to architecture, one that embraces change in the agile
manner. In this perspective, architecture is a constant effort, one that works closely
with programming so that architecture can react both to changing requirements and
to feedback from programming. We’ve come to call this evolutionary architecture, to
highlight that while the changes are unpredictable, the architecture can still move in a
good direction.

ix

At Thoughtworks, we’ve been immersed in this architectural worldview. Rebecca
led many of our most important projects in the early years of this millennium and
developed our technical leadership as our CTO. Neal has been a careful observer of
our work, synthesizing and conveying the lessons we’ve learned. Pat has combined his
project work with developing our technical leads. We’ve always felt that architecture
is vitally important and can’t be left to idle chance. We’ve made mistakes, but we’ve
learned from them, growing a better understanding of how to build a codebase that
can respond gracefully to the many changes in its purpose.

The heart of doing evolutionary architecture is to make small changes and put in
feedback loops that allow everyone to learn from how the system is developing. The
rise of Continuous Delivery has been a crucial enabling factor in making evolution‐
ary architecture practical. The authorial trio use the notion of fitness functions to
monitor the state of the architecture. They explore different styles of evolvability for
architecture and emphasize the issues around long-lived data—often a topic that gets
neglected. Conway’s Law towers over much of the discussion, as it should.

While I’m sure we have much to learn about doing software architecture in an
evolutionary style, this book marks an essential road map for the current state of
understanding. As more people are realizing the central role of software systems
in our 21st-century human world, knowing how best to respond to change while
keeping on your feet will be an essential skill for any software leader.

— Martin Fowler
martinfowler.com

September 2017

x | Foreword to the First Edition

Foreword to the Second Edition

A metaphor attempts to describe similarities between two unrelated things in order to
clarify their essential elements. A good example of this is with software architecture.
We commonly attempt to describe software architecture by comparing it to the
structure of a building. The things that make up the structure of a building—its outer
walls, inner walls, roof, room size, number of floors, even the location of the build‐
ing—all relate to structural elements of software architecture—databases, services,
communication protocols, interfaces, deployment location (cloud, on-premises), and
so on. The old view is that in both cases these are things that, once in place, are very
hard to change later. And that’s exactly where the building metaphor breaks down.

Today, the building metaphor for software architecture is no longer a valid one.
While it’s still useful to explain what software architecture is to a nontechnical person
in terms of comparing the structure of a system, software architecture must be malle‐
able enough to change quickly, which is very different from a physical building. Why
must software architecture be so malleable? Because businesses are in a constant state
of rapid change, undergoing mergers, acquisitions, new business lines, cost-cutting
measures, organizational structures, and so on. However, so is technology, with
new frameworks, technical environments, platforms, and products. To properly align
with the business and technology environment, software architecture must change
as well, and at the same rapid pace. A good example is a major acquisition by a
large company. Aside from the myriad business concerns and changes, the software
architectures supporting the major business applications must be able to scale to
meet the additional customer base and must be both adaptable and extensible to
accommodate new business functionality and practices.

xi

Many companies already know this but struggle with one thing: how do you make
software architecture malleable enough to withstand a fast rate of business and
technology change? The answers are found in this book you are about to read. This
second edition builds on the concepts of guided and incremental change introduced
in the first edition to provide you with the latest techniques, knowledge, and tips on
fitness functions, automated architectural governance, and evolutionary data to make
sure your software architectures are agile enough to keep up with the constant change
we are all experiencing today.

— Mark Richards
developertoarchitect.com

October 2022

xii | Foreword to the Second Edition

Preface

When we wrote the first edition of Building Evolutionary Architectures in 2017, the
idea of evolving software architecture was still somewhat radical. During one of
her first presentations about the subject, Rebecca was approached afterward by some‐
one accusing her of being professionally irresponsible for suggesting that software
architecture can evolve over time—after all, the architecture is the thing that never
changes.

However, as reality teaches us, systems must evolve to meet new demands of
their users and to reflect changes in the constantly shifting software development
ecosystem.

When the first edition was published, few tools existed to take advantage of the
techniques we describe. Fortunately, the software development world keeps evolving,
including many more tools to make building evolutionary architectures easier.

The Structure of This Book
We changed the structure from the first edition to more clearly delineate the two
main topics: the engineering practices for evolving software systems and the struc‐
tural approaches that make it easier.

In Part I, we define the various mechanisms and engineering practices that teams can
use to implement the goals of evolutionary architecture, including techniques, tools,
categories, and other information readers need to understand this topic.

Software architecture also involves structural design, and some design decisions make
evolution (and governance) easier. We cover this in Part II, which also includes
coverage of architecture styles as well as design principles around coupling, reuse,
and other pertinent structural considerations.

xiii

Virtually nothing in software architecture exists in isolation; many principles and
practices in evolutionary architecture involve the holistic entanglement of many parts
of the software development process, which we cover in Part III.

Case Studies and PenultimateWidgets
We highlight a number of case studies in this book. All four authors were (and some
still are) consultants while working on the material in this book, and we used our
real-world experience to derive many of the case studies that appear here. While we
can’t divulge the details for particular clients, we wanted to provide some relevant
examples to make the topic less abstract. Thus, we adopted the idea of a surrogate
company, PenultimateWidgets, as the “host” for all our case studies.

In the second edition, we also solicited case studies from our colleagues, which
further highlight examples of applying the techniques we discuss. Throughout the
book, each case study appears as one from PenultimateWidgets, but each comes from
a real project.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

xiv | Preface

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://evolutionaryarchitecture.com.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Building Evolutionary
Architectures, 2nd edition, by Neal Ford, Rebecca Parsons, Patrick Kua, and Pramod
Sadalage (O’Reilly). Copyright 2023 Neal Ford, Rebecca Parsons, Patrick Kua, and
Pramod Sadalage, 978-1-492-09754-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Preface | xv

http://evolutionaryarchitecture.com
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/evolutionary-arch-2e.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Additional Information
The authors maintain a companion website for this book at http://evolutionaryarchitec
ture.com.

Acknowledgments
The authors would like to give vociferous thanks to our colleagues who provided the
outlines and inspirations for the many fitness function case studies presented within.
In no particular order, thanks to Carl Nygard, Alexandre Goedert, Santhoshkumar
Palanisamy, Ravi Kumar Pasumarthy, Indhumathi V., Manoj B. Narayanan, Neeraj
Singh, Sirisha K., Gireesh Chunchula, Madhu Dharwad, Venkat V., Abdul Jeelani,
Senthil Kumar Murugesh, Matt Newman, Xiaojun Ren, Archana Khanal, Heiko
Gerin, Slin Castro, Fernando Tamayo, Ana Rodrigo, Peter Gillard-Moss, Anika Weiss,

xvi | Preface

https://oreilly.com
https://oreil.ly/evolutionary-arch-2e
mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia
http://evolutionaryarchitecture.com
http://evolutionaryarchitecture.com

Bijesh Vijayan, Nazneen Rupawalla, Kavita Mittal, Viswanath R., Dhivya Sadasivam,
Rosi Teixeira, Gregorio Melo, Amanda Mattos, and many others whose names we
failed to capture.

Neal would like to thank all the attendees of the various conferences at which he has
spoken over the last few years to help hone and revise this material in person and
especially online, due to the unusual circumstances of a global pandemic. Thanks
to all the front-line workers who stepped up bravely to help us all through this
difficult time. He would also like to thank the technical reviewers who went above
and beyond to provide excellent feedback and advice. Neal would also like to thank
his cats, Amadeus, Fauci, and Linda Ruth, for providing useful distractions that
often led to insights. Cats never dwell on the past or future; they are always in the
current moment, so he uses his time with them to join their presence in the here
and now. Thanks also to our outdoor neighborhood “cocktail club,” which started as
a community way to see friends and has evolved into the neighborhood brain trust.
And finally, Neal would like to thank his long-suffering wife, who endures his travel,
and then the abrupt absence of travel, and other professional indignities with a smile.

Rebecca would like to thank all the colleagues, conference attendees and speakers,
and authors who have, over the years, contributed ideas, tools, and methods and
asked clarifying questions about the field of evolutionary architecture. She echoes
Neal’s thanks to the technical reviewers for their careful reading and commentary.
Further, Rebecca would like to thank her coauthors for all the enlightening conversa‐
tions and discussions while working together on this book. In particular, she thanks
Neal for the great discussion, or perhaps debate, they had several years ago regarding
the distinction between emergent and evolutionary architecture. These ideas have
come a long way since that first conversation.

Patrick would like to thank all his colleagues and customers at ThoughtWorks, who
have driven the need and provided the test bed to articulate the ideas in building
evolutionary architecture. He also would like to echo Neal’s and Rebecca’s thanks
to the technical reviewers, whose feedback helped to improve the book immensely.
Finally, he would like to thank his coauthors for the past several years and for the
opportunity to work closely together on this topic, despite the numerous time zones
and flights that made meeting in person the rare occasion.

Pramod would like to thank all his colleagues and clients who have always provided
the space and time to explore new ideas and to push new ideas and thinking. He
would like to thank his coauthors for thoughtful discussions ensuring that all aspects
of architecture are considered. He also would like to thank the reviewers—Cassandra
Shum, Henry Matchen, Luca Mezzalira, Phil Messenger, Vladik Khononov, Venkat
Subramanium, and Martin Fowler—for thoughtful comments that helped the authors
immensely. And finally, he would like to thank his daughters, Arula and Arhana, for
the joy they bring into his life, and his wife, Rupali, for all her love and support.

Preface | xvii

PART I

Mechanics

Evolutionary architecture consists of broad areas of inquiry: mechanics and structure.

The mechanics of evolutionary architecture concern the engineering practices and
verification that allow an architecture to evolve, which overlap architectural gover‐
nance. This covers engineering practices, testing, metrics, and a host of other moving
parts that make evolving software possible. Part I defines and presents numerous
examples of the mechanics of evolutionary architecture.

The other aspect of Building Evolutionary Architectures concerns the structure or
topology of software systems. Do some architecture styles better facilitate building
systems that are easier to evolve? Are there structural decisions in architecture that
should be avoided to make evolution easier? We answer these and other questions in
Part II, which concerns structuring architecture for evolution.

Many of the facets of building evolutionary architectures combine both mechanics
and structure; Part III of the book is titled “Impact.” It includes many case studies,
provides advice, and covers patterns and antipatterns as well as other considerations
architects and teams need to be aware of to make evolution possible.

CHAPTER 1

Evolving Software Architecture

Building systems that age gracefully and effectively is one of the enduring challenges
of software development generally and software architecture specifically. This book
covers two fundamental aspects of how to build evolvable software: utilizing effective
engineering practices derived from the agile software movement and structuring
architecture to facilitate change and governance.

Readers will grow to understand the state of the art in how to manage change in
architecture in a deterministic way, unifying previous attempts at providing protec‐
tion for architecture characteristics and actionable techniques to improve the ability
to change architecture without breaking it.

The Challenges of Evolving Software
bit rot: also known as software rot, code rot, software erosion, software decay, or software
entropy, is either a slow deterioration of software quality over time or its diminishing
responsiveness that will eventually lead to software becoming faulty.

Teams have long struggled with building high-quality software that remains high
quality over time, including adages that reflect this difficulty, such as the varied defi‐
nitions of bit rot shown above. At least two factors drive this struggle: the problems of
policing all the various moving parts in complex software, and the dynamic nature of
the software development ecosystem.

Modern software consists of thousands or millions of individual parts, each of which
may be changed along some set of dimensions. Each of those changes has predict‐
able and sometimes unpredictable effects. Teams that attempt manual governance
eventually become overwhelmed by the sheer volume of parts and combinatorial side
effects.

1

Managing the myriad interactions of software would be bad enough against a static
backdrop, but that doesn’t exist. The software development ecosystem consists of
all the tools, frameworks, libraries, and best practices—the accumulated state of the
art in software development at any given snapshot in time. This ecosystem forms
an equilibrium—much like a biological system—that developers can understand and
build things within. However, that equilibrium is dynamic—new things come along
constantly, initially upsetting the balance until a new equilibrium emerges. Visualize
a unicyclist carrying boxes: dynamic because the unicyclist continues to adjust to stay
upright, and equilibrium because they continue to maintain balance. In the software
development ecosystem, each new innovation or practice may disrupt the status quo,
forcing the establishment of a new equilibrium. Metaphorically, we keep tossing more
boxes onto the unicyclist’s load, forcing them to reestablish balance.

In many ways, architects resemble our hapless unicyclist, constantly both balancing
and adapting to changing conditions. The engineering practices of Continuous Deliv‐
ery represent such a tectonic shift in the equilibrium: incorporating formerly siloed
functions such as operations into the software development lifecycle enabled new
perspectives on what change means. Enterprise architects can no longer rely on static,
five-year plans because the entire software development universe will evolve in that
time frame, rendering every long-term decision potentially moot.

Disruptive change is hard to predict even for savvy practitioners. The rise of contain‐
ers via tools like Docker is an example of an unknowable industry shift. However, we
can trace the rise of containerization via a series of small, incremental steps. Once
upon a time, operating systems, application servers, and other infrastructure were
commercial entities, requiring licensing and great expense. Many of the architectures
designed in that era focused on efficient use of shared resources. Gradually, Linux
became good enough for many enterprises, reducing the monetary cost of operat‐
ing systems to zero. Next, DevOps practices like automatic machine provisioning
via tools like Puppet and Chef made Linux operationally free. Once the ecosystem
became free and widely used, consolidation around common portable formats was
inevitable: thus, Docker. But containerization couldn’t have happened without all the
evolutionary steps leading to that end.

The software development ecosystem constantly evolves, which leads to new architec‐
tural approaches. While many developers suspect that a cabal of architects retreat
to an ivory tower to decide what the Next Big Thing will be, the process is much
more organic. New capabilities constantly arise within our ecosystem, providing new
ways to combine with existing and other new features to enable new capabilities.
For example, consider the recent rise of microservices architectures. As open source
operating systems became popular, combined with Continuous Delivery–driven
engineering practices, enough clever architects figured out how to build more scala‐
ble systems that they eventually needed a name: thus, microservices.

2 | Chapter 1: Evolving Software Architecture

https://www.docker.com
https://puppet.com
https://www.chef.io

Why We Didn’t Have Microservices in the Year 2000
Consider an architect with a time machine who travels back in time to the year 2000
and approaches the head of operations with a new idea.

“I have a great new concept for an architecture that allows fantastic isolation between
each of the capabilities—it’s called microservices; we’ll design each service around
business capabilities and keep things highly decoupled.”

“Great,” says the head of operations. “What do you need?”

“Well, I’m going to need about 50 new computers, and of course 50 new operating
system licenses, and another 20 computers to act as isolated databases, along with
licenses for those. When do you think I can get all that?”

“Please leave my office.”

While microservices might have seemed like a good idea even back then, the ecosys‐
tem wasn’t available to support it.

A portion of an architect’s job is structural design to solve particular problems—you
have a problem, and you’ve decided that software will solve it. When considering
structural design, we can partition it into two areas: the domain (or requirements) and
architecture characteristics, as illustrated in Figure 1-1.

Figure 1-1. The entire scope of software architecture encompasses requirements plus
architecture characteristics: the “-ilities” of software

The requirements shown in Figure 1-1 represent whatever problem domain the
software solution addresses. The other parts are variously known as architecture char‐
acteristics (our preferred term), nonfunctional requirements, system quality attributes,
cross-cutting requirements, and a host of other names. Regardless of the name, they
represent critical capabilities required for project success, both for initial release
and long-term maintainability. For example, architecture characteristics such as scale
and performance may form success criteria for a market, whereas others such as
modularity contribute to maintainability and evolvability.

The Challenges of Evolving Software | 3

The Many Names of Architecture Characteristics
We use the term architecture characteristics throughout the book to refer to nondo‐
main design considerations. However, many organizations use other terms for this
concept, among them nonfunctional requirements, cross-cutting requirements, and
system quality attributes. We don’t have a strong preference for one term over another
—feel free to translate our term to yours anywhere you see it in the book. These are
not distinct concepts.

Software is rarely static; it continues to evolve as teams add new features, integration
points, and a host of other common changes. What architects need are protection
mechanisms for architecture characteristics, similar to unit tests but focused on
architecture characteristics, which change at a different rate and are sometimes sub‐
ject to forces that are different from the domain. For example, technical decisions
within a company may drive a database change that is independent of the domain
solution.

This book describes the mechanisms and design techniques for adding the same kind
of continual assurance about architectural governance that high-performing teams
now have about other aspects of the software development process.

Architectural decisions are ones in which each choice offers significant trade-offs.
Throughout this book, when we refer to the role of architect, we encompass anyone
who makes architectural decisions, regardless of their title in an organization. Addi‐
tionally, important architecture decisions virtually always require collaboration with
other roles.

Do Agile Projects Need Architecture?
This is a common question asked of those who have utilized agile engineering practi‐
ces for a while. The goal of agility is to remove useless overhead, not necessary steps
such as design. As in many things in architecture, the scale dictates the level of archi‐
tecture. We use the analogy of building—if we want to build a dog house, we don’t
need an elaborate architecture; we just need materials. On the other hand, if we need
to build a 50-story office building, design must occur. Similarly, if we need a website
to track a simple database, we don’t need an architecture; we can find materials that
enable us to piece it together. However, we must carefully consider many trade-offs to
design a highly scalable and available website, such as a high-volume concert ticketing
website.

Rather than the question Do Agile projects need architecture?, the question for archi‐
tects lies in how little unnecessary design they can afford, while building the ability to
iterate on early designs to work toward more suitable solutions.

4 | Chapter 1: Evolving Software Architecture

Evolutionary Architecture
Both the mechanisms for evolution and the decisions architects make when design‐
ing software derive from the following definition:

An evolutionary software architecture supports guided, incremental change across
multiple dimensions.

The definition consists of three parts, which we describe in more detail below.

Guided Change
Once teams have chosen important characteristics, they want to guide changes to
the architecture to protect those characteristics. For that purpose, we borrow a
concept from evolutionary computing called fitness functions. A fitness function is an
objective function used to summarize how close a prospective design solution is to
achieving the set aims. In evolutionary computing, the fitness function determines
whether an algorithm has improved over time. In other words, as each variant of
an algorithm is generated, the fitness functions determine how “fit” each variant is,
based on how the designer of the algorithm defined “fit.”

We have a similar goal in evolutionary architecture: as architecture evolves, we
need mechanisms to evaluate how changes impact the important characteristics of
the architecture and prevent degradation of those characteristics over time. The
fitness function metaphor encompasses a variety of mechanisms we employ to ensure
architecture doesn’t change in undesirable ways, including metrics, tests, and other
verification tools. When an architect identifies an architectural characteristic they
want to protect as things evolve, they define one or more fitness functions to protect
that feature.

Historically, a portion of architecture has often been viewed as a governance activity,
and architects have only recently accepted the notion of enabling change through
architecture. Architectural fitness functions allow decisions in the context of the
organization’s needs and business functions, while making the basis for those deci‐
sions explicit and testable. Evolutionary architecture is not an unconstrained, irre‐
sponsible approach to software development. Rather, it is an approach that balances
the need for rapid change and the need for rigor around systems and architectural
characteristics. The fitness function drives architectural decision making, guiding the
architecture while allowing the changes needed to support changing business and
technology environments.

We use fitness functions to create evolutionary guidelines for architectures; we cover
them in detail in Chapter 2.

Evolutionary Architecture | 5

Incremental Change
Incremental change describes two aspects of software architecture: how teams build
software incrementally and how they deploy it.

During development, an architecture that allows small, incremental changes is easier
to evolve because developers have a smaller scope of change. For deployment, incre‐
mental change refers to the level of modularity and decoupling for business features
and how they map to architecture. An example is in order.

Let’s say that PenultimateWidgets, a large seller of widgets, has a catalog page backed
by a microservices architecture and modern engineering practices. One of the page’s
features enables users to rate different widgets with star ratings. Other services within
PenultimateWidgets’ business also need ratings (customer service representatives,
shipping provider evaluation, etc.), so they all share the star rating service. One day,
the star rating team releases a new version alongside the existing one that allows half-
star ratings—a small but significant upgrade. The other services that require ratings
aren’t required to move to the new version but to gradually migrate as convenient.
Part of PenultimateWidgets’ DevOps practices include architectural monitoring of
not only the services but also the routes between services. When the operations group
observes that no one has routed to a particular service within a given time interval,
they automatically disintegrate that service from the ecosystem.

This is an example of incremental change at the architectural level: the original
service can run alongside the new one as long as other services need it. Teams can
migrate to new behavior at their leisure (or as need dictates), and the old version is
automatically garbage collected.

Making incremental change successful requires coordination of a handful of Contin‐
uous Delivery practices. Not all of these practices are required in all cases; rather, they
commonly occur together in the wild. We discuss how to achieve incremental change
in Chapter 3.

Multiple Architectural Dimensions
There are no separate systems. The world is a continuum. Where to draw a boundary
around a system depends on the purpose of the discussion.

—Donella H. Meadows

Classical Greek physicists gradually learned to analyze the universe based on fixed
points, culminating in classical mechanics. However, more precise instruments and
more complex phenomena gradually refined that definition toward relativity in
the early 20th century. Scientists realized that what they previously viewed as iso‐
lated phenomena in fact interact relative to one another. Since the 1990s, enlight‐
ened architects have increasingly viewed software architecture as multidimensional.

6 | Chapter 1: Evolving Software Architecture

https://oreil.ly/jHoLH

Continuous Delivery expanded that view to encompass operations. However, soft‐
ware architects often focus primarily on technical architecture—how the software
components fit together—but that is only one dimension of a software project. If
architects want to create an architecture that can evolve, they must consider all
the interconnected parts of the system that change affects. Just like we know from
physics that everything is relative to everything else, architects know there are many
dimensions to a software project.

To build evolvable software systems, architects must think beyond just the technical
architecture. For example, if the project includes a relational database, the structure
and relationship between database entities will evolve over time as well. Similarly,
architects don’t want to build a system that evolves in a manner that exposes a
security vulnerability. These are all examples of dimensions of architecture—the parts
of architecture that fit together in often orthogonal ways. Some dimensions fit into
what are often called architectural concerns (the list of “-ilities” referred to earlier),
but dimensions are actually broader, encapsulating things traditionally outside the
purview of technical architecture. Each project has dimensions the architect role
must consider when thinking about evolution. Here are some common dimensions
that affect evolvability in modern software architectures:

Technical
The implementation parts of the architecture: the frameworks, dependent libra‐
ries, and implementation language(s).

Data
Database schemas, table layouts, optimization planning, and so on. The database
administrator generally handles this type of architecture.

Security
Defines security policies and guidelines, and specifies tools to help uncover
deficiencies.

Operational/System
Concerns how the architecture maps to existing physical and/or virtual infra‐
structure: servers, machine clusters, switches, cloud resources, and so on.

Each of these perspectives forms a dimension of the architecture—an intentional par‐
titioning of the parts supporting a particular perspective. Our concept of architectural
dimensions encompasses traditional architectural characteristics (“-ilities”) plus any
other role that contributes to building software. Each of these forms a perspective on
architecture that we want to preserve as our problem evolves and the world around
us changes.

When architects think in terms of architectural dimensions, it provides a mechanism
by which they can analyze the evolvability of different architectures by assessing how
each important dimension reacts to change. As systems become more intertwined

Evolutionary Architecture | 7

with competing concerns (scalability, security, distribution, transactions, etc.), archi‐
tects must expand the dimensions they track on projects. To build an evolvable
system, architects must think about how the system might evolve across all the
important dimensions.

The entire architectural scope of a project consists of the software requirements plus
the other dimensions. We can use fitness functions to protect those characteristics
as the architecture and the ecosystem evolve together through time, as illustrated in
Figure 1-2.

Figure 1-2. An architecture consists of requirements and other dimensions, each pro‐
tected by fitness functions

In Figure 1-2, the architects have identified auditability, data, security, performance,
legality, and scalability as the additional architectural characteristics important for
this application. As the business requirements evolve over time, each of the architec‐
tural characteristics utilizes fitness functions to protect its integrity as well.

While the authors of this text stress the importance of a holistic view of architec‐
ture, we also realize that a large part of evolving architecture concerns technical
architecture patterns and related topics like coupling and cohesion. We discuss how
technical architecture coupling affects evolvability in Chapter 5 and the impacts of
data coupling in Chapter 6.

8 | Chapter 1: Evolving Software Architecture

Coupling applies to more than just structural elements in software projects. Many
software companies have recently discovered the impact of team structure on surpris‐
ing things like architecture. We discuss all aspects of coupling in software, but the
team impact comes up so early and often that we need to discuss it here.

Evolutionary architecture helps answer two common questions that arise among
architects in the modern software development ecosystem: How is long-term planning
possible when everything changes all the time? and Once I’ve built an architecture, how
can I prevent it from degrading over time? Let’s explore these questions in more detail.

How Is Long-Term Planning Possible When Everything
Changes All the Time?
The programming platforms we use exemplify constant evolution. Newer versions of
a programming language offer better APIs to improve the flexibility of or applicabil‐
ity to new problems; newer programming languages offer a different paradigm and
different set of constructs. For example, Java was introduced as a C++ replacement to
ease the difficulty of writing networking code and to improve memory management
issues. When we look at the past 20 years, we observe that many languages still
continually evolve their APIs while totally new programming languages appear to
regularly attack newer problems. The evolution of programming languages is demon‐
strated in Figure 1-3.

Figure 1-3. The evolution of popular programming languages

Regardless of the particular aspect of software development—the programming plat‐
form, languages, operating environment, persistence technologies, cloud offerings,
and so on—we expect constant change. Although we cannot predict when changes
in the technical or domain landscape will occur, or which changes will persist, we

How Is Long-Term Planning Possible When Everything Changes All the Time? | 9

know change is inevitable. Consequently, we should architect our systems knowing
the technical landscape will change.

If the ecosystem constantly changes in unexpected ways, and if predictability is
impossible, what is the alternative to fixed plans? Enterprise architects and other
developers must learn to adapt. Part of the traditional reasoning behind making long-
term plans was financial; software changes were expensive. However, modern engi‐
neering practices invalidate that premise by making change less expensive through
the automation of formerly manual processes and other advances such as DevOps.

For years, many smart developers recognized that some parts of their systems were
harder to modify than others. That’s why software architecture is defined as “the parts
that are hard to change later.” This convenient definition partitioned the things you
can modify without much effort from truly difficult changes. Unfortunately, this defi‐
nition also evolved into a blind spot when thinking about architecture: developers’
assumption that change is difficult becomes a self-fulfilling prophecy.

Several years ago, some innovative software architects revisited the “hard to change
later” problem: what if we build changeability into the architecture? In other words,
if ease of change is a bedrock principle of the architecture, then change is no longer
difficult. Building evolvability into architecture in turn allows a whole new set of
behaviors to emerge, upsetting the dynamic equilibrium again.

Even if the ecosystem doesn’t change, what about the gradual erosion of architectural
characteristics that occurs? Architects design architectures but then expose them to
the messy real world of implementing things atop the architecture. How can architects
protect the important parts they have defined?

Once I’ve Built an Architecture, How Can I Prevent It from
Degrading Over Time?
An unfortunate decay, often called bit rot, occurs in many organizations. Architects
choose particular architectural patterns to handle the business requirements and
“-ilities,” but those characteristics often accidentally degrade over time. For example,
if an architect has created a layered architecture with presentation at the top, persis‐
tence at the bottom, and several layers in between, developers who are working
on reporting will often ask permission to directly access persistence from the presen‐
tation layer, bypassing the other layers, for performance reasons. Architects build
layers to isolate change. Developers then bypass those layers, increasing coupling and
invalidating the reasoning behind the layers.

Once they have defined the important architectural characteristics, how can archi‐
tects protect those characteristics to ensure they don’t erode? Adding evolvability as an
architectural characteristic implies protecting the other characteristics as the system

10 | Chapter 1: Evolving Software Architecture

evolves. For example, if an architect has designed an architecture for scalability, they
don’t want that characteristic to degrade as the system evolves. Thus, evolvability is a
meta-characteristic, an architectural wrapper that protects all the other architectural
characteristics.

The mechanism of evolutionary architecture heavily overlaps with the concerns and
goals of architectural governance—defined principles around design, quality, security,
and other quality concerns. This book illustrates the many ways that evolutionary
architecture approaches enable automating architectural governance.

Why Evolutionary?
A common question about evolutionary architecture concerns the name itself: why
call it evolutionary architecture and not something else? Other possible terms include
incremental, continual, agile, reactive, and emergent, to name just a few. But each of
these terms misses the mark. The definition of evolutionary architecture that we state
here includes two critical characteristics: incremental and guided.

The terms continual, agile, and emergent all capture the notion of change over time,
which is clearly a critical characteristic of an evolutionary architecture, but none of
these terms explicitly captures any notion of how an architecture changes or what
the desired end-state architecture might be. While all the terms imply a changing
environment, none of them covers what the architecture should look like. The guided
part of our definition reflects the architecture we want to achieve—our end goal.

We prefer the word evolutionary over adaptable because we are interested in archi‐
tectures that undergo fundamental evolutionary change, not ones that have been
patched and adapted into increasingly incomprehensible accidental complexity.
Adapting implies finding some way to make something work regardless of the ele‐
gance or longevity of the solution. To build architectures that truly evolve, architects
must support genuine change, not jury-rigged solutions. Going back to our biological
metaphor, evolutionary concerns the process of having a system that is fit for purpose
and can survive the ever-changing environment in which it operates. Systems may
have individual adaptations, but as architects, we should care about the overall
evolvable system.

Another useful comparison architects can make is between evolutionary architecture
and emergent design, and why there is not such a thing as an “emergent architecture.”
One common misconception about agile software development is the alleged lack
of architecture: “Let’s just start coding and the architecture will emerge as we go.”
However, this depends on how simple the problem is. Consider a physical building.
If you need to build a dog house, you don’t need an architecture; you can go to the
hardware store and buy lumber and bang it together. If, on the other hand, you need
to build a 50-floor office building, architecture is definitely required! Similarly, if you

Why Evolutionary? | 11

are building a simple catalog system for a small number of users, you likely don’t need
a lot of up-front planning. However, if you are designing a software system that needs
strict performance for a large number of users, planning is necessary! The purpose
of agile architecture isn’t no architecture; it’s no useless architecture: don’t go through
bureaucratic processes that don’t add value to the software development process.

Another complicating factor in software architecture is the different types of essential
complexity architects must design for. When evaluating trade-offs, it’s often not the
easy simple versus complex system distinction but rather systems that are complex in
different ways. In other words, each system has a unique set of criteria for success.
While we discuss architectural styles such as microservices, each style is a starting
point for a complex system that grows to look like no other.

Similarly, if an architect builds a very simple system, they can afford to pay little
attention to architectural concerns. However, sophisticated systems require purpose‐
ful design, and they need a starting point. Emergence suggests that you can start with
nothing, whereas architecture provides the scaffolding or structure for all the other
parts of the system; something must be in place to begin.

The concept of emergence also implies that teams can slowly crescendo their design
toward the ideal architectural solution. However, like building architecture, there is
no perfect architecture, only different ways architects deal with trade-offs. Architects
can implement most problems in a wide variety of different architecture styles and be
successful. However, some of them will fit the problem better, offering less resistance
and fewer workarounds.

One key to evolutionary architecture is the balance between how much structure
and governance is necessary to support long-term goals and needless formality and
friction.

Summary
Useful software systems aren’t static. They must grow and change as the problem
domain changes and the ecosystem evolves, providing new capabilities and complexi‐
ties. Architects and developers can gracefully evolve software systems, but they must
understand both the necessary engineering practices to make that happen and how
best to structure their architecture to facilitate change.

Architects are also tasked with governing the software they design, along with
many of the development practices used to build it. Fortunately, the mechanisms we
uncover to allow easier evolution also provide ways to automate important software
governance activities. We take a deep dive into the mechanics of how to make this
happen in the next chapter.

12 | Chapter 1: Evolving Software Architecture

CHAPTER 2

Fitness Functions

The mechanics of evolutionary architecture cover the tools and techniques develop‐
ers and architects use to build systems that can evolve. An important gear in that
machinery is the protection mechanism called a fitness function, the architectural
equivalent of a unit test for the domain part of an application. This chapter defines
fitness functions and explains the categories and usage of this important building
block.

An evolutionary architecture supports guided, incremental change across multiple
dimensions.

As noted in our definition, the word guided indicates that some objective exists that
architecture should move toward or exhibit. We borrow a concept from evolutionary
computing called fitness functions, which are used in genetic algorithm design to
define success.

Evolutionary computing includes a number of mechanisms that allow a solution to
gradually emerge via mutation—small changes in each generation of the software.
The evolutionary computing world defines a number of types of mutations. For
example, one mutation is called a roulette mutation: if the algorithm utilizes con‐
stants, this mutation will choose new numbers as if from a roulette wheel in a
casino. For example, suppose a developer is designing a genetic algorithm to solve
the traveling salesperson problem to find the shortest route between a number of
cities. If the developer notices that smaller numbers supplied by the roulette mutation
yield better results, they may build a fitness function to guide the “decision” during
mutation. Thus, fitness functions are used to evaluate how close a solution is to ideal.

13

https://oreil.ly/jtqHZ

What Is a Fitness Function?
We borrow this concept of fitness functions from the evolutionary computing world
to define an architectural fitness function:

An architectural fitness function is any mechanism that provides an objective integrity
assessment of some architectural characteristic(s).

Architectural fitness functions form the primary mechanisms for implementing evolu‐
tionary architecture.

As the domain part of our solution evolves, teams have developed a wide variety of
tools and techniques to manage integrating new features without breaking existing
ones: unit, functional, and user acceptance testing. In fact, most companies bigger
than a certain size have an entire department dedicated to managing domain evo‐
lution, called quality assurance: ensuring that existing functionality isn’t negatively
affected by changes.

Thus, well-functioning teams have mechanisms for managing evolutionary change
to the problem domain: adding new features, changing behaviors, and so on. The
domain is typically written in a fairly coherent technology stack: Java, .NET, or a host
of other platforms. Thus, teams can download and use testing libraries suited to their
combination of technology stacks.

Fitness functions are to architecture characteristics as unit tests are to the domain.
However, teams cannot download a single tool for the wide variety of validations
possible for architecture characteristics. Rather, fitness functions encompass a wide
variety of tools in different parts of the ecosystem, depending on the architecture
characteristics the team is governing, as illustrated in Figure 2-1.

Figure 2-1. Fitness functions encompass a wide variety of tools and techniques

As shown in Figure 2-1, architects can use many different tools to define fitness
functions:

14 | Chapter 2: Fitness Functions

Monitors
DevOps and operational tools such as monitors allow teams to verify concerns
such as performance, scalability, and so on.

Code metrics
Architects can embed metrics checks and other verifications within unit tests to
validate a wide variety of architecture concerns, including design criteria (many
examples follow in Chapter 4).

Chaos engineering
This recently developed branch of engineering practices artificially stresses
remote environments by injecting faults to force teams to build resiliency into
their systems.

Architecture testing frameworks
In recent years, testing frameworks dedicated to testing architecture structure
have appeared, allowing architects to encode a wide variety of validations into
automated tests.

Security scanning
Security—even if supervised by another part of the organization—affects design
decisions that architects make and thus falls under the umbrella of concerns that
architects want to govern.

Before we define the categories of fitness functions and other factors, an example will
help make the concept less abstract. The component cycle is a common antipattern
across all platforms with components. Consider the three components in Figure 2-2.

Figure 2-2. A cycle exists when components have a cyclic dependency

Architects consider the cyclic dependency shown in Figure 2-2 an antipattern because
it presents difficulties when a developer tries to reuse one of the components—each
of the entangled components must also come along. Thus, in general, architects want
to keep the number of cycles low. However, the universe is actively fighting the
architect’s desire to prevent this problem via convenience tools. What happens when
a developer references a class whose namespace/package they haven’t referenced yet
in a modern IDE? It pops up an auto-import dialog to automatically import the
necessary package.

What Is a Fitness Function? | 15

Developers are so accustomed to this affordance that they swat it away as a reflex
action, never actually paying attention. Most of the time, auto-importing is a great
convenience that doesn’t cause any problems. However, once in a while, it creates a
component cycle. How do architects prevent this?

Consider the set of packages illustrated in Figure 2-3.

Figure 2-3. Component cycles represented as packages in Java

ArchUnit is a testing tool inspired by (and using some of the facilities of) JUnit, but
it’s used to test various architecture features, including validations to check for cycles
within a particular scope, as illustrated in Figure 2-3.

An example of how to prevent cycles using ArchUnit appears in Example 2-1.

Example 2-1. Preventing cycles using ArchUnit

public class CycleTest {
 @Test
 public void test_for_cycles() {
 slices().
 matching("com.myapp.(*)..").
 should().beFreeOfCycles()
}

In this example, the testing tool “understands” cycles. An architect who wants to
prevent cycles from gradually appearing in their codebase can wire this testing into a
continuous build process and never have to worry about cycles again. We will show
more examples of using ArchUnit and similar tools in Chapter 4.

16 | Chapter 2: Fitness Functions

https://www.archunit.org

We first define fitness functions more rigorously, and then examine conceptually how
they guide the evolution of the architecture.

Don’t mistake the function part of our definition as implying that architects must
express all fitness functions in code. Mathematically speaking, a function takes an
input from some allowed set of input values and produces an output in some allowed
set of output values. In software, we also generally use the term function to refer
to something implementable in code. However, as with acceptance criteria in agile
software development, the fitness functions for evolutionary architecture may not be
implementable in software (e.g., a required manual process for regulatory reasons).
An architectural fitness function is an objective measure, but architects may imple‐
ment that measure in a wide variety of ways.

As discussed in Chapter 1, real-world architecture consists of many different dimen‐
sions, including requirements around performance, reliability, security, operability,
coding standards, and integration, to name a few. We want a fitness function to
represent each requirement for the architecture, requiring us to find (and sometimes
create) ways to measure things we want to govern. We’ll look at a few examples and
then consider the different kinds of functions more broadly.

Performance requirements make good use of fitness functions. Consider a require‐
ment that all service calls must respond within 100 ms. We can implement a test (i.e.,
fitness function) that measures the response to a service request and fails if the result
is greater than 100 ms. To this end, every new service should have a corresponding
performance test added to its test suite (you’ll learn more about triggering fitness
functions in Chapter 3). Performance is also a good example of the vast number
of ways architects can think about common measures. For example, performance
may suggest request/response timing, as measured by a mentoring tool, or another
metric such as first contentful paint, a mobile device performance metric provided by
Lighthouse. The purpose of a performance fitness function is not to measure all types
of performance but ones that architects deem important for governance.

Fitness functions also can be used to maintain coding standards. A common code
metric is cyclomatic complexity, a measure of function or method complexity avail‐
able for all structured programming languages. An architect may set a threshold for
an upper value, guarded by a unit test running in continuous integration, using one
of the many tools available to evaluate that metric.

Despite need, developers cannot always implement some fitness functions completely
because of complexity or other constraints. Consider something like a failover for
a database from a hard failure. While the recovery itself might be fully automated
(and should be), triggering the test itself is likely best done manually. Additionally, it
might be far more efficient to determine the success of the test manually, although
developers should still encourage scripts and automation.

What Is a Fitness Function? | 17

https://oreil.ly/7EHeZ
https://oreil.ly/rYeYV

These examples highlight the myriad forms that fitness functions can take, the
immediate response to failure of a fitness function, and even when and how devel‐
opers might run them. While we can’t necessarily run a single script and say “our
architecture currently has a composite fitness score of 42,” we can have precise and
unambiguous conversations about the state of the architecture. We can also entertain
discussions about the changes that might occur on the architecture’s fitness.

Finally, when we say an evolutionary architecture is guided by the fitness function,
we mean we evaluate individual architectural choices against the individual and the
system-wide fitness functions to determine the impact of the change. The fitness
functions collectively denote what matters to us in our architecture, allowing us to
make the kinds of trade-off decisions that are both crucial and vexing during the
development of software systems.

You may think, “Wait! We’ve been running code metrics as part of continuous
integration for years—this isn’t new!” You would be correct: the idea of validating
parts of software as part of an automated process is as old as automation. However,
we formerly considered all the different architecture verification mechanisms as
separate—code quality versus DevOps metrics versus security, and so on. Fitness
functions unify many existing concepts into a single mechanism, allowing architects
to think in a uniform way about many existing (often ad hoc) “nonfunctional require‐
ments” tests. Collecting important architecture thresholds and requirements as fitness
functions allows for a more concrete representation for previously fuzzy, subjective
evaluation criteria. We leverage a large number of existing mechanisms to build
fitness functions, including traditional testing, monitoring, and other tools. Not all
tests are fitness functions, but some tests are—if the test helps verify the integrity of
architectural concerns, we consider it a fitness function.

Categories
Fitness functions exist across a variety of categories related to their scope, cadence,
result, invocation, proactivity, and coverage.

Scope: Atomic Versus Holistic
Atomic fitness functions run against a singular context and exercise one particular
aspect of the architecture. An excellent example of an atomic fitness function is a
unit test that verifies some architectural characteristic, such as modular coupling
(we show an example of this type of fitness function in Chapter 4). Thus, some
application-level testing falls under the heading of fitness functions, but not all unit
tests serve as fitness functions—only the ones that verify architecture characteris‐
tic(s). The example in Figure 2-3 represents an atomic fitness function: it checks only
for the presence of cycles between components.

18 | Chapter 2: Fitness Functions

For some architectural characteristics, developers must test more than each architec‐
tural dimension in isolation. Holistic fitness functions run against a shared context
and exercise a combination of architectural aspects. Developers design holistic fitness
functions to ensure that combined features that work atomically don’t break in
real-world combinations. For example, imagine an architecture has fitness functions
around both security and scalability. One of the key items the security fitness func‐
tion checks is staleness of data, and a key item for the scalability tests is number
of concurrent users within a certain latency range. To achieve scalability, developers
implement caching, which allows the atomic scalability fitness function to pass.
When caching isn’t turned on, the security fitness function passes. However, when
run holistically, enabling caching makes data too stale to pass the security fitness
function, and the holistic test fails.

We obviously cannot test every possible combination of architecture elements, so
architects use holistic fitness functions selectively to test important interactions. This
selectivity and prioritization also allows architects and developers to assess the diffi‐
culty in implementing a particular testing scenario, thus allowing an assessment of
how valuable that characteristic is. Frequently, the interactions between architectural
concerns determine the quality of the architecture, which holistic fitness functions
address.

Cadence: Triggered Versus Continual Versus Temporal
Execution cadence is another distinguishing factor between fitness functions. Trig‐
gered fitness functions run based on a particular event, such as a developer executing
a unit test, a deployment pipeline running unit tests, or a QA person performing
exploratory testing. This encompasses traditional testing, such as unit, functional,
and behavior-driven development (BDD) testing, among others.

Continual tests don’t run on a schedule but instead execute constant verification of
architectural aspect(s), such as transaction speed. For example, consider a microser‐
vices architecture in which the architects want to build a fitness function around
transaction time—how long it takes for a transaction to complete, on average. Build‐
ing any kind of triggered test provides sparse information about real-world behavior.
Thus, architects build a continual fitness function that simulates a transaction in
production while all the other real transactions run, often using a technique called
synthetic transactions. This allows developers to verify behavior and gather real data
about the system “in the wild.”

Synthetic Transactions
How do teams measure complex, real-world interactions between services in a micro‐
services architecture? One common technique employs synthetic transactions. For
this practice, requests into the system have a flag that indicates that a particular

Categories | 19

transaction may be synthetic. It follows exactly the normal course of interactions in
the architecture (often tracked via a correlation ID for forensic analysis) until the last
step, where the system evaluates the flag and doesn’t commit the transaction as a real
one. This allows architects and DevOps to learn exactly how their complex system
performs.

No advice about synthetic transactions is complete without mentioning the tale of
hundreds of appliances showing up accidentally because someone forgot to flip the
“synthetic” flag, which can itself be governed by a fitness function—make sure that
any fitness function identified as a synthetic transaction (e.g., via an annotation) has
the flag set.

Notice that using a monitoring tool does not imply that you have a fitness function,
which must have objective outcomes. Rather, using a monitoring tool in which the
architect has created an alarm for deviations outside the objective measure of the metric
converts the mere use of monitors into a fitness function.

Monitoring-driven development (MDD) is another testing technique gaining popu‐
larity. Rather than relying solely on tests to verify system results, MDD uses monitors
in production to assess both technical and business health. These continual fitness
functions are necessarily more dynamic than standard triggered tests and fall into the
broader category called fitness function-driven architecture, discussed in more detail in
Chapter 7.

While most fitness functions trigger either on change or continually, in some cases
architects may want to build a time component into assessing fitness, leading to a
temporal fitness function. For example, if a project uses an encryption library, the
architect may want to create a temporal fitness function as a reminder to check
if important updates have been performed. Another common use of this type of
fitness function is a break upon upgrade test. In platforms like Ruby on Rails, some
developers can’t wait for the tantalizing new features coming in the next release, so
they add a feature to the current version via a back port, a custom implementation of
a future feature. Problems arise when the project finally upgrades to the new version
because the back port is often incompatible with the “real” version. Developers use
break upon upgrade tests to wrap back-ported features to force re-evaluation when the
upgrade occurs.

Another common use of a temporal fitness function comes from an important but
not urgent requirement that arises on virtually every project eventually. Many devel‐
opers have experienced the pain of upgrading more than one major version number
of a core framework or library their project depends upon—so many changes occur
between major point releases, it’s often quite difficult to leap versions. However,
upgrading a core framework is time-consuming and not deemed as critical, making
it more likely to accidentally slip too far behind. Architects can use a temporal fitness

20 | Chapter 2: Fitness Functions

https://oreil.ly/2fPIe

function in conjunction with a tool like Dependabot or snyk, which tracks releases,
versions, and security patches for software, to create increasingly insistent reminders
to upgrade once the corporate criteria (e.g., first patch release) have been met.

Case Study: Triggered or Continuous?
Often the choice of continuous versus triggered fitness function comes down to
trade-offs between the approaches. Many developers in distributed systems such as
microservices want the same kind of dependency check but on allowed communica‐
tion between services rather than cycles. Consider the set of services illustrated in
Figure 2-4, a more advanced version of the cyclic dependency fitness function shown
in Figure 2-3.

Figure 2-4. Set of orchestrated microservices, where communication should not exist
between nonorchestrator services

Categories | 21

https://github.com/dependabot
https://snyk.io

In Figure 2-4, the architect has designed the system so that the orchestrator service
contains the state of the workflow. If any of the services communicates with each
other, bypassing the orchestrator, the team won’t have accurate information about the
workflow state.

In the case of dependency cycles, metrics tools exist to allow architects to do compile-
time checks. However, services aren’t constrained to a single platform or technology
stack, making it highly unlikely that someone has already built a tool that exactly
matches a particular architecture. This is an example of what we alluded to earlier—
often, architects must build their own tools rather than rely on third parties. For this
particular system, the architect can build either a continuous or a triggered fitness
function.

In the continuous case, the architect must ensure that each of the services provides
monitoring information (typically via a particular port) that broadcasts who the
service calls during the course of workflows. Either the orchestrator service or a
utility service monitors those messages to ensure that illegal communication doesn’t
occur. Alternatively, rather than using monitors, the team could use asynchronous
message queues, have each domain service publish a message to the queue indicating
collaboration messages, and allow the orchestrator to listen to that queue and validate
collaborators. This fitness function is continuous because the receiving service can
react immediately to disallowed communication. For example, perhaps this fault
indicates a security concern or other detrimental side effect.

