

The Complete
Coding Interview
Guide in Java

An effective guide for aspiring Java developers to ace
their programming interviews

Anghel Leonard

BIRMINGHAM—MUMBAI

The Complete Coding Interview Guide in Java
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Alok Dhuri
Senior Editor: Rohit Singh
Content Development Editor: Kinnari Chohan
Technical Editor: Gaurav Gala
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Joshua Misquitta

First published: August 2020

Production reference: 2030321

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83921-206-2

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans designed especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and, as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

Contributors

About the author
Anghel Leonard is a chief technology strategist with more than 20 years’ experience
in the Java ecosystem. In his daily work, he is focused on architecting and developing
Java-distributed applications that empower robust architectures, clean code, and high
performance. He is also passionate about coaching, mentoring, and technical leadership.

I would like to thank the Packt team for making this book possible.

About the reviewer
Tejaswini Mandar Jog is a passionate and enthusiastic Java trainer. She has more than 12
years’ experience in the IT training field, specializing in Java, J2EE, Spring, Spring Cloud,
microservices, and relevant technologies.

She has worked with many renowned corporate companies on training and skill
enhancement programs. She is also involved in the development of projects using
Java, Spring, and Hibernate and is the author of three books related to Spring, reactive
programming, and modular programming.

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Table of Contents

Preface

Section 1: The Non-Technical Part of an
Interview

1
Where to Start and How to Prepare for the Interview

The novice interview roadmap� 4
Know yourself� 4
Know the market� 8
It's all about getting the right
experience� 11
Start something� 11
It's time to shine online� 12

Time to write your resume� 18
What resume screeners are looking for� 18
How long the resume should be� 18
How to list your employment history� 19

List the most relevant projects (top five)� 19
Nominate your technical skills� 20
LinkedIn resume� 21

The job application process� 22
Finding companies that are hiring� 22
Submitting the resume� 23

I got an interview! Now what?� 23
The phone screening stage� 23
Going to in-person interviews� 24
Avoiding common mistakes� 24

Summary� 25

2
What Interviews at Big Companies Look Like

Interviews at Google� 28
Interviews at Amazon� 28
Interviews at Microsoft� 29
Interviews at Facebook� 29

Interviews at Crossover� 30
Summary� 31

ii Table of Contents

3
Common Non-Technical Questions and How To Answer Them

What is the purpose of non-
technical questions?� 34
What is your experience?� 35
What is your favorite
programming language?� 35
What do you want to do?� 36
What are your career goals?� 36
What's your working style?� 36

Why are you looking to change
jobs?� 37
What is your salary history?� 38
Why should we hire you?� 38
How much money do you want
to make?� 38
Do you have a question for me?� 40
Summary� 40

4
How to Handle Failures

Accepting or rejecting an offer� 42
Failure is an option� 42
A company can reject you for a
lot
of reasons� 43
Getting feedback after the interview� 43

Objectively identifying and
eliminating

the mismatches� 44
Don't form an obsession for a
company� 44
Don't lose confidence in
yourself – sometimes, they
don't deserve you!� 44
Summary� 45

5
How to Approach a Coding Challenge

Technical quiz� 48
Coding challenge� 50
The problems specific to coding
challenges are meant to be difficult� 50
Tackling a coding challenge problem� 52

Summary� 59

Table of Contents iii

Section 2: Concepts

6
Object-Oriented Programming

Technical requirements� 64
Understanding OOP concepts� 64
What is an object?� 65
What is a class?� 66
What is abstraction?� 67
What is encapsulation?� 70
What is inheritance?� 73
What is polymorphism?� 75
What is association?� 79
What is aggregation?� 81
What is composition?� 83

Getting to know the SOLID
principles� 86
What is S?� 86
What is L?� 93
What is I?� 98
What is D?� 102

Popular questions pertaining
to OOP, SOLID, and GOF design
patterns� 105
What is method overriding in OOP
(Java)?� 105
What is method overloading in OOP
(Java)?� 106
What is covariant method overriding in
Java?� 107
What are the main restrictions in
terms of working with exceptions in
overriding and overloading methods?� 109
How can the superclass overridden
method be called from the subclass
overriding method?� 110
Can we override or overload the main()

method?� 110
Can we override a non-static method
as static in Java?� 110
What are the main differences
between interfaces with default
methods and abstract classes?� 114
What is the main difference between
abstract classes and interfaces?� 115
Can we have an abstract class without
an abstract method?� 115
Can we have a class that is both
abstract and final at the same time?� 115
What is the difference between
polymorphism, overriding, and
overloading?� 115
What are the main differences
between static and dynamic binding?� 116
What is method hiding in Java?� 116
Can we write virtual methods in Java?� 118
What is the difference between
polymorphism
and abstraction?� 118
Do you consider overloading
an approach for implementing
polymorphism?� 118
Which OOP concept serves the
Decorator design pattern?� 119
When should the Singleton design
pattern be used?� 119
What is the difference between the
Strategy and State design patterns?� 119
What is the difference between the
Proxy and Decorator patterns?� 120
What is the difference between the
Facade and Decorator patterns?� 120

iv Table of Contents

What is the key difference between
the Builder and Factory patterns?� 121
What is the key difference between
the Adapter and Bridge patterns?� 122

Coding challenges� 123
Example 1: Jukebox� 123
Example 2: Vending machine� 126
Example 3: Deck of cards� 129

Example 4: Parking lot� 133
Example 5: Online reader system� 139
Example 6: Hash table � 145
Example 7: File system� 148
Example 8: Tuple� 149
Example 9: Cinema with a movie ticket
booking system� 149

Summary� 150

7
Big O Analysis of Algorithms

Analogy� 152
Big O complexity time� 153
The best case, worst case, and
expected case� 154
Big O examples � 154
Example 1 – O(1)� 155
Example 2 – O(n), linear time algorithms�155
Example 3 – O(n), dropping the
constants� 156
Example 6 – different steps are
summed or multiplied� 160
Example 7 – log n runtimes� 161
Example 9 – in-order traversal of a
binary tree� 164
Example 10 – n may vary� 165
Example 11 – memoization� 166

Example 13 – identifying O(1) loops� 169
Example 14 – looping half of the array� 170
Example 15 – reducing Big O
expressions� 170
Example 16 – looping with O(log n)� 171
Example 17 – string comparison� 172
Example 18 – factorial Big O� 173
Example 19 – using n notation with
caution� 174
Example 21 – the number of iteration
counts in Big O� 175
Example 22 – digits� 175
Example 23 – sorting� 176

Key hints to look for in an
interview� 177
Summary� 178

8
Recursion and Dynamic Programming

Technical requirements� 180
Recursion in a nutshell� 180
Recognizing a recursive problem� 180

Dynamic Programming in a
nutshell� 181

Memoization (or Top-Down Dynamic
Programming)� 182
Tabulation (or Bottom-Up Dynamic
Programming)� 184

Coding challenges� 185

Table of Contents v

Coding challenge 1 – Robot grid (I)� 186
Coding challenge 3 – Josephus� 191
Coding challenge 6 – Five towers� 198
Coding challenge 8 – The falling ball� 204
Coding challenge 9 – The highest
colored tower� 206
Coding challenge 10 – String

permutations� 208
Coding challenge 11 – Knight tour� 214
Coding challenge 12 – Curly braces� 217
Coding challenge 13 – Staircase� 219
Coding challenge 14 – Subset sum� 220
Coding challenge 15 – Word break (this
is a famous Google problem)� 227

9
Bit Manipulation

Technical requirements� 236
Bit manipulation in a nutshell� 236
Obtaining the binary representation of
a Java integer� 236
Bitwise operators� 237
Bit shift operators� 239
Tips and tricks� 241

Coding challenges� 242
Coding challenge 1 – Getting the bit
value� 242
Coding challenge 2 – Setting the bit
value� 243
Coding challenge 3 – Clearing bits� 245
Coding challenge 4 – Summing binaries
on paper� 246
Coding challenge 5 – Summing binaries
in code� 247
Coding challenge 6 – Multiplying
binaries on paper� 249
Coding challenge 7 – Multiplying
binaries in code� 250
Coding challenge 8 – Subtracting
binaries on paper� 252
Coding challenge 9 – Subtracting
binaries in code� 253
Coding challenge 10 – Dividing binaries
on paper� 254
Coding challenge 11 – Dividing binaries

in code� 256
Coding challenge 12 – Replacing bits� 257
Coding challenge 13 – Longest
sequence of 1� 259
Coding challenge 14 – Next and
previous numbers� 262
Coding challenge 15 – Conversion� 266
Coding challenge 16 – Maximizing
expressions� 267
Coding challenge 17 – Swapping odd
and even bits� 269
Coding challenge 18 – Rotating bits� 270
Coding challenge 19 – Calculating
numbers� 272
Coding challenge 20 – Unique elements� 273
Coding challenge 21 – Finding
duplicates� 277
Coding challenge 22 – Two non-
repeating elements� 278
Coding challenge 23 – Power set of a set�281
Coding challenge 24 – Finding the
position of the only set bit� 283
Coding challenge 25 – Converting a
float into binary and vice versa� 284

Summary� 285

vi Table of Contents

Section 3: Algorithms and Data Structures

10
Arrays and Strings

Technical requirements� 289
Arrays and strings in a nutshell� 290
Coding challenges� 290
Coding challenge 1 – Unique
characters (1)� 292
Coding challenge 2 – Unique
characters (2)� 294
Coding challenge 3 – Encoding strings� 296
Coding challenge 4 – One edit away� 297
Coding challenge 5 – Shrinking a string� 299
Coding challenge 6 – Extracting integers�301
Coding challenge 7 – Extracting the
code points of surrogate pairs� 302
Coding challenge 8 – Is rotation� 305
Coding challenge 9 – Rotating a matrix
by 90 degrees� 306
Coding challenge 10 – Matrix
containing zeros� 309
Coding challenge 11 – Implementing
three stacks with one array� 313
Coding challenge 12 – Pairs� 318
Coding challenge 13 – Merging sorted
arrays� 321
Coding challenge 14 – Median� 324
Coding challenge 15 – Sub-matrix of one�330
Coding challenge 16 – Container with

the most water� 334
Coding challenge 17 – Searching in a
circularly sorted array� 339
Coding challenge 18 – Merging intervals�342
Coding challenge 19 – Petrol bunks
circular tour� 348
Coding challenge 20 – Trapping
rainwater� 351
Coding challenge 21 – Buying and
selling stock� 356
Coding challenge 22 – Longest sequence�367
Coding challenge 23 – Counting game
score� 369
Coding challenge 24 – Checking for
duplicates� 370
Coding challenge 25 – Longest distinct
substring� 374
Coding challenge 26 – Replacing
elements with ranks� 374
Coding challenge 27 – Distinct
elements in every
sub-array� 375
Coding challenge 28 – Rotating the
array k times� 375
Coding challenge 29 – Distinct absolute
values in sorted arrays� 375

Summary� 376

11
Linked Lists and Maps

Technical requirements� 378
Linked lists in a nutshell� 378

Maps in a nutshell� 379
Coding challenges� 380

Table of Contents vii

Coding challenge 1 – Map put, get, and
remove� 381
Coding challenge 2 – Map the key set
and values� 384
Coding challenge 3 – Nuts and bolts� 385
Coding challenge 4 – Remove duplicates�386
Coding challenge 5 – Rearranging
linked lists� 389
Coding challenge 6 – The nth to last node�391
Coding challenge 7 – Loop start
detection� 393
Coding challenge 8 – Palindromes� 397
Coding challenge 9 – Sum two linked
lists� 399
Coding challenge 10 – Linked lists

intersection� 401
Coding challenge 11 – Swap adjacent
nodes� 403
Coding challenge 12 – Merge two
sorted linked lists� 406
Coding challenge 13 – Remove the
redundant path� 411
Coding challenge 14 – Move the last
node to the front� 413
Coding challenge 15 – Reverse a singly
linked list in groups of k� 415
Coding challenge 16 – Reverse a doubly
linked list� 417
Coding challenge 17 – LRU cache� 418

Summary� 423

12
Stacks and Queues

Technical requirements� 426
Stacks in a nutshell� 426
Queues in a nutshell� 429
Coding challenges� 432
Coding challenge 1 – Reverse string� 432
Coding challenge 2 – Stack of curly
braces� 433
Coding challenge 3 – Stack of plates� 435
Coding challenge 4 – Stock span� 438
Coding challenge 5 – Stack min� 442

Coding challenge 6 – Queue via stacks� 446
Coding challenge 7 – Stack via queues� 448
Coding challenge 8 – Max histogram
area� 452
Coding challenge 9 – Smallest number� 455
Coding challenge 10 – Islands� 457
Coding challenge 11 – Shortest path� 461

Infix, postfix, and prefix
expressions� 464
Summary� 465

13
Trees and Graphs

Technical requirements� 467
Trees in a nutshell� 468
General tree� 469
Binary Search Tree� 473
Balanced and unbalanced binary trees� 474

Complete binary tree� 477
Full binary tree� 478
Perfect binary tree� 478
Binary Heaps� 479

Graphs in a nutshell� 481

viii Table of Contents

Adjacency matrix� 482
Adjacency list� 483
Graph traversal� 484

Coding challenges� 486
Coding challenge 1 – Paths between
two nodes� 486
Coding challenge 2 – Sorted array to
minimal BST� 487
Coding challenge 3 – List per level� 489
Coding challenge 4 – sub-tree� 491
Coding challenge 5 – Landing
reservation system� 494
Coding challenge 6 – Balanced binary
tree� 499
Coding challenge 7 – Binary tree is a BST�502
Coding challenge 8 – Successor node� 504
Coding challenge 9 – Topological sort� 507
Coding challenge 10 – Common
ancestor� 509
Coding challenge 11 – Chess knight� 511
Coding challenge 12 – Printing binary
tree corners� 514
Coding challenge 13 – Max path sum� 516
Coding challenge 14 – Diagonal
traversal� 519

Coding challenge 15 – Handling
duplicates in BSTs� 524
Coding challenge 16 – Isomorphism of
binary trees� 526
Coding challenge 17 – Binary tree right
view� 529
Coding challenge 18 – kth largest
element� 531
Coding challenge 19 – Mirror binary tree�533
Coding challenge 20 – Spiral-level order
traversal of a binary tree� 535
Coding challenge 21 – Nodes at a
distance k from leafs� 539
Coding challenge 22 – Pair for a given
sum� 541
Coding challenge 23 – Vertical sums in
a binary tree� 546
Coding challenge 23 – Converting a
max heap into a min heap� 548
Coding challenge 24 – Finding out
whether a binary tree is symmetric� 551
Coding challenge 25 – Connecting n
ropes at the minimum cost� 554

Advanced topics� 556
Summary� 557

14
Sorting and Searching

Technical requirements� 559
Sorting algorithms � 560
Heap Sort� 561
Merge Sort� 564
Quick Sort� 567
Bucket Sort� 570
Radix Sort� 575

Searching algorithms � 577
Coding challenges� 580

Coding challenge 1 – Merging two
sorted arrays� 580
Coding challenge 2 – Grouping
anagrams together� 583
Coding challenge 3 – List of unknown
size� 587
Coding challenge 4 – Merge sorting a
linked list� 589
Coding challenge 5 – Strings
interspersed with empty strings� 593
Coding challenge 6 – Sorting a queue

Table of Contents ix

with the help of another queue� 595
Coding challenge 7 – Sorting a queue
without
extra space� 599
Coding challenge 8 – Sorting a stack
with the help of another stack� 602
Coding challenge 9 – Sorting a stack in
place� 604
Coding challenge 10 – Searching in a
full sorted matrix� 608
Coding challenge 11 – Searching in a
sorted matrix� 610

Coding challenge 12 – First position of
first one� 613
Coding challenge 13 – Maximum
difference between two elements� 614
Coding challenge 14 – Stream ranking� 616
Coding challenge 15 – Peaks and valleys�619
Coding challenge 16 – Nearest left
smaller number� 622
Coding challenge 17 – Word search� 624
Coding challenge 18 – Sorting an array
based on another array� 625

Summary� 627

15
Mathematics and Puzzles

Technical requirements� 630
Tips and suggestions� 630
Coding challenges� 631
Coding challenge 1 – FizzBuzz� 631
Coding challenge 2 – Roman numerals� 632
Coding challenge 3 – Visiting and
toggling 100 doors� 635
Coding challenge 4 – 8 teams� 638
Coding challenge 5 – Finding the kth
number with the prime factors 3, 5,
and 7� 639
Coding challenge 6 – Count decoding a
digit's sequence� 640
Coding challenge 7 – ABCD� 643
Coding challenge 8 – Rectangles
overlapping� 644
Coding challenge 9 – Multiplying large
numbers� 648
Coding challenge 10 – Next greatest
number with the same digits� 651
Coding challenge 11 – A number
divisible by its digits� 654
Coding challenge 12 – Breaking
chocolate� 655

Coding challenge 13 – Clock angle� 657
Coding challenge 14 – Pythagorean
triplets� 659
Coding challenge 15 – Scheduling one
elevator� 662

Summary� 667

x Table of Contents

Section 4: Bonus – Concurrency and
Functional Programming

16
Concurrency

Technical Requirements� 672
Java concurrency
(multithreading)
in a nutshell� 672
Questions and coding
challenges� 674
Coding challenge 1 – Thread life cycle
states� 674
Coding challenge 2 – Deadlocks� 676
Coding challenge 3 – Race conditions� 677
Coding challenge 5 – Executor and
ExecutorService� 678
Coding challenge 7 – Starvation� 679
Coding challenge 10 – Thread versus

Runnable� 680
Coding challenge 12 – wait() versus
sleep()� 681
Coding challenge 14 – ThreadLocal� 682
Coding challenge 15 – submit() versus
execute()� 682
Coding challenge 16 – interrupted()
and isInterrupted()� 682
Coding challenge 18 – sharing data
between threads� 684
Coding challenge 20 – Producer-
Consumer� 684
Producer-Consumer via wait() and
notify()� 685

17
Functional-Style Programming

Java functional-style
programming
in a nutshell� 690
Key concepts of functional-style
programming� 690

Questions and coding
challenges� 693
Coding challenge 1 – Lambda parts� 693
Coding challenge 2 – Functional
interface� 695
Coding challenge 3 – Collections versus
streams� 696
Coding challenge 4 – The map() function�696

Coding challenge 5 – The flatMap()
function� 697
Coding challenge 6 – map() versus
flatMap()� 697
Coding challenge 7 – The filter() function�699
Coding challenge 8 – Intermediate
versus
terminal operations� 700
Coding challenge 9 – The peek() function�700
Coding challenge 10 – Lazy streams� 701
Coding challenge 11 – Functional
interfaces versus regular interfaces� 701
Coding challenge 12 – Supplier versus
Consumer� 701

Table of Contents xi

Coding challenge 13 – Predicates� 702
Coding challenge 14 – findFirst() versus
findAny()� 702
Coding challenge 15 – Converting
arrays to streams� 703
Coding challenge 16 – Parallel streams� 704
Coding challenge 17 – The method
reference� 704

Coding challenge 18 – The default
method� 705
Coding challenge 19 – Iterator versus
Spliterator� 705
Coding challenge 20 – Optional� 706
Coding challenge 21 – String::valueOf� 707

Summary� 707

18
Unit Testing

Technical Requirements � 709
Unit testing in a nutshell� 710
Questions and coding
challenges� 712
Coding challenge 1 – AAA� 712
Coding challenge 2 – FIRST� 713
Coding challenge 3 – Test fixtures� 713
Coding challenge 4 – Exception testing� 714
Coding challenge 5 – Developer or
tester� 716
Coding challenge 6 – JUnit extensions� 716
Coding challenge 7 – @Before* and
@After* annotations� 717

Coding challenge 8 – Mocking and
stubbing� 717
Coding challenge 9 – Test suite� 717
Coding challenge 10 – Ignoring test
methods� 719
Coding challenge 11 – Assumptions� 719
Coding challenge 12 – @Rule� 721
Coding challenge 13 – Method test
return type� 721
Coding challenge 14 – Dynamic tests� 721
Coding challenge 15 – Nested tests� 722

Summary� 724

19
System Scalability

Scalability in a nutshell� 726
Questions and coding
challenges� 727
Coding challenge 1 – Scaling types� 727
Coding challenge 2 – High availability� 728
Coding challenge 3 – Low latency� 728
Coding challenge 4 – Clustering� 728
Coding challenge 5 – Latency,
bandwidth,
and throughput� 729

Coding challenge 6 – Load balancing� 729
Coding challenge 7 – Sticky session� 730
Coding challenge 8 – Sharding� 731
Coding challenge 9 – Shared-nothing
architecture� 732
Coding challenge 10 – Failover� 732
Coding challenge 11 – Session
replication� 732
Coding challenge 12 – The CAP theorem�733
Coding challenge 13 – Social networks� 733

xii Table of Contents

Practicing is the key to success� 735
Designing bitly, TinyURL, and goo.gl (a
service for shorting URLs)� 735
Designing Netflix, Twitch, and YouTube
(a global video streaming service)� 736
Designing WhatsApp and Facebook
Messenger (a global chat service)� 736
Designing Reddit, HackerNews, Quora,
and Voat (a message board service and
social network)� 736
Designing Google Drive, Google
Photos, and Dropbox (a global file
storage and sharing service)� 737

Designing Twitter, Facebook, and
Instagram (an extremely large social
media service)� 737
Designing Lyft, Uber, and RideAustin
(a ride-sharing service)� 737
Designing a type-ahead and web
crawler (a search engine related
service)� 737
Designing an API rate limiter (for
example, GitHub or Firebase)� 738
Designing nearby places/friends and
Yelp (a proximity server)� 738

Summary� 739

Other Books You May Enjoy
Index

Preface
Java is a very popular language, featuring in a high number of IT job offers across a wide
range of fields and industries. Since Java empowers billions of devices all over the world,
it's become a very appealing technology to learn. However, learning Java is one thing;
starting to develop a career in the Java field is something else. This book is dedicated to
people who want to develop a Java career and want to ace Java-centric interviews.

With this book, you'll learn how to do the following:

•	 Solve the 220+ most popular Java coding interview problems in a contretemps
fashion encountered in a wide range of companies, including top firms such as
Google, Amazon, Microsoft, Adobe, and Flipkart.

•	 Collect the best techniques for solving a wide range of Java coding problems.

•	 Tackle brain-teasing algorithms meant to develop strong and fast logic abilities.

•	 Iterate the common non-technical interview questions that can make the difference
between success and failure.

•	 Get an overall picture of what employers want from a Java developer.

By the end of this book, you will have a solid informational foundation for solving Java
coding interview problems. The knowledge achieved from this book will give you high
confidence in yourself to obtain your Java-centric dream job.

Who this book is for
The Complete Coding Interview Guide in Java is a comprehensive resource for those who
are looking for a Java developer (or related) job and need to tackle coding problems in a
contretemps fashion. It is especially dedicated to entry- and middle-level candidates.

xiv Preface

What this book covers
Chapter 1, Where to Start and How to Prepare for the Interview, is a comprehensive guide
that tackles the preparation process for a Java interview from zero to hire. More precisely,
we want to highlight the main checkpoints that can ensure a smooth and successful career
path ahead.

Chapter 2, What Interviews at Big Companies Look Like, talks about how interviews are
conducted in the main Big Tech firms of Google, Amazon, Microsoft, Facebook, and
Crossover.

Chapter 3, Common Non-Technical Questions and How To Answer Them, tackles the main
aspects of the non-technical questions. This part of the interview is commonly carried out
by a hiring manager or even an HR person.

Chapter 4, How to Handle Failures, discusses a delicate aspect of the interview – handling
failures. The main purpose of this chapter is to show you how to identify the causes of
failure and how to mitigate them in the future.

Chapter 5, How to Approach a Coding Challenge, covers the technical quizzes and coding
challenge topics that are commonly referred to as the technical interview.

Chapter 6, Object-Oriented Programming, explains the most popular questions and
problems concerning object-oriented programming encountered at Java interviews,
including the SOLID principles and coding challenges such as Jukebox, Parking Lot, and
Hash Table.

Chapter 7, Big O Analysis of Algorithms, provides the most popular metric for analyzing
the efficiency and scalability of algorithms, the Big O notation, in the context of a
technical interview.

Chapter 8, Recursion and Dynamic Programming, covers one of the favorite topics of
interviewers – recursion and Dynamic Programming. Both of these topics work hand in
hand with each other, so you have to be able to cover both.

Chapter 9, Bit Manipulation, explains the most important aspects of bit manipulation
that you should know in a technical interview. Such problems are often encountered in
interviews and they are not easy. In this chapter, you have 25 such coding challenges.

Chapter 10, Arrays and Strings, covers 29 popular problems involving strings and arrays.

Chapter 11, Linked Lists and Maps, teaches you the 17 most famous coding challenges that
involve maps and linked lists encountered in interviews.

Preface xv

Chapter 12, Stacks and Queues, explains the 11 most popular interview coding challenges
involving stacks and queues. Mainly, you have to learn how to provide a stack/queue
implementation from scratch and how to tackle coding challenges via the Java built-in
implementations.

Chapter 13, Trees and Graphs, covers one of the most tricky topics in interviews – trees
and graphs. While there are tons of problems related to these two topics, only a handful of
them are actually encountered in interviews. It is therefore very important to give a high
priority to the most popular problems concerning trees and graphs.

Chapter 14, Sorting and Searching, covers the most popular sorting and searching
algorithms encountered in technical interviews. We will cover sorting algorithms such as
Merge Sort, Quick Sort, Radix Sort, Heap Sort, and Bucket Sort, and searching algorithms
such as Binary Search. By the end of this chapter, you should be able to tackle a wide range
of problems that involve sorting and searching algorithms.

Chapter 15, Mathematics and Puzzles, talks about a controversial topic in interviews:
mathematics and puzzle problems. A significant number of companies consider that these
kinds of problems should not be part of a technical interview, while other companies still
regard this topic as relevant for interviews.

Chapter 16, Concurrency, covers the most popular questions about Java concurrency
(multithreading) that occur in general interviews involving the Java language.

Chapter 17, Functional-Style Programming, examines the most popular questions about
Java functional-style programming. We cover key concepts, lambdas, and streams.

Chapter 18, Unit Testing, talks about unit-testing interview problems that you may
encounter if you apply for a position such as a developer or software engineer. Of course,
if you are looking for a tester (manual/automation) position, then this chapter may
represent just another perspective on testing. Therefore, do not expect to see questions
here specific to manual/automation tester positions.

Chapter 19, System Scalability, provides the widest range of scalability interview questions
you may be asked during a junior/middle-level interview for a position such as a web
application software architect, Java architect, or software engineer.

To get the most out of this book
All you need is Java (preferably Java 8+) and your favorite IDE (NetBeans, IntelliJ IDEA,
Eclipse, and so on).

I also strongly recommend that readers consult the Java Coding Problems book, also from
Packt, to improve your skills further.

xvi Preface

Download the example code files
You can download the example code files for this book from your account at www.
packt.com. If you purchased this book elsewhere, you can visit www.packtpub.com/
support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1.	 Log in or register at www.packt.com.

2.	 Select the Support tab.

3.	 Click on Code Downloads.

4.	 Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

•	 WinRAR/7-Zip for Windows

•	 Zipeg/iZip/UnRarX for Mac

•	 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java. In
case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781839212062_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

http://www.packt.com
http://www.packt.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packt.com.
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781839212062_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781839212062_ColorImages.pdf

Preface xvii

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: 'The Triangle, Rectangle, and Circle classes implement
the Shape interface and override the draw() method to draw the corresponding shape."

A block of code is set as follows:

public static void main(String[] args) {

 Shape triangle = new Triangle();

 Shape rectangle = new Rectangle();

 Shape circle = new Circle();

 triangle.draw();

 rectangle.draw();

 circle.draw();

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

public static void main(String[] args) {

 Shape triangle = new Triangle();

 Shape rectangle = new Rectangle();

 Shape circle = new Circle();

 triangle.draw();

 rectangle.draw();

 circle.draw();

}

xviii Preface

Bold: Indicates a new term, an important word, or words that you see on
screen. For example, words in menus or dialog boxes appear in the text like
this. Here is an example: "However, this approach does not work for the third case,
339809 (1010010111101100001)."

Tips or important notes	
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

Section 1:
The Non-Technical

Part of an Interview

The objective of this section consists of covering the non-technical part of an interview.
This includes interview idioms and the patterns of big companies, such as Amazon,
Microsoft, Google, and so on. You will become familiar with the main non-technical
interview questions and their meaning (how the interviewer interprets the answers).

This section comprises the following chapters:

•	 Chapter 1, Where to Start and How to Prepare for the Interview

•	 Chapter 2, What Interviews at Big Companies Look Like

•	 Chapter 3, Common Non-Technical Questions and How To Answer Them

•	 Chapter 4, How to Handle Failures

•	 Chapter 5, How to Approach a Coding Challenge

1
Where to Start and
How to Prepare for

the Interview
This chapter is a comprehensive guide that tackles the preparation process for a Java
interview from the very start, to getting hired. More precisely, we want to highlight the
main checkpoints that can ensure a smooth and successful career road ahead. Of course,
at the time you read this book, you might find yourself at any of these checkpoints:

•	 Start your interview preparation as early as possible

•	 Get the right experience

•	 Show your work to the world

•	 Prepare your resume

•	 Take the interview

By the end of this chapter, you'll have a clear picture of how to achieve the preceding
checkpoints depending on your current status. So, let's start by covering the first
checkpoint and take a look at the novice interview roadmap.

4 Where to Start and How to Prepare for the Interview

The novice interview roadmap
Let's start from a fundamental truth that is absolutely necessary, but not sufficient, to
become a successful developer: the best Java developers are passionate about their work,
and, in time, true passions become professions. Over the long term, passion is priceless
and it will make you stand out of the crowd of skilled but dispassionate people.

Since you bought this book, you want to invest some time and money in a Java software
development career. Mainly, you want to become part of the amazing Java ecosystem!
You already feel the power and the energy that comes from focusing on working with
Java, therefore, even if you haven't yet actively thought about it, you've already started to
prepare yourself for a Java interview.

Most probably, you are a student or you've just got a bachelor's degree in IT, computer
science, or you've simply discovered your propensity for the Java language. Nevertheless,
since you are here, you have a lot of questions and doubts about how to get the dream job
in the Java ecosystem.

It is time to bake a plan for success! The following flowchart represents the interview
roadmap for a student or Java novice who wants to be part of the Java ecosystem:

Figure 1.1 – Novice interview roadmap

In this chapter, we will cover each item of the preceding diagram. Let's get started with the
first item, Know yourself.

Know yourself
Before searching for a job, it is important to know yourself. This means that you should
know what kind of developer you are and what kind of job you want.

Know yourself 5

This is crucial to getting the right experience, evolving your package of skills, and finding
the right employer. Most probably, you can cover a wide range of Java programming tasks,
but do you find all of them equally engaging? Doing something that you don't like for a
short period of time is OK, but it will not work for the long term.

Ideally, in the long term, you must focus on what you like to do the most! This way, you
maximize your chances of becoming a top Java developer. But, doing what you like the
most should be considered in the context of what the IT market offers (in both the short
term, and most importantly, the long term). Some Java technologies are widely covered by
job offers, while others may require a lot of time to find a job or must make some really
unpleasant trade-offs (for example, relocation). It is strongly advisable to periodically
consult and participate (every vote counts) in the most relevant Java surveys conducted by
websites such as blogs.oracle.com, snyk.io, jaxenter.com, codeburst.
io, jetbrains.com, and dzone.com. Having a wide range of companies to choose
from statistically maximizes the chances of finding the right company for you. This is half
of the problem, while the other half is to prepare yourself to make sure that the company
with the job you want will want you.

Now, let's examine 10 questions that will help you to identify what kind of developer you
plan to become. Look inside yourself and try to overlap your personality and skills in
considering the following questions and explanations:

1.	 Are you interested in developing user interfaces or the heavy business logic that
is executed behind the scenes? Developing great user interfaces is an extremely
important aspect of a graphical interface. After all, the graphical interface is what
the end user sees and interacts with. It requires creativity, innovation, vision, and
psychology (for example, developing multi-device interfaces is quite challenging).
It requires knowledge of Java AWT, Swing, JavaFX, Vaadin, and so on. On the other
hand, the business logic that is executed behind the scenes and answers to end user
actions is the engine behind the interface, but, for the end user, most of the time it
is a black box. The business logic requires strong coding skills and solid knowledge
of algorithms, data structures, frameworks (such as Spring Boot, Jakarta EE, and
Hibernate), databases, and so on. Most Java developers opt for coding the business
logic behind the scenes (for desktop and web applications).

2.	 What kind of applications do you find most engaging (desktop, mobile, web, or
others)? Each type of application has specific challenges and dedicated suites of
tools. Today, companies target as many consumers as possible, therefore, modern
applications should be available for multi-platform devices. Most of all, you should
be able to code in the knowledge that the application will be exposed on different
devices and will interact with other systems.

6 Where to Start and How to Prepare for the Interview

3.	 Are you especially interested in testing, debugging, and/or code review? Having
strong skills in writing valuable tests, finding bugs, and reviewing the code are the
most important skills for guaranteeing a high-quality final product. Of these three
areas, we should focus on testing, as almost any Java developer job description
requires the candidate to have strong skills in writing unit tests and integration tests
(the most commonly preferred tools are JUnit, TestNG, Mockito, and Cucumber-
JVM). Nevertheless, trying to find a dedicated Java tester job or Java code reviewer
is quite challenging and is usually encountered in big companies (especially
in companies that provide remote jobs, such as Upstack or Crossover). Most
companies prefer pair code review and each Java developer should write meaningful
tests that provide high coverage for the code that they wrote. So you have to be able
do both: write astonishing code, and write the tests for that code.

4.	 Are you interested in applications that interact with databases or do you try
to avoid such applications? Most Java applications use a database (a relational
database or a NoSQL database). A wide range of Java developer jobs will
imperatively require you to have strong knowledge of coding against a database via
Object Relational Mapping frameworks (such as Hibernate), JPA implementations
(such as Hibernate JPA or Eclipse Link), or SQL-centric libraries (such as jOOQ).
Most Java applications interact with a relational database such as MySQL,
PostgreSQL, Oracle, or SQL Server. But NoSQL databases such as MongoDB, Redis,
or Cassandra are also encountered in a significant number of applications. Trying
to avoid developing applications that interact with a database may seriously limit
the range of jobs on offer. If this is your case, then you should reconsider this aspect
starting today.

5.	 Do you have a predilection for code optimization and performance? Caring
about the performance of your code is a highly appreciated skill. Such actions will
catalog you as a perfectionist with great attention to detail. Having solutions that
optimize the code and increase its performances will place you pretty quickly in the
position of getting involved in designing and architecting the solutions of functional
requirements. But at the interview (the code challenge stage), don't focus on code
optimizations and performance! Simply focus on delivering a working solution and,
as much as possible, clean code.

Know yourself 7

6.	 What is more appealing to you: a coding-focused job or being a software
architect? At the beginning of your career as a Java developer, you will be focused
on coding and taking implementation design decisions at code level. In time, some
developers discover their abilities and interest in architecting large applications.
This means that it's time to evolve from a Java developer to a Java architect, or even
a Java chief architect. While coding is still part of your job, as an architect you will
wear different hats on the same day. You have to split your time between meetings,
architecting, and coding. If you feel that you have the aptitude for designing and
architecting different pieces of a project, then it is advisable to consider some
training in software architecture as well. Moreover, during your coding-focused job,
challenge yourself to see what solutions you can find and compare them with those
implemented by the current architect of the application.

7.	 Are you aiming for a small or a big company? Choosing between a small or a big
company is a matter of trade-offs. Ideally, a big company (a brand) will give stability,
a career path, and a good salary plan. But you may feel stifled by the bureaucracy,
lack of communication and rivalry between departments, and a cold and rigid
environment. In a small company, you have the chance to feel more intensely that
you are part of the success and will get a nice, warm feeling of being part of a small
community (even a family). However, small companies may fail fast and you might
be fired in a year or two, most likely without any compensation package.

8.	 Do you target a software company (working on a wide range of projects) or
a certain industry (for example, the oil industry, medicine, the automobile
industry, and so on)? A software company manages projects from a variety of fields
(for example, a software company might develop a website for a Hollywood star,
a financial application, and an airline traffic control application at the same time).
From a developer's perspective, this means that you need versatile thinking and to
be capable of quickly adapting to understand the requirements of different business
domains without diving into those domains. On the other hand, big industries (for
example, the oil industry) prefer to create their own IT departments that develop
and maintain applications specific to that company field. In such cases, you would
most likely receive some training in the given company's field as well. You will have
the advantage of becoming an expert at developing applications specific to a certain
domain.

8 Where to Start and How to Prepare for the Interview

9.	 Do you prefer a remote job? In the past few years, a significant number of
companies have decided to hire remote developers. Moreover, new companies
such as Upwork, Remote|OK, X-Team, and Crossover are 100% remote companies
recruiting only for remote positions. The advantage of working from any corner of
the world with a flexible program is quite appealing. These companies offer jobs for
junior, middle, and senior developers, and some of them (for example, Crossover)
offer remote management positions as well. But, you have to be aware of some of the
other aspects of this arrangement as well: it is possible that you will be monitored
via webcam (for example, with snapshots every 10 minutes); you need to work
in a completely remote team with members from different time zones (it may be
challenging to participate in meetings at night, for example); you will have to be
familiar with tools including JIRA, GitHub, Zoom, Slack, Meetup, and in-house
marketplace platforms; you may face a lot of friction (tons of emails) and a lack of
communication; you need to pay your taxes, and last but not least, you may need to
achieve unreal metrics to the detriment of quality to maintain your position.

10.	 Does management interest you? Commonly, reaching a managerial position is
a goal that requires leadership skills. In other words, you should be able to take
important decisions at both the technical and human levels. From this perspective,
you need to avoid companies that offer a solid technical career path but don't
provide opportunities to get promoted to the ranks of management.