The benefit of this version of the fitness function is immediate reaction: architects
and other interested parties know immediately when governance has been violated.
However, this solution adds runtime overhead: monitors and/or message queues
require operation resources, and this level of observability may have a negative
impact on performance, scalability, and so on.

Alternatively, the team may decide to implement a triggered version of this fitness
function. In this case, on a regular cadence, the deployment pipeline calls a fitness
function that harvests logfiles and investigates communication to determine if it is all
appropriate. We show an implementation of this fitness function in “Communication
Governance in Microservices” on page 66. The benefit of this fitness function is lack
of possible runtime impact—it runs only when triggered and looks at log records.
However, teams shouldn’t use a triggered version for critical governance issues such
as security where the time lag may have negative impacts.

As in all things in software architecture, the decision between triggered and contin‐
uous fitness functions will often provide different trade-offs, making this a case-by-
case decision.

22 | Chapter 2: Fitness Functions

Result: Static Versus Dynamic
Static fitness functions have a fixed result, such as the binary pass/fail of a unit
test. This type encompasses any fitness function that has a predefined desirable
value: binary, a number range, set inclusion, and so on. Metrics are often used for
fitness functions. For example, an architect may define acceptable ranges for average
cyclomatic complexity of methods in the codebase.

Dynamic fitness functions rely on a shifting definition based on extra context, often
real-time content. For example, consider a fitness function to verify scalability along
with request/response responsiveness for a number of users. As the number of con‐
current users rises, the architects will allow responsiveness to degrade slightly, but
they don’t want it to degrade past the point where it will become a problem. Thus, a
responsiveness fitness function will take into account the number of concurrent users
and adjust the evaluation accordingly.

Notice that dynamic and objective do not conflict—fitness functions must evaluate to
an objective outcome, but that evaluation may be based on dynamic information.

Invocation: Automated Versus Manual
Architects like automated things—part of incremental change includes automation,
which we delve into deeply in Chapter 3. Thus, it’s not surprising that developers will
execute most fitness functions within an automated context: continuous integration,
deployment pipelines, and so on. Indeed, developers and DevOps have performed a
tremendous amount of work under the auspices of Continuous Delivery to automate
many parts of the software development ecosystem previously thought impossible.

However, as much as we’d like to automate every single aspect of software develop‐
ment, some parts of software development resist automation. Sometimes architects
cannot automate away a critical dimension within a system, such as legal require‐
ments or exploratory testing, which leads to manual fitness functions. Similarly, a
project may have aspirations to become more evolutionary but not yet have appropri‐
ate engineering practices in place. For example, perhaps most QA is still manual on a
particular project and must remain so for the near future. In both of these cases (and
others), we need manual fitness functions that are verified by a person-based process.

The path to better efficiency eliminates as many manual steps as possible, but many
projects still require manual procedures. We still define fitness functions for those
characteristics and verify them using manual stages in deployment pipelines (covered
in more detail in Chapter 3).

Categories | 23

Proactivity: Intentional Versus Emergent
While architects will define most fitness functions at project inception as they eluci‐
date the characteristics of the architecture, some fitness functions will emerge during
development of the system. Architects never know all the important parts of the
architecture at the beginning (the classic unknown unknowns problem we address
in Chapter 7), and thus must identify fitness functions as the system evolves. Archi‐
tects write intentional fitness functions at project inception and as part of a formal
governance process, sometimes in collaboration with other architect roles such as
enterprise architects.

Fitness functions not only verify the initial assumptions by architects on projects,
but they also provide ongoing governance. Thus, it’s common for architects to notice
some behavior that would benefit from better governance, leading to an emergent
fitness function. Architects should keep a wary eye open for misbehavior in a project,
especially those that can be verified via fitness functions, and add them aggressively.

These two sometimes form a spectrum, beginning as intentional protection for some
aspect but evolving into a more nuanced or even different fitness function over time.
Just like unit tests, fitness functions become part of the team’s codebase. Thus, as
architectural requirements change and evolve, the corresponding fitness functions
must change similarly.

Coverage: Domain-Specific Fitness Functions?
We are sometimes asked if some particular problem domains tend toward certain
architectural fitness functions. While nothing is impossible in software architecture
and you might use the same automated testing framework to implement some fitness
functions, generally fitness functions are used only for abstract architectural princi‐
ples, not with the problem domain. What we see in practice if you use the same test
automation tools is a separation of tests. One set of tests will focus on testing domain
logic (e.g., traditional unit or end-to-end tests) and another set of tests on fitness
functions (e.g., performance or scalability tests).

This separation is utilitarian to avoid duplication and misguided effort. Remember,
fitness functions are another verification mechanism in projects and are meant to
coexist alongside other (domain) verifications. To avoid duplicating efforts, teams are
wise to keep fitness functions to pure architecture concerns and allow the other veri‐
fications to handle domain issues. For example, consider elasticity, which describes
a website’s ability to handle sudden bursts of users. Notice that we can talk about
elasticity in purely architectural terms—the website in question could be a gaming
site, a catalog site, or a streaming movie site. Thus, this part of the architecture is
governed by a fitness function. In contrast, if a team needed to verify something like
a change of address, that requires domain knowledge and would fall to traditional

24 | Chapter 2: Fitness Functions

verification mechanisms. Architects can use this as a litmus test to determine where
the verification responsibility lies.

Thus, even within common domains (such as finance), it is difficult to predict a
standard set of fitness functions. What each team ultimately views as important and
valuable varies to an annoyingly wide degree between teams and projects.

Who Writes Fitness Functions?
Fitness functions represent the architectural analog to unit tests and should be treated
similarly in terms of development and engineering practices. In general, architects
write fitness functions as they determine the objective measures for important archi‐
tecture characteristics. Both architects and developers maintain the fitness functions,
including preserving a passing state at all times—passing fitness functions are an
objective measure of an architecture’s fitness.

Architects must collaborate with developers in the definition and understanding of
both the purpose and utility of fitness functions, which add an extra layer of verifica‐
tion to the overall quality of the system. As such, they will occasionally fail as changes
violate governance rules—a good thing! However, developers must understand the
purpose of the fitness function so that they can repair the fault and continue the
build process. Collaboration between the two roles is critical so that developers don’t
misunderstand the governance as a burden rather than a useful constraint to preserve
important features.

Keep knowledge of key and relevant fitness functions alive by post‐
ing the results of executing fitness functions somewhere visible or
in a shared space so that developers remember to consider them in
day-to-day coding.

Where Is My Fitness Function Testing Framework?
For testing the problem domain, developers have a wide variety of platform-specific
tools because the domain is purposefully written in a particular platform/technology
stack. For example, if the primary language is Java, developers can choose from
a wide array of unit, functional, user acceptance, and other testing tools and frame‐
works. Consequently, architects look for the same level of “turnkey” support for
architecture fitness functions—which generally doesn’t exist. We cover a few easy-to-
download-and-run fitness function tools in Chapter 4, but such tools are sparse
compared to domain testing libraries. This is due mostly to the highly varied nature
of fitness functions, as illustrated in Figure 2-1: operational fitness functions require
monitoring tools, security fitness functions require scanning tools, quality checks
require code-level metrics, and so on. In many cases, a particular tool doesn’t exist

Who Writes Fitness Functions? | 25

for your particular blend of architectural forces. However, as we illustrate in future
chapters, architects can use a bit of programming “glue” to compose useful fitness
functions with little effort, just not as little as downloading a prebuilt framework.

Outcomes Versus Implementations
It is important for architects to focus on the outcomes—the objective measures
for architecture characteristics—rather than implementation details. Architects often
write fitness functions in technology stacks other than the main domain platform, or
utilize DevOps tools or any other convenient process that enables them to objectively
measure something of interest. The important metaphorical analogy with function in
the term fitness function implies something that takes inputs and produces outputs
without side effects. Similarly, a fitness function measures an outcome—an objective
evaluation of some architecture characteristic.

Throughout the book, we show examples of fitness function implementations, but it
is important for readers to focus on the outcome and why we measure something
rather than how an architect makes a particular measurement.

PenultimateWidgets and the Enterprise Architecture Spreadsheet
When the architects for PenultimateWidgets decided to build a new project platform,
they first created a spreadsheet of all the desirable characteristics: scalability, security,
resiliency, and a host of other “-ilities.” But then they faced an age-old question:
if they built the new architecture to support those features, how can they ensure
it maintains that support? As developers add new features, how would they keep
unexpected degradation of these important characteristics from occurring?

The solution was to create fitness functions for each of the concerns in the spread‐
sheet, reformulating some of them to meet objective evaluation criteria. Rather than
occasional, ad hoc verification of their important criteria, they wired the fitness
functions into their deployment pipeline (discussed more fully in Chapter 3).

Although software architects are interested in exploring evolutionary architectures,
we aren’t attempting to model biological evolution. Theoretically, we could build
an architecture that randomly changed one of its bits (mutation) and redeployed
itself. After a few million years, we would likely have a very interesting architecture.
However, we don’t have millions of years to wait.

We want our architecture to evolve in a guided way, so we place constraints on
different aspects of the architecture to rein in undesirable evolutionary directions. A
good example is dog breeding: by selecting the characteristics we want, we can create
a vast number of differently shaped canines in a relatively short amount of time.

26 | Chapter 2: Fitness Functions

We can also think about the system-wide fitness function as a collection of fitness
functions with each function corresponding to one or more dimensions of the archi‐
tecture. Using a system-wide fitness function aids our understanding of necessary
trade-offs when individual elements of the fitness function conflict with one another.
As is common with multifunction optimization problems, we might find it impossi‐
ble to optimize all values simultaneously, forcing us to make choices. For example,
in the case of architectural fitness functions, issues like performance might conflict
with security due to the cost of encryption. This is a classic example of the bane
of architects everywhere—the trade-off. Trade-offs dominate much of an architect’s
headaches during the struggle to reconcile opposing forces, such as scalability and
performance. However, architects have a perpetual problem of comparing these
different characteristics because they fundamentally differ (an apples to oranges com‐
parison) and all stakeholders believe their concern is paramount. System-wide fitness
functions allow architects to think about divergent concerns using the same unifying
mechanism of fitness functions, capturing and preserving the important architectural
characteristics. The relationship between the system-wide fitness function and its
constituent smaller fitness functions is illustrated in Figure 2-5.

Figure 2-5. System-wide versus individual fitness functions

The system-wide fitness function is crucial for an architecture to be evolutionary,
as we need some basis to allow architects to compare and evaluate architectural
characteristics against one another. Unlike with the more directed fitness functions,
architects likely will never try to “evaluate” the system-wide fitness function. Rather,

Outcomes Versus Implementations | 27

it provides guidelines for prioritizing decisions about the architecture in the future.
While fitness functions may not help resolve the trade-off, they help architects more
clearly understand the forces at play, with objective measures, so that they can reason
about the necessary system-wide trade-offs.

A system is never the sum of its parts. It is the product of the interactions of its parts.
—Dr. Russel Ackoff

Without guidance, evolutionary architecture becomes simply reactionary architec‐
ture. Thus, for architects, a crucial early architectural decision for any system is to
define important dimensions such as scalability, performance, security, data schemas,
and so on. Conceptually, this allows architects to weigh the importance of a fitness
function based on its importance to the system’s overall behavior.

Summary
The original seed of the idea of applying fitness functions to software architecture
occurred to Rebecca when she realized she could use some of her experience
derived from another technical domain (evolutionary computing) and apply it to
software: fitness functions. Architects have verified parts of architecture forever, but
they haven’t previously unified all the different verification techniques into a single
overarching concept. Treating all these different governance tools and techniques as
fitness functions allows teams to unify around execution.

We cover more aspects of operationalizing fitness functions in the next chapter.

28 | Chapter 2: Fitness Functions

CHAPTER 3

Engineering Incremental Change

In 2010, Jez Humble and Dave Farley released Continuous Delivery, a collection of
practices to enhance engineering efficiency in software projects. They provided the
mechanism for building and releasing software via automation and tools but not
the structure of how to design evolvable software. Evolutionary architecture assumes
these engineering practices as being prerequisites but addresses how to utilize them
to help design evolvable software.

Our definition of evolutionary architecture is one that supports guided, incremental
change across multiple dimensions. By incremental change, we mean the architecture
should facilitate change through a series of small changes. This chapter describes
architectures that support incremental change along with some of the engineering
practices used to achieve incremental change, an important building block of evolu‐
tionary architecture. We discuss two aspects of incremental change: development,
which covers how developers build software, and operational, which covers how
teams deploy software.

This chapter covers the characteristics, engineering practices, team considerations,
and other aspects of building architectures that support incremental change.

Incremental Change
Here is an example of the operational side of incremental change. We start with
the fleshed-out example of incremental change from Chapter 1, which includes addi‐
tional details about the architecture and deployment environment. PenultimateWidg‐
ets, our seller of widgets, has a catalog page backed by a microservices architecture
and engineering practices, as illustrated in Figure 3-1.

29

http://continuousdelivery.com

Figure 3-1. Initial configuration of PenultimateWidgets’ component deployment

PenultimateWidgets’ architects have implemented microservices that are operation‐
ally isolated from other services. Microservices implement a share nothing archi‐
tecture: each service is operationally distinct to eliminate technical coupling and
therefore promote change at a granular level. PenultimateWidgets deploys all its
services in separate containers to trivialize operational changes.

The website allows users to rate different widgets with star ratings. But other parts
of the architecture also need ratings (customer service representatives, shipping pro‐
vider evaluation, etc.), so they all share the star rating service. One day, the star rating
team releases a new version alongside the existing one that allows half-star ratings—a
significant upgrade, as shown in Figure 3-2.

Figure 3-2. Deploying with an improved star rating service showing the addition of the
half-star rating

30 | Chapter 3: Engineering Incremental Change

The services that utilize ratings aren’t required to migrate to the improved rating
service but can gradually transition to the better service when convenient. As time
progresses, more parts of the ecosystem that need ratings move to the enhanced
version. One of PenultimateWidgets’ DevOps practices is architectural monitoring—
monitoring not only the services but also the routes between services. When the
operations group observes that no one has routed to a particular service within a
given time interval, they automatically disintegrate that service from the ecosystem,
as shown in Figure 3-3.

Figure 3-3. All services now use the improved star rating service

The mechanical ability to evolve is one of the key components of an evolutionary
architecture. Let’s dig one level deeper in the abstraction above.

PenultimateWidgets has a fine-grained microservices architecture, where each service
is deployed using a container—such as Docker—and using a service template to han‐
dle infrastructure coupling. Applications within PenultimateWidgets consist of routes
between instances of running services—a given service may have multiple instances
to handle operational concerns like on-demand scalability. This allows architects to
host different versions of services in production and control access via routing. When
a deployment pipeline deploys a service, it registers itself (location and contract) with
a service discovery tool. When a service needs to find another service, it uses the
discovery tool to learn the location and version suitability via the contract.

When the new star rating service is deployed, it registers itself with the service dis‐
covery tool and publishes its new contract. The new version of the service supports
a broader range of values—specifically, half-point values—than the original. That
means the service developers don’t have to worry about restricting the supported
values. If the new version requires a different contract for callers, it is typical to
handle that within the service rather than burden callers with resolving which version
to call. We cover that contract strategy in “Version Services Internally” on page 171.

Incremental Change | 31

https://www.docker.com

When the team deploys the new service, they don’t want to force the calling services
to upgrade to the new service immediately. Thus, the architect temporarily changes
the star-service endpoint into a proxy that checks to see which version of the service
is requested and routes to the requested version. No existing services must change to
use the rating service as they always have, but new calls can start taking advantage
of the new capability. Old services aren’t forced to upgrade and can continue to call
the original service as long as they need it. As the calling services decide to use the
new behavior, they change the version they request from the endpoint. Over time,
the original version falls into disuse, and at some point, the architect can remove the
old version from the endpoint when it is no longer needed. Operations is responsible
for scanning for services that no other services call anymore (within some reasonable
threshold) and for garbage collecting the unused services. The example shown in
Figure 3-3 shows evolution in the abstract; a tool that implements this style of
cloud-based evolutionary architecture is Swabbie.

All the changes to this architecture, including the provisioning of external compo‐
nents such as the database, happen under the supervision of a deployment pipeline,
removing the responsibility of coordinating the disparate moving parts of the deploy‐
ment from DevOps.

Once they have defined fitness functions, architects must ensure that they are evalu‐
ated in a timely manner. Automation is the key to continual evaluation. A deployment
pipeline is often used to evaluate tasks like this. Using a deployment pipeline, archi‐
tects can define which, when, and how often fitness functions execute.

Deployment Pipelines
Continuous Delivery describes the deployment pipeline mechanism. Similar to a
continuous integration server, a deployment pipeline “listens” for changes, then runs
a series of verification steps, each with increasing sophistication. Continuous Delivery
practices encourage using a deployment pipeline as the mechanism to automate
common project tasks, such as testing, machine provisioning, deployments, and so
forth. Open source tools such as GoCD facilitate building these deployment pipelines.

Continuous Integration Versus Deployment Pipelines
Continuous integration is a well-known engineering practice in agile projects that
encourages developers to integrate as early and as often as possible. To facilitate
continuous integration, tools such as ThoughtWorks CruiseControl, Jenkins, and
other commercial and open source offerings have emerged. Continuous integration
provides an “official” build location, and developers enjoy the concept of a single
mechanism to ensure working code. However, a continuous integration server also
provides a perfect time and place to perform common project tasks such as unit
testing, code coverage, metrics, functional testing, and…fitness functions! For many

32 | Chapter 3: Engineering Incremental Change

https://oreil.ly/WvKxj
https://www.go.cd
http://cruisecontrol.sourceforge.net
https://www.jenkins.io

projects, the continuous integration server includes a list of tasks to perform whose
successful culmination indicates build success. Large projects eventually build an
impressive list of tasks.

Deployment pipelines encourage developers to split individual tasks into stages. A
deployment pipeline includes the concept of multistage builds, allowing developers
to model as many post–check-in tasks as necessary. This ability to separate tasks
discretely supports the broader mandates expected of a deployment pipeline—to
verify production readiness—compared to a continuous integration server primarily
focused on integration. Thus, a deployment pipeline commonly includes application
testing at multiple levels, automated environment provisioning, and a host of other
verification responsibilities.

Some developers try to “get by” with a continuous integration server but soon find
they lack the level of separation of tasks and feedback necessary.

A typical deployment pipeline automatically builds the deployment environment (a
container like Docker or a bespoke environment generated by a tool like Puppet, or
Chef) as shown in Figure 3-4.

Figure 3-4. Deployment pipeline stages

By building the deployment image that the deployment pipeline executes, developers
and operations have a high degree of confidence: the host computer (or virtual
machine) is declaratively defined, and it’s a common practice to rebuild it from
nothing.

The deployment pipeline also offers an ideal way to execute the fitness functions
defined for an architecture: it applies arbitrary verification criteria, has multiple
stages to incorporate differing levels of abstraction and sophistication of tests, and
runs every single time the system changes in any way. A deployment pipeline with
fitness functions added is shown in Figure 3-5.

Incremental Change | 33

https://www.docker.com
https://puppet.com
https://www.chef.io/chef

Figure 3-5. A deployment pipeline with fitness functions added as stages

Figure 3-5 shows a collection of atomic and holistic fitness functions, with the
latter in a more complex integration environment. Deployment pipelines can ensure
the rules defined to protect architectural dimensions execute each time the system
changes.

In Chapter 2, we described PenultimateWidgets’ spreadsheet of requirements. Once
the team adopted some of the Continuous Delivery engineering practices, they real‐
ized that the architecture characteristics for the platform work better in an automated
deployment pipeline. To that end, service developers created a deployment pipeline
to validate the fitness functions created both by the enterprise architects and by the
service team. Now, each time the team makes a change to the service, a barrage
of tests validate both the correctness of the code and its overall fitness within the
architecture.

Another common practice in evolutionary architecture projects is continuous
deployment—using a deployment pipeline to put changes into production contingent
on successfully passing the pipeline’s gauntlet of tests and other verifications. While
continuous deployment is ideal, it requires sophisticated coordination: developers
must ensure changes deployed to production on an ongoing basis don’t break things.

34 | Chapter 3: Engineering Incremental Change

To solve this coordination problem, a fan-out operation is commonly used in deploy‐
ment pipelines in which the pipeline runs several jobs in parallel, as shown in
Figure 3-6.

Figure 3-6. Deployment pipeline fan-out to test multiple scenarios

As shown in Figure 3-6, when a team makes a change, they have to verify two things:
they haven’t negatively affected the current production state (because a successful
deployment pipeline execution will deploy code into production) and their changes
were successful (affecting the future state environment). A deployment pipeline fan-
out allows tasks (testing, deployment, etc.) to execute in parallel, saving time. Once
the series of concurrent jobs illustrated in Figure 3-6 completes, the pipeline can
evaluate the results and, if everything is successful, perform a fan-in, consolidating to
a single thread of action to perform tasks like deployment. Note that the deployment
pipeline may perform this combination of fan-out and fan-in numerous times when‐
ever the team needs to evaluate a change in multiple contexts.

Another common issue with continuous deployment is business impact. Users don’t
want a barrage of new features showing up on a regular basis and would rather
have them staged in a more traditional way, such as in a “Big Bang” deployment. A
common way to accommodate both continuous deployment and staged releases is
to use feature toggles. A feature toggle is typically a condition in code that enables
or disables a feature, or switches between two implementations (e.g., new and old).
The simplest implementation of a feature toggle is an if-statement that inspects an
environment variable or configuration value and shows or hides a feature based on
the value of that environment variable. You also can have more complex feature
toggles that provide the ability to reload configurations and enable or disable features

Incremental Change | 35

https://oreil.ly/0sMvU

at runtime. By implementing code behind feature toggles, developers can safely
deploy new changes to production without worrying that users see their changes
prematurely. In fact, many teams performing continuous deployment utilize feature
toggles so that they can separate operationalizing new features from releasing them to
consumers.

QA in Production
One beneficial side effect of habitually building new features using feature toggles is
the ability to perform QA tasks in production. Many companies don’t realize they
can use their production environment for exploratory testing. Once a team becomes
comfortable using feature toggles, they can deploy those changes to production
because most feature toggle frameworks allow developers to route users based on a
wide variety of criteria (IP address, access control list [ACL], etc.). If a team deploys
new features within feature toggles to which only the QA department has access, they
can test in production.

Using deployment pipelines in engineering practices, architects can easily apply
project fitness functions. Figuring out which stages are needed is a common chal‐
lenge for developers designing a deployment pipeline. However, once the fitness
functions inside a deployment pipeline are in place, architects and developers have
a high level of confidence that evolutionary changes won’t violate the project guide‐
lines. Architectural concerns are often poorly elucidated and sparsely evaluated, often
subjectively; creating them as fitness functions allows better rigor and therefore better
confidence in the engineering practices.

Case Study: Adding Fitness Functions to PenultimateWidgets’
Invoicing Service
Our exemplar company, PenultimateWidgets, has an architecture that includes a
service to handle invoicing. The invoicing team wants to replace outdated libraries
and approaches but wants to ensure these changes don’t impact other teams’ ability to
integrate with them.

The invoicing team identified the following needs:

Scalability
While performance isn’t a big concern for PenultimateWidgets, the company
handles invoicing details for several resellers, so the invoicing service must main‐
tain availability service-level agreements.

36 | Chapter 3: Engineering Incremental Change

Integration with other services
Several other services in the PenultimateWidgets ecosystem use invoicing. The
team wants to make sure integration points don’t break while making internal
changes.

Security
Invoicing means money, and security is an ongoing concern.

Auditability
Some state regulations require that changes to taxation code be verified by an
independent accountant.

The invoicing team uses a continuous integration server and recently upgraded to
on-demand provisioning of the environment that runs their code. To implement
evolutionary architecture fitness functions, they implement a deployment pipeline to
replace the continuous integration server, allowing them to create several stages of
execution, as shown in Figure 3-7.

Figure 3-7. PenultimateWidgets’ deployment pipeline

Incremental Change | 37

PenultimateWidgets’ deployment pipeline consists of six stages:

Stage 1: Replicate CI
The first stage replicates the behavior of the former CI server, running unit and
functional tests.

Stage 2: Containerize and deploy
Developers use the second stage to build containers for their service, allowing
deeper levels of testing, including deploying the containers to a dynamically
created test environment.

Stage 3: Execute atomic fitness functions
In the third stage, atomic fitness functions, including automated scalability tests
and security penetration testing, are executed. This stage also runs a metrics tool
that flags any code within a certain package that developers changed, pertaining
to auditability. While this tool doesn’t make any determinations, it assists a later
stage in narrowing in on specific code.

Stage 4: Execute holistic fitness functions
The fourth stage focuses on holistic fitness functions, including testing contracts
to protect integration points and some further scalability tests.

Stage 5a: Conduct a security review (manual)
This stage includes a manual stage by a specific security group within the
organization to review, audit, and assess any security vulnerabilities in the code‐
base. Deployment pipelines allow the definition of manual stages, triggered on
demand by the relevant security specialist.

Stage 5b: Conduct audits (manual)
PenultimateWidgets is based in a state that mandates specific auditing rules. The
invoicing team builds this manual stage into their deployment pipeline, which
offers several benefits. First, treating auditing as a fitness function allows devel‐
opers, architects, auditors, and others to think about this behavior in a unified
way—a necessary evaluation to determine the system’s correct function. Second,
adding the evaluation to the deployment pipeline allows developers to assess the
engineering impact of this behavior compared to other automated evaluations
within the deployment pipeline.

For example, if the security review happens weekly but auditing happens only
monthly, the bottleneck to faster releases is clearly the auditing stage. By treating
both security and audit as stages in the deployment pipeline, decisions concern‐
ing both can be addressed more rationally: Is it of value to the company to
increase release cadence by having consultants perform the necessary audit more
often?

38 | Chapter 3: Engineering Incremental Change

Stage 6: Deploy
The last stage is deployment into the production environment. This is an auto‐
mated stage for PenultimateWidgets and is triggered only if the two upstream
manual stages (security review and audit) report success.

Interested architects at PenultimateWidgets receive an automatically generated report
each week about the success/failure rate of the fitness functions, helping them gauge
health, cadence, and other factors.

Case Study: Validating API Consistency in an Automated Build
PenultimateWidgets architects have designed an API encapsulating the internal com‐
plexity of their accounting systems into a cleaner interface that the remainder of the
company (and partner companies) use. Because they have many integration consum‐
ers, when rolling out changes they want to be careful not to create inconsistencies or
breakages with previous versions.

To that end, the architects designed the deployment pipeline shown in Figure 3-8.

Figure 3-8. A consistency fitness function as part of a deployment pipeline

In Figure 3-8, the five stages of the deployment pipeline are:

Stage 1: Design
Design artifacts, including new and changed entries for the integration API.

Stage 2: Setup
Set up the operational tasks required to run the rest of the tests and other
verifications in the deployment pipeline, including tasks such as containerization
and database migrations.

Stage 3: Development
Develop the testing environment for unit, functional, and user acceptance test‐
ing, as well as architectural fitness functions.

Incremental Change | 39

Stage 4: Deployment
If all upstream tasks were successful, deploy to production under a feature toggle
that controls the exposure of new features to users.

Stage 5: Operation
Maintain continuous fitness functions and other monitors.

In the case of API changes, the architects designed a multipart fitness function. Stage
1 of the verification chain starts with the design and definition of the new API,
published in openapi.yaml. The team verifies the structure and other aspects of the
new specification using Spectral and OpenAPI.Tools.

The next stage in the deployment pipeline appears at the start of the development
phase, illustrated in Figure 3-9.

Figure 3-9. Second stage of consistency verification

In Stage 2, shown in Figure 3-9, the deployment pipeline selects the new specification
and publishes it to a sandbox environment to allow testing. Once the sandbox
environment is live, the deployment pipeline runs a series of unit and functional tests
to verify the changes. This stage verifies that the applications underlying the APIs still
function consistently.

Stage 3, shown in Figure 3-10, tests integration architecture concerns using Pact,
a tool that allows cross-service integration testing to ensure integration points are
preserved, an implementation of a common concept known as consumer-driven
contracts.

Consumer-driven contracts, which are atomic integration architecture fitness func‐
tions, are a common practice in microservices architectures. Consider the illustration
shown in Figure 3-11.

40 | Chapter 3: Engineering Incremental Change

https://oreil.ly/SHsZo
https://openapi.tools
https://docs.pact.io
https://oreil.ly/syKlD

Figure 3-10. Third stage of consistency verification, for integration architecture

Figure 3-11. Consumer-driven contracts use tests to establish contracts between a pro‐
vider and consumer(s)

In Figure 3-11, the provider team is supplying information (typically data in a light‐
weight format like JSON) to each of the consumers, C1 and C2. In consumer-driven
contracts, the consumers of information put together a suite of tests that encapsulate
what they need from the provider and hand off those tests to the provider, who
promises to keep the tests passing at all times. Because the tests cover the information
needed by the consumer, the provider can evolve in any way that doesn’t break these
fitness functions. In the scenario shown in Figure 3-11, the provider runs tests on
behalf of all three consumers in addition to their own suite of tests. Using fitness
functions like this is informally known as an engineering safety net. Maintaining
integration protocol consistency shouldn’t be done manually when it is easy to build
fitness functions to handle this chore.

Incremental Change | 41

One implicit assumption included in the incremental change aspect of evolutionary
architecture is a certain level of engineering maturity among the development teams.
For example, if a team is using consumer-driven contracts but they also have broken
builds for days at a time, they can’t be sure their integration points are still valid.
Using engineering practice to police practices via fitness functions relieves lots of
manual pain from developers but requires a certain level of maturity to be successful.

In the last stage, the deployment pipeline deploys the changes into production,
allowing A/B testing and other verification before it officially goes live.

Summary
A couple of us worked in engineering disciplines outside software, such as Neal, who
started his university career in the more traditional engineering discipline. Before
switching to computer science, he got a good dose of the advanced mathematics that
structural engineers use.

Traditionally, many people tried to equate software development to other engineering
disciplines. For example, the waterfall process of complete design up front followed
by mechanical assembly has proved particularly ill-suited to software development.
Another question that frequently arises: when are we going to get the same kind of
mathematics in software, similar to the kind of advanced math they have in structural
engineering?

We don’t think that software engineering will rely on math as much as other engineer‐
ing disciplines because of the distinct differences between design and manufacturing.
In structural engineering, manufacturing is intensely expensive and unforgiving of
design flaws, necessitating a huge catalog of predictive analysis during the design
phase. Thus, the effort is split between design and manufacturing. Software, however,
has a completely different balance. Manufacturing in software equals compilation and
deployment, activities that we have increasingly learned to automate. Thus, in soft‐
ware, virtually all the effort lies with design, not manufacturing; design encompasses
coding and virtually every other thing we think of as “software development.”

However, the things we manufacture are also vastly different. Modern software con‐
sists of thousands or millions of moving parts, all of which can be changed virtually
arbitrarily. Fortunately, teams can make that design change and virtually instantly
redeploy (in essence, remanufacture) the system.

The keys to a true software engineering discipline lie in incremental change with
automated verification. Because our manufacturing is essentially free but extremely
variable, the secret to sanity in software development lies with confidence in making
changes, backed up by automated verification—incremental change.

42 | Chapter 3: Engineering Incremental Change

CHAPTER 4

Automating Architectural Governance

Architects are tasked with designing the structure of software systems as well as
defining many of the development and engineering practices. However, another
important job for architects is governing aspects of the building of software, including
design principles, good practices, and identified pitfalls to avoid.

Traditionally, architects had few tools to allow them to enforce their governance
policies outside manual code reviews, architecture review boards, and other ineffi‐
cient means. However, with the advent of automated fitness functions, we provide
architects with new sets of capabilities. In this chapter, we describe how architects
can use the fitness functions created to evolve software to also create automated
governance policies.

Fitness Functions as Architectural Governance
The idea that led to this book was the metaphorical mash-up between software
architecture and practices from the development of genetic algorithms described in
Chapter 2, focusing on the core idea of how architects can create software projects
that successfully evolve rather than degrade over time. The results of that initial idea
blossomed into the myriad ways we describe fitness functions and their application.

However, while it wasn’t part of the original conception, we realized that the mechan‐
ics of evolutionary architecture heavily overlap architectural governance, especially
the idea of automating governance, which itself represents the evolution of software
engineering practices.

In the early 1990s, Kent Beck led a group of forward-looking developers who uncov‐
ered one of the driving forces of software engineering advances in the last three
decades. He and the developers worked on the C3 project (whose domain isn’t
important). The team was well versed in the current trends in software development

43

processes but were unimpressed—it seemed that none of the processes that were
popular at the time yielded any kind of consistent success. Thus, Kent started the
idea of eXtreme Programming (XP): based on past experience, the team took things
they knew worked well and did them in the most extreme way. For example, their
collective experience was that projects that have higher test coverage tended to have
higher-quality code, which led them to evangelize test-driven development, which
guarantees that all code is tested because the tests precede the code.

One of their key observations revolved around integration. At that time, a common
practice on most software projects was to conduct an integration phase. Developers
were expected to code in isolation for weeks or months at a time, then merge their
changes during an integration phase. In fact, many version control tools popular at
that time forced this isolation at the developer level. The practice of an integration
phase was based on the many manufacturing metaphors often misapplied to software.
The XP developers noted a correlation from past projects that more frequent inte‐
gration led to fewer issues, which led them to create continuous integration: every
developer commits to the main line of development at least once a day.

What continuous integration and many of the other XP practices illustrated is the
power of automation and incremental change. Teams that use continuous integration
not only spend less time performing merge tasks regularly, they spend less time over‐
all. When teams use continuous integration, merge conflicts arise and are resolved
as quickly as they appear, at least once a day. Projects using a final integration phase
allow the combinatorial mass of merge conflicts to grow into a Big Ball of Mud,
which they must untangle at the end of the project.

Automation isn’t important only for integration; it is also an optimizing force for
engineering. Before continuous integration, teams required developers to spend time
performing a manual task (integration and merging) over and over; continuous
integration (and its associated cadence) automated most of that pain away.

We relearned the benefits of automation in the early 2000s during the DevOps revo‐
lution. Teams ran around the operations center installing operating systems, applying
patches, and performing other manual tasks, allowing important problems to fall
through the cracks. With the advent of automated machine provisioning via tools
such as Puppet and Chef, teams can automate infrastructure and enforce consistency.

In many organizations, we observed the same ineffective manual practices recurring
with architecture: architects were attempting to perform governance checks via code
reviews, architecture review boards, and other manual, bureaucratic processes—and
important things fell through the cracks. By tying fitness functions to continuous
integration, architects can convert metrics and other governance checks into a regu‐
larly applied integrity validation.

44 | Chapter 4: Automating Architectural Governance

http://www.extremeprogramming.org
https://puppet.com
https://oreil.ly/jGABa

In many ways, the marriage of fitness functions and incremental change via contin‐
uous integration represents the evolution of engineering practices. Just as teams
utilized incremental change for integration and DevOps, we increasingly see the same
principles applied to architecture governance.

Fitness functions exist for every facet of architecture, from low-level, code-based
analysis up to enterprise architecture. We organize our examples of automating archi‐
tectural governance in the same manner, starting from the code level, then extending
through the software development stack. We cover a number of fitness functions; the
illustration in Figure 4-1 provides a road map.

Figure 4-1. Overview of fitness functions

We start at the bottom of the map in Figure 4-1 with code-based fitness functions and
make our way gradually to the top.

Code-Based Fitness Functions
Software architects have a fair amount of envy for other engineering disciplines that
have built up numerous analysis techniques for predicting how their designs will
function. We don’t (yet) have anywhere near the level of depth and sophistication of
engineering mathematics, especially about architectural analysis.

Code-Based Fitness Functions | 45

However, we do have a few tools that architects can use, generally based on code-level
metrics. The next few sections highlight some metrics that illustrate something of
interest in architecture.

Afferent and Efferent Coupling
In 1979, Edward Yourdon and Larry Constantine published Structured Design: Fun‐
damentals of a Discipline of Computer Program and Systems Design (Prentice-Hall),
defining many core concepts, including the metrics afferent and efferent coupling.
Afferent coupling measures the number of incoming connections to a code artifact
(component, class, function, etc.). Efferent coupling measures the outgoing connec‐
tions to other code artifacts.

Coupling in architecture is of interest to architects because it constrains and affects
so many other architecture characteristics. When architects allow any component to
connect to any other with no governance, the result is often a codebase with a dense
network of connections that defies understanding. Consider the illustration shown in
Figure 4-2 of the metrics output of a real software system (name withheld for obvious
reasons).

Figure 4-2. Component-level coupling in a Big-Ball-of-Mud architecture

46 | Chapter 4: Automating Architectural Governance

In Figure 4-2, components appear on the perimeter as single dots, and connectivity
between components appears as lines, where the boldness of the line indicates the
strength of the connection. This is an example of a dysfunctional codebase—changes
in any component may ripple out to many other components.

Virtually every platform has tools that allow architects to analyze the coupling char‐
acteristics of code in order to assist in restructuring, migrating, or understanding a
codebase. Many tools exist for various platforms that provide a matrix view of class
and/or component relationships, as illustrated in Figure 4-3.

Figure 4-3. JDepend in Eclipse analysis view of coupling relationships

In Figure 4-3, the Eclipse plug-in provides a tabular view of the output of JDepend,
which includes coupling analysis per package, along with some aggregate metrics
highlighted in the next section.

A number of other tools provide this metric and many of the others we discuss.
Notably, IntelliJ for Java, Sonar Qube, JArchitect, and others, based on your preferred
platform or technology stack. For example, IntelliJ includes a structure dependency
matrix showing a variety of coupling characteristics, as illustrated in Figure 4-4.

Code-Based Fitness Functions | 47

https://www.jetbrains.com/idea
https://www.sonarqube.org
https://www.jarchitect.com

Figure 4-4. Dependency structure matrix from IntelliJ

Abstractness, Instability, and Distance from the Main Sequence
Robert Martin, a well-known figure in the software architecture world, created
some derived metrics in the late 1990s which are applicable to any object-oriented
language. These metrics—abstractness and instability—measure the balance of the
internal characteristics of a codebase.

Abstractness is the ratio of abstract artifacts (abstract classes, interfaces, etc.) to
concrete artifacts (implementation classes). It represents a measure of abstract versus
implementation. Abstract elements are features of a codebase that allow developers to
better understand the overall function. For example, a codebase consisting of a single
main() method and 10,000 lines of code would score nearly zero on this metric and
be quite hard to understand.

The formula for abstractness appears in Equation 4-1.

Equation 4-1. Abstractness

A =
∑ma

∑mc + ∑ma

In the equation, ma represents abstract elements (interfaces or abstract classes) within
the codebase, and mc represents concrete elements. Architects calculate abstractness
by calculating the ratio of the sum of abstract artifacts to the sum of the concrete
ones.

48 | Chapter 4: Automating Architectural Governance

Another derived metric, instability, is the ratio of efferent coupling to the sum of both
efferent and afferent coupling, shown in Equation 4-2.

Equation 4-2. Instability

I =
Ce

Ce + Ca

In the equation, Ce represents efferent (or outgoing) coupling, and Ca represents
afferent (or incoming) coupling.

The instability metric determines the volatility of a codebase. A codebase that exhibits
high degrees of instability breaks more easily when changed because of high coupling.
Consider two scenarios, each with Ca of 2. In the first scenario, Ce = 0, yielding an
instability score of zero. In the second scenario, Ce = 3, yielding an instability score
of 3/5. Thus, the measure of instability for a component reflects how many potential
changes might be forced by changes to related components. A component with an
instability value near 1 is highly unstable, and a value close to 0 may be either stable
or rigid: it is stable if the module or component contains mostly abstract elements
and rigid if it is composed of mostly concrete elements. However, the trade-off for
high stability is lack of reuse—if every component is self-contained, duplication is
likely.

A component with an I value close to 1, we can agree, is highly instable. However,
a component with an I value close to 0 may be either stable or rigid. However, if it
contains mostly concrete elements, it is rigid.

Thus, in general, it is important to look at the values of I and A together rather than
in isolation; they are combined in the next metric, distance from the main sequence.

One of the few holistic metrics architects have for architectural structure is nor‐
malized distance from the main sequence, a derived metric based on instability and
abstractness, shown in Equation 4-3.

Equation 4-3. Normalized distance from the main sequence

D = A + I − 1

In the equation, A = abstractness and I = instability.

The normalized distance from the main sequence metric imagines an ideal relationship
between abstractness and instability; components that fall near this idealized line
exhibit a healthy mixture of these two competing concerns. For example, graphing
a particular component allows developers to calculate the distance from the main
sequence metric, illustrated in Figure 4-5.

Code-Based Fitness Functions | 49

Figure 4-5. Normalized distance from the main sequence for a particular component

In Figure 4-5, developers graph the candidate component, then measure the distance
from the idealized line. The closer to the line, the better balanced the component.
Components that fall too far into the upper-right corner enter into what architects
call the zone of uselessness: code that is too abstract becomes difficult to use. Con‐
versely, code that falls into the lower-left corner enters the zone of pain: code with
too much implementation and not enough abstraction becomes brittle and hard to
maintain, as illustrated in Figure 4-6.

Figure 4-6. Zones of uselessness and pain

50 | Chapter 4: Automating Architectural Governance

This kind of analysis is useful for architects for either evaluation (e.g., to migrate
from one architecture style to another) or to set up as a fitness function. Consider the
screenshot shown in Figure 4-7, using the commercial tool NDepend applied to the
NUnit open source testing tool.

Figure 4-7. NDepend output for distance from the main sequence for the NUnit testing
library

In Figure 4-7, the output illustrates that most of the code falls near the main sequence
line. The mocks components are tending toward the zone of uselessness: too much
abstractness and instability. That makes sense for a set of mocking components,
which tend to use indirection to achieve their results. More worrying, the framework
code has slipped into the zone of pain: too little abstractness and instability. What
does this code look like? Many overly large methods without enough reuse.

Code-Based Fitness Functions | 51

https://www.ndepend.com
https://nunit.org

How can an architect pull the troublesome code back toward the main sequence line?
By using refactoring tools in an IDE: find the large methods that drive this measure
and start extracting parts to increase abstractness. As you perform this exercise,
you will find duplication among the extracted code, allowing you to remove it and
improve instability.

Before performing a restructuring exercise, architects should use metrics like this to
analyze and improve the codebase prior to moving it. Just as in building architecture,
moving something with an unstable foundation is harder than moving something
with a solid one.

Architects also can use this metric as a fitness function to make sure the codebase
doesn’t degrade to this degree in the first place.

Directionality of Imports
Closely related to the example in Figure 2-3, teams should govern the directionality of
imports. In the Java ecosystem, JDepend is a metrics tool that analyzes the coupling
characteristics of packages. Because JDepend is written in Java, it has an API that
developers can leverage to build their own analysis via unit tests.

Consider the fitness function in Example 4-1, expressed as a JUnit test.

Example 4-1. JDepend test to verify the directionality of package imports

public void testMatch() {
 DependencyConstraint constraint = new DependencyConstraint();

 JavaPackage persistence = constraint.addPackage("com.xyz.persistence");
 JavaPackage web = constraint.addPackage("com.xyz.web");
 JavaPackage util = constraint.addPackage("com.xyz.util");

 persistence.dependsUpon(util);
 web.dependsUpon(util);

 jdepend.analyze();

 assertEquals("Dependency mismatch",
 true, jdepend.dependencyMatch(constraint));
 }

In Example 4-1, we define the packages in our application and then define the rules
about imports. If a developer accidentally writes code that imports into util from
persistence, this unit test will fail before the code is committed. We prefer building
unit tests to catch architecture violations over using strict development guidelines
(with the attendant bureaucratic scolding): it allows developers to focus more on

52 | Chapter 4: Automating Architectural Governance

https://oreil.ly/6fYd2
http://junit.org

the domain problem and less on plumbing concerns. More importantly, it allows
architects to consolidate rules as executable artifacts.

Cyclomatic Complexity and “Herding” Governance
A common code metric is cyclomatic complexity, a measure of function or method
complexity available for all structured programming languages, that has been around
for decades.

An obvious measurable aspect of code is complexity, defined by the cyclomatic com‐
plexity metric.

Cyclomatic complexity (CC) is a code-level metric designed to provide an object
measure for the complexity of code, at the function/method, class, or application
level, developed by Thomas McCabe Sr. in 1976.

It is computed by applying graph theory to code, specifically decision points, which
cause different execution paths. For example, if a function has no decision statements
(such as if statements), then CC = 1. If the function had a single conditional, then
CC = 2 because two possible execution paths exist.

The formula for calculating the cyclomatic complexity for a single function or
method is CC = E − N + 2, where N represents nodes (lines of code) and E represents
edges (possible decisions). Consider the C-like code shown in Example 4-2.

Example 4-2. Sample code for cyclomatic complexity evaluation

public void decision(int c1, int c2) {
 if (c1 < 100)
 return 0;
 else if (c1 + C2 > 500)
 return 1;
 else
 return -1;
}

The cyclomatic complexity for Example 4-2 is 3 (=3 – 2 + 2); the graph appears in
Figure 4-8.

The number 2 appearing in the cyclomatic complexity formula represents a
simplification for a single function/method. For fan-out calls to other methods
(known as connected components in graph theory), the more general formula is
CC = E − N + 2P , where P represents the number of connected components.

Code-Based Fitness Functions | 53

https://oreil.ly/mAHFZ

Figure 4-8. Cyclomatic complexity for the decision function

Architects and developers universally agree that overly complex code represents
code smell; it harms virtually every one of the desirable characteristics of codebases:
modularity, testability, deployability, and so on. Yet, if teams don’t keep an eye on
gradually growing complexity, that complexity will dominate the codebase.

What’s a Good Value for Cyclomatic Complexity?
A common question we receive when talking about this subject is: what’s a good
threshold value for CC? Of course, like all answers in software architecture: it
depends! Specifically it depends on the complexity of the problem domain. One of
the weaknesses of metrics like this is the inability to distinguish between essential and
accidental complexity. For example, if you have an algorithmically complex problem,
the solution will yield complex functions. One of the key aspects of CC for architects
to monitor is whether functions are complex because of the problem domain or
because of poor coding, and alternatively, whether the code is partitioned poorly.
In other words, could a large method be broken down into smaller, logical chunks,
distributing the work (and complexity) into more well-factored methods?

In general, the industry thresholds for CC suggest that a value under 10 is acceptable,
barring other considerations such as complex domains. We consider that threshold
very high and would prefer code to fall under 5, indicating cohesive, well-factored
code. A metrics tool in the Java world, Crap4j, attempts to determine how poor
(crappy) your code is by evaluating a combination of CC and code coverage; if CC
grows to over 50, no amount of code coverage can rescue that code from crappiness.
The most terrifying professional artifact Neal ever encountered was a single C func‐
tion that served as the heart of a commercial software package whose CC was over

54 | Chapter 4: Automating Architectural Governance

http://www.crap4j.org

800! It was a single function with over 4,000 lines of code, including the liberal use of
GOTO statements (to escape impossibly deeply nested loops).