Important note
Knowing yourself is one of the hardest parts required in order to make the best
decisions in life. Sometimes, asking the opinion of other people is the best way
to eliminate your subjective view of yourself. Most of the time, asking your
teachers, parents, and friends will help you to better understand what your
skills are and where you fit the best. Making important decisions alone is risky.

Once you know yourself, it is time to get to know the market.

Know the market
Knowing what you want is great, but is not enough. As the next step, you should research
what the market wants from you. The goal is to obtain the perfect cocktail of what you
want and what the market offers.

Know the market 9

Important note
Developing marketable skills is an important aspect of getting a job in the
near future.

First, you must check which Java technologies have been most popular over the last few
years and what the future trends look likely to be. Technologies that maintain relatively
stable popularity over time are the most used in companies.

Take your time to read several surveys from the last 2-3 years from important websites
such as blogs.oracle.com, snyk.io, jaxenter.com, codeburst.io,
jetbrains.com, and dzone.com. Primarily, you can search on Google for java
technologies survey 2019 or similar combinations of keywords. Also, don't neglect the
financial part, so make sure to search for java salaries survey 2019 as well.

You will find a variety of surveys that nicely summarize the most popular technologies,
as you can see in the following two figures. The first one shows the popularity of
application servers:

Figure 1.2 – The application servers that are used

10 Where to Start and How to Prepare for the Interview

The following figure shows which frameworks developers prefer:

Figure 1.3 – The frameworks that developers prefer to use

While reading, make a list and note down what Java technologies are the most popular
and what technologies don't deserve your attention at this moment. It will be a list similar
to the following:

Figure 1.4 – Splitting technologies by popularity

This way, you can quickly filter the technologies that are most required by the market.
Learning popular technologies maximizes your chances of getting a job in the near future.

It's all about getting the right experience 11

Further, take the pulse of the market toward the technologies that you added to the
Popular column via the following means:

•	 Social networks: A significant number of social networks contain posts about
technologies and what's trending in the IT industry. Some major players are
LinkedIn, Stack Overflow, Twitter, Reddit, and Facebook.

•	 Bookstores: Book publishers strive to satisfy the interest of the programming
community by covering the most popular technologies. They carry out serious
research campaigns for filtering the topics that deserve to be covered in their books.
A new book or a significant number of books on a certain topic or technology is a
good indicator of programming community interest in that topic. Nevertheless, pay
attention to technologies that are suddenly going mainstream. Most of the time,
such technologies are not adopted by companies immediately. It may take years
until they are adopted, or they may remain in the shadows forever.

•	 Courses and training: Besides colleges and universities, tons of websites strive to
provide courses and training for popular and hot topics.

It's all about getting the right experience
You know what you want and what the market offers. This is cool! Now it's time to get the
right experience! Without experience, there is no resume, and without a resume, there is
no interview, therefore, this is a major and laborious step. The following subsections will
help you to achieve two main goals:

•	 Accumulate a lot of technical knowledge and skills.

•	 Gain trust and visibility across the Java ecosystem.

Pay attention – these two goals won't materialize overnight! It takes time and requires
perseverance, but there is a clear and guaranteed result – you'll become a top Java
developer. So, let's start something!

Start something
For a student or a recent graduate, it is pretty hard to decide where to start from in order
to gain experience and write a resume. You are aware that you should start something,
but you cannot decide what that something should be. Well, that something should be
code. Before you have any formal work, get involved in school projects, internships,
programming, volunteering work, and any kind of practical experience.

12 Where to Start and How to Prepare for the Interview

It's time to shine online
It is mandatory to get online and show the world what you can do as early as possible (for
example, from school). Companies and programming communities are looking forward
to seeing how you grow online. But just before you jump in, ensure that you follow the
next two golden rules:

•	 It is very important to pay attention to the identity used to expose your work
online. Don't use dummy credentials, avatars, nicknames, emails, passwords, and so
on. Most likely, the accounts that you will create now (on GitHub, Stack Overflow,
LinkedIn, YouTube, Twitter, and so on) will be shared all over the internet and
will make you famous. Always use your complete name (for example, Mark Janel,
Joana Nimar), use a relevant photo of yourself for your profile (as in the following
figure), and use your name in accounts (for example, @markjanel, joananimar)
and in emails addresses (for example, mark.janel@gmail.com). It is more difficult
for dummy names, emails, and nicknames to become associated with you and with
your work:

Figure 1.5 – Using a relevant photo

•	 Always accept criticism and be polite. Exposing your work online is going
to attract critics. An extremely small percent of what you receive will be really
malicious comments with no logical arguments. The best practice, in this case, is to
ignore such comments. But most critics will be positive and constructive. Always
answer to such comments with arguments and always be polite. Common sense is
the most important skill! Be open and stay open to other opinions!

Do not get disappointed or frustrated. And never give up!

It's all about getting the right experience 13

Contribute to open source projects
Contributing to open source projects is a supersonic approach for measuring your skills
and quickly gaining experience and visibility to companies looking for candidates.
Don't underestimate yourself! Small contributions count as well. Even reading and
understanding the code of an open source project is a great opportunity to gain coding
experience and learn coding techniques.

A lot of open source projects encourage and support developers to contribute. For
example, check out the Hibernate ORM open source project in the following screenshot:

Figure 1.6 – Contributing to an open source project

You have the chance to add your footprint to the code that you will use later in your daily
work! And it is also used by millions of developers. How cool is that!?

Start your own GitHub account
Besides contributing to open source projects, it is advisable to start your own GitHub
account. Employers will evaluate the content of your GitHub profile before they meet you.
Don't neglect any aspect! Take your time and clean up your GitHub profile so it reflects
your best code. Keep in mind that the worst kind of GitHub account is an empty account
or an account that shows low activity on a long-term basis, as shown on the left in the
following screenshot:

Figure 1.7 – GitHub contributions over four months

Demonstrate a preference for clean code and meaningful README.md files and avoid
periods of low activity on a long-term basis, as shown in the previous screenshot.

14 Where to Start and How to Prepare for the Interview

Start your own Stack Overflow account
Stack Overflow is the next stop for companies that evaluate your work. Your questions
and answers on Stack Overflow will appear in Google searches, therefore, you have to
pay extra attention to what you post (questions and answers). As a rule of thumb, your
questions may reveal your level of knowledge, therefore, don't post simple questions,
questions that have easy answers in the documentation, questions that sit behind
trivial programming challenges, and so on. On the other hand, make sure to provide
valuable answers and don't repeat other people's answers. Provide content that will
bring you badges, not downvotes. Link your GitHub profile to your answers to provide
complete solutions.

Start your own YouTube channel
Besides entertainment, YouTube is also a huge source of technical knowledge. On
YouTube, you can post complete coding solutions that show people how to program and
how to become better programmers. You can quickly increase your YouTube subscribers if
you do the following:

•	 Don't go for long videos (stick to 10-20-minute lessons)!

•	 Ensure that you have a good webcam and microphone. A good webcam has at
least 1080p resolution, and a good microphone is the Snowball ICE; for recording
use free or low-cost tools such as Free2X Webcam Recorder (free2x.com/
webcam-recorder) and Loom (loom.com); Camtasia Studio is also awesome
(techsmith.com/video-editor.html).

•	 Demonstrate excellent English skills (English is used most commonly on YouTube).

•	 Introduce yourself (but do it quickly).

•	 Be enthusiastic (show people that you enjoy your work, but don't exaggerate).

•	 Be practical (people love live coding).

•	 Take the chance to prove your speaking skills (this opens you the door to
technical conferences).

•	 Promote your work (add links and hints for more videos, source code, and so on).

•	 Respond to people's feedback/questions (don't ignore what people say about
your video).

•	 Accept criticism and be polite.

Link your GitHub and Stack Overflow accounts to your YouTube videos to get more
exposure and followers.

It's all about getting the right experience 15

Start your technical blog
Your awesome work on GitHub, Stack Overflow, and YouTube can easily be promoted
in stories on a technical blog. Write about programming topics, especially about
programming problems that you solved, and write tutorials, tips and tricks, and so
on. Constant posting and high-quality content will increase your traffic and will index
your blog on search engines. Someday, this valuable content can be exploited to write
an astonishing book or develop a great video on Udemy (udemy.com) or PluralSight
(learn.pluralsight.com).

There are a lot of blogging platforms such as Blogger (blogger.com), WordPress
(wordpress.org), and Medium (medium.com). Choose the one that you prefer and
get started.

Write articles and attract huge traffic and/or get paid
If you want to post technical articles and earn money or attract a huge amount of traffic
to your work, then a personal blog will not be very useful, at least not for a significant
amount of time (1-2 years). But you can write technical articles for websites that register
huge amounts of daily traffic themselves. For example, DZone (dzone.com) is a great
technical platform where you can write for free or you can join different programs
where you are paid for your work. By simply creating a free DZone account, you can
immediately start publishing technical articles via their online editor. In 1-5 days, they
will review your work and publish it online. Almost instantly, thousands of people will
read your articles. Besides DZone, other great technical platforms will pay you to write
for them (commonly between $10-$150 per article depending on length, topic, internal
policies, and so on). Some of these platforms include InformIT (informit.com),
InfoQ (infoq.com), Mkyong (mkyong.com), developer.com (developer.com), Java
Code Geeks (javacodegeeks.com), GeeksForGeeks (geeksforgeeks.org), and
SitePoint (sitepoint.com).

Promote yourself and your work (portfolio)
It's important to work, but it is also important to show people what you've done and get
their feedback.

Important note
Managing your online profile is very important. Recruiters use online profiles to
find desirable candidates, to get to know you better, and to prepare in-depth or
custom interview questions.

16 Where to Start and How to Prepare for the Interview

Along with GitHub, Stack Overflow, and so on, recruiters will search your name on
Google and will check your personal website and social network profiles.

Personal websites

A personal website (or portfolio) is a website that shows off your work. Simply add the
screenshots of applications that you've made/contributed to and give brief descriptions
of your work. Explain your role in each project and provide a link to the project. Pay
attention to not expose private and proprietary company information. You can quickly
get inspiration from the internet (for example, codeburst.io/10-awesome-web-
developer-portfolios-d266b32e6154)

For building your personal website, you can rely on free or low-cost website builders such
as Google Sites (sites.google.com) and Wix (wix.com).

Social network profiles
One of the most important social networks is Twitter. On Twitter, you can promote your
work in front of the best Java developers in the world. Right from day 1, search and follow
the best Java developers, and soon they will follow you too! As a tip, start to follow as
many Java Champions (an exclusive community of the best Java developers in the world)
you can find. There is a huge and valuable community of Java developers on Twitter. Get
to know them as fast as you can!

Other social networks such as Facebook and Instagram are also scanned by recruiters. Pay
attention to the content of your posts. Obviously, radicalism, racism, fanaticism, trivial
or sexual content, political content, slogans and incitement to violence, defamatory and
offensive content, and so on will cause the recruiter to take a step back.

CodersRank matters
CodersRank (codersrank.io/) is a platform that harvests information about your
work (for example, it harvests information from GitHub, Stack Overflow, Bitbucket,
HakerRank, and so on) and tries to rank you against millions of other developers from
around the world. In the following screenshot, you can see a developer's profile page:

Figure 1.8 – CodersRank profile summary

It's all about getting the right experience 17

This is another important barometer for recruiters.

Learn, code, learn, code...

Once you become a developer, you must follow the Learn->Code practice in order to get
on top and stay there. Never stop learning and never stop coding! As a rule of thumb, the
Learn->Code practice can be applied via the learning by example or teaching is my way of
learning approaches, or any other approach that fits you best.

How about certifications?
Once you access education.oracle.com/certification, you can see that
Oracle provides a suite of Java certifications. While there's nothing wrong with getting
certifications (from Oracle or an other party), they are not required in job descriptions.
Taking these certifications requires a significant amount of money and time, and most of
the time they don't pay off the effort. You can use this time more wisely and get involved
in projects (side projects, school projects, open source projects, and so on). This is a better
way to impress employers. So, certificates have limited value and it takes a lot of resources
to obtain them. Moreover, certificates are perishable. Think how useful it is today, in 2020,
to be Java 6 certified, or in 2030 to be Java 12 certified!

But if you really want to consider certifications, then here are the top certifications on
offer (for more information, search on Google for them since links can break over time):

•	 OCAJP (Oracle Certified associate, Java Programmer 1) and OCPJP (Oracle
Certified Professional, Java Programmer 2)

•	 Spring Professional Certification

•	 OCEWCD (Oracle Certified Expert, Java EE 6 Web Component Developer)

•	 Apache Spark Cert HDPCD (HDP Certified Developer)

•	 Professional Scrum Master

•	 Project Management (PMP)

•	 AWS Solutions Architect

•	 Oracle Certified Master

Having experience and visibility (fans) all over the internet is a tremendous plus in your
career. But you still need a useful resume for applying to Java jobs. So, it's time to write
your resume.

18 Where to Start and How to Prepare for the Interview

Time to write your resume
Writing an impressive resume is not easy. There are tons of platforms that promise you
that your resume will be amazing if you let them do it for you. There are also tons of
resume templates, most of them quite complex and cumbersome. On the other hand,
a resume is something personal, and it is better to do it yourself. Bearing the following
points in mind will be enough to produce an appealing resume for recruiters. Let's see
these points and how to approach them.

What resume screeners are looking for
First, resume screeners want to find out whether you are a good coder and you are smart.
Second, they want to find out if you are a good fit for a certain available position (they
check your experience against certain technologies and tools required for that position).

Strive to highlight that you are a good coder and are intelligent. This means being as
technical as possible in a concentrated form. Pay attention: too many words dilute the
essence of your resume and lead to loss of focus. Be technical, clear, and concise.

How long the resume should be
To answer how long a resume should be, you must answer another question: how long do
you think a recruiter spends reading a resume? Most likely, around 10-20 seconds.
In other words, recruiters read between the lines, trying to quickly identify what
interests them.

In general, a resume should not be longer than a page. If you have 10+ year's experience,
then you can go with 2 pages.

You may think that it is impossible to condense your vast experience in 1-2 pages, but
this is not true. First, prioritize content, and second, add this content until you cover
1-2 pages. Skip the remaining content. Don't worry that the recruiters will not know
everything you've done! They will be impressed by your resume highlights and will be
happy to discover the rest of your experience in the interview.

Write a resume that fits on one page.
If you have 10+ years of experience, then consider two pages. Keep in mind
that some recruiters may skip long resumes without reading a single line. They
want to find the most impressive items right away. Adding less important items
and/or too many words will distract the recruiter and makes them waste time.

Time to write your resume 19

How to list your employment history
If you have a short employment history (2-4 roles), then add all of it to the resume. Don't
go for your complete employment history if you have a long list of roles (4+ roles). Just
choose 4 roles that are the most impressive (roles in important companies, leading roles,
roles where you have achieved great results and/or made significant contributions).

For each role, follow the Achievement->Action->Effect model. Always start with the
achievement! This will act as a magnet for the recruiter. Once they read the achievement,
you've got their attention to continuing reading.

For example, let's imagine that you worked at the company Foo and you've managed
to increase the performance of the connection pool by 30% by tuning its parameters.
Now the application can accommodate a transaction throughput of 15% extra. Add this
achievement in the resume in a single statement as follows:

Increased the connection pool performance by 30% by tuning its parameters, leading to a
transaction throughput boost of 15%.

List the most relevant roles via Achievement->Action->Effect statements. Always try to
measure the benefits you created. Don't say, I reduced the memory footprint by compressing
..., and say, I reduced the memory footprint by 5% by compressing

List the most relevant projects (top five)
Some recruiters prefer to jump in directly into the My Projects section of your resume.
They follow the No Fluff, Just Stuff statement. You don't have to list all your projects!
Make a top five and add only those. Don't add all five from the same category. Choose
one or two independent projects, one or two open source contributions, and so on. An
independent project with a high GitHub star rating is what will really impress recruiters.

List the top projects with their relevant details. This is the right place to lose the
modesty and do your best to impress.

20 Where to Start and How to Prepare for the Interview

Nominate your technical skills
The Technical Skills section is mandatory. Here, you have to list the programming
languages, software, and tools you know. It doesn't have to be like a nomenclature, but it
doesn't have to be a short and slim section either. It has to be relevant and in harmony
with the listed projects. The following list mentions the main criteria to follow in writing
the Technical Skills section:

•	 Don't list all Java flavors: Don't add a list such as Spring MVC, Spring Data,
Spring Data REST, Spring Security, and so on. Just say Spring. Or, if you are Java
EE guy, then don't add a list of JPA, EJB, JSF, JAX-RX, JSON-B, JSON-P, JASPIC,
and so on. Just say Java EE, Jakarta EE. Or, if you see them listed that way in the job
description, then you can add them between brackets. For example: Spring (MVC,
Data including Data REST, Security) or Java EE (JPA, EJB, JSF, JAX-RX, JSON-B,
JSON-B, JASPIC).

•	 Do not add software versions: Avoid things like Java 8, Spring Boot 2, or Hibernate
5. If such details are necessary, then the interviewer will ask you about them.

•	 Don't list utility technologies: Avoid listing utility libraries that are commonly
used in projects. For example, don't add Apache Commons, Google Guava, Eclipse
Collections, and so on. It is possible that recruiters have not heard of them. Or, if
they have, they will smile ironically.

•	 Don't list the technologies that you have only lightly touched: It's quite risky to
list technologies that you've used only rarely and/or superficially. At the interview,
you may get asked questions about them that will put you in a difficult situation.

•	 For each technology, add your experience: For example, write Java (expert), Spring
Boot (advanced), Jakarta EE (proficient), Hibernate (expert).

•	 Do not measure your experience with a technology in years: Most of the time,
it's not relevant. This metric doesn't say much to the recruiter. Your experience is
shown by your projects.

•	 Avoid common technologies: Don't list operating systems, Microsoft Office, Gmail,
Slack, and so on. Listing such things is just noise for the recruiter.

•	 Double-check your English: A recruiter can throw away a resume if it has typos.
If you are a non-native English speaker, then find a native English speaker to
proofread your resume.

Time to write your resume 21

•	 Don't list a single programming language: Ideally, you should list two to three
programming languages (for example, Java (expert), C++ (medium), Python (prior
experience)), but don't say that you are an expert in all of them. Nobody will believe
you! On the other hand, a single programming language can be interpreted as
meaning that you are not open to learning new technologies.

•	 Split technologies into categories: Don't add the technologies as a long, comma-
separated list. For example, avoid something like Java, Ruby, C++, Java EE, Spring
Boot, Hibernate, JMeter, JUnit, MySQL, PostgreSQL, AWS, Ocean, and Vue.js. Split
them into categories and sort them by experience, as in the following example:

a. Programming languages: Java (expert), Ruby (intermediate), and C++
(beginner)

b. Frameworks: Java EE (expert), Spring Boot (advanced)

c. Object Relation Mapping (ORM): Hibernate (expert)

d. Testing: JMeter (expert), JUnit (advanced)

e. Databases: MySQL (expert), PostgreSQL (intermediate)

f. Cloud: AWS (expert), Ocean (beginner)

g. JavaScript frameworks: Vue.js (intermediate)

LinkedIn resume
Most likely, your LinkedIn profile will be the first stop for recruiters. Moreover, a
significant number of e-job platforms require your LinkedIn account whenever you try to
apply for a job. There are even cases where this account is mandatory.

LinkedIn is a social network dedicated to tracking professional connections. Essentially,
LinkedIn is an online resume on steroids. On LinkedIn, you can create job alerts, and
colleagues, customers, and friends can endorse you or your work, which can be
quite valuable.

Important note
Pay attention to keeping your LinkedIn resume in sync with your paper
resume. Also, pay attention if you are looking for a job via LinkedIn since all
your contacts receive notifications about your updates. These contacts include
people at your current company, and most likely, you don't want them to know
you're looking for a new job. The solution is to disable these notifications
before you make your updates.

Now, we can discuss the job application process.

22 Where to Start and How to Prepare for the Interview

The job application process
Technical companies prefer multi-step interviews. But, before getting invited to an
interview, you have to find companies that are hiring, apply for their jobs, and then finally
meet them.

Finding companies that are hiring
Surveys from the past few years (2017+) estimate that 70%-85% of all jobs are filled via
networking (linkedin.com/pulse/new-survey-reveals-85-all-jobs-
filled-via-networking-lou-adler/). Technical jobs (especially in the IT field)
represent the leading segment that takes advantage of networking.

In almost any country, there are several e-jobs platforms. Let's call them local e-jobs
platforms. Commonly, the local e-jobs platforms list job offers from companies active in
that country, or companies that recruit globally.

Worldwide, we have global e-jobs platforms. These platforms include several major players
(all these websites allow you to upload your resume or create one online):

•	 LinkedIn (linkedin.com): With more than 610 million users covering more
than 200 countries worldwide, this is the world's largest professional network and
social recruiting platform.

•	 Indeed (indeed.com): This is a leading job site with millions of jobs harvested
from thousands of websites.

•	 CareerBuilder (careerbuilder.com): This is another huge platform that posts
tons of jobs from all around the globe.

•	 Stack Overflow (stackoverflow.com/jobs): This is the largest, most trusted
online community for developers to learn, share their programming knowledge,
and build their careers.

•	 FlexJobs (flexjobs.com) and Upwork (upwork.com): These are platforms
dedicated to freelancers that offer premium, flexible remote jobs.

Other platforms that provide services useful for finding a job include the following:

•	 Dice (dice.com): This is the leading career destination for tech experts at every
stage of their careers.

•	 Glassdoor (glassdoor.com): This is a complex platform including company-
specific ratings and reviews.

In addition to these platforms, there are many others that you will discover by yourself.

I got an interview! Now what? 23

Submitting the resume
Once you've found the companies you want to apply to, it's time to submit your resume.

First, look at the company's website. This can help you to find out the following:

•	 See if you can apply directly via the company website (by bypassing the placement
agency, you can speed up the process and the company can hire you directly without
paying commission to the placement agency).

•	 You can register in the company database to be contacted whenever a suitable
position is opened.

•	 You have the chance to find out more about the company history, vision, projects,
culture, and so on.

•	 You can find out contacts of relevant people at the company (for example, you can
find a phone number for details and support).

Second, double-check your resume and online profile. Most likely, if your resume
impresses the recruiter, they will search your name on Google and will inspect your
networking activity. From technical content to social media, everything will be scanned
before sending you an interview offer.

Third, don't send the exact same resume to all companies! For each company, make
adjustments to the resume so it is as relevant to the job description as possible.

I got an interview! Now what?
If you followed the roadmap so far, then it is just a matter of days until you will receive an
e-mail or a phone call to invite you to an interview. Oh, wait... you are saying that you've
already got an interview? Cool! It's time to prepare yourself!

The phone screening stage
Most IT companies prefer to start the multi-step interview process with a phone screen. A
phone screen is usually accomplished via Skype, Zoom, or Meetup (or similar platforms),
and you'll need to share your webcam. A microphone and a set of headphones are needed
as well. Phone screens are very popular if you opt for a remote position, but lately, they are
used for all kinds of positions.

24 Where to Start and How to Prepare for the Interview

Commonly, there are two approaches used by companies:

•	 Phone screen with a human resources or placement agency person: This is an
optional, non-technical interview of 15-30 minutes meant to detail the offer terms,
expose your personality, concerns, both your and their expectations, and so on. This
can take place before or after the technical phone screen.

•	 Technical phone screen first: Some companies will invite you directly to a technical
phone screen. In such cases, you can expect several technical questions, maybe
a quiz, and one or more coding challenge sessions (tackling coding challenges is
the main focus of this book). If you pass the technical phone screen, then, most
probably, a non-technical one will follow.

Going to in-person interviews
Unless you opt for a remote position, the next step will consist of a face-to-face interview.
There are cases when there is no phone screen, and this is the first step of the interview. In
such cases, you may be interviewed by HR people, followed by a technical interview. But,
if you had a phone screen, then you may or may not be contacted. This depends on how
the company evaluates the phone screen. If they decide to not proceed with the next stage
of the interview, then it is possible you will receive some feedback covering what was good
and what was less good about your phone screen performance. Don't ignore the feedback,
read it carefully and in an objective manner. It might help you to avoid repeating the same
mistakes. Speaking about mistakes...

Avoiding common mistakes
Pay attention to the following common mistakes that may sit behind the failure of an
interview:

•	 Ignoring the power of information: There are cases where after failing an
interview, we meet a friend to tell them how it went. At that moment, your friend
may say: My friend, I know a person who had a successful interview at this company
2 months ago! Why you did not tell me before? I'm sure he could have given you some
insights! Obviously, it's too late to do that now! Avoid such cases and try to obtain
as much information as possible. See if you or your friends have contacts in the
company, ask on social media, and so on. This way it's possible to obtain extremely
useful information.

•	 Lacking clarity and coherence in answers: Your answers should be technical,
crystal clear, meaningful, expressive, and always on topic. Answer the questions
thoughtfully. Stammering, incomplete answers, interjections, and so on are not
appreciated by interviewers.

Summary 25

•	 Considering that image doesn't matter: Don't ignore your image! Dress
professionally, go to the barbershop, and smell nice! All these aspects are part of the
first impression. If you look sloppy, then maybe your code looks the same. If you
dress professionally, then the interviewers will treat you as if you're a cut above
the rest. However, dressing professionally doesn't mean you should be opulent.

•	 Not selling yourself well: The interviewer must see your value. Nobody can
communicate your value to them better than you can. Tell them about a problem
that you had (at a previous company, in a certain project, and so on) and explain
how you solved it with your team or independently. Employers want people who are
excellent team players but are capable of working independently as well. Follow the
Situation|Action|Result (SAR) approach. Start by describing the situation. Continue
by explaining the actions you took, and finally, describe the result.

•	 Not practicing coding challenges: At some point, you will be scheduled for at
least one coding challenge. Most of the time, general coding skills are not enough!
These challenges are specific to interviews and you have to practice them before
the interview. As a rule of thumb, solving coding challenges (problems) follows the
Approach->Break down->Craft solution pattern. Obviously, you cannot memorize
solutions, therefore you need to practice as much as possible. Later in this book, we
will discuss the best approaches for solving coding challenges.

Once the interview is complete, it's time to wait for the response. Most companies will
tell you how much time they need to provide a final answer and will commonly provide
an answer representing the offer, rejection, next interview step, or just the status of your
application. Keep your fingers crossed!

Summary
This chapter summarized the best practices that should be followed to obtain a job in
the Java ecosystem. We talked about choosing a proper job and our eligibility, getting
experience, working on resumes, and so on. Most of this advice was addressed to students
or people who have just graduated. Of course, do not consider these pieces of advice as an
exhaustive list or a list that should be applied integrally. These practices will help you pick
up the fruits that you consider appealing and allow you to add your own touch to
the process.

Next, let's see how big companies conduct their interviews.

2
What Interviews at

Big Companies
Look Like

Interviews at big companies are relatively long processes with progressively increasing
complexity of technical questions and coding challenges (such an interview process can
take a month or even more). Most companies prefer one or more technical phone screens,
on-site technical challenges, and in-person interviews before making an offer. Commonly,
one of these interviews will be non-technical (known as a lunch interview).

Let's get an overview of how interviews are conducted in several leading IT companies.
Generally speaking, all these companies are looking for smart, passionate, and
excellent coders.

We will talk about how interviews are conducted in the following companies:

•	 Google

•	 Amazon

•	 Microsoft

28 What Interviews at Big Companies Look Like

•	 Facebook

•	 Crossover

Let's get started!

Interviews at Google
The Google interview starts with a technical phone screen (technical questions and coding
challenges). There will be 4-5 people involved in these technical phone screens. One of the
phone screens will be non-technical. At this moment, feel free to ask anything you want.

During these interview stages, you will be scored for your analytical ability, coding,
experience, and communication skills.

The interviewers submit their feedback to the Hiring Committee (HC). The HC is
responsible for making an offer or rejecting you. If the HC considers that you are the right
person for the job, then they forward the offer proposal to other committees. The final
decision is taken by the executive management committee.

The main technical focus is on analytical algorithms, brain-teasing algorithms, system
design, and scalability.

Most probably, you'll need to wait several weeks for a response.

It is advisable to search interview at Google on YouTube and watch the most relevant
testimonials and roadmap videos. Also, search for Google's most asked interview questions.

Interviews at Amazon
The Amazon interview starts with a technical phone screen conducted by a team from
Amazon. If some interviewers are not convinced after this phone screen, then it is possible
that they will ask for another one to clarify the issues.

If you pass the technical phone screen(s), then you will be invited to several face-to-face
interviews. A team of interviewers from different areas of the business will individually
conduct an interview and evaluate your technical skills (including coding). One of them
is also known as the bar raiser guy. Commonly, this guy is the most experienced, and
his questions and coding challenges will be harder. They will evaluate you against other
candidates as well, and they will decide whether to make an offer or not.

The main focus is on Object-Oriented Programming (OOP) and scalability.

Interviews at Microsoft 29

If you don't get any feedback after a week, then you should trigger a friendly follow-up
e-mail to Amazon contacts. Most probably, they will quickly reply to your e-mail and
explain the current status of your interview.

It is advisable to search interview at Amazon on YouTube and watch the most
relevant testimonials and roadmap videos. Also, search for Amazon's most asked
interview questions.

Interviews at Microsoft
The Microsoft interview starts with several technical phone screens or they might require
you to travel to one of their working branches. You will have 4-5 technical interviews with
different teams.

The final decision belongs to the hiring manager. Commonly, this hiring manager is
contacted only if you passed all the technical interview stages.

The main focus is on algorithms and data structures.

If you did not get any feedback after a week, then you should trigger a friendly follow-up
e-mail to Microsoft contacts. Sometimes, it takes just a day until they provide a decision,
but it can take a week, a month, or even more.

It is advisable to search interview at Microsoft on YouTube and watch the most
relevant testimonials and roadmap videos. Also, search for Microsoft's most asked
interview questions.

Interviews at Facebook
The Facebook interview starts with several technical and non-technical phone screens
involving questions (technical and non-technical) and coding challenges. Commonly, the
interviews are conducted by a team of software engineers and hiring managers.

Facebook uses three types of interviews covering the following areas:

•	 Your ability to adapt to the Facebook culture, along with some technical skills –
known as the behavioral or Jedi interview

•	 Your coding and algorithms skill (these are common problems that we'll cover
later, starting with Chapter 6, Object-Oriented Programming) – known as the
Ninja interview

•	 Your design and architecture skills – known as the Pirate interview

30 What Interviews at Big Companies Look Like

You can expect a combination of these types of interviews. Commonly, one Jedi
and two Ninja are enough. For positions that require higher experience, there
will be Pirate interviews as well.
If you pass these technical phone screens, then you will receive some homework including
technical questions and coding challenges. This time, you have to provide elegant and
clean coding solutions.

The main focus is on your capabilities to build something fast in any language. You can
expect to code in PHP, Java, C++, Python, Erlang, and so on.

The team of interviewers will take the decision to hire you or not.

It is advisable to search interview at Facebook on YouTube and watch the most
relevant testimonials and roadmap videos. Also, search for Facebook's most asked
interview questions.

Interviews at Crossover
Crossover is a remote company. They recruit remotely via their platform and have an
exclusive on-site interview process. Their on-site interview adheres to the following
roadmap:

Figure 2.1 – Crossover interview roadmap

All steps are important, which means your responses at each step must pass their internal
playbooks. If a step doesn't pass their internal playbooks, then it can lead to a sudden
closure of the interview. But, the most important steps are steps 3, 5, 6, and 7. Step 3
represents an eliminatory Criteria Cognitive Aptitude Test (CCAT). For example, you
have to answer 50 questions in 15 minutes. You have to answer correctly 25+ questions to
have a chance to advance to the next step. If you are not familiar with CCAT tests, then
it is strongly recommended to practice (there are books and websites dedicated to CCAT
tests). Without serious practice, it will be quite challenging to pass it. If you are not a
native English speaker, then you have to pay extra attention to practice the questions that
require serious English skills.

At step 5, you'll get a quiz with technical questions. There are 30+ questions with 5 answer
variants (one or more answers are correct). No coding is required at this step.

Summary 31

If you reach step 6, then you'll receive technical homework that should be completed in
3 hours and submitted (uploaded) to the platform. This homework can consist of one or
more Java applications starting from a stub application provided via download.

At step 7, you'll finally meet a person via a phone screen. This is usually a mix of technical
and non-technical questions.

The technical questions will cover a wide range of Java topics (collections, concurrency,
I/O, exceptions, and so on).

Commonly, you'll receive the final response by e-mail in less than a week. Depending on
the position, the offer will start with 1 month of paid boot camp experience. Note that
after boot camp, you can still be rejected or required to apply again. During boot camp
and after it, you'll have to maintain your position via weekly metrics that measure your
performance. You'll have to work 40 hours/week with webcam screenshots every 10
minutes. And, you are responsible for arranging to pay your own taxes. Salaries are fixed
and public on their website.

It is advisable to read the job description and testimonials on their website carefully. They
also have brand ambassadors whom you can contact to find out more about the company
culture, expectations, interview flow, and so on.

Other remote companies follow a three-step interview process. For example, Upstack
follows this pattern:

1.	 Initial interview: Non-technical phone screen

2.	 Technical interview: Technical phone screen containing coding challenge

3.	 Offer: Sending you an offer and signing the agreement

Of course, there are many other big companies that are not listed here. But as a rule of
thumb, the companies and their processes outlined here should give you some important
insights into what you should expect from a big player in the IT industry.

Summary
In this chapter, we had an overview of how interviews are conducted in several leading
IT companies. Most IT companies follow the same practices presented in this chapter,
with their own different combinations and flavors.

Next, let's see what the most common non-technical questions are, and how to
answer them.

3
Common

Non-Technical
Questions and How

To Answer Them
In this chapter, we will tackle the main aspects of the non-technical interview questions.
This part of the interview is commonly carried out by a hiring manager or even an HR
person. To prepare for this interview means getting familiar with the following questions:

•	 What is the purpose of non-technical questions?

•	 What is your experience?

•	 What's your favorite programming language?

•	 What do you want to do?

•	 What are your career goals?

•	 What's your working style?

•	 Why are you looking to change jobs?

34 Common Non-Technical Questions and How To Answer Them

•	 What is your salary history?

•	 Why we should hire you?

•	 How much money do you want to make?

•	 Do you have a question for me?

We will discuss each question in its own specific section. Let's start.

What is the purpose of non-technical
questions?
The non-technical interview questions are meant to measure the match between your
experience, character, and personality, and your ability to fit in with other employees and
teams. Being a good fit in the existing team(s) is a must. These questions are also useful
for creating a human connection between you and the company and seeing whether
there is any compatibility or chemistry between their ideal candidate and your education,
beliefs, ideas, expectations, culture, and so on. Moreover, non-technical questions cover
the practical and pragmatic aspects of the job as well, such as salary, relocation, medical
insurance, work schedule, willingness to do overtime, and so on.

There are companies that reject candidates based on this non-technical interview, even if
they were initially minded to make an offer.

Some companies hold this interview before the technical one. These companies try to
determine right from the start whether your experience and goals make you a good
candidate for the job in question. It is like saying that the human part has priority over the
technical part.

Other companies hold this interview after the technical one. These companies try to
determine what is the best offer for you. This is like saying that the technical part has
priority over the human part.

Non-technical questions don't have right or wrong answers! In these situations, the best
answers are sincere answers. As a rule of thumb, answer as you feel; don't try to say what
the interviewer wants to hear. It's like a negotiation – there will be trade-offs. Don't forget
to be polite and respectful.

Further, let's see the most common non-technical questions and some answer suggestions.
Don't learn/copy these answers! Try to come up with your own answers and focus on
what you want to highlight. Shape and repeat the answers at home and be prepared when
you come in front of the interviewer. Don't rely on your spontaneity; rely on sincerity and
balance the trade-offs.

What is your experience? 35

What is your experience?
Most probably, after the formal introduction, you'll be asked about your experience. If you
don't have an answer prepared for this question, then you are in trouble. Let's highlight
several important aspects meant to help you to prepare an appropriate answer:

•	 Don't detail your experience as a boring list of chronological facts: Choose
the most representative projects and achievements and talk about them with
enthusiasm. Talk about your work with enthusiasm (but don't look desperate and
don't exaggerate), and place your achievements in the context of the team/project.
For example, avoid saying,... and I did this and that on my own! It is better
to say,... and I helped my team by doing this and that. Don't say,...I was the only one
capable of doing that. Prefer saying...I was nominated by the team to accomplish this
delicate task. If you are in your first job, then talk about your school projects (think
of your colleagues as your team) and about your independent projects. If you have
participated in programming contests, then talk about your results and experience.

•	 Don't highlight only the positive things: Experiences can be positive and negative.
Talk about what went right, but also about what went wrong. Most of the time, the
truly valuable lessons come from negative experiences. These kinds of experiences
force us to go beyond our limits to find solutions. Moreover, such experiences
are proof of resistance to stress, tenacity, and power of concentration. Of course,
balance positive and negative experiences and highlight what you've learned from
both sides.

•	 Don't provide too short or too long an answer: Calibrate your answer to fit in
1-2 minutes.

What is your favorite programming language?
Since we are talking about a Java position, it's obvious that your favorite language is Java.
But if such a question arises, then it is meant to reveal whether you are Java-addicted or an
open-minded person. In other words, the interviewer considers that it's hard to work with
rigid people who are addicted to one programming language and want to use it exclusively
in all situations. Being a Java developer doesn't mean that you should consider Java for all
your tasks and ignore everything else. So, a good answer might be, Obviously, I am a big
fan of Java, but I also consider it important to pick the best tool for the job. It is absurd to
believe that Java is the answer to all problems.

36 Common Non-Technical Questions and How To Answer Them

What do you want to do?
This is a hard question and your answer can have a lot of interpretations. Be sincere and
tell the interviewer exactly what you want to do. You read the job description; therefore,
you know that you want this job. Explain to the interviewer the main reasons behind your
decision. For example, you could say, I want to become an excellent Java backend developer
and your projects are quite challenging in this area. I want to be part of the team that works
on these projects. Or, you could say, I want to be part of a major start-up in an important
company and this looks like a great opportunity for me. I heard that a new team is being
formed and I would be very excited to be part of it. Don't omit saying something about
working in a great team! Most probably, you won't be working alone, and being a team
player is a major aspect of working in almost any company.

What are your career goals?
Via this question (or its sister, Where do you see yourself in five years?), the interviewer
is trying to see whether this position fits with your career goals. They seek to understand
if you see this position as part of your career path, or if you have other reasons (apart from
the money) for doing it. It is hard to describe a detailed career path, but you could give an
answer that shows your commitment and motivation to do your job right. For example,
you could say, My current goal is to work as a Java backend developer on challenging
projects that will help me to accumulate more experience. In several years, I see myself
involved in architecting complex Java applications. Beyond that is too far away to think of
right now.

What's your working style?
This kind of question should ring a bell to you. Most of the time, this question is specific
to companies that have an uncommon working style. For example, they often work
overtime or they work on weekends. Maybe they work long shifts or they have metrics or
deadlines that are hard to achieve. Or, they put a lot of pressure and responsibilities on
this position. Explain to the interviewer your working style and underline indirectly the
things that you do not agree with. For example, you could point out that you are not open
to doing night shifts by saying, I like to start working in the morning with the most difficult
tasks, and in the second part of the day, I will deal with the planning of the next day. Or, you
could point out that you are not open to working on weekends by saying, I like to work
hard for 40 hours/week from Monday to Friday. I like to spend weekends with my friends.

Why are you looking to change jobs? 37

If you are asked directly about a specific aspect, then provide a clear answer. For example,
the interviewer may say, You know, if you work on weekends, then you'll be paid double.
What do you say about this?. Well, think twice, and answer as you feel but without leaving
room for interpretation.

Why are you looking to change jobs?
Of course, if you are at your first job then you will not get such a question (or its sister,
How and why did you leave your last job?). But if you had a previous role (or you plan
the change your current role), then the interviewer will want to know why you took this
decision. The key here is to detail clear and solid arguments without saying anything bad
or offensive about your previous company, bosses, coworkers, and so on – follow the
principle that if you can't say anything nice about someone, don't say anything at all.

Here are some tips that will help you with this question (pay attention to how this
question is interleaved with the previous one – if the working style of this company relates
nicely to the style of your current or ex-company, then most likely, the same reasons for
leaving that job will apply to avoiding this job as well):

•	 Don't cite money as the first argument: Money is often a good reason to change
jobs but citing it as the first argument is a dangerous route to take. The interviewer
may think that all you care about is money. Or, they may think that your current
employer didn't raise your salary because you were not valuable enough. Sooner
or later, they might think, you will want more money and you'll proceed with the
approach of looking elsewhere if they cannot offer you the desired raise.

•	 Invoke a factor out of your control: Invoking a factor out of your control keeps you
in the secure zone. For example, you could say, My team was assigned to a project
that required relocation. Or, you could say, I was moved... to the night shift and I
couldn't adapt my life to this schedule.

•	 Invoke a major change in the environment: For example, you could say: My
company does mass layoffs and I don't want this risk. Or, you could say, I worked
for 5 years in a small company, and now I want to put my experience to use in a
big company.

•	 Invoke an aspect that you don't like and is known by the interviewer: You
could say, I was hired as a Java backend programmer, but I spent a lot of time
helping the frontend guys. As you saw in my resume, my experience is rooted in
backend technologies.

38 Common Non-Technical Questions and How To Answer Them

What is your salary history?
Obviously, this question is meant to determine a landmark for the new offer. If you are
satisfied by your current salary, then you can give a number. Otherwise, is better to be
polite and say that I don't want to mess things up, and I am expecting compensation that is
proper for the new position and its requirements.

Why should we hire you?
This is a pertinent and slightly offensive question. In most cases, this is a trap
question meant to reveal your reaction to criticism. If it comes at the beginning of the
interview, then you should consider it as a misleading formulation of the question,
What's your experience?.

If it comes at the end of the interview, then it is quite obvious that the interviewer knows
very well why the company should hire you, therefore, he doesn't expect to hear a strong
argument based on your resume or experience. In this case, stay calm and positive and
mention why you like this company, why you want to work in this company, and what you
know about it. Showing your interest (for example, showing that you've researched the
company and visited their website) should be flattering for the interviewer, who can then
quickly pass to the next question.

How much money do you want to make?
This question occurs right at the start (for example, in the non-technical phone screen)
or at the end, when the company is ready to prepare an offer for you. When it occurs at
the start, it means that whether the interview will continue will be based on your answer.
If your expectations are beyond the potential offer, then most probably the interview will
stop here. It is wise to postpone a clear answer as much as possible by saying something
like, I don't have a clear number in my head. Of course, money is important, but there are
other important things as well. Let's see first if my value meets your expectations, and we
can negotiate after that. Or, if you must give an answer, then it's better to give a range of
salaries. You should know the common salary range for this position (because you've done
your homework and you've researched on the internet before the interview), therefore,
provide a range that fits your expectations and respects your research.

Ideally, this question occurs at the end of the interview process. This is a clear signal that
the company wants you and is prepared to make you an offer.

Now, you start the art of negotiation!

How much money do you want to make? 39

Don't jump into saying numbers! At this point, you should be pretty aware of how you did
in the interview and how badly you want this job. Start by asking the interviewer about
the range of the offer, what other bonuses are available, and what is included in the total
compensation package. There are several scenarios you have to consider further:

•	 In a very happy scenario, the offer will be higher than your expectations:
Accept it!

•	 More likely, the offer is near your expectations: Try to squeeze a little bit more.
For example, if you got a range between $60,000 - $65,000, then say something like,
I had in mind something pretty similar – more precisely, I will be very satisfied if we
can go for $65,000 - $70,000. This will probably help you to obtain around $63,000 -
$68,000.

•	 Getting an evasive answer: Instead of getting a range, you can receive an evasive
answer such as, We customize the salary depending on the applicant, therefore, I need
to know your expectations. In such a scenario, say the higher number you have in
mind. Most probably, you will not get this offer, but it gives you room to negotiate.
Be short and direct; for example, say, I'm expecting to $65,000 a year. You should get
around $60,000 or an answer that will disappoint you like, Sorry, but we had a much
lower number in mind. This leads to the next section.

•	 Getting a disappointing offer: In this scenario, try to be very prompt and start
by expressing your disappointment like, I have to say that I am very disappointed
with this offer. Continue by reiterating your strong skills and experience. Try to
make clear arguments that support the requested number and underline that you
do not want anything outlandish. If you are not open to accepting this job with
these conditions, then finish your response with an ultimatum like, If this is your
final word, I cannot accept such an offer. If the company was impressed by you,
it's possible they'd require more time and get back to you with another offer. If
you're thinking about accepting the offer, then ask for a written agreement for
renegotiation in six months for now. Moreover, try to squeeze other benefits out
of the negotations, such as flexible hours, bonuses, and so on.

Important note
As a rule of thumb, try to keep in mind the following aspects:
- Don't get shy or embarrassed when talking about salaries (novices often do).
- Don't start from low numbers that don't give you room for negotiation.
- Don't underestimate yourself and sell yourself short.
- Don't lose time trying to negotiate non-negotiable things.

40 Common Non-Technical Questions and How To Answer Them

Do you have a question for me?
Almost any interview ends with this question. The interviewer wants to clarify any
remaining doubts that you may have. You can ask whatever you want, but pay attention
not to ask something stupid or something that requires a long answer. You can ask details
about something that the interviewer said but that was not very clear, or you can ask for
their personal opinion about you. Or, you could ask something like, How did you come
to this company? What has been most challenging for you? If you have nothing to ask,
then don't ask. Simply say something like, Well, I have to say that you've answered all my
important questions. Thank you for your time!.

Summary
In this chapter, we covered the most common non-technical questions that you can face in
an interview. These questions should be seriously trained for before the interview because
they represent an important part of a successful interview. It's true that great answers
to these questions will not bring you an offer alone, without a solid demonstration of
the required technical knowledge, but they can impact your salary offer, your daily job
expectations, your working style, and career goals. Therefore, don't go unprepared to such
an interview.

In the next chapter, we'll see how to face the delicate situations when we don't manage to
obtain the desired job.

4
How to Handle

Failures
This chapter discusses a delicate aspect of interviews—handling failures. The main
purpose of this chapter is to show you how to identify the causes of failure and how to
mitigate them in the future.

However, before discussing handling failures, let's quickly tackle the proper way to accept
or decline an offer. At the end of an interview, or at some point during the interview, you
may find yourself in a position to accept or decline an offer. This is not about giving a
simple and dry yes or no answer.

Our agenda for this chapter includes the following:

•	 Accepting or rejecting an offer

•	 Considering that failure is an option

•	 Understanding that a company can reject you for a lot of reasons

•	 Objectively identifying and eliminating the mismatches

•	 Not forming an obsession for a company

Let's get started with the first topic.

42 How to Handle Failures

Accepting or rejecting an offer
Accepting an offer is quite simple. You need to inform the company that you accept the
offer and discuss details such as the starting date (especially if you need to work a notice
period at your current workplace), paperwork, reallocation (if it is the case), and so on.

Declining an offer is a bit more of a delicate situation. It must be done in a way that
allows you to remain in good relations with everyone. The company has invested time
and resources in the interview, and so you have to decline their offer politely. You may
also, after a while, consider applying to the company again. For example, you can say
something like I want to thank you for the offer. I was impressed with your company and
I enjoyed the interview process, but I've decided it's not the right choice for me right now.
Thank you again, and maybe someday we will meet again.

There are some cases when you need to manage multiple offers. While you accept an
offer, you have to decline another. In the IT industry, it is very important to build contacts
and maintain them over time. People frequently change their jobs and positions, and in
this dynamic environment, it is important to not squander any contacts. Therefore, don't
forget to call the hiring managers (or the contact person) that made you an offer and
inform them about your decision. You can use the same phrase given previously. If you
cannot call, then send an email or go to the office to meet them in person.

Failure is an option
In movies, we often hear the expression "failure is not an option." But those are just
movies! An interview always ends with an offer or a rejection, and so failure is an option.
It is our task to mitigate failures.

Handling failures is not easy, especially when they come one after the other. Each of us
reacts to failure in a different and human way. From feeling disappointed and resigned
to having a nervous reaction or saying things that you'll later be sorry about, these all are
normal human reactions. However, it is important that you control these reactions and
act professionally. This means applying a set of steps that will mitigate failures in the near
future. To begin with, it is important to understand why you have been rejected.

A company can reject you for a lot of reasons 43

A company can reject you for a lot
of reasons
Well, maybe the problem starts exactly with this powerful word: reject. Is it correct to
say or think that company X rejected you? I would say that this formulation is toxic
and sounds like the company has something personal against you. This formulation of
thoughts should be cut off right from the start. Instead, you should try to find out what
went wrong.

How about saying or thinking that between you and the company, there are mismatches
in skills and/or expectations? Most probably, this is much closer to reality. There are two
parties in an interview (you and the interviewer), and both parties try to identify the
matches or compatibilities that allow them to collaborate with a subjective approach. Once
you think like this, you will not blame yourself and you'll try to find out what went wrong.

Getting feedback after the interview
If you've been informed by the company that you didn't make the cut, it is time to call
them and ask for their feedback. You can say something like Thanks for interviewing me.
I'm trying to improve my interviewing skills, so it would be awesome if you could provide me
any kind of feedback that you consider useful for me.

Getting proper feedback is very important. It represents the starting point for fixing and
eliminating the mismatches, and so you can start mitigating failures. The mismatches are
commonly as follows:

•	 Performance: The candidate doesn't reach or maintain the expected performance
during the interview process.

•	 Expectations: The candidate doesn't meet the interviewer's expectations (for
example, their salary expectations are beyond the company's expectations).

•	 Lack of skills/experience: The candidate doesn't meet the skill level for the job (for
example, lack of experience).

•	 Communication: The candidate has the technical skills but does not articulate
them properly.

•	 Interviewer's bias: The candidate's conduct is not appropriate for the job/company.

Let's now have a look at how to identify and eliminate the mismatches.

44 How to Handle Failures

Objectively identifying and eliminating
the mismatches
While the feedback represents the starting point for fixing and eliminating the
mismatches, you have to be aware that it can be pretty subjective. It is important to read
the feedback carefully, and as you recall the phases of the interview, overlap their feedback
with your memory of it with an objective approach.

Once you have identified the objective mismatches, it is time to eliminate them.

Don't form an obsession for a company
Some people struggle to get hired by a certain company. Even after two or three attempts,
they don't stop. Is continuing to try perseverance or obsession? Has their dream job
become an obsession or they should continue to try? These are extremely personal
questions, but, as a rule of thumb, obsessions are always toxic and they don't lead to
anything good. If you find yourself in this situation, or you know somebody that is, then it
is time to change your attitude and think that maybe the following is the proper way
to think.

Don't lose confidence in yourself – sometimes,
they don't deserve you!
This title sounds like a sterile slogan of encouragement meant to make you feel better.
However, that's not true! It happens all the time and in many contexts. For example, a
singer at the beginning of her career went on a famous singing show and didn't win any
prizes; she didn't even place among the ones who were considered to be good. She didn't
try out for the contest again (as in the section title), but a few years later, she won her first
Grammy award.

There are tons of examples like this in real life. The singer didn't lose her confidence in
her skills and she were right! That famous singing show didn't deserve her. After years,
the show organizer invited the singer to sing again (this time as a guest) and the organizer
apologized for what had happened.

So, don't lose confidence in yourself – sometimes, they don't deserve you!

Summary 45

Summary
This chapter provided a brief overview of an important aspect that we must tackle wisely
during a job search—failures. They are a part of life, and we must know how to handle
them in a healthy and professional way. Don't get too emotional, and try to have a
professional, cold, realistic, and objective approach of each failure.

In the next chapter, we'll cover the climax of a technical interview: the coding challenge.

5
How to Approach a

Coding Challenge
This chapter covers technical quizzes and coding challenges, which are commonly used in
technical interviews.

The coding challenge is the most important part of an interview. This part can consist of a
single session or multiple sessions. Some companies prefer to split the technical interview
into two parts: the first part consists of a technical quiz, while the second part consists of
one or more coding challenges. In this chapter, we'll tackle these two topics in detail:

•	 Technical quiz

•	 Coding challenge

By the end of this chapter, you should be able to sketch a plan of your own to approach the
technical interview. You'll know how to deal with the key moments during the interview,
what the interviewer is expecting to see and hear from you, and how to deal with blocking
moments when you don't have a clue about the answer/solution.

48 How to Approach a Coding Challenge

Technical quiz
The technical quiz can take on a question-answer format with the technical interviewer, or
it can be an on-site quiz. Commonly, it contains 20-40 questions and takes less than
an hour.

When the technical interviewer conducts the process, you will have to provide free
answers and the duration may vary (for example, between 30-45 minutes). It is important
to be crystal clear, concise, and always on topic.

Usually, when a technical interviewer conducts the interview, the questions are formulated
as scenarios that require you to make a decision or choice. For example, a question may
sound like this: We need a space-efficient algorithm capable of searching millions of records
extremely quickly with a decent number of false positives. What do you recommend for us?
Most probably, the expected answer is something like, I will consider algorithms from the
Bloom filters family. If you came across a similar case in your previous projects, then you
may say it like this: We had the same scenario in a project about streaming data, and we
decided to go with the Bloom filter algorithm.

Another category of questions is meant to simply check your technical knowledge. These
questions are not in the context of a scenario or project; for example, Can you tell me what
the life cycle states of a thread in Java are? The expected answer is, At any moment, a Java
thread can be in one of the following states: NEW, RUNNABLE, RUNNING, BLOCKED,
SLEEP, WAITING/TIMED/WAITING, or TERMINATED.

Typically, answering technical questions is a three-step approach, as shown in the
following diagram. First, you should understand the question. If you have any doubts,
then ask for clarification. Second, you must know that the interviewer expects you to
identify several keywords or key points in your answer. This is like a checklist. This means
that you must know about the key things that should be highlighted in the answer. Third,
you just need to wrap the keywords/key points in a logical and meaningful answer:

Figure 5.1 – The process of tackling a technical quiz

You will see plenty of examples from Chapter 6, Object-Oriented Programming, onward.

As a rule of thumb, your answers should be technical, articulated in a concise but
comprehensive way, and communicated with confidence in yourself. A common mistake
of shy people is to provide an answer that sounds like a question. Their tone is like they're
asking for confirmation for every word. When your answer sounds like a question, the
interviewer will probably tell you to just give the answer without asking him.

Technical quiz 49

Important note
When you can only partially answer a question, don't rush to answer or say
you don't know. Try to ask the interviewer for more details and/or a 20-second
thinking time period. Sometimes, this will help you provide an incomplete but
decent answer. For example, the interviewer may ask you, What is the main
difference between checked and unchecked exceptions in Java? If you don't know
the difference, then you can give an answer such as, The checked exceptions
are subclasses of Exception, while the unchecked exceptions are subclasses of
RuntimeException. You didn't actually answer the question, but it is better
than saying, I don't know! Alternatively, you could formulate a question such
as, Are you referring to the exceptions that we are forced to catch? By doing this,
you may get more details from the interviewer. Pay attention and don't ask it
like, Are you referring to the exceptions that we are forced to catch and to the
exceptions that we are not forced to catch? You will probably receive a short
answer, such as Yes. This doesn't help you!

On the other hand, if you really have no clue about the answer/solution, then it
is better to say, I don't know. This is not necessarily a strike against you, while
trying to baffle the interviewer with too much gobbledygook will definitely be
against you.

There are companies that prefer an on-site multiple choice quiz. In this case, there is no
human assistance, and you'll have to finish the quiz in a fixed period of time (for example,
in 30 minutes). It is important to try to answer as many questions as possible. If you don't
know a question, then move on to the next one. The clock is ticking! At the end (the last
2-3 minutes), you can come back and try to provide an answer to those questions that you
passed on.

Nevertheless, there are platforms that don't allow you to navigate backward and forward
between the questions. In such a case, when you don't know the answer to a question, you
are forced to risk it and try to guess an answer. Spending a lot of time answering a single
question will result in a poor score at the end. Ideally, you should try to spend the same
amount of time on each question. For example, if you have 20 questions to answer in 30
minutes, then you can allocate 30/20 = 1.5 minutes to each question.

One of the best techniques to approaching a technical quiz (no matter what type of quiz)
is to perform several mock interviews. Grab a friend and ask him to act as the interviewer.
Put the questions in a bowl and ask him to randomly choose them one by one. Answer the
questions and act exactly as if you were in front of the real interviewer.

50 How to Approach a Coding Challenge

Coding challenge
The coding challenge is the climax of any technical interview. This is the moment
where you can show all your coding skills. It's time to demonstrate that you can do this
job. Having working and clean code can help you make a great impression.
A great impression may fill in the gaps that you left open during any other stage of
the interview.

The coding challenge is a double-edged sword that may radically change the final result of
the interview. One edge can cut you off from the scheme, while the other edge can bring
you an offer in spite of other shortcomings.

However, the problems specific to these coding challenges are really hard for a variety of
reasons. These will be covered in the next section.

The problems specific to coding challenges are meant
to be difficult
Have you ever seen a problem specific to the coding challenge stage and found it weird,
silly, or maybe pointless and nothing to do with real problems? If so, then you've seen an
excellent problem specific to the coding challenge stage.

To better understand how to prepare for such problems, it is important to know their
characteristics and requirements. So, let's have a look at them:

•	 They are not real-world problems: Commonly, real-world problems need a lot
of time to be coded, so they are not a good candidate for coding challenges. The
interviewer will ask you to solve problems that can be explained and coded in a
reasonable amount of time, and such problems are usually not real-world problems.

•	 They can be quite silly: It is not uncommon to see problems that are quite silly and
look like they have been invented just to complicate your life. They don't seem to be
useful for something or serve a goal. This is normal since, most of the time, they are
not real-world problems.

•	 They are fairly complex: Even if they can be solved pretty quickly, they are not
easy! Most probably, you'll be asked to code a method or a class, but this doesn't
mean that it will be easy. Commonly, they require all kinds of tricks, they are brain-
teasing, and/or they exploit less well-known features of the programming languages
(for example, working with bits).

Coding challenge 51

•	 The solution is not obvious: Since they are fairly complex, the solutions to these
problems are not obvious. Don't expect to find a solution immediately! Almost
nobody does! These questions are specially designed to see how you handle a
situation where you cannot immediately see the solution. This is why you may have
couple of hours to solve it (most commonly, between 1 and 3 hours).

•	 Prohibit the common solving paths: Most of the time, such problems have clear
clauses that prohibit the usage of common solving paths. For example, you may
receive a problem that sounds like this: Write a method that extracts a substring
of a string between the given positions without using a built-in method such as
String#substring(). There are countless examples like this one. Simply choose one or
more built-in Java methods (for example, utility methods) that can be implemented
in a relatively short amount of time and formulate it; for example, Write a method
that does X without using a built-in solution such as Y. Exploring API source code,
participating in open source projects, and practicing such problems is quite useful
for solving such problems.

•	 They are meant to place you in an exclusive range of candidates that receive
offers: The difficulty of these coding challenges is calibrated to place you in an
exclusive percentage of candidates. Some companies are making offers to less than
5% of candidates. If a certain problem can be easily solved by most candidates, then
it will be replaced.

Important note
The problems specific to coding challenges are meant to be difficult and are
usually asked in ascending order of difficulty. Most probably, to pass these
coding challenges, your experience and coding skills will not be enough. So,
don't get frustrated if, in spite of your knowledge, you cannot see a solution
right away. Many such problems are meant to test your ability to find solutions
to uncommon scenarios and test your coding skills. They might have ridiculous
clauses and/or obscure solutions that exploit uncommon features of a
programming language. They might contain silly requirements and/or dummy
cases. Focus only on how to solve them and always do it by the rules.

A single coding challenge session is, most of the time, enough for the interviewers.
Nevertheless, there are cases where you'll have to pass two or even three such challenges.
The key is to practice as much as possible. The next section shows you how to handle, in
general, a coding challenge problem.

52 How to Approach a Coding Challenge

Tackling a coding challenge problem
Before we discuss the process of tackling a coding challenge problem, let's quickly set up a
possible environment for a coding challenge. Mainly, there are two coordinates that define
this environment: the presence of the interviewer during the coding challenge and the
paper-pen versus computer approach.

The interviewer's presence during the coding challenge
Most commonly, the interviewer is present (by phone screen or in-person) during the
coding challenge. They will evaluate your final result (code), but they are not there just
for this reason. Measuring just your coding ability doesn't require their presence and is
usually encountered in programming contests. An interview coding challenge is not a
programming contest. The interviewer wants to see you during the entire process in order
to analyze your behavior and communication skills. They want to see whether you have a
plan to solve the problem, whether you act in an organized or chaotic way, whether you
write ugly code, whether you are willing to communicate your actions, or whether you are
introverted. Moreover, they want to assist and guide you. Of course, you need to strive for
no guidance or as little as possible, but a proper reaction to guidance is also appreciated.
However, striving for no guidance doesn't mean that you should not interact with the
interviewer.

Keep talking!
Interaction with the interviewer is an important factor. The following list explains several
aspects of the interactivity plan:

•	 Explain your solution before coding: Before you start coding, it is important to
squeeze some valuable information from the interviewer. Describe to them how
you want to solve the problem, what steps you want to follow, and what you'll
use. For example, you could say, I think that a HashSet is the proper choice here
because the order of insertion is not relevant and we don't need duplicate values.
You'll get a thumbs up or some guidance or advice that will help you obtain the
expected results.

•	 Explain what you are doing while coding: While you're coding, explain it to the
interviewer. For example, you could say, First, I will create an instance of ArrayList,
or, Here, I load the file from the local folder into memory.

Coding challenge 53

•	 Ask the proper questions: As long as you know and respect the limits, you can
ask questions that can save you time. For example, it is OK to ask, I can't remember
– what is the default MySQL port, 3308 or 3306? However, don't exaggerate with
these questions!

•	 Mention the aspects that matter: If you know additional information related to the
problem, then share it with the interviewer. This is a good chance to expose your
programming knowledge, your thoughts, and your ideas around the problem.

If you encounter a problem that you already know (maybe you've solved it while
practicing such problems), then don't blurt 'it' out. This will not impress the interviewer,
and you will probably get another coding challenge. It is better to follow the same process
that you'd follow for any other problem. Before we cover this process, let's tackle one more
aspect of the interview environment.

Paper-pen versus computer approach
If the coding challenge takes place via a phone screen, then the interviewer will ask you
to share your screen and code in your favorite Integrated Development Environment
(IDE). This way, the interviewer can see how you take advantage of IDE help as well (for
example, they can see if you use the IDE to generate getters and setters or if you write
them by hand).

Important note
Avoid running the application after each line of code. Instead, run the
application after each logical block of code. Make the corrections and run it
again. Take advantage of the IDE debugging tool.

If you meet the interviewer in person, then you could be asked to use paper or a
whiteboard for coding. This time, coding can be in Java or even pseudocode. Since your
code cannot be compiled and executed, you have to test it manually. It is important to
show that your code works by taking an example and passing it through your code.

Important note
Avoid excessive write-delete code cycles in a chaotic approach. Think twice and
write once! Otherwise, you will give the interviewer a headache.

Now, let's take a look at the general steps that are meant to provide a methodological and
logical approach to solving a problem.

54 How to Approach a Coding Challenge

The process of tackling a coding challenge problem
The process of tackling a coding challenge problem can be done in a suite of steps that
should be applied sequentially. The following diagram shows these steps:

Figure 5.2 – The process of tackling a coding challenge problem

Now, let's detail each of these steps. While applying this problem-solving process, don't
forget the interactivity component.

Understand the problem
It is very important to understand the problem. Don't start solving the problem based
on assumptions or a partial understanding of the problem. Read the problem at least
twice! Don't rely on a single read since, in most cases, these problems contain hidden and
obscure requirements or details that are easy to miss.

Coding challenge 55

Don't hesitate to ask your interviewer questions about the problem. There are cases
when details are intentionally forgotten to test your ability to discover the
underlying problem.

Important note
Only if you understand the problem will you have a chance of solving it.

Next, it is time to build an example. If you manage to build an example, then this is a clear
signal that you have understood the problem.

Build an example
As they say, A picture's worth a thousand words, but we can say the same thing about
an example.

Sketching the problem and building an example will clarify any remaining
misunderstandings. It will give you the chance to discover the problem in detail via a
methodological approach (step by step). Once you have a working example, you should
start seeing the overall solution. This is also useful for testing your final code.

Important note
A sketch and an example are useful for solidifying your understanding of the
problem.

Now, it is time to think about the overall solution and decide on the algorithm(s) to use.

Deciding on the algorithm(s) to use and explaining them
At this point, you have understood the problem and even built an example. Now, it is time
to shape an overall solution and split it into steps and algorithms.

This is a time-consuming process. At this point, it is important to apply the Communicate
What You Think approach. If you don't say anything, then the interviewer doesn't know if
you are clueless or if you are in a brainstorm. For example, you could say, I think I can use
a List for storing the emails, ... hmmm ... no, this is not OK because a List accepts duplicates.
While you are talking (even if it looks like you are talking to yourself), the interviewer can
judge the correctness of your reasoning, can see your knowledge level, and can provide
you with some tips. The interviewer may reply with something like, Yes, that is a good
point, but nevertheless, do not forget that you need to maintain the order of insertion.

56 How to Approach a Coding Challenge

Most of the time, the problem requires some form of data (strings, numbers, bits, objects,
and so on) manipulation, such as sorting, ordering, filtering, reversing, flattening,
searching, computing, and so on. Where there is data, there are data structures as well
(arrays, lists, sets, maps, trees, and so on). The trick is to find the proper matches between
the data manipulations that you need and the data structures. Usually, a proper match
means the following:

•	 You can easily apply certain manipulations to the data structure.

•	 You can obtain good performance (Big O – see Chapter 7, Big O Analysis
of Algorithms).

•	 You can maintain harmony between the used data structure(s). This means that you
don't need heavy or complex algorithms, nor do you need to perform conversion to
move/exploit the data between data structures.

These are the big pieces of the puzzle. Managing to identify the proper matches is half
of the job. The other half is to bring these pieces together to shape the solution. In other
words, you need to bring logic into the equation.

It is very tempting to start coding immediately after you read the problem or after you've
understood it and shaped the big picture of the solution in your mind. Don't do that!
Often, this will lead to a chain of failures that will make you lose your temper. Very soon,
all your ideas will be surrounded by a dense mist of distrust and you will start to code
hastily, even with ridiculous mistakes.

Important note
Take your time and think about the solution deeply before starting to code.

Now, it's time to start coding your solution and impress the interviewer with your
coding skills.

Coding the skeleton
Start coding the solution with a skeleton. More precisely, define your classes, methods,
and interfaces without implementation (behavior/actions). You will fill them up with code
in the next step. This way, you're showing the interviewer that your coding stage follows
a clear road. Don't jump into the code too hastily? Moreover, respect the fundamental
principles of programming, such as Single responsibility, Open–closed, Liskov
substitution, Interface segregation, Dependency inversion (SOLID) and Don't Repeat
Yourself (DRY). Most probably, the interviewer will watch out for these principles.

Coding challenge 57

Important note
Coding the skeleton of your solution helps the interviewer follow you easily
and better understand your reasoning.

At this point, you have the attention of the interviewer. Now, it's time to bring your
skeleton to life.

Coding the solution
Now, it's time to code the solution. While you're doing so, explain the main code lines
that you write to the interviewer. Pay attention and respect the well-known Java coding
style (for example, follow the Google Java Style Guide at google.github.io/
styleguide/javaguide.html).

Important note
Following a well-known Java coding style and communicating your actions to
the interviewer will be a big plus for the final result.

Once you've done the core implementation of your solution, it is time to increase the
robustness of your code. So, as a final touch, don't ignore exceptions handling and
validations (for example, validating the arguments of methods). Also, ensure that you've
covered all the requirements of the problem and that you've employed the right data types.
Finally, it is time to keep your fingers crossed that your code will pass the testing step.

Testing the solution is the final step of this process.

Testing the solution
In the second step of this process, you built an example. Now, it is time to show the
interviewer that your code works by passing the example through it. It is very important to
demonstrate that your code works at least for this example. It may go to the first key or run
successfully after you've repaired some minor bugs, but in the end, it is just important that
it works.

Don't relax! You have won the current battle, but not the war! Often, the interviewer will
want to see your code working for corner cases or special cases as well. Usually, such
special cases involve dummy values, boundaries values, improper inputs, actions that
force exceptions, and so on. If your code is not robust and it fails these attempts, then the
interviewer will think that this is exactly how you'll code the production applications as
well. On the other hand, if your code works, then the interviewer will be totally impressed.

58 How to Approach a Coding Challenge

Important note
Code that works should put a smile on your interviewer's face. At the very least,
you will feel that they are a little bit more friendly toward you and relaxed.

If you made a good impression, then the interviewer may want to ask you some extra
questions. You should expect to be asked about the code's performance and alternative
solutions. Of course, you can provide such information without being asked. The
interviewer will be pleased to see that you can tackle a problem in multiple ways and that
you understand the pros and cons of each solution and decision.

Getting stuck makes you freeze
First of all, it is normal to get stuck. Don't panic! Don't get frustrated! Don't quit!

If you get stuck, then others taking the interview will probably get stuck as well. The main
problem is how to handle such a blockage, not the blockage itself. You have to stay calm
and try to do the following:

•	 Get back to your example: Sometimes, it is helpful to detail your example, or to
take a look at one more example. Having two examples can help you shape the
general case in your mind and understand the pillars of the problem.

•	 Isolate the problem in the example: Every example has a suite of steps. Identify the
step where you got stuck and focus on it as a separate problem. Sometimes, pulling
out the issue from its context allows you to understand it better and solve it.

•	 Try a different approach: Sometimes, the solution is to tackle the issue from
different angles. A different perspective can give you a new view. Maybe another
data structure, a hidden feature of Java, a brute-force approach, and so on can help.
An ugly solution is better than no solution!

•	 Mock or postpone the issue: Struggling for a long time to solve a step may lead
to the unpleasant situation of you not being able to finish the problem on time.
Sometimes, it is better to mock or postpone the step that causes you trouble and
continue with the other steps. It is possible that, in the end, when you come back to
this step, you will have a much clearer picture of it and will know how to code it.

•	 Ask for guidance: This should be your last resort, but in a crisis, you must apply
desperate solutions. You can ask something such as, I am confused about this aspect
because… (and explain; try to justify your confusion). Can you please give me a tip
about what I am missing here?

Summary 59

The interviewer is aware of the difficulty of the step(s), so they will not be surprised that
you got stuck. They will appreciate your perseverance, analytical capabilities, and calmness
in trying to find a solution, even if you don't find it. The interviewer knows that you'll
encounter similar situations in your daily job and that the most important thing in such
scenarios is to stay calm and search for solutions.

Summary
In this chapter, we talked about the process of tackling a coding challenge problem.
Besides the steps we enumerated earlier – understand the problem, build an example,
decide and explain the algorithm(s), code the skeleton, and code and test the solution –
there is one more step that will become the objective of the chapters that follow: practice
a lot of problems! In the next chapter, we will start with the fundamental concepts of
programming.

Section 2:
Concepts

This section covers questions regarding concepts. Providing excellent knowledge in this
area is a great indicator that you have the fundamental skills required, which means you
have a solid and healthy technical foundation to answer questions at the interview stage.
Companies look for such people as possible candidates that can be trained to solve very
specific and complex tasks.

This section comprises the following chapters:

•	 Chapter 6, Object-Oriented Programming

•	 Chapter 7, Big O Analysis of Algorithms

•	 Chapter 8, Recursion and Dynamic Programming

•	 Chapter 9, Bit Manipulation

6
Object-Oriented

Programming
This chapter covers the most popular questions and problems relating to Object-Oriented
Programming (OOP) that are encountered at Java interviews.

Please bear in mind that my goal is not to teach you about OOP or, in more general
terms, the aim of this book is not to teach you about Java. My goal is to teach you how to
answer questions and solve problems in the context of an interview. In such a context, the
interviewer wants a clear and concise answer; you'll not have the time for dissertations
and tutorials. You have to be able to express your ideas lucidly and cogently. Your answers
should be meaningful and you have to convince the interviewer that you really understand
what you are saying and that you are not just reciting a number of sterile definitions. Most
of the time, you should be able to express an article of several pages or a chapter of a book
in one or several key paragraphs.

By the end of this chapter, you'll know how to answer 40+ questions and problems that
cover the fundamental aspects of OOP. Being fundamental aspects, you have to know
them in detail. There is no excuse in the event that you don't know the correct and concise
answers to these problems. A lack of knowledge in this area can severely affect your
chances of success at interview.

64 Object-Oriented Programming

So, let's summarize our agenda as follows:

•	 OOP concepts

•	 SOLID principles

•	 GOF design patterns

•	 Coding challenges

Let's start with questions relating to OOP concepts.

Technical requirements
You can find all the codes present in this chapter on GitHub. Please visit the following
link:
https://github.com/PacktPublishing/The-Complete-Coding-
Interview-Guide-in-Java/tree/master/Chapter06

Understanding OOP concepts
The OOP model is based on several concepts. These concepts must be familiar to any
developer who is planning to design and program applications relying on objects.
Therefore, let's start by enumerating them as follows:

•	 Object

•	 Class

•	 Abstraction

•	 Encapsulation

•	 Inheritance

•	 Polymorphism

•	 Association

•	 Aggregation

•	 Composition

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter06

Understanding OOP concepts 65

Commonly, when these concepts are wrapped in questions, they are prefixed by What
is ...? For example, What is an object?, or What is polymorphism?

Important note
The correct answers to these questions are a combination of technical
knowledge and real-world analogies or examples. Avoid cold answers with
super-technical details and no examples (for example, don't talk about the
internal representation of an object). Pay attention to what you're saying
because the interviewer may extract questions directly from your answers. If
your answer has mentioned a notion in passing, then the next question may
refer to that notion. In other words, don't add to your answer any aspects that
you are unfamiliar with.

So, let's answer the questions relating to OOP concepts in an interview context. Notice
that we apply what we've learned in Chapter 5, How to Approach a Coding Challenge.
More precisely, we follow the Understand the question|Nominate the key words/key
points|Wrap an answer technique. To begin with, in order to become familiar with this
technique, I'll extract the key points as a bulleted list, and I will italicize them in
the answer.

What is an object?
The key points that you should encapsulate in your answer are the following:

•	 An object is one of the core concepts of OOP.

•	 An object is a real-world entity.

•	 An object has state (fields) and behaviors (methods).

•	 An object represents an instance of a class.

•	 An object takes up some space in memory.

•	 An object can communicate with other objects.

Now, we can present an answer as follows:

66 Object-Oriented Programming

An object is one of the core concepts of OOP. An object is a real-world entity, such as a car,
table, or cat. During its life cycle, an object has state and behaviors. For example, a cat's
state can be color, name, and breed, while its behaviors can be playing, eating, sleeping,
and meowing. In Java, an object is an instance of a class usually built via the new keyword,
and it has state stored in fields and exposes its behavior through methods. Each instance
takes some space in memory and can communicate with other objects. For example, a boy,
which is another object, can caress a cat and it sleeps.

If further details are required, then you may want to talk about the fact that objects can
have different access modifiers and visibility ranges, can be mutable, unmodifiable, or
immutable, and are collected via the garbage collector.

What is a class?
The key points that you should encapsulate in your answer are the following:

•	 A class is one of the core concepts of OOP.

•	 A class is a template or a blueprint for creating objects.

•	 A class doesn't consume memory.

•	 A class can be instantiated multiple times.

•	 A class does one, and only one, thing.