Engineering practices like test-driven development have the accidental (but positive)
side effect of generating smaller, less complex methods on average for a given prob‐
lem domain. When practicing TDD, developers try to write a simple test, then write
the smallest amount of code to pass the test. This focus on discrete behavior and good
test boundaries encourages well-factored, highly cohesive methods that exhibit low
CC.

CC is a good example of a metric architects might want to govern; no one benefits
from overly complex codebases. However, what happens on projects where this value
has been ignored for a long time?

Rather than set a hard threshold for a fitness function value, you can herd teams
toward better values. For example, let’s say that you decided as an organization that
the absolute upper limit for CC should be 10, yet when you put that fitness function
in place most of your projects fail. Instead of abandoning all hope, you can set up
a cascading fitness function that issues a warning for anything past some threshold,
which eventually escalates into an error over time. This gives teams time to address
technical debt in a controlled, gradual way.

Gradually narrowing to desired values for a variety of metrics-based fitness functions
allows teams to both address existing technical debt and, by leaving the fitness
functions in place, prevent future degradation. This is the essence of preventing bit
rot via governance.

Turnkey Tools
Because all architectures differ, architects struggle to find ready-made tools for com‐
plex problems. However, the more common the ecosystem, the more likely you are to
find suitable, somewhat generic tools. Here are a few exemplars.

Legality of Open Source Libraries
PenultimateWidgets was working on a project that contained some patented propriet‐
ary algorithms, along with a few open source libraries and frameworks. The lawyers
became concerned about the development team accidentally using a library whose
license requires its users to adopt the same extremely liberal license, which Penulti‐
mateWidgets obviously didn’t want for their code.

So, the architects gathered up all the licenses from the dependencies and allowed
the lawyers to approve them. Then, one of the lawyers asked an awkward question:
what happens if one of these dependencies updates the terms of their license during a

Turnkey Tools | 55

routine software update? And, being a good lawyer, they had a good example of this
happening in the past with some user interface libraries. How can the team make sure
that one of the libraries doesn’t update a license without them realizing it?

First, the architects should check to see if a tool already exists to do this; as of
this writing, the tool Black Duck performs exactly this task. However, at the time,
PenultimateWidgets’ architects couldn’t find a tool to suffice.

Thus, they built a fitness function using the following steps:

1. Note the location of each license file within the open source download package in1.
a database.

2. Along with the library version, save the contents (or a hash) of the full license2.
file.

3. When a new version number is detected, the tool reaches into the download3.
package, retrieves the license file, and compares it to the currently saved version.

4. If the versions (or hash) don’t match, fail the build and notify the lawyer.4.

Note that we didn’t try to assess the difference between library versions, or build
some incredible artificial intelligence to analyze it. As is often the case, the fitness
function notifies us of unexpected changes. This is an example of both an automated
and a manual fitness function: the detection of change was automated, but the
reaction to the change—approval by the lawyers of the changed library—remains as a
manual intervention.

A11y and Other Supported Architecture Characteristics
Sometimes, knowing what to search for leads architects to the correct tool. “A11y”
is developer shorthand for accessibility (derived from a, 11 letters, and y), which
determines how well an application supports people with differing capabilities.

Because many companies and government agencies require accessibility, tools to vali‐
date this architecture characteristic have blossomed, including tools such as Pa11y,
which allows command-line scanning for static web elements to ensure accessibility.

ArchUnit
ArchUnit is a testing tool inspired by and using some of the helpers created for
JUnit. However, it is designed for testing architecture features rather than general
code structure. We already showed an example of an ArchUnit fitness function in
Figure 2-3; here are some more examples of the kinds of governance available.

56 | Chapter 4: Automating Architectural Governance

https://oreil.ly/C7bol
https://pa11y.org

Package dependencies
Packages delineate components in the Java ecosystem, and architects frequently want
to define how packages should be “wired” together. Consider the example compo‐
nents illustrated in Figure 4-9.

Figure 4-9. Declarative package dependencies in Java

The ArchUnit code that enforces the dependencies shown in Figure 4-9 appears in
Example 4-3.

Example 4-3. Package dependency governance

noClasses().that().resideInAPackage("..source..")
 .should().dependOnClassesThat().resideInAPackage("..foo..")

ArchUnit uses the Hamcrest matchers used in JUnit to allow architects to write very
language-like assertions, as shown in Example 4-3, enabling them to define which
components may or may not access other components.

Another common governable concern for architects are component dependencies, as
illustrated in Figure 4-10.

Figure 4-10. Package dependency governance

Turnkey Tools | 57

https://oreil.ly/fuVil

In Figure 4-10, the foo shared library should be accessible from source.one but not
from other components; an architect can specify the governance rule via ArchUnit as
in Example 4-4.

Example 4-4. Allowing and restricting package access

classes().that().resideInAPackage("..foo..")
 .should().onlyHaveDependentClassesThat()
 .resideInAnyPackage("..source.one..", "..foo..")

Example 4-4 shows how an architect can control compile-time dependencies between
projects.

Class dependency checks
Similar to the rules concerning packages, architects often want to control architec‐
tural aspects of class design. For example, an architect may want to restrict depen‐
dencies between components to prevent deployment complications. Consider the
relationship between classes in Figure 4-11.

Figure 4-11. Dependency checks allowing and disallowing access

ArchUnit allows an architect to codify the rules shown in Figure 4-11 via
Example 4-5.

Example 4-5. Class dependency rules in ArchUnit

classes().that().haveNameMatching(".*Bar")
 .should().onlyHaveDependentClassesThat().haveSimpleName("Bar")

ArchUnit allows architects fine-grained control over the “wiring” of components
within an application.

58 | Chapter 4: Automating Architectural Governance

Inheritance checks
Another dependency supported by object-oriented programming languages is inher‐
itance; from an architecture perspective, it is a specialized form of coupling. In
a classic example of the perpetual answer “it depends!” the question of whether
inheritance is an architectural headache depends on how teams deploy the affected
components: if the inheritance is contained with a single component, it has no archi‐
tectural side effects. On the other hand, if inheritance stretches across component
and/or deployment boundaries, architects must take special action to make sure the
coupling remains intact.

Inheritance is often an architectural concern; an example of the type of structure
requiring governance appears in Figure 4-12.

Figure 4-12. Governing inheritance dependencies

Architects can express the rules appearing in Figure 4-12 through the code in
Example 4-6.

Example 4-6. Inheritance governance rule expressed in ArchUnit

classes().that().implement(Connection.class)
 .should().haveSimpleNameEndingWith("Connection")

Annotation checks
A common way architects indicate intent in supported platforms is through tagging
annotations (or attributes, depending on your platform). For example, an architect
may intend for a particular class to only act as an orchestrater for other services—the
intent is that it never takes on nonorchestration behavior. Using an annotation allows
the architect to verify intent and correct usage.

Turnkey Tools | 59

ArchUnit allows architects to validate this kind of usage, as shown in Figure 4-13.

Figure 4-13. Governing proper annotation use

Architects can codify the governance rules implied in Figure 4-13 as shown in
Example 4-7.

Example 4-7. Governance rules for annotations

classes().that().areAssignableTo(EntityManager.class)
 .should().onlyHaveDependentClassesThat().areAnnotatedWith(Transactional.class)

In Example 4-7, the architect wants to ensure that only annotated classes are allowed
to utilize the EntityManager class.

Layer checks
One of the most common usages of a governance tool like ArchUnit is to allow archi‐
tects to enforce design decisions. Architects often make decisions such as separation
of concerns that cause short-term inconvenience for developers but have long-term
benefits in terms of evolution and isolation. Consider the illustration in Figure 4-14.

The architect has built a layered architecture to isolate changes between layers. In
such an architecture, dependencies should exist only between adjacent layers; the
more layers couple to a particular layer, the more rippling side effects occur because
of change.

60 | Chapter 4: Automating Architectural Governance

Figure 4-14. Using components to define a layered architecture

A layer governance check fitness function expressed in ArchUnit appears in
Example 4-8.

Example 4-8. Layered architecture governance checks

layeredArchitecture()
 .consideringAllDependencies()
 .layer("Controller").definedBy("..controller..")
 .layer("Service").definedBy("..service..")
 .layer("Persistence").definedBy("..persistence..")

 .whereLayer("Controller").mayNotBeAccessedByAnyLayer()
 .whereLayer("Service").mayOnlyBeAccessedByLayers("Controller")
 .whereLayer("Persistence").mayOnlyBeAccessedByLayers("Service")

In Example 4-8, an architect defines layers and access rules for those layers.

Many of you as architects have written the native language versions of many of
the principles expressed in the preceding examples in some wiki or other shared
information repository—and they were read by no one! It’s great for architects for
express principles, but principles without enforcement are aspirational rather than
governance. The layered architecture in Example 4-8 is a great example—while an

Turnkey Tools | 61

architect may write a document describing layers and the underlying separation of
concerns principle, unless a fitness function validates it, an architect can never have
confidence that developers will follow the principles.

We’ve spent a lot of time highlighting ArchUnit, as it is the most mature of many
governance-focused testing frameworks. It is obviously applicable only in the Java
ecosystem. Fortunately, NetArchTest replicates the same style and basic capabilities of
ArchUnit but for the .NET platform.

Linters for Code Governance
A common question we field from salivating architects from platforms other than
Java and .NET is whether there is a tool for platform X to ArchUnit that is equivalent.
While tools as specific as ArchUnit are rare, most programming languages include
a linter, a utility that scans source code to find coding antipatterns and deficiencies.
Generally, the linter lexes and parses the source code, providing plug-ins by develop‐
ers to write checks for syntax. For example, ESLint, the linting tool for JavaScript
(technically, the linter for ECMAScript), allows developers to write syntax rules
requiring (or not) semicolons, nominally optional braces, and so on. They can also
write rules about what function-calling policies architects want to enforce and other
governance rules.

Most platforms have linters; for example, C++ is served by Cpplint, Staticcheck is
available for the Go language. There’s even a variety of linters for SQL, including
sql-lint. While they are not as convenient as ArchUnit, architects can still code many
structural checks into virtually any codebase.

Case Study: Availability Fitness Function
A common conundrum appears for many architects: should we use a legacy system
as an integration point or build a new one? If a particular solution hasn’t been tried
before, how can architects make objective decisions?

PenultimateWidgets faced this problem when integrating with a legacy system. To
that end, the team created a fitness function to stress-test the legacy service, as shown
in Figure 4-15.

After setting up the ecosystem, the team measured the percentage of errors compared
to total responses from the third-party system using the monitoring tool.

62 | Chapter 4: Automating Architectural Governance

https://oreil.ly/mviqT
https://eslint.org
https://oreil.ly/zs9pY
https://staticcheck.io
https://oreil.ly/T4OB9

Figure 4-15. Availability verification fitness function

The results of the experiment showed them that the legacy system had no trouble
with availability, with plenty of overhead to handle the integration point.

This objective outcome allowed the team to state with confidence that the legacy
integration point was sufficient, freeing the resources otherwise dedicated to rewrit‐
ing that system. This example illustrates how fitness functions help move software
development from a gut-feel craft to a measurable engineering discipline.

Case Study: Load-Testing Along with Canary Releases
PenultimateWidgets has a service that currently “lives” in a single virtual machine.
However, under load, this single instance struggles to keep up with necessary scalabil‐
ity. As a quick fix, the team implements auto-scaling for the service, replicating the
single instance with several instances as a stopgap measure because a busy annual
sale is fast approaching. However, the skeptics on the team wanted to know how they
could prove that the new system was working under load.

The architects on the project created a fitness function tied to a feature flag that
allows canary releases or dark launches, which release new behaviors to a small
subset of users to test the potential overall impact of the change. For example, when

Turnkey Tools | 63

developers of a highly scalable website release a new feature that will consume a lot of
bandwidth, they often want to release the change slowly so that they can monitor the
impact. This setup appears in Figure 4-16.

Figure 4-16. Canary-releasing auto-scaling to provide support and increase confidence

For the fitness function shown in Figure 4-16, the team initially released the auto-
scaling instances to a small group, then increased the number of users as their
monitoring showed continued good performance and support.

This solution will act as scaffolding to allow limited-term expansion while the team
develops a better solution. Having the fitness function in place and regularly executed
allows the team a better feel for how long this stopgap solution will last.

Case Study: What to Port?
One particular PenultimateWidgets application has been a workhorse, developed as
a Java Swing application over the better part of a decade and continually growing
new features. The company decided to port it to the web application. However, now
the business analysts face a difficult decision: how much of the existing sprawling

64 | Chapter 4: Automating Architectural Governance

functionality should they port? And, more practically, in what order should they
implement the ported features of the new application to deliver the most functionality
quickly?

One of the architects at PenultimateWidgets asked the business analysts what the
most popular features were, and they had no idea! Even though they have been
specifying the details of the application for years, they had no real understanding of
how users used the application. To learn from users, the developers released a new
version of the legacy application with logging enabled to track which menu features
users actually used.

After a few weeks, they harvested the results, providing an excellent road map of
what features to port and in what order. They discovered that the invoicing and
customer lookup features were most commonly used. Surprisingly, one subsection of
the application that had taken great effort to build had very little use, leading the team
to decide to leave that functionality out of the new web application.

Fitness Functions You’re Already Using
Outside of new tools such as ArchUnit, many of the tools and approaches we outline
aren’t new. However, teams use them sparsely and inconsistently, on an ad hoc basis.
Part of our insight surrounding the fitness function concept unifies a wide variety of
tools into a single perspective. Thus, chances are good that you are already using a
variety of fitness functions on your projects, and you just don’t call them that yet.

Fitness functions include metrics suites such as SonarCube; linting tools such as
esLint, pyLint, and cppLint; and a whole family of source-code verification tools, such
as PMD.

Just because a team uses monitors to observe traffic doesn’t make those measures
a fitness function. Setting an objective measure associated with an alert converts
measurements into fitness functions.

To convert a metric or measurement into a fitness function, define
objective measures and provide fast feedback for acceptable use.

Using these tools every once in a while doesn’t make them fitness functions; wiring
them into continuous verification does.

Turnkey Tools | 65

Integration Architecture
While many fitness functions apply to individual applications, they exist in all parts of
the architectural ecosystem—any part that may benefit from governance. Inevitably,
the more examples move away from application-specific concerns, the fewer generic
solutions exist. Integration architecture by its nature integrates different specific
parts, defying generic advice. However, some general patterns exist for integration
architecture fitness functions.

Communication Governance in Microservices
Many architects see the cycle test shown in Figure 2-3 and fantasize about the
same kind of test for distributed architectures such as microservices. However, this
desire intersects with the heterogeneous nature of architecture problems. Testing
for component cycles is a compile-time check, requiring a single codebase and tool
in the appropriate language. However, in microservices, a single tool won’t suffice:
each service might be written in a different tech stack, in different repositories,
using different communication protocols, and many other variables. Thus, finding a
turnkey tool for fitness functions for microservices is unlikely.

Architects often need to write their own fitness functions, but creating an entire
framework isn’t necessary (and is too much work). Many fitness functions consist of
10 or 15 lines of “glue” code, often in a different technology stack than the solution.

Consider the governance problem of governing calls between microservices, illustra‐
ted in Figure 4-17. The architect designed the OrderOrchestrator as the sole state
owner of the workflow. However, if the domain services communicate with each
other, the orchestrator can’t maintain correct state. Thus, an architect might want to
govern the communication between services: domain services can only communicate
with the orchestrator.

However, if an architect can ensure a consistent interface between systems (such
as logging in a parsable format), they can write a few lines of code in a scripting
language to build a governance fitness function. Consider a log message that includes
the following information:

• Service name•
• Username•
• IP address•
• Correlation ID•

• Message received time in UTC•
• Time taken•
• Method name•

66 | Chapter 4: Automating Architectural Governance

Figure 4-17. Governing communication between microservices

For example, a particular log message might resemble the one shown in Example 4-9.

Example 4-9. Sample microservices log format

["OrderOrchestrator", "jdoe", "192.16.100.10", "ABC123",
 "2021-11-05T08:15:30-05:00", "3100ms", "updateOrderState()"]

First, an architect can create a fitness function for each project that mandates out‐
putting log messages in the format shown in Example 4-9, regardless of technology
stack. This fitness function may be attached to the common container image shared
by services.

Integration Architecture | 67

Second, the architect writes a simple fitness function in a scripting language such as
Ruby or Python to harvest the log messages, parse the common format mandated in
Example 4-9, and check for approved (or disapproved) communication, as shown in
Example 4-10.

Example 4-10. Checking communication between services

list_of_services.each { |service|
 service.import_logsFor(24.hours)
 calls_from(service).each { |call|
 unless call.destination.equals("orchestrator")
 raise FitnessFunctionFailure.new()
 }
 }

In Example 4-10, the architect writes a loop that iterates over all the logfiles harvested
for the last 24 hours. For each log entry, they check to ensure that the call destination
for each call is only the orchestrator service, not any of the domain services. If one of
the services has violated this rule, the fitness function raises an exception.

You may recognize some parts of this example from Chapter 2 in the discussion of
triggered versus continual fitness functions; this is a good example of two different
ways to implement a fitness function with differing trade-offs. The example shown in
Example 4-10 represents a reactive fitness function—it reacts to the governance check
after a time interval (in this case, 24 hours). However, another way to implement
this fitness function is proactively, based on real-time monitors for communication,
catching violations as they occur.

Each approach has trade-offs. The reactive version doesn’t impose any overhead on
the runtime characteristics of the architecture, whereas monitors can add a small
amount of overhead. However, the proactive version catches violations right away
rather than a day later.

Thus, the real trade-off between the two approaches may come down to the critical‐
ity of the governance. For example, if the unauthorized communication creates an
immediate issue (such as a security concern), architects should implement it proac‐
tively. If, however, the purpose is only structural governance, creating the log-based
reactive fitness function has less chance of impacting the running system.

68 | Chapter 4: Automating Architectural Governance

Case Study: Choosing How to Implement a Fitness Function
Testing the problem domain is mostly straightforward: as developers implement
features in code, they incrementally test those features using one or more testing
frameworks. However, architects may find even simple fitness functions have a vari‐
ety of implementations.

Consider the example shown in Figure 4-18.

Figure 4-18. Grading message governance

In Figure 4-18, a student answers test questions presented by the TestTaker service,
which in turn passes messages asynchronously to AutoGrader, which persists the
graded test answers. Reliability is a key requirement for this system—the system
should never “drop” any answers during this communication. How could an architect
design a fitness function for this problem?

At least two solutions present themselves, differing mostly by what trade-offs each
offers. Consider the solution illustrated in Figure 4-19.

Figure 4-19. Counting the number of messages sent and received

Integration Architecture | 69

If we can assume a modern microservices architecture, concerns such as message
ports are typically managed at the container. A simple way to implement the fitness
function shown in Figure 4-19 is to instrument the container to check the number of
incoming and outgoing messages, and raise an alarm if the numbers don’t match.

This is a simple fitness function, as it is atomic at the service/container level and
architects can enforce it via consistent infrastructure. However, it doesn’t guarantee
end-to-end reliability, only service-level reliability.

An alternative way to implement the fitness function appears in Figure 4-20.

Figure 4-20. Using correlation IDs to ensure reliability

In Figure 4-20, the architect uses correlation IDs, a common technique that tags each
request with a unique identifier to allow traceability. To ensure message reliability,
each message is assigned a correlation ID at the start of the request, and each ID is
checked at the end of the process to make sure it resolved. The second technique
provides more holistic assurance of message reliability, but now the architect must
maintain state for the entire workflow, making coordination more difficult.

Which is the correct fitness function implementation? Like everything in software
architecture, it depends! External forces often dictate which set of trade-offs an
architect chooses; the important point is not to get caught up in thinking that there is
only one way to implement a fitness function.

The chart shown in Figure 4-21 is an example from a real project that set up exactly
this type of fitness function to ensure data reliability.

70 | Chapter 4: Automating Architectural Governance

Figure 4-21. Chart showing the reliability of messages in an orchestrated workflow

As you can see, the fitness function exposed the fact that some messages were not
passing through, encouraging the team to perform forensic analysis as to why (and
leaving the fitness function in place to ensure future problems don’t arise).

DevOps
While most of the fitness functions we cover pertain to architectural structure and
related concepts, like software architecture itself, governance concerns may touch all
parts of the ecosystem, including a family of DevOps-related fitness functions.

These are fitness functions and not just operational concerns for two reasons. First,
they intersect software architecture and the operational concern—changes to the
architecture may impact the operational parts of the system. Second, they represent
governance checks with objective outcomes.

Chaos Engineering
When engineers designed Netflix’s distributed architecture, they designed it to run
on the Amazon Cloud. But they were concerned what sort of odd behavior could
occur because they had no direct control over their operations, such as high latency,
availability, elasticity, and so on. To assuage their fears, they created the Chaos Mon‐
key, eventually followed by an entire open source Simian Army. While the original

DevOps | 71

https://oreil.ly/qNHLF

monkey was meant for chaos and randomness, the fleshed out Simian Army included
some specialization:

Chaos Monkey
The Chaos Monkey can “infiltrate” an Amazon data center and make unexpected
things happen: latency can go up, reliability can go down, and other chaos can
ensue. By designing with the Chaos Monkey in mind, each team must build
resilient services that can withstand the imposed chaos.

Chaos Gorilla
The Chaos Gorilla can knock out an entire Amazon data center, suddenly feign‐
ing an overall data outage.

Chaos Kong
As if the Chaos Gorilla doesn’t sound dire enough, Chaos Kong can knock out
an entire availability zone, making a portion of the cloud ecosystem seem to
disappear. In a tribute to the effectiveness of chaos engineering generally and the
Simian Army specifically, a few years ago a lack of automation caused an Amazon
engineer to accidentally shut down all of Amazon East (the engineer fat-fingered
a command so that instead of kill 10, it was kill 100). However, during that
outage, Netflix stayed operational—its architects had been forced by the Chaos
Gorilla to write around that eventuality.

Doctor Monkey
The Doctor Monkey can check on the general health of a service—CPU uti‐
lization, disk space, and so on—and raise alarms if a resource has become
constrained.

Latency Monkey
One of the constant headaches of cloud-based resources, especially in the early
days, was high latency resolving resources. While the original Chaos Monkey also
randomly affected latency, the Latency Monkey was built to stress this common
fault specifically.

Janitor Monkey
Netflix has an evolutionary ecosystem: new services gradually appear that replace
and enhance existing ones, but the fluidity of change doesn’t mandate that teams
use the new capabilities as soon as they appear. Rather, they can take on new
capabilities when it becomes convenient to use that service. Because many of its
services don’t have a formal release cycle, it created the possibility for orphaned
services—services still running in the cloud without any users left, as they all
moved to a better version. The Janitor Monkey governs this problem by search‐
ing for services still running in the cloud but without any other services routing
to it, and disintegrating that orphan from the cloud, saving the fungible cloud
resources it was consuming.

72 | Chapter 4: Automating Architectural Governance

https://oreil.ly/2pv4V

Conformity Monkey
The Conformity Monkey provides a platform for Netflix architects to imple‐
ment specific governance fitness functions. For example, architects might be
concerned that all REST endpoints support the proper verbs, exhibit correct
error handling, and support metadata properly, and therefore they might build a
tool that runs continually to call REST endpoints (just as normal clients would)
to verify the results.

Security Monkey
As the name implies, the Security Monkey is a specialized version of the Con‐
formity Monkey, focused on security issues specifically. For example, it scans for
open debug ports, missing authentication, and other automatable verifications.

The Simian Army was open source and eventually was deprecated as the Netflix engi‐
neers built more advanced governance mechanisms. However, some of the monkeys
found new homes. For example, the extremely useful Janitor Monkey has been reborn
as Swabbie, as part of a suite of open source cloud-based fitness functions.

The principle behind chaos engineering is compelling: it’s not a question of if your
system will eventually have a fault of some kind but rather when. By designing (and
governing) known eventualities, architects and operations can collaborate on more
robust systems.

Note that the Chaos Monkey wasn’t a testing tool run on a schedule—it ran continu‐
ously within Netflix’s ecosystem. Not only did this force developers to build systems
that could withstand problems, it tested the system’s validity continually. Having this
constant verification built into the architecture allowed Netflix to build one of the
most robust systems in the world. The Simian Army is an excellent example of a
holistic, continual, operational fitness function. It ran against multiple parts of the
architecture at once, ensuring architectural characteristics (resiliency, scalability, etc.)
would be maintained.

Enterprise Architecture
Most of the fitness functions we have shown so far have concerned application or
integration architecture, but they are applicable at any part of an architecture that
could benefit from governance. One place in particular where enterprise architects
have a big impact on the rest of the ecosystem is when they define platforms within
their ecosystem to encapsulate business functionality. This effort aligns with our
stated desire to keep implementation details at the smallest possible scope.

Consider the example shown in Figure 4-22.

Enterprise Architecture | 73

https://oreil.ly/WvKxj

Figure 4-22. Applications as ad hoc compositions of services

In Figure 4-22, applications (shown at the top) consume services from a variety
of different parts of the enterprise. Having fine-grained access from applications to
services results in implementation details regarding how the parts interact with one
another leak into the application, in turn making them more brittle.

Realizing this, many enterprise architects design platforms to encapsulate business
functionality behind managed contracts, as illustrated in Figure 4-23.

Figure 4-23. Building platforms to hide implementation details

In Figure 4-23, the architects build platforms to hide the way the organization solves
problems, instead building a consistent, hopefully slow-changing API that describes
the facilities other parts of the ecosystem need via contracts for the platform. By
encapsulating the implementation details at the platform level, architects decrease the
spread of implementation coupling, in turn making a less brittle architecture.

74 | Chapter 4: Automating Architectural Governance

Enterprise architects define the APIs for these platform and fitness functions to
govern the capabilities, structure, and other governable aspects of the platform and
its implementation. This, in turn, provides another benefit by keeping enterprise
architects away from making technology choices! Instead, they focus on capabilities
rather than how to implement them, which solves two problems.

First, enterprise architects are typically far away from implementation details, and
thus are not as up-to-date on cutting-edge changes, in the technology landscape and
within their own ecosystem; they often suffer from the Frozen Caveman antipattern.

Frozen Caveman Antipattern
A behavioral antipattern commonly observed in the wild, the Frozen Caveman Anti‐
pattern, describes an architect who always reverts to their pet irrational concern for
every architecture. For example, one of Neal’s colleagues worked on a system that
featured a centralized architecture. Yet, each time they delivered the design to the
client architects, the persistent question was “But what if we lose Italy?” Several years
before, a freak communication problem had prevented headquarters from communi‐
cating with its stores in Italy, causing great inconvenience. While the chances of a
reoccurrence were extremely small, the architects had become obsessed about this
particular architectural characteristic.

Generally, this antipattern manifests in architects who have been burned in the past
by a poor decision or unexpected occurrence, making them particularly cautious
in the future. While risk assessment is important, it should be realistic as well.
Understanding the difference between genuine versus perceived technical risk is part
of the ongoing learning process for architects. Thinking like an architect requires
overcoming these “frozen caveman” ideas and experiences, seeing other solutions,
and asking more relevant questions.

However out of date they may be on current implementation trends, enterprise
architects understand best the long-term strategic goals of the organization, which
they can codify in fitness functions. Rather than specify technology choices, they
instead define concrete fitness functions at the platform level, ensuring that the
platform continues to support the appropriate characteristics and behavior. This
further explains our advice to decompose architecture characteristics until you can
objectively measure them—things that can be measured can be governed.

Also, allowing enterprise architects to focus on building fitness functions to manage
strategic vision frees domain and integration architects to make technology decisions
with consequences, protected by the guardrails implemented as fitness functions.
This, in turn, allows organizations to grow their next generation of enterprise archi‐
tects, by allowing lower-tier roles to make decisions and work through the trade-offs.

Enterprise Architecture | 75

We have advised several companies that have an enterprise architecture role of
evolutionary architect, tasked with looking around the organization for opportunities
to find and implement fitness functions (often harvested from a specific project and
made more generic) and to build reusable ecosystems with appropriate quantum
boundaries and contracts to ensure loose coupling between platforms.

Case Study: Architectural Restructuring While Deploying 60 Times
per Day
GitHub is a well-known developer-centric website with aggressive engineering practi‐
ces, deploying 60 times per day, on average. GitHub describes a problem in its blog
“Move Fast and Fix Things” that will make many architects shudder in horror. It
turns out that GitHub has long used a shell script wrapped around command-line
Git to handle merges, which works correctly but doesn’t scale well enough. The Git
engineering team built a replacement library for many command-line Git functions
called libgit2 and implemented their merge functionality there, thoroughly testing it
locally.

But now they must deploy the new solution into production. This behavior has
been part of GitHub since its inception and has worked flawlessly. The last thing
the developers want to do is introduce bugs in existing functionality, but they must
address technical debt as well.

Fortunately, GitHub developers created Scientist, an open source framework written
in Ruby that provides holistic, continual testing to vet changes to code. Example 4-11
gives us the structure of a Scientist test.

Example 4-11. Scientist setup for an experiment

require "scientist"

class MyWidget
 include Scientist

 def allows?(user)
 science "widget-permissions" do |e|
 e.use { model.check_user(user).valid? } # old way
 e.try { user.can?(:read, model) } # new way
 end # returns the control value
 end
end

In Example 4-11, the developer encapsulates the existing behavior with the use block
(called the control) and adds the experimental behavior to the try block (called the
candidate). The science block handles the following details during the invocation of
the code:

76 | Chapter 4: Automating Architectural Governance

http://github.com
https://oreil.ly/zJQ1x
https://oreil.ly/bl2hN

Decides whether to run the try block
Developers configure Scientist to determine how the experiment runs. For exam‐
ple, in this case study—the goal of which was to update the merge functionality—
1% of random users tried the new merge functionality. In either case, Scientist
always returns the results of the use block, ensuring the caller always receives the
existing behavior in case of differences.

Randomizes the order in which use and try blocks run
Scientist does this to prevent accidentally masking bugs due to unknown depen‐
dencies. Sometimes the order or other incidental factors can cause false positives;
by randomizing their order, the tool makes those faults less likely.

Measures the durations of all behaviors
Part of Scientist’s job is A/B performance testing, so monitoring performance is
built in. In fact, developers can use the framework piecemeal—for example, they
can use it to measure calls without performing experiments.

Compares the result of try to the result of use
Because the goal is refactoring existing behavior, Scientist compares and logs the
results of each call to see if differences exist.

Swallows (but logs) any exceptions raised in the try block
There’s always a chance that new code will throw unexpected exceptions. Devel‐
opers never want end users to see these errors, so the tool makes them invisible
to the end user (but logs them for developer analysis).

Publishes all this information
Scientist makes all its data available in a variety of formats.

For the merge refactoring, the GitHub developers used the following invocation to
test the new implementation (called create_merge_commit_rugged), as shown in
Example 4-12.

Example 4-12. Experimenting with a new merge algorithm

def create_merge_commit(author, base, head, options = {})
 commit_message = options[:commit_message] || "Merge #{head} into #{base}"
 now = Time.current

 science "create_merge_commit" do |e|
 e.context :base => base.to_s, :head => head.to_s, :repo => repository.nwo
 e.use { create_merge_commit_git(author, now, base, head, commit_message) }
 e.try { create_merge_commit_rugged(author, now, base, head, commit_message) }
 end
end

Enterprise Architecture | 77

In Example 4-12, the call to create_merge_commit_rugged occurred in 1% of invoca‐
tions, but, as noted in this case study, at GitHub’s scale, all edge cases appear quickly.

When this code executes, end users always receive the correct result. If the try
block returns a different value from use, it is logged, and the use value is returned.
Thus, the worse case for end users is exactly what they would have gotten before the
refactoring. After running the experiment for 4 days and experiencing no slow cases
or mismatched results for 24 hours, they removed the old merge code and left the
new code in place.

From our perspective, Scientist is a fitness function. This case study is an outstanding
example of the strategic use of a holistic, continuous fitness function to allow devel‐
opers to refactor a critical part of their infrastructure with confidence. They changed
a key part of their architecture by running the new version alongside the existing one,
essentially turning the legacy implementation into a consistency test.

Fidelity Fitness Functions
The Scientist tool implements a general type of verification called a fidelity fitness
function: preserving the fidelity between a new system and an old one undergoing
replacement. Many organizations build important functionality over long periods of
time without enough testing or discipline, until eventually the time comes to replace
the application with newer technology yet still retain the same behavior as the old
one. The older and more poorly documented the old system is, the more difficult it is
for teams to replicate the desired behavior.

A fidelity fitness function allows for a side-by-side comparison between old and new.
During the replacement process, both systems run in parallel, and a proxy allows
teams to call old, new, or both in a controlled way until the team has ported each
bit of discrete functionality. Some teams resist building such a mechanism because
they realize the complexity of partitioning the old behavior and exact replication, but
eventually they succumb to the necessity to achieve confidence.

Fitness Functions as a Checklist, Not a Stick
We realize that we have provided architects a metaphorical sharp stick they can use
to poke and torture developers; that is not the point at all. We want to discourage
architects from retreating to an ivory tower and devising more and more complex
and interlocking fitness functions that increase the burden on developers while not
adding corresponding value to the project.

Instead, fitness functions provide a way to enforce architectural principles. Many
professions such as surgeons and airline pilots use (sometimes by mandate) checklists
as part of their job. It’s not because they don’t understand their job or tend toward
absentmindedness—rather, it avoids the natural tendency that people have when

78 | Chapter 4: Automating Architectural Governance

performing complex tasks over and over to accidentally skip steps. For example,
every developer knows they shouldn’t deploy a container with debug ports enabled,
but they may forget during a push including many other tasks.

Many architects state architecture and design principles in wikis or other shared
knowledge portals, but principles without execution fall by the wayside in the pres‐
ence of schedule pressure and other constraints. Encoding those design and gover‐
nance rules as fitness functions ensures they aren’t skipped in the face of external
forces.

Architects often write fitness functions but should always collaborate with develop‐
ers, who must understand them and fix them upon occasional breakage. While fitness
functions add overhead, they prevent the gradual degradation of a codebase (bit rot),
allowing it to continue to evolve into the future.

Documenting Fitness Functions
Tests make good documentation because readers never doubt their honesty—they
can always execute the tests to check results. Trust but verify!

Architects can document fitness functions in a variety of ways, all appropriate with
other documentation within their organization. Some architects view the fitness
functions themselves as sufficient to document their intent. However, tests (no matter
how fluent) are harder for nontechnologists to read.

Many architects like Architectural Decision Records (ADRs) to document architec‐
ture decisions. Teams that use fitness functions add a section in the ADR specifying
how to govern the enclosed design decisions.

Another alternative is to use a behavior-driven development (BDD) framework such
as Cucumber. These tools are designed to map native language to verification code.
For example, take a look at the Cucumber test stated in Example 4-13.

Example 4-13. Cucumber assumptions

Feature: Is it Friday yet?
 Everybody wants to know when it's Friday

 Scenario: Sunday isn't Friday
 Given today is Sunday
 When I ask whether it's Friday yet
 Then I should be told "Nope"

Documenting Fitness Functions | 79

https://adr.github.io
https://oreil.ly/r6lKy
https://cucumber.io

The Feature described in Example 4-13 maps to a programming language method; a
Java mapping appears in Example 4-14.

Example 4-14. Cucumber methods that map to descriptions

@Given("today is Sunday")
public void today_is_sunday() {
 // Write code here that turns the phrase above into concrete actions
 throw new io.cucumber.java.PendingException();
}
@When("I ask whether it's Friday yet")
public void i_ask_whether_it_s_friday_yet() {
 // Write code here that turns the phrase above into concrete actions
 throw new io.cucumber.java.PendingException();
}
@Then("I should be told {string}")
public void i_should_be_told(String string) {
 // Write code here that turns the phrase above into concrete actions
 throw new io.cucumber.java.PendingException();
}

Architects can use the mapping between native language declarations in Exam‐
ple 4-13 and method definitions in Example 4-14 to define fitness functions in more
or less plain native language and map the execution in the corresponding method.
This provides architects a way to document their decisions that also executes them.

The downside of using a tool like Cucumber is the impedance mismatch between
capturing requirements (its original job) and documenting fitness functions.

Literate programming was an innovation by Donald Knuth that attempted to merge
documentation and source code, the goal being to allow cleaner documentation. He
built special compilers for the then-current languages but got little support.

However, in modern ecosystems, tools like Mathematica and Jupyter notebooks are
popular in disciplines such as data science. Architects can use Jupyter notebooks in
particular to document and execute fitness functions.

In one case study, a team created a notebook to check for architectural rules using the
structural code analyzer jQAssistant in combination with the graph database Neo4j.
jQAssistant scans several artifacts (Java bytecode, Git history, Maven dependencies,
etc.) and stores the structural information into the Neo4j database, as shown in
Figure 4-24.

80 | Chapter 4: Automating Architectural Governance

https://oreil.ly/bnICD
https://oreil.ly/5mJXr
https://jupyter.org
https://oreil.ly/P99wA
https://jqassistant.org
https://neo4j.com

Figure 4-24. Governance workflow with Jupyter notebook

In Figure 4-24, the relationships between parts of the codebase are placed in the
graph database, allowing the team to execute queries such as the following:

MATCH (e:Entity)<-[:CONTAINS]-(p:Package)
WHERE p.name <> "model"
RETURN e.fqn as MisplacedEntity, p.name as WrongPackage

When executed against a sample PetClinic application, the analysis creates the output
shown in Figure 4-25.

Figure 4-25. The output of graph analysis

In Figure 4-25, the results indicate a governance violation, where all classes in the
model package should implement an @Entity annotation.

Jupyter notebooks allow architects to define the text of the governance rules along
with on-demand execution.

Documenting fitness functions is important because developers must understand why
they exist so that fixing them isn’t a nuisance. Finding a way to incorporate fitness
function definitions within your organization’s existing documentation framework

Documenting Fitness Functions | 81

allows for most consistent access. The execution of the fitness functions remains the
top priority, but understandability is also important.

Summary
Fitness functions are to architecture governance as unit tests are to domain changes.
However, the implementation of fitness functions varies depending on all the various
factors that make up a particular architecture. There is no generic architecture—
every one is a unique combination of decisions and subsequent technologies, often
years, or decades, worth. Thus, architects must sometimes be clever in creating fitness
functions. However, this isn’t an example of needing to write an entire testing frame‐
work. Rather, architects often write these fitness functions in scripting languages
such as Python or Ruby, writing 10 or 20 lines of “glue” code to combine the output
of other tools. For example, consider Example 4-10, which harvests the output of
logfiles and checks for particular string patterns.

One of our colleagues presented a great analogy for fitness functions, shown in
Figure 4-26.

Figure 4-26. Fitness functions act as guardrails no matter what the road is made of

In Figure 4-26, the road can be made with a variety of material—asphalt, cobble‐
stones, gravel, and so on. The guardrails exist to keep travelers on the road regardless
of the type of vehicle or type of road. Fitness functions are architecture characteristics
guardrails, created by architects to prevent system rot and support evolving systems
over time.

82 | Chapter 4: Automating Architectural Governance

PART II

Structure

Part I defined the mechanics of evolutionary architecture—how teams build fitness
functions, deployment pipelines, and other mechanisms to govern and evolve soft‐
ware projects.

Part II concerns the structure of architecture. The topology of a software system has
a huge impact on its evolvability. Structural design is a huge portion of the architect’s
job, and certain principles allow for cleaner evolution over time when designed
correctly.

Modern systems have forced architects to consider the impact of data and its evolu‐
tion alongside architecture, reflected in our chapters about that overlap.

CHAPTER 5

Evolutionary Architecture Topologies

Discussions about architecture frequently boil down to coupling: how the pieces of
the architecture connect and rely on one another. Many architects decry coupling as
a necessary evil, but it’s difficult to build complex software without relying on (and
coupling with) other components. Evolutionary architecture focuses on appropriate
coupling—how to identify which dimensions of the architecture should be coupled to
provide maximum benefit with minimal overhead and cost.

In this chapter, readers will garner a deeper understanding of architecture coupling,
how that affects architectural structure, and how to evaluate the structure of software
architectures to more effectively evolve them. We also provide some concrete termi‐
nology and advice on architecture topology from the component up through the
system level.

Evolvable Architecture Structure
Different architecture styles have different evolution characteristics, but there is noth‐
ing inherent in the style that controls its ability to evolve. Rather, it boils down to the
coupling characteristics supported by the architecture. It turns out that at least two
different efforts from the past have identified the key enabler of evolution in software.
Each of them provides a valuable perspective on coupling in architecture.

Connascence
In 1996, Meilir Page-Jones published What Every Programmer Should Know About
Object-Oriented Design (Dorset House), which is a duplex book: one part covers
an object-oriented design technique that did not prove to be popular. However, the
lasting benefit from the book is a concept he named connascence. Here’s how he
defined the term:

85

Two components are connascent if a change in one would require the other to be
modified in order to maintain the overall correctness of the system.

—Meilir Page-Jones

Essentially, connascence is an enhanced language to describe coupling. It’s a great
language for architects to teach tech leads and developers, because it gives them a
more concise way to discuss coupling and (more importantly) how to improve it.
Having a richer vocabulary takes advantage of the Sapir–Whorf hypothesis.

Sapir-Whorf Hypothesis
A principle suggesting that the structure of a language affects its speakers’ worldview
or cognition, meaning that people’s perceptions are relative to their spoken language.

For example, many Far North cultures have more words for snow than those who
live at the equator (who don’t have to regularly distinguish between different types
of snow). It could be argued that those people from the Far North have a deeper
understanding of snow.

Page-Jones developed two types of connascence: static and dynamic.

Static connascence
Static connascence refers to source code–level coupling (as opposed to execution-time
coupling, covered in “Dynamic connascence” on page 87); it is a refinement of
the afferent and efferent couplings defined by Structured Design. In other words,
architects view the following types of static connascence as the degree to which
something is coupled, either afferently or efferently:

Connascence of Name (CoN)
Multiple components must agree on the name of an entity.

Names of methods represent the most common way that codebases are coupled
and the most desirable, especially in light of modern refactoring tools that make
system-wide name changes trivial.

Connascence of Type (CoT)
Multiple components must agree on the type of an entity.

This type of connascence refers to the common facility in many statically typed
languages to limit variables and parameters to specific types. However, this
capability isn’t purely a language feature. Some dynamically typed languages offer
selective typing, notably Clojure and Clojure Spec.

86 | Chapter 5: Evolutionary Architecture Topologies

https://clojure.org
https://clojure.org/about/spec

Connascence of Meaning (CoM) or Connascence of Convention (CoC)
Multiple components must agree on the meaning of particular values.

The most common obvious case for this type of connascence in codebases is
hardcoded numbers rather than constants. For example, it is common in some
languages to consider defining int TRUE = 1; int FALSE = 0. Imagine the
problems if someone flips those values.

Connascence of Position (CoP)
Multiple components must agree on the order of values.

This is an issue with parameter values for method and function calls even in
languages that feature static typing. For example, if a developer creates a method
void updateSeat(String name, String seatLocation) and calls it with the
values updateSeat("14D", "Ford, N"), the semantics aren’t correct even if the
types are.

Connascence of Algorithm (CoA)
Multiple components must agree on a particular algorithm.

A common case for this type of connascence occurs when a developer defines
a security hashing algorithm that must run on both the server and client and
produce identical results to authenticate the user. Obviously, this represents a
high form of coupling: if either algorithm changes any details, the handshake will
no longer work.

Dynamic connascence
The other type of connascence Page-Jones defined is dynamic connascence, which
analyzes calls at runtime. The following is a description of the different types of
dynamic connascence:

Connascence of Execution (CoE)
The order of execution of multiple components is important.

Consider this code:

email = new Email();
email.setRecipient("foo@example.com");
email.setSender("me@me.com");
email.send();
email.setSubject("whoops");

It won’t work correctly because certain properties must be set in order.

Evolvable Architecture Structure | 87

Connascence of Timing (CoT)
The timing of the execution of multiple components is important.

The common case for this type of connascence is a race condition caused by two
threads executing at the same time, affecting the outcome of the joint operation.

Connascence of Values (CoV)
This occurs when several values relate to one another and must change together.

Consider the case where a developer has defined a rectangle as four points,
representing the corners. To maintain the integrity of the data structure, the
developer cannot randomly change one of the points without considering the
impact on the other points.

A more common and problematic case involves transactions, especially in dis‐
tributed systems. When an architect designs a system with separate databases, yet
needs to update a single value across all the databases, all the values must change
together or not at all.

Connascence of Identity (CoI)
This occurs when multiple components must reference the same entity.

The common example of this type of connascence involves two independent
components that must share and update a common data structure, such as a
distributed queue.

Architects have a harder time determining dynamic connascence because we lack
tools to analyze runtime calls as effectively as we can analyze the call graph.

Connascence properties
Connascence is an analysis tool for architects and developers, and some properties of
connascence help developers use it wisely. The following is a description of each of
these connascence properties:

Strength
Architects determine the strength of connascence by the ease with which a
developer can refactor that type of coupling; different types of connascence are
demonstrably more desirable, as shown in Figure 5-1. Architects and developers
can improve the coupling characteristics of their codebase by refactoring toward
better types of connascence.

Architects should prefer static connascence to dynamic connascence because
developers can determine it through simple source code analysis, and modern
tools make it trivial to improve static connascence. For example, consider the
case of Connascence of Meaning, which developers can improve by refactoring to
Connascence of Name by creating a named constant rather than a magic value.

88 | Chapter 5: Evolutionary Architecture Topologies

Figure 5-1. The strength of connascence provides a good refactoring guide

Locality
The locality of connascence measures the modules’ proximal location to one
another in the codebase. Proximal code (in the same module) typically has more
and higher forms of connascence than more separated code (in separate modules
or codebases). In other words, forms of connascence that indicate poor coupling
when far apart are fine when closer together. For example, if two classes in
the same component have connascence of meaning, it is less damaging to the
codebase than if two components have the same form of connascence.

Developers must consider strength and locality together. Stronger forms of con‐
nascence found within the same module represent less code smell than the same
connascence spread apart.

Degree
The degree of connascence relates to the size of its impact—does it impact a few
classes or many? Lesser degrees of connascence damage codebases less. In other
words, having high dynamic connascence isn’t terrible if you have only a few
modules. However, codebases tend to grow, making a small problem correspond‐
ingly bigger.

Evolvable Architecture Structure | 89

Page-Jones offers three guidelines for using connascence to improve systems
modularity:

1. Minimize overall connascence by breaking the system into encapsulated1.
elements.

2. Minimize any remaining connascence that crosses encapsulation boundaries.2.
3. Maximize the connascence within encapsulation boundaries.3.

The legendary software architecture innovator Jim Weirich repopularized the concept
of connascence and offers two great pieces of advice:

Rule of Degree: convert strong forms of connascence into weaker forms of connas‐
cence.
Rule of Locality: as the distance between software elements increases, use weaker forms
of connascence.

Connascence Intersection with Bounded Context
Eric Evans’s book Domain-Driven Design has deeply influenced modern architectural
thinking. Domain-driven design (DDD) is a modeling technique that allows for
organized decomposition of complex problem domains. DDD defines the bounded
context, where everything related to the domain is visible internally but opaque to
other bounded contexts. The bounded context concept recognizes that each entity
works best within a localized context. Thus, instead of creating a unified Customer
class across the entire organization, each problem domain can create their own and
reconcile differences at integration points. This isolation applies to other implementa‐
tion details such as database schemas as well, leading to the degree of data isolation
common in microservices, inspired by the concept of bounded context.