Now, we can present an answer as follows:

A class is one of the core concepts of OOP. A class is a set of instructions that are required to
build a specific type of object. We can think of a class as a template, a blueprint, or a recipe
that tells us how to create objects of that class. Creating an object of that class is a process
called instantiation and is usually done via the new keyword. We can instantiate as many
objects as we wish. A class definition doesn't consume memory being saved as a file on the
hard drive. One of the best practices that a class should follow is the Single Responsibility
Principle (SRP). While conforming to this principle, a class should be designed and
written to do one, and only one, thing.

If further details are required, then you may want to talk about the fact that classes can
have different access modifiers and visibility ranges, support different types of variables
(local, class, and instance variables), and can be declared as abstract, final, or
private, nested in another class (inner class), and so on.

Understanding OOP concepts 67

What is abstraction?
The key points that you should encapsulate in your answer are the following:

•	 Abstraction is one of the core concepts of OOP.

•	 Abstraction is the concept of exposing to the user only those things that are relevant
to them and hiding the remainder of the details.

•	 Abstraction allows the user to focus on what the application does instead of how it
does it.

•	 Abstraction is achieved in Java via abstract classes and interfaces.

Now, we can present an answer as follows:

Einstein claims that Everything should be made as simple as possible, but not simpler.
Abstraction is one of the main OOP concepts that strive to make things as simple as possible
for the user. In other words, abstraction exposes the user only to the things that are relevant
to them and hides the remainder of the details. In OOP terms, we say that an object should
expose to its users only a set of high-level operations, while the internal implementation of
those operations is hidden. So, abstraction allows the user to focus on what the application
does instead of how it does it. This way, abstraction reduces the complexity of exposing the
things, increases code reusability, avoids code duplications, and sustains low coupling and
high cohesion. Moreover, it maintains the security and discretion of the application by
exposing only the important details.

Let's consider a real-life example: a man driving a car. The man knows what each pedal
does and what the steering wheel does, but he doesn't know how these things are done
internally by the car. He doesn't know about the inner mechanisms that empower these
things. This is what abstraction is. In Java, abstraction can be achieved via abstract classes
and interfaces.

If further details are required, then you may share the screen or use paper and a pen and
code your example.

So, we said that a man is driving a car. The man can speed up or slow down the car via the
corresponding pedals. He also can turn left and right with the aid of the steering wheel.
All these actions are grouped in an interface named Car:

public interface Car {

 public void speedUp();

 public void slowDown();

 public void turnRight();

68 Object-Oriented Programming

 public void turnLeft();

 public String getCarType();

}

Next, each type of car should implement the Car interface and override these methods to
provide the implementation of these actions. This implementation is hidden from the user
(the man driving the car). For example, the ElectricCar class appears as follows (in
reality, in place of System.out.println, we have complex business logic):

public class ElectricCar implements Car {

 private final String carType;

 public ElectricCar(String carType) {

 this.carType = carType;

 }

 @Override

 public void speedUp() {

 System.out.println("Speed up the electric car");

 }

 @Override

 public void slowDown() {

 System.out.println("Slow down the electric car");

 }

 @Override

 public void turnRight() {

 System.out.println("Turn right the electric car");

 }

 @Override

 public void turnLeft() {

 System.out.println("Turn left the electric car");

 }

Understanding OOP concepts 69

 @Override

 public String getCarType() {

 return this.carType;

 }

}

The user of this class has access to these public methods without being aware of the
implementation:

public class Main {

 public static void main(String[] args) {

 Car electricCar = new ElectricCar("BMW");

 System.out.println("Driving the electric car: "

		 + electricCar.getCarType() + "\n");

 electricCar.speedUp();

 electricCar.turnLeft();

 electricCar.slowDown();

 }

}

The output is listed as follows:

Driving the electric car: BMW

Speed up the electric car

Turn left the electric car

Slow down the electric car

So, this was an example of abstraction via an interface. The complete application is named
Abstraction/AbstractionViaInterface. In the code bundled to this book, you can find the
same scenario implemented via an abstract class. The complete application is named
Abstraction/AbstractionViaAbstractClass.

Moving on, let's talk about encapsulation.

70 Object-Oriented Programming

What is encapsulation?
The key points that you should encapsulate in your answer are the following:

•	 Encapsulation is one of the core concepts of OOP.

•	 Encapsulation is the technique whereby the object state is hidden from the outer
world and a set of public methods for accessing this state are exposed.

•	 Encapsulation is achieved when each object keeps its state private, inside a class.

•	 Encapsulation is known as the data-hiding mechanism.

•	 Encapsulation has a number of important advantages associated with it, such as
loosely coupled, reusable, secure, and easy-to-test code.

•	 In Java, encapsulation is implemented via the access modifiers – public,
private, and protected.

Now, we can present an answer as follows:

Encapsulation is one of the core concepts of OOP. Mainly, encapsulation binds together
the code and data in a single unit of work (a class) and acts as a defensive shield that
doesn't allow external code to access this data directly. Mainly, it is the technique of
hiding the object state from the outer world and exposing a set of public methods for
accessing this state. When each object keeps its state private inside a class, we can say that
encapsulation was achieved. This is why encapsulation is also referenced as the data-hiding
mechanism. The code that takes advantage of encapsulation is loosely coupled (for example,
we can change the names of the class variables without breaking the client code), reusable,
secure (the client is not aware of how data is manipulated inside the class), and easy to
test (it is easier to test methods than fields). In Java, encapsulation can be achieved via
the access modifiers, public, private, and protected. Commonly, when an object
manages its own state, its state is declared via private variables and is accessed and/or
modified via public methods. Let's consider an example: a Cat class can have its state
represented by fields such as mood, hungry, and energy. While the code external to the
Cat class cannot modify any of these fields directly, it can call public methods, such as
play(), feed(), and sleep() that modify the Cat state internally. The Cat class may
also have private methods that are not accessible outside the class, such as meow().
This is encapsulation.

If further details are required, then you may share the screen or use paper and a pen and
code your example.

Understanding OOP concepts 71

So, the Cat class from our example can be coded as indicated in the following code block.
Notice that the state of this class was encapsulated via private fields, and is therefore
not directly accessible from outside the class:

public class Cat {

 private int mood = 50;

 private int hungry = 50;

 private int energy = 50;

 public void sleep() {

 System.out.println("Sleep ...");

 energy++;

 hungry++;

 }

 public void play() {

 System.out.println("Play ...");

 mood++;

 energy--;

 meow();

 }

 public void feed() {

 System.out.println("Feed ...");

 hungry--;

 mood++;

 meow();

 }

 private void meow() {

 System.out.println("Meow!");

 }

 public int getMood() {

 return mood;

 }

72 Object-Oriented Programming

 public int getHungry() {

 return hungry;

 }

 public int getEnergy() {

 return energy;

 }

}

The only way to modify the state is via the public methods, play(), feed(), and
sleep(), as in the following example:

public static void main(String[] args) {

 Cat cat = new Cat();

 cat.feed();

 cat.play();

 cat.feed();

 cat.sleep();

 System.out.println("Energy: " + cat.getEnergy());

 System.out.println("Mood: " + cat.getMood());

 System.out.println("Hungry: " + cat.getHungry());

}

The output will be as follows:

Feed ...Meow!Play ...Meow!Feed ...Meow!Sleep ...

Energy: 50

Mood: 53

Hungry: 49

The complete application is named Encapsulation. Now, let's have a rundown
on inheritance.

Understanding OOP concepts 73

What is inheritance?
The key points that you should encapsulate in your answer are the following:

•	 Inheritance is one of the core concepts of OOP.

•	 Inheritance allows an object to be based on another object.

•	 Inheritance sustains code reusability by allowing an object to reuse the code of
another object and adds its own logic as well.

•	 Inheritance is known as an IS-A relationship, also referenced as a parent-child
relationship.

•	 In Java, inheritance is achieved via the extends keyword.

•	 The inherited object is referenced as the superclass, and the object that inherits the
superclass is referenced as the subclass.

•	 In Java, multiple classes cannot be inherited.

Now, we can present an answer as follows:

Inheritance is one of the core concepts of OOP. It allows an object to be based on another
object, which is useful when different objects are pretty similar and share some common
logic, but they are not identical. Inheritance sustains code reusability by allowing an object
to reuse the code of another object while it adds its own logic as well. So, in order to achieve
inheritance, we reuse the common logic and extract the unique logic in another class.
This is known as an IS-A relationship, also referenced as a parent-child relationship. It is
just like saying Foo IS-A Buzz type of thing. For example, cat IS-A feline, and train IS-A
vehicle. An IS-A relationship is the unit of work used to define hierarchies of classes. In
Java, inheritance is accomplished via the extends keyword by deriving the child from its
parent. The child can reuse the fields and methods of its parent and add its own fields
and methods. The inherited object is referenced as the superclass, or the parent class, and
the object that inherits the superclass is referenced as the subclass, or the child class. In Java,
inheritance cannot be multiple; therefore, a subclass or child class cannot inherit fields
and methods of more than one superclass or parent class. For example, an Employee
class (parent class) can define the common logic of any employee in a software company,
while another class (child class), named Programmer, can extend the Employee to use
this common logic and add logic specific to a programmer. Other classes can extend the
Programmer or Employee classes as well.

If further details are required, then you may share the screen or use paper and a pen and
code your example.

74 Object-Oriented Programming

The Employee class is quite simple. It wraps the name of the employee:

public class Employee {

 private String name;

 public Employee(String name) {

 this.name = name;

 }

 // getters and setters omitted for brevity

}

Then, the Programmer class extends the Employee. As any employee, a programmer
has a name, but they are also assigned to a team:

public class Programmer extends Employee {

 private String team;

 public Programmer(String name, String team) {

 super(name);

 this.team = team;

 }

 // getters and setters omitted for brevity

}

Now, let's test inheritance by creating a Programmer and calling getName(), inherited
from the Employee class, and getTeam(), inherited from the Programmer class:

public static void main(String[] args) {

 Programmer p = new Programmer("Joana Nimar", "Toronto");

 String name = p.getName();

 String team = p.getTeam();

 System.out.println(name + " is assigned to the "

Understanding OOP concepts 75

 + team + " team");

}

The output will be as follows:

Joana Nimar is assigned to the Toronto team

The complete application is named Inheritance. Moving on, let's talk about polymorphism.

What is polymorphism?
The key points that you should encapsulate in your answer are the following:

•	 Polymorphism is one of the core concepts of OOP.

•	 Polymorphism means many forms in Greek.

•	 Polymorphism allows an object to behave differently in certain cases.

•	 Polymorphism can be shaped via method overloading (known as Compile-Time
Polymorphism) or via method overriding in the case of an IS-A relationship
(known as Runtime Polymorphism).

Now, we can present an answer as follows:

Polymorphism is one of the core concepts of OOP. Polymorphism is a word composed of
two Greek words: poly, which means many, and morph, which means forms. Therefore,
polymorphism means many forms.

More precisely, in the OOP context, polymorphism allows an object to behave differently
in certain cases or, in other words, allows an action to be accomplished in different ways
(approaches). One way to implement polymorphism is via method overloading. This is
known as Compile-Time Polymorphism because the compiler can identify at compile time
which form of an overloaded method to call (multiple methods with the same name but
different arguments). So, depending on which form of the overloaded method is called,
the object behaves differently. For example, a class named Triangle can define multiple
methods named draw() with different arguments.

76 Object-Oriented Programming

Another way to implement polymorphism is via method overriding, and this is the common
approach when we have an IS-A relationship. It is known as Runtime Polymorphism, or
Dynamic Method Dispatch. Typically, we start with an interface containing a bunch of
methods. Next, each class implements this interface and overrides these methods to
provide a specific behavior. This time, polymorphism allows us to use any of these classes
exactly like its parent (the interface) without any confusion of their types. This is possible
because, at runtime, Java can distinguish between these classes and knows which one is
used. For example, an interface named Shape can declare a method named draw(), and
the Triangle, Rectangle, and Circle classes implement the Shape interface and
override the draw() method to draw the corresponding shape.

If further details are required, then you may share the screen or use paper and a pen and
code your example.

Polymorphism via method overloading (compile time)
The Triangle class contains three draws() methods, as follows:

public class Triangle {

 public void draw() {

 System.out.println("Draw default triangle ...");

 }

 public void draw(String color) {

 System.out.println("Draw a triangle of color "

 + color);

 }

 public void draw(int size, String color) {

 System.out.println("Draw a triangle of color " + color

 + " and scale it up with the new size of " + size);

 }

}

Understanding OOP concepts 77

Next, notice how the corresponding draw() method is called:

public static void main(String[] args) {

 Triangle triangle = new Triangle();

 triangle.draw();

 triangle.draw("red");

 triangle.draw(10, "blue");

}

The output will be as follows:

Draw default triangle ...

Draw a triangle of color red

Draw a triangle of color blue and scale it up

with the new size of 10

The complete application is named Polymorphism/CompileTime. Moving on, let's look at
an example of implementing runtime polymorphism.

Polymorphism via method overriding (runtime)
This time, the draw() method is declared in an interface, as follows:

public interface Shape {

 public void draw();

}

The Triangle, Rectangle, and Circle classes implement the Shape interface and
override the draw() method to draw the corresponding shape:

public class Triangle implements Shape {

 @Override

 public void draw() {

 System.out.println("Draw a triangle ...");

 }

}

78 Object-Oriented Programming

public class Rectangle implements Shape {

 @Override

 public void draw() {

 System.out.println("Draw a rectangle ...");

 }

}

public class Circle implements Shape {

 @Override

 public void draw() {

 System.out.println("Draw a circle ...");

 }

}

Next, we create a triangle, a rectangle, and a circle. For each of these instances, let's call the
draw() method:

public static void main(String[] args) {

 Shape triangle = new Triangle();

 Shape rectangle = new Rectangle();

 Shape circle = new Circle();

 triangle.draw();

 rectangle.draw();

 circle.draw();

}

The output reveals that, at runtime, Java called the proper draw() method:

Draw a triangle ...

Draw a rectangle ...

Draw a circle ...

Understanding OOP concepts 79

The complete application is named Polymorphism/Runtime. Moving on, let's talk
about association.

Important note
There are people who consider polymorphism as the most important concept
in OOP. Moreover, there are voices that consider runtime polymorphism as the
only genuine polymorphism, while compile-time polymorphism is not actually
a form of polymorphism. During an interview, initiating such a debate is not
recommended. It is better to act as a mediator and present both sides of the
coin. We will discuss soon how to tackle such situations.

What is association?
The key points that you should encapsulate in your answer are the following:

•	 Association is one of the core concepts of OOP.

•	 Association defines the relation between two classes that are independent of one
another.

•	 Association has no owner.

•	 Association can be one-to-one, one-to-many, many-to-one, and many-to-many.

Now, we can present an answer as follows:

Association is one of the core concepts of OOP. The association goal is to define the relation
between two classes independent of one another and is also referenced as the multiplicity
relation between objects. There is no owner of the association. The objects involved in an
association can use one another (bidirectional association), or only one uses the other
one (unidirectional association), but they have their own life span. Association can be
unidirectional/bidirectional, one-to-one, one-to-many, many-to-one, and many-to-many.
For example, between the Person and Address objects, we may have a bidirectional
many-to-many relationship. In other words, a person can be associated with multiple
addresses, while an address can belong to multiple people. However, people can exist
without addresses, and vice versa.

If further details are required, then you may share the screen or use paper and a pen and
code your example.

80 Object-Oriented Programming

The Person and Address classes are very simple:

public class Person {

 private String name;

 public Person(String name) {

 this.name = name;

 }

 // getters and setters omitted for brevity

}

public class Address {

 private String city;

 private String zip;

 public Address(String city, String zip) {

 this.city = city;

 this.zip = zip;

 }

 // getters and setters omitted for brevity

}

The association between Person and Address is accomplished in the main() method,
as shown in the following code block:

public static void main(String[] args) {

 Person p1 = new Person("Andrei");

 Person p2 = new Person("Marin");

 Address a1 = new Address("Banesti", "107050");

 Address a2 = new Address("Bucuresti", "229344");

 // Association between classes in the main method

Understanding OOP concepts 81

 System.out.println(p1.getName() + " lives at address "

 + a2.getCity() + ", " + a2.getZip()

 + " but it also has an address at "

 + a1.getCity() + ", " + a1.getZip());

 System.out.println(p2.getName() + " lives at address "

 + a1.getCity() + ", " + a1.getZip()

 + " but it also has an address at "

 + a2.getCity() + ", " + a2.getZip());

}

The output is listed as follows:

Andrei lives at address Bucuresti, 229344 but it also has an
address at Banesti, 107050

Marin lives at address Banesti, 107050 but it also has an
address at Bucuresti, 229344

The complete application is named Association. Moving on, let's talk about aggregation.

What is aggregation?
The key points that you should encapsulate in your answer are the following:

•	 Aggregation is one of the core concepts of OOP.

•	 Aggregation is a special case of unidirectional association.

•	 Aggregation represents a HAS-A relationship.

•	 Two aggregated objects have their own life cycle, but one of the objects is the owner
of the HAS-A relationship.

Now, we can present an answer as follows:

Aggregation is one of the core concepts of OOP. Mainly, aggregation is a special case of
unidirectional association. While an association defines the relationship between two
classes independent of one another, aggregation represents a HAS-A relationship between
these two classes. In other words, two aggregated objects have their own life cycle, but one
of the objects is the owner of the HAS-A relationship. Having their own life cycle means
that ending one object will not affect the other object. For example, a TennisPlayer
has a Racket. This is a unidirectional association since a Racket cannot have a
TennisPlayer. Even if the TennisPlayer dies, the Racket is not affected.

82 Object-Oriented Programming

Important note
Notice that, when we define the notion of aggregation, we also have a statement
regarding what an association is. Follow this approach whenever two notions
are tightly related and one of them is a special case of the other one. The
same practice is applied next for defining composition as a special case of
aggregation. The interviewer will notice and appreciate that you have an
overview of things and that you can provide a meaningful answer that didn't
overlook the context.

If further details are required, then you may share the screen or use paper and a pen and
code your example.

We start with the Rocket class. This is a simple representation of a tennis racket:

public class Racket {

 private String type;

 private int size;

 private int weight;

 public Racket(String type, int size, int weight) {

 this.type = type;

 this.size = size;

 this.weight = weight;

 }

 // getters and setters omitted for brevity

}

A TennisPlayer HAS-A Racket. Therefore, the TennisPlayer class must be
capable of receiving a Racket as follows:

public class TennisPlayer {

 private String name;

 private Racket racket;

 public TennisPlayer(String name, Racket racket) {

 this.name = name;

 this.racket = racket;

Understanding OOP concepts 83

 }

 // getters and setters omitted for brevity

}

Next, we create a Racket and a TennisPlayer that uses this Racket:

public static void main(String[] args) {

 Racket racket = new Racket("Babolat Pure Aero", 100, 300);

 TennisPlayer player = new TennisPlayer("Rafael Nadal",

 racket);

 System.out.println("Player " + player.getName()

 + " plays with " + player.getRacket().getType());

}

The output is as follows:

Player Rafael Nadal plays with Babolat Pure Aero

The complete application is named Aggregation. Moving on, let's talk about composition.

What is composition?
The key points that you should encapsulate in your answer are the following:

•	 Composition is one of the core concepts of OOP.

•	 Composition is a more restrictive case of aggregation.

•	 Composition represents a HAS-A relationship that contains an object that cannot
exist on its own.

•	 Composition sustains code reuse and the visibility control of objects.

84 Object-Oriented Programming

Now, we can present an answer as follows:

Composition is one of the core concepts of OOP. Primarily, composition is a more restrictive
case of aggregation. While aggregation represents a HAS-A relationship between two
objects having their own life cycle, composition represents a HAS-A relationship that
contains an object that cannot exist on its own. In order to highlight this coupling, the
HAS-A relationship can be named PART-OF as well. For example, a Car has an Engine.
In other words, the engine is PART-OF the car. If the car is destroyed, then the engine is
destroyed as well. Composition is said to be better than inheritance because it sustains
code reuse and the visibility control of objects.

If further details are required, then you may share the screen or use paper and a pen and
code your example.

The Engine class is quite simple:

public class Engine {

 private String type;

 private int horsepower;

 public Engine(String type, int horsepower) {

 this.type = type;

 this.horsepower = horsepower;

 }

 // getters and setters omitted for brevity

}

Next, we have the Car class. Check out the constructor of this class. Since Engine is part
of Car, we create it with the Car:

public class Car {

 private final String name;

 private final Engine engine;

 public Car(String name) {

 this.name = name;

Understanding OOP concepts 85

 Engine engine = new Engine("petrol", 300);

 this.engine=engine;

 }

 public int getHorsepower() {

 return engine.getHorsepower();

 }

 public String getName() {

 return name;

 }

}

Next, we can test composition from the main() method as follows:

public static void main(String[] args) {

 Car car = new Car("MyCar");

 System.out.println("Horsepower: " + car.getHorsepower());

}

And the output is as follows:

Horsepower: 300

The complete application is named Composition.

So far, we have covered the essential questions regarding OOP concepts. Keep in mind
that such questions can occur in Java technical interviews for almost any position that
involves coding or architecting applications. Especially if you have around 2–4 years of
experience, the chances are high that you will be asked the preceding questions, and you
must know the answers, otherwise this will be a black mark against you.

Now, let's continue with the SOLID principles. This is another fundamental area and a
must-know topic alongside the OOP concepts. A lack of knowledge in this area will prove
detrimental when it comes to a final decision regarding your interview.

86 Object-Oriented Programming

Getting to know the SOLID principles
In this section, we will formulate answers to the questions corresponding to the five
famous design patterns for writing classes – the SOLID principles. By way of a quick
remainder, SOLID is an acronym of the following:

•	 S: Single Responsibility Principle

•	 O: Open Closed Principle

•	 L: Liskov's Substitution Principle

•	 I: Interface Segregation Principle

•	 D: Dependency Inversion Principle

In interviews, the most common questions pertaining to SOLID are of the What is
...? type. For example, What is S? or What is D? Typically, OOP-related questions are
intentionally vague. This way, the interviewer tests your level of knowledge and wants to
see whether you request further clarification. So, let's tackle each of these questions in
turn and provide an awesome answer that will impress the interviewer.

What is S?
The key points that you should encapsulate in your answer are the following:

•	 S stands for the Single Responsibility Principle (SRP).

•	 S stands for One class should have one, and only one, responsibility.

•	 S tells us to write a class for only one goal.

•	 S sustains high maintainability and visibility control across the application modules.

Now, we can present an answer as follows:

First of all, SOLID is an acronym for the first five Object-Oriented Design (OOD)
principles enunciated by Robert C. Martin, also known as Uncle Bob (optional phrase).
S is the first principle from SOLID and is known as the Single Responsibility Principle
(SRP). This principle translates to the fact that one class should have one, and only one,
responsibility. This is a very important principle that should be followed in any type of
project for any type of class (model, service, controller, manager class, and so on). As
long as we write a class for only one goal, we will sustain high maintainability and visibility
control across the application modules. In other words, by sustaining high maintainability,
this principle has a significant business impact, and by providing visibility control across the
application modules, this principle sustains encapsulation.

Getting to know the SOLID principles 87

If further details are required, then you may share the screen or use paper and a pen to
code an example as the one presented here.

For example, you want to calculate the area of a rectangle. The dimensions of the rectangle
are initially given in meters and the area is computed in meters as well, but we want to be
able to convert the computed area to other units, such as inches. Let's see the approach
that breaks the SRP.

Breaking the SRP

Implementing the preceding problem in a single class, RectangleAreaCalculator,
can be done as follows. But this class does more than one thing: it breaks SRP. Keep in
mind that, typically, when you use the word and to express what a class does, this is a sign
that the SRP is broken. For example, the following class computes the area and converts it
to inches:

public class RectangleAreaCalculator {

 private static final double INCH_TERM = 0.0254d;

 private final int width;

 private final int height;

 public RectangleAreaCalculator(int width, int height) {

 this.width = width;

 this.height = height;

 }

 public int area() {

 return width * height;

 }

 // this method breaks SRP

 public double metersToInches(int area) {

 return area / INCH_TERM;

 }

}

Since this code contravenes the SRP, we must fix it in order to follow the SRP.

88 Object-Oriented Programming

Following the SRP
The situation can be remedied by removing the metersToInches() method from
RectangleAreaCalculator, as follows:

public class RectangleAreaCalculator {

 private final int width;

 private final int height;

 public RectangleAreaCalculator(int width, int height) {

 this.width = width;

 this.height = height;

 }

 public int area() {

 return width * height;

 }

}

Now, RectangleAreaCalculator does only one thing (it computes the rectangle
area), thereby observing the SRP.

Next, metersToInches() can be extracted in a separate class. Moreover, we can add a
new method for converting from meters to feet as well:

public class AreaConverter {

 private static final double INCH_TERM = 0.0254d;

 private static final double FEET_TERM = 0.3048d;

 public double metersToInches(int area) {

 return area / INCH_TERM;

 }

 public double metersToFeet(int area) {

 return area / FEET_TERM;

 }

}

Getting to know the SOLID principles 89

This class also follows the SRP, hence our job is done. The complete application is named
SingleResponsabilityPrinciple. Moving on, let's talk about the second SOLID principle, the
Open Closed Principle.

What is O?
The key points that you should encapsulate in your answer are the following:

•	 O stands for the Open Closed Principle (OCP).

•	 O stands for Software components should be open for extension, but closed for
modification.

•	 O sustains the fact that our classes should not contain constraints that will require
other developers to modify our classes in order to accomplish their job – other
developers should only extend our classes to accomplish their job.

•	 O sustains software extensibility in a versatile, intuitive, and non-harmful way.

Now, we can present an answer as follows:

First of all, SOLID is an acronym for the first five Object-Oriented Design (OOD)
principles enunciated by Robert C. Martin, also known as Uncle Bob (optional phrase). O
is the second principle from SOLID and is known as the Open Closed Principle (OCP).
This principle stands for Software components should be open for extension, but closed for
modification. This means that our classes should be designed and written in such a way
that other developers can change the behavior of these classes by simply extending them.
So, our classes should not contain constraints that will require other developers to modify our
classes in order to accomplish their job – other developers should only extend our classes to
accomplish their job.

While we must sustain software extensibility in a versatile, intuitive, and non-harmful way,
we don't have to think that other developers will want to change the whole logic or the
core logic of our classes. Primarily, if we follow this principle, then our code will act as a
good framework that doesn't give us access to modify their core logic, but we can modify
their flow and/or behavior by extending some classes, passing initialization parameters,
overriding methods, passing different options, and so on.

If further details are required, then you may share the screen or use paper and a pen to
code an example like the one presented here.

Now, for instance, you have different shapes (for example, rectangles, circles) and we want
to sum their areas. First, let's see the implementation that breaks the OCP.

90 Object-Oriented Programming

Breaking the OCP
Each shape will implement the Shape interface. Therefore, the code is pretty
straightforward:

public interface Shape {

}

public class Rectangle implements Shape {

 private final int width;

 private final int height;

 // constructor and getters omitted for brevity

}

public class Circle implements Shape {

 private final int radius;

 // constructor and getter omitted for brevity

}

At this point, we can easily use the constructors of these classes to create rectangles and
circles of different sizes. Once we have several shapes, we want to sum their areas. For this,
we can define an AreaCalculator class as follows:

public class AreaCalculator {

 private final List<Shape> shapes;

 public AreaCalculator(List<Shape> shapes) {

 this.shapes = shapes;

 }

 // adding more shapes requires us to modify this class

 // this code is not OCP compliant

 public double sum() {

 int sum = 0;

Getting to know the SOLID principles 91

 for (Shape shape : shapes) {

 if (shape.getClass().equals(Circle.class)) {

 sum += Math.PI * Math.pow(((Circle) shape)

 .getRadius(), 2);

 } else

 if(shape.getClass().equals(Rectangle.class)) {

 sum += ((Rectangle) shape).getHeight()

 * ((Rectangle) shape).getWidth();

 }

 }

 return sum;

 }

}

Since each shape has its own formula for area, we require an if-else (or switch)
structure to determine the type of shape. Furthermore, if we want to add a new shape (for
example, a triangle), we have to modify the AreaCalculator class to add a new if
case. This means that the preceding code breaks the OCP. Fixing this code to observe the
OCP imposes several modifications in all classes. Hence, be aware that fixing code that
doesn't follow the OCP can be quite tricky, even in the case of a simple example.

Following the OCP
The main idea is to extract from AreaCalculator the area formula of each shape in the
corresponding Shape class. Hence, the rectangle will compute its area, the circle as well,
and so on. To enforce the fact that each shape must calculate its area, we add the area()
method to the Shape contract:

public interface Shape {

 public double area();

}

Next, Rectangle and Circle implements Shape as follows:

public class Rectangle implements Shape {

 private final int width;

92 Object-Oriented Programming

 private final int height;

 public Rectangle(int width, int height) {

 this.width = width;

 this.height = height;

 }

 public double area() {

 return width * height;

 }

}

public class Circle implements Shape {

 private final int radius;

 public Circle(int radius) {

 this.radius = radius;

 }

 @Override

 public double area() {

 return Math.PI * Math.pow(radius, 2);

 }

}

Now, the AreaCalculator can loop the list of shapes and sum the areas by calling the
proper area() method:

public class AreaCalculator {

 private final List<Shape> shapes;

 public AreaCalculator(List<Shape> shapes) {

 this.shapes = shapes;

 }

Getting to know the SOLID principles 93

 public double sum() {

 int sum = 0;

 for (Shape shape : shapes) {

 sum += shape.area();

 }

 return sum;

 }

}

The code is OCP-compliant. We can add a new shape and there is no need to modify the
AreaCalculator. So, AreaCalculator is closed for modifications and, of course, is
open for extension. The complete application is named the OpenClosedPrinciple. Moving
on, let's talk about the third SOLID principle, Liskov's Substitution Principle.

What is L?
The key points that you should encapsulate in your answer are the following:

•	 L stands for Liskov's Substitution Principle (LSP).

•	 L stands for Derived types must be completely substitutable for their base types.

•	 L sustains the fact that objects of subclasses must behave in the same way as the
objects of superclasses.

•	 L is useful for runtime-type identification followed by the cast.

Now, we can present an answer as follows:

First of all, SOLID is an acronym for the first five Object-Oriented Design (OOD)
principles enunciated by Robert C. Martin, also known as Uncle Bob (optional phrase). L
is the third principle from SOLID and is known as Liskov's Substitution Principle (LSP).
This principle stands for Derived types must be completely substitutable for their base types.
This means that the classes that extend our classes should be usable across the application
without causing failures. More precisely, this principle sustains the fact that objects of
subclasses must behave in the same way as the objects of superclasses, so every subclass (or
derived class) should be capable of substituting their superclass without any issues. Most
of the time, this is useful for runtime-type identification followed by the cast. For example,
consider foo(p), where p is of the type T. Then, foo(q) should work fine if q is of the
type S and S is a subtype of T.

94 Object-Oriented Programming

If further details are required, then you may share the screen or use paper and a pen to
code an example like the one presented here.

We have a chess club that accepts three types of members: Premium, VIP, and Free.
We have an abstract class named Member that acts as the base class, and three subclasses
– PremiumMember, VipMember, and FreeMember. Let's see whether each of these
member types can substitute the base class.

Breaking the LSP
The Member class is abstract, and it represents the base class for all members of our
chess club:

public abstract class Member {

 private final String name;

 public Member(String name) {

 this.name = name;

 }

 public abstract void joinTournament();

 public abstract void organizeTournament();

}

The PremiumMember class can join chess tournaments or organize such tournaments as
well. So, its implementation is quite simple:

public class PremiumMember extends Member {

 public PremiumMember(String name) {

 super(name);

 }

 @Override

 public void joinTournament() {

 System.out.println("Premium member joins tournament");

 }

Getting to know the SOLID principles 95

 @Override

 public void organizeTournament() {

 System.out.println("Premium member organize

 tournament");

 }

}

The VipMember class is roughly the same as PremiumMember, so we can skip it
and focus on the FreeMember class. The FreeMember class can join tournaments,
but cannot organize tournaments. This is an issue that we need to tackle in the
organizeTournament() method. We can throw an exception with a meaningful
message or we can display a message as follows:

public class FreeMember extends Member {

 public FreeMember(String name) {

 super(name);

 }

 @Override

 public void joinTournament() {

 System.out.println("Classic member joins tournament

 ...");

 }

 // this method breaks Liskov's Substitution Principle

 @Override

 public void organizeTournament() {

 System.out.println("A free member cannot organize

 tournaments");

 }

}

96 Object-Oriented Programming

But throwing an exception or displaying a message doesn't mean that we follow LSP. Since
a free member cannot organize tournaments, it cannot be a substitute for the base class,
therefore it breaks the LSP. Check out the following list of members:

List<Member> members = List.of(

 new PremiumMember("Jack Hores"),

 new VipMember("Tom Johns"),

 new FreeMember("Martin Vilop")

);

The following loop reveals that our code is not LSP-compliant because when the
FreeMember class has to substitute the Member class, it cannot accomplish its job since
FreeMember cannot organize chess tournaments:

for (Member member : members) {

 member.organizeTournament();

}

This situation is a showstopper. We cannot continue the implementation of our
application. We must redesign our solution to obtain a code that is LSP-compliant. So let's
do this!

Following the LSP
The refactoring process starts by defining two interfaces meant to separate the two actions,
joining and organizing chess tournaments:

public interface TournamentJoiner {

 public void joinTournament();

}

public interface TournamentOrganizer {

 public void organizeTournament();

}

Getting to know the SOLID principles 97

Next, the abstract base class implements these two interfaces as follows:

public abstract class Member

 implements TournamentJoiner, TournamentOrganizer {

 private final String name;

 public Member(String name) {

 this.name = name;

 }

}

PremiumMember and VipMember remain untouched. They extend the Member
base class. However, the FreeMember class, which cannot organize tournaments,
will not extend the Member base class. It will implement the TournamentJoiner
interface only:

public class FreeMember implements TournamentJoiner {

 private final String name;

 public FreeMember(String name) {

 this.name = name;

 }

 @Override

 public void joinTournament() {

 System.out.println("Free member joins tournament ...");

 }

}

Now, we can define a list of members who can join chess tournaments as follows:

List<TournamentJoiner> members = List.of(

 new PremiumMember("Jack Hores"),

 new PremiumMember("Tom Johns"),

 new FreeMember("Martin Vilop")

);

98 Object-Oriented Programming

Looping this list and substituting the TournamentJoiner interface with each type of
member works as expected and observes the LSP:

// this code respects LSP

for (TournamentJoiner member : members) {

 member.joinTournament();

}

Following the same logic, a list of members who can organize chess tournaments can be
written as follows:

List<TournamentOrganizer> members = List.of(

 new PremiumMember("Jack Hores"),

 new VipMember("Tom Johns")

);

FreeMember doesn't implement the TournamentOrganizer interface.
Therefore, it cannot be added to this list. Looping this list and substituting the
TournamentOrganizer interface with each type of member works as expected and
follows the LSP:

// this code respects LSP

for (TournamentOrganizer member : members) {

 member.organizeTournament();

}

Done! Now we have an LSP-compliant code. The complete application is named
LiskovSubstitutionPrinciple. Moving on, let's talk about the fourth SOLID principle, the
Interface Segregation Principle.

What is I?
The key points that you should encapsulate in your answer are the following:

•	 I stands for the Interface Segregation Principle (ISP).

•	 I stands for Clients should not be forced to implement unnecessary methods that they
will not use.

•	 I splits an interface into two or more interfaces until clients are not forced to
implement methods that they will not use.

Getting to know the SOLID principles 99

Now, we can present an answer as follows:

First of all, SOLID is an acronym for the first five Object-Oriented Design (OOD)
principles enunciated by Robert C. Martin, also known as Uncle Bob (optional phrase).
It is the fourth principle from SOLID, and is known as the Interface Segregation
Principle (ISP). This principle stands for Clients should not be forced to implement
unnecessary methods that they will not use. In other words, we should split an interface
into two or more interfaces until clients are not forced to implement methods that they will
not use. For example, consider the Connection interface, which has three methods:
connect(), socket(), and http(). A client may want to implement this interface
only for connections via HTTP. Therefore, they don't need the socket() method. Most
of the time, the client will leave this method empty, and this is a bad design. In order
to avoid such situations, simply split the Connection interface into two interfaces;
SocketConnection with the socket() method, and HttpConnection with the
http() method. Both interfaces will extend the Connection interface that remains
with the common method, connect().

If further details are required, then you may share the screen or use paper and a pen
to code an example like the one presented here. Since we've described the preceding
example, let's jump into the section about breaking the ISP.

Breaking the ISP
The Connection interface defines three methods as follows:

public interface Connection {

 public void socket();

 public void http();

 public void connect();

}

WwwPingConnection is a class that pings different websites via HTTP; hence, it
requires the http() method, but doesn't need the socket() method. Notice the
dummy socket() implementation – since WwwPingConnection implements
Connection, it is forced to provide an implementation to the socket() method
as well:

public class WwwPingConnection implements Connection {

 private final String www;

100 Object-Oriented Programming

 public WwwPingConnection(String www) {

 this.www = www;

 }

 @Override

 public void http() {

 System.out.println("Setup an HTTP connection to "

 + www);

 }

 @Override

 public void connect() {

 System.out.println("Connect to " + www);

 }

 // this method breaks Interface Segregation Principle

 @Override

 public void socket() {

 }

}

Having an empty implementation or throwing a meaningful exception from methods that
are not needed, such as socket(), is a really ugly solution. Check the following code:

WwwPingConnection www

 = new WwwPingConnection 'www.yahoo.com');

www.socket(); // we can call this method!

www.connect();

What do we expect to obtain from this code? A working code that does nothing, or an
exception caused by the connect() method because there is no HTTP endpoint? Or, we
can throw an exception from socket() of the type: Socket is not supported!. Then, why is
it here?! Hence, it is now time to refactor the code to follow the ISP.

Getting to know the SOLID principles 101

Following the ISP
In order to comply with the ISP, we need to segregate the Connection interface. Since
the connect() method is required by any client, we leave it in this interface:

public interface Connection {

 public void connect();

}

The http() and socket() methods are distributed in to separate interfaces that extend
the Connection interface as follows:

public interface HttpConnection extends Connection {

 public void http();

}

public interface SocketConnection extends Connection {

 public void socket();

}

This time, the WwwPingConnection class can implement only the HttpConnection
interface and use the http() method:

public class WwwPingConnection implements HttpConnection {

 private final String www;

 public WwwPingConnection(String www) {

 this.www = www;

 }

 @Override

 public void http() {

 System.out.println("Setup an HTTP connection to "

 + www);

 }

102 Object-Oriented Programming

 @Override

 public void connect() {

 System.out.println("Connect to " + www);

 }

}

Done! Now, the code follows the ISP. The complete application is named
InterfaceSegregationPrinciple. Moving on, let's talk about the last SOLID principle, the
Dependency Inversion Principle.

What is D?
The key points that you should encapsulate in your answer are the following:

•	 D stands for the Dependency Inversion Principle (DIP).

•	 D stands for Depend on abstractions, not on concretions.

•	 D sustains the use of abstract layers to bind concrete modules together instead of
having concrete modules that depend on other concrete modules.

•	 D sustains the decoupling of concrete modules.

Now, we can present an answer as follows:

First of all, SOLID is an acronym for the first five Object-Oriented Design (OOD)
principles enunciated by Robert C. Martin, also known as Uncle Bob (optional phrase). D
is the last principle from SOLID and is known as the Dependency Inversion Principle
(DIP). This principle stands for Depend on abstractions, not on concretions. This means
that we should rely on abstract layers to bind concrete modules together instead of having
concrete modules that depend on other concrete modules. To accomplish this, all concrete
modules should expose abstractions only. This way, the concrete modules allow extension
of the functionality or plug-in in another concrete module while retaining the decoupling
of concrete modules. Commonly, high coupling occurs between high-level concrete
modules and low-level concrete modules.

If further details are required, then you may share the screen or use paper and a pen to
code an example.

A database JDBC URL, PostgreSQLJdbcUrl, can be a low-level module, while
a class that connects to the database may represent a high-level module, such as
ConnectToDatabase#connect().

Getting to know the SOLID principles 103

Breaking the DIP
If we pass to the connect() method an argument of the PostgreSQLJdbcUrl type,
then we have violated the DIP. Let's look at the code of PostgreSQLJdbcUrl and
ConnectToDatabase:

public class PostgreSQLJdbcUrl {

 private final String dbName;

 public PostgreSQLJdbcUrl(String dbName) {

 this.dbName = dbName;

 }

 public String get() {

 return "jdbc:// ... " + this.dbName;

 }

}

public class ConnectToDatabase {

 public void connect(PostgreSQLJdbcUrl postgresql) {

 System.out.println("Connecting to "

 + postgresql.get());

 }

}

If we create another type of JDBC URL (for example, MySQLJdbcUrl), then we cannot
use the preceding connect(PostgreSQLJdbcUrl postgreSQL) method. So, we
have to drop this dependency on concrete and create a dependency on abstraction.

Following the DIP
The abstraction can be represented by an interface that should be implemented by each
type of JDBC URL:

public interface JdbcUrl {

 public String get();

}

104 Object-Oriented Programming

Next, PostgreSQLJdbcUrl implements JdbcUrl to return a JDBC URL specific to
PostgreSQL databases:

public class PostgreSQLJdbcUrl implements JdbcUrl {

 private final String dbName;

 public PostgreSQLJdbcUrl(String dbName) {

 this.dbName = dbName;

 }

 @Override

 public String get() {

 return "jdbc:// ... " + this.dbName;

 }

}

In precisely the same manner, we can write MySQLJdbcUrl, OracleJdbcUrl, and
so on. Finally, the ConnectToDatabase#connect() method is dependent on
the JdbcUrl abstraction, so it can connect to any JDBC URL that implements this
abstraction:

public class ConnectToDatabase {

 public void connect(JdbcUrl jdbcUrl) {

 System.out.println("Connecting to " + jdbcUrl.get());

 }

}

Done! The complete application is named DependencyInversionPrinciple.

So far, we've covered the OOP fundamental concepts and the popular SOLID principles.
If you plan to apply for a Java position that includes the design and architecture of
applications, then it is recommended that you take a look at the General Responsibility
Assignment Software Principles (GRASP) as well (https://en.wikipedia.
org/wiki/GRASP_(object-oriented_design). This is not a popular topic in
interviews, but you never know!

https://en.wikipedia.org/wiki/GRASP_(object-oriented_design)
https://en.wikipedia.org/wiki/GRASP_(object-oriented_design)

Popular questions pertaining to OOP, SOLID, and GOF design patterns 105

Moving on, we will scan a bunch of popular questions that combine these notions. Now
that you are familiar with the Understand the Question | Nominate key points | Answer
technique, I will only highlight the key points in the answer without extracting them as a
list beforehand.

Popular questions pertaining to OOP, SOLID,
and GOF design patterns
In this section, we will tackle some more difficult questions that require a true
understanding of OOP concepts, SOLID design principles, and Gang of Four (GOF)
design patterns. Note that this book doesn't cover GOF design patterns, but there are
great books and videos out there that are dedicated to this topic. I recommend that you
try Learn Design Patterns with Java, by Aseem Jain (https://www.packtpub.com/
application-development/learn-design-patterns-java-video).

What is method overriding in OOP (Java)?
Method overriding is an object-oriented programming technique that allows the developer
to write two methods (non-static, non-private and non-final) with the same name
and signature but different behavior. Method overriding can be used in the presence of
Inheritance or Runtime Polymorphism.

In the presence of inheritance, we have a method in the superclass (referenced as the
overridden method) and we override it in the subclass (referenced as the overriding
method). In Runtime Polymorphism, we have a method in an interface and the classes
that implements this interface are overriding this method.

Java decides at runtime the actual method that should be called, depending upon the type
of object. Method overriding sustains flexible and extensible code, or, in other words, it
sustains the addition of new functionality with minimal code changes.

If further details are required, then you can list the main rules that govern method
overriding:

•	 The name and signature (including the same return type or subtype) of the method
is the same in the superclass and subclass, or in the interface and implementations.

•	 We cannot override a method in the same class (but we can overload it in the
same class).

•	 We cannot override private, static, and final methods.

https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video

106 Object-Oriented Programming

•	 The overriding method cannot reduce the accessibility of the overridden method,
but the opposite is possible.

•	 The overriding method cannot throw checked exceptions that are higher in the
exception hierarchy than the checked exception thrown by the overridden method.

•	 Always use the @Override annotation for the overriding method.

An example of overriding methods in Java is available in the code bundled to this book
under the name MethodOverriding.

What is method overloading in OOP (Java)?
Method overloading is an object-oriented programming technique that allows the developer
to write two methods (both static or non-static) with the same name, but a different
signature and different functionalities. By different signature, we understand a different
number of arguments, different types of arguments, and/or a different order of arguments
list. The return type is not part of the method signature. Therefore, the case when two
methods have identical signatures, but different return types, is not a valid case of
method overloading. So, this is a powerful technique that allows us to write methods
(both static or non-static) having the same name but with different inputs. The compiler
bind overloaded method calls to the actual method; therefore, no binding is done during
runtime. A famous example of method overloading is System.out.println(). The
println() method has several overloading flavors.

Hence, there are four main rules that govern method overloading:

•	 Overloading is accomplished by changing the method signature.

•	 The return type is not part of the method signature.

•	 We can overload private, static, and final methods.

•	 We can overload a method in the same class (but we cannot override it in the
same class).

If further details are required, you can try to code an example. An example of
overloading methods in Java is available in the code bundled to this book under the name
MethodOverloading.

Popular questions pertaining to OOP, SOLID, and GOF design patterns 107

Important note
Besides the two aforementioned questions, you may need to answer some
other related questions, including What rules govern method overloading
and overriding (see above)?, What are the main differences between method
overloading and overriding (see above)?, Can we override a static or a private
method (the short answer is No, see above)?, Can we override a final method
(the short answer is No, see above)?, Can we overload a static method (the short
answer is Yes, see above)?, Can we change the argument list of an overriding
method (the short answer is No, see above)? So, it is advisable to extract and
prepare the answers to such questions. All the information required is available
in the preceding section.

Also, pay attention to questions such as Is it true that we can only prevent
overriding a method via the final modifier? This type of wording is meant to
confuse the candidate because the answer requires an overview of the notion
involved. The answer here can be formulated as This is not true, because we
can prevent overriding a method by marking it as private or static as well. Such
methods cannot be overridden.

Moving on, let's examine several other questions related to overriding and
overloading methods.

What is covariant method overriding in Java?
Covariant method overriding is a less known feature introduced in Java 5. By means of
this feature, an overriding method can return a subtype of its actual return type. This means
that a client of the overriding method doesn't need an explicit type casting of the returned
type. For example, the Java clone() method returns Object. This means that, when
we override this method to return a clone, we get back an Object that must be explicitly
casted to the actual subclass of Object that we need. However, if we take advantage of
the Java 5 covariant method overriding feature, then the overriding clone() method can
return the requisite subclass directly instead of Object.

108 Object-Oriented Programming

Almost always, a question such as this requires an example as part of the answer, so let's
consider the Rectangle class that implements the Cloneable interface. The clone()
method can return Rectangle instead of Object as follows:

public class Rectangle implements Cloneable {

 ...

 @Override

 protected Rectangle clone()

 throws CloneNotSupportedException {

 Rectangle clone = (Rectangle) super.clone();

 return clone;

 }

}

Calling the clone() method doesn't require an explicit cast:

Rectangle r = new Rectangle(4, 3);

Rectangle clone = r.clone();

The complete application is named CovariantMethodOverriding. Pay attention to
less direct questions regarding covariant method overriding. For example, it can be
formulated like this: Can we modify the return type of method to subclass while overriding?
The answer to this question is the same as What is covariant method overriding in Java?,
discussed here.

Important note
Knowing the answer to questions that target less known features of Java can
be a big plus at the interview. This demonstrates to the interviewer that you
have a deep level of knowledge and that you are up to date with the Java
evolution. If you require a supersonic update of all JDK 8 to JDK 13 features
via tons of examples and minimum theory, then you will love my book
entitled Java Coding Problems, published by Packt (packtpub.com/au/
programming/java-coding-problems).

packtpub.com/au/programming/java-coding-problems
packtpub.com/au/programming/java-coding-problems

Popular questions pertaining to OOP, SOLID, and GOF design patterns 109

What are the main restrictions in terms of working
with exceptions in overriding and overloading
methods?
First, let's discuss the overriding methods. If we talk about unchecked exceptions, then we
must say that there are no restrictions on using them in overriding methods. Such methods
can throw an unchecked exception, hence, any RuntimeException. On the other
hand, in the case of checked exceptions, the overriding methods can throw only the checked
exception of the overridden method or a subclass of that checked exception. In other words,
an overriding method cannot throw a checked exception that has a broader scope than
the checked exception thrown by the overridden method. For example, if the overridden
method throws SQLException, then the overriding method can throw subclasses such
as BatchUpdateException, but it cannot throw super classes such as Exception.

Second, let's discuss the overloading methods. Such methods do not impose any kind of
restrictions. This means that we can modify the throw clause as required.

Important note
Pay attention to questions that are worded along the lines of What are the
main ...?, Can you enumerate the certain ...?, Can you nominate the...?, Can you
highlight the ...?, and so on. Commonly, when the question contains words
such as main, certain, nominate, and highlight, the interviewer expects a clear
and concise answer that should sound like a bullet list. The best practice for
answering such questions is to jump into the response directly and enumerate
each item as a compressed and meaningful statement. Don't make the common
mistake of embarking on a story or dissertation of the notions involved before
giving the expected answer. The interviewer wants to see your ability to
synthesize and sanitize things and extract the essence while checking your level
of knowledge.

If more detail is required, then you can code an example like those from the code bundled
to this book. Consider checking the OverridingException and OverloadingException
applications. Now, let's continue with some more questions.

110 Object-Oriented Programming

How can the superclass overridden method be called
from the subclass overriding method?
We can call the superclass overridden method from the subclass overriding method via the
Java super keyword. For example, consider a superclass, A, that contains a method,
foo(), and a subclass of A named B. If we override the foo() method in subclass B,
and we call super.foo() from the overriding method, B#foo(), then we call the
overridden method, A#foo().

Can we override or overload the main() method?
We must keep in mind that the main() method is static. This means that we can overload
it. However, we cannot override it because the static methods are resolved at compile time,
while the methods that we can override are resolved at runtime depending upon the type
of object.

Can we override a non-static method as static in Java?
No. We cannot override a non-static method as static. Moreover, the reverse is not possible
either. Both lead to compilation errors.

Important note
Questions that are to the point, like the last two aforementioned questions,
deserve a short and concise answer. Interviewers trigger such flashlight
questions to measure your ability to analyze a situation and make a decision.
Mainly, the answer is brief, but you need some time to say Yes or No. Such
questions don't carry a high score, but they may have a significant negative
impact if you don't know the answer. If you know the answer, the interviewer
might say in his mind, Well, OK, this was an easy question anyway! But, if you
don't know the answer, then he might say, He missed an easy one! There is a
serious shortcoming in her/his basic knowledge.

Next, let's look at some more questions related to other OOP concepts.

Popular questions pertaining to OOP, SOLID, and GOF design patterns 111

Can we have a non-abstract method inside a
Java interface?
Until Java 8, we could not have a non-abstract method in a Java interface. All methods
from an interface were implicitly public and abstract. However, starting with Java 8, we
have new types of methods that can be added to an interface. In practical terms, starting
with Java 8, we can add methods that have implementations directly in interfaces. This
can be done by using the default and static keywords. The default keyword was
introduced in Java 8 for including in interfaces the methods known as default, defender,
or extension methods. Their main goal is to allow us to evolve the existing interfaces
while ensuring backward compatibility. JDK itself uses default methods to evolve Java
by adding new features without breaking the existing code. On the other hand, static
methods in interfaces are quite similar to the default methods, the only difference being that
we cannot override static methods in the classes that implement these interfaces. Since
static methods are not bound to an object, they can be called by using the interface
name preceded by a dot and the method name. Moreover, static methods can be called
within other default and static methods.

If further details are required, then you can try to code an example. Consider that we
have an interface for shaping a vehicle like a steam car (this is an old car type exactly like
old code):

public interface Vehicle {

 public void speedUp();

 public void slowDown();

}

Obviously, different kinds of steam cars have been built by means of the following
SteamCar class:

public class SteamCar implements Vehicle {

 private String name;

 // constructor and getter omitted for brevity

 @Override

 public void speedUp() {

 System.out.println("Speed up the steam car ...");

112 Object-Oriented Programming

 }

 @Override

 public void slowDown() {

 System.out.println("Slow down the steam car ...");

 }

}

Since the SteamCar class implements the Vehicle interface, it overrides the
speedUp() and slowDown() methods. After a while, petrol cars are invented, and
people start to care about horsepower and fuel consumption. So, our code must evolve
to provide support for petrol cars as well. To compute the level of consumption, we can
evolve the Vehicle interface by adding the computeConsumption() default method
as follows:

public interface Vehicle {

 public void speedUp();

 public void slowDown();

 default double computeConsumption(int fuel,

 int distance, int horsePower) {

 // simulate the computation

 return Math.random() * 10d;

 }

}

Evolving the Vehicle interface doesn't break SteamCar compatibility. Furthermore,
electric cars have been invented. Computing the consumption of an electric car is
not the same as in the case of a petrol car, but the formula relies on the same terms:
the fuel, distance, and horsepower. This means that ElectricCar will override
computeConsumption() as follows:

public class ElectricCar implements Vehicle {

 private String name;

 private int horsePower;

Popular questions pertaining to OOP, SOLID, and GOF design patterns 113

 // constructor and getters omitted for brevity

 @Override

 public void speedUp() {

 System.out.println("Speed up the electric car ...");

 }

 @Override

 public void slowDown() {

 System.out.println("Slow down the electric car ...");

 }

 @Override

 public double computeConsumption(int fuel,

 int distance, int horsePower) {

 // simulate the computation

 return Math.random()*60d / Math.pow(Math.random(), 3);

 }

}

So, we can override a default method, or we can use the implicit implementation.
Finally, we have to add a description to our interface since now it serves steam, petrol,
and electric cars. We can do this by adding to Vehicle a static method named
description(), as follows:

public interface Vehicle {

 public void speedUp();

 public void slowDown();

 default double computeConsumption(int fuel,

 int distance, int horsePower) {

 return Math.random() * 10d;

114 Object-Oriented Programming

 }

 static void description() {

 System.out.println("This interface control

 steam, petrol and electric cars");

 }

}

This static method is not bound to any type of car and it can be called directly via
Vehicle.description(). The complete code is named Java8DefaultStaticMethods.

Next, let's continue with other questions. So far, you should be pretty familiar with
the Understand the Question|Nominate key points|Answer technique, so I will stop
highlighting the key points. From now on, it is your job to spot them.

What are the main differences between interfaces
with default methods and abstract classes?
Among the differences between Java 8 interfaces and abstract classes, we can mention
the fact that an abstract class can have a constructor while an interface doesn't support
constructors. So, an abstract class can have a state while an interface cannot have a state.
Moreover, interfaces remain the first citizens of full abstraction, with the main purpose
of being implemented, while abstract classes are meant for partial abstraction. Interfaces
are still designed to target completely abstract things that don't do anything by themselves,
but specify contracts about how things will work at implementation. The default methods
represent an approach for adding additional features to the interfaces without affecting
the client code and without changing the state. They shouldn't be used for other purposes.
In other words, another difference consists of the fact that it is perfectly fine to have an
abstract class with no abstract methods, but it is an anti-pattern to have an interface
only with default methods. This means that we have created the interface as a utility
class substitute. This way, we defeat the main purpose of an interface, which is to
be implemented.

Popular questions pertaining to OOP, SOLID, and GOF design patterns 115

Important note
When you have to enumerate a bunch of differences or similarities between
two notions, pay attention to limit your answer to the coordinates settled by the
question. For example, in the case of the preceding question, do not say that
one difference lies in the fact that interfaces sustain multiple inheritance while
abstract classes don't. This is a general variation between interfaces and classes,
and not specifically between Java 8 interfaces and abstract classes.

What is the main difference between abstract classes
and interfaces?
Until Java 8, the main difference between abstract classes and interfaces consisted of the
fact that an abstract class can contain non-abstract methods, while an interface cannot
contain such methods. Starting with Java 8, the main difference consists of the fact that
an abstract class can have constructors and state while an interface cannot have either of
these.

Can we have an abstract class without an abstract
method?
Yes, we can. By adding the abstract keyword to a class, it becomes abstract. It cannot
be instantiated, but it can have constructors and only non-abstract methods.

Can we have a class that is both abstract and final at
the same time?
A final class cannot be sub-classed or inherited. An abstract class is meant to be extended
in order to be used. Therefore, final and abstract are opposite notions. This means that
they cannot be applied to the same class at the same time. The compiler will throw an
error.

What is the difference between polymorphism,
overriding, and overloading?
In the context of this question, the overloading technique is known as Compiled-Time
Polymorphism, while the overriding technique is known as Runtime Polymorphism.
Overloading involves the use of static (or early) binding, while overriding uses dynamic
(or late) binding.

116 Object-Oriented Programming

The next two questions constitute add-ons to this one, but they can be formulated as
standalone as well.

What is a binding operation?
A binding operation determines the method (or variable) to be called as a result of its
references in the code lines. In other words, the process of associating a method call to
the method body is known as a binding operation. Some references are bound at compile
time, while other references are bound at runtime. Those that are bound at runtime
depend upon the type of object. The references resolved at compile time are known as
static binding operations, while those resolved at runtime are known as dynamic
binding operations.

What are the main differences between static and
dynamic binding?
First of all, static binding occurs at compile time, while dynamic binding occurs at
runtime. The second thing to consider involves the fact that private, static, and final
members (methods and variables) use static binding, while virtual methods are bonded at
runtime based upon the type of object. In other words, static binding is accomplished via
Type (class in Java) information, while dynamic binding is accomplished via Object,
meaning that a method relying on static binding is not associated with an object, but
is instead called on Type (class in Java), while a method relying on dynamic binding
is associated with an Object. The execution of methods that rely on static binding is
marginally faster than those that rely on dynamic binding. Static and dynamic binding
are used in polymorphism as well. Static binding is used by compile-time polymorphism
(overloading methods), while dynamic binding is used in runtime polymorphism
(overriding methods). Static binding adds overhead in terms of performance at compile
time, while dynamic binding adds overhead in terms of performance at runtime, meaning
that static binding is preferable.

What is method hiding in Java?
Method hiding is specific to static methods. More precisely, if we declare two static
methods with the same signature and name in the superclass and in the subclass, then
they will hide each other. Calling the method from the superclass will call the static
method from the superclass, and calling the same method from the subclass will call the
static method from the subclass. Hiding is not the same thing with overriding because
static methods cannot be polymorphic.

Popular questions pertaining to OOP, SOLID, and GOF design patterns 117

If further details are required, then you can write an example. Consider the Vehicle
superclass having the move() static method:

public class Vehicle {

 public static void move() {

 System.out.println("Moving a vehicle");

 }

}

Now, consider the Car subclass having the same static method:

public class Car extends Vehicle {

 // this method hides Vehicle#move()

 public static void move() {

 System.out.println("Moving a car");

 }

}

Now, let's call these two static methods from the main() method:

public static void main(String[] args) {

 Vehicle.move(); // call Vehicle#move()

 Car.move(); // call Car#move()

}

The output reveals that these two static methods are hiding one another:

Moving a vehicle

Moving a car

Notice that we call static methods via the class name. Calling static methods on instances
is a very bad practice, so avoid doing this during an interview!

118 Object-Oriented Programming

Can we write virtual methods in Java?
Yes, we can! Actually, in Java, all non-static methods are, by default, virtual methods. We
can write a non-virtual method by marking it with the private and/or final keyword.
In other words, the methods that can be inherited for polymorphic behavior are virtual
methods. Or, if we turn the logic of this statement on its head, the methods that cannot be
inherited (marked as private) and the methods that cannot be overridden (marked as
final) are non-virtual.

What is the difference between polymorphism
and abstraction?
Abstraction and polymorphism represent two fundamental OOP concepts that are
interdependent. Abstraction allows the developer to design general solutions that are
reusable and customizable, while polymorphism allows the developer to defer choosing
the code that should be executed at runtime. While abstraction is implemented
via interfaces and abstract classes, polymorphism relies on overriding and
overloading techniques.

Do you consider overloading an approach for
implementing polymorphism?
This is a controversial topic. Some people do not regard overloading as polymorphism;
therefore, they do not accept the idea of compile-time polymorphism. Such voices
maintain that the only overriding method is genuine polymorphism. The argument
behind this statement says that only overriding allows code to behave differently
depending on the runtime conditions. In other words, exhibiting polymorphic behavior
is the privilege of method overriding. I consider that as long as we understand the
premises of overloading and overriding, we also understand how both variants sustain
polymorphic behavior.

Important note
Questions that tackle controversial topics are delicate and hard to approach
correctly. Therefore, it is advisable to jump into the answer directly with this
statement This is a controversial topic. Of course, the interviewer is interested
to hear your opinion as well, but he will be pleased to see that you know both
sides of the coin. As a rule of thumb, try to answer in an objective manner and
don't approach one side of a coin with radicalism or with a poor arsenal of
arguments. Controversial things remain controversial after all, and this is not
the proper time and place to demystify them.

Popular questions pertaining to OOP, SOLID, and GOF design patterns 119

OK, now let's continue with some questions based on the SOLID principles and the
famous and indispensable Gang Of Four (GOF) design patterns. Note that this book
doesn't cover GOF design patterns, but there are great books and videos out there that
are dedicated to this topic. I recommend that you try Learn Design Patterns with Java,
by Aseem Jain (https://www.packtpub.com/application-development/
learn-design-patterns-java-video).

Which OOP concept serves the Decorator design
pattern?
The OOP concept that serves the Decorator design pattern is Composition. Via this OOP
concept, the Decorator design pattern provides new functionalities without modifying the
original class.

When should the Singleton design pattern be used?
The Singleton design pattern seems to be the proper choice when we need just one
application-level (global) instance of a class. Nevertheless, a Singleton should be used with
precaution because it increases the coupling between classes and can become a bottleneck
during development, testing, and debugging. As the famous Effective Java points out,
using Java enums is the best way of implementing this pattern. It is a common scenario to
rely on a Singleton pattern for global configurations (for example, loggers, java.lang.
Runtime), hardware access, database connections, and so on.

Important note
Whenever you can cite or mention famous references, do so.

What is the difference between the Strategy and State
design patterns?
The State design pattern is meant to do a certain thing depending upon the state (it
exhibits certain behaviors in different states without changing the class). The Strategy
design pattern, on the other hand, is meant to be used for switching between a range
of algorithms without modifying the code that uses it (the client uses algorithms
interchangeably via composition and runtime delegation). Moreover, in State, we have a
clear order of state transition (the flow is created by linking each state to another state),
while in Strategy, the client can choose the algorithm that it wants in any order. For
example, the State pattern can define the states of sending a package to a client.

https://www.packtpub.com/application-development/learn-design-patterns-java-video)
https://www.packtpub.com/application-development/learn-design-patterns-java-video)

120 Object-Oriented Programming

The package starts from the ordered state, and continues with the delivered state and so
on until it passes through each state and reaches the final state when the client has
received the package. On the other hand, the Strategy pattern defines different strategies
for accomplishing each state (for example, we may have different strategies for delivering
the package).

What is the difference between the Proxy and
Decorator patterns?
The Proxy design pattern is useful for providing an access control gateway to something.
Commonly, this pattern creates proxy objects that stand in place of the real object. Each
request for the real object must pass through the proxy objects, which decides how and
when to forward it to the real object. The Decorator design pattern never creates an object,
it just decorates an existing object at runtime with new functionality. While chaining
proxies is not an advisable practice, chaining decorators in a certain order exploits this
pattern in the right way. For example, while the Proxy pattern can represent a proxy server
for the internet, the Decorator pattern can be used to decorate the proxy server with
different custom settings.

What is the difference between the Facade and
Decorator patterns?
While the Decorator design pattern is meant to add new functionalities to an object
(in other words, to decorate the object), the Facade design pattern doesn't add new
functionalities at all. It just facades the existing functionalities (hides the complexities
of a system) and calls them behind the scenes via a friendly face exposed to the client.
The Facade pattern can expose a simple interface that calls individual components to
accomplish complex tasks. For example, the Decorator pattern can be used to build a car
by decorating a chassis with an engine, a gearbox, and so on, while the Facade pattern
can hide the complexity of building the car by exposing a simple interface for command
industrial robots that know the building process details.

Popular questions pertaining to OOP, SOLID, and GOF design patterns 121

What is the key difference between the Template
Method and the Strategy pattern?
The Template Method and Strategy patterns encapsulate domain-specific sets of
algorithms into objects, but they don't do it in the same way. The key difference consists of
the fact that the Strategy pattern is meant to decide at runtime between different strategies
(algorithms) based on the requirements, while the Template Method pattern is meant to
follow a fixed skeleton (predefined sequence of steps) implementation of an algorithm.
Some steps are fixed, while other steps can be modified for different uses. For example, the
Strategy pattern may decide between different payment strategies (for example, a credit
card or PayPal), while the Template Method can describe the predefined sequence of
steps for paying with a certain strategy (for example, payment via PayPal requires a fixed
sequence of steps).

What is the key difference between the Builder and
Factory patterns?
The Factory pattern creates an object in a single method call. We have to pass in this
call all the necessary parameters and the factory will return the object (commonly, by
invoking a constructor). On the other hand, the Builder pattern is designed for building
complex objects via chains of setter methods that allow us to shape any combination of
parameters. At the end of the chain, the Builder method exposes a build() method
that signals that the list of parameters is set, and it is time to build the object. In other
words, Factory acts as a wrapper of a constructor, while Builder is much granular, acting
as a wrapper of all the possible parameters you might want to pass into a constructor. Via
Builder, we avoid the telescopic constructor used to expose all the possible combinations
of parameters. For example, think back to the Book object. A book is characterized by
a hand of fixed parameters such as the author, title, ISBN, and format. Most probably,
you will not be juggling with the number of these parameters when creating books,
and therefore the factory pattern will be a good fit for factoring books. But how about a
Server object? Well, a server is a complex object with tons of optional parameters, and
so the Builder pattern is much more appropriate here, or even a combination of these
patterns where Factory relies internally on Builder.

122 Object-Oriented Programming

What is the key difference between the Adapter and
Bridge patterns?
The Adapter pattern strives to provide compatibility between an existing code that we
cannot modify (for example, third-party code) and a new system or interface. On the
other hand, the Bridge pattern is implemented upfront and is meant to decouple an
abstraction from implementation in order to avoid an insane number of classes. So,
Adapter strives to provide compatibility between things after they were designed (think
along the lines of A comes from After), while Bridge is built upfront to let the abstraction
and the implementation vary independently (think along the lines of B comes from
Before). While Adapter acts as the middle man between two systems that work fine
independently but cannot communicate with one another (they don't have compatible
input/output), the Bridge pattern enters the scene when our problem can be solved via
orthogonal class hierarchy, but we get stuck with scalability issues and limited extension.
For example, consider two classes, ReadJsonRequest and ReadXmlRequest, which
are capable of reading from several devices, such as D1, D2, and D3. D1 and D2 produce
only JSON requests, while D3 produces XML requests only. Via Adapter, we can convert
between JSON and XML, meaning that these two classes can communicate with all
three devices. On the other hand, via the Bridge pattern, we can avoid ending with many
classes such as ReadXMLRequestD1, ReadXMLRequestD2, ReadXMLRequestD3,
ReadJsonRequestD1, ReadJsonRequestD2, and ReadJsonRequestD3.

We can continue to compare design patterns until we finish all the possible combinations.
The final few of these questions have covered the most popular questions of the type
Design Pattern 1 versus Design Pattern 2. It is strongly advisable to challenge yourself
with these types of questions and try to identify similarities and differences between two
or more given design patterns. Most of the time, these questions use two design patterns
from the same category (for example, two structural or two creational patterns), but they
can be from different categories as well. In such a case, this is the first statement that the
interviewer expects to hear. So, in such cases, start by saying to which category each of the
design patterns involved belongs.

Notice that we skipped all simple questions of the type, What is an interface?, What is
an abstract class?, and so on. Typically, such questions are avoided since they don't say
much about your understanding level, being more about reciting some definitions. The
interviewer can ask What is the main difference between abstract classes and interfaces?,
and he can deduce from your answer whether you know what an interface and an abstract
class is. Always be prepared to give examples. The inability to shape an example reveals a
serious lack of understanding of the essence of things.

Coding challenges 123

Having OOP knowledge is just half of the problem. The other half is represented by
having the vision and agility to put this knowledge into designing applications. This is
what we will do in the next 10 examples. Keep in mind that we are focused on design, not
on implementation.

Coding challenges
Next, we will tackle several coding challenges regarding object-oriented programming.
For each problem, we will follow Figure 5.2 from Chapter 5, How to Approach a Coding
Challenge. Mainly, we will start by asking the interviewer a question such as What are
the design constraints? Commonly, coding challenges that orbit OOD are expressed by
the interviewer in a general way. This is done intentionally to make you ask details about
design constraints.

Once we have a clear picture of the constraints, we can try an example (which can be a
sketch, a step-by-step runtime visualization, a bullet list, and suchlike). Then, we figure
out the algorithm(s)/solution(s), and finally, we provide the design skeleton.

Example 1: Jukebox
Amazon, Google

Problem: Design the main classes of the jukebox musical machine.

What to ask: What is the jukebox playing – CDs, MP3s? What should I design – the
jukebox building process, how it works, or something else? It is a free jukebox or is
money required?

Interviewer: Is a free jukebox playing only CDs? Design its main functionalities, and
therefore design how it works.

124 Object-Oriented Programming

Solution: In order to understand what classes should be involved in our design, we can try
to visualize a jukebox and identify its main parts and functionalities. Sketching a diagram
along the lines of the one here also helps the interviewer to see how you think. I suggest
that you always take the approach of visualizing the problem in a written form – a sketch
is a perfect start:

Figure 6.1 – Jukebox

So, we can identify the two main parts of a jukebox: a CD player (or a specific jukebox-
playing mechanism) and an interface with commands for the users. The CD player is
capable of managing a playlist and playing those songs. We can think of the interface of
commands as a Java interface implemented by a Jukebox as shown in the next code. Along
with the following code, you can use the UML diagram from here: https://github.
com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-
Java/blob/master/Chapter06/Jukebox/JukeboxUML.png

public interface Selector {

 public void nextSongBtn();

 public void prevSongBtn();

 public void addSongToPlaylistBtn(Song song);

 public void removeSongFromPlaylistBtn(Song song);

 public void shuffleBtn();

}

public class Jukebox implements Selector {

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/Jukebox/JukeboxUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/Jukebox/JukeboxUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/Jukebox/JukeboxUML.png

Coding challenges 125

 private final CDPlayer cdPlayer;

 public Jukebox(CDPlayer cdPlayer) {

 this.cdPlayer = cdPlayer;

 }

 @Override

 public void nextSongBtn() {...}

 // rest of Selector methods omitted for brevity

}

The CDPlayer is the heart of the jukebox. Via Selector, we control the CDPlayer
behavior. CDPlayer must have access to the set of available CDs and to the playlist:

public class CDPlayer {

 private CD cd;

 private final Set<CD> cds;

 private final Playlist playlist;

 public CDPlayer(Playlist playlist, Set<CD> cds) {

 this.playlist = playlist;

 this.cds = cds;

 }

 protected void playNextSong() {...}

 protected void playPrevSong() {...}

 protected void addCD(CD cd) {...}

 protected void removeCD(CD cd) {...}

 // getters omitted for brevity

}

126 Object-Oriented Programming

Next, the Playlist manages a list of Song:

public class Playlist {

 private Song song;

 private final List<Song> songs; // or Queue

 public Playlist(List<Song> songs) {

 this.songs = songs;

 }

 public Playlist(Song song, List<Song> songs) {

 this.song = song;

 this.songs = songs;

 }

 protected void addSong(Song song) {...}

 protected void removeSong(Song song) {...}

 protected void shuffle() {...}

 protected Song getNextSong() {...};

 protected Song getPrevSong() {...};

 // setters and getters omitted for brevity

}

The User, CD, and Song classes are skipped for now, but you can find them all in the
complete application named Jukebox. This kind of problem can be implemented in a wide
variety of ways, so feel free to try your own designs as well.

Example 2: Vending machine
Amazon, Google, Adobe

Problem: Design the main classes that sustain the implementation of the functionalities
of a typical vending machine.

Coding challenges 127

What to ask: Is this a vending machine with different types of coins and items? Does
it expose functionalities, such as checking an item price, buying an item, a refund, and
resetting?

Interviewer: Yes, exactly! For coins, you can consider a penny, a nickel, a dime, and
a quarter.

Solution: In order to understand what classes should be involved in our design, we can
try to sketch a vending machine. There are a wide range of vending machine types. Simply
sketch one that you know (like the one in the following diagram):

Figure 6.2 – Vending machine

First of all, we immediately notice that items and coins are good candidates for Java
enums. We have four types of coins and several types of items, so we can write two Java
enums as follows. Along with the following code, you can use the UML diagram from
here: https://github.com/PacktPublishing/The-Complete-Coding-
Interview-Guide-in-Java/blob/master/Chapter06/VendingMachine/
VendingMachineUML.png

public enum Coin {

 PENNY(1), NICKEL(5), DIME(10), QUARTER(25);

 ...

}

public enum Item {

 SKITTLES("Skittles", 15), TWIX("Twix", 35) ...

 ...

}

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/VendingMachine/VendingMachineUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/VendingMachine/VendingMachineUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/VendingMachine/VendingMachineUML.png

128 Object-Oriented Programming

The vending machine needs an internal inventory to track the items and status of the
coins. We can shape this generically as follows:

public final class Inventory<T> {

 private Map<T, Integer> inventory = new HashMap<>();

 protected int getQuantity(T item) {...}

 protected boolean hasItem(T item) {...}

 protected void clear() {...}

 protected void add(T item) {...}

 protected void put(T item, int quantity) {...}

 protected void deduct(T item) {...}

}

Next, we can focus on the buttons used by a client to interact with the vending machine.
As you saw in the previous example as well, it is common practice to extract these buttons
to an interface as follows:

public interface Selector {

 public int checkPriceBtn(Item item);

 public void insertCoinBtn(Coin coin);

 public Map<Item, List<Coin>> buyBtn();

 public List<Coin> refundBtn();

 public void resetBtn();

}

Finally, the vending machine can be shaped to implement the Selector interface and
provide a bunch of private methods used to accomplish the internal tasks:

public class VendingMachine implements Selector {

 private final Inventory<Coin> coinInventory

 = new Inventory<>();

 private final Inventory<Item> itemInventory

 = new Inventory<>();

Coding challenges 129

 private int totalSales;

 private int currentBalance;

 private Item currentItem;

 public VendingMachine() {

 initMachine();

 }

 private void initMachine() {

 System.out.println("Initializing the

 vending machine with coins and items ...");

 }

 // override Selector methods omitted for brevity

}

The complete application is named VendingMachine. By following the two aforementioned
examples, you can try to design an ATM, a washing machine, and similar things.

Example 3: Deck of cards
Amazon, Google, Adobe, Microsoft

Problem: Design the main classes of a generic deck of cards.

What to ask: Since a card can be almost anything, can you define generic?

Interviewer: A card is characterized by a symbol (suit) and a value. For example, think of
a standard 52-card set.

130 Object-Oriented Programming

Solution: In order to understand what classes should be involved in our design, we
can quickly sketch a card and a deck of cards for the standard 52-card set, as shown
in Figure 6.3:

Figure 6.3 – A deck of cards

Since every card has a suit and a value, we will need a class that encapsulates these fields.
Let's call this class StandardCard. A suit for StandardCard contains a Spade, Heart,
Diamond, or Club, so this suit is a good candidate for a Java enum. A StandardCard
value can be between 1 and 13.