One goal of architects when designing systems based on DDD, including modular
monoliths and microservices, is to prevent implementation details from “leaking”
out of the bounded context. This doesn’t prevent the ability for bounded contexts to
communicate, but that communication is mediated via a contract (see “Contracts” on
page 103 for more investigation of this topic).

Astute readers will notice commonality between the advice from 1993 about connas‐
cence locality and 2003’s advice about bounded context: allowing coupling to spread
to broader scopes creates brittleness in architecture. A brittle architecture is one
where a small change in one place may cause unpredicted and nonlocalized breakages
elsewhere.

For example, consider the extreme case that unfortunately appears in some architec‐
tures: exposing an application’s database schema as an architecture integration point.
The database schema for an application is part of what DDD calls the bounded
context—an implementation detail. Exposing this detail to other applications means

90 | Chapter 5: Evolutionary Architecture Topologies

https://oreil.ly/7TKTO
https://martinfowler.com/bliki/DomainDrivenDesign.html

that a change in a single application’s database may unpredictably break other appli‐
cations. Thus, exposing implementation details to a broader scope harms the overall
integrity of the architecture.

The common trend in architecture that we’ve known since at least 1993 (and likely
even before) is to restrict implementation coupling to the tightest scope possible—
we’ve just struggled with the best ways to express it. Whether we call it bounded
context or adhering to the locality principle of connascence, architects have struggled,
dealt, and reconciled with coupling for decades.

While bounded context is the latest attempt to express an effective coupling philoso‐
phy, it originates from and has ties to DDD, and thus refers to the abstract design
aspects of a system. We need an architectural concept that reflects bounded context,
yet expresses it in technical architecture terms and allows tighter alignment with
architectural concerns (rather than abstract design concerns).

Architectural Quanta and Granularity
Software systems are bound together in a variety of ways. As software architects, we
analyze software using many different perspectives. But component-level coupling
isn’t the only thing that binds software together. Many business concepts semantically
bind parts of the system together, creating functional cohesion. To successfully evolve
software, developers must consider all the coupling points that could break.

As defined in physics, the quantum is the minimum amount of any physical entity
involved in an interaction. An architectural quantum is an independently deployable
component with high functional cohesion, which includes all the structural elements
required for the system to function properly. In a monolithic architecture, the quan‐
tum is the entire application; everything is highly coupled and therefore developers
must deploy it en mass.

The term quantum is of course used heavily in the field of physics known as quantum
mechanics. However, the authors chose the word for the same reasons physicists
did. Quantum originated from the Latin word quantus, meaning “how great” or
“how many.” Before physics co-opted it, the legal profession used it to represent the
“required or allowed amount”—for example, in damages paid. And the term also
appears in the mathematics field of topology, concerning the properties of families of
shapes. Because of its Latin roots, the singular is quantum and the plural is quanta,
similar to the datum/data symmetry.

An architecture quantum measures several different aspects of both topology and
behavior in software architecture related to how parts connect and communicate with
one another.

Architectural Quanta and Granularity | 91

Static coupling
Represents how static dependencies resolve within the architecture via contracts.
These dependencies include operating system, frameworks and/or libraries deliv‐
ered via transitive dependency management, and any other operational require‐
ment to allow the quantum to operate.

Dynamic coupling
Represents how quanta communicate at runtime, either synchronously or asyn‐
chronously. Thus, fitness functions for this characteristic must be continuous,
typically utilizing monitors.

The static and dynamic coupling defined here match the concepts from connascence.
An easy way to think about the difference is that static coupling describes how services
are wired together, whereas dynamic coupling describes how services call one another
at runtime. For example, in a microservices architecture, a service must contain
dependent components such as a database, representing static coupling—the service
isn’t operational without the necessary data. That service may call other services
during the course of a workflow, which represents dynamic coupling. Neither service
requires the other to be present to function, except for this runtime workflow. Thus,
static coupling analyzes operational dependencies, and dynamic coupling analyzes
communication dependencies.

Architecture quantum
An architecture quantum is an independently deployable artifact with high func‐
tional cohesion, high static coupling, and synchronous dynamic coupling.

A common example of an architecture quantum is a well-formed microservice within
a workflow.

These definitions include important characteristics; let’s cover each in detail as they
inform most of the examples in the book.

Independently Deployable
Independently deployable implies several different aspects of an architecture quan‐
tum—each quantum represents a separate deployable unit within a particular archi‐
tecture. Thus, a monolithic architecture—one that is deployed as a single unit—is by
definition a single architecture quantum. Within a distributed architecture such as
microservices, developers tend toward the ability to deploy services independently,
often in a highly automated way. Thus, from an independently deployable standpoint,
a service within a microservices architecture represents an architecture quantum
(contingent on coupling—see below).

Making each architecture quantum represent a deployable asset within the architec‐
ture serves several useful purposes. First, the boundary represented by an architecture
quantum serves as a useful common language among architects, developers, and

92 | Chapter 5: Evolutionary Architecture Topologies

operations—each understands the common scope under question: architects under‐
stand the coupling characteristics, developers understand the scope of behavior, and
operations understands the deployable characteristics.

Second, it represents one of the forces (static coupling) architects must consider when
striving for proper granularity of services within a distributed architecture. Often
in microservices architectures, developers face the difficult question of what service
granularity offers the optimum set of trade-offs. Some of those trade-offs revolve
around deployability: what release cadence does this service require, what other serv‐
ices might be affected, what engineering practices are involved, and so on. Architects
benefit from a firm understanding of exactly where deployment boundaries lie in
distributed architectures.

Third, independent deployability forces the architecture quantum to include common
coupling points such as databases. Most discussions about architecture conveniently
ignore issues such as databases and user interfaces, but real-world systems must
commonly deal with those problems. Thus, any system that uses a shared database
fails the architecture quantum criterion for independent deployment unless the data‐
base deployment is in lockstep with the application. Many distributed systems that
would otherwise qualify for multiple quanta fail the independently deployable part if
they share a common database that has its own deployment cadence. Thus, merely
considering the deployment boundaries doesn’t solely provide a useful measure.
Architects should also consider the second criterion for an architecture quantum,
high functional cohesion, to limit the architecture quantum to a useful scope.

High Functional Cohesion
High functional cohesion refers structurally to the proximity of related elements:
classes, components, services, and so on. Throughout history, computer scientists
defined a variety of types of cohesion, scoped in this case to the generic module,
which may be represented as classes or components, depending on platform. From a
domain standpoint, the technical definition of high functional cohesion overlaps with
the goals of the bounded context in domain-driven design: behavior and data that
implement a particular domain workflow.

From a purely independent deployability standpoint, a giant monolithic architecture
qualifies as an architecture quantum. However, it almost certainly isn’t highly func‐
tionally cohesive but rather includes the functionality of the entire system. The larger
the monolith, the less likely it is to be singularly functionally cohesive.

Ideally, in a microservices architecture, each service models a single domain or
workflow and therefore exhibits high functional cohesion. Cohesion in this context
isn’t about how services interact to perform work but how independent and coupled
one service is to another service.

Architectural Quanta and Granularity | 93

High Static Coupling
High static coupling implies that the elements inside the architecture quantum are
tightly wired together, which is really an aspect of contracts. Architects recognize
things like REST and SOAP as contract formats, but method signatures and opera‐
tional dependencies (via coupling points such as IP addresses and URLs) also repre‐
sent contracts, which we cover in “Contracts” on page 103.

An architecture quantum is in part a measure of static coupling, and the measure is
quite simple for most architecture topologies. For example, the following diagrams
show the architecture styles featured in the book Fundamentals of Software Architec‐
ture, with the architecture quantum static coupling illustrated.

Any of the monolithic architecture styles will necessarily have a quantum of one, as
illustrated in Figure 5-2.

Figure 5-2. Monolithic architectures always have a quantum of one

94 | Chapter 5: Evolutionary Architecture Topologies

As illustrated in Figure 5-2, any architecture that deploys as a single unit and utilizes
a single database will always have a single quantum—the architecture quantum mea‐
sure of static coupling includes the database, so a system that relies on a single
database cannot have more than a single quantum. Thus, the static coupling measure
of an architecture quantum helps identify coupling points in architecture, not just
within the software components under development. Most domain architectures con‐
tain a single coupling point, typically a database, that makes their quantum measure
one.

So far, the static coupling measurement of architecture quantum has evaluated all
the topologies to one. However, distributed architectures create the possibility of
multiple quanta but don’t necessarily guarantee it. For example, the mediator style of
event-driven architecture will always be evaluated to a single architecture quantum,
as illustrated in Figure 5-3.

Figure 5-3. A mediated event-driven architecture has a single architecture quantum

In Figure 5-3, even though the style represents a distributed architecture, two
coupling points push this architecture toward a single architecture quantum: the
database, as is common with monolithic architectures above, but also the Request
Orchestrator itself—any holistic coupling point necessary for the architecture to
function forms an architecture quantum around it.

Broker event-driven architectures (those without a central mediator) are less coupled,
but that doesn’t guarantee complete decoupling. Consider the event-driven architec‐
ture illustrated in Figure 5-4.

Architectural Quanta and Granularity | 95

Figure 5-4. Even a distributed architecture such as a broker-style event-driven architec‐
ture can be a single quantum

Figure 5-4 illustrates a broker-style event-driven architecture (without a central medi‐
ator) that is nevertheless a single architecture quantum because all the services utilize
a single relational database, which acts as a common coupling point. The question
answered by static analysis of an architecture quantum is whether it depends on the
architecture necessary to bootstrap the service. Even in the case of an event-driven
architecture where some of the services don’t access the database, if they rely on
services that do access the database, then they become part of the static coupling of
the architecture quantum.

But what about situations in distributed architectures where common coupling
points don’t exist? Consider the event-driven architecture illustrated in Figure 5-5.
The architects designed an event-driven system with two data stores and no static
dependencies between the sets of services. Note that either architecture quantum can
run in a production-like ecosystem. It may not be able to participate in all workflows
required by the system, but it runs successfully and operates—sending requests and
receiving them within the architecture.

The static coupling measure of an architecture quantum assesses the coupling depen‐
dencies between architectural and operational components. Thus, the operating sys‐
tem, data store, message broker, container orchestration, and all other operational
dependencies form the static coupling points of an architecture quantum, using the
strictest possible contracts (more about the role of contracts in architecture quanta in
“Contracts” on page 103).

96 | Chapter 5: Evolutionary Architecture Topologies

Figure 5-5. An event-driven architecture with two quanta

The microservices architecture style features highly decoupled services, including
data dependencies. Architects in these architectures favor high degrees of decoupling
and take care not to create coupling points between services, allowing the individual
services to form their own quanta, as shown in Figure 5-6.

Figure 5-6. Microservices may form their own quanta

Architectural Quanta and Granularity | 97

In Figure 5-6, each service (acting as a bounded context) may have its own set
of architecture characteristics—one service might have higher levels of scalability
or security than another. This granular level of architecture characteristics scoping
represents one of the advantages of the microservices architecture style. High degrees
of decoupling allow teams working on a service to move as quickly as possible,
without worrying about breaking other dependencies.

However, if the system is tightly coupled to a user interface, the architecture forms a
single architecture quantum, as illustrated in Figure 5-7.

Figure 5-7. A tightly coupled user interface can reduce a microservices architecture
quantum to one

Traditionally, user interfaces create coupling points between the frontend and back‐
end, and most user interfaces won’t operate if portions of the backend aren’t available.

Additionally, it will be difficult for an architect to design different levels of opera‐
tional architecture characteristics (performance, scale, elasticity, reliability, etc.) for
each service if they all must cooperate in a single user interface (particularly in the
case of synchronous calls, covered in “Dynamic Quantum Coupling” on page 100).

98 | Chapter 5: Evolutionary Architecture Topologies

Architects design user interfaces utilizing asynchronicity that doesn’t create coupling
between front and back. A trend on many microservices projects is to use a micro-
frontend framework for user interface elements in a microservices architecture. In
such an architecture, the user interface elements that interact on behalf of the services
are emitted from the services themselves. The user interface surface acts as a canvas
where the user interface elements can appear and also facilitates loosely coupled
communication between components, typically using events. Such an architecture is
illustrated in Figure 5-8.

Figure 5-8. In a micro-frontend architecture, each service + user interface component
forms an architecture quantum

In Figure 5-8, the four shaded services along with their corresponding micro-
frontends form architecture quanta: each of these services may have different archi‐
tecture characteristics.

Any coupling point in an architecture can create static coupling points from a quan‐
tum standpoint. Consider the impact of a database shared between two systems, as
illustrated in Figure 5-9.

The static coupling of a system provides valuable insight, even in complex systems
involving integration architecture. Increasingly, a common architecture technique
for understanding legacy architecture involves creating a static quantum diagram
of how things are “wired” together, which helps determine which systems will be
impacted by change and offers a way of understanding (and potentially decoupling)
the architecture.

Architectural Quanta and Granularity | 99

Figure 5-9. A shared database forms a coupling point between two systems, creating a
single quantum

Static coupling is only one of the forces at play in distributed architectures—the other
is dynamic coupling.

Dynamic Quantum Coupling
The last portion of the architecture quantum definition concerns synchronous cou‐
pling at runtime—in other words, the behavior of architecture quanta as they interact
with one another to form workflows within a distributed architecture.

The nature of how services call one another creates difficult trade-off decisions
because it represents a multidimensional decision space, influenced by three inter‐
locking forces:

Communication
Refers to the type of connection synchronicity used: synchronous or asynchronous

Consistency
Describes whether the workflow communication requires atomicity or can utilize
eventual consistency

Coordination
Describes whether the workflow utilizes an orchestrator or whether the services
communicate via choreography

100 | Chapter 5: Evolutionary Architecture Topologies

Communication
When two services communicate with each other, one of the fundamental ques‐
tions for an architect is whether that communication should be synchronous or
asynchronous.

Synchronous communication requires that the requestor wait for the response from
the receiver, shown in Figure 5-10.

Figure 5-10. A synchronous call waits for a response from the receiver

In Figure 5-10, the calling service makes a call (using one of a number of protocols
that support synchronous calls, such as gRPC) and blocks (does no further process‐
ing) until the receiver returns some value (or status indicating some state change or
error condition).

Asynchronous communication occurs between two services when the caller posts a
message to the receiver (usually via some mechanism such as a message queue), and
once the caller gets acknowledgment that the message will be processed, it returns to
work. If the request requires a response value, the receiver can use a reply queue to
(asynchronously) notify the caller of the result, which is illustrated in Figure 5-11.

Figure 5-11. Asynchronous communication allows parallel processing

In Figure 5-11, the caller posts a message to a message queue and continues
processing until notified by the receiver that the requested information is available
via return call. Generally, architects use message queues (illustrated by the metaphor‐
ical pipes which overlay the communication arrows) to implement asynchronous

Architectural Quanta and Granularity | 101

communication, but queues are common and create noise on diagrams, so many
architects leave them off, as shown in the lower diagram. And, of course, architects
can implement asynchronous communication without message queues using a vari‐
ety of libraries or frameworks. Both diagrams in Figure 5-11 imply asynchronous
messaging, but the bottom one provides visual shorthand and less implementation
detail.

Architects must consider a number of significant trade-offs when choosing how
services will communicate. Decisions around communication affect synchronization,
error handling, transactionality, scalability, and performance. The remainder of this
book delves into many of these issues.

Consistency
Consistency refers to the strictness of transactional integrity that communication
calls must adhere to. Atomic transactions (all-or-nothing transactions requiring con‐
sistency during the processing of a request) lie on one side of the spectrum, and
different degrees of eventual consistency lie on the other side.

Transactionality—having several different services participate in an all-or-nothing
transaction—is one of the most difficult problems to model in distributed archi‐
tectures, resulting in the general advice to try to avoid cross-service transactions.
This complex subject is covered in the book Software Architecture: The Hard Parts
(O’Reilly) and is beyond the scope of this book.

Coordination
Coordination refers to how much coordination the workflow modeled by the com‐
munication requires. The two common generic patterns for microservices are orches‐
tration and choreography. Simple workflows—a single service replying to a request
—don’t require special consideration from this dimension. However, as workflow
complexity grows, so too does the need for coordination.

These three factors—communication, consistency, and coordination—all inform the
important decisions an architect must make. Critically, however, architects cannot
make these choices in isolation—each option has a gravitational effect on the
others. For example, transactionality is easier in synchronous architectures with
orchestration, whereas higher levels of scale are possible with eventually consistent-
asynchronous-choreographed systems.

Thinking about these forces as being related to each other forms a three-dimensional
space, illustrated in Figure 5-12.

102 | Chapter 5: Evolutionary Architecture Topologies

Figure 5-12. The dimensions of dynamic quantum coupling

In Figure 5-12, each force in play during service communication appears as a
dimension. For a particular decision, an architect could graph the position in space
representing the strength of these forces. From a practical standpoint, architects must
create matrices to investigate the impact of changing any one of these conjoined
forces.

Contracts
One constant factor in software architecture that cuts across and affects virtually
every aspect of architect decision-making is contracts, broadly defined as how dispa‐
rate parts of an architecture connect with one another. The dictionary definition of a
contract is:

Contract
A written or spoken agreement, especially one concerning employment, sales, or
tenancy, that is intended to be enforceable by law.

In software, we use contracts broadly to describe things like integration points in
architecture, and many contract formats are part of the design process of software
development: SOAP, REST, gRPC, XML-RPC, and an alphabet soup of other acro‐
nyms. However, we broaden that definition and make it more consistent:

Contract
The format used by parts of an architecture to convey information or
dependencies.

Contracts | 103

https://oreil.ly/bJa12

This definition of contract encompasses all techniques used to “wire together” parts
of a system, including transitive dependencies for frameworks and libraries, internal
and external integration points, caches, and any other communication between parts.

Contracts in software architecture range from strict to loose, as illustrated in
Figure 5-13.

Figure 5-13. The spectrum of contract types from strict to loose

In Figure 5-13, where several exemplar contract types appear for illustration, a strict
contract requires adherence to names, types, ordering, and all other details, leaving
no ambiguity. An example of the strictest possible contract in software is a remote
method call, using a platform mechanism such as RMI in Java. In that case, the
remote call mimics an internal method call, matching name, parameters, types, and
all other details.

Many strict contract formats mimic the semantics of method calls. For example,
developers see a host of protocols that include some variation of the “RPC,” tradition‐
ally an acronym for Remote Procedure Call. gRPC is an example of a popular remote
invocation framework that defaults to strict contracts.

Many architects like strict contracts because they model the semantic behavior of
internal method calls. However, strict contracts create brittleness in integration archi‐
tecture, something to avoid. As discussed in “Reuse Patterns” on page 112, something
that is simultaneously frequently changing and used by several distinct architecture
parts creates problems in architecture; contracts fit that description because they
form the glue within a distributed architecture: the more frequently they must
change, the more rippling problems they cause for other services. However, architects
aren’t forced to use strict contracts, and they should do so only when advantageous.

Even an ostensibly loose format such as JSON offers ways to selectively add schema
information to simple name/value pairs. Example 5-1 shows a strict JSON contract
with schema information attached.

104 | Chapter 5: Evolutionary Architecture Topologies

https://grpc.io
https://www.json.org/json-en.html

Example 5-1. Strict JSON contract

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "properties": {
 "acct": {"type": "number"},
 "cusip": {"type": "string"},
 "shares": {"type": “number", "minimum": 100}
 },
 "required": ["acct", "cusip", "shares"]
}

In Example 5-1, the first line references the schema definition we use and will validate
against. We define three properties: acct, cusip, and shares, along with their types
and, on the last line, which ones are required. This creates a strict contract, with
required fields and types specified.

Examples of looser contracts include formats such as REST and GraphQL, which are
very different formats but demonstrate looser coupling than RPC-based formats. For
REST, the architect models resources rather than method or procedure endpoints,
making for less brittle contracts. For example, if an architect builds a RESTful
resource that describes parts of an airplane to support queries about seats, that query
won’t break in the future if someone adds details about engines to the resource—
adding more information doesn’t break what’s there.

Similarly, GraphQL is used by distributed architectures to provide read-only aggrega‐
ted data rather than perform costly orchestration calls across a wide variety of serv‐
ices. Consider the two examples of GraphQL representations appearing in Examples
5-2 and 5-3, providing two different but capable views of the Profile contract.

Example 5-2. Customer Wishlist Profile representation

type Profile {
 name: String
}

Example 5-3. Customer Profile representation

type Profile {
 name: String
 addr1: String
 addr2: String
 country: String
 . . .
}

Contracts | 105

https://oreil.ly/3PFvE
https://graphql.org

The concept of profile appears in both Examples 5-2 and 5-3 but with different values.
In this scenario, the Customer Wishlist doesn’t have internal access to the customer’s
name, only a unique identifier. Thus, it needs access to a Customer Profile that
maps the identifier to the customer name. The Customer Profile includes a large
amount of information about the customer in addition to the name. As far as Wish
list is concerned, the only interesting thing in Profile is the name.

A common antipattern that some architects fall victim to is to assume that Wishlist
might eventually need all the other parts, so they include them in the contract from
the outset. This is an example of Stamp Coupling and is an antipattern in most
cases because it introduces breaking changes where they aren’t needed, making the
architecture fragile yet receiving little benefit. For example, if Wishlist cares only
about the customer name from Profile, but the contract specifies every field in
Profile (just in case), then a change in Profile that Wishlist doesn’t care about
causes a contract breakage and coordination to fix.

Keeping contracts at a “need to know” level strikes a balance between semantic
coupling and necessary information without creating needless fragility in integration
architecture.

At the far end of the spectrum of contract coupling lie extremely loose contracts,
often expressed as name/value pairs in formats like YAML and JSON, illustrated in
Example 5-4.

Example 5-4. Name/value pairs in JSON

{
 "name": "Mark",
 "status": "active",
 "joined": "2003"
}

Nothing but the raw facts in Example 5-4! No additional metadata, type information,
or anything else, just name/value pairs.

Using such loose contracts allows for extremely decoupled systems, often one of the
goals in architectures such as microservices. However, the looseness of the contract
comes with trade-offs, including lack of contract certainty, verification, and increased
application logic. The formerly contractual concerns are often replaced with fitness
functions.

106 | Chapter 5: Evolutionary Architecture Topologies

https://oreil.ly/Fk9tx
https://yaml.org

Case Study: Microservices as an Evolutionary Architecture
A microservices architecture defines physical bounded contexts between architectural
elements, encapsulating all the parts that might change. This type of architecture is
designed to allow incremental change. In a microservices architecture, the bounded
context serves as the quantum boundary and includes dependent components such as
database servers. It may also include architecture components such as search engines
and reporting tools—anything that contributes to the delivered functionality of the
service, as shown in Figure 5-14.

Figure 5-14. The architectural quantum in microservices encompasses the service and all
its dependent parts

In Figure 5-14, the service includes code components, a database server, and a
search engine component. Part of the bounded context philosophy of microservices
operationalizes all the pieces of a service together, leaning heavily on modern DevOps
practices. In the following section, we investigate some common architectural pat‐
terns and their typical quantum boundaries.

Traditionally isolated roles such as architect and operations must coordinate in an
evolutionary architecture. Architecture is abstract until operationalized; developers
must pay attention to how their components fit together in the real world. Regardless
of which architecture pattern developers choose, architects should also explicitly
define their quantum size. Small quanta imply faster change because of small scope.
Generally, small parts are easier to work with than big ones. Quantum size deter‐
mines the lower bound of the incremental change possible within an architecture.

Contracts | 107

Combining the engineering practices of Continuous Delivery with the physical parti‐
tioning of bounded context forms the philosophical basis for the microservice style of
architecture, along with our architectural quantum concept.

In a layered architecture, the focus is on the technical dimension, or how the
mechanics of the application work: persistence, UI, business rules, and so forth.
Most software architectures focus primarily on these technical dimensions. However,
an additional perspective exists. Suppose that one of the key bounded contexts in
an application is Checkout. Where does it live in the layered architecture? Domain
concepts like Checkout smear across the layers in this architecture. Because the
architecture is segregated via technical layers, there is no clear concept of the domain
dimension in this architecture, as can be seen in Figure 5-15.

Figure 5-15. The domain dimension is embedded within technical architecture

In Figure 5-15, some portion of Checkout exists in the UI, another portion lives
in the business rules, and persistence is handled by the bottom layers. Because
layered architecture isn’t designed to accommodate domain concepts, developers
must modify each layer to make changes to domains. From a domain perspective, a
layered architecture has zero evolvability. In highly coupled architectures, change is
difficult because coupling between the parts developers want to change is high. Yet,
in most projects, the common unit of change revolves around domain concepts. If a
software development team is organized into silos resembling their role in the layered
architecture, then changes to Checkout require coordination across many teams.

In contrast, consider an architecture where the domain dimension is the primary
segregation of the architecture, as shown in Figure 5-16.

108 | Chapter 5: Evolutionary Architecture Topologies

Figure 5-16. Microservices architectures partition across domain lines, embedding the
technical architecture

As shown in Figure 5-16, each service is defined around the DDD concept, encapsu‐
lating the technical architecture and all other dependent components (like databases)
into a bounded context and creating a highly decoupled architecture. Each service
“owns” all parts of its bounded context and communicates with other bounded
contexts via messaging (such as REST or message queues). Thus, no service is allowed
to know the implementation details of another service (such as database schemas),
preventing inappropriate coupling. The operational goal of this architecture is to
replace one service with another without disrupting other services.

Microservices architectures generally follow seven principles, as discussed in Building
Microservices Architectures:

Modeled around the business domain
The emphasis in microservices design is on the business domain, not technical
architecture. Thus, the quantum reflects the bounded context. Some developers
make the mistaken association that a bounded context represents a single entity
such as Customer; instead, it represents a business context and/or workflow such
as CatalogCheckout. The goal in microservices isn’t to see how small developers
can make each services but rather to create a useful bounded context.

Hide implementation details
The technical architecture in microservices is encapsulated within the service
boundary, which is based on the business domain. Each domain forms a physical

Contracts | 109

bounded context. Services integrate with each other by passing messages or
resources, not by exposing details like database schemas.

Culture of automation
Microservices architectures embrace Continuous Delivery, by using deployment
pipelines to rigorously test code and automate tasks like machine provisioning
and deployment. Automated testing in particular is extremely useful in fast-
changing environments.

Highly decentralized
Microservices form a shared nothing architecture—the goal is to decrease cou‐
pling as much as possible. Generally, duplication is preferable to coupling. For
example, both the CatalogCheckout and ShipToCustomer services have a con‐
cept called Item. Because both teams have the same name and similar properties,
developers try to reuse it across both services, thinking it will save time and
effort. Instead, it increases effort because changes must now propagate between
all the teams that share the component. And whenever a service changes, devel‐
opers must worry about changes to the shared component. If, on the other
hand, each service has its own Item and passes information it needs from Cat
alogCheckout to ShipToCustomer without coupling to the component, it can
change independently.

Deployed independently
Developers and operations expect that each service component will be deployed
independently from other services (and other infrastructure), reflecting the phys‐
ical manifestation of the bounded context. The ability for developers to deploy
one service without affecting any other service is one of the defining benefits of
this architectural style. Moreover, developers typically automate all deployment
and operations tasks, including parallel testing and Continuous Delivery.

Isolate failure
Developers isolate failure both within the context of a microservice and in the
coordination of services. Each service is expected to handle reasonable error sce‐
narios and recover if possible. Many DevOps best practices (such as the Circuit
Breaker pattern, bulkheads, etc.) commonly appear in these architectures. Many
microservices architectures adhere to the Reactive Manifesto, a list of operational
and coordination principles that lead to more robust systems.

Highly observable
Developers cannot hope to manually monitor hundreds or thousands of services
(how many multicast SSH terminal sessions can one developer observe?). Thus,
monitoring and logging become first-class concerns in this architecture. If opera‐
tions cannot monitor one of these services, it might as well not exist.

110 | Chapter 5: Evolutionary Architecture Topologies

https://oreil.ly/l028d
https://oreil.ly/l028d
http://www.reactivemanifesto.org

The main goals of microservices are isolation of domains via physical bounded
context and emphasis on understanding the problem domain. Therefore, the archi‐
tectural quantum is the service, making this an excellent example of an evolutionary
architecture. If one service needs to evolve to change its database, no other service
is affected because no other service is allowed to know implementation details like
schemas. Of course, the developers of the changing service will have to deliver the
same information via the integration point between the services (hopefully protected
by a fitness function like consumer-driven contracts), allowing the calling service
developers the bliss of never knowing the change occurred.

Given that microservices is our exemplar for an evolutionary architecture, it is
unsurprising that it scores well from an evolutionary standpoint.

Incremental change
Both aspects of incremental change are easy in microservices architectures. Each
service forms a bounded context around a domain concept, making it easy
to make changes that only affect that context. Microservices architectures rely
heavily on automation practices from Continuous Delivery, utilizing deployment
pipelines and modern DevOps practices.

Guided change with fitness functions
Developers can easily build both atomic and holistic fitness functions for micro‐
services architectures. Each service has a well-defined boundary, allowing a vari‐
ety of levels of testing within the service components. Services must coordinate
via integration, which also requires testing. Fortunately, sophisticated testing
techniques grew alongside the development of microservices.

If there are clear benefits, then why haven’t developers embraced this style before?
Years ago, automatic provisioning of machines wasn’t possible. While we had virtual
machine (VM) technology, they were often handcrafted with long lead times. Oper‐
ating systems were commercial and licensed, with little support for automation.
Real-world constraints like budgets impact architectures, which is one of the reasons
developers build more and more elaborate shared resources architectures, segregated
at the technical layers. If operations is expensive and cumbersome, architects build
around it, as they did in enterprise service bus-driven service-oriented architectures.

The Continuous Delivery and DevOps movements added a new factor into the
dynamic equilibrium. Now, machine definitions live in version control and support
extreme automation. Deployment pipelines spin up multiple test environments in
parallel to support safe continuous deployment. Because much of the software stack
is open source, licensing and other concerns have less impact on architectures. The
community reacted to the new capabilities emergent in the software development
ecosystem to build more domain-centric architectural styles.

Contracts | 111

In microservices architecture, the domain encapsulates technical and other architec‐
tures, making evolution across domain dimensions easy. No one perspective on
architecture is “correct” but rather a reflection of the goals developers build into their
projects. If the focus is entirely on technical architecture, then making changes across
that dimension is easier. However, if the domain perspective is ignored, then evolving
across that dimension is no better than the Big Ball of Mud.

Reuse Patterns
As an industry, we have benefited greatly from reusable frameworks and libraries
built by others, often open source and freely available. Clearly, the ability to reuse
code is good. However, like all good ideas, many companies abuse this idea and create
problems for themselves. Every corporation desires code reuse because software
seems so modular, like electronics components. However, despite the promise that
exists for truly modular software, it has consistently evaded us.

Software reuse is more like an organ transplant than snapping together Lego blocks.
—John D. Cook

While language designers have promised developers Lego blocks for a long time, we
still seem to have organs. Software reuse is difficult and doesn’t come automatically.
Many optimistic managers assume any code that developers write is inherently reusa‐
ble, but this is not always the case. Many companies have attempted and succeeded in
writing truly reusable code, but it is intentional and difficult. Developers often spend
a lot of time trying to build reusable modules that turn out to have little practical
reuse.

In service-oriented architectures (SOAs), the common practice was to find common‐
alities and reuse as much as possible. For example, imagine that a company has two
contexts: Checkout and Shipping. In an SOA, architects observe that both contexts
include the concept of Customer. This, in turn, encourages them to consolidate both
customers into a single Customer service, coupling both Checkout and Shipping to
the shared service. Architects worked toward a goal of ultimate canonicality in SOA—
every concept has a single (shared) home.

Ironically, the more effort developers put into making code reusable, the harder it is
to use. Making code reusable involves adding options and decision points to accom‐
modate the different uses. The more developers add hooks to enable reusability, the
more they harm the basic usability of the code.

112 | Chapter 5: Evolutionary Architecture Topologies

The more reusable code is, the less usable it is.

In other words, ease of code use is often inversely proportional to how reusable
that code is. When developers build code to be reusable, they must add features
to accommodate the myriad ways they and other developers will eventually use the
code. All that future-proofing makes it more difficult for developers to use the code
for a single purpose.

Microservices eschew code reuse, adopting the philosophy of prefer duplication
to coupling: reuse implies coupling, and microservices architectures are extremely
decoupled. However, the goal in microservices isn’t to embrace duplication but rather
to isolate entities within domains. Services that share a common class are no longer
independent. In a microservices architecture, Checkout and Shipping would each
have their own internal representation of Customer. If they need to collaborate on
customer-related information, they send the pertinent information to each other.
Architects don’t try to reconcile and consolidate the disparate versions of Customer
in their architecture. The benefits of reuse are illusory and the coupling it introduces
comes with its disadvantages. Thus, while architects understand the downsides of
duplication, they offset that localized damage to the architectural damage too much
coupling introduces.

Code reuse can be an asset but also a potential liability. Make sure the coupling
points introduced in your code don’t conflict with other goals in the architecture.
For example, microservices architectures typically use a service mesh to couple the
parts of services together that help unify a particular architectural concern, such as
monitoring or logging.

Effective Reuse = Abstraction + Low Volatility
A common problem faced by many architects today lies with reconciling two differ‐
ing corporate objectives: holistic reuse versus isolation via bounded contexts, inspired
by DDD. Large organizations understandably want to utilize as much reuse across
their ecosystem as possible—the more they can reuse, the less they have to write
from scratch. However, reuse creates coupling, which many architects try to avoid,
especially coupling that extends too far.

Reuse Patterns | 113

Sidecars and Service Mesh: Orthogonal Operational Coupling
One of the design goals of microservices architectures is a high degree of decoupling,
often manifested in the advice “Duplication is preferable to coupling.” For example,
let’s say that two PenultimateWidgets services need to pass customer information, yet
domain-driven design’s bounded context insists that implementation details remain
private to the service. A common solution allows each service its own internal repre‐
sentation of entities such as Customer, passing that information in loosely coupled
ways such as name/value pairs in JSON. Notice that this allows each service to change
its internal representation at will, including the technology stack, without breaking
the integration. Architects generally frown on duplicating code because it causes syn‐
chronization issues, semantic drift, and a host of other issues, but sometimes forces
exist that are worse than the problems of duplication, and coupling in microservices
often fits that bill. Thus, in microservices architecture, the answer to the question
of “should we duplicate or couple to some capability” is likely duplicate, whereas in
another architecture style such as a service-based architecture, the correct answer is
likely couple. It depends!

When designing microservices, architects have resigned themselves to the reality
of implementation duplication to preserve decoupling. But what about the types of
capabilities that benefit from high coupling, such as monitoring, logging, authentica‐
tion and authorization, circuit breakers, and a host of other operational abilities
that each service should have? Allowing each team to manage these dependencies
often descends into chaos. For example, consider a company like PenultimateWidgets
trying to standardize on a common monitoring solution, to make it easier to opera‐
tionalize its various services. If each team is responsible for implementing monitoring
for their service, how can the operations team be sure they did? Also, what about
issues such as unified upgrades? If the monitoring tool needs to upgrade across the
organization, how can teams coordinate that?

The common solution that has emerged in the microservices ecosystem over the
past few years solves this problem in an elegant way using the Sidecar pattern, based
on a much earlier architecture pattern defined by Alistair Cockburn known as the
Hexagonal architecture, illustrated in Figure 5-17.

114 | Chapter 5: Evolutionary Architecture Topologies

Figure 5-17. The Hexagonal Pattern separated domain logic from technical coupling

In Figure 5-17, what we would now call the domain logic resides in the center of the
hexagon, which is surrounded by ports and adapters to other parts of the ecosystem
(in fact, this pattern is alternately known as the Ports and Adapters pattern). While
predating microservices by a number of years, this pattern has similarities to modern
microservices, with one significant difference: data fidelity. The hexagonal architec‐
ture treated the database as just another adapter that can be plugged in, but one of the
insights from DDD suggests that data schemas and transactionality should be inside
the interior—like microservices.

Reuse Patterns | 115

The Sidecar pattern leverages the same concept as hexagonal architecture in that it
decouples the domain logic from the technical (infrastructure) logic. For example,
consider the two microservices shown in Figure 5-18.

Figure 5-18. Two microservices that share the same operational capabilities

In Figure 5-18, each service includes a split between operational concerns (the larger
components toward the bottom of the service) and domain concerns (pictured in
the boxes toward the top of the service labeled “Domain”). If architects desire consis‐
tency in operational capabilities, the separable parts go into a sidecar component,
metaphorically named for the sidecar that attaches to motorcycles, whose implemen‐
tation is either a shared responsibility across teams or managed by a centralized
infrastructure group. If architects can assume that every service includes the sidecar,
it forms a consistent operational interface across services, typically attached via a
service plane, shown in Figure 5-19.

116 | Chapter 5: Evolutionary Architecture Topologies

https://oreil.ly/YH5Uo

Figure 5-19. When each microservice includes a common component, architects can
establish links between them for consistent control

If architects and operations can safely assume that every service includes the sidecar
component (governed by fitness functions), it forms a service mesh, illustrated in
Figure 5-20, where the boxes to the right of each service all interconnect, forming a
“mesh.”

Having a mesh allows architects and DevOps to create dashboards, control opera‐
tional characteristics such as scale, and implement a host of other capabilities.

The Sidecar pattern allows governance groups like enterprise architects a reasonable
restraint over too many polyglot environments: one of the advantages of microser‐
vices is a reliance on integration rather than a common platform, allowing teams to
choose the correct level of complexity and capabilities on a service-by-service basis.
However, as the number of platforms proliferates, unified governance becomes more
difficult. Therefore, teams often use the consistency of the service mesh as a driver
to support infrastructure and other cross-cutting concerns across multiple heteroge‐
neous platforms. For example, without a service mesh, if enterprise architects want to
unify around a common monitoring solution, then teams must build one sidecar per
platform that supports that solution.

Reuse Patterns | 117

Figure 5-20. A service mesh is a set of operational links between services

The Sidecar pattern represents not only a way to decouple operational capabilities
from domains, it’s also an orthogonal reuse pattern to address orthogonal coupling
(see “Orthogonal Coupling” on page 118). Often, architectural solutions require
several different types of coupling, such as our current example of domain versus
operational coupling. An orthogonal reuse pattern presents a way to reuse some
aspect counter to one or more seams in the architecture. For example, microservices
architectures are organized around domains, but operational coupling requires cut‐
ting across those domains. A sidecar allows an architect to isolate those concerns in a
cross-cutting but consistent layer through the architecture.

Orthogonal Coupling
In mathematics, two lines are orthogonal if they intersect at right angles, which also
implies independence. In software architecture, two parts of an architecture may be
orthogonally coupled: two distinct purposes that must still intersect to form a complete
solution. The obvious example from this chapter concerns operational concerns such
as monitoring, which is necessary but independent from domain behavior like catalog
checkout. Recognizing orthogonal coupling allows architects to find intersection
points that cause the least entanglement between concerns.

118 | Chapter 5: Evolutionary Architecture Topologies

The Sidecar pattern and service mesh offer a clean way to spread some sort of
cross-cutting concern across a distributed architecture, and can be used by more than
just operational coupling (see the next section). It offers an architectural equivalent
to the Decorator pattern from the Gang of Four’s book Design Patterns: it allows an
architect to “decorate” behavior across a distributed architecture independent of the
normal connectivity.

Data Mesh: Orthogonal Data Coupling
Observing the other trends in distributed architectures, Zhamak Dehghani and sev‐
eral other innovators derived the core idea from domain-oriented decoupling of
microservices, the service mesh, and the Sidecar pattern and applied it to analytical
data, with modifications. As we mentioned in the previous section, the Sidecar pat‐
tern provides a nonentangling way to organize orthogonal coupling; the separation
between operational and analytical data is another excellent example of just such a
coupling, but with more complexity than simple operational coupling.

Definition of Data Mesh
Data Mesh is an approach to sharing, accessing, and managing analytical data in
a decentralized fashion. It satisfies a wide range of analytical use cases, such as
reporting, training ML models, and generating insights. Contrary to the previous
architecture, it does so by aligning the architecture and ownership of the data with
the business domains and enabling a peer-to-peer consumption of data.

Data Mesh is founded on the following principles:

Domain ownership of data
Data is owned and shared by the domains that are most intimately familiar with
the data: those that either are originating the data or are the first-class consumers
of the data. The architecture allows for the distributed sharing and access of the
data from multiple domains and in a peer-to-peer fashion without the intermedi‐
ate transformation steps required in data warehouses or the centralized storage of
the Data Lake.

Data as a product
To prevent siloing of data and to encourage domains to share their data, Data
Mesh introduces the concept of data served as a product. It puts in place
the organizational roles and success metrics necessary to ensure that domains
provide their data in a way that provides a positive experience to data consum‐
ers across the organization. This principle leads to the introduction of a new
architectural quantum, called a data product quantum, to maintain and serve
discoverable, understandable, timely, secure, and high-quality data to consumers.
This chapter introduces the architectural aspect of the data product quantum.

Reuse Patterns | 119

https://oreil.ly/BSM1F

Self-serve data platform
In order to empower the domain teams to build and maintain their data prod‐
ucts, Data Mesh introduces a new set of self-serve platform capabilities. The
capabilities focus on improving the experience of data product developers and
consumers. It includes features such as declarative creation of data products,
discoverability of data products across the mesh through search and browsing,
and management of the emergence of other intelligent graphs such as lineage of
data and knowledge graphs.

Computational federated governance
This principle ensures that despite decentralized ownership of the data,
organization-wide governance requirements such as compliance, security, pri‐
vacy, quality of data, and interoperability of data products are met consistently
across all domains. Data Mesh introduces a federated decision-making model
composed of domain data product owners. The policies they formulate are auto‐
mated and embedded as code in each and every data product. The architectural
implication of this approach to governance is a platform-supplied embedded
sidecar in each data product quantum to store and execute the policies at the
point of access: data read or write.

Data Mesh is a wide-ranging topic, fully covered in the book Data Mesh: Delivering
Data-Driven Value at Scale (O’Reilly). In this chapter, we focus on the core architec‐
tural element, the data product quantum.

Data product quantum
The core tenet of the Data Mesh lies atop modern distributed architectures such as
microservices. Just as in the service mesh, teams build a data product quantum (DPQ)
adjacent but coupled to their service, as illustrated in Figure 5-21.

The service Alpha contains both behavioral and transactional (operational) data. The
domain also includes a data product quantum, which also contains code and data,
which acts as an interface to the overall analytical and reporting portion of the
system. The DPQ acts as an operationally independent but highly coupled set of
behaviors and data.

120 | Chapter 5: Evolutionary Architecture Topologies

Figure 5-21. Structure of a data product quantum

Several types of DPQs commonly exist in modern architectures:

Source-aligned (native) DPQ
Provides analytical data on behalf of the collaborating architecture quantum,
typically a microservice, acting as a cooperative quantum.

Aggregate DQP
Aggregates data from multiple inputs, either synchronously or asynchronously.
For example, for some aggregations, an asynchronous request may be sufficient;
for others, the aggregator DPQ may need to perform synchronous queries for a
source-aligned DPQ.

Fit-for-purpose DPQ
Custom-made DPQ to serve a particular requirement, which may encompass
analytical reporting, business intelligence, machine learning, or some other sup‐
porting capability.

A particular domain may include multiple DPQs, depending on differing architecture
characteristics for different types of analysis. For example, one DPQ may need differ‐
ent levels of performance than another.

Reuse Patterns | 121

Each domain that also contributes to analysis and business intelligence includes a
DPQ, as illustrated in Figure 5-22.

Figure 5-22. The data product quantum acts as a separate but highly coupled adjunct to
a service

In Figure 5-22, the DPQ represents a component owned by the domain team respon‐
sible for implementing the service. It overlaps information stored in the database, and
may have interactions with some of the domain behavior asynchronously. The data
product quantum also likely has behavior as well as data for the purposes of analytics
and business intelligence.

Each data product quantum acts as a cooperative quantum for the service itself:

122 | Chapter 5: Evolutionary Architecture Topologies

Cooperative quantum
An operationally separate quantum that communicates with its cooperator via
asynchronous communication and eventual consistency yet features tight con‐
tract coupling with its cooperator and generally looser contract coupling to the
analytics quantum, the service responsible for reports, analysis, business intelli‐
gence, and so on.

While the two cooperating quanta are operationally independent, they represent two
sides of data: operational data in the service and analytical data in the data product
quantum.

Some portion of the system will carry the responsibility for analytics and business
intelligence, which will form its own domain and quantum. To operate, this analytical
quantum has static quantum coupling to the individual data product quanta it needs
for information. This service may make either synchronous or asynchronous calls to
the DPQ, depending on the type of request. For example, some DPQs will feature
a SQL interface to the analytical DPQ, allowing synchronous queries. Other require‐
ments may aggregate information across a number of DPQs.

Data Mesh is an excellent example of the innovative mashup between microservices
architectures and analytical data, and it is a road map for managing orthogonal cou‐
pling in distributed architectures. The concept of the sidecar and cooperative quantum
allows architects to selectively “overlay” one architecture atop another. This allows
preferred modeling of domains (such as DDD) while allowing separate concerns
well-governed access to what they need.

Summary
Understanding the impact of structure on the ability to evolve a software system is
key for architects. While a number of named architectural styles exist, the primary
characteristic of those architectures that determines evolvability is controlled cou‐
pling. Whether inspired by the locality property of connascence or bounded context
in DDD, controlling the extent of implementation coupling is the key to building
evolvable architectures.

Contracts allow different architecture parts to communication without creating tight
coupling points. Using loosely defined coupling points, flexible contracts, and con‐
tract fitness functions allows architects to define systems that meet requirements yet
don’t create impediments to governance or change.

Summary | 123

CHAPTER 6

Evolutionary Data

Relational and other types of data stores are ubiquitous in modern software projects,
a form of coupling that is often more problematic than architectural coupling. Data
teams are generally not as accustomed to engineering practices such as unit testing
and refactoring (which is gradually improving). Also, databases often become inte‐
gration points, making data teams reluctant to make changes due to potential rippling
side effects.

Data is an important dimension to consider when creating an evolvable architecture.
Architectures like microservices require much more architectural consideration of
data partitioning, dependencies, transactionality, and a host of other issues that were
formerly only the realm of data teams. It is beyond the scope of this book to cover all
the aspects of evolutionary database design. Fortunately, our co-author Pramod Sada‐
lage, along with Scott Ambler, wrote Refactoring Databases, subtitled Evolutionary
Database Design. We cover only the parts of database design that impact evolutionary
architecture and encourage readers to read that book.

Evolutionary Database Design
Evolutionary design in databases occurs when developers can build and evolve the
structure of the database as requirements change over time. Database schemas are
abstractions, similar to class hierarchies. As the underlying real world changes, those
changes must be reflected in the abstractions developers and data teams build. Other‐
wise, the abstractions gradually fall out of synchronization with the real world.

125

http://databaserefactoring.com

Evolving Schemas
How can architects build systems that support evolution but still use traditional
tools like relational databases? The key to evolving database design lies in evolving
schemas alongside code. Continuous Delivery addresses the problem of how to fit the
traditional data silo into the continuous feedback loop of modern software projects.
Developers must treat changes to database structure the same way they treat source
code: tested, versioned, and incremental:

Tested
The data team and developers should rigorously test changes to database sche‐
mas to ensure stability. If developers use a data mapping tool like an object-
relational mapper (ORM), they should consider adding fitness functions to
ensure the mappings stay in sync with the schemas.