A card can live as a standalone or be a part of a pack of cards. Multiple cards form a
pack of cards (for example, a standard 52-card set forms a pack of cards). The number of
cards in a pack is usually obtained as a Cartesian product between the possible suits and
values (for example, 4 suits x 13 values = 52 cards). So, 52 StandardCard objects form
StandardPack.

Finally, a deck of cards should be a class capable of performing some actions with this
StandardPack. For example, a deck of cards can shuffle the cards, can deal a hand or a
card, and so on. This means that a Deck class is also needed.

So far, we have settled on having a Java enum and the StandardCard, StandardPack,
and Deck classes. If we add the abstraction layers needed to avoid high coupling between
these concrete layers, then we obtain the following implementation. Along with the
following code, you can use the UML diagram from here: https://github.com/
PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/
blob/master/Chapter06/DeckOfCards/DeckOfCardsUML.png

•	 For standard card implementation:

public enum StandardSuit {

 SPADES, HEARTS, DIAMONDS, CLUBS;

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/DeckOfCards/DeckOfCardsUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/DeckOfCards/DeckOfCardsUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/DeckOfCards/DeckOfCardsUML.png

Coding challenges 131

}

public abstract class Card {

 private final Enum suit;

 private final int value;

 private boolean available = Boolean.TRUE;

 public Card(Enum suit, int value) {

 this.suit = suit;

 this.value = value;

 }

 // code omitted for brevity

}

public class StandardCard extends Card {

 private static final int MIN_VALUE = 1;

 private static final int MAX_VALUE = 13;

 public StandardCard(StandardSuit suit, int value) {

 super(suit, value);

 }

 // code omitted for brevity

}

•	 Standard pack of cards implementation gives the following code:

public abstract class Pack<T extends Card> {

 private List<T> cards;

 protected abstract List<T> build();

132 Object-Oriented Programming

 public int packSize() {

 return cards.size();

 }

 public List<T> getCards() {

 return new ArrayList<>(cards);

 }

 protected void setCards(List<T> cards) {

 this.cards = cards;

 }

}

public final class StandardPack extends Pack {

 public StandardPack() {

 super.setCards(build());

 }

 @Override

 protected List<StandardCard> build() {

 List<StandardCard> cards = new ArrayList<>();

 // code omitted for brevity

 return cards;

 }

}

•	 Deck of cards implementation provides the following:

public class Deck<T extends Card> implements Iterable<T> {

 private final List<T> cards;

 public Deck(Pack pack) {

Coding challenges 133

 this.cards = pack.getCards();

 }

 public void shuffle() {...}

 public List<T> dealHand(int numberOfCards) {...}

 public T dealCard() {...}

 public int remainingCards() {...}

 public void removeCards(List<T> cards) {...}

 @Override

 public Iterator<T> iterator() {...}

}

A demo of the code can be quickly written as follows:

// create a single classical card

Card sevenHeart = new StandardCard(StandardSuit.HEARTS, 7);

// create a complete deck of standards cards

Pack cp = new StandardPack();

Deck deck = new Deck(cp);

System.out.println("Remaining cards: "

 + deck.remainingCards());

Furthermore, you can easily add more types of cards by extending the Card and Pack
classes. The complete code is named DeckOfCards.

Example 4: Parking lot
Amazon, Google, Adobe, Microsoft

Problem: Design the main classes of a parking lot.

What to ask: Is it a single-level or multi-level parking lot? Are all parking space spots the
same? What type of vehicles should we park? Is it free parking? Do we use parking tickets?

134 Object-Oriented Programming

Interviewer: It is a synchronous automatic multi-level free parking lot. All parking spots
are the same size, but we expect cars (1 spot needed), vans (2 spots needed) and trucks
(5 spots needed). Other types of vehicles should be added without modifying the code.
The system releases a parking ticket that can be used later to unpark the vehicle. But if the
driver introduces only the vehicle information (assuming a lost ticket), the system should
still work and locate the vehicle in the parking lot and unpark it.

Solution: In order to understand what classes should be involved in our design, we
can quickly sketch a parking lot to identify the main actors and behaviors as in Figure 6.4:

Figure 6.4 – A parking lot

The diagram reveals two major actors: the parking lot and the automatic parking system.

First, let's focus on the parking lot. The main purpose of a parking lot is to park vehicles;
therefore, we need to shape the accepted vehicles (car, van, and truck). This looks like a
typical case for an abstract class (Vehicle) and three subclasses (Car, Van, and Truck).
But this is not true! The driver provides information about their vehicle. They don't
effectively push the vehicle (the object) into the parking system, so our system does not
need dedicated objects for cars, vans, trucks, and so on. Think from the perspective of
a parking lot. It needs the vehicle license plate and the free spots required for parking.
It doesn't care about the characteristics of a van or a truck. So, we can shape a Vehicle
as follows. Along with the following code, you can use the UML diagram from here:
https://github.com/PacktPublishing/The-Complete-Coding-
Interview-Guide-in-Java/blob/master/Chapter06/ParkingLot/
ParkingLotUML.png

public enum VehicleType {

 CAR(1), VAN(2), TRUCK(5);

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/ParkingLot/ParkingLotUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/ParkingLot/ParkingLotUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/ParkingLot/ParkingLotUML.png

Coding challenges 135

}

public class Vehicle {

 private final String licensePlate;

 private final int spotsNeeded;

 private final VehicleType type;

 public Vehicle(String licensePlate,

 int spotsNeeded, VehicleType type) {

 this.licensePlate = licensePlate;

 this.spotsNeeded = spotsNeeded;

 this.type = type;

 }

 // getters omitted for brevity

 // equals() and hashCode() omitted for brevity

}

Next, we have to design the parking lot. Mainly, a parking lot has several floors (or levels)
and each floor has parking spots. Among others, a parking lot should expose methods for
parking/unparking a vehicle. These methods will delegate the parking/unparking tasks to
each floor (or to a certain floor) until it succeeds or there is no floor to scan:

public class ParkingLot {

 private String name;

 private Map<String, ParkingFloor> floors;

 public ParkingLot(String name) {

 this.name = name;

 }

 public ParkingLot(String name,

 Map<String, ParkingFloor> floors) {

 this.name = name;

136 Object-Oriented Programming

 this.floors = floors;

 }

 // delegate to the proper ParkingFloor

 public ParkingTicket parkVehicle(Vehicle vehicle) {...}

 // we have to find the vehicle by looping floors

 public boolean unparkVehicle(Vehicle vehicle) {...}

 // we have the ticket, so we have the needed information

 public boolean unparkVehicle

 ParkingTicket parkingTicket) {...}

 public boolean isFull() {...}

 protected boolean isFull(VehicleType type) {...}

 // getters and setters omitted for brevity

}

A parking floor controls the parking/unparking process on a certain floor. It has its own
registry of parking tickets and is capable of managing its parking spots. Mainly, each
parking floor acts as an independent parking lot. This way, we can shut down a complete
floor while the remainder of the floors are not affected:

public class ParkingFloor {

 private final String name;

 private final int totalSpots;

 private final Map<String, ParkingSpot>

 parkingSpots = new LinkedHashMap<>();

 // here, I use a Set, but you may want to hold the parking

 // tickets in a certain order to optimize search

 private final Set<ParkingTicket>

 parkingTickets = new HashSet<>();

Coding challenges 137

 private int totalFreeSpots;

 public ParkingFloor(String name, int totalSpots) {

 this.name = name;

 this.totalSpots = totalSpots;

 initialize(); // create the parking spots

 }

 protected ParkingTicket parkVehicle(Vehicle vehicle) {...}

 //we have to find the vehicle by looping the parking spots

 protected boolean unparkVehicle(Vehicle vehicle) {...}

 // we have the ticket, so we have the needed information

 protected boolean unparkVehicle(

 ParkingTicket parkingTicket) {...}

 protected boolean isFull(VehicleType type) {...}

 protected int countFreeSpots(

 VehicleType vehicleType) {...}

 // getters omitted for brevity

 private List<ParkingSpot> findSpotsToFitVehicle(

 Vehicle vehicle) {...}

 private void assignVehicleToParkingSpots(

 List<ParkingSpot> spots, Vehicle vehicle) {...}

 private ParkingTicket releaseParkingTicket(

 Vehicle vehicle) {...}

 private ParkingTicket findParkingTicket(

 Vehicle vehicle) {...}

 private void registerParkingTicket(

 ParkingTicket parkingTicket) {...}

 private boolean unregisterParkingTicket(

 ParkingTicket parkingTicket) {...}

138 Object-Oriented Programming

 private void initialize() {...}

}

Finally, a parking spot is an object that holds information about its name (label or
number), availability (whether it is free) and vehicle (whether a vehicle is parked on that
spot). It also has methods for assigning/removing a vehicle to/from this spot:

public class ParkingSpot {

 private boolean free = true;

 private Vehicle vehicle;

 private final String label;

 private final ParkingFloor parkingFloor;

 protected ParkingSpot(ParkingFloor parkingFloor,

 String label) {

 this.parkingFloor = parkingFloor;

 this.label = label;

 }

 protected boolean assignVehicle(Vehicle vehicle) {...}

 protected boolean removeVehicle() {...}

 // getters omitted for brevity

}

At this moment, we have all the major classes of the parking lot. Next, we are going to
focus on the automatic parking system. This can be shaped as a single class that acts as a
dispatcher of the parking lot:

public class ParkingSystem implements Parking {

 private final String id;

 private final ParkingLot parkingLot;

 public ParkingSystem(String id, ParkingLot parkingLot) {

 this.id = id;

Coding challenges 139

 this.parkingLot = parkingLot;

 }

 @Override

 public ParkingTicket parkVehicleBtn(

 String licensePlate, VehicleType type) {...}

 @Override

 public boolean unparkVehicleBtn(

 String licensePlate, VehicleType type) {...}

 @Override

 public boolean unparkVehicleBtn(

 ParkingTicket parkingTicket) {...}

 // getters omitted for brevity

}

The complete application containing a partial implementation as well is named
ParkingLot.

Example 5: Online reader system
Problem: Design the main classes of an online reader system.

What to ask: What are the required functionalities? How many books can be read
simultaneously?

Interviewer: The system should be capable of managing readers and books. Your code
should be able to add/remove a reader/book and to display a reader/book. The system can
serve a single reader and a single book at a time.

140 Object-Oriented Programming

Solution: In order to understand what classes should be involved in our design, we can
think about sketching something as in Figure 6.5:

Figure 6.5 – An online reader system

In order to manage readers and books, we need to have such objects. This is a small and
easy part, and starting with such parts in an interview is very helpful for breaking the
ice and accommodating the problem at hand. When we design objects in an interview,
there is no need to come up with a full version of an object. For example, a reader having
a name and email, and a book having an author, title, and ISBN is more than sufficient.
Let's see them in the following code. Along with the following code, you can use the UML
diagram from here: https://github.com/PacktPublishing/The-Complete-
Coding-Interview-Guide-in-Java/blob/master/Chapter06/
OnlineReaderSystem/OnlineReaderSystemUML.png

public class Reader {

 private String name;

 private String email;

 // constructor omitted for brevity

 // getters, equals() and hashCode() omitted for brevity

}

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/OnlineReaderSystem/OnlineReaderSystemUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/OnlineReaderSystem/OnlineReaderSystemUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/OnlineReaderSystem/OnlineReaderSystemUML.png

Coding challenges 141

public class Book {

 private final String author;

 private final String title;

 private final String isbn;

 // constructor omitted for brevity

 public String fetchPage(int pageNr) {...}

 // getters, equals() and hashCode() omitted for brevity

}

Next, if we consider that books are usually managed by a library, then we can wrap several
functionalities, such as adding, finding, and removing a book, in a class as follows:

public class Library {

 private final Map<String, Book> books = new HashMap<>();

 protected void addBook(Book book) {

 books.putIfAbsent(book.getIsbn(), book);

 }

 protected boolean remove(Book book) {

 return books.remove(book.getIsbn(), book);

 }

 protected Book find(String isbn) {

 return books.get(isbn);

 }

}

142 Object-Oriented Programming

Readers can be managed by a similar class named ReaderManager. You can find this
class in the complete application. To read a book, we require a displayer. The Displayer
should display the reader and the book details and should be capable of navigating
through the books pages:

public class Displayer {

 private Book book;

 private Reader reader;

 private String page;

 private int pageNumber;

 protected void displayReader(Reader reader) {

 this.reader = reader;

 refreshReader();

 }

 protected void displayBook(Book book) {

 this.book = book;

 refreshBook();

 }

 protected void nextPage() {

 page = book.fetchPage(++pageNumber);

 refreshPage();

 }

 protected void previousPage() {

 page = book.fetchPage(--pageNumber);

 refreshPage();

 }

 private void refreshReader() {...}

 private void refreshBook() {...}

 private void refreshPage() {...}

}

Coding challenges 143

Finally, all we have to do is to wrap Library, ReaderManager, and Displayer in the
OnlineReaderSystem class. This class is listed here:

public class OnlineReaderSystem {

 private final Displayer displayer;

 private final Library library;

 private final ReaderManager readerManager;

 private Reader reader;

 private Book book;

 public OnlineReaderSystem() {

 displayer = new Displayer();

 library = new Library();

 readerManager = new ReaderManager();

 }

 public void displayReader(Reader reader) {

 this.reader = reader;

 displayer.displayReader(reader);

 }

 public void displayReader(String email) {

 this.reader = readerManager.find(email);

 if (this.reader != null) {

 displayer.displayReader(reader);

 }

 }

 public void displayBook(Book book) {

 this.book = book;

 displayer.displayBook(book);

 }

 public void displayBook(String isbn) {

 this.book = library.find(isbn);

144 Object-Oriented Programming

 if (this.book != null) {

 displayer.displayBook(book);

 }

 }

 public void nextPage() {

 displayer.nextPage();

 }

 public void previousPage() {

 displayer.previousPage();

 }

 public void addBook(Book book) {

 library.addBook(book);

 }

 public boolean deleteBook(Book book) {

 if (!book.equals(this.book)) {

 return library.remove(book);

 }

 return false;

 }

 public void addReader(Reader reader) {

 readerManager.addReader(reader);

 }

 public boolean deleteReader(Reader reader) {

 if (!reader.equals(this.reader)) {

 return readerManager.remove(reader);

 }

 return false;

 }

Coding challenges 145

 public Reader getReader() {

 return reader;

 }

 public Book getBook() {

 return book;

 }

}

The complete application is named OnlineReaderSystem.

Example 6: Hash table
Amazon, Google, Adobe, Microsoft

Problem: Design a hash table (this is a very popular problem in interviews).

What to ask: What are the required functionalities? What technique should be applied to
solve index collisions? What is the data type of the key-value pairs?

Interviewer: Speaking about the functionalities, I don't want anything special. I only want
the typical add() and get() operations. For solving index collisions, I suggest you use
the chaining technique. The key-value pairs should be generic.

A brief overview of a hash table: A hash table is a type of data structure that stores
key-value pairs. Commonly, an array holds all the key-value entries in the table and the
size of this array is set to accommodate the amount of data anticipated. The key of each
key-value is passed through a hash function (or several hash functions) that outputs a
hash value or a hash. Mainly, the hash value represents the index of the key-value pair in
the hash table (for example, if we use an array to store all key-value pairs, then the hash
function returns the index of this array that should hold the current key-value pair).
Passing the same key through the hash function should produce the same index every
time – this is useful for finding a value via its key.

146 Object-Oriented Programming

When a hash function generates two identical indexes for different keys, we face an index
collision. The most frequently used techniques for solving an index collision problem are
linear probing (this technique searches linearly for the next free slot in the table – trying
to find in the array a slot (an index) that doesn't hold a key-value pair) and chaining (this
technique represents a hash table implemented as an array of linked lists – collisions are
stored at the same array index as linked list nodes). The following diagram is a hash table
for storing name-phone pairs. It has chaining capabilities (check the Marius-0838234 entry,
which is chained to Karina-0727928, because their keys, Marius and Karina, lead to the
same array index, 126):

Figure 6.6 – A hash table

Solution: First, we need to shape a hash table entry (HashEntry). As you can see in
the preceding diagram, a key-value pair has three main parts: the key, the value, and
a link to the next key-value pair (this way, we implement chaining). Since a hash table
entry should be accessed only via dedicated methods, such as get() and put(), we
encapsulate it as follows:

public class HashTable<K, V> {

 private static final int SIZE = 10;

 private static class HashEntry<K, V> {

 K key;

 V value;

 HashEntry <K, V> next;

Coding challenges 147

 HashEntry(K k, V v) {

 this.key = k;

 this.value = v;

 this.next = null;

 }

 }

 ...

Next, we define the array that holds HashEntry. For testing purposes, a size of 10
elements is enough and it allows us to test chaining easily (having a small size is prone to
collisions). In reality, such an array is much bigger:

 private final HashEntry[] entries

 = new HashEntry[SIZE];

 ...

Next, we add the get() and put() methods. Their code is quite intuitive:

 public void put(K key, V value) {

 int hash = getHash(key);

 final HashEntry hashEntry = new HashEntry(key, value);

 if (entries[hash] == null) {

 entries[hash] = hashEntry;

 } else { // collision => chaining

 HashEntry currentEntry = entries[hash];

 while (currentEntry.next != null) {

 currentEntry = currentEntry.next;

 }

 currentEntry.next = hashEntry;

 }

 }

 public V get(K key) {

148 Object-Oriented Programming

 int hash = getHash(key);

 if (entries[hash] != null) {

 HashEntry currentEntry = entries[hash];

 // Loop the entry linked list for matching

 // the given 'key'

 while (currentEntry != null) {

 if (currentEntry.key.equals(key)) {

 return (V) currentEntry.value;

 }

 currentEntry = currentEntry.next;

 }

 }

 return null;

 }

Finally, we add a dummy hash function (in reality, we use hash functions such as Murmur
3 – https://en.wikipedia.org/wiki/MurmurHash):

 private int getHash(K key) {

 return Math.abs(key.hashCode() % SIZE);

 }

}

Done! The complete application is named HashTable.

For the following four examples, we skipped the source code from the book. Take your
time and dissect each example. Being able to understand an existing design is just
another tool that you can use to shape your design skills. Of course, you can try your own
approach before looking into the book's code and compare the results in the end.

Example 7: File system
Problem: Design the main classes of a file system.

https://en.wikipedia.org/wiki/MurmurHash

Coding challenges 149

What to ask: What are the required functionalities? What are the pieces of the file system?

Interviewer: Your design should support the addition, deletion, and renaming of
directories and files. We are talking about a hierarchical structure of directories and files,
like most operating systems have.

Solution: The complete application is named FileSystem. Please visit the following link
to check the UML: https://github.com/PacktPublishing/The-Complete-
Coding-Interview-Guide-in-Java/blob/master/Chapter06/
FileSystem/FileSystemUML.png

Example 8: Tuple
Amazon, Google

Problem: Design a tuple data structure.

What to ask: A tuple can have from 1 to n elements. So, what kind of tuple do you expect?
What data types should be stored in the tuple?

Interviewer: I am expecting a tuple with two generic elements. The tuple is also known as
a pair.

Solution: The complete application is named Tuple.

Please visit the following link to check the UML: https://github.com/
PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/
tree/master/Chapter06/Tuple

Example 9: Cinema with a movie ticket booking system
Amazon, Google, Adobe, Microsoft

Problem: Design a cinema with a movie ticket booking system.

What to ask: What is the main structure of the cinema? Does it have multiple cinema
rooms? What types of tickets do we have? How do we play a movie (only in a room, just
once a day)?

Interviewer: I am expecting a cinema with multiple identical rooms. A movie can run in
multiple rooms at the same time and can run multiple times in a day in the same room.
There are three types of tickets, simple, silver, and gold, based on the seat type. A movie
can be added/removed in a very versatile way (for example, we can remove a movie from
certain rooms at certain start times, or we can add a movie to all rooms).

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/FileSystem/FileSystemUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/FileSystem/FileSystemUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/FileSystem/FileSystemUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter06/Tuple
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter06/Tuple
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter06/Tuple

150 Object-Oriented Programming

Solution: The complete application is named MovieTicketBooking. Please visit the
following link to check the UML: https://github.com/PacktPublishing/
The-Complete-Coding-Interview-Guide-in-Java/blob/master/
Chapter06/MovieTicketBooking/MovieTicketBookingUML.png

Example 10: Circular byte buffer
Amazon, Google, Adobe

Problem: Design a circular byte buffer.

What to ask: It should be resizable?

Interviewer: Yes, it should be resizable. Mainly, I expect you to design the signatures of all
methods that you consider necessary.

Solution: The complete application is named CircularByteBuffer.

Please visit the following link to check the UML: https://github.com/
PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/
tree/master/Chapter06/CircularByteBuffer

So far so good! I suggest you try your own designs for the preceding 10 problems as well.
Do not consider that the solutions presented are the only ones that are correct. Practice as
much as you can by varying the context of the problem and challenge yourself with other
problems as well.

The source code bundle for this chapter is available under the name Chapter06.

Summary
This chapter covered the most popular questions about OOP fundamentals and 10 design
coding challenges that are very popular in interviews. In the first part, we began with
OOP concepts (object, class, abstraction, encapsulation, inheritance, polymorphism,
association, aggregation, and composition), continued with the SOLID principles, and
finished with an amalgam of questions combining OOP Concepts, SOLID principles,
and design pattern knowledge. In the second part, we tackled 10 carefully crafted design
coding challenges, including designing a jukebox, a vending machine, and the famous
hash table.

Practicing these questions and problems will give you the ability to tackle any OOP
problem encountered in an interview.

In the next chapter, we will tackle Big O notation and time.

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/MovieTicketBooking/MovieTicketBookingUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/MovieTicketBooking/MovieTicketBookingUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/MovieTicketBooking/MovieTicketBookingUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter06/CircularByteBuffer
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter06/CircularByteBuffer
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter06/CircularByteBuffer

7
Big O Analysis of

Algorithms
This chapter covers the most popular metric for analyzing the efficiency and scalability of
algorithms—Big O notation—in the context of a technical interview.

There are plenty of articles dedicated to this topic. Some of them are purely mathematical
(academic), while others try to explain it with a more friendly approach. The pure
mathematical approach is quite hard to digest and not very useful during an interview, so
we will go for a more friendly approach that will be much more familiar to interviewers
and developers.

Even so, this is not an easy mission because besides being the most popular metric for
measuring the efficiency and scalability of algorithms, Big O notation can often also be
the thing that you've never been motivated enough to learn about, despite knowing that
it's going to show up in every single interview. From juniors to senior warriors, Big O
notation is probably the biggest Achilles heel for everyone. However, let's make an effort
to turn this Achilles heel into a strong point for our interviews.

152 Big O Analysis of Algorithms

We will quickly go over Big O notation and highlight the things that matter the most.
Next, we'll jump into examples that have been carefully crafted to cover a wide range of
problems, and so by the end of this chapter, you'll be able to determine and express Big O
for almost any given snippet of code. Our agenda includes the following:

•	 Analogy

•	 Big O complexity time

•	 The best case, worst case, and expected case

•	 Big O examples

So, let's start our Big O journey!

Analogy
Imagine a scenario where you've found one of your favorite movies on the internet. You
can order it or download it. Since you want to see it as soon as possible, which is the best
way to proceed? If you order it, then it will take a day to arrive. If you download it, then it
will take half a day to download. So, it is faster to download it. That's the way to go!

But wait! Just when you get ready to download it, you spot the Lord of the Rings Master
Collection at a great price, and so you think about downloading it as well. Only this time,
the download will take 2 days. However, if you place an order, then it will still only take a
single day. So, placing an order is faster!

Now, we can conclude that no matters how many items we order, the shipping time
remains constant. We call this O(1). This is a constant runtime.

Moreover, we conclude that the download time is directly proportional to the file sizes.
We call this O(n). This is an asymptotic runtime.

From day-to-day observations, we can also conclude that online ordering scales better
than online downloading.

This is exactly what Big O time means: an asymptotic runtime measurement or an
asymptotic function.

As an asymptotic measurement, we are talking about Big O complexity time (this can be
complexity space as well).

Big O complexity time 153

Big O complexity time
The following diagram reveals that, at some moment in time, O(n) surpasses O(1). So,
until O(n) surpasses O(1), we can say that O(n) performs better than O(1):

Figure 7.1 – The asymptotic runtime (Big O time)

Besides the O(1)—constant time—and O(n)—linear time runtimes—we have many
other runtimes, such as O(log n), O(n log n)—logarithmic time—O(n2)—quadratic
time, O(2n)— exponential time, and O(n!)—factorial time. These are the most common
runtimes, but many more also exist.

The following diagram represents the Big O complexity chart:

Figure 7.2 – Big O complexity chart

As you can see, not all O times perform the same. O(n!), O(2n), and O(n2) are considered
horrible and we should strive to write algorithms that perform outside this area. O(n log
n) is better than O(n!) but is still bad. O(n) is considered fair, while O(log n) and O(1)
are good.

154 Big O Analysis of Algorithms

Sometimes, we need multiple variables to express the runtime performance. For example,
the time for mowing the grass on a soccer field can be expressed as O(wl), where w is the
width of the soccer field and l is the length of the soccer field. Or, if you have to mow p
soccer fields, then you can express it as O(wlp).

However, it is not all about time. We care about space as well. For example, building
an array of n elements needs O(n) space. Building a matrix of n x n elements needs
O(n2) space.

The best case, worst case, and expected case
If we simplify things, then we can think of the efficiency of our algorithms in terms of
best case, worst case, and expected case. The best case is when the input of our algorithms
meets some extraordinary conditions that allow it to perform the best. The worst case is
at the other extreme, where the input is in an unfavorable shape that makes our algorithm
reveal its worst performances. Commonly, however, these amazing or terrible situations
won't happen. So, we introduce the expected performance.

Most of the time, we care about the worst and expected cases, which, in the case of most
algorithms, are usually the same. The best case is an idealistic performance, and so it
remains idealistic. Mainly, for almost any algorithm, we can find a special input that will
lead to the O(1) best-case performance.

For more details about Big O, I strongly recommended you read the Big O cheat sheet
(https://www.bigocheatsheet.com/).

Now, let's tackle a bunch of examples.

Big O examples
We will try to determine Big O for different snippets of code exactly as you will see at
interviews, and we will go through several relevant lessons that need to be learned. In
other words, let's adopt a learning-by-example approach.

The first six examples will highlight the fundamental rules of Big O, listed as follows:

•	 Drop constants

•	 Drop non-dominant terms

•	 Different input means different variables

•	 Different steps are summed or multiplied

Let us begin with trying out the examples.

https://www.bigocheatsheet.com/

Big O examples 155

Example 1 – O(1)
Consider the following three snippets of code and compute Big O for each of them:

// snippet 1

return 23;

Since this code returns a constant, Big O is O(1). Regardless of what the rest of the code
does, this line of code will execute at a constant rate:

// snippet 2 - 'cars' is an array

int thirdCar = cars[3];

Accessing an array by index is accomplished with O(1). Regardless of how many elements
are in the array, getting an element from a specific index is a constant operation:

// snippet 3 - 'cars' is a 'java.util.Queue'

Car car = cars.peek();

The Queue#peek() method retrieves but does not remove, the head (first element) of
this queue. It doesn't matter how many elements follows the head, the time to retrieve the
head via the peek() method is O(1).

So, all three snippets in the preceding code block have the O(1) complexity time. Similarly,
inserting and removing from a queue, pushing and popping from a stack, inserting a node
in a linked list, and retrieving the left/right child of a node of a tree stored in an array are
also cases of O(1) time.

Example 2 – O(n), linear time algorithms
Consider the following snippet of code and compute Big O:

// snippet 1 - 'a' is an array

for (int i = 0; i < a.length; i++) {

 System.out.println(a[i]);

}

In order to determine the Big O value for this snippet of code, we have to answer the
following question: how many times does this for loop iterate? The answer is a.length
times. We cannot say exactly how much time this means, but we can say that the time will
grow linearly with the size of the given array (which represents the input). So, this snippet
of code will have an O(a.length) time and is known as linear time. It is denoted as
O(n).

156 Big O Analysis of Algorithms

Example 3 – O(n), dropping the constants
Consider the following snippet of code and compute Big O:

// snippet 1 - 'a' is an array

for (int i = 0; i < a.length; i++) {

 System.out.println("Current element:");

 System.out.println(a[i]);

 System.out.println("Current element + 1:");

 System.out.println(a[i] + 1);

}

Even if we added more instructions to the loop, we would still have the same runtime
as in Example 2. The runtime will still be linear in the size of its input, a.length. As in
Example 2 we had a single line of code in a loop, while here we have four lines of code in
a loop, you might expect Big O to be O(n + 4) or something like that. However, this kind
of reasoning is not precise or accurate—it's just wrong! Big O here is still O(n).

Important note
Keep in mind that Big O doesn't depend on the number of code lines. It
depends on the runtime rate of increase, which is not modified by constant-
time operations.

Just to reinforce this scenario, let's consider the following two snippets of code, which
compute the minimum and maximum of the given array, a:

Big O examples 157

7.3 – Code Comparison

Now, which one of these two code snippets runs faster?

The first code snippet uses a single loop, but it has two if statements, while the second
code snippet uses two loops, but it has one if statement per loop.

Thinking like this opens the door to insanity! Counting the statements can continue at
a deeper level. For example, we can continue to count the statements (operations) at the
compiler level, or we might want to take into consideration the compiler optimizations.
Well, that's not what Big O is about!

Important note
Big O is not about counting the code statements. Its goal is to express the
runtime growth for input sizes and express how the runtime scales. In short,
Big O just describes the runtime rate of increase.

Moreover, don't fall into the trap of thinking that because the first snippet has one loop,
Big O is O(n), while in the case of the second snippet, because it has two loops, Big O is
O(2n). Simply remove 2 from 2n since 2 is a constant!

158 Big O Analysis of Algorithms

Important note
As a rule of thumb, when you express Big O, drop the constants in runtime.

So, both of the preceding snippets have a Big O value of O(n).

Example 4 – dropping the non-dominant terms
Consider the following snippet of code and compute Big O (a is an array):

7.4 – Code snippet executed in O(n)

The first for loop is executed in O(n), while the second for loop is executed in O(n2).
So, we may think that the answer to this problem is O(n) + O(n2) = O(n + n2). But this is
not true! The rate of increase is given by n2, while n is a non-dominant term. If the size of
the array is increased, then n2 affects the rate of increase much more than n, and so n is
not relevant. Consider a few more examples:

•	 O(2n + 2n) -> drop constants and non-dominant terms -> O(2n).

•	 O(n + log n) -> drop non-dominant terms -> O(n).

•	 O(3*n2 + n + 2*n) -> drop constants and non-dominant terms -> O(n2).

Big O examples 159

Important note
As a rule of thumb, when you express Big O, drop the non-dominant terms.

Next, let's focus on two examples that are a common source of confusion for candidates.

Example 5 – different input means different variables
Consider the following two snippets of code (a and b are arrays). How many variables
should be used to express Big O?

7.5 – Code snippets 1 and 2

In the first snippet, we have two for loops that loop the same array, a (we have the same
input for both loops), and so Big O can be expressed as O(n), where n refers to a. In the
second code snippet, we also have two for loops, but they loop different arrays (we have
two inputs, a and b). This time, Big O is not O(n)! What does n refer to – a or b? Let's say
that n refers to a. If we increase the size of b, then O(n) doesn't reflect the runtime rate
of increase. Therefore, Big O is the sum of these two runtimes (the runtime of a plus the
runtime of b). This means that Big O must refer to both runtimes. For this, we can use
two variables that refer to a and to b. So, Big O is expressed as O(a + b). This time, if we
increase the size of a and/or b, then O(a + b) captures the runtime rate increase.

Important note
As a rule of thumb, different inputs mean different variables.

Next, let's see what happens when we add and multiply the algorithm steps.

160 Big O Analysis of Algorithms

Example 6 – different steps are summed or multiplied
Consider the following two snippets of code (a and b are arrays). How do you express Big
O for each of these snippets?

7.6 – Code snippet a and b

We already know from the previous example that, in the case of the first snippet, Big O is
O(a + b). We sum up the runtimes since their work is not interweaved as in the case of the
second snippet. So, in the second snippet, we cannot sum up the runtimes since, for each
case of a[i], the code loops the b array, and so Big O is O(a * b).

Think twice before deciding between summing and multiplying the runtimes. This is a
common mistake made in interviews. Also, it is quite common to not notice that there is
more than one input (here, there are two) and to mistakenly express Big O using a single
variable. That would be wrong! Always pay attention to how many inputs are present. For
each input that affects the runtime rate of increase, you should have a separate variable
(see Example 5).

Important note
As a rule of thumb, different steps can be summed or multiplied. The runtimes
should be summed or multiplied based on the following two statements:

If you describe your algorithm as it foos and when it's done, it buzzes, then
sum the runtimes.

If you describe your algorithm as for each time it foos, it buzzes, then multiply
the runtimes.

Now, let's discuss log n runtimes.

Big O examples 161

Example 7 – log n runtimes
Write a snippet of pseudo-code that has Big O as O(log n).

In order to understand the O(log n) runtimes, let's start with the Binary Search algorithm.
The Binary Search algorithm details and implementation is available in Chapter 14,
Sorting and Searching. This algorithm describes the steps for looking for element x in an
array, a. Consider a sorted array, a, of 16 elements, such as the following:

Figure 7.7 – Ordered array of 16 elements

First, we compare x with the midpoint of the array, p. If they are equal, then we return
the corresponding array index as the final result. If x > p, then we search on the right
side of the array. If x < p, then we search on the left side of the array. The following is a
graphical representation of the binary search algorithm for finding the number 17:

Figure 7.8 – The binary search algorithm

Notice that we start with 16 elements and end with 1. After the first step, we are down to
16/2 = 8 elements. At the second step, we are down to 8/2 = 4 elements. At the third step,
we are down to 4/2 = 2 elements. Then, at the last step, we find the searched number, 17. If
we translate this algorithm into pseudo-code, then we obtain something as follows:

search 17 in {1, 4, 5, 7, 10, 16, 17, 18, 20,

 23, 24, 25, 26, 30, 31, 33}

162 Big O Analysis of Algorithms

 compare 17 to 18 -> 17 < 18

 search 17 in {1, 4, 5, 7, 10, 16, 17, 18}

 compare 17 to 7 -> 17 > 7

 search 17 in {7, 10, 16, 17}

 compare 17 to 16 -> 17 > 16

 search 17 in {16, 17}

 compare 17 to 17

 return

Now, let's express Big O for this pseudo-code. We can observe that the algorithm consists
of a continuous half-life of the array until only one element remains. So, the total runtime
is dependent on how many steps we need in order to find a certain number in the array.

In our example, we had four steps (we halved the array 4 times) that can be expressed
as following:

Or, if we condense it then we get:

One step further, and we can express it for general case as (n is the size of the array, k is
the number of steps to reach the solution):

But, 2k = n is exactly what logarithm means - A quantity representing the power to
which a fixed number (the base) must be raised to produce a given number. So, we
can write the follows:

In our case, 2k = n means 24 = 16, which is log216 = 4.

So, Big O for the Binary Search algorithm is O(log n). However, where is the logarithm
base? The short answer is that the logarithm base is not needed for expressing Big O
because logs of different bases are only different by a constant factor.

Big O examples 163

Important note
As a rule of thumb, when you have to express Big O for an algorithm that
halves its input at each step/iteration, there are big chances of it being a case of
O(log n).

Next, let's talk about evaluating Big O for recursive runtimes.

Example 8 – recursive runtimes
What is Big O for the following snippet of code?

int fibonacci(int k) {

 if (k <= 1) {

 return k;

 }

 return fibonacci(k - 2) + fibonacci(k - 1);

}

On our first impression, we may express Big O as O(n2). Most likely, we will reach
this result because we are misled by the two calls of the fibonacci() method from
return. However, let's give value to k and quickly sketch the runtime. For example, if
we call fibonacci(7) and we represent the recursive calls as a tree, then we obtain the
following diagram:

Figure 7.9 – Tree of calls

We almost immediately notice that the depth of this tree is equal to 7, and so the depth
of the general tree is equal to k. Moreover, with the exception of the terminal levels, each
node has two children, and so almost every level has twice the number of calls as the one
above it.This means that we can express Big O as O(branches depth). In our case, this is
O(2k), denoted O(2n).

164 Big O Analysis of Algorithms

In an interview, just saying O(2n) should be an acceptable answer. If we want to be more
accurate, then we should take into account the terminal levels, especially the last level
(or the bottom of the call stack), which can sometimes contain a single call. This means
that we don't always have two branches. A more accurate answer would be O(1.6n).
Mentioning that the real value is less than 2 should be enough for any interviewer.

If we want to express Big O in terms of space complexity, then we obtain O(n). Do not be
fooled by the fact that the runtime complexity is O(2n). At any moment, we cannot have
more than k numbers. If we look in the preceding tree, we can only see numbers from 1
to 7.

Example 9 – in-order traversal of a binary tree
Consider a given perfect binary search tree. If you need a quick remainder of binary
trees then consider the Nutshell section of Chapter 13, Trees and Graphs.What is Big O
for the following snippet of code?

void printInOrder(Node node) {

 if (node != null) {

 printInOrder(node.left);

 System.out.print(" " + node.element);

 printInOrder(node.right);

 }

}

A perfect binary search tree is a binary search tree whose internal nodes have exactly
two children and all the leaf nodes are on the same level or depth. In the following
diagram, we have a typical perfect binary search tree (again, visualizing the runtime
input is very useful):

Figure 7.10 – Height-balanced binary search tree

Big O examples 165

We know from experience (more precisely, from the previous example) that when we face
a recursive problem with branches, we can have an O(branches depth) case. In our case,
we have two branches (each node has two children), and so we have O(2 depth). Having an
exponential time looks weird, but let's see what the relationship between the number of
nodes and the depth is. In the preceding diagram, we have 15 nodes and the depth is 4. If
we had 7 nodes, then the depth would be 3, and if we had 31 nodes, then the depth would
be 5. Now, if we don't already know from the theory that the depth of a perfect binary tree
is logarithmic, then maybe we can observe the following:

•	 For 15 nodes, we have a depth of 4; therefore, we have 24 = 16, equivalent to
log216 = 4.