Versioned
Developers and the data team should version database schemas alongside the
code that utilizes it. Source code and database schemas are symbiotic—neither
functions without the other. Engineering practices that artificially separate these
two necessarily coupled things cause needless inefficiencies.

Incremental
Changes to the database schemas should accrue just as source code changes
build up: incrementally as the system evolves. Modern engineering practices
eschew manual updates of database schemas, preferring automated migration
tools instead.

Database migration tools are utilities that allow developers (or the data team) to make
small, incremental changes to a database that are automatically applied as part of a
deployment pipeline. They exist along a wide spectrum of capabilities from simple
command-line tools to sophisticated proto-IDEs. When developers need to make
a change to a schema, they write small database migration (aka delta) scripts, as
illustrated in Example 6-1.

Example 6-1. A simple database migration

CREATE TABLE customer (
 id BIGINT GENERATED BY DEFAULT AS IDENTITY (START WITH 1) PRIMARY KEY,
 firstname VARCHAR(60),
 lastname VARCHAR(60)
);

The migration tool takes the SQL snippet shown in Example 6-1 and automatically
applies it to the developer’s instance of the database. If the developer later realizes
they want to add date of birth, rather than changing the original migration they can
create a new one that modifies the original structure, as shown in Example 6-2.

126 | Chapter 6: Evolutionary Data

Example 6-2. Adding date of birth to existing table using a migration

ALTER TABLE customer ADD COLUMN dateofbirth DATETIME;

Once developers have run migrations, the migrations are considered immutable—
changes are modeled after double-entry bookkeeping. For example, suppose that
Danielle the developer ran the migration in Example 6-2 as the 24th migration on a
project. Later, she realizes dateofbirth isn’t needed after all. She could just remove
the 24th migration, and hence, the dateofbirth column. However, any code written
after Danielle ran the migration will assume the presence of the dateofbirth column
and will no longer work if the project needs to back up to an intermediate point (e.g.,
to fix a bug). Also, any other environment where this change was already applied
will have the column and create a schema mismatch. Instead, she could remove the
column by creating a new migration.

In Example 6-2, the developer modifies the existing schema to add a new column.
Some migration tools support undo capabilities as well, as shown in Example 6-3.
Supporting undo allows developers to easily move forward and backward through
the schema versions. For example, suppose a project is on version 101 in the source
code repository and needs to return to version 95. For the source code, developers
merely check out version 95 from version control. But how can they ensure the
database schema is correct for version 95 of the code? If they use migrations with
undo capabilities, they can “undo” their way backward to version 95 of the schema,
applying each migration in turn to regress to the desired version.

Example 6-3. Adding date of birth and undo migration to existing table

ALTER TABLE customer ADD COLUMN dateofbirth DATETIME;
--//@UNDO

ALTER TABLE customer DROP COLUMN dateofbirth;

However, most teams have moved away from building undo capabilities for three rea‐
sons. First, if all the migrations exist, developers can build the database just up to the
point they need without backing up to a previous version. In our example, developers
would build from 1 to 95 to restore version 95. Second, why maintain two versions
of correctness, both forward and backward? To confidently support undo, developers
must test the code, sometimes doubling the testing burden. Third, building compre‐
hensive undo sometimes presents daunting challenges. For example, imagine that the
migration dropped a table—how would the migration script preserve all data in the
case of an undo operation? Prefix the table with DROPPED_ and keep it around? This
will quickly get complicated because of all the changes happening around the table,
and soon the data in the DROPPED table will not be relevant anymore.

Evolutionary Database Design | 127

Database migrations allow both database admins and developers to manage changes
to schema and code incrementally, by treating each as parts of a whole. By incor‐
porating database changes into the deployment pipeline feedback loop, developers
have more opportunities to incorporate automation and earlier verification into the
project’s build cadence.

Shared Database Integration
A common integration pattern highlighted here is Shared Database Integration,
which uses database as a sharing mechanism for data, as illustrated in Figure 6-1.

Figure 6-1. Using the database as an integration point

In Figure 6-1, the three applications share the same relational database. Projects
frequently default to this integration style—every project is using the same relational
database because of governance, so why not share data across projects? Architects
quickly discover, however, that using the database as an integration point fossilizes
the database schema across all sharing projects.

What happens when one of the coupled applications needs to evolve capabilities
via a schema change? If ApplicationA makes changes to the schema, this could
potentially break the other two applications. Fortunately, as discussed in the afore‐
mentioned Refactoring Databases book, a commonly utilized refactoring pattern is
used to untangle this kind of coupling: the Expand/Contract pattern. Many database
refactoring techniques avoid timing problems by building a transition phase into the
refactoring, as illustrated in Figure 6-2.

128 | Chapter 6: Evolutionary Data

https://oreil.ly/NxSsk

Figure 6-2. The Expand/Contract pattern for database refactoring

Using this pattern, developers have a starting state and an ending state, maintaining
both the old and new states during the transition. This transition state allows for
backward compatibility and also gives other systems in the enterprise enough time to
catch up with the change. For some organizations, the transition state can last from a
few days to months.

Here is an example of Expand/Contract in action. Consider the common evolutionary
change of splitting a name column into firstname and lastname, which Penultimate‐
Widgets needs to do for marketing purposes. For this change, developers have the
start state, the expand state, and the final state, as shown in Figure 6-3.

Figure 6-3. The three states of Expand/Contract refactoring

Evolutionary Database Design | 129

In Figure 6-3, the full name appears as a single column. During the transition,
the PenultimateWidgets data team must maintain both versions to prevent breaking
possible integration points in the database. They have several options for how we
proceed to split the name column into firstname and lastname.

Option 1: No integration points, no legacy data
In this case, the developers have no other systems to think about and no existing data
to manage, so they can add the new columns and drop the old column, as shown in
Example 6-4.

Example 6-4. Simple case with no integration points and no legacy data

ALTER TABLE customer ADD firstname VARCHAR2(60);
ALTER TABLE customer ADD lastname VARCHAR2(60);
ALTER TABLE customer DROP COLUMN name;

For Option 1, the refactoring is straightforward: the data team can make the relevant
change and get on with life.

Option 2: Legacy data, but no integration points
In this scenario, developers assume existing data to migrate to new columns but they
have no external systems to worry about. They must create a function to extract
the pertinent information from the existing column to handle migrating the data, as
shown in Example 6-5.

Example 6-5. Legacy data but no integrators

ALTER TABLE Customer ADD firstname VARCHAR2(60);
ALTER TABLE Customer ADD lastname VARCHAR2(60);
UPDATE Customer set firstname = extractfirstname (name);
UPDATE Customer set lastname = extractlastname (name);
ALTER TABLE customer DROP COLUMN name;

This scenario requires the data team to extract and migrate the existing data but is
otherwise straightforward.

Option 3: Existing data and integration points
This is the most complex and, unfortunately, most common scenario. Companies
need to migrate existing data to new columns while external systems depend on the
name column, which the other teams cannot migrate to use the new columns in the
desired time frame. The required SQL appears in Example 6-6.

130 | Chapter 6: Evolutionary Data

Example 6-6. Complex case with legacy data and integrators

ALTER TABLE Customer ADD firstname VARCHAR2(60);
ALTER TABLE Customer ADD lastname VARCHAR2(60);

UPDATE Customer set firstname = extractfirstname (name);
UPDATE Customer set lastname = extractlastname (name);

CREATE OR REPLACE TRIGGER SynchronizeName
BEFORE INSERT OR UPDATE
ON Customer
REFERENCING OLD AS OLD NEW AS NEW
FOR EACH ROW
BEGIN
 IF :NEW.Name IS NULL THEN
 :NEW.Name := :NEW.firstname||' '||:NEW.lastname;
 END IF;
 IF :NEW.name IS NOT NULL THEN
 :NEW.firstname := extractfirstname(:NEW.name);
 :NEW.lastname := extractlastname(:NEW.name);
 END IF;
END;

To build the transition phase in Example 6-6, the data team adds a trigger in the
database that moves data from the old name column to the new firstname and
lastname columns when the other systems are inserting data into the database,
allowing the new system to access the same data. Similarly, developers or the data
team concatenate the firstname and lastname columns into a name column when
the new system inserts data so that the other systems have access to their properly
formatted data.

Once the other systems modify their access to use the new structure (with separate
first and last names), the contraction phase can be executed and the old column
dropped:

ALTER TABLE Customer DROP COLUMN name;

If a lot of data exists and dropping the column will be time-consuming, the data team
can sometimes set the column to “not used” (if the database supports this feature):

ALTER TABLE Customer SET UNUSED name;

After dropping the legacy column, if a read-only version of the previous schema is
needed, the data team can add a functional column so that read access to the database
is preserved:

ALTER TABLE CUSTOMER ADD (name AS
 (generatename (firstname,lastname)));

As illustrated in each scenario, the data team and developers can utilize the native
facilities of databases to build evolvable systems.

Evolutionary Database Design | 131

Expand/Contract is a subset of a pattern called Parallel Change, a broad pattern used
to safely implement backward-incompatible changes to an interface.

Inappropriate Data Entanglement
Data and databases form an integral part of most modern software architectures—
developers who ignore this key aspect when trying to evolve their architecture suffer.

Databases and the data team form a particular challenge in many organizations
because, for whatever reason, their tools and engineering practices are antiquated
compared to the traditional development world. For example, the tools the data team
uses daily are extremely primitive compared to any developer’s IDE. Features that
are common for developers don’t exist for data teams: refactoring support, out-of-
container testing, unit testing, dependency tracking, linting, mocking and stubbing,
and so on.

The data structures in the databases are coupled with application code, and it’s
difficult for the data team to refactor the database without involvement of the users
of the data structures, such as application developers; Extract, Transform, and Load
developers; and report developers. Since involvement of different teams, resource
coordination, and prioritization from the product team are necessary, the database
refactoring becomes complex to execute and often gets deprioritized, leading to
suboptimal database structures and abstractions.

Data Teams, Vendors, and Tool Choices
Why has the data world lagged so far behind the engineering practices of the software
development world? The data team has many of the same needs as developers:
testing, refactoring, and so on. Yet, while developer tools continue to advance, the
same level of innovation hasn’t penetrated the data world. It’s not like tools aren’t
available—several third-party tools now exist to add better engineering support. But
they don’t sell well. Why?

Database vendors have created an interesting relationship between themselves and
their consumers. For example, a data team for DatabaseVendorX has an almost
irrational level of dedication to that vendor, because the data team’s next job comes
at least in part from the fact they are a certified DatabaseVendorX data team, not nec‐
essarily from their existing job. Thus, database vendors have secreted armies within
enterprises all over the world, where loyalties lie with the vendor rather than the
company. Data teams in this situation ignore tools and other development artifacts
that don’t come from the mother ship. The result is stagnation at the innovation level
for engineering practices.

132 | Chapter 6: Evolutionary Data

https://oreil.ly/yd8FR

Data teams view their database vendors as the source of all heat and light in the uni‐
verse and don’t care what comes from other dark matter in their universe. The unfor‐
tunate side effect of this phenomenon is stagnation in tool advancement compared
to developer tools. Consequently, the impedance mismatch between developers and
data teams grows even bigger, as they don’t share common engineering techniques.
Convincing data teams to adopt Continuous Delivery practices forces them to use
new tools, distancing them from the mother ship, which they try to avoid.

Fortunately, the popularity of open source and NoSQL databases has started breaking
the hegemony of database vendors.

Two-Phase Commit Transactions
When architects discuss coupling, the conversation usually revolves around classes,
libraries, and other aspects of the technical architecture. However, other avenues of
coupling exist in most projects, including transactions; this is true in both monolithic
and distributed architectures.

Transactions are a special form of coupling because transactional behavior doesn’t
appear in traditional technical architecture-centric tools. Architects can easily deter‐
mine the afferent and efferent coupling between classes with a variety of tools. They
have a much harder time determining the extent of transactional contexts. Just as
coupling between schemas harms evolution, transactional coupling binds the constit‐
uent parts together in concrete ways, making evolution more difficult.

Transactions appear in business systems for a variety of reasons. First, business
analysts love the idea of transactions—an operation that stops the world for some con‐
text briefly—regardless of the technical challenges. Global coordination in complex
systems is difficult, and transactions represent a form of it. Second, transactional
boundaries often tell how business concepts are really coupled together in their
implementation. Third, the data team may own the transactional contexts, making
it hard to coordinate breaking the data apart to resemble the coupling found in the
technical architecture.

In Chapter 5, we discussed the architectural quantum boundary concept: the smallest
architectural deployable unit, which differs from traditional thinking about cohesion
by encompassing dependent components like databases. The binding created by
databases is more imposing than traditional coupling because of transactional bound‐
aries, which often define how business processes work. Architects sometimes err in
trying to build an architecture with a smaller level of granularity than is natural for
the business. For example, microservices architectures aren’t particularly well suited
for heavily transactional systems because the goal service quantum is so small.

Architects must consider all the coupling characteristics of their application:
classes, package/namespace, library and framework, data schemas, and transactional

Inappropriate Data Entanglement | 133

contexts. Ignoring any of these dimensions (or their interactions) creates problems
when trying to evolve an architecture. In physics, the strong nuclear force that binds
atoms together is one of the strongest forces yet identified. Transactional contexts act
like a strong nuclear force for architecture quanta.

Database transactions act as a strong nuclear force, binding quanta
together.

While systems often cannot avoid transactions, architects should try to limit transac‐
tional contexts as much as possible because they form a tight coupling knot, hamper‐
ing the ability to change some components or services without affecting others. More
importantly, architects should take aspects like transactional boundaries into account
when thinking about architectural changes.

As we will discuss in Chapter 9, when migrating a monolithic architectural style to a
more granular one, start with a small number of larger services first. When building a
greenfield microservices architecture, developers should be diligent about restricting
the size of service and data contexts. However, don’t take the term microservices too
literally—each service doesn’t have to be small; rather, it should capture a useful
bounded context.

When restructuring an existing database schema, it is often difficult to achieve
appropriate granularity. Many data teams spend decades stitching a database schema
together and have no interest in performing the reverse operation. Often, the neces‐
sary transactional contexts to support the business define the smallest granularity
developers can make into services. While architects may aspire to create a smaller
level of granularity, their efforts slip into inappropriate coupling if it creates a mis‐
match with data concerns. Building an architecture that structurally conflicts with the
problem developers are trying to solve represents a damaging version of metawork,
described in “Migrating Architectures” on page 154.

Age and Quality of Data
Another dysfunction that manifests in large companies is the fetishization of data
and databases. We have heard more than one CTO say, “I don’t really care that
much about applications because they have a short lifespan, but my data schemas are
precious because they live forever!” While it’s true that schemas change less frequently
than code, database schemas still represent an abstraction of the real world. While
inconvenient, the real world has a habit of changing over time. The data team that
believes that schemas never change is ignoring reality.

134 | Chapter 6: Evolutionary Data

But if the data teams never refactor the database to make schema changes, how do
they make changes to accommodate new abstractions? Unfortunately, adding another
join table is a common process the data team uses to expand schema definitions.
Rather than make a schema change and risk breaking existing systems, they just
add a new table, joining it to the original using relational database primitives. While
this works in the short term, it obfuscates the real underlying abstraction: in the
real world, one entity is represented by multiple things. Over time, the data teams
that rarely genuinely restructure schemas build an increasingly fossilized world, with
byzantine grouping and bunching strategies. When the data team doesn’t restructure
the database, it’s not preserving a precious enterprise resource; it’s creating the con‐
cretized remains of every version of the schema, overlaid upon one another via join
tables.

Legacy data quality presents another huge problem. Often, the data has survived
many generations of software, each with its own persistence quirks, resulting in data
that is inconsistent at best and garbage at worst. In many ways, trying to keep every
scrap of data couples the architecture to the past, forcing elaborate workarounds to
make things operate successfully.

Before trying to build an evolutionary architecture, make sure developers can evolve
the data as well, both in terms of schema and quality. Poor structure requires refac‐
toring, and data teams should perform whatever actions are necessary to baseline the
quality of data. We prefer fixing these problems early rather than building elaborate,
ongoing mechanisms to handle these problems in perpetuity.

Legacy schemas and data have value, but they also represent a tax on the ability
to evolve. Architects, data teams, and business representatives need to have frank
conversations about what represents value to the organization—keeping legacy data
forever or the ability to make evolutionary change. Look at the data that has true
value and preserve it, and make the older data available for reference but out of the
mainstream of evolutionary development.

Refusing to refactor schemas or eliminate old data couples your
architecture to the past, which you cannot refactor.

Case Study: Evolving PenultimateWidgets’ Routing
PenultimateWidgets has decided to implement a new routing scheme between pages,
providing a navigational breadcrumb trail to users. Doing so means changing the
way routing between pages has been done (using an in-house framework). Pages that
implement the new routing mechanism require more context (origin page, workflow
state, etc.), and thus require more data.

Inappropriate Data Entanglement | 135

Within the routing service quantum, PenultimateWidgets currently has a single table
to handle routes. For the new version, developers need more information, so the table
structure will be more complex. Consider the starting point illustrated in Figure 6-4.

Figure 6-4. Starting point for new routing implementation

Not all pages at PenultimateWidgets will implement the new routing at the same time
because different business units work at different speeds. Thus, the routing service
must support both the old and new versions. We will see how that is handled via
routing in Chapter 7. In this case, we must handle the same scenario at the data level.

Using the Expand/Contract pattern, a developer can create the new routing structure
and make it available via the service call. Internally, both routing tables have a trigger
associated with the route column so that changes to one are automatically replicated
to the other, as shown in Figure 6-5.

Figure 6-5. The transitional state, where the service supports both versions of routing

As seen in Figure 6-5, the service can support both APIs as long as developers need
the old routing service. In essence, the application now supports two versions of
routing information.

When the old service is no longer needed, the routing service developers can remove
the old table and the trigger, as shown in Figure 6-6.

Figure 6-6. The ending state of the routing tables

136 | Chapter 6: Evolutionary Data

In Figure 6-6, all services have migrated to the new routing capability, allowing the
old service to be removed. This matches the workflow shown in Figure 6-2.

The database can evolve right alongside the architecture as long as developers apply
proper engineering practices such as continuous integration, source control, and so
on. This ability to easily change the database schema is critical: a database represents
an abstraction based on the real world, which can change unexpectedly. While data
abstractions resist change better than behavior, they must still evolve. Architects must
treat data as a primary concern when building an evolutionary architecture.

Refactoring databases is an important skill and craft for the data team and developers
to hone. Data is fundamental to many applications. To build evolvable systems,
developers and the data team must embrace effective data practices alongside other
modern engineering practices.

From Native to Fitness Function
Sometime choices in software architecture cause issues in other parts of the eco‐
system. When architects embraced microservices architectures, which suggests one
database per bounded context, it changed data teams’ traditional perspective about
databases: they are more accustomed to a single relational database, along with the
conveniences those tools and model provide. For example, data teams pay close
attention to referential integrity, to ensure the correctness of the connecting points of
the data structure.

But what happens when architects want to break databases into a data-per-service
architecture like microservices—how can they convince skeptical data teams that the
advantages of microservices outweigh giving up some of their trusted mechanisms?

Because it is a form of governance, architects can reassure data teams by wiring
continuous fitness functions into the build to ensure important pieces maintain
integrity and address other issues.

Referential Integrity
Referential integrity is a form of governance, at the data schema level rather than
architecture coupling. However, to an architect, both impact the ability to evolve the
application by increasing coupling. For example, many cases exist where data teams
are reluctant to break up tables into separate databases because of referential integrity,
but that coupling prevents both services coupled to it from changing.

Referential integrity in databases refers to primary keys and their linkages. In dis‐
tributed architectures, teams also have unique identifiers for entities, frequently
expressed as GUIDs or some other random sequence. Thus, architects must write
fitness functions to ensure that if, for example, a particular item is deleted by the

From Native to Fitness Function | 137

owner of the information, that deletion is propagated to other services that might
still reference the deleted entity. A number of patterns in event-driven architecture
address these kinds of background tasks; one such example appears in Figure 6-7.

Figure 6-7. Using event-based data synchronization to handle referential integrity

In Figure 6-7, when the user interface rejects a trade via the Trader Blotter service,
it propagates a message on a durable message queue that all interested services
monitor, updating or deleting the changes as needed.

While referential integrity in databases is powerful, it sometimes creates undesirable
coupling, which must be weighed against the benefits.

Data Duplication
When teams become accustomed to a single relational database, they don’t often
think of the two operations—read and write—as separate. However, microservices
architectures force teams to think more carefully about which services can update
information versus which services can just read it. Consider the common scenario
faced by many teams new to microservices, illustrated in Figure 6-8.

A number of the services need access to several key parts of the system, for Refer
ence, Audit Tables, Configuration, and Customer. How should the team handle
this need? The solution shown in Figure 6-8 shares the tables with all the interested
services, which is convenient but violates one of the tenets of microservices architec‐
tures to avoid coupling services to a common database. If the schema for any of these

138 | Chapter 6: Evolutionary Data

tables changes, it will ripple out to the coupled services, potentially requiring them to
change.

Figure 6-8. Managing shared information in a distributed architecture

An alternative approach appears in Figure 6-9.

Figure 6-9. Modeling shared information as a service

From Native to Fitness Function | 139

In Figure 6-9, following the philosophy behind microservices, we model each shared
bit of information as a distinct service. However, this exposes one of the prob‐
lems in microservices—too much interservice communication, which can impact
performance.

A common approach by many teams is to carefully consider who should own data
(i.e., who can update it) versus who can read some version of it. The solution shown
in Figure 6-10 uses in-process caching for read access.

Figure 6-10. Using caching for read-only access

In Figure 6-10, the service components on the left “own” the data. However, on
startup, each interested service reads and caches the data of interest, with an appro‐
priate update frequency for cached information. If one of the righthand services
needs to update the shared value, it does so via a request to the owning service, which
can then publish the changes.

Architects use a variety of approaches to manage data access versus updates in
modern architectures. Examples include change control, connection management
scalability, fault tolerance, architectural quanta, database-type optimization, database
transactions, and data relationships, which is covered in more detail in Software
Architecture: The Hard Parts (O’Reilly).

Replacing Triggers and Stored Procedures
Another common mechanism data teams rely on are stored procedures, written in
the native SQL for the database. While this is a powerful and performant option for
manipulating data, it suffers from some challenges in modern software engineering

140 | Chapter 6: Evolutionary Data

https://www.oreilly.com/library/view/software-architecture-the/9781492086888
https://www.oreilly.com/library/view/software-architecture-the/9781492086888

practices. For example, stored procedures are hard to unit test, often have poor
refactoring support, and separate behavior from the other behavior in source code.

Migrating to microservices often causes data teams to refactor stored procedures
because the data in question no longer resides in a single database. In that case, the
behavior must move to code, and teams must address issues such as data volume and
transport. In modern NoSQL databases there may be triggers or serverless functions
that trigger based on some data change. All of the database code has to be refactored.

Architects can use the same Expand/Contract pattern to extract behavior currently
in stored procedures into application code, using the Migrate Method from Database
pattern as shown Figure 6-11.

Figure 6-11. Extracting database code into services

During the expand phase, developers add the replacement method in the Widgets
Administration service, and developers refactor other services to call the Widgets

From Native to Fitness Function | 141

https://oreil.ly/afabK
https://oreil.ly/afabK

Administration service. Initially, the new method acts as a pass-through to the stored
procedure until the team can invisibly replace the functionality in well-tested code.
During this period, the application supports calls to either the service or the stored
procedure. In the contract phase, architects can use a fitness function to make sure all
dependencies have migrated to calling the service and subsequently drop the stored
procedure. This is the database version of the Strangler Fig pattern.

Another option might be to avoid refactoring the stored procedure and build a
broader data context instead, as illustrated in Figure 6-12.

Figure 6-12. Building a broader data context to preserve stored procedures

In Figure 6-12, rather than replace the triggers and stored procedures in code, the
team opted for a bigger granularity of service. No generic advice is possible here;
teams must evaluate on a case-by-case basis the trade-offs of their decisions.

Case Study: Evolving from Relational to Nonrelational
Many organizations like PenultimateWidgets start with monolithic applications for
good strategic reasons: time to market, simplicity, market uncertainty, and a host of
other reasons. These applications typically include a single relational database, the
industry standard for decades.

When breaking apart the monolith, teams may rethink their persistence as well. For
example, for cataloging and categorizing analytics, a graph database might be better.
For some problem domains, name/value pair databases provide better options. One
of the beneficial features of highly distributed architectures such as microservices lies
with architects’ ability to choose different persistence mechanisms based on the prob‐
lem rather than an arbitrary standard. A migration from a monolith to microservices
might look like Figure 6-13.

142 | Chapter 6: Evolutionary Data

https://oreil.ly/BhDNV

Figure 6-13. PenultimateWidgets’ migration from a monolith to a microservices
architecture

In Figure 6-13, catalog, analytics (used for market forecasting and other business
intelligence), and operational data (such as sales status, transactions, etc.) all reside
in a single database, sometimes bending the way a relational database is used to
accommodate the various uses. However, when moving to microservices, the teams
have the chance to break the monolithic data into different, more representative
types. For example, some data might be better suited for key/value pairs rather than
for strictly relational databases. Similarly, some problems that data teams can solve in
seconds with a graph database can take hours or days in a relational one.

However, moving from a single type of database to multiple databases (even of
the same type) can cause issues; everything in software architecture is a trade-off.
Architects may struggle convincing data teams of the architectural requirement from
microservices to break persistence into multiple data stores, so architects should
highlight the trade-offs inherent in each approach.

Summary
The last part of our definition of an evolutionary architecture includes across multiple
dimensions, and data is the most common extra-architecture concern that impacts the
evolution of software systems. The advent of modern distributed architectures such
as microservices forced architects to take on problems that used to belong solely to
data teams. Restructuring architectures around bounded contexts means partitioning
data as well, which comes with its own set of trade-offs.

Architects must both think more diligently about the impacts of data on architecture
and collaborate with data teams just as with developers.

Summary | 143

PART III

Impact

While we introduce mechanics and structure individually, in real systems they freely
interact. Part III of this book covers the intersection of the engineering practices in
Part I and the structural considerations from Part II.

CHAPTER 7

Building Evolvable Architectures

Until now, we’ve addressed the two primary aspects of evolutionary architecture—
mechanics and structure—separately. Now we have enough context to tie them
together.

Many of the concepts we discussed aren’t new ideas but rather old ideas viewed
through a new lens. For example, testing has existed for years, but not with the
fitness function emphasis on architectural verification. Continuous Delivery defined
the idea of deployment pipelines. Evolutionary architecture shows architects how to
add governance to that automation.

Many organizations pursue Continuous Delivery practices as a way to increase engi‐
neering efficiency for software development, a worthy goal in itself. However, we’re
taking the next step, using those capabilities to create something more sophistica‐
ted—architectures that evolve with the real world.

So how can developers take advantage of these techniques on projects, both existing
and new?

Principles of Evolutionary Architecture
Overarching both mechanics and structure in evolutionary architecture are five
general principles. Let’s look at them now.

Last Responsible Moment
The agile development world has long extolled the virtues of last responsible moment:
delaying decisions as long as you can, but no longer. Making decisions too early tends
toward overengineering, and too late leads to failure to meet architectural goals.

147

The goal isn’t to unnecessarily delay. Rather, if an architect can find the correct inflec‐
tion point in decision-making, they maximize the amount of information available.
This helps because, ultimately, the architect’s job lies with trade-off analysis, and the
more information they have, the more trade-off criteria are available.

When making decisions too early, architects naturally want to keep options open,
tending toward picking more general solutions. However, this can overcomplicate
specific implementations without providing teams the benefits of generality.

Decide early what the objective drivers are and prioritize decisions accordingly.

Architect and Develop for Evolvability
Architects should treat evolvability as a first-class concern in architecture. That
implies thinking about objective measures when analyzing architecture characteris‐
tics. It also implies thinking about appropriate coupling and how to avoid brittleness
in your architecture.

As we discussed in Chapter 6, architects must think of data and other external
integration points (static coupling for the architecture quantum) as first-class design
considerations. For example, data teams should integrate database changes continu‐
ously just like code, and architects should consider data dependencies as equal to
code dependencies.

Like many holistic parts of architecture, this principle applies to software develop‐
ment process and tooling as well. Choose both to support the least friction and
highest degree of feedback.

Postel’s Law
Be conservative in what you do, be liberal in what you accept from others.

—Jon Postel

An important principle we can add to the discussion around contracts in “Contracts”
on page 103 is Postel’s Law, a general principle that tries to soften coupling points as
much as possible. When applied to contracts and communication, it offers a useful
guideline for enabling evolution:

Be conservative in what you send
Don’t send more information than necessary—if a collaborating service needs
only a phone number, don’t send a larger data structure. The more information
in a contract, the more often other coupling points will take advantage of it,
tightening a contract that could otherwise be looser.

148 | Chapter 7: Building Evolvable Architectures

Be liberal in what you accept from others
You can accept more information than you consume. You don’t need to consume
more information than necessary, even if there is additional data available. If you
only want a phone number, don’t build a protocol for the entire address, only
validate the phone number. This decouples a service from information/coupling
points that it doesn’t need.

Use versioning when breaking a contract
Architects must honor contracts in integration architecture (automated via
consumer-driven contracts), which means paying attention to the evolution of
service functionality.

Much has been written in the architecture space about Postel’s Law, for good reason—
it offers good advice for decoupling, which in turn favors evolutionary architecture.

Architect for Testability
Many architects complain that their architecture has difficult areas to test, which
isn’t surprising when testability often isn’t a priority when designing the architecture.
Conversely, if architects design their architecture with testing in mind, they build
easier ways to test parts of the architecture in isolation. For example, a lot of research
and tools exist in the microservices ecosystem to facilitate testing, contributing to its
general evolvability. In general, a correlation exists between a hard-to-test system and
one that is hard to maintain and enhance.

A good example of architecture for testability also illustrates the single responsibility
principle: every part of a system should have a single responsibility. For example,
consider the formerly common antipattern of mixing business logic with messaging
infrastructure via tools like Enterprise Service Bus. We realized that mixing concerns
makes it difficult to test either behavior in isolation.

Conway’s Law
Surprising coupling points happen in sometimes surprising parts of software devel‐
opment. Paying attention to team structure and what impact it has on architecture is
a key to evolutionary architecture; we cover Conway’s Law in “Don’t Fight Conway’s
Law” on page 193).

Mechanics
Architects can operationalize the techniques for building an evolutionary architec‐
ture in three steps.

Mechanics | 149

Step 1: Identify Dimensions Affected by Evolution
First, architects must identify which dimensions of the architecture they want to
protect as it evolves. This always includes technical architecture, and usually things
like data design, security, scalability, and the other “-ilities” architects have deemed
important. This must involve other interested teams within the organization, includ‐
ing business, operations, security, and other affected parties. The Inverse Conway
Maneuver (described in “Don’t Fight Conway’s Law” on page 193) is helpful here
because it encourages multirole teams. Basically, this is the common behavior of
architects at the onset of projects when identifying the architectural characteristics
they want to support.

Step 2: Define Fitness Function(s) for Each Dimension
A single dimension often contains numerous fitness functions. For example, archi‐
tects commonly wire a collection of code metrics into the deployment pipeline to
ensure architectural characteristics of the codebase, such as preventing component
dependency cycles. Architects document decisions about which dimensions deserve
ongoing attention in a lightweight format such as a wiki. Then, for each dimension,
they decide what parts may exhibit undesirable behavior when evolving, eventually
defining fitness functions. Fitness functions may be automated or manual, and ingen‐
uity will be necessary in some cases.

Step 3: Use Deployment Pipelines to Automate Fitness Functions
Lastly, architects must encourage incremental change on the project, defining stages
in a deployment pipeline to apply fitness functions and managing deployment prac‐
tices like machine provisioning, testing, and other DevOps concerns. Incremental
change is the engine of evolutionary architecture, allowing aggressive verification of
fitness functions via deployment pipelines and a high degree of automation to make
mundane tasks like deployment invisible. Cycle time is the Continuous Delivery
measure of engineering efficiency. Part of the responsibility of developers on projects
that support evolutionary architecture is to maintain good cycle time. Cycle time is
an important aspect of incremental change because many other metrics derive from
it. For example, the velocity of new generations appearing in an architecture is pro‐
portional to its cycle time. In other words, if a project’s cycle time lengthens, it slows
down how fast the project can deliver new generations, which affects evolvability.

While the identification of dimensions and fitness functions occurs at the beginning
of a new project, it is also an ongoing activity for both new and existing projects.
Software suffers from the unknown unknowns problem: developers cannot anticipate
everything. During construction, some part of the architecture often shows troubling
signs, and building fitness functions can prevent this dysfunction from growing.
While some fitness functions will naturally come to light at the beginning of a project,

150 | Chapter 7: Building Evolvable Architectures

many won’t reveal themselves until an architectural stress point appears. Architects
must vigilantly watch for situations where nonfunctional requirements break and
retrofit the architecture with fitness functions to prevent future problems.

Greenfield Projects
Building evolvability into new projects is much easier than retrofitting existing ones.
First, developers have the opportunity to utilize incremental change right away, build‐
ing a deployment pipeline at project inception. Fitness functions are easier to identify
and plan before any code exists, making it easier to accommodate complex fitness
functions because scaffolding has existed since inception. Second, architects don’t
have to untangle any undesirable coupling points that creep into existing projects.
The architect can also put metrics and other verifications in place to ensure architec‐
tural integrity as the project changes.

Building new projects that handle unexpected change is easier if a developer chooses
the correct architectural patterns and engineering practices to facilitate evolutionary
architecture. For example, microservices architectures offer extremely low coupling
and a high degree of incremental change, making that style an obvious candidate
(and another contributing factor to its popularity).

Retrofitting Existing Architectures
Adding evolvability to existing architectures depends on three factors: component
coupling, engineering practice maturity, and developer ease in crafting fitness
functions.

Appropriate Coupling and Cohesion
Component coupling largely determines the evolvability of the technical architecture.
Yet the best possible evolvable technical architecture is doomed if the data schema is
rigid and fossilized. Cleanly decoupled systems make evolution easy; nests of exuber‐
ant coupling harm it. To build truly evolvable systems, architects must consider all
affected dimensions of an architecture.

Beyond the technical aspects of coupling, architects must also consider and defend
the functional cohesion of the components of their system. When migrating from
one architecture to another, the functional cohesion determines the ultimate gran‐
ularity of restructured components. That doesn’t mean architects can’t decompose
components to a ridiculous level, but rather that components should have an appro‐
priate size based on the problem context. For example, some business problems
are more coupled than others, such as in the case of heavily transactional systems.
Trying to build an extremely decoupled architecture that is counter to the problem is
unproductive.

Greenfield Projects | 151

Engineering practices matter when defining how evolvable an architecture can be.
While Continuous Delivery practices don’t guarantee evolutionary architecture, it is
almost impossible without them. Many teams embark on improved engineering prac‐
tices for the sake of efficiency. However, once those practices cement, they become
building blocks for advanced capabilities such as evolutionary architecture. Thus, the
ability to build an evolutionary architecture is an incentive to improving efficiency.

Many companies reside in the transition zone between older practices and new. They
may have solved low-hanging fruit like continuous integration but still have largely
manual testing. While it slows cycle time, it is important to include manual stages in
deployment pipelines. First, it treats each stage of an application’s build the same—as
a stage in the pipeline. Second, as teams slowly automate more pieces of deployment,
manual stages may become automated ones with no disruption. Third, elucidating
each stage brings awareness about the mechanical parts of the build, creating a better
feedback loop and encouraging improvements.

The biggest single common impediment to building evolutionary architecture is
intractable operations. If developers cannot easily deploy changes, all parts of the
feedback cycle are hampered.

We encourage architects to start thinking of all kinds of architectural verification
mechanisms as fitness functions, including things they have previously considered in
an ad hoc manner. For example, many architectures have a service-level agreement
around scalability and corresponding tests. They also have rules around security
requirements, with accompanying verification mechanisms. Architects often think of
these as separate categories, but both intents are the same: verify some feature of the
architecture. By thinking of all architectural verification as fitness functions, there is
more consistency when automation and other beneficial synergistic interactions are
defined.

Refactoring Versus Restructuring
Developers sometimes co-opt terms that sound cool and make them into broader
synonyms, as is the case for refactoring. As defined by Martin Fowler, refactoring is
the process of restructuring existing computer code without changing its external
behavior. For many developers, refactoring has become synonymous with change, but
there are key differences.

It is very rare that a team refactors an architecture; rather, they restructure it, making
substantive changes to both structure and behavior. Architecture patterns exist in
part to make certain architectural characteristics primary in an application. Switching
patterns entails switching priorities, which isn’t refactoring. For example, architects
might choose an event-driven architecture for scalability. If the team switches to a
different architectural pattern, it likely won’t support the same level of scalability.

152 | Chapter 7: Building Evolvable Architectures

COTS Implications
In many organizations, developers don’t own all the parts that make up their ecosys‐
tem. COTS (commercial off-the-shelf) and package software is prevalent in large
companies, creating challenges for architects building evolvable systems.

COTS systems must evolve alongside other applications within an enterprise.
Unfortunately, these systems don’t support evolution well. Here are aspects of evo‐
lutionary architecture that are generally poorly supported by COTS systems:

Incremental change
Most commercial software falls woefully short of industry standards for automa‐
tion and testing. Architects and developers must often build logical barriers
between integration points and build whatever testing is possible, frequently
treating the entire system as a black box. Enforcing agility in terms of deploy‐
ment pipelines, DevOps, and other modern practices offers challenges to devel‐
opment teams.

Appropriate coupling
Package software often commits the worst sins in terms of coupling. Generally,
the system is opaque, with a defined API developers use to integrate. Inevitably,
that API suffers from the problem described in “Antipattern: Last 10% Trap
and Low Code/No Code” on page 177, allowing almost (but not quite) enough
flexibility for developers to get useful work done.

Fitness functions
Adding fitness functions to package software is perhaps the biggest hurdle to
enable evolvability. Generally, tools of this ilk don’t expose enough internals to
allow unit or component testing, making behavioral integration testing the last
resort. These tests are less desirable because they are necessarily coarse grained,
must run in a complex environment, and must test a large swath of behavior of
the system.

Work diligently to hold integration points to your level of maturity.
If that isn’t possible, realize that some parts of the system will be
easier for developers to evolve than others.

Retrofitting Existing Architectures | 153

Another worrisome coupling point introduced by many package software vendors
is opaque database ecosystems. In the best-case scenarios, the package software
manages the state of the database entirely, exposing selected appropriate values via
integration points. In the worst case, the vendor database is the integration point to
the rest of the system, vastly complicating changes on either side of the API. In this
case, architects and DBAs must wrestle control of the database away from the package
software for any hope of evolvability.

If trapped with necessary package software, architects should build as robust a set
of fitness functions as possible and automate their running at every possible opportu‐
nity. Lack of access to internals relegates testing to less desirable techniques.

Migrating Architectures
Many companies end up migrating from one architectural style to another. For exam‐
ple, architects choose simple-to-understand architecture patterns at the beginning of
a company’s IT history, often layered architecture monoliths. As the company grows,
the architecture comes under stress. One of the most common paths of migration is
from monolith to some kind of service-based architecture, for reasons of the general
domain-centric shift in architectural thinking, covered in “Case Study: Microservices
as an Evolutionary Architecture” on page 107. Many architects are tempted by the
highly evolutionary microservices architecture as a target for migration, but this is
often quite difficult, primarily because of existing coupling.

When architects think of migrating architecture, they typically think of the coupling
characteristics of classes and components, but they ignore many other dimensions
affected by evolution, such as data. Transactional coupling is as real as coupling
between classes and just as insidious to eliminate when restructuring architecture.
These extra-class coupling points become a huge burden when trying to break the
existing modules into too-small pieces.

Many senior developers build the same types of applications year after year and
become bored with the monotony. Most developers would rather write a framework
than use a framework to create something useful: Metawork is more interesting
than work. Work is boring, mundane, and repetitive, whereas building new stuff
is exciting.

This manifests in two ways. First, many senior developers start writing the infra‐
structure that other developers use, rather than using existing (often open source)
software. We once worked with a client who had been on the cutting edge of technol‐
ogy. They built their own application server, web framework in Java, and just about
every other bit of infrastructure. At one point, we asked if they had built their own
operating system too, and when they said, “No,” we asked, “Why not?!? You built
everything else from scratch!”

154 | Chapter 7: Building Evolvable Architectures

Upon reflection, the company needed capabilities that weren’t available. However,
when open source tools became available, they already owned their lovingly hand-
crafted infrastructure. Rather than cut over to the more standard stack, they opted to
keep their own because of minor differences in approach. A decade later, their best
developers worked in full-time maintenance mode, fixing their application server,
adding features to their web framework, and performing other mundane chores.
Rather than applying innovation on building better applications, they permanently
slaved away on plumbing.

Architects aren’t immune to building things just because it sounds like fun or will
improve their resume. In general, building important things like frameworks and
libraries is more enjoyable than slogging through a mundane business problem—but
that’s the job!

Metawork is more interesting than work.

Don’t fall into the trap of implementing something just for the sake of implementing
it. Make sure you have considered and measured all the trade-offs before committing
to an irrevocable path.

Migration Steps
Many architects find themselves faced with the challenge of migrating an outdated
monolithic application to a more modern service-based approach. Experienced archi‐
tects realize that a host of coupling points exist in applications, and one of the first
tasks when untangling a codebase is understanding how things are joined. When
decomposing a monolith, the architect must take coupling and cohesion into account
to find the appropriate balance. For example, one of the most stringent constraints of
the microservices architectural style is the insistence that the database reside inside
the service’s bounded context. When decomposing a monolith, even if it is possible
to break the classes into small enough pieces, breaking the transactional contexts into
similar pieces may present an insurmountable hurdle.

Migrating Architectures | 155

Many architects end up migrating from monolithic applications to service-based
architectures. Consider the starting point architecture shown in Figure 7-1.

Figure 7-1. A monolith architecture as the starting point for migration, a “share every‐
thing” architecture

Building extremely granular services is easier in new projects but difficult in existing
migrations. So how can we migrate the architecture in Figure 7-1 to the service-based
architecture shown in Figure 7-2?

Performing the kind of migration shown in Figures 7-1 and 7-2 comes with a host of
challenges: service granularity, transactional boundaries, database issues, and issues
like how to handle shared libraries. Architects must understand why they want
to perform this migration, and it must be a better reason than “it’s the current
trend.” Splitting the architecture into domains, along with better team structure and
operational isolation, allows for easier incremental change, one of the building blocks
of evolutionary architecture, because the focus of work matches the physical work
artifacts.

156 | Chapter 7: Building Evolvable Architectures

Figure 7-2. The service-based, “share as little as possible” end result of the migration

When decomposing a monolithic architecture, finding the correct service granularity
is key. Creating large services alleviates problems like transactional contexts and
orchestration but does little to break the monolith into smaller pieces. Too-fine-
grained components lead to too much orchestration, communication overhead, and
interdependency between components.

For the first step in migrating architecture, developers identify new service bound‐
aries. Teams may decide to break monoliths into services via a variety of partitions as
follows:

Business functionality groups
A business may have clear partitions that mirror IT capabilities directly. Build‐
ing software that mimics the existing business communication hierarchy falls
distinctly into an applicable use of Conway’s Law (see “Don’t Fight Conway’s
Law” on page 193).

Transactional boundaries
Many businesses have extensive transactional boundaries they must adhere to.
When decomposing a monolith, architects often find that transactional coupling
is the hardest to break apart, as discussed in “Two-Phase Commit Transactions”
on page 133.

Deployment goals
Incremental change allows developers to selectively release code on different
schedules. For example, the marketing department might want a much higher
cadence of updates than inventory. Partitioning services around operational

Migrating Architectures | 157

concerns like speed to release makes sense if that criterion is highly important.
Similarly, a portion of the system may have extreme operational characteristics
(like scalability). Partitioning services around operational goals allows developers
to track (via fitness functions) health and other operational metrics of the service.

Coarser service granularity means many of the coordination problems inherent in
microservices go away because more of the business context resides inside a single
service. However, the larger the service, the more operational difficulties tend to
escalate (another architectural trade-off).

Evolving Module Interactions
Migrating shared modules (including components) is another common challenge
faced by developers. Consider the structure shown in Figure 7-3.

Figure 7-3. Modules with efferent and afferent coupling

In Figure 7-3, all three modules share the same library. However, the architect needs
to split these modules into separate services. How can she maintain this dependency?

Sometimes the library may be split cleanly, preserving the separate functionality each
module needs. Consider the situation shown in Figure 7-4.

Figure 7-4. Modules with a common dependency

In Figure 7-4, both modules need the conflicting one shown in red (bold border).
If developers are lucky, the functionality may be cleanly split down the middle,
partitioning the shared library into the relevant parts needed by each dependent, as
shown in Figure 7-5.

158 | Chapter 7: Building Evolvable Architectures

Figure 7-5. Splitting the shared dependency

Architects don’t have many useful code-level metrics, but here is a rare handy one.
The Chidamber & Kemerer metrics suite includes useful metrics for determining
whether a module is a good candidate to split or whether architects should use an
approach called LCOM (Lack of Cohesion in Methods). LCOM measures structural
cohesion in classes or components and exists in several different variants (LCOM1,
LCOM2, etc.) to measure slightly different things. However, at its core, this metric
measures lack of cohesion. Consider the three cases in Figure 7-6.

Figure 7-6. Three classes with differing cohesion levels

In Figure 7-6, M represents a method and V represents a field within the class. In
this example, A represents a class with higher cohesion—more of the methods use
fields—than B, which lacks cohesion. In fact, B could be split into three separate
classes without difficulty.

LCOM measures the failed opportunities to take advantage of coupling points—in
the example, B would score higher in LCOM than A or C, both of which have mixed
cohesion.

This metric is available for any platform that supports the CK metrics suite; for
example, a common open source Java implementation is ckjm.

Migrating Architectures | 159

https://oreil.ly/Gklqp
https://oreil.ly/EvhWN
https://oreil.ly/dPKf8

LCOM is useful to an architect performing an architectural migration because a
common part of that process deals with shared classes or components. When decom‐
posing a monolith, architects can pretty easily determine how to partition the major
parts of the problem domain. However, what about ancillary classes and other com‐
ponents—just how coupled are they? For example, when building a monolith, if a
need arises in several places for some concept like Address, the team will share a
single Address class, which makes sense. However, when it comes time to break up
the monolith, what should they do with the Address class? The LCOM metric helps
architects determine whether the class never should have been a single class in the
first place—if this metric scores high, it isn’t cohesive. However, if LCOM scores low,
architects must choose a different approach.

Two options remain: first, developers can extract the module into a shared library
(such as a JAR, DLL, gem, or some other component mechanism) and use it from
both locations, as shown in Figure 7-7.

Figure 7-7. Sharing a dependency via a JAR file

Sharing is a form of coupling, which is highly discouraged in architectures like
microservices. An alternative to sharing a library is replication, as illustrated in
Figure 7-8.

Figure 7-8. Duplicating a shared library to eliminate a coupling point

160 | Chapter 7: Building Evolvable Architectures

In a distributed environment, developers may achieve the same kind of sharing using
messaging or service invocation.

When developers have identified the correct service partitioning, the next step is
separation of the business layers from the UI. Even in microservices architectures, the
UIs often resolve back to a monolith—after all, developers must show a unified UI
at some point. Thus, developers commonly separate the UIs early in the migration,
creating a mapping proxy layer between UI components and the backend services
they call. Separating the UI also creates an anticorruption layer, insulating UI changes
from architecture changes.

The next step is service discovery, allowing services to find and call one another.
Eventually, the architecture will consist of services that must coordinate. By building
the discovery mechanism early, developers can slowly migrate parts of the system
that are ready to change. Developers often implement service discovery as a simple
proxy layer: each component calls the proxy, which in turn maps to the specific
implementation.

All problems in computer science can be solved by another level of indirection, except
of course for the problem of too many indirections.

—Dave Wheeler and Kevlin Henney

Of course, the more levels of indirection developers add, the more confusing navigat‐
ing the services becomes.

When migrating an application from a monolithic application architecture to a
more services-based one, the architect must pay close attention to how modules
are connected in the existing application. Naïve partitioning introduces serious per‐
formance problems. The connection points in the application become integration
architecture connections, with the attendant latency, availability, and other concerns.
Rather than tackle the entire migration at once, a more pragmatic approach is to
gradually decompose the monolithic architecture into services, looking at factors
like transaction boundaries, structural coupling, and other inherent characteristics
to create several restructuring iterations. First, break the monolith into a few large
“portions of the application” chunks, fix up the integration points, and rinse and
repeat. Gradual migration is preferred in the microservices world.

When migrating from a monolith, build a small number of larger services first.
—Sam Newman, Building Microservices

Next, developers choose and detach the service from the monolith, fixing any calling
points. Fitness functions play a critical role here—developers should build fitness
functions, make sure the newly introduced integration points don’t change, and add
consumer-driven contracts.

Migrating Architectures | 161

Guidelines for Building Evolutionary Architectures
We’ve used a few biology metaphors throughout the course of the book, and here
is another. Our brains did not evolve in a nice, pristine environment where each
capability was carefully built. Instead, each layer is based on primeval layers beneath.
Much of our core autonomic behavior (like breathing, eating, etc.) resides in parts of
our brain not very different from reptilian brains. Instead of wholesale replacement
of core mechanisms, evolution builds new layers on top.

Software architecture in large enterprises follows a similar pattern. Rather than
rebuild each capability anew, most companies try to adapt whatever is present. As
much as we like to talk about architecture in pristine, idealized settings, the real
world often exhibits a contrary mess of technical debt, conflicting priorities, and
limited budgets. Architecture in large companies is built like the human brain: lower-
level systems still handle critical plumbing details but have some old baggage. Com‐
panies hate to decommission something that works, leading to escalating integration
architecture challenges.

Retrofitting evolvability into an existing architecture is challenging. If developers
never built easy change into the architecture, it is unlikely to appear spontaneously.
No architect, now matter how talented, can transform a Big Ball of Mud into a
modern microservices architecture without immense effort. Fortunately, projects can
receive benefits without changing their entire architecture by building some flexibil‐
ity points into the existing one.

Remove Needless Variability
One of the goals of Continuous Delivery is stability—building on known good parts.
A common manifestation of this goal is the modern DevOps perspective on building
immutable infrastructure. We discussed the dynamic equilibrium of the software
development ecosystem in Chapter 1—nowhere is that more apparent in how much
the foundation shifts around software dependencies. Software systems undergo con‐
stant change, as developers update capabilities, issue service packs, and generally
tweak their software. Operating systems are a great example, as they endure constant
change.

Modern DevOps has solved the dynamic equilibrium problem locally by replacing
snowflakes with immutable infrastructure. Snowflake infrastructure represents assets
manually crafted by an operations person, and all future maintenance is done by
hand. Chad Fowler coined the term immutable infrastructure in his blog post, “Trash
Your Servers and Burn Your Code: Immutable Infrastructure and Disposable Compo‐
nents”. Immutable infastructure refers to systems defined entirely programmatically.
All changes to the system must occur via the source code, not by modifying the

162 | Chapter 7: Building Evolvable Architectures

https://oreil.ly/5f7rT

running operating system. Thus, the entire system is immutable from an operational
standpoint—once the system is bootstrapped, no other changes occur.

While immutability may sound like the opposite of evolvability, quite the opposite is
true. Software systems are composed of thousands of moving parts, all interlocking
in tight dependencies. Unfortunately, developers still struggle with unanticipated side
effects of changes to one of those parts. By locking down the possibility of unantici‐
pated change, we control more of the factors that make systems fragile. Developers
strive to replace variables in code with constants to reduce vectors of change. DevOps
introduced this concept to operations, making it more declarative.

Immutable infrastructure follows our advice to remove needless variables. Building
software systems that evolve means controlling as many unknown factors as possible.
It is virtually impossible to build fitness functions that can anticipate how the latest
service pack of the operating system might affect the application. Instead, developers
build the infrastructure anew each time the deployment pipeline executes, catching
breaking changes as aggressively as possible. If developers can remove known foun‐
dational, changeable parts such as the operating system as a possibility, they have less
ongoing testing burden to carry.

Architects can find all sorts of avenues to convert changeable things to constants.
Many teams extend the immutable infrastructure advice to the development environ‐
ment as well. How many times has some team member exclaimed, “But it works
on my machine!”? By ensuring every developer has the exact same image, a host
of needless variables disappear. For example, most development teams automate the
update of development libraries through repositories, but what about updates to tools
like IDEs? By capturing the development environment as immutable infrastructure,
developers always work on the same foundation.

Building an immutable development environment also allows useful tools to spread
throughout projects. Pair programming is a common practice in many agile engi‐
neering–focused development teams, including pair rotation, where each team
member changes regularly, from every few hours to every few days. However, it’s
frustrating when a tool appears on the computer a developer used yesterday that isn’t
present today. Building a single source for developer systems makes it easy to add
useful tools to all systems at once.

The Hazards of Snowflakes
A story in a popular blog called, “Knightmare: A DevOps Cautionary Tale” serves
as a warning about snowflake servers. A financial services company previously had
an algorithm called PowerPeg that handled trading details, but that code hadn’t been
used in a number of years. However, the developers never removed the code. It
resided underneath a feature toggle that remained off. Because of regulatory changes,
developers implemented a new trading algorithm called SMARS. Because they were

Guidelines for Building Evolutionary Architectures | 163

https://oreil.ly/vjZxI

lazy, they decided to reuse the old PowerPeg feature flag to implement the new
SMARS code. On August 1, 2012, developers deployed the new code to seven servers.
Unfortunately, their system ran on eight servers and one of them wasn’t updated.
When they enabled the PowerPeg feature toggle, seven servers started selling—and
the other started buying! Developers had accidentally set up the worst market sce‐
nario—they had automated selling low and buying high. Convinced that the new code
was the culprit, developers rolled back the new code on the seven servers but left the
feature toggle on, meaning the PowerPeg code now ran on all servers. It took them
45 minutes to rein in the chaos, with a loss of over $400 million. Luckily, an angel
investor saved them, as that was more than the company was worth.

This story highlights the problems with unknown variability. Reusing an old feature
flag is reckless—the best practice for feature flags is removing them aggressively
as soon as their purpose is fulfilled. Not automating deploying critical software to
servers is also considered reckless in modern DevOps environments.

Make Decisions Reversible
Inevitably, systems that aggressively evolve will fail in unanticipated ways. When
these failures occur, developers need to craft new fitness functions to prevent future
occurrences. But how do you recover from a failure?

Many DevOps practices exist to allow reversible decisions—decisions that need to be
undone. For example blue/green deployments, where operations have two identical
(probably virtual) ecosystems—blue ones and green ones—are common in DevOps.
If the current production system is running on blue, green is the staging area for
the next release. When the green release is ready, it becomes the production system
and blue temporarily shifts to backup status. If something goes awry with green,
operations can go back to blue without too much pain. If green is fine, blue becomes
the staging area for the next release.

Feature toggles are another common way developers make decisions reversible. By
deploying changes underneath feature toggles, developers can release them to a small
subset of users (called canary releasing) to vet the change. If a feature behaves
unexpectedly, developers can switch the toggle back to the original and correct the
fault before trying again. Make sure you remove the outdated ones!

Using feature toggles greatly reduces risk in these scenarios. Service routing—routing
to a particular instance of a service based on request context—is another common
method to canary-release in microservices ecosystems.

164 | Chapter 7: Building Evolvable Architectures

https://oreil.ly/oXXK4

Prefer Evolvable over Predictable
…because as we know, there are known knowns; there are things we know we know.
We also know there are known unknowns; that is to say we know there are some things
we do not know. But there are also unknown unknowns—the ones we don’t know we
don’t know.

—Donald Rumsfeld, former US Secretary of Defense

Unknown unknowns are the nemesis of software systems. Many projects start with a
list of known unknowns: things developers know they must learn about the domain
and technology. However, projects also fall victim to unknown unknowns: things no
one knew were going to crop up yet have appeared unexpectedly. This is why all
Big Design Up Front software efforts suffer—architects cannot design for unknown
unknowns.

All architectures become iterative because of unknown unknowns; agile just recognizes
this and does it sooner.

—Mark Richards

While no architecture can survive the unknown, we know that dynamic equilibrium
renders predictability useless in software. Instead, we prefer to build evolvability into
software: if projects can easily incorporate changes, architects don’t need a crystal
ball. Architecture is not a solely up-front activity—projects constantly change in both
explicit and unexpected ways throughout their life. One safeguard commonly used by
developers to insulate themselves from change is an anticorruption layer.

Build Anticorruption Layers
Projects often need to couple themselves to libraries that provide incidental plumb‐
ing: message queues, search engines, and so on. The Abstraction Distraction antipat‐
tern describes the scenario where a project “wires” itself too much to an external
library, either commercial or open source. Once it becomes time for developers to
upgrade or switch the library, much of the application code utilizing the library has
baked-in assumptions based on the previous library abstractions. Domain-driven
design includes a safeguard against this phenomenon called an anticorruption layer.
Here is an example.

Agile architects prize the last responsible moment principle when making decisions,
which is used to counter the common hazard in projects of buying complexity too
early. We worked intermittently on a Ruby on Rails project for a client who managed
wholesale car sales. After the application went live, an unexpected workflow arose. It
turned out that used-car dealers tended to upload new cars to the auction site in large
batches, both in number of cars and number of pictures per car. We realized that, as
much as the general public doesn’t trust used-car dealers, dealers really don’t trust one
another; thus, each car must include a photo covering essentially every molecule of

Guidelines for Building Evolutionary Architectures | 165

the car. Users wanted a way to begin an upload, then either get progress via some
UI mechanism like a progress bar, or check back later to see if the batch was done.
Translated to technical terms, they wanted asynchronous upload.

A message queue is one traditional architectural solution to this problem, and the
team discussed whether to add an open source queue to the architecture. A common
trap at this juncture for many projects is the attitude of “We know we’ll need a
message queue for lots of stuff eventually, so let’s get the fanciest one we can now and
grow into it later.” The problem with this approach is technical debt: stuff that’s part of
your project that isn’t supposed to be there and is in the way of stuff that is supposed
to be there. Most developers treat crufty old code as the only form of technical debt,
but projects can inadvertently buy technical debt as well via premature complexity.

For the project, the architect encouraged developers to find a simpler way. One
developer discovered BackgrounDRb, an extraordinarily simple open source library
that simulates a single message queue backed by a relational database. The architect
knew this simple tool would probably never scale to other future problems, but she
didn’t have other objections. Rather than try to predict future usage, she instead
made it relatively easy to replace by placing it behind an API. In the last responsible
moment, answer questions such as “Do I have to make this decision now?”, “Is there a
way to safely defer this decision without slowing any work?”, and “What can I put in
place now that will suffice but I can easily change later if needed?”

Around the one-year anniversary, a second request for asynchronicity appeared in
the form of timed events around sales. The architect evaluated the situation and
decided that a second instance of BackgrounDRb would suffice, put it in place,
and moved on. At around the two-year anniversary, a third request appeared for
constantly updating values like caches and summaries. The team realized that the
current solution couldn’t handle the new workload. However, they now had a good
idea about what kind of asynchronous behavior the application needed. At that
point, the project switched over to Starling, a simple but more traditional message
queue. Because the original solution was isolated behind an interface, it took one
pair of developers less than one iteration (one week on that project) to complete the
transition—without disrupting other developers’ work on the project.

Because the architect put an anticorruption layer in place with an interface, replacing
one piece of functionality became a mechanical exercise. Building an anticorruption
layer encourages the architect to think about the semantics of what they need from
the library, not the syntax of the particular API. But this is not an excuse to abstract
all the things! Some development communities love preemptive layers of abstraction
to a distracting degree, but understanding suffers when you must call a Factory to
get a proxy to a remote interface to a Thing. Fortunately, most modern languages
and IDEs allow developers to be just in time when extracting interfaces. If a project

166 | Chapter 7: Building Evolvable Architectures

https://oreil.ly/kwV4y
https://oreil.ly/Ub25x

finds itself bound to an out-of-date library in need of change, the IDE can extract an
interface on behalf of the developer, making a Just In Time (JIT) anticorruption layer.

Build Just In Time anticorruption layers to insulate against library
changes.

Controlling the coupling points in an application, especially to external resources,
is one of an architect’s key responsibilities. Try to find the pragmatic time to add
dependencies. As an architect, remember that dependencies provide benefits but also
impose constraints. Make sure the benefits outweigh the cost in updates, dependency
management, and so on.

Developers understand the benefits of everything and the trade-offs of nothing!
—Rich Hickey, creator of Clojure

Architects must understand both benefits and trade-offs and build engineering prac‐
tices accordingly.

Using anticorruption layers encourages evolvability. While architects can’t predict
the future, we can at least lower the cost of change so that it doesn’t impact us so
negatively.

Build Sacrificial Architectures
In his book Mythical Man Month, Fred Brooks says to “Plan to Throw One Away”
when building a new software system.

The management question, therefore, is not whether to build a pilot system and throw
it away. You will do that. […] Hence plan to throw one away; you will, anyhow.

—Fred Brooks

His point was that once a team has built a system, they know all the unknown
unknowns and proper architecture decisions that are never clear from the outset—
the next version will profit from all those lessons. At an architectural level, developers
struggle to anticipate radically changing requirements and characteristics. One way to
learn enough to choose a correct architecture is to build a proof of concept. Martin
Fowler defines a sacrificial architecture as an architecture designed to be thrown away
if the concept proves successful. For example, eBay started as a set of Perl scripts
in 1995, migrated to C++ in 1997, and then to Java in 2002. Obviously, eBay has
been a resounding success in spite of rearchitecting the system several times. Twitter
is another good example of successful utilization of this approach. When Twitter
released, it was written in Ruby on Rails to achieve fast time to market. However,

Guidelines for Building Evolutionary Architectures | 167

https://oreil.ly/cCgfe
https://oreil.ly/sNPtz

as Twitter became popular, the platform couldn’t support the scale, resulting in
frequent crashes and limited availability. Many early users became all too familiar
with Twitter’s failure beacon, shown in Figure 7-9.

Figure 7-9. Twitter’s famous Fail Whale

Thus, Twitter restructured its architecture to replace the backend with something
more robust. However, it could be argued that this tactic is the reason the company
survived. If the Twitter engineers had built the final, robust platform from the
beginning, it would have delayed their entry into the market long enough for Snitter
or some alternative short-form messaging service to beat them to market. Despite the
growing pains, starting with a sacrificial architecture eventually paid off.

Cloud environments make sacrificial architecture more attractive. If developers have
a project they want to test, building the initial version in the cloud greatly reduces
the resources required to release the software. If the project is successful, architects
can take the time to build a more suitable architecture. If developers are careful about
anticorruption layers and other evolutionary architecture practices, they can mitigate
some of the pains of the migration.

Many companies build a sacrificial architecture to achieve a minimum viable product
to prove a market exists. While this is a good strategy, the team must eventually
allocate time and resources to build a more robust architecture, hopefully less visibly
than Twitter.

One other aspect of technical debt impacts many initially successful projects, eluci‐
dated again by Fred Brooks, when he refers to the second system syndrome—the
tendency of small, elegant, and successful systems to evolve into giant, feature-laden
monstrosities due to inflated expectations. Business people hate to throw away
functioning code, so architecture tends toward always adding, never removing, or
decommissioning.

Technical debt works effectively as a metaphor because it resonates with project
experience and represents faults in design, regardless of the driving forces behind
them. Technical debt aggravates inappropriate coupling on projects—poor design
frequently manifests as pathological coupling and other antipatterns that make

168 | Chapter 7: Building Evolvable Architectures

https://oreil.ly/SgSj8

restructuring code difficult. As developers restructure architecture, their first step
should be to remove the historical design compromises that manifest as technical
debt.

Mitigate External Change
A common feature of every development platform is external dependencies: tools,
frameworks, libraries, and other assets provided by and (more importantly) updated
via the internet. Software development sits on a towering stack of abstractions, each
built on the abstractions before. For example, operating systems are an external
dependency outside the developer’s control. Unless companies want to write their
own operating system and all other supporting code, they must rely on external
dependencies.

Most projects rely on a dizzying array of third-party components, applied via build
tools. Developers like dependencies because they provide benefits, but many devel‐
opers ignore the fact that they come with a cost as well. When relying on code
from a third party, developers must create their own safeguards against unexpected
occurrences: breaking changes, unannounced removal, and so on. Managing these
external parts of projects is critical to creating evolutionary architecture.

The 11 Lines of Code That Broke the Internet
In early 2016, JavaScript developers learned a harsh lesson about the hazards of
depending on trivial things. A developer who had created a large number of small
utilities became disgruntled because one of his modules clashed with the name of a
commercial software project, which asked him to rename his module. Rather than
comply, he removed more than 250 of his modules, including one library called left
pad.io, 11 lines of code to pad strings with zeros or spaces (if 11 lines of code can be
called a “library”). Unfortunately, many major JavaScript projects (including node.js)
relied on this dependency. When it disappeared, everyone’s JavaScript deployments
broke.

The repository administrator for JavaScript packages took the unprecedented move of
restoring the code to restore the ecosystem, but it spawned a deeper conversation in
the community about the wisdom of the trends around dependency management.

This story contains two valuable lessons for architects. First, remember that external
libraries provide both benefits and cost. Make sure the benefits justify the cost.
Second, don’t allow external forces to affect the stability of your builds. If an upstream
required dependency suddenly disappears, you should reject that change.

Guidelines for Building Evolutionary Architectures | 169

In “Go To Statement Considered Harmful,” Edsger Dijkstra’s March 1968 letter
to the Editor of Communications of the ACM, the legendary figure in computer
science famously punctured the existing best practice of unstructured coding, leading
eventually to the structured programming revolution. Since that time, “considered
harmful” has become a trope in software development.

Transitive dependency management is our “considered harmful” moment.
—Chris Ford (no relation to Neal)

Chris’s point is that, until we recognize the severity of the problem, we cannot
determine a solution. While we’re not offering a solution to the problem, we need to
highlight it because it critically affects evolutionary architecture. Stability is one of the
foundations of both Continuous Delivery and evolutionary architecture. Developers
cannot build repeatable engineering practices atop uncertainty. Allowing third parties
to make changes to core dependencies defies this principle.

We recommend that developers take a more proactive approach to dependency man‐
agement. A good start on dependency management models external dependencies
using a pull model. For example, set up an internal version-control repository to act
as a third-party component store, and treat changes from the outside world as pull
requests to that repository. If a beneficial change occurs, allow it into the ecosystem.
However, if a core dependency disappears suddenly, reject that pull request as a
destabilizing force.

Using a Continuous Delivery mindset, the third-party component repository utilizes
its own deployment pipeline. When an update occurs, the deployment pipeline incor‐
porates the change, then performs a build and smoke test on the affected applications.
If successful, the change is allowed into the ecosystem. Thus, third-party dependen‐
cies use the same engineering practices and mechanisms of internal development,
usefully blurring the lines across this often unimportant distinction between in-house
written code and dependencies from third parties—at the end of the day, it’s all code
in a project.

Updating Libraries Versus Frameworks
Architects make a common distinction between libraries and frameworks, with the
colloquial definition of “a developer’s code calls a library whereas the framework
calls a developer’s code.” Generally, developers subclass from frameworks (which in
turn call those derived classes), thus the distinction that the framework calls code.
Conversely, library code generally comes as a collection of related classes and/or
functions developers call as needed. Because the framework calls the developer’s code,
it creates a high degree of coupling to the framework. Contrast that with library code,
which is generally more utilitarian code (like XML parsers, network libraries, etc.)
and has a lower degree of coupling.

170 | Chapter 7: Building Evolvable Architectures

We prefer libraries because they introduce less coupling to your application, making
them easier to swap out when the technical architecture needs to evolve.

Prefer libraries over frameworks where possible.

One reason to treat libraries and frameworks differently comes down to engineering
practices. Frameworks include capabilities such as UI, object-relational mapper, scaf‐
folding like model-view-controller, and so on. Because the framework forms the scaf‐
folding for the remainder of the application, all the code in the application is subject
to impact by changes to the framework. Many of us have felt this pain viscerally—any
time a team allows a fundamental framework to become outdated by more than two
major versions, the effort (and pain) to finally update it is excruciating.

Because frameworks are a fundamental part of applications, teams must be aggressive
about pursuing updates. Libraries generally form less brittle coupling points than
frameworks do, allowing teams to be more casual about upgrades. One informal
governance model treats framework updates as push updates and library updates as
pull updates. When a fundamental framework (one whose afferent/efferent coupling
numbers are above a certain threshold) updates, teams should apply the update as
soon as the new version is stable and they can allocate time for the change. Even
though it will take time and effort, the time spent early is a fraction of the cost if the
team perpetually procrastinates on the update.

Because most libraries provide utilitarian functionality, teams can afford to update
them only when new desired functionality appears, using more of an “update when
needed” model.

Update framework dependencies aggressively; update libraries
passively.

Version Services Internally
In any integration architecture, developers inevitably must version service endpoints
as the behavior evolves. Developers use two common patterns to version endpoints,
Version Numbering or Internal Resolution. For version numbering, developers create
a new endpoint name, often including the version number, when a breaking change
occurs. This allows older integration points to call the legacy version while newer
ones call the newer version. The alternative is internal resolution, where callers never

Guidelines for Building Evolutionary Architectures | 171

change the endpoint—instead, developers build logic into the endpoint to determine
the context of the caller, returning the correct version. The advantage of retaining the
name forever is less coupling to specific version numbers in calling applications.

In either case, severely limit the number of supported versions. The more versions
there are, the more testing and other engineering burdens there will be. Strive to
support only two versions at a time, and only temporarily.

When versioning services, prefer internal versioning to numbering;
support only two versions at a time.

Case Study: Evolving PenultimateWidgets’ Ratings
PenultimateWidgets has a microservices architecture so the developers can make
small changes. Let’s look more closely at the details of one of those changes, switching
star ratings, as outlined in Chapter 3. Currently, PenultimateWidgets has a star rating
service, whose parts are shown in Figure 7-10.

Figure 7-10. The internals of PenultimateWidgets’ StarRating service

As shown in Figure 7-10, the star rating service consists of a database and a layered
architecture, with persistence, business rules, and a UI. Not all of PenultimateWidg‐
ets’ microservices include the UI. Some services are primarily informational, whereas
others have UIs tightly coupled to the service’s behavior, as is the case with star
ratings. The database is a traditional relational database that includes a column to
track ratings for a particular item ID.

172 | Chapter 7: Building Evolvable Architectures

When the team decided to update the service to support half-star ratings, they
modified the original service as shown in Figure 7-11.

Figure 7-11. The transitional phase, where StarRating supports both types

In Figure 7-11, they added a new column to the database to handle the additional
data—whether a rating has an additional half-star. The architects also added a proxy
component to the service to resolve the return differences at the service boundary.
Rather than force calling services to “understand” the version numbers of this service,
the star rating service resolves the request type, sending back whichever format is
requested. This is an example of using routing as an evolutionary mechanism. The
star rating service can exist in this state as long as some services still want star ratings.

Once the last dependent service has evolved away from whole-star ratings, developers
can remove the old code path, as shown in Figure 7-12.

Developers can remove the old code path and perhaps remove the proxy layer to
handle version differences (or perhaps leave it to support future evolution).

Guidelines for Building Evolutionary Architectures | 173

Figure 7-12. The ending state of StarRating, supporting only the new type of rating

In this case, PenultimateWidgets’ change wasn’t difficult from a data evolution stand‐
point because the developers were able to make an additive change, meaning they
can add to the database schema rather than change it. What about the case where the
database must change as well because of a new feature? Refer to the discussion on
evolutionary data design in Chapter 6.

Fitness Function-Driven Architecture
A common practice in agile software development is test-driven development, where
developers write unit tests before writing the corresponding functionality. A similar
process can be used in architecture, particularly when the success of the application
depends on meeting some stringent capabilities. Building a fitness function that
governs that capability to help drive design ensures that it stays top of mind as the
architect designs other parts.

The creators of the LMAX architecture famously utilized this approach. Because of
changes to laws governing markets in a particular country, regular citizens could par‐
ticipate in the market online (buying and selling) without needing a special license.
However, for this application to be successful, they had to be able to manage millions
of transactions per second. For various reasons, the technology platform of choice
was Java, which wasn’t known for scale at this level by default. Thus, the first thing
they built was a fitness function that measured transaction speed, and they started
experimenting with designs to achieve this high goal. They started with threads but
couldn’t get even close to the desired goal. Next, they tried various implementations

174 | Chapter 7: Building Evolvable Architectures

https://oreil.ly/8YJ92

of the actor model but also couldn’t get near their goal. In measuring every part of the
system, they realized that the business logic they were running was a tiny percentage
of computation time—everything else was a context switch.

Armed with this knowledge, they designed an architecture approach known as input
and output disruptors, which used a single thread and ring buffers to eventually
achieve over six million transactions per second on a single thread. The architecture
is described in detail at https://martinfowler.com/articles/lmax.html (and many parts
are open source).

During this process, the team popularized the term mechanical sympathy in relation
to hardware and software, based on one of the architects being a fan of Formula One
racing. In that sport, commentators note that really great drivers have “mechanical
sympathy” for their car—they understand how each part works and can “feel” when
things are good or bad. In software, mechanical sympathy refers to understanding
the layers underneath abstractions to fully understand what drives each piece of, for
example, performance. When a request/response sequence occurs, exactly what takes
time during that call, all the way down to the network layer, and how might a team
optimize it?

Mechanical sympathy requires fitness functions both to define aspirational goals and
to govern those strict requirements as changes occur. Once the LMAX team achieved
their initial goal, they left the fitness functions in place as they built out the remainder
of the solution, changing directions several time as approaches came into conflict
with their fitness functions.

A number of software development teams have started adopting this approach
of Fitness Function–Driven Architecture, particularly in situations like the above
where meeting some aspirational architecture characteristic’s goal determines success.
Just as in test-driven development, fitness function–driven architecture ensures that
changes don’t impact success criteria.

Summary
Like all things in software architecture, the aspects of evolutionary architecture can‐
not be separated—fitness function and structure collaborate to help architects build
evolvability.

It took many years for practices such as continuous integration and test-driven devel‐
opment to become standard parts of software engineering practices. Many architects
use pieces of evolutionary architecture with monitors, ad hoc metrics, and other
occasionally applied verifications but still use outdated governance such as architec‐
ture review boards, code reviews, and other proven ineffective practices.

Summary | 175

https://oreil.ly/6g2mk
https://oreil.ly/HLVIo
https://oreil.ly/HLVIo
https://martinfowler.com/articles/lmax.html

Architects who want to build systems that can survive many changes in both domain
and technology can build fitness functions and control coupling via contracts to
build systems that provide high degrees of feedback about important things. As a
few of the thousand things that make up our software change, architects need confi‐
dence that everything still works correctly, provided by the practices of evolutionary
architecture.

176 | Chapter 7: Building Evolvable Architectures

CHAPTER 8

Evolutionary Architecture
Pitfalls and Antipatterns

We’ve spent a lot of time discussing appropriate levels of coupling in architectures.
However, we also live in the real world, and see lots of coupling that harms a project’s
ability to evolve.

We identify two kinds of bad engineering practices that manifest in software projects
—pitfalls and antipatterns. Many developers use the word antipattern as jargon for
“bad,” but the real meaning is more subtle. A software antipattern has two parts.
First, an antipattern is a practice that initially looks like a good idea but turns out
to be a mistake. Second, better alternatives exist for most antipatterns. Architects
notice many antipatterns only in hindsight, so they are hard to avoid. A pitfall looks
superficially like a good idea but immediately reveals itself to be a bad path. We cover
both pitfalls and antipatterns in this chapter.

Technical Architecture
In this section, we focus on common practices in the industry that specifically harm a
team’s ability to evolve the architecture.

Antipattern: Last 10% Trap and Low Code/No Code
Neal once was the CTO of a consulting firm that built projects for clients in a
variety of 4GLs, including Microsoft Access. He assisted in the decision to eliminate
Access and eventually all the 4GLs from the business after observing that every
Access project started as a booming success but ended in failure, and he wanted
to understand why. He and a colleague observed that, in Access and other 4GLs
popular at the time, 80% of what the client wanted was quick and easy to build.

177

These environments were modeled as rapid application development tools, with
drag-and-drop support for UIs and other niceties. However, the next 10% of what
the client wanted was, while possible, extremely difficult—because that functionality
wasn’t built into the tool, framework, or language. So clever developers figured out a
way to hack tools to make things work: adding a script to execute where static things
were expected, chaining methods, and other hacks. The hack only gets you from 80%
to 90%. Ultimately the tool can’t solve the problem completely—a phrase we coined
as the Last 10% Trap—leaving every project a disappointment. While 4GLs made it
easy to build simple things fast, they didn’t scale to meet the demands of the real
world. Developers returned to general-purpose languages.

The Last 10% Trap manifests periodically in waves of tools meant to remove the
complexity of software development while (allegedly) allowing full-featured develop‐
ment, with predictable results. The current manifestation of this trend lies with
low-code/no-code development environments, ranging from full-stack development to
specialized tools like orchestrators.

While there is nothing wrong with low-code environments, they are almost univer‐
sally oversold as a panacea for software development, one that business stakeholders
are eager to embrace for perceived speed of delivery. Architects should consider them
for specialized tasks but realize up front that limitations exist and try to determine
what impacts those limitations will have in their ecosystem.

Generally, when experimenting with a new tool or framework, developers create the
simplest “Hello, World” project possible. With low-code environments, easy things
should be incredibly easy. Instead, what the architect needs to know is what the tool
cannot do. Thus, instead of simple things, try to find the limits early, to allow building
alternatives for what the tool cannot handle.

For low-code/no-code tools, evaluate the hardest problems first,
not the easiest ones.

Case Study: Reuse at PenultimateWidgets
PenultimateWidgets has highly specific requirements for data input in a specialized
grid for its administration functionality. Because the application required this view in
multiple places, PenultimateWidgets decided to build a reusable component, includ‐
ing UI, validation, and other useful default behaviors. By using this component,
developers can build new, rich administration interfaces easily.

However, virtually no architecture decision comes without some trade-off baggage.
Over time, the component team has become their own silo within the organization,

178 | Chapter 8: Evolutionary Architecture Pitfalls and Antipatterns

tying up several of PenultimateWidgets’ best developers. Teams that use the compo‐
nent must request new features through the component team, which is swamped
with bug fixes and feature requests. Worse, the underlying code hasn’t kept up with
modern web standards, making new functionality hard or impossible.

While the PenultimateWidgets architects achieved reuse, it eventually resulted in a
bottleneck effect. One advantage of reuse is that developers can build new things
quickly. Yet, unless the component team can keep up with the innovation pace
of the dynamic equilibrium, technical architecture component reuse is doomed to
eventually become an antipattern.

We’re not suggesting teams avoid building reusable assets, but rather that they eval‐
uate them continually to ensure they still deliver value. In the case of Penultimate‐
Widgets, once architects realized that the component was a bottleneck, they broke
the coupling point. Any team that wants to fork the component code to add their
own new features is allowed to do so (as long as the application development team
supports the changes), and any team that wants to opt out to use a new approach is
unshackled from the old code entirely.

Two pieces of advice emerge from PenultimateWidgets’ experience. First, when cou‐
pling points impede evolution or other important architectural characteristics, break
the coupling by forking or duplication.

In PenultimateWidgets’ case, they broke the coupling by allowing teams to take
ownership of the shared code themselves. While adding to their burden, it released
the drag on their ability to deliver new features. In other cases, perhaps some shared
code can be abstracted from the larger piece, allowing more selective coupling and
gradual decoupling.

Second, architects must continually evaluate the fitness of the “-ilities” of the architec‐
ture to ensure they still add value and haven’t become antipatterns.

All too often architects make a decision that is the correct decision at the time
but becomes a bad decision over time because of changing conditions like dynamic
equilibrium. For example, architects design a system as a desktop application, yet the
industry herds them toward a web application as users’ habits change. The original
decision wasn’t incorrect, but the ecosystem shifted in unexpected ways.

Antipattern: Vendor King
Some large enterprises buy enterprise resource planning (ERP) software to handle
common business tasks like accounting, inventory management, and other common
chores. This works if companies are willing to bend their business processes and
other decisions to accommodate the tool, and it can be used strategically when
architects understand limitations as well as benefits.

Technical Architecture | 179

However, many organizations become overambitious with this category of software,
leading to the Vendor King antipattern, an architecture built entirely around a ven‐
dor’s product that pathologically couples the organization to a tool. Companies that
buy vendor software plan to augment the package via its plug-ins to flesh out the
core functionality to match their business. However, a lot of the time ERP tools
can’t be customized enough to fully implement what is needed, and developers find
themselves hamstrung by the limitations of the tool and the fact that they have
centered the architectural universe on it. In other words, architects have made the
vendor the king of the architecture, dictating future decisions.

To escape this antipattern, treat all software as just another integration point, even if
it initially has broad responsibilities. By assuming integration at the outset, develop‐
ers can more easily replace behavior that isn’t useful with other integration points,
dethroning the king.

By placing an external tool or framework at the heart of the architecture, developers
severely restrict their ability to evolve in two key ways, both technically and from a
business process standpoint. Developers are technically constrained by choices the
vendor makes in terms of persistence, supported infrastructure, and a host of other
constraints. From a business standpoint, large encapsulating tools ultimately suffer
from the problems discussed in “Antipattern: Last 10% Trap and Low Code/No Code”
on page 177. From a business process standpoint, the tool simply can’t support the
optimal workflow; this is a side effect of the Last 10% Trap. Most companies end
up knuckling under the framework, modifying their processes rather than trying
to customize the tool. The more companies do that, the fewer differentiators exist
between companies, which is fine as long as that differentiation isn’t a competitive
advantage. Companies often choose the alternative, discussed in “Pitfall: Product
Customization” on page 188, which is another trap.

The Let’s Stop Working and Call It a Success principle is one developers commonly
encounter when dealing with ERP packages in the real world. Because they require
huge investments of both time and money, companies are reluctant to admit when
they don’t work. No CTO wants to admit they wasted millions of dollars, and the
tool vendor doesn’t want to admit to a bad multiyear implementation. Thus, each side
agrees to stop working and call it a success, with much of the promised functionality
unimplemented.

Don’t couple your architecture to a vendor king.

180 | Chapter 8: Evolutionary Architecture Pitfalls and Antipatterns

Rather than fall victim to the Vendor King antipattern, treat vendor products as
just another integration point. Developers can insulate vendor tool changes from
impacting their architecture by building anticorruption layers between integration
points.

Pitfall: Leaky Abstractions
All nontrivial abstractions, to some degree, are leaky.

—Joel Spolsky

Modern software resides in a tower of abstractions: operating systems, frameworks,
dependencies, and a host of other pieces. As developers, we build abstractions so that
we don’t have to perpetually think at the lowest levels. If developers were required
to translate the binary digits that come from hard drives into text to program, they
would never get anything done! One of the triumphs of modern software is how well
we can build effective abstractions.

But abstractions come at a cost because no abstraction is perfect—if it were, it
wouldn’t be an abstraction; it would be the real thing. As Joel Spolsky put it, all
nontrivial abstractions leak. This is a problem for developers because we come to
trust that abstractions are always accurate, but they often break in surprising ways.

Increased tech stack complexity has made the abstraction distraction problem worse
recently. Consider the typical technology stack, circa 2005, shown in Figure 8-1.

Figure 8-1. A typical technology stack in 2005

Technical Architecture | 181

In the software stack depicted in Figure 8-1, the vendor names on the boxes change
depending on local conditions. Over time, as software has become increasingly speci‐
alized, our technology stack has become more complex, as illustrated in Figure 8-2.

Figure 8-2. A typical software stack from the last decade, with lots of moving parts

As seen in Figure 8-2, every part of the software ecosystem has expanded and become
more complex. As the problems developers face have become more complex, so have
their solutions.

182 | Chapter 8: Evolutionary Architecture Pitfalls and Antipatterns

Primordial abstraction ooze, where a breaking abstraction at a low level causes unex‐
pected havoc, is one of the side effects of increasing complexity in the technology
stack. What if one of the abstractions at the lowest level exhibits a fault—for example,
some unexpected side effect from a seemingly harmless call to the database? Because
so many layers exist, the fault will wind its way to the top of the stack, perhaps
metastasizing along the way, manifesting in a deeply embedded error message at the
UI. Debugging and forensic analysis become more difficult as the complexity of the
technology stack increases.

Always fully understand at least one abstraction layer below the one you normally
work in.

—Many software sages

While understanding the layer below is good advice, this becomes more difficult as
the software becomes more specialized and therefore more complex.

Increased technology stack complexity is an example of the dynamic equilibrium
problem. Not only does the ecosystem change, but the constituent parts become
more complex and intertwined over time as well. Our mechanism for protecting
evolutionary change—fitness functions—can protect the fragile join points of archi‐
tecture. Architects define invariants at key integration points as fitness functions,
which run as part of a deployment pipeline, ensuring abstractions don’t start to leak
in undesirable ways.

Understand the fragile places within your complex technology
stack and automate protections via fitness functions.

Pitfall: Resume-Driven Development
Architects become enamored of exciting new developments in the software develop‐
ment ecosystem and want to play with the newest toys. However, to choose an
effective architecture, they must look closely at the problem domain and choose
the most suitable architecture that delivers the most desired capabilities with the
fewest damaging constraints. Unless, of course, the goal of the architecture is the
resume-driven development pitfall—utilizing every framework and library possible to
tout that knowledge on a resume.

Don’t build architecture for the sake of architecture—you are try‐
ing to solve a problem.

Technical Architecture | 183

Always understand the problem domain before choosing an architecture rather than
the other way around.

Incremental Change
Many factors in software development make incremental change difficult. For many
decades, software wasn’t written with the goal of agility in mind but rather around
goals like cost reduction, shared resources, and other external constraints. Conse‐
quently, many organizations don’t have the building blocks in place to support evolu‐
tionary architectures.

As discussed in the book Continuous Delivery (Addison-Wesley), many modern engi‐
neering practices support evolutionary architecture.

Antipattern: Inappropriate Governance
Software architecture never exists in a vacuum; it is often a reflection of the environ‐
ment in which it was designed. A decade ago, operating systems were expensive,
commercial offerings. Similarly, database servers, application servers, and the entire
infrastructure for hosting applications was commercial and expensive. Architects
responded to these real-world pressures by designing architectures to maximize
shared resources. Many architecture patterns like SOA flourished in that era. A com‐
mon governance model evolved in that environment to maximize shared resources as
a cost-saving measure. Many of the commercial motivations for tools like application
servers grew from this tendency. However, packing multiple resources on machines
is undesirable from a development standpoint because of inadvertent coupling. No
matter how effective the isolation is between shared resources, resource contention
eventually rears its head.

Over the past decade, changes have occurred to the dynamic equilibrium of the
development ecosystem. Now developers can build architectures where components
have a high degree of isolation (like microservices), eliminating the accidental cou‐
pling exacerbated by shared environments. But many companies still adhere to the
old governance playbook. A governance model that values shared resources and
homogenized environments makes less sense because of recent improvements such as
the DevOps movement.

Every company is now a software company.
—Forbes Magazine, Nov. 30, 2011

What Forbes means in that famous quote is that if an airline company’s iPad applica‐
tion is terrible, it will eventually impact the company’s bottom line. Software compe‐
tency is required for any cutting-edge company, and increasingly for any company

184 | Chapter 8: Evolutionary Architecture Pitfalls and Antipatterns

http://continuousdelivery.com

that wishes to remain competitive. Part of that competency includes how it manages
development assets like environments.

When developers can create resources like virtual machines and containers for no
cost (either monetary or time), a governance model that values a single solution
becomes innappropriate governance. A better approach appears in many microser‐
vices environments. One common characteristic of microservices architectures is the
embrace of polyglot environments, where each service team can choose a suitable
technology stack to implement their service rather than try to homogenize on a cor‐
porate standard. Traditional enterprise architects cringe when they hear that advice,
which is the polar opposite of the traditional approach. However, the goal in most
microservices projects isn’t to pick different technologies cavalierly to right-size the
technology choice for the size of the problem.

In modern environments, it is inappropriate governance to homogenize on a single
technology stack. This leads to the inadvertent overcomplication problem, where
governance decisions add useless multipliers to the effort required to implement
a solution. For example, standardizing on a single vendor’s relational database is
a common practice in large enterprises, for obvious reasons: consistency across
projects, easily fungible staff, and so on. However, a side effect of that approach is
that most projects suffer from overengineering. When developers build monolithic
architectures, governance choices affect everyone. Thus, when choosing a database,
the architect must look at the requirements of every project that will use this capabil‐
ity and make a choice that will serve the most complex case. Unfortunately, many
projects won’t have the most complex case or anything like it. A small project may
have simple persistence needs yet must take on the full complexity of an industrial-
strength database server for consistency.

With microservices, because none of the services are coupled via technical or data
architecture, different teams can choose the right level of complexity and sophistica‐
tion required to implement their service. The ultimate goal is simplification, to align
service stack complexity to technical requirements. This partitioning tends to work
best when the team wholly owns their service, including the operational aspects.

Forced Decoupling
One of the goals of the microservices architecture style is extreme decoupling of the
technical architecture, allowing services to be replaced with no side effects. However,
if developers all share the same codebase or even platform, not coupling requires
some degree of developer discipline (because the temptation to reuse existing code is
strong) and safeguards to make sure coupling doesn’t happen by accident. Building
services in different technology stacks is one way to achieve technical architecture
decoupling. Many companies try to avoid this approach because they fear it hurts
the ability to move employees across projects. However, Chad Fowler, an architect at

Incremental Change | 185

http://chadfowler.com

the former company Wunderlist, took the opposite approach: he insisted that teams
use different technology stacks to avoid inadvertent coupling. His philosophy is that
accidental coupling is a bigger problem than developer portability.

Many companies are encapsulating distinct functionality into a platform as a service
for use internally, hiding technology choices (and therefore coupling opportunities)
behind well-defined interfaces.

From a practical governance standpoint in large organizations, we find the “just
enough” governance model works well: pick three technology stacks for standardiza‐
tion—simple, intermediate, and complex—and allow individual service requirements
to drive stack requirements. This gives teams the flexibility to choose a suitable
technology stack while still providing the company some benefits of standards.

Case Study: “Just Enough” Governance at PenultimateWidgets
For years, architects at PenultimateWidgets tried to standardize all development on
Java and Oracle. However, as they built more granular services, they realized that
this stack imposed a great deal of complexity on small services. But they didn’t want
to fully embrace the “every project chooses their own technology stack” approach
of microservices because they still wanted some portability of knowledge and skills
across projects. In the end, they chose the “just enough” governance route with three
technology stacks:

Small
For very simple projects without stringent scalability or performance require‐
ments, they chose Ruby on Rails and MySQL.

Medium
For medium projects, they chose GoLang and either Cassandra, MongoDB, or
MySQL as the backend, depending on the data requirements.

Large
For large projects, they stayed with Java and Oracle, as they work well with
variable architecture concerns.

Pitfall: Lack of Speed to Release
The engineering practices in Continuous Delivery address the factors that slow down
software releases, and those practices should be considered axiomatic for evolution‐
ary architecture to be successful. While the extreme version of Continuous Delivery,
continuous deployment, isn’t required for an evolutionary architecture, a strong
correlation exists between the ability to release software and the ability to evolve that
software design.

186 | Chapter 8: Evolutionary Architecture Pitfalls and Antipatterns

https://oreil.ly/fl3h7
http://continuousdelivery.com

If companies build an engineering culture around continuous deployment, expecting
that all changes will make their way to production only if they pass the gauntlet laid
out by the deployment pipeline, developers become accustomed to constant change.
On the other hand, if releases are a formal process that require a lot of specialized
work, the chances of being able to leverage evolutionary architecture diminish.

Continuous Delivery strives for data-driven results, employing metrics to learn how
to optimize projects. Developers must be able to measure things to understand
how to make them better. One of the key metrics Continuous Delivery tracks is
cycle time, a metric related to lead time: the time between the initiation of an idea
and that idea manifesting in working software. However, lead time includes many
subjective activities, such as estimation, prioritization, and others, making it a poor
engineering metric. Instead, Continuous Delivery tracks cycle time: the elapsed time
between the initiation and completion of a unit of work, which in this case is software
development. The cycle time clock starts when a developer starts working on a new
feature and expires when that feature is running in a production environment. The
goal of cycle time is to measure engineering efficiency; the reduction of cycle time is
one of the key goals of Continuous Delivery.

Cycle time is critical for evolutionary architecture as well. In biology, fruit flies are
commonly used in experiments to illustrate genetic characteristics partially because
they have a rapid life cycle—new generations appear fast enough to see tangible
results. The same is true in evolutionary architecture—faster cycle time means the
architecture can evolve more quickly. Thus, a project’s cycle time determines how fast
the architecture can evolve. In other words, evolution speed is proportional to cycle
time, as expressed by

v ∝ c

where v represents velocity of change and c is cycle time. Developers cannot evolve
the system faster than the project’s cycle time. In other words, the faster that teams
can release software, the faster they can evolve parts of their system.

Cycle time is therefore a critical metric in evolutionary architecture projects—faster
cycle time implies a faster ability to evolve. In fact, cycle time is an excellent candidate
for an atomic, process-based fitness function. For example, developers set up a
project with a deployment pipeline with automation, achieving a cycle time of three
hours. Over time, the cycle time gradually increases as developers add more verifica‐
tions and integration points to the deployment pipeline. Because time to market is an
important metric on this project, they establish a fitness function to raise an alarm
if the cycle time creeps beyond four hours. Once it has hit the threshold, developers
may decide to restructure how their deployment pipeline works or decide that a four-
hour cycle time is acceptable. Fitness functions can map to any behavior developers
want to monitor on projects, including project metrics. Unifying project concerns as

Incremental Change | 187

fitness functions allows developers to set up future decision points, also known as the
last responsible moment, to reevaluate decisions. In the previous example, developers
now must decide which is more important: a three-hour cycle time or the set of tests
they have in place. On most projects, developers make this decision implicitly by
never noticing a gradually rising cycle time and thus never prioritizing conflicting
goals. With fitness functions, they can install thresholds around anticipated future
decision points.