•	 For 7 nodes, we have a depth of 3; therefore, we have 23 = 8, equivalent to
log28 = 3.

•	 For 31 nodes, we have a depth of 5; therefore, we have 25 = 32, equivalent to
log232 = 5.

Based on the preceding observations, we can conclude that we can express Big O as
O(2log n) since the depth is roughly log n. So, we can write the following:

Figure 7.11 – Big O expression

So, Big O in this case is O(n). We could reach the same conclusion if we recognized
that this code is in fact the In-Order traversal of a binary tree, and in this traversal
(exactly as in case of Pre-Order and Post-Order traversals), each node is visited a single
time. Moreover, for each traversed node, there is a constant amount of work, and so
Big O is O(n).

Example 10 – n may vary
What is Big O for the following snippet of code?

void printFibonacci(int k) {

 for (int i = 0; i < k; i++) {

 System.out.println(i + ": " + fibonacci(i));

 }

}

int fibonacci(int k) {

166 Big O Analysis of Algorithms

 if (k <= 1) {

 return k;

 }

 return fibonacci(k - 2) + fibonacci(k - 1);

}

From Example 8, we already know that the Big O value of the fibonacci() method
is O(2n). printFibonacci() calls fibonacci() n times, so it is very tempting to
express the total Big O value as O(n)*O(2n) = O(n2n). However, is this true or have we
rushed to give an apparently easy answer?

Well, the trick here is that n varies. For example, let's visualize the runtime:

We cannot say that we execute the same code n times, so this is O(2n).

Example 11 – memoization
What is Big O for the following snippet of code?

void printFibonacci(int k) {

 int[] cache = new int[k];

 for (int i = 0; i < k; i++) {

 System.out.println(i + ": " + fibonacci(i, cache));

 }

}

int fibonacci(int k, int[] cache) {

 if (k <= 1) {

 return k;

 } else if (cache[k] > 0) {

 return cache[k];

Big O examples 167

 }

 cache[k] = fibonacci(k - 2, cache)

 + fibonacci(k - 1, cache);

 return cache[k];

}

This code computes the Fibonacci number via recursion. However, this code uses a
technique known as Memoization. Mainly, the idea is to cache the return value and
use it to reduce recursive calls. We already know from Example 8 that Big O of the
fibonacci() method is O(2n). Since Memoization should reduce recursive calls (it
introduces an optimization), we can guess that Big O of this code should do better than
O(2n). However, this is just an intuition, so let's visualize the runtime for k = 7:

Calling fibonacci(0):

Result of fibonacci(0) is 0

Calling fibonacci(1):

Result of fibonacci(1) is 1

Calling fibonacci(2):

	 fibonacci(0)

	 fibonacci(1)

	 fibonacci(2) is computed and cached at cache[2]

Result of fibonacci(2) is 1

Calling fibonacci(3):

	 fibonacci(1)

	 fibonacci(2) is fetched from cache[2] as: 1

	 fibonacci(3) is computed and cached at cache[3]

Result of fibonacci(3) is 2

Calling fibonacci(4):

	 fibonacci(2) is fetched from cache[2] as: 1

	 fibonacci(3) is fetched from cache[3] as: 2

	 fibonacci(4) is computed and cached at cache[4]

Result of fibonacci(4) is 3

168 Big O Analysis of Algorithms

Calling fibonacci(5):

	 fibonacci(3) is fetched from cache[3] as: 2

	 fibonacci(4) is fetched from cache[4] as: 3

	 fibonacci(5) is computed and cached at cache[5]

Result of fibonacci(5) is 5

Calling fibonacci(6):

	 fibonacci(4) is fetched from cache[4] as: 3

	 fibonacci(5) is fetched from cache[5] as: 5

	 fibonacci(6) is computed and cached at cache[6]

Result of fibonacci(6) is 8

Each fibonacci(k) method is computed from the cached fibonacci(k-1) and
fibonacci(k-2) methods. Fetching the computed values from the cache and summing
them is a constant time work. Since we do this work k times, this means that Big O can be
expressed as O(n).

Besides Memoization, we can use another approach, known as Tabulation. More details
are available in Chapter 8, Recursion and Dynamic Programming.

Example 12 – looping half of the matrix
What is Big O for the following two snippets of code (a is an array)?

7.12 – Code snippets for Big O

These snippets of code are almost identical, except that in the first snippet, j starts from 0,
while in the second snippet, it starts from i+1.

We can easily give value to the array size and visualize the runtime of these two snippets
of code. For example, let's consider that the array size is 5. The left-hand matrix is the
runtime of the first snippet of code, while the right-hand matrix corresponds to the
runtime of the second snippet of code:

Big O examples 169

Figure 7.13 – Visualizing the runtime

The matrix corresponding to the first snippet of code reveals an n*n size, while the matrix
corresponding to the second snippet of code roughly reveals an n*n/2 size. So, we can
write the following:

•	 Snippet 1 runtime is: .

•	 Snippet 2 runtime is: since we eliminate constants.

So, both snippets of code have O(n2).

Alternatively, you can think of it like this:

•	 For the first snippet, the inner loop doesn't work and it is run n times by the outer
loop, and so n*n = n2, results in O(n2).

•	 For the second snippet, the inner loop does roughly n/2 work and it is run n times
by the outer loop, so n*n/2 = n2/2 = n2 * 1/2, which results in (after removing the
constants) O(n2).

Example 13 – identifying O(1) loops
What is Big O for the following snippet of code (a is an array)?

for (int i = 0; i < a.length; i++) {

 for (int j = 0; j < a.length; j++) {

 for (int q = 0; q < 1_000_000; q++) {

 System.out.println(a[i] + a[j]);

 }

 }

}

170 Big O Analysis of Algorithms

If we ignore the third loop (the q loop), then we already know that Big O is O(n2). So,
how does the third loop influence the total Big O value? The third loop iterates from 0
to 1 million, independent of the array size, and so Big O for this loop is O(1), which is a
constant. Since the third loop doesn't depend on how the input size varies, we can write it
as follows:

for (int i = 0; i < a.length; i++) {

 for (int j = 0; j < a.length; j++) {

 // O(1)

 }

}

Now, it is clear that Big O for this example is O(n2).

Example 14 – looping half of the array
What is Big O for the following snippet of code (a is an array)?

for (int i = 0; i < a.length / 2; i++) {

 System.out.println(a[i]);

}

Confusion here can be caused by the fact that this snippet loops only half of the array.
Don't make the common mistake of expressing Big O as O(n/2). Remember that constants
should be removed, and so Big O is O(n). Iterating only half of the array doesn't impact
the Big O time.

Example 15 – reducing Big O expressions
Which of the following can be expressed as O(n)?

•	 O(n + p)

•	 O(n + log n)

The answer is that O(n + log n) can be reduced to O(n) because log n is a non-dominant
term and it can be removed. On the other hand, O(n + p) cannot be reduced to O(n)
because we don't know anything about p. Until we establish what p is and what the
relationship between n and p is, we have to keep both of them.

Big O examples 171

Example 16 – looping with O(log n)
What is Big O for the following snippet of code (a is an array)?

for (int i = 0; i < a.length; i++) {

 for (int j = a.length; j > 0; j /= 2) {

 System.out.println(a[i] + ", " + j);

 }

}

Let's just focus on the outer loop. Based on the experiences from the previous examples,
we can quickly express Big O as O(n).

How about the inner loop? We can notice that j starts from the array length and, at each
iteration, it is halved. Remember the important note from Example 7 that say: When you
have to express Big O for an algorithm that halves its input at each step, there are big chances
to be in a O(log n) case.

Important note
Whenever you think that there are big chances of it being a case of O(log n),
it is advised that you use test numbers that are powers of the divisor. If the
input is divided by 2 (it is halved), then use numbers that are a power of 2 (for
example, 23 = 8, 24 = 16, 25 = 32, and so on). If the input is divided by 3, then
use numbers that are a power of 3 (for example, 32 = 9, 33 = 27, and so on). This
way, it is easy to count the number of divisions.

So, let's give value to a.length and visualize the runtime. Let's say that a.length is
16. This means that j will take the 12, 8, 4, 2, and 1 values. We have divided j by 2 exactly
four times, so we have the following:

Figure 7.14 – Loop with O (log n)

So, Big O for the inner loop is O(log n). To compute the total Big O, we consider that the
outer loop is executed n times, and within that loop, another loop is executed log n times.
So, the total Big O result is O(n)* O (log n) = O(n log n).

As a tip, a lot of sorting algorithms (for example, Merge Sort and Heap Sort) have the
O(n log n) runtime. Moreover, a lot of O(n log n) algorithms are recursive. Generally
speaking, algorithms that are classified under the Divide and Conquer (D&C) category of
algorithms are O(n log n). Hopefully, keeping these tips in mind will be very handy
in interviews.

172 Big O Analysis of Algorithms

Example 17 – string comparison
What is Big O for the following snippet of code? (note that a is an array, and be sure to
carefully read the comments):

String[] sortArrayOfString(String[] a) {

 for (int i = 0; i < a.length; i++) {

 // sort each string via O(n log n) algorithm

 }

 // sort the array itself via O(n log n) algorithm

 return a;

}

sortArrayOfString() receives an array of String and performs two major actions.
It sorts each string from this array and the array itself. Both sorts are accomplished via
algorithms whose runtime is expressed as O(n log n).

Now, let's focus on the for loop and see the wrong answer that is commonly given by
candidates. We already know that sorting a single string gives us O(n log n). Doing this
for each string means O(n) * (n log n) = O(n*n log n) = O(n2 log n). Next, we sort the
array itself, which is also given as O(n log n). Putting all of the results together, the total
Big O value is O(n2 log n) + O(n log n) = O(n2 log n + n log n), which is O(n2 log n) since
n log n is a non-dominant term. However, is this correct? The short answer is no! But
why not?! There are two major mistakes that we've done: we've used n to represent two
things (the size of the array and the length of the string) and we assumed that comparing
String requires a constant time as is the case for fixed-width integers.

Let's detail the first problem. So, sorting a single string gives us O(n log n), where n
represents the length of that string. We sort a.length strings, so n now represents the
size of the array. This is where the confusion comes from, because when we say that the
for loop is O(n2 log n), to which n are we referring to? Since we are working with two
variables, we need to denote them differently. For example, we can consider the following:

•	 s: The length of the longest String.

•	 p: The size of the array of String.

Big O examples 173

In these terms, sorting a single string is O(s log s), and doing this p times results in
O(p)*O(s log s) = O(p*s log s).

Now, let's tackle the second problem. In our new terms, sorting the array is O(p log p) –
I've just replaced n with p. However, does the comparison of String require a constant
time as is the case of fixed-width integers? The answer is no! String sorting changes
O(p log p) because the String comparison itself has a variable cost. The length of
String varies, and so the comparison time varies as well. So, in our case, each String
comparison takes O(s), and since we have O(p log p) comparisons, it results that sorting
the array of strings is O(s) * O(p log p) = O(s*p log p).

Finally, we have to add O(p*s log s) to O(s*p log p) = O(s*p(log s + log p)). Done!

Example 18 – factorial Big O
What is Big O for the following snippet of code?

long factorial(int num) {

 if (num >= 1) {

 return num * factorial(num - 1);

 } else {

 return 1;

 }

}

It is obvious that this snippet of code is a recursive implementation of computing
factorials. Don't do the common mistake of thinking that Big O is O(n!). This is not true!
Always analyze the code carefully without prior assumption.

The recursive process traverses the sequence n–1, n–2, ... 1 times; therefore, this is O(n).

174 Big O Analysis of Algorithms

Example 19 – using n notation with caution
What is Big O for the following two snippets of code?

7.15 – Code snippets

The first snippet (on the left-side hand) does constant work for y times. The x input
doesn't affect the runtime rate of increase, and so Big O can be expressed as O(y). Pay
attention to the fact that we don't say O(n) since n can be confused with x as well.

The second snippet (on the right-side hand) recursively traverses y-1, y-2, ..., 0. Each y
input is traversed a single time, so Big O can be expressed as O(y). Again, the x input
doesn't affect the runtime rate of increase. Moreover, we avoid saying O(n) since there is
more than one input and O(n) will create confusion.

Example 20 – the sum and count
What is Big O for the following snippet of code (x and y are positive)?

int div(int x, int y) {

 int count = 0;

 int sum = y;

 while (sum <= x) {

 sum += y;

 count++;

 }

 return count;

}

Big O examples 175

Let's give values to x and y and watch the count variable, which counts the number of
iterations. Consider that x=10 and y=2. For this scenario, count will be 5 (10/2 = 5).
Following the same logic, we have x=14, y=4, count=3 (14/4 = 3.5), or x=22, y=3, or
count=7 (22/3 = 7.3). We can notice that in the worst-case scenario, count is x/y, and
so Big O can be expressed as O(x/y).

Example 21 – the number of iteration counts in Big O
The following snippet of code tries to guess the square root of a number. What is Big O?

int sqrt(int n) {

 for (int guess = 1; guess * guess <= n; guess++) {

 if (guess * guess == n) {

 return guess;

 }

 }

 return -1;

}

Let's consider that the number (n) is a perfect square root, such as 144, and we
already know that sqrt(144) = 12. Since the guess variable starts from 1 and stops at
guess*guess <= n with step 1, it is quite simple to compute that guess will take the
values 1, 2, 3, ... , 12. When guess is 12, we have 12*12 = 144, and the loop stops. So, we
had 12 iterations, which is exactly sqrt(144).

We follow the same logic for a non-perfect square root. Let's consider that n is 15. This
time, guess will take the 1, 2, and 3 values. When guess=4, we have 4*4 > 15 and the
loop stops. The returned value is -1. So, we had 3 iterations.

In conclusion, we have sqrt(n) iterations, so Big O can be expressed as O(sqrt(n)).

Example 22 – digits
The following snippet of code sum up the digits of an integer. What is Big O?

int sumDigits(int n) {

 int result = 0;

 while (n > 0) {

 result += n % 10;

 n /= 10;

176 Big O Analysis of Algorithms

 }

 return result;

}

At each iteration, n is divided by 10. This way, the code isolates a digit in the right-side of
the number (for example, 56643/10 = 5664.3). To traverse all the digits, the while loop
needs a number of iterations equal to the number of digits (for example, for 56,643 it
needs 5 iterations to isolate 3, 4, 6, 6, and 5).

However, a number with 5 digits can be up to 105 = 100,000, which means 99,999
iterations. Generally speaking, this means a number (n) with d digits can be up to 10d. So,
we can say the following:

Figure 7.16 – Digits relationship

Example 23 – sorting
What is Big O for the following snippet of code?

boolean matching(int[] x, int[] y) {

 mergesort(y);

 for (int i : x) {

 if (binarySearch(y, i) >= 0) {

 return true;

 }

 }

 return false;

}

In Example 16, we said that a lot of sorting algorithms (including Merge Sort) have a
runtime of O(n log n). This means that mergesort(y) has a runtime of O(y log y).

In Example 7, we said that the Binary Search algorithm has a runtime of O(log n). This
means that binarySearch(y, i) has a runtime of O(log y). In the worst-case
scenario, the for loop will iterate the whole x array, and so the binary search algorithm
will be executed x.length times. The for loop will have a runtime of O(x log y).

Key hints to look for in an interview 177

So, the total Big O value can be expressed as O(y log y) + O(x log y) = O(y log y + x log y).

Done! This was the last example presented here. Next, let's try to extract several key hints
that can help you in interviews to determine and express Big O.

Key hints to look for in an interview
During an interview, time and stress are serious factors that can affect concentration.
Having the capacity to identify templates, recognize certain cases, guess the correct
answer, and so on gives you a major advantage. As we stated in Chapter 5, How to
Approach a Coding Challenge, in figure 5.2, building an example (or a use case) is the
second step to tackling a coding challenge. Even if the code is given by the interviewer,
building an example is still quite useful for determining Big O.

As you probably noticed, in almost every non-trivial example that we covered, we
preferred to visualize the runtime for one or several concrete cases. That way, you
can really understand the details of the code, identify the inputs, determine the static
(constant) and dynamic (variable) parts of the code, and get a general view of how the
code works.

The following is a non-exhaustive list of key hints that can help you in an interview:

•	 If the algorithm does constant work, then the Big O is O(1): This kind of example
uses the inputs to perform constant work (for example, take three integers, x, y,
and w, and do some computations, such as x-y and y*w). In some cases, to create
confusion, it adds repetitive statement as well (for example, the computations are
done in for(int i=0; i<10; i++)). So, it is very important to settle right
from the start whether the inputs of the algorithm affect its runtime or not.

•	 If the algorithm loops the entire array or list, then O(n) may be involved in the
total Big O value: Commonly, the code snippets contain one or more repetitive
statements that loop the whole input, which is usually an array or list (for example,
for(int i=0; i<a.length; i++), where a is an array). Typically, these
structures have a runtime of O(n). In some cases, to create confusion, the repetitive
structure adds a condition that validates a break statement. Remember that Big
O is about the worst-case scenario, so you should evaluate the runtime keeping in
mind that the condition that validates the break statement may never happen and
Big O is still O(n).

•	 If, at each iteration, the algorithm halves the input data, then O(log n) may be
involved in the total Big O value: As you saw in Example 7, the Binary Search
algorithm is a famous case of O(log n). Typically, you can identify similar cases by
trying to visualize the runtime.

178 Big O Analysis of Algorithms

•	 A recursive problem of having branches is a good signal that O(branches depth)
might be part of the total Big O value: The most common case where O(2depth)
is encountered is in snippets of code that manipulate binary trees. Pay attention
to how you determine the depth as well. As you saw in Example 9, the depth can
influence the final result. In that case, O(2log n) was reduced to O(n).

•	 Recursive algorithms that use Memoization or Tabulation are good candidates
for having O(n) as their total Big O value: Typically, recursive algorithms expose
exponential runtimes (for example, O(2n)) but optimizations such as Memoization
and Tabulation may reduce the runtime to O(n).

•	 Sort algorithms commonly introduce O(n log n) in the total Big O value: Keep
in mind that a lot of sorting algorithms (for example, Heap Sort, Merge Sort, and so
on) have a runtime of O(n log n).

I hope these hints help you as we have covered some very tried and tested examples.

Summary
In this chapter, we covered one of the most predominant topics in an interview, Big O.
Sometimes, you'll have to determine Big O for a given code, while other times, you'll have
to determine it for your own code. In other words, there is little chance of bypassing Big O
in an interview. No matter how hard you train, Big O always remains a hard topic that can
put even the best developers in trouble. Fortunately, the cases covered here are the most
popular in interviews and they represent perfect templates for a lot of derived problems.

In the next chapter, we will tackle other favored topics in interviews: recursion and
Dynamic Programming.

8
Recursion

and Dynamic
Programming

This chapter covers one of the favorite topics of interviewers: Recursion and Dynamic
Programming. Both work hand in hand, so you must be able to cover both. Commonly,
the interviewer expects to see a plain recursive solution. However, they may ask you to
provide some optimization hints or even to code an optimized version of your code. In
other words, your interviewer will want to see Dynamic Programming at work.

In this chapter, we will cover the following topics:

•	 Recursion in a nutshell

•	 Dynamic Programming in a nutshell

•	 Coding challenges

By the end of this chapter, you will be able to implement a wide range of recursive
algorithms. You'll have a significant number of recursive patterns and approaches you can
use to recognize and implement recursive algorithms in minutes in your toolbelt. Let's
start with the first topic of our agenda: recursion.

180 Recursion and Dynamic Programming

Technical requirements
You will find all the code presented in this chapter on GitHub at https://github.
com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-
Java/tree/master/Chapter08.

Recursion in a nutshell
A method that calls itself directly/indirectly is called recursion. This method is known
as a recursive method. The famous Fibonacci numbers problem can be implemented
recursively, as follows:

int fibonacci(int k) {

 // base case

 if (k <= 1) {

 return k;

 }

 // recursive call

 return fibonacci(k - 2) + fibonacci(k - 1);

}

There are two important parts in this code:

•	 Base case: Returns a value without subsequent recursive calls. For special input(s),
the function can be evaluated without recursion.

•	 Recursive call: Since the fibonacci() method calls itself, we have a recursive
method.

Recognizing a recursive problem
Before we try to solve a problem via a recursive algorithm, we must recognize it as a
good candidate for such an algorithm. Most of the recursive problems used in interviews
are famous, so we recognize them by name. For example, problems such as Fibonacci
numbers, summing a list of numbers, greatest common divisor, the factorial of a number,
recursive Binary Search, reversing a string, and so on are well-known recursive problems.

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter08
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter08
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter08

Dynamic Programming in a nutshell 181

But what do all these problems have in common? Once we know the answer to this
question, we will be able to recognize other recursive problems as well. The answer is
quite simple: all these problems can be built off of sub-problems. In other words, we say
that we can express the value returned by a method in terms of other values returned by
that method.

Important Note
When a problem can be built off sub-problems, it is a good candidate for being
solved recursively. Typically, such problems include the words list top/last n ...,
compute the nth or all..., count/find all solutions that ..., generate all cases that
..., and so on. In order to compute the nth..., we must compute nth-1, nth-2, and
so on so that we can divide the problem into sub-problems. In other words,
computing f(n) requires computing f(n-1), f(n-2), and so on.

Practice is the keyword in recognizing and solving recursive problems.
Solving a lot of recursive problems will help you recognize them just as easily
as you blink.

Next, we'll highlight the main aspects of Dynamic Programming and learn how to
optimize plain recursion via Dynamic Programming.

Dynamic Programming in a nutshell
When we talk about optimizing recursion, we talk about Dynamic Programming. This
means that solving recursive problems can be done using plain recursive algorithms or
Dynamic Programming.

Now, let's apply Dynamic Programming to the Fibonacci numbers, starting with the plain
recursive algorithm:

int fibonacci(int k) {

 if (k <= 1) {

 return k;

 }

 return fibonacci(k - 2) + fibonacci(k - 1);

}

182 Recursion and Dynamic Programming

The plain recursive algorithm for the Fibonacci numbers has a runtime of O(2n) and a
space complexity of O(n) – you can find the explanation in Chapter 7, Big O Analysis of
Algorithms. If we set k=7 and represent the call stack as a tree of calls, then we obtain the
following diagram:

Figure 8.1 – Tree of calls (plain recursion)

If we check the Big O chart from Chapter 7, Big O Analysis of Algorithms, then we'll notice
that O(2n) is far from being efficient. Exponential runtimes fit the Horrible area of the Big
O chart. Can we do this better? Yes, via the Memoization approach.

Memoization (or Top-Down Dynamic Programming)
When a recursive algorithm has repeated calls for the same inputs, this indicates that
it performs duplicate work. In other words, a recursive problem may have overlapping
sub-problems, so the road to the solution involves solving the same sub-problem multiple
times. For example, if we redraw the tree of calls for Fibonacci numbers and we highlight
the overlapping problems, then we obtain the following diagram:

Figure 8.2 – Tree of calls (duplicate work)

It is obvious that more than half of the calls are duplicate calls.

Dynamic Programming in a nutshell 183

Memoization is a technique that's used to remove duplicate work in a method. It
guarantees that a method is called for the same input only once. To achieve this,
Memoization caches the results of the given inputs. This means that, when the method
should be called to compute an input that has already been computed, Memoization will
avoid this call by returning the result from the cache.

The following code uses Memoization to optimize the plain recursive algorithm for the
Fibonacci numbers (the cache is represented by the cache array):

int fibonacci(int k) {

 return fibonacci(k, new int[k + 1]);

}

int fibonacci(int k, int[] cache) {

 if (k <= 1) {

 return k;

 } else if (cache[k] > 0) {

 return cache[k];

 }

 cache[k] = fibonacci(k - 2, cache)

 + fibonacci(k - 1, cache);

 return cache[k];

}

If we redraw the tree of calls from the preceding code, then we obtain the
following diagram:

Figure 8.3 – Tree of calls (Memoization)

184 Recursion and Dynamic Programming

Here, it is obvious that Memoization has drastically reduced the number of recursive calls.
This time, the fibonacci() method take advantage of cached results. The runtime was
reduced from O(2n) to O(n), so from exponential to polynomial.

Important note
Memoization is also referred to as a Top-Down approach. The Top-Down
approach is not very intuitive because we start developing the final solution
immediately by explaining how we develop it from smaller solutions. This is
like saying the following:

I wrote a book. How? I wrote its chapters. How? I wrote the sections of each
chapter. How? I wrote the paragraphs of each section.

The space complexity remains O(n). Can we improve it? Yes, via the Tabulation approach.

Tabulation (or Bottom-Up Dynamic Programming)
Tabulation, or the Bottom-Up approach, is more intuitive than Top-Down. Essentially, a
recursive algorithm (often) starts from the end and works backward, while a Bottom-Up
algorithm starts right from the beginning. The Bottom-Up approach avoids recursion and
improves space complexity.

Important note
Tabulation is commonly referred to as a Bottom-Up approach. Going bottom-
up is an approach that avoids recursion and is quite natural. It's like saying the
following:

I wrote the paragraphs of each section. And? And I wrote the sections of each
chapter. And? And I wrote all the chapters. And? And I wrote a book.

Bottom-Up reduces the memory cost imposed by recursion when it builds
up the call stack, which means that Bottom-Up eliminates the vulnerability of
getting stack overflow errors. This may happen if the call stack gets too large
and runs out of space.

For example, when we compute fibonacci(k) via the recursive approach, we start with
k and continue with k-1, k-2, and so on until 0. With the Bottom-Up approach, we start
with 0 and continue with 1, 2, and so on until k. As shown in the following code, this is an
iterative approach:

int fibonacci(int k) {

 if (k <= 1) {

Coding challenges 185

 return k;

 }

 int first = 1;

 int second = 0;

 int result = 0;

 for (int i = 1; i < k; i++) {

 result = first + second;

 second = first;

 first = result;

 }

 return result;

}

The runtime of this algorithm is still O(n), but the space complexity was brought down
from O(n) to O(1). So, to recap the Fibonacci numbers algorithms, we have that the
following:

•	 The plain recursion algorithm has a runtime of O(2n) and a space complexity
of O(n).

•	 The Memoization recursion algorithm has a runtime of O(n) and a space
complexity of O(n).

•	 The Tabulation algorithm has a runtime of O(n) and a space complexity of O(1).

Now, it's time to practice some coding challenges.

Coding challenges
In the following 15 coding challenges, we will exploit recursion and Dynamic Programming.
These problems have been carefully crafted to help you understand and cover a wide range
of problems from this category. By the end of this coding challenge session, you should be
able to recognize and solve recursive problems in the context of an interview.

186 Recursion and Dynamic Programming

Coding challenge 1 – Robot grid (I)
Adobe, Microsoft

Problem: We have an m x n grid. A robot is placed at the top-left corner of this grid.
The robot can only move either right or down at any point in time, but it is not allowed
to move in certain cells. The robot's goal is to find a path from the top-left corner to the
bottom-right corner of the grid.

Solution: First, we need to set some conventions of the m x n grid. Let's assume that
the bottom-right corner has the coordinates (0, 0), while the top-left corner has the
coordinates (m, n), where m is the row and n is the column of the grid. So, the robot starts
from (m, n) and must find a path to (0, 0). If we try to sketch an example for a 6x6 grid,
then we can obtain something like the following:

Figure 8.4 – Determining the moving pattern

Here, we can see that the robot can go from one cell (m, n) to an adjacent cell, which can
be (m-1, n) or (m, n-1). For example, if the robot is placed at (5, 5), then it can go to (4, 5)
or (5, 4). Furthermore, from (4, 5), it can go to (3, 5) or (4, 4), while from (5, 4), it can go
to (5, 3) or (4, 4).

So, we have a problem that can be divided into sub-problems. We must find the final path
for the cells (the problem), which we can do if we are able to find the path to an adjacent
cell (sub-problem). This sounds like a recursive algorithm. In recursion, we approach the
problem from top to down, so we start from (m, n) and move back to the origin (0, 0), as
shown in the preceding diagram. This means that from cell (m, n), we try to go into (m,
n-1) or (m-1, n).

Coding challenges 187

Putting this into code can be done as follows (the maze[][] matrix is a boolean
matrix that has values of true for cells that we are not allowed to go in – for example,
maze[3][1] = true means that we are not allowed in cell (3,1)):

public static boolean computePath(int m, int n,

 boolean[][] maze, Set<Point> path) {

 // we fell off the grid so we return

 if (m < 0 || n < 0) {

 return false;

 }

 // we cannot step at this cell

 if (maze[m][n]) {

 return false;

 }

 // we reached the target

 // (this is the bottom-right corner)

 if (((m == 0) && (n == 0))

 // or, try to go to the right

 || computePath(m, n - 1, maze, path)

 // or, try to go to down

 || computePath(m - 1, n, maze, path)) {

 // we add the cell to the path

 path.add(new Point(m, n));

 return true;

 }

 return false;

}

188 Recursion and Dynamic Programming

The returned path is stored as a LinkedHashSet<Point>. Each path contains m+n
steps and there are only two valid choices we can make at each step; therefore, the runtime
is O(2m+n). But we can reduce this runtime to O(mn) if we cache the cells that failed
(returned false). This way, the Memoization approach saves the robot from trying to go
in a failed cell multiple times. The complete application is called RobotGridMaze. It also
contains the Memoization code.

Another popular problem of using a robot is as follows. Let's say we have an m x n grid. A
robot is placed at the top-left corner of this grid. The robot can only move either right or
down at any point in time. The robot's goal is to find all the unique paths from the top-left
corner to the bottom-right corner of the grid.

The plain recursive solution and Bottom-Up approach are available in the
RobotGridAllPaths application.

Coding challenge 2 – Tower of Hanoi
Problem: This is a classical problem that can occur in an interview at any time. The Tower
of Hanoi is a problem with three rods (A, B, and C) and n disks. Initially, all the disks are
placed in ascending order on a single rod (the largest disk is on the bottom (disk n), a
smaller one sitting on it (n-1), and so on (n-2, n-3, ...) until the smallest disk is on the top
(disk 1). The aim is to move all the disks from this rod to another rod while respecting the
following rules:

•	 Only one disk can be moved at a time.

•	 A move means to slide the upper disk from one rod to another rod.

•	 A disk cannot be placed on top of a smaller disk.

Solution: Trying to solve such problems means that we need to visualize some cases.
Let's consider that we want to move the disks from rod A to rod C. Now, let's put n disks
on rod A:

For n=1: Having a single disk, we need to move one disk from rod A to C.

For n=2: We know how to move a single disk. To move two, we need to complete the
following steps:

1.	 Move disk 1 from A to B (rod B acts as an intermediate for disk 1).

2.	 Move disk 2 from A to C (disk 2 goes directly in its final place).

3.	 Move disk 1 from B to C (disk 1 can be moved on top of disk 2 on rod C).

Coding challenges 189

For n=3: Let's get some help from the following diagram:

Figure 8.5 – Tower of Hanoi (three disks)

Due to n=2, we know how to move the top two disks from A (origin) to C (target). In
other words, we know how to move the top two disks from one rod to another rod. Let's
move them from A to B, as follows:

1.	 Move disk 1 from A to C (this time, we use C as the intermediate).

2.	 Move disk 2 from A to B.

3.	 Move disk 1 from C to B.

OK, so this is something that we've done before. Next, we can move disks 2 and 3 onto C,
as follows:

4.	 Move disk 3 from A to C.

5.	 Move disk 1 from B to A (we use A as the intermediate).

6.	 Move disk 2 from B to C.

7.	 Finally, move disk 3 from A to C.

190 Recursion and Dynamic Programming

Continuing with this logic, we can intuit that we can move four disks because we know
how to move three, we can move five disks because we know how to move four, and so
on. With rod A as the origin, rod B as the intermediate, and rod C as the target, we can
conclude that we can move n disks by doing the following:

•	 Move the top n - 1 disks from the origin to the intermediate, using the target as
an intermediate.

•	 Move the top n - 1 disks from the intermediate to the target, using the origin as
an intermediate.

At this point, it is clear that we have a problem that can be divided into sub-problems.
Based on the preceding two bullets, we can code this as follows:

public static void moveDisks(int n, char origin,

 char target, char intermediate) {

 if (n <= 0) {

 return;

 }

 if (n == 1) {

 System.out.println("Move disk 1 from rod "

 + origin + " to rod " + target);

 return;

 }

 // move top n - 1 disks from origin to intermediate,

 // using target as a intermediate

 moveDisks(n - 1, origin, intermediate, target);

 System.out.println("Move disk " + n + " from rod "

 + origin + " to rod " + target);

 // move top n - 1 disks from intermediate to target,

 // using origin as an intermediate

 moveDisks(n - 1, intermediate, target, origin);

}

Coding challenges 191

The complete application is called HanoiTowers.

Coding challenge 3 – Josephus
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider a group of n men arranged in a circle (1, 2, 3, ..., n). Every kth man will
be killed around the circle until only one survivor remains. Write an algorithm that finds
the k position of this survivor. This is known as the Josephus problem.

Solution: Remember that we had a note previously saying that when a problem contains
the words compute the nth and similar expressions, then it is possibly a good candidate for
being solved via recursion. Here, we have find the k position, which is a problem that can
be divided into sub-problems and be solved via recursion.

Let's consider n=15 and k=3. So, there are 15 men and every third man will be eliminated
from the circle until only one remains. Let's visualize this via the following diagram (this
is very useful for figuring out the pattern of killings):

Figure 8.6 – Josephus for n=15 and k=3

So, we have five rounds until we find the survivor, as follows:

•	 Round 1: The first elimination is position 3; next, 6, 9, 12, and 15 are eliminated.

•	 Round 2: The first elimination is position 4 (1 and 2 are skipped, since position 15
was the last eliminated in round 1); next, 8 and 13 are eliminated.

•	 Round 3: The first elimination is position 2 (14 and 1 are skipped, since position 13
was the last eliminated in round 2); next, 10 and 1 are eliminated.

•	 Round 4: The first elimination position is 11, followed by position 7.

•	 Round 5: 14 is eliminated and 5 is the survivor.

192 Recursion and Dynamic Programming

Trying to identify a pattern or a recursive call can be done based on the following
observations. After the first man (kth) is eliminated, n-1 men are left. This means that we
call josephus(n – 1, k) to get the position of the n-1th man. However, notice that
the position returned by josephus(n – 1, k) will take into account the position
starting from k%n + 1. In other words, we have to adjust the position returned by
josephus(n – 1, k) to obtain (josephus(n - 1, k) + k - 1) % n + 1.
The recursive method is shown here:

public static int josephus(int n, int k) {

 if (n == 1) {

 return 1;

 } else {

 return (josephus(n - 1, k) + k - 1) % n + 1;

 }

}

If you find this approach quite tricky, then you can try an iterative approach based on
a queue. First, fill up the queue with n men. Next, loop the queue and, for each man,
retrieve and remove the head of this queue (poll()). If the retrieved man is not the kth,
then insert this man back in the queue (add()). If this is the kth man, then break the loop
and repeat this process until the queue's size is 1. The code for this is as follows:

public static void printJosephus(int n, int k) {

 Queue<Integer> circle = new ArrayDeque<>();

 for (int i = 1; i <= n; i++) {

 circle.add(i);

 }

 while (circle.size() != 1) {

 for (int i = 1; i <= k; i++) {

 int eliminated = circle.poll();

 if (i == k) {

 System.out.println("Eliminated: "

 + eliminated);

 break;

 }

Coding challenges 193

 circle.add(eliminated);

 }

 }

 System.out.println("Using queue! Survivor: "

 + circle.peek());

}

The complete application is called Josephus.

Coding challenge 4 – Color spots
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider an r x c grid where r stands for rows and c stands for columns. Each
cell has a color represented by a number k (for example, for three colors, k=3). We define
the connected set of a cell (or a color spot) as the total cells in which we can go from
the respective cell by successive displacements on the row or the column, thus keeping
the color. The goal is to determine the color and the number of cells of the maximum
connected set. In other words, we need to determine the biggest color spot.

Solution: Let's consider a 5x5 grid and three colors, where we have r=c=5 and k=3. Next,
let's represent the grid as shown in the following diagrams:

Figure 8.7 – Biggest color spot ((a) – initial grid, (b) – solved grid)

194 Recursion and Dynamic Programming

Let's focus on image (a). Here, we can see that moving from a cell to another cell can be
done in a maximum of four directions (up, down, left, and right). This means that, from
a cell (r,c), we can try to go to (r-1, c), (r+1, c), (r, c-1), and (r, c+1). We cannot perform
a move if we risk falling from the grid or the targeted cell has another color than the
current cell. So, by iterating each cell ((0, 0), (0, 1), ... (r, c)), we can determine the size of
the connected set of that cell (the size of the color spot) by visiting each allowed cell and
counting it. In image (a), we have four spots that are color 1 whose sizes are 1, 1, 1, and 2.
We also have six spots that are color 2 whose sizes are 1, 1, 2, 1, 1, and 1. Finally, we have
three spots that are color 3 whose sizes are 11, 1, and 1.

From this, we can conclude that the biggest color spot has a size of 11 and a color of 3.
Mainly, we can consider that the color spot of the first cell is the maximum spot and
that each time we find a color spot bigger than this one, we replace this one with the one
we found.

Now, let's focus on image (b). Why do we have negative values? Because when we visit a
cell, we switch its color value to -color. This is a convenient convention that's used to avoid
computing the same connected set of a cell multiple times. It is like saying that we mark
this cell as visited. By convention, we cannot move in a cell that has a negative value for a
color, so we will not compute the size of the same color spot twice.