Speed of evolution is a function of cycle time; faster cycle time
allows faster evolution.

Good engineering, deployment, and release practices are critical to success with an
evolutionary architecture, which in turn allows new capabilities for the business via
hypothesis-driven development.

Business Concerns
Finally, we talk about inappropriate coupling driven by business concerns. Most of
the time, business people aren’t nefarious characters trying to make things difficult
for developers; rather, they have priorities that drive inappropriate decisions from an
architectural standpoint, which inadvertently constrain future options. We cover a
handful of business pitfalls and antipatterns.

Pitfall: Product Customization
Salespeople want options to sell. The caricature of salespeople has them selling any
requested feature before determining whether their product actually contains that
feature. Thus, salespeople want infinitely customizable software to sell. However, that
capability comes at a cost along a spectrum of implementation techniques:

Unique build for each customer
In this scenario, salespeople promise unique versions of features on a tight time
scale, forcing developers to use techniques like version control branches and
tagging to track versions.

Permanent feature toggles
Feature toggles, which we introduced in Chapter 3, are sometimes used strategi‐
cally to create permanent customizations. Developers can use feature toggles to
either build different versions for different clients or create a “freemium” version
of a product—a free version that allows users to unlock premium features for a
cost.

188 | Chapter 8: Evolutionary Architecture Pitfalls and Antipatterns

Product-driven customization
Some products go so far as to add customization via the UI. Features in this case
are permanent parts of the application and require the same care as all other
product features.

With both feature toggles and customization, the testing burden increases signifi‐
cantly because the product contains many permutations of possible pathways. Along
with testing scenarios, the number of fitness functions developers need to develop
likely increases as well, to protect possible permutations.

Customization also impedes evolvability, but this shouldn’t discourage companies
from building customizable software; rather, they should realistically assess the asso‐
ciated costs.

Antipattern: Reporting Atop the System of Record
Most applications have different uses depending on the business function. For exam‐
ple, some users need order entry, while others require reports for analysis. Organ‐
izations struggle to provide all the possible perspectives (e.g., order entry versus
monthly reporting) required by businesses, especially if everything must come from
the same monolithic architecture and/or database structure. Architects struggled in
the service-oriented architecture era trying to support every business concern via the
same set of “reusable” services. They found that the more generic the service was, the
more developers needed to customize it to be of use.

Reporting is a good example of inadvertent coupling in monolithic architectures.
Architects and DBAs want to use the same database schema for both system of record
and reporting, but they encounter problems because a design to support both is
optimized for neither. A common pitfall developers and report designers conspire
to create in layered architecture illustrates the tension between concerns. Architects
build layered architecture to cut down on incidental coupling, creating layers of
isolation and separation of concerns. However, reporting doesn’t need separate lay‐
ers to support its function, just data. Additionally, routing requests through layers
adds latency. Thus, many organizations with good layered architectures allow report
designers to couple reports directly to database schemas, destroying the ability to
make changes to the schema without wrecking reports. This is a good example of
conflicting business goals subverting the work of architects and making evolutionary
change extremely difficult. While no one set out to make the system hard to evolve, it
was the cumulative effect of decisions.

Many microservices architectures solve the reporting problem by separating behav‐
ior, where the isolation of services benefits separation but not consolidation. Archi‐
tects commonly build these architectures using event streaming or message queues
to populate domain “system of record” databases, each embedded within the architec‐
tural quantum of the service, using eventual consistency rather than transactional

Business Concerns | 189

behavior. A set of reporting services also listens to the event stream, populating a
denormalized reporting database optimized for reporting. Using eventual consistency
frees architects from coordination—a form of coupling from an architectural stand‐
point—allowing different abstractions for different uses of the application.

For a more modern approach to reporting specifically and analytical data more
broadly, see “Data Mesh: Orthogonal Data Coupling” on page 119.

Pitfall: Excessively Long Planning Horizons
Budgeting and planning processes often drive the need for assumptions and early
decisions as the basis for those assumptions. However, the larger the planning hori‐
zon is without an opportunity to revisit the plan means many decisions (or assump‐
tions) are made with the least amount of information. In the early planning phases,
developers spend significant effort on activities like research, often in the form of
reading, to validate their assumptions. Based on their studies, what is “best practice”
or “best in class” at that time forms part of the basic fundamental assumptions before
developers write any code or release software to end users. More and more effort put
into the assumptions, even if they turn out to be false in six months, leads to a strong
attachment to them. The sunk cost fallacy describes decisions affected by emotional
investment. Put simply, the more someone invests time or effort into something, the
harder it becomes to abandon it. In software, this is seen in the form of the irrational
artifact attachment—the more time and effort you invest in planning or a document,
the more likely you will protect what’s contained in the plan or document even in the
face of evidence that it is inaccurate or outdated.

Don’t become irrationally attached to handcrafted artifacts.

Beware of long planning cycles that force architects into irreversible decisions and
find ways to keep options open. Breaking large programs of work into smaller, early
deliverables tests the feasibility of both the architectural choices and the development
infrastructure. Architects should avoid following technologies that require a signifi‐
cant up-front investment before software is actually built (e.g., large licenses and
support contracts) and before they have validated through end-user feedback that the
technology actually fits the problem they are trying to solve.

190 | Chapter 8: Evolutionary Architecture Pitfalls and Antipatterns

https://en.wikipedia.org/wiki/Sunk_costs

Summary
As in any architecture practice, evolutionary architecture embraces many trade-offs:
technical, business, operational, data, integration, and many more. Patterns (and
antipatterns) appear so much in architecture because they provide not only advice
but—critically—the context where that advice makes sense. Reusing software assets
is an obvious organizational goal, but architects must evaluate what trade-offs that
might entail: often, too much coupling is more harmful than duplication.

We discuss patterns but not best practices, which are virtually nonexistent in software
architecture. Best practice implies that an architect can turn their brain off whenever
they encounter a particular situation—after all, this is the best way to handle this
practice. However, everything in software architecture is a trade-off, meaning that
architects must evaluate trade-offs anew for virtually every decision. Patterns and
antipatterns can help identify contextualized advice and which antipatterns to avoid.

Summary | 191

CHAPTER 9

Putting Evolutionary Architecture
into Practice

Finally, we look at the steps required to implement the ideas around evolutionary
architecture. This includes both technical and business concerns, including organiza‐
tion and team impacts. We also suggest where to start and how to sell these ideas to
your business.

Organizational Factors
The impact of software architecture has a surprisingly wide breadth on a variety of
factors not normally associated with software, including team impacts, budgeting,
and a host of others. Let’s look at a common set of factors that impact your ability to
put evolutionary architecture into practice.

Don’t Fight Conway’s Law
In April 1968, Melvin Conway submitted a paper to Harvard Business Review titled
“How Do Committees Invent?”. In this paper, Conway introduced the notion that the
social structures, particularly the communication paths between people, inevitably
influence final product design.

As Conway describes, in the very early stage of the design, a high-level understanding
of the system is made to understand how to break down areas of responsibility into
different patterns. The way that a group breaks down a problem affects choices that
they can make later.

193

https://oreil.ly/bIOG5

He codified what has become known as Conway’s Law:

Organizations which design systems … are constrained to produce designs which are
copies of the communication structures of these organizations.

—Melvin Conway

As Conway notes, when technologists break down problems into smaller chunks
to delegate, they introduce coordination problems. In many organizations, formal
communication structures or rigid hierarchy appears to solve this coordination prob‐
lem but often leads to inflexible solutions. For example, in a layered architecture
where the team is separated by technical function (user interface, business logic,
etc.), solving common problems that cut vertically across layers increases coordina‐
tion overhead. People who have worked in startups and then have joined large
multinational corporations have likely experienced the contrast between the nimble,
adaptable culture of the former and the inflexible communication structures of the
latter. A good example of Conway’s Law in action might be trying to change the
contract between two services, which could be difficult if the successful change of
a service owned by one team requires the coordinated and agreed-upon effort of
another.

In his paper, Conway was effectively warning software architects to pay attention
not only to the architecture and design of the software, but also to the delegation,
assignment, and coordination of the work between teams.

In many organizations, teams are divided according to their functional skills. Some
common examples include:

Frontend developers
A team with specialized skills in a particular UI technology (e.g., HTML, mobile,
desktop)

Backend developers
A team with unique skills in building backend services, sometimes API tiers

Database developers
A team with unique skills in building storage and logic services

Consider the common structure/team alignment illustrated in Figure 9-1.

194 | Chapter 9: Putting Evolutionary Architecture into Practice

Figure 9-1. Layered architectures facilitate separating team members by technical
capabilities

This team organization works relatively well if companies utilize a layered architec‐
ture based on similar technical layers, modeled after observations in “Don’t Fight
Conway’s Law” on page 193. However, if a team switches to a distributed architecture
such as microservices yet keeps the same organization, the side effect is increased
messaging between layers, as illustrated in Figure 9-2.

Figure 9-2. Building microservices yet maintaining layers increases communication
overhead

Organizational Factors | 195

In Figure 9-2, changes to domain concepts like CatalogCheckout requires coordina‐
tion between all the technical parts of the domain, increasing the overhead and
slowing development.

In organizations with functional silos, management divides teams to make their
human resources department happy without much regard to engineering efficiency.
Although each team may be good at their part of the design (e.g., building a screen,
adding a backend API or service, or developing a new storage mechanism), to release
a new business capability or feature all three teams must be involved in building the
feature. Teams typically optimize for efficiency for their immediate tasks rather than
the more abstract, strategic goals of the business, particularly when under schedule
pressure. Instead of delivering an end-to-end feature value, teams often focus on
delivering components that may or may not work well with each other.

As Conway noted in his paper, every time a delegation is made and somebody’s scope
of inquiry is narrowed, the class of design alternatives which can be effectively pursued
is also narrowed. Stated another way, it’s hard for someone to change something if the
thing she wants to change is owned by someone else. Software architects should pay
attention to how work is divided and delegated to align architectural goals with team
structure.

Many companies that build architectures such as microservices structure their teams
around service boundaries rather than siloed technical architecture partitions. In
the ThoughtWorks Technology Radar, we call this the Inverse Conway Maneuver.
Organization of teams in such a manner is ideal because team structure will impact
myriad dimensions of software development and should reflect the problem size and
scope. For example, when building a microservices architecture, companies typically
structure teams that resemble the architecture by cutting across functional silos
and including team members who cover every angle of the business and technical
aspects of the architecture. Modeling the team to resemble the architecture appears in
Figure 9-3.

Separating teams to resemble architecture is becoming increasingly common as
teams realize the benefits of mapping teams to architecture.

Structure teams to look like your target architecture, and it will be
easier to achieve that architecture.

196 | Chapter 9: Putting Evolutionary Architecture into Practice

https://oreil.ly/MAQoN
https://oreil.ly/usLhg

Figure 9-3. Using the Inverse Conway Maneuver to simplify communication

Teams structured around domains rather than technical capabilities have several
advantages when it comes to evolutionary architecture and exhibit some common
characteristics.

Default to cross-functional teams
Domain-centric teams tend to be cross-functional, meaning every product role is
covered by someone on the team. The goal of a domain-centric team is to eliminate
operational friction. In other words, the team has all the roles needed to design,
implement, and deploy their service, including traditionally separate roles like oper‐
ations. But these roles must change to accommodate this new structure, which
includes the following roles:

Architecture
Design architecture to eliminate inappropriate coupling that complicates incre‐
mental change. Notice that this doesn’t require an exotic architecture like micro‐
services. A well-designed modular monolithic application may display the same
ability to accommodate incremental change (although architects must design the
application explicitly to support this level of change).

Business analysts
In products with high areas of domain complexity, due to complex rules, config‐
uration, or product history, business analysts (BAs) support the rest of the team
with expertise. In cross-functional teams, BAs are now co-located with the team
to provide fast feedback on proposed changes.

Organizational Factors | 197

Data
Database administrators, data analysts, and data scientists must deal with new
granularity, transaction, and system of record issues.

Developers
A fully cross-functional team for a complicated tech stack often requires develop‐
ers to be more T-shaped or “full-stack,” working in other areas they might have
avoided in their silos. For example, backend developers might do some mobile or
web development or vice versa.

Designers
Designers in cross-functional teams can work closely with their team on user-
facing features but may need to spend more time with other designers from
other cross-functional teams contributing to the same product to guarantee
consistency across the user interface.

Operations
Slicing up services and deploying them separately (often alongside existing serv‐
ices and deployed continuously) is a daunting challenge for many organizations
with traditional IT structures. Naïve old-school architects believe that component
and operational modularity are the same thing, but this is often not the case
in the real world. Automating DevOps tasks like machine provisioning and
deployment is critical to success.

Product managers
Often described as the “CEO” for a product, most product managers (PMs)
prioritize customer needs and business outcomes for a certain product area
such as the “Growth” or Customer Registration area, Payment area, or Customer
Support. In a cross-functional setup, a PM no longer needs to coordinate with
many technical teams as they should have all the skills necessary to deliver on
their product area. Working in cross-functional teams gives the PM more time
to coordinate with others PMs or internal stakeholders to deliver a seamless
end-to-end product.

Testing
Testers must become accustomed to the challenges of integration testing across
domains, such as building integration environments, creating and maintaining
contracts, and so on.

One goal of cross-functional teams is to eliminate coordination friction. On tradi‐
tional siloed teams, developers often must wait on a DBA to make changes or wait for
someone in operations to provide resources. Making all the roles local eliminates the
incidental friction of coordination across silos.

While it would be luxurious to have every role filled by qualified engineers on
every project, most companies aren’t that lucky. Key skill areas are always con‐

198 | Chapter 9: Putting Evolutionary Architecture into Practice

strained by external forces like market demand. So, many companies aspire to create
cross-functional teams but cannot because of resources. In those cases, constrained
resources may be shared across projects. For example, rather than have one opera‐
tions engineer per service, perhaps they rotate across several different teams.

By modeling architecture and teams around the domain, the common unit of change
is now handled within the same team, reducing artificial friction. A domain-centric
architecture may still use layered architecture for its other benefits, such as separation
of concerns. For example, the implementation of a particular microservice might
depend on a framework that implements the layered architecture, allowing that
team to easily swap out a technical layer. Microservices encapsulate the technical
architecture inside the domain, inverting the traditional relationship.

Amazon’s “Two Pizza” Teams
Amazon became famous for its product team approach, which it called two-pizza
teams. Its philosophy is that no team shall be larger than can be fed with two large
pizzas. The motivation behind this partitioning is more about communication than
team size—the larger the team, the more people each team member must communi‐
cate with. Each team is cross-functional, and they also embrace the philosophy of
“you build it, you run it,” meaning each team has complete ownership of their service,
including operationalizing it.

Having small, cross-functional teams also takes advantage of human nature. Ama‐
zon’s “two-pizza team” mimics small-group primate behavior. Most sports teams
have around 10 players, and anthropologists believe that preverbal hunting parties
were also around this size. Building highly responsible teams leverages innate social
behavior, making team members more responsible. For example, suppose a developer
in a traditional project structure wrote some code two years ago that blew up in
the middle of the night, forcing someone in operations to respond to a pager in the
night and fix it. The next morning, our careless developer may not even realize they
accidentally caused a panic in the middle of the night. On a cross-functional team, if
the developer wrote code that blew up in the night and someone from his team had to
respond to it, the next morning our hapless developer would have to look across the
table at the sad, tired eyes of the team member they inadvertently affected. It should
make our errant developer want to be a better teammate.

Creating cross-functional teams prevents finger pointing across silos and engenders a
feeling of ownership in the team, encouraging team members to do their best work.

Organizational Factors | 199

Finding New Resources via Automating DevOps
Neal once consulted for a company that offered a hosted service. They had a dozen
development teams, all with well-defined modules. However, they had an operations
group who managed all maintenance, provisioning, monitoring, and other common
tasks. The manager commonly received complaints from developers who wanted
faster turnaround on needed resources like database and web servers. To alleviate
some of the pressure, he started assigning an operations person one day a week to
each project. During that day, the developers were happy as could be—no waiting
around for resources! Alas, the manager didn’t have enough resources to do that
regularly.

Or so he thought. We discerned that much of the manual work performed by opera‐
tions was accidental complexity: misconfigured machines, a hodgepodge of manufac‐
turers and brands, and many other repairable offenses. Once everything was well
cataloged, we helped them automate the provisioning of new machines using Puppet.
After this work, the operations team had enough members to permanently embed
an operations engineer on each project and still have enough people to manage the
automated infrastructure.

They didn’t hire new engineers, nor did they significantly change their job roles.
Instead, they applied modern engineering practices to automate things that humans
shouldn’t deal with regularly, freeing them to be better partners in development
efforts.

Organize teams around business capabilities
Organizing teams around domains implicitly means organizing them around busi‐
ness capabilities. Many organizations expect their technical architecture to represent
its own complex abstraction, loosely related to business behavior because architects’
traditional emphasis has been around purely technical architecture, that is typically
segregated by functionality. A layered architecture is designed to make swapping
technical architecture layers easier, not make working on a domain entity like
Customer easier. Most of this emphasis was driven by external factors. For example,
many architectural styles of the past decade focused heavily on maximizing shared
resources because of expense.

Architects have gradually detangled themselves from commercial restrictions via
the embrace of open source in all corners of most organizations. Shared resource
architecture has inherent problems around inadvertent interference between parts.
Now that developers have the option of creating custom-made environments and
functionality, it is easier for them to shift emphasis away from technical architectures
and focus more on domain-centric ones to better match the common unit of change
in most software projects.

200 | Chapter 9: Putting Evolutionary Architecture into Practice

http://puppetlabs.com

Organize teams around business capabilities, not job functions.

Balance cognitive load with business capabilities
Since we wrote the first edition of this book, our industry has uncovered better
approaches for team design optimized for the continuous flow of value. In their book,
Team Topologies: Organizing Business and Technology Teams for Fast Flow, Manuel
Pais and Matthew Skelton refer to four different team patterns:

Stream-aligned teams
are aligned to a flow of work from (usually a segment of) the business domain.

Enabling teams
help stream-aligned teams overcome obstacles and detect missing capabilities
such as learning new skills/technologies.

Complicated subsystem teams
own a part of the business domain that demands significant mathematics/calcu‐
lation/technical expertise.

Platform teams
are a grouping of other team types that provide a compelling internal product to
accelerate delivery by stream-aligned teams.

In their model, using stream-aligned teams maps to our recommendation of aligning
teams around “Business Capabilities” with a small caveat: team design must also
account for cognitive load. A team with an excessive cognitive load, either from a
complex domain area or from a complex set of technologies, will struggle to deliver.
As an example, if you have ever worked with processing payments, there is a high
domain cognitive load caused by payment scheme–specific rules and exceptions.
Dealing with one payment scheme might be manageable for a single team, but if
that team has to maintain five or six concurrent payment schemes, they are likely
to exceed their team cognitive load even without considering additional technical
complexity.

The response to this might be to try to have multiple stream-aligned teams or, where
needed, a complicated subsystem team. For example, you might have a single stream-
aligned team taking care of the end-to-end user journey for processing a payment,
and then additionally have a complicated system team for a specific payment scheme
(e.g., Mastercard or Visa).

The book Team Topologies reinforces the idea we should arrange teams around the
domain’s business capabilities but also need to take into account cognitive load.

Organizational Factors | 201

Think product over project
One mechanism many companies use to shift their team emphasis is to model
their work around products rather than projects. Software projects have a common
workflow in most organizations. A problem is identified, a development team is
formed, and they work on the problem until “completion,” at which time they turn
the software over to operations for care, feeding, and maintenance for the rest of its
life. Then the project team moves on to the next problem.

This causes a slew of common problems. First, because the team has moved on to
other concerns, bug fixes and other maintenance work is often difficult to manage.
Second, because the developers are isolated from the operational aspects of their
code, they care less about things like quality. In general, the more layers of indirection
between a developer and their running code, the less connection they have to that
code. This sometimes leads to an “us versus them” mentality between operational
silos, which isn’t surprising, as many organizations have incentivized workers to exist
in conflict. Third, the concept of “project” has a temporal connotation: projects end,
which affects the decision process of those who work on it.

Thinking of software as a product shifts the company’s perspective in three ways.
First, products live forever, unlike the lifespan of projects. Cross-functional teams
(frequently based on the Inverse Conway Maneuver) stay associated with their
product. Second, each product has an owner who advocates for its use within the
ecosystem and manages things like requirements. Third, because the team is cross-
functional, each role needed by the product is represented: PMs, BAs, designers,
developers, QA, DBA, operations, and any other required roles.

The real goal of shifting from a project to a product mentality concerns long-term
company buy-in. Product teams take ownership responsibility for the long-term
quality of their product. Thus, developers take ownership of quality metrics and pay
more attention to defects. This perspective also helps provide a long-term vision to
the team. The book Project to Product: How to Survive and Thrive in the Age of Digital
Disruption with the Flow Framework by Mik Kersten (IT Revolution Press) covers
the organizational changes and a framework for guiding an organization through this
cultural and structural change.

Avoid excessively large teams
Many companies have found anecdotally that large development teams don’t work
well, and J. Richard Hackman, a famous expert on team dynamics, offers an explana‐
tion as to why. It’s not the number of people but the number of connections they
must maintain. He uses the formula shown in Equation 9-1 to determine how many
connections exist between people, where n is the number of people.

202 | Chapter 9: Putting Evolutionary Architecture into Practice

Equation 9-1. Number of connections between people

n n − 1
2

In Equation 9-1, as the number of people grows, the number of connections grows
rapidly, as shown in Figure 9-4.

Figure 9-4. As the number of people grows, the connections grow rapidly

In Figure 9-4, when the number of people on a team reaches 14, they must manage
91 links; when it reaches 50 team members, the number of links is a daunting 1,225.
Thus, the motivation to create small teams revolves around the desire to cut down
on communication links. And these small teams should be cross-functional to elimi‐
nate artificial friction imposed by coordinating across silos, which often accidentally
drives up the number of collaborators on a project.

Each team shouldn’t have to know what other teams are doing, unless integration
points exist between the teams. Even then, fitness functions should be used to ensure
integrity of integration points.

Organizational Factors | 203

Strive for a low number of connections between development
teams.

Team coupling characteristics
The way firms organize and govern their own structures significantly influences
the way software is built and architected. In this section, we explore the different
organizational and team aspects that make building evolutionary architectures easier
or harder. Most architects don’t think about how team structure affects the coupling
characteristics of the architecture, but it has a huge impact.

Culture
Culture, (n.): The ideas, customs, and social behavior of a particular people or society.

—Oxford English Dictionary

Architects should care about how engineers build their system and watch out for the
behaviors their organization rewards. The activities and decision-making processes
architects use to choose tools and create designs can have a big impact on how
well software endures evolution. Well-functioning architects take on leadership roles,
creating the technical culture and designing approaches for how developers build
systems. They teach and encourage in individual engineers the skills necessary to
build evolutionary architecture.

An architect can seek to understand a team’s engineering culture by asking questions
like:

• Does everyone on the team know what fitness functions are and consider the•
impact of new tool or product choices on the ability to evolve new fitness
functions?

• Are teams measuring how well their system meets their defined fitness functions?•
• Do engineers understand cohesion and coupling? What about connascence?•
• Are there conversations about what domain and technical concepts belong•

together?
• Do teams choose solutions not based on what technology they want to learn but•

based on its ability to make changes?
• How are teams responding to business changes? Do they struggle to incorporate•

small business changes, or are they spending too much time on them?

204 | Chapter 9: Putting Evolutionary Architecture into Practice

Adjusting the behavior of the team often involves adjusting the process around the
team, as people respond to what is asked of them to do.

Tell me how you measure me, and I will tell you how I will behave.
—Dr. Eliyahu M. Goldratt (The Haystack Syndrome)

If a team is unaccustomed to change, an architect can introduce practices that
start making that a priority. For example, when a team considers a new library or
framework, the architect can ask the team to explicitly evaluate, through a short
experiment, how much extra coupling the new library or framework will add. Will
engineers be able to easily write and test code outside of the given library or frame‐
work, or will the new library and framework require additional runtime setup that
may slow down the development loop?

In addition to the selection of new libraries or frameworks, code reviews are a natural
place to consider how well newly changed code supports future changes. If there is
another place in the system that will suddenly use another external integration point,
and that integration point will change, how many places would need to be updated?
Of course, developers must watch out for overengineering, prematurely adding addi‐
tional complexity or abstractions for change. The Refactoring book contains relevant
advice:

The first time you do something, you just do it. The second time you do something
similar, you wince at the duplication, but you do the duplicate thing anyway. The third
time you do something similar, you refactor.

Many teams are driven and rewarded most often for delivering new functionality,
with code quality and the evolvable aspect considered only if teams make it a priority.
An architect who cares about evolutionary architecture needs to watch out for team
actions that prioritize design decisions that help with evolvability or find ways to
encourage it.

Culture of Experimentation
Successful evolution demands experimentation, but some companies fail to experi‐
ment because they are too busy delivering to plans. Successful experimentation is
about regularly running small activities to try out new ideas (both from a techni‐
cal and product perspective) and to integrate successful experiments into existing
systems.

The real measure of success is the number of experiments that can be crowded into 24
hours.

—Thomas Alva Edison

Organizational Factors | 205

https://refactoring.com

Organizations can encourage experimentation in a variety of ways:

Bringing ideas from outside
Many companies send their employees to conferences and encourage them to
find new technologies, tools, and approaches that might solve a problem better.
Other companies bring in external advice or consultants as sources of new ideas.

Encouraging explicit improvement
Toyota is most famous for its culture of kaizen, or continuous improvement.
Everyone is expected to continually seek constant improvements, particularly
those closest to the problems and empowered to solve them.

Implementing spike and stabilize
A spike solution is an extreme programming practice where teams generate
a throwaway solution to quickly learn a tough technical problem, explore an
unfamiliar domain, or increase confidence in estimates. Using spike solutions
increases learning speed at the cost of software quality; no one would want to
put a spike solution straight into production because it would lack the necessary
thought and time to make it operational. It was created for learning, not as the
well-engineered solution.

Creating innovation time
Google is well known for its 20% time, where employees can work on any project
for 20% of their time. Other companies organize Hackathons and allow teams to
find new products or improvements to existing products. Atlassian holds regular
24-hour sessions called ShipIt days.

Following set-based development
Set-based development focuses on exploring multiple approaches. At first glance,
multiple options appear costly because of extra work, but in exploring several
options simultaneously, teams end up with a better understanding of the problem
at hand and discover real constraints with tooling or approach. The key to
effective set-based development is to prototype several approaches in a short
period (i.e., less than a few days) to build more concrete data and experience. A
more robust solution often appears after taking into account several competing
solutions.

Connecting engineers with end users
Experimentation is successful only when teams understand the impact of their
work. In many firms with an experimentation mindset, teams and product peo‐
ple see firsthand the impact of decisions on customers and are encouraged to
experiment to explore this impact. A/B testing is one such practice companies
use with this experimentation mindset. Another practice companies implement
is sending teams and engineers to observe how users interact with their software
to achieve a certain task. This practice, taken from the pages of the usability

206 | Chapter 9: Putting Evolutionary Architecture into Practice

https://oreil.ly/4EXZx
https://oreil.ly/GdsjU
https://oreil.ly/BrOHR

community, builds empathy with end users, and engineers often return with a
better understanding of user needs, and with new ideas to better fulfill them.

CFO and Budgeting
Many traditional functions of enterprise architecture, such as budgeting, must reflect
changing priorities in an evolutionary architecture. In the past, budgeting was based
on the ability to predict long-term trends in a software development ecosystem. How‐
ever, as we’ve suggested throughout this book, the fundamental nature of dynamic
equilibrium destroys predictability.

In fact, an interesting relationship exists between architectural quanta and the cost of
architecture. As the number of quanta rises, the cost per quantum goes down, until
architects reach a sweet spot, as illustrated in Figure 9-5.

Figure 9-5. The relationship between architectural quanta and cost

In Figure 9-5, as the number of architectural quanta rises, the cost of each diminishes
because of several factors. First, because the architecture consists of smaller parts, the
separation of concerns should be more discrete and defined. Second, rising numbers
of physical quanta require automation of their operational aspects because, beyond a
certain point, it is no longer practical for people to handle chores manually.

However, it is possible to make quanta so small that the sheer numbers become more
costly. For example, in a microservices architecture, it is possible to build services
at the granularity of a single field on a form. At that level, the coordination cost
between each small part starts dominating other factors in the architecture. Thus, at

Organizational Factors | 207

the extremes of the graph, the sheer number of quanta drives benefit per quantum
down.

In an evolutionary architecture, architects strive to find the sweet spot between the
proper quantum size and the corresponding costs. Every company is different. For
example, a company in an aggressive market may need to move faster and therefore
desire a smaller quantum size. Remember, the speed at which new generations appear
is proportional to cycle time, and smaller quanta tend to have shorter cycle times.
Another company may find it pragmatic to build a monolithic architecture for
simplicity.

As we face an ecosystem that defies planning, many factors determine the best match
between architecture and cost. This reflects our observation that the role of architects
has expanded: Architectural choices have more impact than ever.

Rather than adhere to decades-old “best practice” guidelines about enterprise archi‐
tecture, modern architects must understand the benefits of evolvable systems along
with the inherent uncertainty that goes with them.

The Business Case
We cover a lot of technical details throughout this book, but unless you can show
business value from this approach, it appears to nontechnologists as metawork. Thus,
architects should be able to make the case that evolutionary architecture can improve
both confidence in change and automated governance. However, more direct benefits
exist in the kinds of capabilities this architectural approach enables.

Architects can sell the idea of evolutionary architecture by talking to business
stakeholders in terms they understand and appreciate (rather than the nuances of
architectural plumbing): talk to them about A/B testing and the ability to learn
from customers. Underlying these advanced interaction techniques are the support‐
ing mechanics and structure of evolutionary architecture, including the ability to
perform hypothesis-, and data-driven development.

Hypothesis- and Data-Driven Development
The GitHub example in “Case Study: Architectural Restructuring While Deploying
60 Times per Day” on page 76 using the Scientist framework is an example of
data-driven development—allow data to drive changes and focus efforts on technical
change. A similar approach that incorporates business rather than technical concerns
is hypothesis-driven development.

In the week between Christmas 2013 and New Year’s Day 2014, Facebook encoun‐
tered a problem: more photos were uploaded to Facebook in that week than all
the photos on Flickr, and more than a million of them were flagged as offensive.

208 | Chapter 9: Putting Evolutionary Architecture into Practice

https://oreil.ly/xd432
https://oreil.ly/xd432

Facebook allows users to flag photos they believe are potentially offensive and then
reviews them to determine objectively if they are. But this dramatic increase in
photos created a problem: there was not enough staff to review the photos.

Fortunately, Facebook has modern DevOps and the ability to perform experiments
on its users. When asked about the chances a typical Facebook user has been involved
in an experiment, one Facebook engineer claimed, “Oh, 100%—we routinely have
more than 20 experiments running at a time.” Engineers used this experimental
capability to ask users follow-up questions about why photos were deemed offensive
and discovered many delightful quirks of human behavior. For example, people don’t
like to admit that they look bad in a photo but will freely admit that the photographer
did a poor job. By experimenting with different phrasing and questions, the engineers
could query their actual users to determine why they flagged a photo as offensive.
In a relatively short amount of time, Facebook shaved off enough false positives to
restore offensive photos to a manageable problem by building a platform that allowed
for experimentation.

In the book Lean Enterprise (O’Reilly), the authors describe the modern process
of hypothesis-driven development. Under this process, rather than gathering formal
requirements and spending time and resources building features into applications,
teams should leverage the scientific method instead. Once teams have created the
minimal viable product version of an application (whether as a new product or by
performing maintenance work on an existing application), they can build hypotheses
during new feature ideation rather than requirements. Hypothesis-driven develop‐
ment hypotheses are couched in terms of the hypothesis to test, what experiments can
determine the results, and what validating the hypothesis means to future application
development.

For example, rather than change the image size for sales items on a catalog page
because a business analyst thought it was a good idea, state it as a hypothesis instead:
if we make the sales images bigger, we hypothesize that it will lead to a 5% increase
in sales for those items. Once the hypothesis is in place, run experiments via A/B
testing—one group with bigger sales images and one without—and tally the results.

Even agile projects with engaged business users incrementally build themselves into
a bad spot. An individual decision by a business analyst may make sense in isola‐
tion, but when combined with other features may ultimately degrade the overall
experience. In an excellent case study, the mobile.de team followed a logical path
of accruing new features haphazardly to the point where sales were diminishing,
at least in part because their UI had become so convoluted, as is often the result
of development continuing on mature software products. Different philosophical
approaches included more listings, better prioritization, and better grouping. To help
them make this decision, they built three versions of the UI and allowed their users to
decide.

The Business Case | 209

https://oreil.ly/28dst
http://mobile.de

The engine that drives agile software methodologies is the nested feedback loop: test‐
ing, continuous integration, iterations, and so on. And yet, the part of the feedback
loop that incorporates the ultimate users of the application has eluded teams. Using
hypothesis-driven development, we can incorporate users in an unprecedented way,
learning from behavior and building what users really find valuable.

Hypothesis-driven development requires the coordination of many moving parts:
evolutionary architecture, modern DevOps, modified requirements gathering, and
the ability to run multiple versions of an application simultaneously. Service-based
architectures (like microservices) usually achieve side-by-side versions by intelligent
routing of services. For example, one user may execute the application using a partic‐
ular constellation of services while another request may use an entirely different set of
instances of the same services. If most services include many running instances (for
scalability, for example), it becomes trivial to make some of those instances slightly
different with enhanced functionality and to route some users to those features.

Experiments should run long enough to yield significant results. Generally, it is
preferable to find a measurable way to determine better outcomes rather than annoy
users with things like pop-up surveys. For example, does one hypothesized workflow
allow the user to complete a task with fewer keystrokes and clicks? By silently
incorporating users into the development and design feedback loop, you can build
much more functional software.

Fitness Functions as Experimental Media
One common use of fitness functions by architects is to answer hypotheses. Archi‐
tects have many decisions that have never existed here or anywhere in this particular
manifestation, leading to educated guesses about architecture concerns. However,
once teams have implemented a solution, the architect can use fitness functions to
validate hypotheses. Here are several examples derived from real-world projects.

Case study: UDP communications
PenultimateWidgets has an ecosystem with a large number of ETL (Extract, Trans‐
form, and Load) jobs and batch processes. The team created a custom monitoring
tool to ensure the execution of tasks, such as Send Reports, Consolidate Informa
tion, and so on, as shown in Figure 9-6.

210 | Chapter 9: Putting Evolutionary Architecture into Practice

Figure 9-6. Custom monitoring tool for ETL communication

Architects designed the system in Figure 9-6 to use a UDP protocol between the ETL
jobs and the monitoring service. Sometimes the completion messages would get lost,
leading the team to raise an alert that the task was unfinished, which then led them to
assign a person to manage that false positive. The architects decided to build a fitness
function to answer the question: what percentage of messages are not being covered
by the custom monitoring tool? If the number is greater than 10%, the decision is to
replace the monitoring tool with a more standard implementation.

To test the hypothesis that the custom tool wasn’t as reliable as the creators assumed,
the team built a fitness function to:

• Calculate the estimated number of messages from all the applications and the•
frequency of the messages in a controlled environment (like PreProd or UAT) via
monitoring

• Create a Mock Service to simulate that number of requests•
• Use the Mock Service to read the processed messages from the Monitor Service•

database, to get a metric about the percentage of lost messages and maximum
number of messages the application can handle without crashing, and store that
information in a JSON file

• Process the JSON file with an analytics tool such as Pandas to create results•

The Business Case | 211

https://pandas.pydata.org

The fitness function solution appears in Figure 9-7.

Figure 9-7. Fitness function to test hypothesis

After processing, the team concluded that fully 40% of messages were lost at high
scale, calling the reliability of the custom solution into question and leading the team
to decide to change the implementation.

Case study: Security dependencies
PenultimateWidgets has a dreaded security breach in some of its library dependen‐
cies, leading the team to implement a lengthly manual process upon application
change to validate the software supply chain. However, this review process harmed
the team’s ability to move as quickly as their market demands.

To improve the feedback time on security checks, the team built a stage in their
continuous integration pipeline to scan the library dependency list, validating each
version against a real-time updated block list, and raising an alert if any project uses
an affected library, as shown in Figure 9-8.

212 | Chapter 9: Putting Evolutionary Architecture into Practice

Figure 9-8. Security scanning during continuous integration

The fitness function shown in Figure 9-8 illustrates how teams can utilize holistic
governance of important aspects of their ecosystem. Security is a critical fast-feedback
requirement in organizations, and automating security checks provides the fastest
possible feedback. Automation doesn’t replace people in the feedback loop. Rather, it
allows teams to automate regression and other automatable tasks, freeing people for
more creative approaches that only a human can imagine.

Case study: Concurrency fitness function
PenultimateWidgets was using the Strangler Fig pattern—slowly replacing function‐
ality one discrete behavior at a time. Thus, the team created a new microservice to
handle a specific part of the domain. The new service runs in production, using the
double-writing strategy but maintaining the source of truth in the legacy database.
Because the team had not written this type of service before, the architects estimated
based on preliminary data that the scaling factor should be 120 requests/second.
However, the service frequently crashed, even though measurements showed that
they could handle up to 300 requests/second. Does the team need to increase the
auto-scaling factor or is something else creating the problem? The problem is illustra‐
ted in Figure 9-9.

The Business Case | 213

https://oreil.ly/BhDNV

Figure 9-9. Verifying levels of concurrency

As shown in Figure 9-9, the team created a fitness function to measure the real
performance in the production system. This fitness function:

1. Calculates the number of incoming calls in production to verify the maximum1.
number of requests that the service needs to support and what would be the
auto-scaling factor to guarantee availability with horizontal scaling

2. Create a New Relic Query to get the number of calls per second in production2.
3. Make new load and concurrency tests using the new number of requests per3.

second
4. Monitor the memory and CPU, and define the stress point4.
5. Put that fitness function in the pipeline to guarantee availability and performance5.

over time

After running the fitness function, the team realized that the average number of calls
was 1,200 per second, greatly exceeding their estimate. Thus, the team updated the
scaling factor to reflect reality.

214 | Chapter 9: Putting Evolutionary Architecture into Practice

Case study: Fidelity fitness function
The same team from the previous example faced a common problem when teams
used the Strangler Fig pattern—how can they be sure that the new system replicates
the behavior of the old system? They built what we call a fidelity fitness function, one
that allows teams to selectively replace chunks of functionality one piece at a time.
Most of these fitness functions are inspired by the example shown in Example 4-11,
which allows the ability to run two versions of code side by side (which thresholds) to
ensure the new replicates the old.

The fidelity fitness function the team implemented appears in Figure 9-10.

Figure 9-10. Fidelity fitness function to ensure equivalent responses

The team implemented the fitness function to ensure consistency. However, they
realized a side benefit as well: they also identified some data that came from sources
they had not documented, leading them to a better holistic understanding of data
dependencies in the (poorly documented) legacy system.

Building Enterprise Fitness Functions
In an evolutionary architecture, the role of the enterprise architect revolves around
guidance and enterprise-wide fitness functions. Microservices architectures reflect this
changing model. Because each service is operationally decoupled from the others,

Building Enterprise Fitness Functions | 215

sharing resources isn’t a consideration. Instead, architects provide guidance around
the purposeful coupling points in the architecture (such as service templates) and
platform choices. Enterprise architecture typically owns this shared infrastructure
function and constrains platform choices to those supported consistently across the
enterprise.

Case Study: Zero-Day Security Vulnerability
What does a company do when a zero-day exploit is discovered in one of the develop‐
ment frameworks or libraries it uses? Many scanning tools exist to search for known
vulnerabilities at the network packet level, but they often don’t have the proper hooks
to test the right thing in a timely manner. A dire example of this scenario affected
a major financial institution a few years ago. On September 7, 2017, Equifax, a
major credit scoring agency in the United States, announced that a data breach had
occurred. Ultimately, the problem was traced to a hacking exploit of the popular
Struts web framework in the Java ecosystem (Apache Struts vCVE-2017-5638). The
foundation issued a statement announcing the vulnerability and released a patch
on March 7, 2017. The Department of Homeland Security contacted Equifax and
similar companies the next day, warning them of this problem, and they ran scans on
March 15, 2017, which found most of the affected systems…most, not all. Thus, the
critical patch wasn’t applied to many older systems until July 29, 2017, when Equifax’s
security experts identified the hacking behavior that led to the data breach.

In a world with automated governance, every project runs a deployment pipeline,
and the security team has a “slot” in each team’s deployment pipeline where they
can deploy fitness functions. Most of the time, these will be mundane checks for
safeguards like preventing developers from storing passwords in databases and sim‐
ilar regular governance chores. However, when a zero-day exploit appears, having
the same mechanism in place everywhere allows the security team to insert a test in
every project that checks for a certain framework and version number; if it finds the
dangerous version, it fails the build and notifies the security team. Increasingly, teams
worry about software supply chain issues—what is the provenance of the libraries
and frameworks of (particularly) open source tools? Unfortunately, numerous stories
exist describing developer tools acting as an attack vector. Thus, teams need to
pay attention to metadata about dependencies. Fortunately, a number of tools have
appeared to address tracking and automating software supply chain governance, such
as snyk and Dependabot, used by GitHub.

Teams configure deployment pipelines to awaken them for any change to the eco‐
system: code, database schema, deployment configuration, and fitness functions.
Changes to dependencies allow the security team to monitor possible vulnerabilities,
providing a hook to the correct information at the proper time.

216 | Chapter 9: Putting Evolutionary Architecture into Practice

https://snyk.io
https://github.com/dependabot
https://github.com

If each project uses a deployment pipeline to apply fitness functions as part of their
build, enterprise architects can insert some of their own fitness functions. This allows
each project to verify cross-cutting concerns, such as scalability, security, and other
enterprise-wide concerns, on a continual basis, discovering flaws as early as possible.
Just as projects in microservices share service templates to unify parts of technical
architecture, enterprise architects can use deployment pipelines to drive consistent
testing across projects.

Mechanisms like this allow enterprises to universally automate important governance
tasks, and create opportunities to create governance around critical and important
aspects of software development. The sheer number of moving parts in modern
software requires automation to create assurances.

Carving Out Bounded Contexts Within Existing Integration
Architecture
In “Reuse Patterns” on page 112, we discussed the issues around architects trying
to achieve reuse without creating brittleness. A specific example of this issue often
arises in reconciling enterprise-level reuse and isolation via bounded contexts and
architecture quanta, often exemplified in a data layer, as illustrated in Figure 9-11.

Figure 9-11. Bounded context identified within existing architecture layers

A common architecture pattern is the layered architecture, where architects partition
components based on technical capabilities—presentation, persistence, and so on.
The goal of the layered architecture is separation of concerns, which (hopefully) leads

Building Enterprise Fitness Functions | 217

to higher degrees of reuse. Technical partitioning describes building architectures
based on technical capabilities; it was the most common architecture style for many
years.

However, after the advent of DDD, architects started designing architectures inspired
by it, especially bounded context. In fact, the two most common new topologies
architects build solutions with are modular monoliths and microservices, both heavily
based on DDD.

However, these two patterns are fundamentally incompatible—layered architecture
promotes separation of concerns and facilitates reuse across different contexts, which
is one of the stated benefits of the layered approach. However, as we have illustrated,
that kind of cross-cutting reuse is decried by both the connecting property of locality
and the principle behind bounded context.

So how do organizations reconcile this conflict? By supporting separation of concerns
without allowing the damaging side effects of cross-cutting reuse. This is in fact
yet another example of having an architectural principle that requires governance,
leading to fitness functions to augment the structure.

Consider the architecture illustrated in Figure 9-12.

Figure 9-12. A traditional layered architecture, both components and monolithic
database

218 | Chapter 9: Putting Evolutionary Architecture into Practice

In Figure 9-12, the architects have partitioned the architecture in terms of technical
capabilities—the actual layers aren’t important. However, during a DDD exercise,
the team identifies the parts of an application with the integration architecture that
should be isolated as a bounded context, illustrated in Figure 9-13.

Figure 9-13. An embedded bounded context within another architecture

In Figure 9-13, the team has identified the bounded context (shaded area) within
the technical layers. While further separating the parts of the domain based on
technical features doesn’t harm anything, teams also need to prevent applications
from coupling to their implementation details.

Thus, the team builds fitness functions to prevent cross-bounded context communi‐
cation, as illustrated in Figure 9-14.

The team builds fitness functions in each appropriate place to prevent accidental cou‐
pling. Of course, returning to a common theme in this book, we can’t specify exactly
what those fitness functions will look like—it will depend on the assets the teams
want to protect. However, the overarching goal should be clear: prevent violating the
bounded context by violating the locality principle of connascence.

Building Enterprise Fitness Functions | 219

Figure 9-14. Carving out a bounded context within a layered architecture

Where Do You Start?
Many architects with existing architectures that resemble Big Balls of Mud struggle
with where to start adding evolvability. While appropriate coupling and use of modu‐
larity are some of the first steps you should take, sometimes there are other priorities.
For example, if your data schema is hopelessly coupled, determining how DBAs can
achieve modularity might be the first step. Here are some common strategies and
reasons to adopt the practices around building evolutionary architectures.

Low-Hanging Fruit
If an organization needs an early win to prove the approach, architects may choose
the easiest problem that highlights the evolutionary architecture approach. Generally,
this will be part of the system that is already decoupled to a large degree and
hopefully not on the critical path to any dependencies. Increasing modularity and
decreasing coupling allows teams to demonstrate other aspects of evolutionary archi‐
tecture, namely fitness functions and incremental change. Building better isolation
allows more focused testing and the creation of fitness functions. Better isolation of
deployable units makes building deployment pipelines easier and provides a platform
for building more robust testing.

Metrics are a common adjunct to the deployment pipeline in incremental change
environments. If teams use this effort as a proof of concept, developers should
gather appropriate metrics for both before and after scenarios. Gathering concrete

220 | Chapter 9: Putting Evolutionary Architecture into Practice

data is the best way for developers to vet the approach; remember the adage that
demonstration defeats discussion.

This “easiest first” approach minimizes risk at the possible expense of value, unless a
team is lucky enough to have easy and high value align. This is a good strategy for
companies that are skeptical and want to dip their toes in the metaphorical water of
evolutionary architecture.

Highest Value First
An alternative approach to “easiest first” is “highest value first”: find the most critical
part of the system and build evolutionary behavior around it first. Companies may
take this approach for several reasons. First, if architects are convinced that they want
to pursue an evolutionary architecture, choosing the highest-value portion first indi‐
cates commitment. Second, for companies still evaluating these ideas, their architects
may be curious as to how applicable these techniques are within their ecosystem.
Thus, by choosing the highest-value part first, they demonstrate the long-term value
proposition of evolutionary architecture. Third, if architects have doubts that these
ideas can work for their application, vetting the concepts via the most valuable part of
the system provides actionable data as to whether they want to proceed.

Testing
Many companies lament the lack of testing their systems have. If developers find
themselves in a codebase with anemic or no testing, they may decide to add
some critical tests before undertaking the more ambitious move to evolutionary
architecture.

It is generally frowned upon for developers to undertake a project that only adds
tests to a codebase. Management looks upon this activity with suspicion, especially if
new-feature implementation is delayed. Rather, architects should combine increasing
modularity with high-level functional tests. Wrapping functionality with unit tests
provides better scaffolding for engineering practices such as test-driven development
(TDD) but takes time to retrofit into a codebase. Instead, developers should add
coarse-grained functional tests around some behavior before restructuring the code,
allowing you to verify that the overall system behavior hasn’t changed because of the
restructuring.

Testing is a critical component to the incremental change aspect of evolutionary
architecture, and fitness functions leverage tests aggressively. Thus, at least some
level of testing enables these techniques, and a strong correlation exists between
comprehensiveness of testing and ease of implementing an evolutionary architecture.

Where Do You Start? | 221

Infrastructure
New capabilities come slowly to some companies, and the operations group is a
common victim of lack of innovation. For companies that have a dysfunctional
infrastructure, getting those problems solved may be a precursor to building an
evolutionary architecture. Infrastructure issues come in many forms. For example,
some companies outsource all their operational responsibilities to another company
and thus don’t control that critical piece of their ecosystem; the difficultly of DevOps
rises by orders of magnitude when saddled with the overhead of cross-company
coordination.

Another common infrastructure dysfunction is an impenetrable firewall between
development and operations, where developers have no insight into how code even‐
tually runs. This structure is common in companies rife with politics across divisions,
where each silo acts autonomously.

Lastly, architects and developers in some organizations have ignored good practices
and consequently built massive amounts of technical debt that manifests within
infrastructure. Some companies don’t even have a good idea of what runs where and
other basic knowledge of the interactions between architecture and infrastructure.

Infrastructure Always Impacts Architecture
Neal once did consulting work for a company that ran a hosted service for users.
The company had a large number of servers (approximately 2,500 at the time), and
had built silos within the operations group: one team installed hardware, another
installed operating systems, and a third installed applications. Needless to say, when
a developer wanted a resource, they cast a ticket into the black hole of operations,
where more tickets were generated and bounced around for weeks until resources
appeared. To exacerbate the problem, the company’s CIO had left the year before, and
the CFO was handling his department. Of course, the CFO was concerned primarily
with cost savings, not modernizing what he viewed as merely overhead.

While investigating operation weaknesses, one of the developers mentioned that each
server accommodated only about five users, which was shocking considering the
simplicity of the application. Sheepishly, developers explained that they had abused
HTTP session state to legendary degrees, essentially treating it as a huge in-memory
database. Thus, they could host only a few users per server. The problem was that
their operations group could not produce a realistic production-like environment for
debugging purposes, and they absolutely forbade developers from debugging (or even
extensive monitoring) for production, mostly because of political forces. Without
the ability to interact with a realistic version of the application, developers couldn’t
untangle the mess they had gradually created.

Performing some back-of-the-envelope calculations, we ascertained that the company
could likely run on an order of magnitude fewer servers, more like 250. Yet, the

222 | Chapter 9: Putting Evolutionary Architecture into Practice

company was too busy buying new servers, installing operating systems, and so
on. The grand irony, of course, is that their cost-saving measures actually cost the
company a huge sum.

Ultimately, the besieged developers created their own guerilla DevOps group and
started managing servers themselves, bypassing the traditional operations organiza‐
tion entirely. A fight loomed in the future between the two groups, but in the short
term, the developers started making progress in restructuring their application.

Ultimately, the advice parallels the annoying-but-accurate consultant’s answer of It
Depends! Only architects, developers, DBAs, DevOps, testing, security, and the other
host of contributors can ultimately determine the best road map toward evolutionary
architecture.

Case Study: Enterprise Architecture at PenultimateWidgets
PenultimateWidgets is considering revamping a major part of its legacy platform, and
a team of enterprise architects generated a spreadsheet listing all the properties the
new platform should exhibit: security, performance metrics, scalability, deployability,
and a host of other properties. Each category contained 5 to 20 cells, each with some
specific criteria. For example, one of the uptime metrics insisted that each service
offer five nines (99.999) of availability. In total, they identified 62 discrete items.

But they realized some problems with this approach. First, would they verify each of
these 62 properties on projects? They could create a policy, but who would verify that
policy on an ongoing basis? Verifying all these things manually, even on an ad hoc
basis, would be a considerable challenge.

Second, would it make sense to impose strict availability guidelines across every part
of the system? Is it critical that the administrator’s management screens offer five
nines? Creating blanket policies often leads to egregious overengineering.

To solve these problems, the enterprise architects defined their criteria as fitness
functions and created a deployment pipeline template for each project to start with.
Within the deployment pipeline, the architects designed fitness functions to automat‐
ically check critical features such as security, leaving individual teams to add specific
fitness functions (like availability) for their service.

Future State?
What is the future state of evolutionary architecture? As teams become more familiar
with the ideas and practices, they will subsume them into business as usual and start
using these ideas to build new capabilities, such as data-driven development.

Future State? | 223

Much work must be done around the more difficult kinds of fitness functions, but
progress is already occurring as organizations solve problems and make many of
their solutions freely available. In the early days of agility, people lamented that some
problems were just too hard to automate, but intrepid developers kept chipping away
and now entire data centers have succumbed to automation. For instance, Netflix
has made tremendous innovations in conceptualizing and building tools like the
Simian Army, supporting holistic continuous fitness functions (but not yet calling
them that).

There are a couple of promising areas.

Fitness Functions Using AI
Gradually, large, open source, artificial intelligence frameworks are becoming avail‐
able for regular projects. As developers learn to utilize these tools to support
software development, we envision fitness functions based on AI that look for
anomalous behavior. Credit card companies already apply heuristics such as flagging
near-simultaneous transactions in different parts of the world; architects can start to
build investigatory tools to look for odd behaviors in architecture.

Generative Testing
A practice common in many functional programming communities gaining wider
acceptance is the idea of generative testing. Traditional unit tests include assertions of
correct outcomes within each test case. However, with generative testing, developers
run a large number of tests and capture the outcomes, then use statistical analysis
on the results to look for anomalies. For example, consider the mundane case of
boundary-checking ranges of numbers. Traditional unit tests check the known places
where numbers break (negatives, rolling over numerical sizes, etc.) but are immune
to unanticipated edge cases. Generative tests check every possible value and report on
edge cases that break.

Why (or Why Not)?
No silver bullets exist, including in architecture. We don’t recommend that every
project take on the extra cost and effort of evolvability unless it benefits them.

Why Should a Company Decide to Build an Evolutionary Architecture?
Many businesses find that the cycle of change has accelerated over the past few years,
as reflected in the aforementioned Forbes observation that every company must be
competent at software development and delivery. Let’s look at some reasons why
using evolutionary architectures makes sense.

224 | Chapter 9: Putting Evolutionary Architecture into Practice

Predictable versus evolvable
Many companies value long-term planning for resources and other strategic matters;
companies obviously value predictability. However, because of the dynamic equili‐
brium of the software development ecosystem, predictability has expired. Enterprise
architects may still make plans, but they may be invalidated at any moment.

Even companies in staid, established industries shouldn’t ignore the perils of systems
that cannot evolve. The taxi industry was a multicentury, international institution
when it was rocked by ride-sharing companies that understood and reacted to the
implications of the shifting ecosystem. The phenomenon known as The Innovators
Dilemma predicts that companies in well-established markets are likely to fail as
more agile startups address the changing ecosystem better.

Building evolvable architecture takes extra time and effort, but the reward comes
when the company can react to substantive shifts in the marketplace without major
rework. Predictability will never return to the nostalgic days of mainframes and
dedicated operations centers. The highly volatile nature of the development world
increasingly pushes all organizations toward incremental change.

Scale
For a while, the best practice in architecture was to build transactional systems
backed by relational databases, using many of the features of the database to handle
coordination. The problem with that approach is scaling—it becomes hard to scale
the backend database. Lots of byzantine technologies spawned to mitigate this prob‐
lem, but they were only Band-Aids to the fundamental problem of scale: coupling.
Any coupling point in an architecture eventually prevents scale, and relying on
coordination at the database level eventually hits a wall.

Amazon faced this exact problem. The original site was designed with a monolithic
frontend tied to a monolithic backend modeled around databases. When traffic
increased, the team had to scale up the databases. At some point, they reached the
limits of database scale, and the impact on the site was decreasing performance—
every page loaded more slowly.

Amazon realized that coupling everything to one thing (whether a relational data‐
base, enterprise service bus, etc.) ultimately limited scalability. By redesigning the
architecture in more of a microservices style that eliminated inappropriate coupling,
Amazon allowed its overall ecosystem to scale.

A side benefit of that level of decoupling is enhanced evolvability. As we have illustra‐
ted throughout the book, inappropriate coupling represents the biggest challenge to
evolution. Building a scalable system also tends to correspond to an evolvable one.

Why (or Why Not)? | 225

https://oreil.ly/1d6Zx
https://oreil.ly/1d6Zx

Advanced business capabilities
Many companies look with envy at Facebook, Netflix, and other cutting-edge tech‐
nology companies because they have sophisticated features. Incremental change
allows well-known practices such as hypotheses and data-driven development. Many
companies yearn to incorporate their users into their feedback loop via multivariate
testing. A key building block for many advanced DevOps practices is an architecture
that can evolve. For example, developers find it difficult to perform A/B testing if
a high degree of coupling exists between components, making isolation of concerns
more daunting. Generally, an evolutionary architecture allows a company better
technical responsiveness to inevitable but unpredictable changes.

Cycle time as a business metric
In “Deployment Pipelines” on page 32, we made the distinction between Continuous
Delivery, where at least one stage in the deployment pipeline performs a manual pull,
and continuous deployment, where every stage automatically promotes to the next
upon success. Building continuous deployment takes a fair amount of engineering
sophistication—why would a company go quite that far?

Because cycle time has become a business differentiator in some markets. Some
large conservative organizations view software as overhead and thus try to minimize
cost. Innovative companies see software as a competitive advantage. For example, if
AcmeWidgets has created an architecture where the cycle time is three hours, and
PenultimateWidgets still has a six-week cycle time, AcmeWidgets has an advantage it
can exploit.

Many companies have made cycle time a first-class business metric, mostly because
they live in a highly competitive market. All markets eventually become competitive
in this way. For example, in the early 1990s, some big companies were more aggres‐
sive in moving toward automating manual workflows via software and gained a huge
advantage as all companies eventually realized that necessity.

Isolating architectural characteristics at the quantum level
Thinking of traditional nonfunctional requirements as fitness functions and building
a well-encapsulated architectural quantum allows architects to support different char‐
acteristics per quantum, one of the benefits of a microservices architecture. Because
the technical architecture of each quantum is decoupled from other quanta, architects
can choose different architectures for different use cases. For example, developers on
one small service may choose a microkernel architecture because they want to sup‐
port a small core that allows incremental addition. Another team of developers may
choose an event-driven architecture for their service because of scalability concerns.
If both services were part of a monolith, architects would have to make trade-offs
to attempt to satisfy both requirements. By isolating technical architecture at a small

226 | Chapter 9: Putting Evolutionary Architecture into Practice

quantum level, architects are free to focus on the primary characteristics of a singular
quantum, not analyzing the trade-offs for competing priorities.

Adaptation versus evolution
Many organizations fall into the trap of gradually increasing technical debt and reluc‐
tance to make needed restructuring modifications, which in turns makes systems
and integration points increasingly brittle. Companies try to pave over this brittle‐
ness with connection tools like service buses, which alleviates some of the technical
headaches but doesn’t address deeper logical cohesion of business processes. Using a
service bus is an example of adapting an existing system to use in another setting. But
as we’ve highlighted previously, a side effect of adaptation is increased technical debt.
When developers adapt something, they preserve the original behavior and layer new
behavior alongside it. The more adaptation cycles a component endures, the more
parallel behavior there is, increasing complexity, hopefully strategically.

The use of feature toggles offers a good example of the benefits of adaptation.
Often, developers use toggles when trying several alternatives via hypotheses-driven
development, testing their users to see what resonates best. In this case, the technical
debt imposed by toggles is purposeful and desirable. Of course, the engineering best
practice around these types of toggles is to remove them as soon as the decision is
resolved.

Alternatively, evolving implies fundamental change. Building an evolvable architec‐
ture entails changing the architecture in situ, protected from breakages via fitness
functions. The end result is a system that continues to evolve in useful ways without
an increasing legacy of outdated solutions lurking within.

Why Would a Company Choose Not to Build an Evolutionary
Architecture?
We don’t believe that evolutionary architecture is the cure for all ailments! Companies
have several legitimate reasons to pass on these ideas. Here are some common
reasons.

Can’t evolve a Big Ball of Mud
One of the key “-ilities” architects neglect is feasibility—should the team undertake
this project? If an architecture is a hopelessly coupled Big Ball of Mud, making it
possible to evolve it cleanly will take an enormous amount of work—likely more
than rewriting it from scratch. Companies loathe throwing anything away that has
perceived value, but often a rework is more costly than a rewrite.

How can companies tell if they’re in this situation? The first step to converting an
existing architecture into an evolvable one is modularity. Thus, a developer’s first

Why (or Why Not)? | 227

task requires finding whatever modularity exists in the current system and restructur‐
ing the architecture around those discoveries. Once the architecture becomes less
entangled, it becomes easier for architects to see underlying structures and make
reasonable determinations about the effort needed for restructuring.

Other architectural characteristics dominate
Evolvability is only one of many characteristics architects must weigh when choosing
a particular architecture style. No architecture can fully support conflicting core
goals. For example, building high performance and high scale into the same architec‐
ture is difficult. In some cases, other factors may outweigh evolutionary change.

Most of the time, architects choose an architecture for a broad set of requirements.
For example, perhaps an architecture needs to support high availability, security, and
scale. This leads toward general architecture patterns, such as monolith, microser‐
vices, or event-driven patterns. However, a family of architectures known as domain-
specific architectures attempt to maximize a single characteristic. Having built their
architecture for such a specific purpose, evolving it to accommodate other concerns
would present difficulties (unless developers are extraordinarily lucky and architec‐
tural concerns overlap). Thus, most domain-specific architectures aren’t concerned
with evolution because their specific purpose overrides other concerns.

Sacrificial architecture
Martin Fowler defined a sacrificial architecture as one designed to be thrown away.
Many companies need to build simple versions initially to investigate a market or
prove viability. Once proven, they can build the real architecture to support the
characteristics that have manifested.

Many companies do this strategically. Often, companies build this type of architecture
when creating a minimum viable product to test a market, anticipating building a
more robust architecture if the market approves. Building a sacrificial architecture
implies that architects aren’t going to try to evolve it but rather replace it at the
appropriate time with something more permanent. Cloud offerings make this an
attractive option for companies experimenting with the viability of a new market or
offering.

Planning on closing the business soon
Evolutionary architecture helps businesses adapt to changing ecosystem forces. If a
company doesn’t plan to be in business in a year, there’s no reason to build evolvabil‐
ity into its architecture.

228 | Chapter 9: Putting Evolutionary Architecture into Practice

https://oreil.ly/0RyeF
https://oreil.ly/SgSj8

Summary
Building evolutionary architectures isn’t a silver-bullet set of tools architects can
download and run. Rather, it is a holistic approach to governance in architecture,
based on the cumulative experience we have learned about software engineering. Real
software engineering will rely on automation plus incremental change, both features
of evolutionary architecture.

Remember that often turnkey tools won’t exist for your ecosystem. So the key
question is, “Is the information I need available somewhere?” If so, then a simple
handcrafted scripting tool can gather and aggregate that disparate data to provide
architectural value.

Architects don’t have to implement an elaborate set of fitness functions. Just like
domain testing via unit tests, architects should focus on high-value fitness functions
that justify the effort to create and maintain them. There is no absolute end state for
evolution in an architecture, only degrees of value added via these approaches.

To evolve a software system, architects must have confidence in the structural design
and engineering practices working synergistically. Controlling coupling and automat‐
ing verification is the key to building well-governed architectures that can evolve via
domain, technical changes, or both.

Summary | 229

Index

A
A/B testing, 206
abstraction distraction antipattern, 165
abstractions, leaky, 181-183
abstractness (metric), 48
Ackoff, Russel, 28
adaptation, evolution versus, 227
ADRs (Architectural Decision Records), 79
afferent coupling, 46-47
agile methods

architecture, 4
architecture misconceptions, 4, 11
last responsible moment principle, 147, 165
nested feedback loop, 210
new view of software architecture, ix

AI (artificial intelligence), 224
Amazon

scaling problems, 225
two-pizza teams, 199

anticorruption layers, 165-167
antipatterns (see pitfalls and antipatterns)
APIs (application programming interfaces)

validating consistency in automated build,
39-42

Architectural Decision Records (ADRs), 79
architectural fitness functions, 14
architectural governance, automation of, 43-82

A11y and other supported architecture
characteristics, 56

ArchUnit, 56-62
availability fitness function (case study), 62
code-based fitness functions, 45-55
DevOps, 71
enterprise architecture, 73-78

fitness functions as architectural gover‐
nance, 43-45

fitness functions you're already using, 65
integration architecture, 66-71
legality of open source libraries, 55
linters for code governance, 62
load-testing along with canary releases (case

study), 63-64
turnkey tools, 55-65
what features to port (case study), 64

architectural quanta, 91-103
cost of architecture and, 207
defined, 91
dynamic quantum coupling, 100-103
high functional cohesion, 93
high static coupling, 94-100
independently deployable, 91
isolating architectural characteristics at level

of, 226
architecture characteristics (term), 4
ArchUnit, 56-62

annotation checks, 59
class dependency checks, 58
cycle checks, 16
inheritance checks, 59
layer checks, 60-61
package dependencies, 57

artificial intelligence (AI), 224
asynchronous communication, 101
atomic fitness functions, 18
automation

architectural governance (see architectural
governance, automation of)

DevOps, 200

231

fitness functions, 23
validating API consistency in automated

build, 39-42
availability fitness function, 62

B
back port, 20
Beck, Kent, 43
behavior-driven development (BDD), 79
Big Ball of Mud antipattern, 47, 227
bit rot, 1, 10
blue/green deployments, 164
bounded context

connascence intersection with, 90
DDD and, 90, 109
quantum boundary in microservices archi‐

tecture, 107
within existing integration architecture,

217-219
break upon upgrade test, 20
Brooks, Fred

on sacrificial architecture, 167
on second system syndrome, 168

budgeting, 207
building evolvable architecture, 193-229

advanced business capabilities, 226
anticorruption layers, 165-167
architecting and developing for evolvability,

148
architecting for testability, 149
avoiding excessively large teams, 202
balancing cognitive load with business capa‐

bilities, 201
building enterprise fitness functions,

215-219
business case for, 208-215
CFO and budgeting, 207
Conway's Law, 149, 193-204
COTS implications, 153
cross-functional teams, 197
culture of experimentation, 205-207
cycle time as business metric, 226
defining fitness functions for each dimen‐

sion, 150
enterprise architecture at PenultimateWidg‐

ets (case study), 223
evolving PenultimateWidgets' ratings (case

study), 172-174

favoring evolvability over predictability,
165, 225

fitness function-driven architecture, 174
fitness functions using AI, 224
future state of, 223
generative testing, 224
greenfield projects, 151
guidelines, 162-172
highest-value-first starting point, 221
identifying dimensions affected by evolu‐

tion, 150
infrastructure as starting point, 222
last responsible moment principle, 147
“low-hanging fruit” as starting point, 220
making decisions reversible, 164
mechanics of, 149-151
migrating architectures, 154-161
mitigating external change, 169-170
organizational factors, 193-208
organizing teams around business capabili‐

ties, 200
Postel's Law, 148
practical considerations, 193-229
principles of, 147-176
product over project, 202
reasons against, 227-228
reasons for, 224-227
removing needless variability, 162-172
retrofitting existing architectures, 151-154
sacrificial architectures, 167-169, 228
scale issues, 225
starting points, 220-223
team coupling characteristics, 204
team culture, 204-205
testing as starting point, 221
updating libraries versus frameworks, 170
using deployment pipelines to automate fit‐

ness functions, 150
versioning services internally, 170

business case for evolutionary architecture,
208-215
business capabilities, 226
fitness functions as experimental media,

210-214
hypothesis- and data-driven development,

208
business concerns, 188-190

planning horizons pitfall, 190
product customization pitfall, 188

232 | Index

reporting atop the system of record antipat‐
tern, 189

business metric, cycle time as, 226

C
canary releases, load-testing along with, 63-64
CC (cyclomatic complexity), 53
chaos engineering, 71-73
Chaos Monkey, 71
Chidamber & Kemerer metrics suite, 159
CI (see continuous integration)
cloud environments, sacrificial architecture

and, 168
code reuse (see reuse of code)
code-based fitness functions, 45-55
cognitive load, team design and, 201
commit transactions, two-phase, 133
communication governance, in microservices,

66-68
component coupling, 151-154
component cycles, 15
concurrency fitness function, 213
connascence

basics, 85-90
dynamic, 87
intersection with bounded context, 90
properties, 88-90
static, 86

Constantine, Larry, 46
containers and containerization, 2
continual tests, 19
Continuous Delivery

Continuous Deployment versus, 226
cycle time and, 187
deployment pipelines and, 32-36
lack of speed to release pitfall, 186-188

Continuous Delivery (Humble and Farley), 29
Continuous Deployment, 226
continuous fitness functions, 19

triggered versus continuous (case study), 21
continuous improvement (kaizen), 206
continuous integration (CI)

deployment pipelines versus, 32
origins, 44

contracts, 103-112
basics, 103-112
dictionary definition, 103
microservices as evolutionary architecture

(case study), 107-112

software definition, 103
Conway's Law, 149, 193-204

defaulting to cross-functional teams, 197
excessively large teams, 202
organizing teams around business capabili‐

ties, 200
Conway, Melvin, 193
Cook, John D., 112
correlation IDs, 70
COTS (Commercial Off The Shelf) software,

153
coupling (see specific types, e.g.: afferent cou‐

pling)
coupling, duplication versus, 113
cross-functional teams, 197
culture

defined, 204
of experimentation, 205-207
team, 204-205

customization pitfall, 188
cycle time

as business metric, 226
Continuous Delivery and, 187
fitness functions and, 150
reason for building evolutionary architec‐

ture, 226
cyclomatic complexity (CC), 53

D
data (see evolutionary data)
data duplication, 138-140
data mesh, 119-123

data product quantum, 120-123
defined, 119-123

data product quantum (DPQ), 120-123
data-driven development, 208
databases

evolutionary design, 125-132
evolving from relational to nonrelational,

142
evolving schemas, 126-128
Shared Database Integration, 128-132

DDD (domain-driven design), bounded con‐
text and, 90, 109

decoupling, forced, 185
dependences, external, 169-170
deployment pipelines

automating fitness functions with, 150
continuous integration versus, 32

Index | 233

incremental change and, 32-36
design, manufacturing versus, 42
DevOps, automating, 200
DevOps-related fitness functions, 71
Dijkstra, Edsger, 170
dimensions

evolutionary architecture, 6-9
identifying when building evolvable archi‐

tectures, 150
directionality of imports, 52
distance from the main sequence (metric), 49
Docker, 2
documentation, fitness function, 79-82
domain-driven design (DDD), bounded con‐

text and, 90, 109
Domain-Driven Design (Evans), 90
domain-specific architectures, 228
domain-specific fitness functions, 24
DPQ (data product quantum), 120-123
duplication, coupling versus, 113
dynamic connascence, 87
dynamic fitness functions, 23
dynamic quantum coupling, 100-103

communication, 101
consistency, 102
coordination, 102

E
eBay, 167
Edison, Thomas Alva, 205
efferent coupling, 46-47
elasticity, 24
emergence (term), 12
emergent fitness functions, 24
enterprise architecture, 73-78

architectural restructuring while deploying
60 times per day (case study), 76-78

enterprise architecture at PenultimateWidg‐
ets (case study), 223

fidelity fitness functions, 78
Enterprise Resource Planning (ERP) software,

Vendor King antipattern and, 179-181
enterprise-wide fitness functions, 215-219

carving out bounded contexts within exist‐
ing integration architecture, 217-219

zero-day security vulnerability (case study),
216

Equifax data breach, 216

ERP (Enterprise Resource Planning) software,
Vendor King antipattern and, 179-181

ETL (Extract, Transform, and Load), 210
Evans, Eric, 90
evolution, adaptation versus, 227
evolutionary architect, 76
evolutionary architecture (generally)

adaptable architecture versus, 11
Conway's Law and, 193-204
defined, 5
dimensions of, 6-9
emergent design versus, 11
future state of, 223
guided change, 5
in practice, 193-229
incremental change, 6
long-term planning, 9-10
microservices as, 107-112
pitfalls and antipatterns, 177-191
preventing degradation, 10
reasons not to build, 227-228
reasons to build, 224-227
see-also=building evolvable architecture;

evolvable architectures, 5-9
terminology, 11
topologies (see topologies of evolutionary

architecture)
evolutionary data, 125-143

data duplication, 138-140
data teams/vendors/tool choices, 132
database design for, 125-132
evolving from relational to nonrelational

databases (case study), 142
evolving PenultimateWidgets' routing (case

study), 135-137
inappropriate data entanglement, 132-135
from native to fitness function, 137-142
referential integrity, 137
replacing triggers and stored procedures,

140-142
evolvability

architecting and developing for, 148
conflicting core goals and, 228
as meta-characteristic, 10
predictability versus, 165, 225

evolvable architectures
anticorruption layers, 165-167
avoiding snowflake servers, 163

234 | Index

building (see building evolvable architec‐
ture)

COTS implications, 153
coupling and cohesion for, 151-152
defining fitness functions for each dimen‐

sion, 150
favoring evolvability over predictability,

165, 225
guidelines for building, 162-172
identifying dimensions affected by evolu‐

tion, 150
migrating architectures, 154-161
mitigating external change, 169-170
refactoring versus restructuring, 152
removing needless variability, 162-164
retrofitting existing architectures, 151-154
sacrificial architectures, 167-169, 228
updating libraries versus frameworks, 170
using deployment pipelines to automate fit‐

ness functions, 150
evolving software architecture (generally), 1-12

agile projects and, 4
challenges of, 1-4
evolutionary architecture, 5-9

expand/contract pattern, 128
experimental media, fitness functions as,

210-214
concurrency fitness function (case study),

213
security dependencies (case study), 212
UDP communications (case study), 210

experimentation, culture of, 205-207
external dependences, 169-170
eXtreme Programming (XP), 44

F
Facebook, 208
fan in/fan out operation, 35
Farley, Dave, 29
feature toggles, 35, 227
fidelity fitness functions

about, 78
case study, 215

fitness functions, 13-28
abstractness, 48
adding to PenultimateWidgets' invoicing

service, 36-39
afferent/efferent coupling, 46-47
AI for, 224

as architectural governance, 43-45
atomic versus holistic, 18
automated versus manual, 23
automating with deployment pipelines, 150
availability fitness function (case study), 62
categories of, 14-18
as checklist, not a stick, 78
choosing how to implement, 69-71
code-based, 45-55
concurrency fitness function case study, 213
COTS software and, 153
cyclomatic complexity and herding gover‐

nance, 53
defined, 5, 14
defining for each dimension in evolvable

architecture, 150
DevOps-related, 71
directionality of imports, 52
distance from the main sequence, 49
documenting, 79-82
domain-specific, 24
enterprise-wide, 215-219
as experimental media, 210-214
fidelity, 78
fidelity case study, 215
fitness function-driven architecture, 174
guided change with (see guided change with

fitness functions)
instability, 49
intentional versus emergent, 24
outcomes versus implementations, 26-28
static versus dynamic, 23
testing framework, 25
triggered versus continual versus temporal,

19-21
who should write, 25

forced decoupling, 185
Ford, Chris, 170
Fowler, Chad, 162, 185
Fowler, Martin, 152, 167, 228
frameworks, libraries versus, 170
frozen caveman antipattern, 75
functional cohesion, 93
future state of evolutionary architecture, 223

fitness functions using AI, 224
generative testing, 224

G
generative testing, 224

Index | 235

GitHub, architectural restructuring at, 76
“Go To Statement Considered Harmful” (Dijk‐

stra), 170
Goldratt, Eliyahu M., 205
Google, 20% time at, 206
governance, 184

(see also architectural governance, automa‐
tion of)

inappropriate, 184-186
“just enough”, 186

GraphQL contracts, 105
greenfield projects, 151
guided (term), 13
guided change with fitness functions, 5, 13, 111

H
Hackman, J. Richard, 202
Henney, Kevlin, 161
herding, 55
Hickey, Rich, 167
high static coupling, 94-100
highest-value-first approach, 221
holistic fitness functions, 19
“How Do Committees Invent?” (Conway),

193-204
Humble, Jez, 29
hypothesis-driven development, 208

I
immutable infrastructure, 162
inadvertent (accidental) coupling, 189
inappropriate data entanglement, 132-135

age/quality of data, 134
two-phase commit transactions, 133

inappropriate governance, 184-186
incremental change, 6, 29-42

adding fitness functions to Penultimate‐
Widgets' invoicing service (case study),
36-39

COTS software and, 153
deployment pipelines and, 32-36
engineering of, 29-42
GitHub case study, 76
hypothesis- and data-driven development,

208
inappropriate governance antipattern,

184-186
“just enough” governance at Penultimate‐

Widgets (case study), 186

lack of speed to release, 186-188
microservices and, 111
pitfalls and antipatterns, 184-188
validating API consistency in automated

build (case study), 39-42
indirection, 161
infrastructure dysfunction, 222
instability (metric), 49
integration architecture, 66-71

choosing how to implement a fitness func‐
tion, 69-71

communication governance in microser‐
vices, 66-68

intentional fitness functions, 24
internal resolution, 171
Inverse Conway Maneuver, 196
irrational artifact attachment, 190

J
JavaScript, 169
JDepend, 52
“just enough” governance, 186
just in time (JIT) anticorruption layer, 166

K
kaizen (continuous improvement), 206
Kersten, Mik, 202
known unknowns, 165
Knuth, Donald, 80

L
Last 10% trap, 177
last responsible moment principle, 147, 165,

187
layered architecture, 217
LCOM (Lack of Cohesion in Methods), 159
lead time, 187
leaky abstractions, 181-183
legal issues, open source libraries and, 55
Let's Stop Working and Call It A Success Con‐

cession principle, 180
libraries, frameworks versus, 170
linters, 62
literate programming, 80
LMAX, 174
load-testing, canary releases and (case study),

63-64

236 | Index

long-term planning, in evolutionary environ‐
ment, 9-10

M
manual fitness functions, 23
manufacturing, design versus, 42
Martin, Robert, 48
MDD (monitoring-driven development), 20
Meadows, Donella H., 6
mechanical sympathy, 175
micro-frontend framework, 99
microservices

bounded context as quantum boundary, 107
communication governance in, 66-68
data duplication, 138-140
duplication over coupling in, 113
evolutionary architecture, 107-112
forced decoupling, 185
modular monoliths versus, 218
need for supporting ecosystem, 3
seven architectural principles of, 109-111

migration
of shared modules, 158-161
from one architectural style to another,

154-161
steps in, 155-158

modular monoliths, 218
modules, migrating shared, 158-161
monitoring-driven development (MDD), 20
monolithic architecture, migrating to service-

based, 155-158

N
nested feedback loop, 210
Netflix, chaos engineering at, 71-73
Newman, Sam, 161
nonrelational databases, evolving from rela‐

tional databases, 142

O
open source libraries, 55
orthogonal coupling, 118
orthogonal data coupling, 119-123
orthogonal operational coupling, 114-119

P
packages, directionality of imports, 52
Page-Jones, Meilir, 85-87

Pais, Manuel, 201
PenultimateWidgets (fictional case study)

adding fitness functions to invoicing ser‐
vice, 36-39

availability fitness function, 62
evolving from relational to nonrelational

databases, 142
evolving routing, 135-137
functionality porting decisions, 64
“just enough” governance, 186
legality of open-source libraries, 55
load-testing along with canary releases,

63-64
operational aspects of incremental change

at, 29-32
reusable components, 178
star rating service upgrade, 30-32, 172-174
UDP communications, 210
validating API consistency in automated

build, 39-42
what features to port, 64

pitfalls and antipatterns, 177-191
abstraction distraction, 165
Big Ball of Mud, 227
business concerns, 188-190
defined, 177, 177
inappropriate governance, 184-186
incremental change, 184-188
“just enough” governance at Penultimate‐

Widgets (case study), 186
lack of speed to release, 186-188
Last 10% trap, 177
leaky abstractions, 181-183
planning horizons, 190
product customization, 188
reporting atop the system of record, 189
Resume-Driven Development, 183
reuse at PenultimateWidgets (case study),

178
Vendor King, 179-181

planning horizons, excessively long, 190
porting of functionality, 64
Postel's Law, 148
Postel, Jon, 148
predictability, evolvability versus, 165, 225
primordial abstraction ooze, 183
product customization pitfall, 188
product, project versus, 202
programming languages, evolution of, 9

Index | 237

Project to Product (Kersten), 202
project, product versus, 202
pull model, 170
pull updates, 171
push updates, 171

Q
QA (quality assurance), 36
quantum, defined, 91

(see also architectural quanta)

R
reactive fitness function, 68
read operation, write operation versus, 138-140
refactoring, restructuring versus, 152
referential integrity, 137
relational databases, evolving to nonrelational,

142
reporting services antipattern, 189
REST contracts, 105
restructuring, refactoring versus, 152
Resume-Driven Development, 183
retrofitting existing architectures, 151-154

COTS implications, 153
coupling and cohesion for, 151-152
refactoring versus restructuring, 152

reuse of code
data mesh: orthogonal data coupling,

119-123
effective reuse, 113
patterns, 112-123
PenultimateWidgets case study, 178
reuse at PenultimateWidgets (case study),

178
sidecars and service mesh: orthogonal

operational coupling, 114-119
reversible decisions, 164
Richards, Mark, 165
roulette mutation, 13
routing (PenultimateWidgets case study),

135-137
Rumsfeld, Donald, 165

S
sacrificial architectures, 167-169, 228
Sapir–Whorf hypothesis, 86
scaling

at Amazon, 225

evolvable architecture and, 225
schemas

age/quality of data and, 134
with evolutionary database design, 126-128

Scientist (GitHub framework), 76
second system syndrome, 168
security

PenultimateWidgets case study, 212
zero-day security vulnerability (case study),

216
servers, snowflake, 163
service discovery, 161
service mesh, 117-119
service-based architectures, migrating mono‐

lithic architectures to, 155-158
service-oriented architectures (SOA), code

reuse in, 112
services, versioning internally, 171
set-based development, 206
share nothing architecture, 30, 110
Shared Database Integration, 128-132

with existing data and integration points,
130

with legacy data but no integration points,
130

with no integration points and no legacy
data, 130

shared modules, 158-161
Sidecar pattern, 114-119
Simian Army, 71
single responsibility principle, 149
Skelton, Matthew, 201
snowflake infrastructure, 162
snowflake servers, 163
SOA (service-oriented architectures), code

reuse in, 112
software architecture (generally)

defined, 10
dimensions of, 6-9

spike solutions, 206
Spolsky, Joel, 181
stamp coupling, 106
static connascence, 86
static coupling, 94-100
static fitness functions, 23
Strangler Fig pattern, 213
Structured Design (Yourdon and Constantine),

46
Sunk Cost Fallacy, 190

238 | Index

synchronous communication, 101
synthetic transactions, 19
system-wide fitness functions, 27

T
TDD (test-driven development), 55, 174
Team Topologies (Pais and Skelton), 201
teams, 193

(see also Inverse Conway Maneuver)
balancing cognitive load with business capa‐

bilities, 201
coupling characteristics, 204
cross-functional, 197
culture of experimentation, 205-207
engineering culture, 204-205
excessively large, 202
organizational factors, 193-208
organizing around business capabilities, 200
product over project, 202
two-pizza, 199

technical architecture
Last 10% trap, 177
leaky abstractions, 181-183
low code/no code antipattern, 177
Resume-Driven Development, 183
reuse at PenultimateWidgets (case study),

178
vendor king antipattern, 179-181

technical debt, 166, 168, 227
technical partitioning, 218
temporal fitness functions, 20
test-driven development (TDD), 55, 174
testability, architecting for, 149
testing

chaos engineering, 71-73
generative, 224
as starting point, 221

topologies of evolutionary architecture, 85-123
architectural quanta and granularity, 91-103
connascence, 85-90

connascence intersection with bounded
context, 90

evolvable architecture structure, 85-91
reuse patterns, 112-123

Toyota, 206
transactionality, 102
triggered fitness functions

continuous fitness functions versus, 21
defined, 19

Twitter, 167
two-pizza teams, 199

U
UDP communications, 210
unknown unknowns, 165

V
variability, needless, 162-172
Vendor King antipattern, 179-181
version numbering, 171
versioning, 171

W
What Every Programmer Should Know About

Object-Oriented Design (Page-Jones), 85
Wheeler, Dave, 161
write operation, read operation versus, 138-140

X
XP (eXtreme Programming), 44

Y
Yourdon, Edward, 46

Z
zero-day security vulnerability, 216
zone of pain, 50
zone of uselessness, 50

Index | 239

About the Authors
Neal Ford is director, software architect, and meme wrangler at ThoughtWorks,
a software company and a community of passionate, purpose-led individuals who
think disruptively to deliver technology to address the toughest challenges, all while
seeking to revolutionize the IT industry and create positive social change. Before
joining ThoughtWorks, Neal was the chief technology officer at The DSW Group,
Ltd., a nationally recognized training and development firm.

Neal has a degree in computer science from Georgia State University specializing
in languages and compilers and a minor in mathematics specializing in statistical
analysis. He is an internationally recognized expert on software development and
delivery, especially at the intersection of agile engineering techniques and software
architecture. Neal has authored magazine articles, nine books (and counting), and
dozens of video presentations and has spoken at hundreds of developer conferences
worldwide. The topics of these works include software architecture, Continuous
Delivery, functional programming, and cutting-edge software innovations, as well
as a business-focused book and video on improving technical presentations. His
primary consulting focus is the design and construction of large-scale enterprise
applications. If you have an insatiable curiosity about Neal, visit his website at neal‐
ford.com.

Dr. Rebecca Parsons is ThoughtWorks’ chief technology officer with decades-long
applications development experience across a range of industries and systems. Her
technical experience includes leading the creation of large-scale distributed object
applications, the integration of disparate systems, and working with architecture
teams. Separate from her passion for deep technology, Dr. Parsons is a strong advo‐
cate for diversity in the technology industry.

Before joining ThoughtWorks, Dr. Parsons worked as an assistant professor of com‐
puter science at the University of Central Florida where she taught courses in compil‐
ers, program optimization, distributed computation, programming languages, theory
of computation, machine learning, and computational biology. She also worked as
a Director’s Postdoctoral Fellow at the Los Alamos National Laboratory researching
issues in parallel and distributed computation, genetic algorithms, computational
biology, and nonlinear dynamical systems.

Dr. Parsons received a Bachelor of Science degree in computer science and econom‐
ics from Bradley University, a Master of Science in computer science from Rice
University, and her PhD in computer science from Rice University. She is also the
coauthor of Domain-Specific Languages, The ThoughtWorks Anthology, and Building
Evolutionary Architectures, 1st edition.

http://nealford.com
http://nealford.com

Patrick Kua is an independent CTO coach, former CTO of N26, and former princi‐
pal technical consultant at ThoughtWorks, having worked in the technology industry
for over 20 years. His personal mission is to accelerate the growth of technical lead‐
ers, and he does that through one-on-one coaching, online and in-person technical
leadership workshops, and his popular newsletter for leaders in tech, Level Up.

He is the author of The Retrospective Handbook: A Guide for Agile Teams and Talking
with Tech Leads: From Novices to Practitioners and offers training via the The Tech
Lead Academy.

You can discover more about him at his website, patkua.com, or reach out to him on
twitter at @patkua.

Pramod Sadalage is director of Data & DevOps at ThoughtWorks, where he enjoys
the rare role of bridging the divide between database professionals and application
developers. He is usually sent to clients with particularly challenging data needs that
require new technologies and techniques. In the early 2000s he developed techniques
to allow relational databases to be designed in an evolutionary manner based on
version-controlled schema migrations.

He is coauthor of Software Architecture: The Hard Parts, coauthor of Refactoring Data‐
bases, coauthor of NoSQL Distilled, and author of Recipes for Continuous Database
Integration, and he continues to speak and write about the insights he and his clients
learn.

https://levelup.patkua.com
https://techlead.academy
https://techlead.academy
http://www.patkua.com
http://twitter.com/patkua

Colophon
The animal on the cover of Building Evolutionary Architectures is the open brain
coral (Trachyphyllia geoffroyi). Also known as a “folded brain” or “crater” coral, this
large-polyp stony (LPS) coral is native to the Indian Ocean.

Known for its distinctive folds, bright colors, and hardiness, this free-living coral
subsists on the photosynthetic output of a surface layer of zooxanthellae during the
day, while at night it extends tentacles from its polyps to steer prey, which include
various plankton as well as small fish, into one of its mouths (some open brain corals
have two or three of them).

Because of its striking appearance and easy-to-accommodate diet, Trachyphyllia geof‐
froyi is a popular choice for aquariums, where it thrives in the bottom layer of sand
and/or silt resembling the shallow seafloors of its native habitat. They benefit from
an environment with moderate water flow and rich with plant and animal matter to
consume.

Trachyphyllia geoffroyi is listed on the IUCN Red List at Near Threatened status.
Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from Jean Vincent Félix Lamouroux’s Exposition Methodique des genres de L’Ordre des
Polypiers. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is
Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font
is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Foreword to the First Edition
	Foreword to the Second Edition
	Preface
	The Structure of This Book
	Case Studies and PenultimateWidgets
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Additional Information
	Acknowledgments

	Part I. Mechanics
	Chapter 1. Evolving Software Architecture
	The Challenges of Evolving Software
	Evolutionary Architecture
	Guided Change
	Incremental Change
	Multiple Architectural Dimensions

	How Is Long-Term Planning Possible When Everything Changes All the Time?
	Once I’ve Built an Architecture, How Can I Prevent It from Degrading Over Time?
	Why Evolutionary?
	Summary

	Chapter 2. Fitness Functions
	What Is a Fitness Function?
	Categories
	Scope: Atomic Versus Holistic
	Cadence: Triggered Versus Continual Versus Temporal
	Case Study: Triggered or Continuous?
	Result: Static Versus Dynamic
	Invocation: Automated Versus Manual
	Proactivity: Intentional Versus Emergent
	Coverage: Domain-Specific Fitness Functions?

	Who Writes Fitness Functions?
	Where Is My Fitness Function Testing Framework?
	Outcomes Versus Implementations
	Summary

	Chapter 3. Engineering Incremental Change
	Incremental Change
	Deployment Pipelines
	Case Study: Adding Fitness Functions to PenultimateWidgets’ Invoicing Service
	Case Study: Validating API Consistency in an Automated Build

	Summary

	Chapter 4. Automating Architectural Governance
	Fitness Functions as Architectural Governance
	Code-Based Fitness Functions
	Afferent and Efferent Coupling
	Abstractness, Instability, and Distance from the Main Sequence
	Directionality of Imports
	Cyclomatic Complexity and “Herding” Governance

	Turnkey Tools
	Legality of Open Source Libraries
	A11y and Other Supported Architecture Characteristics
	ArchUnit
	Linters for Code Governance
	Case Study: Availability Fitness Function
	Case Study: Load-Testing Along with Canary Releases
	Case Study: What to Port?
	Fitness Functions You’re Already Using

	Integration Architecture
	Communication Governance in Microservices
	Case Study: Choosing How to Implement a Fitness Function

	DevOps
	Enterprise Architecture
	Case Study: Architectural Restructuring While Deploying 60 Times
per Day
	Fidelity Fitness Functions

	Fitness Functions as a Checklist, Not a Stick
	Documenting Fitness Functions
	Summary

	Part II. Structure
	Chapter 5. Evolutionary Architecture Topologies
	Evolvable Architecture Structure
	Connascence
	Connascence Intersection with Bounded Context

	Architectural Quanta and Granularity
	Independently Deployable
	High Functional Cohesion
	High Static Coupling
	Dynamic Quantum Coupling

	Contracts
	Case Study: Microservices as an Evolutionary Architecture

	Reuse Patterns
	Effective Reuse = Abstraction + Low Volatility
	Sidecars and Service Mesh: Orthogonal Operational Coupling
	Data Mesh: Orthogonal Data Coupling

	Summary

	Chapter 6. Evolutionary Data
	Evolutionary Database Design
	Evolving Schemas
	Shared Database Integration

	Inappropriate Data Entanglement
	Two-Phase Commit Transactions
	Age and Quality of Data
	Case Study: Evolving PenultimateWidgets’ Routing

	From Native to Fitness Function
	Referential Integrity
	Data Duplication
	Replacing Triggers and Stored Procedures
	Case Study: Evolving from Relational to Nonrelational

	Summary

	Part III. Impact
	Chapter 7. Building Evolvable Architectures
	Principles of Evolutionary Architecture
	Last Responsible Moment
	Architect and Develop for Evolvability
	Postel’s Law
	Architect for Testability
	Conway’s Law

	Mechanics
	Step 1: Identify Dimensions Affected by Evolution
	Step 2: Define Fitness Function(s) for Each Dimension
	Step 3: Use Deployment Pipelines to Automate Fitness Functions

	Greenfield Projects
	Retrofitting Existing Architectures
	Appropriate Coupling and Cohesion
	COTS Implications

	Migrating Architectures
	Migration Steps
	Evolving Module Interactions

	Guidelines for Building Evolutionary Architectures
	Remove Needless Variability
	Make Decisions Reversible
	Prefer Evolvable over Predictable
	Build Anticorruption Layers
	Build Sacrificial Architectures
	Mitigate External Change
	Updating Libraries Versus Frameworks
	Version Services Internally
	Case Study: Evolving PenultimateWidgets’ Ratings

	Fitness Function-Driven Architecture
	Summary

	Chapter 8. Evolutionary Architecture Pitfalls and Antipatterns
	Technical Architecture
	Antipattern: Last 10% Trap and Low Code/No Code
	Case Study: Reuse at PenultimateWidgets
	Antipattern: Vendor King
	Pitfall: Leaky Abstractions
	Pitfall: Resume-Driven Development

	Incremental Change
	Antipattern: Inappropriate Governance
	Case Study: “Just Enough” Governance at PenultimateWidgets
	Pitfall: Lack of Speed to Release

	Business Concerns
	Pitfall: Product Customization
	Antipattern: Reporting Atop the System of Record
	Pitfall: Excessively Long Planning Horizons

	Summary

	Chapter 9. Putting Evolutionary Architecture
into Practice
	Organizational Factors
	Don’t Fight Conway’s Law
	Culture
	Culture of Experimentation
	CFO and Budgeting

	The Business Case
	Hypothesis- and Data-Driven Development
	Fitness Functions as Experimental Media

	Building Enterprise Fitness Functions
	Case Study: Zero-Day Security Vulnerability
	Carving Out Bounded Contexts Within Existing Integration Architecture

	Where Do You Start?
	Low-Hanging Fruit
	Highest Value First
	Testing
	Infrastructure
	Case Study: Enterprise Architecture at PenultimateWidgets

	Future State?
	Fitness Functions Using AI
	Generative Testing

	Why (or Why Not)?
	Why Should a Company Decide to Build an Evolutionary Architecture?
	Why Would a Company Choose Not to Build an Evolutionary Architecture?

	Summary

	Index
	About the Authors
	Colophon