Now, gluing these observations together to make a recursive method leads to the
following code:

public class BiggestColorSpot {

 private int currentColorSpot;

 void determineBiggestColorSpot(int cols,

 int rows, int a[][]) {

 ...

 }

 private void computeColorSpot(int i, int j,

 int cols, int rows, int a[][], int color) {

 a[i][j] = -a[i][j];

 currentColorSpot++;

 if (i > 1 && a[i - 1][j] == color) {

Coding challenges 195

 computeColorSpot(i - 1, j, cols,

 rows, a, color);

 }

 if ((i + 1) < rows && a[i + 1][j] == color) {

 computeColorSpot(i + 1, j, cols, rows, a, color);

 }

 if (j > 1 && a[i][j - 1] == color) {

 computeColorSpot(i, j - 1, cols,

 rows, a, color);

 }

 if ((j + 1) < cols && a[i][j + 1] == color) {

 computeColorSpot(i, j + 1, cols,

 rows, a, color);

 }

 }

}

While the preceding recursive method, computeColorSpot(), can compute the size
of a color spot, starting from the given cell, the following method determines the biggest
color spot:

void determineBiggestColorSpot(int cols,

 int rows, int a[][]) {

 int biggestColorSpot = 0;

 int color = 0;

 for (int i = 0; i < rows; i++) {

 for (int j = 0; j < cols; j++) {

 if (a[i][j] > 0) {

 currentColorSpot = 0;

 computeColorSpot(i, j, cols,

196 Recursion and Dynamic Programming

 rows, a, a[i][j]);

 if (currentColorSpot > biggestColorSpot) {

 biggestColorSpot = currentColorSpot;

 color = a[i][j] * (-1);

 }

 }

 }

 }

 System.out.println("\nColor: " + color

 + " Biggest spot: " + biggestColorSpot);

}

The complete application is called BiggestColorSpot.

Coding challenge 5 – Coins
Google, Adobe, Microsoft

Problem: Consider an amount of n cents. Count the ways you can change this amount
using any number of quarters (25 cents), dimes (10 cents), nickels (5 cents), and
pennies (1 cent).

Solution: Let's imagine that we have to change 50 cents. Right from the start, we can
see that changing 50 cents is a problem that can be solved via sub-problems. For
example, we can change 50 cents using 0, 1, or 2 quarters. Or we can do it using 0, 1, 2,
3, 4, or 5 dimes. We can also do it using 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nickels. Finally, we
can do it using 0, 1, 2, 3, ..., 50 pennies. Let's assume that we have 1 quarter, 1 dime, 2
nickels, and 5 pennies. We can use our quarter to say the following:

calculateChange(50) = 1 quarters + ...

But this is like saying the following:

calculateChange(25) = 0 quarters + ...

We don't have more quarters; therefore, we add a dime:

calculateChange(25) = 0 quarters + 1 dimes + ...

This can be reduced, as follows:

calculateChange(15) = 0 quarters + 0 dimes + ...

Coding challenges 197

We don't have any more dimes. We add the nickels:

calculateChange(15) = 0 quarters + 0 dimes + 2 nickel + ...

This can be reduced to the following:

calculateChange(5) = 0 quarters + 0 dimes + 0 nickel + ...

Finally, since we don't have more nickels, we add the pennies:

calculateChange(5) = 0 quarters + 0 dimes + 0 nickel + 5 pennies

This can be reduced to the following:

calculateChange(0) = 0 quarters + 0 dimes + 0 nickel + 0 pennies

If we try to represent all the possible reductions, we obtain the following diagram:

Figure 8.8 – Changing n cents into quarters, dimes, nickels, and pennies

Implementing this reducible algorithm can be done via recursion, as shown in the
following code. Notice that we are using Memoization to avoid changing the same
amount multiple times:

public static int calculateChangeMemoization(int n) {

 int[] coins = {25, 10, 5, 1};

 int[][] cache = new int[n + 1][coins.length];

 return calculateChangeMemoization(n, coins, 0, cache);

}

private static int calculateChangeMemoization(int amount,

 int[] coins, int position, int[][] cache) {

198 Recursion and Dynamic Programming

 if (cache[amount][position] > 0) {

 return cache[amount][position];

 }

 if (position >= coins.length - 1) {

 return 1;

 }

 int coin = coins[position];

 int count = 0;

 for (int i = 0; i * coin <= amount; i++) {

 int remaining = amount - i * coin;

 count += calculateChangeMemoization(remaining,

 coins, position + 1, cache);

 }

 cache[amount][position] = count;

 return count;

}

The complete application is called Coins. It also contains the plain recursive approach
(without Memoization).

Coding challenge 6 – Five towers
Problem: Consider a 5x5 grid with five defensive towers spread across the grid. To provide
an optimal defense for the grid, we have to build a tower on each row of the grid. Find
all the solutions for building these towers so that none of them share the same column
and diagonal.

Solution: We know that, on each row, we must build a tower and that it is not important
in what order we build them on the grid. Let's sketch a solution and a failure, as follows:

Coding challenges 199

Figure 8.9(a) – Failure and solution

Let's focus on the solution and start from the first row: row 0. We can build a tower on this
row in any column; therefore, we can say the following:

Figure 8.9(b): Part 1 of the logic to build the towers

If we continue with the same logic, then we can say the following:

Figure 8.9(c): Part 2 of the logic to build the towers

200 Recursion and Dynamic Programming

So, we start from the first row and build the first tower on (0,0). We go to the second row
and try to build the second tower so that we don't share the column or diagonal with the
first tower. We go to the third row and try to build the third tower so that we don't share
the column or diagonal with the first two towers. We follow the same logic for the fourth
and fifth towers. This is our solution. Now, we repeat this logic – we build the first tower
at (0,1) and continue building until we find the second solution. Next, we build the first
tower at (0, 2), (0, 3) and finally at (0,4) while we repeat the process. We can write this
recursive algorithm as follows:

protected static final int GRID_SIZE = 5; // (5x5)

public static void buildTowers(int row, Integer[] columns,

 Set<Integer[]> solutions) {

 if (row == GRID_SIZE) {

 solutions.add(columns.clone());

 } else {

 for (int col = 0; col < GRID_SIZE; col++) {

 if (canBuild(columns, row, col)) {

 // build this tower

 columns[row] = col;

 // go to the next row

 buildTowers(row + 1, columns, solutions);

 }

 }

 }

}

private static boolean canBuild(Integer[] columns,

 int nextRow, int nextColumn) {

 for (int currentRow=0; currentRow<nextRow;

 currentRow++) {

 int currentColumn = columns[currentRow];

Coding challenges 201

 // cannot build on the same column

 if (currentColumn == nextColumn) {

 return false;

 }

 int columnsDistance

 = Math.abs(currentColumn - nextColumn);

 int rowsDistance = nextRow - currentRow;

 // cannot build on the same diagonal

 if (columnsDistance == rowsDistance) {

 return false;

 }

 }

 return true;

}

The complete application is called FiveTowers.

Coding challenge 7 – Magic index
Adobe, Microsoft

Problem: Consider a sorted array of n elements that allows duplicates. An index k is
magic if array[k] = k. Write a recursive algorithm that finds the first magic index.

202 Recursion and Dynamic Programming

Solution: First, let's quickly draw two sorted arrays containing 18 elements, as shown in the
following diagram. The array at the top of the image contains no duplicates, while the array
at the bottom contains duplicates. This way, we can observe the influence of these duplicates:

Figure 8.10 – Sorted array of 18 elements

If we halve the array with no duplicates, then we can conclude that the magic index must
be on the right-hand side because array[8] < 8. This is true since the magic index is 11, so
array[11] = 11.

If we halve the array with duplicates, we cannot get the same conclusion we received
previously. The magic index can be on both sides. Here, we have array[5] = 5 and
array[12] = 12. We must find the first magic index, so we should search the left-hand
side first.

But how do we find it? The most obvious approach consists of looping the array and
checking if array[i] = i. While this works for any ordered array, it will not impress the
interviewer since it is not recursive, so we need another approach.

In Chapter 7, Big O Analysis of Algorithms, you saw an example of searching in a sorted
array via the Binary Search algorithm. This algorithm can be implemented via recursion
since, at each step, we halve the previous array and create a sub-problem. Since the
indexes of an array are ordered, we can adapt the Binary Search algorithm. The main issue
that we face is that duplicated elements complicate the search. When we halve the array,
we cannot say that the magic index is on the left or the right, so we have to search in both
directions, as shown in the following code (first, we search the left-hand side):

public static int find(int[] arr) {

 return find(arr, 0, arr.length - 1);

}

Coding challenges 203

private static int find(int[] arr,

 int startIndex, int endIndex) {

 if (startIndex > endIndex) {

 return -1; // return an invalid index

 }

 // halved the indexes

 int middleIndex = (startIndex + endIndex) / 2;

 // value (element) of middle index

 int value = arr[middleIndex];

 // check if this is a magic index

 if (value == middleIndex) {

 return middleIndex;

 }

 // search from middle of the array to the left

 int leftIndex = find(arr, startIndex,

 Math.min(middleIndex - 1, value));

 if (leftIndex >= 0) {

 return leftIndex;

 }

 // search from middle of the array to the right

 return find(arr, Math.max(middleIndex + 1,

 value), endIndex);

 }

}

The complete application is called MagicIndex.

204 Recursion and Dynamic Programming

Coding challenge 8 – The falling ball
Problem: Consider an m x n grid where each (m, n) cell has an elevation represented by a
number between 1 and 5 (5 is the highest elevation). A ball is placed in a cell of the grid.
This ball can fall into another cell, as long as that cell has a smaller elevation than the ball
cell. The ball can fall in four directions: north, west, east, and south. Display the initial
grid, as well as the grid after the ball falls on all possible paths. Mark the paths with 0.

Solution: Always pay attention to the problem requests. Notice that we must display the
solved grid, not list the paths or count them. The easiest way to display a grid is to use two
loops, as shown in the following code:

for (int i = 0; i < rows; i++) {

 for (int j = 0; j < cols; j++) {

 System.out.format("%2s", elevations[i][j]);

 }

 System.out.println();

}

Now, let's sketch a 5x5 grid and view an input and its output. The following image shows
the initial grid in the form of a 3D model, along with a possible path and the solved grid:

Figure 8.11 – The falling ball

Coding challenges 205

I think we have enough experience to intuit that this problem can be solved via recursion.
Mainly, we move the ball in all acceptable directions and mark each visited cell with 0. When
we have the ball in the (i, j) cell, we can go in (i-1, j), (i+1, j), (i, j-1), and (i, j+1) directions,
as long those cells have smaller elevations. In terms of code, we have the following:

public static void computePath(

 int prevElevation, int i, int j,

 int rows, int cols, int[][] elevations) {

 // ensure the ball is still on the grid

 if (i >= 0 && i <= (rows-1) && j >= 0 && j <= (cols-1)) {

 int currentElevation = elevations[i][j];

 // check if the ball can fall

 if (prevElevation >= currentElevation

 && currentElevation > 0) {

 // store the current elevation

 prevElevation = currentElevation;

 // mark this cell as visited

 elevations[i][j] = 0;

 // try to move the ball

 computePath(prevElevation,i,j-1,

 rows,cols,elevations);

 computePath(prevElevation,i-1,

 j,rows,cols,elevations);

 computePath(prevElevation,i,j+1,

 rows,cols,elevations);

 computePath(prevElevation,i+1,j,

 rows,cols,elevations);

 }

 }

}

The complete application is called TheFallingBall.

206 Recursion and Dynamic Programming

Coding challenge 9 – The highest colored tower
Adobe, Microsoft, Flipkart

Problem: Consider n boxes of different widths (w1...n), heights (h1...n), and colors (c1...n).
Find the highest tower of boxes that respects the following conditions:

•	 You cannot rotate the boxes.

•	 You cannot place two successive boxes of the same color.

•	 Each box is strictly larger than the box above it in terms of their width and height.

Solution: Let's try to visualize this, as follows:

Figure 8.12(a) – The highest colored tower

We have seven boxes of different sizes and colors. We can imagine that the highest tower
will contain all these boxes, b1...b7. But we have several constraints that don't allow us to
simply stack the boxes. We can choose one of the boxes as the base box and place another
allowed box on top of it, as follows:

Figure 8.12(b) The logic to select the boxes to build the highest tower

Coding challenges 207

So, we identified a pattern. We choose a box as the base, and we try to see which of the
remaining boxes can go on top as the second level. We do the same for the third level and
so on. When we are done (we cannot add more boxes or no boxes are left), we store the
size of the highest tower. Next, we repeat this scenario with another base box.

Since every box must be larger in terms of width and height than the box above it, we can
sort the boxes by width or height in descending order (it is not important which one we
choose). This way, for any tower of b0,...bk, k < n boxes, we can find the next valid box by
searching the bk+1...n interval.

Moreover, we can avoid recalculating the best solution for the same base box by caching
the best solutions via Memoization:

// Memoization

public static int buildViaMemoization(List<Box> boxes) {

 // sorting boxes by width (you can do it by height as well)

 Collections.sort(boxes, new Comparator<Box>() {

 @Override

 public int compare(Box b1, Box b2) {

 return Integer.compare(b2.getWidth(),

 b1.getWidth());

 }

 });

 // place each box as the base (bottom box) and

 // try to arrange the rest of the boxes

 int highest = 0;

 int[] cache = new int[boxes.size()];

 for (int i = 0; i < boxes.size(); i++) {

 int height = buildMemoization(boxes, i, cache);

 highest = Math.max(highest, height);

 }

 return highest;

}

// Memoization

private static int buildMemoization(List<Box> boxes,

208 Recursion and Dynamic Programming

 int base, int[] cache) {

 if (base < boxes.size() && cache[base] > 0) {

 return cache[base];

 }

 Box current = boxes.get(base);

 int highest = 0;

 // since the boxes are sorted we don't

 // look in [0, base + 1)

 for (int i = base + 1; i < boxes.size(); i++) {

 if (boxes.get(i).canBeNext(current)) {

 int height = buildMemoization(boxes, i, cache);

 highest = Math.max(height, highest);

 }

 }

 highest = highest + current.getHeight();

 cache[base] = highest;

 return highest;

}

The complete application is called HighestColoredTower. The code also contains the plain
recursion approach to this problem (without Memoization).

Coding challenge 10 – String permutations
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Write an algorithm that computes all the permutations of a string and
accommodates the following two conditions:

•	 The given string can contain duplicates.

•	 The returned list of permutations should not contain duplicates.

Coding challenges 209

Solution: Like in any recursive problem, the key consists of recognizing the relationship
and patterns between the different sub-problems. Right away, we can intuit that permuting
a string with duplicates should be more complicated than permuting a string with unique
characters. This means that we must understand the permutations of a string with unique
characters first.

The most natural way of permuting the characters of a string can follow a simple pattern:
each character of the string will become the first character of the string (swap their
positions) and then permute all the remaining letters using a recursive call. Let's delve into
the general case. For a string containing a single character, we have a single permutation:

P(c1) = c1

If we add another character, then we can express the permutations as follows:

P(c1c2) = c1c2 and c2c1

If we add another character, then we must express the permutations using c1c2. Each
permutation of c1c2c3 represents an ordering of c1c2, as follows:

c1c2 -> c1c2c3,c1c3c2,c3c1c2

c2c1 -> c2c1c3,c2c3c1,c3c2c1

Let's replace c1c2c3 with ABC. Next, we represent P(ABC) as a diagram:

Figure 8.13 – Permuting ABC

210 Recursion and Dynamic Programming

If we add another character, then we must express the permutations using c1c2c3c4. Each
permutation of c1c2c3c4 represents an ordering of c1c2c3, as follows:

c1c2c3 -> c1c2c3c4,c1c2c4c3,c1c4c2c3,c4c1c2c3

c1c3c2 -> c1c3c2c4,c1c3c4c2,c1c4c3c2,c4c1c3c2

c3c1c2 -> c3c1c2c4,c3c1c4c2,c3c4c1c2,c4c3c1c2

c2c1c3 -> c2c1c3c4,c2c1c4c3,c2c4c1c3,c4c2c1c3

c2c3c1 -> c2c3c1c4,c2c3c4c1,c2c4c3c1,c4c2c3c1

c3c2c1 -> c3c2c1c4,c3c2c4c1,c3c4c2c1,c4c3c2c1

We can continue like this forever, but I think it is quite clear what pattern can be used for
generating P(c1, c2, ..., cn).

So, this is the right moment to take our logic a step further. Now, it is time to ask the
following questions: if we know how to compute all the permutations for strings of
k-1 characters (c1c2...ck-1), then how we can use this information to compute all the
permutations for strings of k characters (c1c2...ck-1ck)? For example, if we know how
to compute all the permutations for the c1c2c3 string, then how we can express all the
permutations of the c1c2c3c4 string using c1c2c3 permutations? The answer is to take each
character from the c1c2...ck string and append the c1c2...ck-1 permutation to it, as follows:

P(c1c2c3c4) = [c1 + P(c2c3c4)] + [c2 + P(c1c3c4)] + [c3 + P(c1c2c4)] + [c4 + P(c1c2c3)]

[c1 + P(c2c3c4)] -> c1c2c3c4,c1c2c4c3,c1c3c2c4,c1c3c4c2,c1c4c2c3,c1c4c3c2

[c2 + P(c1c3c4)] -> c2c1c3c4,c2c1c4c3,c2c3c1c4,c2c3c4c1,c2c4c1c3,c2c4c3c1

[c3 + P(c1c2c4)] -> c3c1c2c4,c3c1c4c2,c3c2c1c4,c3c2c4c1,c3c4c1c2,c3c4c2c1

[c4 + P(c1c2c3)] -> c4c1c2c3,c4c1c3c2,c4c2c1c3,c4c2c3c1,c4c3c1c2,c4c3c2c1

Coding challenges 211

We can continue to add another character and repeat this logic so that we have a recursive
pattern that can be expressed in terms of code as follows:

public static Set<String> permute(String str) {

 return permute("", str);

}

private static Set<String> permute(String prefix, String str) {

 Set<String> permutations = new HashSet<>();

 int n = str.length();

 if (n == 0) {

 permutations.add(prefix);

 } else {

 for (int i = 0; i < n; i++) {

 permutations.addAll(permute(prefix + str.charAt(i),

 str.substring(i + 1, n) + str.substring(0, i)));

 }

 }

 return permutations;

}

This code will work fine. Because we use a Set (not a List), we respect the requirement
stating that the returned list of permutations should not contain duplicates. However, we do
generate duplicates. For example, if the given string is aaa, then we generate six identical
permutations, even if there is only one. The only difference is that they are not added to
the result since a Set doesn't accept duplicates. This is far from being efficient.

212 Recursion and Dynamic Programming

We can avoid generating duplicates in several ways. One approach starts by counting
the characters of a string and storing them in a map. For example, for the given string
abcabcaa, the key-value map can be a=4, b=2, and c=2. We can do this via a simple helper
method, as follows:

private static Map<Character, Integer> charactersMap(

 String str) {

 Map<Character, Integer> characters = new HashMap<>();

 BiFunction<Character, Integer, Integer> count = (k, v)

 -> ((v == null) ? 1 : ++v);

 for (char c : str.toCharArray()) {

 characters.compute(c, count);

 }

 return characters;

}

Next, we choose one of these characters as the first character and find all the permutations
of the remaining characters. We can express this as follows:

P(a=4,b=2,c=2) = [a + P(a=3,b=2,c=2)] + [b + P(a=4,b=1,c=1)] + [c + P(a=4,b=2,c=1)]

P(a=3,b=2,c=2) = [a + P(a=2,b=2,c=2)] + [b + P(a=3,b=1,c=1)] + [c + P(a=3,b=2,c=1)]

P(a=4,b=1,c=1) = [a + P(a=3,b=1,c=1)] + [b + P(a=4,b=0,c=1)] + [c + P(a=4,b=1,c=0)]

P(a=4,b=2,c=1) = [a + P(a=3,b=2,c=1)] + [b + P(a=4,b=1,c=1)] + [c + P(a=4,b=2,c=0)]

P(a=2,b=2,c=2) = [a + P(a=1,b=2,c=2)] + [b + P(a=2,b=1,c=2)] + [c + P(a=2,b=2,c=1)]

P(a=3,b=1,c=1) = ...

Coding challenges 213

We can continue writing until there are no remaining characters. Now, it should be quite
simple to put this into lines of code:

public static List<String> permute(String str) {

 return permute("", str.length(), charactersMap(str));

}

private static List<String> permute(String prefix,

 int strlength, Map<Character, Integer> characters) {

 List<String> permutations = new ArrayList<>();

 if (strlength == 0) {

 permutations.add(prefix);

 } else {

 // fetch next char and generate remaining permutations

 for (Character c : characters.keySet()) {

 int count = characters.get(c);

 if (count > 0) {

 characters.put(c, count - 1);

 permutations.addAll(permute(prefix + c,

 strlength - 1, characters));

 characters.put(c, count);

 }

 }

 }

 return permutations;

}

The complete application is called Permutations.

214 Recursion and Dynamic Programming

Coding challenge 11 – Knight tour
Amazon, Google

Problem: Consider a chessboard (an 8x8 grid). Place a knight on this board and print all
its unique movements.

Solution: As you've already seen, the best way to tackle such problems is to take a piece of
paper and a pen and sketch the scenario. A picture is worth a thousand words:

Figure 8.14 – Knight tour

As we can see, a knight can move from a (r, c) cell into a maximum of eight other valid
cells; that is, (r+2, c+1), (r+1, c+2), (r-1,c+2), (r-2, c+1), (r-2, c-1), (r-1, c-2), (r+1, c-2),
and (r+2, c-1). So, in order to obtain the path from 1 to 64 (as shown in the right-hand
side of the preceding diagram), we can start from a given location and recursively try to
visit each valid movement. If the current path doesn't represent a solution or we've tried
all eight cells, then we backtrack.

To be as efficient as possible, we consider the following aspects:

•	 We start from a corner of the chessboard: This way, the knight can initially go in
only two directions instead of eight.

•	 We check for valid cells in a fixed sequence: Maintaining a circular path will help us
find a new move faster than picking one randomly. The counterclockwise circular
path from (r, c) is (r+2, c+1), (r+1, c+2), (r-1, c+2), (r-2, c+1), (r-2, c-1), (r-1, c-2),
(r+1, c-2), and (r+2, c-1).

Coding challenges 215

•	 We compute the circular path using two arrays: We can move from (r, c) to (r +
ROW[i],c + COL[i]) with i in [0, 7]:

COL[] = {1,2,2,1,-1,-2,-2,-1,1};

ROW[] = {2,1,-1,-2,-2,-1,1,2,2};
•	 We avoid cycles in paths and duplicate work (for example, visiting the same cell

multiple times) by storing the visited cells in an r x c matrix.

By gluing everything together in terms of code, we obtain the following
recursive approach:

public class KnightTour {

 private final int n;

 // constructor omitted for brevity

 // all 8 possible movements for a knight

 public static final int COL[]

 = {1,2,2,1,-1,-2,-2,-1,1};

 public static final int ROW[]

 = {2,1,-1,-2,-2,-1,1,2,2};

 public void knightTour(int r, int c,

 int cell, int visited[][]) {

 // mark current cell as visited

 visited[r][c] = cell;

 // we have a solution

 if (cell >= n * n) {

 print(visited);

 // backtrack before returning

 visited[r][c] = 0;

 return;

 }

 // check for all possible movements (8)

216 Recursion and Dynamic Programming

 // and recur for each valid movement

 for (int i = 0; i < (ROW.length - 1); i++) {

 int newR = r + ROW[i];

 int newC = c + COL[i];

 // check if the new position is valid un-visited

 if (isValid(newR, newC)

 && visited[newR][newC] == 0) {

 knightTour(newR, newC, cell + 1, visited);

 }

 }

 // backtrack from current cell

 // and remove it from current path

 visited[r][c] = 0;

 }

 // check if (r, c) is valid chess board coordinates

 private boolean isValid(int r, int c) {

 return !(r < 0 || c < 0 || r >= n || c >= n);

 }

 // print the solution as a board

 private void print(int[][] visited) {

 ...

 }

}

The complete application is called KnightTour.

Coding challenges 217

Coding challenge 12 – Curly braces
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Print all the valid combinations of n pairs of curly braces. A valid combination
is when the curly braces are properly opened and closed. For n=3, the valid combinations
are as follows:

{{{}}},{{}{}},{{}}{},{}{{}},{}{}{}

Solution: The valid combination for n=1 is {}.

For n=2, we immediately see the combination as {}{}. However, another combination
consists of adding a pair of curly braces to the previous combination; that is, {{}}.

Going one step further, for n=3, we have the trivial combination {}{}{}. Following the same
logic, we can add a pair of curly braces to combinations for n=2, so we obtain {{{}}}, {{}}{},
{}{{}}, {{}{}}.

Actually, this is what we obtain after we remove or ignore duplicates. Let's sketch the case
for the n=3 build based on n=2, as follows:

Figure 8.15 – Curly braces duplicate pairs

So, if we add a pair of curly braces inside each existing pair of curly braces and we add
the trivial case ({}{}...{}) as well, then we obtain a pattern that can be implemented via
recursion. However, we have to deal with a significant number of duplicate pairs, so we
need additional checks to avoid having duplicates in the final result.

So, let's consider another approach, starting with a simple observation. For any given
n, a combination will have 2*n curly braces (not pairs!). For example, for n=3, we have
six curly braces (three left curly braces ({{{) and three right curly braces (}}})) arranged in
different, valid combinations. This means that we can try to build the solution by starting
with zero curly braces and add left/right curly braces to it, as long as we have a valid
expression. Of course, we keep track of the number of added curly braces so that we don't
exceed the maximum number, 2*n. The rules that we must follow are as follows:

•	 We add all left curly braces in a recursive manner.

•	 We add the right curly braces in a recursive manner, as long as the number of right
curly braces doesn't exceed the number of left curly braces.

218 Recursion and Dynamic Programming

In other words, the key to this approach is to track the number of left and right curly
braces that are allowed. As long as we have left curly braces, we insert a left curly brace
and call the method again (recursion). If there are more right curly braces remaining
than there are left curly braces, then we insert a right curly brace and call the method
(recursion). So, let's get coding:

public static List<String> embrace(int nr) {

 List<String> results = new ArrayList<>();

 embrace(nr, nr, new char[nr * 2], 0, results);

 return results;

}

private static void embrace(int leftHand, int rightHand,

 char[] str, int index, List<String> results) {

 if (rightHand < leftHand || leftHand < 0) {

 return;

 }

 if (leftHand == 0 && rightHand == 0) {

 // result found, so store it

 results.add(String.valueOf(str));

 } else {

 // add left brace

 str[index] = '{';

 embrace(leftHand - 1, rightHand, str, index + 1,

 results);

 // add right brace

 str[index] = '}';

 embrace(leftHand, rightHand - 1, str, index + 1,

 results);

 }

}

Coding challenges 219

The complete application is called Braces.

Coding challenge 13 – Staircase
Amazon, Adobe, Microsoft

Problem: A person walks up a staircase. They can hop either one step, two steps, or three
steps at a time. Count the number of possible ways they can reach the top of the staircase.

Solution: First, let's set what hopping one, two, or three steps means. Consider that
hopping one step means to go up the staircase step by step (we land on each step). To hop
two steps means to jump over a step and land on the next one. Finally, to hop three steps
means to jump over two steps and land on the third one.

For example, if we consider a staircase with three steps, then we can go from step 0 (or, no
step) to step 3 in four ways: step by step (we land on each step), we jump over step 1 and
land on step 2 and walk on step 3, we walk on step 1 and jump over step 2, thereby landing
on step 3, or we jump directly on step 3, as shown in the following diagram:

Figure 8.16 – Staircase (how to reach step 3)

By going one step further in our logic, we may ask ourselves how to reach step n. Mainly,
the nth step can be reached if we do the following:

•	 n-1 step and hop 1 step

•	 n-2 step and hop 2 steps

•	 n-3 step and hop 3 steps

However, reaching any of these steps – n-1, n-2, or n-3 – is possible if we follow the
preceding bullets. For example, we can reach the n-1 step if we are on n-2 and hop 1 step,
we are on n-3 step and hop 2 steps, or we are on n-4 step and hop 3 steps.

So, to reach the nth step, we have three possible paths. To reach step n-1th, we also have
three possible paths. So, to reach both steps, we must have 3+3=6 paths. Do not say 3*3=9
paths! This is wrong!

220 Recursion and Dynamic Programming

Now, we can conclude that adding all the paths in a recursive manner should give us the
expected answers. Moreover, we can use our experience to add Memoization as well. This
way, we avoid calling the method with the same inputs many times (exactly as in the case
of the Fibonacci numbers):

public static int countViaMemoization(int n) {

 int[] cache = new int[n + 1];

 return count(n, cache);

}

private static int count(int n, int[] cache) {

 if (n == 0) {

 return 1;

 } else if (n < 0) {

 return 0;

 } else if (cache[n] > 0) {

 return cache[n];

 }

 cache[n] = count(n - 1, cache)

 + count(n - 2, cache) + count(n - 3, cache);

 return cache[n];

}

The complete application is called Staircase. It also contains the plain recursion approach
(without Memoization).

Coding challenge 14 – Subset sum
Amazon, Adobe, Microsoft, Flipkart

Problem: Consider a given set (arr) of positive integers and a value, s. Write a snippet of
code that finds out if there is a subset in this array whose sum is equal to the given s.

Solution: Let's consider the array, arr = {3, 2, 7, 4, 5, 1, 6, 7, 9}. If s=7, then a subset can
contain the elements 2, 4, and 1, as shown in the following diagram:

Coding challenges 221

Figure 8.17 – Subset of sum 7

The subset containing the elements 2, 4, and 1 is just one of the possible subsets. All
possible subsets include (3, 4), (2, 4, 1), (2, 5), (7), (1, 6), and (7).

Recursive approach
Let's try to find a solution via recursion. If we add the subset arr[0]=3, then we have to
find the subset for s = s-arr[0] = 7-3 = 4. Finding a subset for s=4 is a sub-problem that
can be solved based on the same logic, which means we can add arr[1]=2 in the subset,
and the next sub-problem will consist of finding the subset for s = s-arr[1] = 4-2 = 2.

Alternatively, we can think like this: start with sum=0. We add arr[0]=3 to this sum as
sum=sum+arr[0] = 3. Next, we check if sum = s (for example, if 3 = 7). If so, we found a
subset. If not, we add the next element, arr[1]=2, to the sum as sum = sum+arr[1] = 3+2
=5. We recursively continue to repeat this process until there are no more elements to add.
At this point, we recursively remove elements from sum and check if sum = s upon each
removal. In other words, we build every possible subset and check if its sum is equal to s.
When we have this equality, we print the current subset.

So far, it is clear that if we recursively solve each and every sub-problem, then it will lead
us to the result. For each element from arr we must make a decision. Mainly, we have two
options: include the current element in the subset or not include it. Starting from these
statements, we can create the following algorithm:

1.	 Define a subset as an array of the same length as the given arr. This array takes only
values of 1 and 0.

2.	 Recursively add each element from arr to the subset by setting a value of 1 at that
particular index. Check for the solution (current sum = given sum).

3.	 Recursively remove each element from the subset by setting a value of 0 at that
particular index. Check for the solution (current sum = given sum).

Let's see the code:

/* Recursive approach */

public static void findSumRecursive(int[] arr, int index,

 int currentSum, int givenSum, int[] subset) {

 if (currentSum == givenSum) {

222 Recursion and Dynamic Programming

 System.out.print("\nSubset found: ");

 for (int i = 0; i < subset.length; i++) {

 if (subset[i] == 1) {

 System.out.print(arr[i] + " ");

 }

 }

 } else if (index != arr.length) {

 subset[index] = 1;

 currentSum += arr[index];

 findSumRecursive(arr, index + 1,

 currentSum, givenSum, subset);

 currentSum -= arr[index];

 subset[index] = 0;

 findSumRecursive(arr, index + 1,

 currentSum, givenSum, subset);

 }

}

The time complexity of this code is O(n2n), so it's far from being efficient. Now, let's try
an iterative approach via Dynamic Programming. This way, we avoid solving the same
problem repeatedly.

Dynamic Programming approach
Via Dynamic Programming, we can solve this problem in O(s*n). More precisely, we can
rely on the Bottom-Up approach and a boolean bidimensional matrix of dimension
(n+1) x (s+1), where n is the size of the set (arr).

To understand this implementation, you have to understand how this matrix is filled up
and how it is read. If we consider that the given arr is {5, 1, 6, 10, 7, 11, 2} and s=9, then
this boolean matrix starts from an initial state, as shown in the following diagram:

Coding challenges 223

Figure 8.18 – Initial matrix

So, we have s+1 = 9+1 = 10 columns and n+1 = 7+1 = 8 rows. As you can see, we have
filled up row and column 0. These are the base cases and can be interpreted as follows:

•	 Initialize the first row (row 0) of the matrix (matrix[0][]) with 0 (or false, F)
except matrix[0][0], which is initialized with 1 (or true, T). In other words, if the
given sum is not 0, then there is no subset to satisfy this sum. However, if the given
sum is 0, then there is a subset containing only 0. So, the subset containing a 0 can
form a single sum equal to 0.

•	 Initialize the first column (column 0) of matrix (matrix[][0]) with 1 (or true, T)
because, for any set, a subset is possible with 0 sum.

Next, we take each row (5, 1, 6, ...) and we try to fill it up with F or T. Let's consider
the second row, which contains the element 5. Now, for each column, let's answer the
following question: can we form a sum of column number with a 5? Let's see the output:

Figure 8.19 – Filling up the second row

224 Recursion and Dynamic Programming

•	 Can we form a sum of 1 with a 5? No, so false (F).

•	 Can we form a sum of 2 with a 5? No, so false (F).

...
•	 Can we form a sum of 5 with a 5? Yes, so true (T).

•	 Can we form a sum of 6 with a 5? No, so false (F).

...
•	 Can we form a sum of 9 with a 5? No, so false (F).

We can try to apply this question to each of the remaining rows, but the more we advance,
the harder it will be. Moreover, we cannot implement this question in code without an
algorithm. Fortunately, we can employ an algorithm that can be applied to each (row,
column) cell. This algorithm contains the following steps:

1.	 While the element of the current row (i) is greater than the value of the current
column (j), we just copy the preceding value (i-1, j), in the current (i, j) cell.

2.	 If the element of the current row (i) is smaller than or equal to the value of the
current column (j), then we look to the (i-1, j) cell and do the following:

a. If cell (i-1, j) is T, then we fill up the (i, j) cell with T as well.

b. If cell (i-1, j) is F, then we fill up the (i, j) cell with the value at (i-1, j-element_at_
this_row).

If we apply this algorithm to the second row (containing the element 5), then we obtain
the same result shown in the following diagram:

Figure 8.20 – Applying the algorithm to the second row

Coding challenges 225

Conforming to step 1, for 5 < 1, 5 < 2, 5 < 3, and 5 < 4, we copy the value from the
preceding cell. When we reach cell (1, 5), we have 5=5, so we need to apply step 2. More
precisely, we apply step 2b. The cell (1-1, 5-5) is the cell (0, 0) that has the value T. So, the
cell (1, 5) is filled up with T. The same logic applies to the remaining cells. For example,
cell (1, 6) is filled up with F since F is the value at (0, 5); the cell at (1, 7) is filled up with F
since F is the value at (0, 6), and so on.

If we apply this algorithm to all the rows, then we obtain the following filled matrix:

Figure 8.21 – Complete matrix

Notice that we highlighted the last cell at (7, 9). If the right-bottom cell has the value T,
then we say that there is at least a subset that satisfies the given sum. If it is F, then there is
no such subset.

So, in this case, there is a subset whose sum is equal to 9. Can we identify it? Yes, we can,
via the following algorithm:

1.	 Start from the right-bottom cell, which is T (let's say that this cell is at (i, j)).

a. If the cell above this one, (i-1, j), is F, then write down the element at this row
(this element is part of the subset) and go to cell (i-1, j-element_at_this_row).

b. While the cell above this one, (i-1, j), is T, we go up the cell (i-1, j).

c. Repeat this from step 1a until the entire subset is written down.

226 Recursion and Dynamic Programming

Let' s draw the path of the subset in our case:

Figure 8.22 – Subset solution path

So, we start from the bottom-right cell, which is at (7, 9) and has the value T. Because this
cell is T, we can attempt to find the subset that has the sum 9. Next, we apply step 1a, so we
write down the element at row 7 (which is 2) and go to cell (7-1, 9-2) = (6, 7). So far, the
subset is {2}.

Next, we apply step 1b, so we land in cell (3, 7). The cell above (3, 7) has the value F, so we
apply step 1a. First, we write down the element at row 3, which is 6. Then, we go to cell
(3-1, 7-6) = (2, 1). So far, the subset is {2, 6}.

The cell above (2, 1) has the value F, so we apply step 1a. First, we write down the element
at row 2, which is 1. Then, we go to cell (2-1, 1-1) = (1, 0). Above cell (1,0), we have only T,
so we stop. The current and final subset is {2, 6, 1}. Obviously, 2+6+1 = 9.

The following code will clarify any other details (this code can tell if the given sum at least
has a corresponding subset):

/* Dynamic Programming (Bottom-Up) */

public static boolean findSumDP(int[] arr, int givenSum) {

 boolean[][] matrix

 = new boolean[arr.length + 1][givenSum + 1];

 // prepare the first row

 for (int i = 1; i <= givenSum; i++) {

 matrix[0][i] = false;

 }

Coding challenges 227

 // prepare the first column

 for (int i = 0; i <= arr.length; i++) {

 matrix[i][0] = true;

 }

 for (int i = 1; i <= arr.length; i++) {

 for (int j = 1; j <= givenSum; j++) {

 // first, copy the data from the above row

 matrix[i][j] = matrix[i - 1][j];

 // if matrix[i][j] = false compute

 // if the value should be F or T

 if (matrix[i][j] == false && j >= arr[i – 1]) {

 matrix[i][j] = matrix[i][j]

 || matrix[i - 1][j - arr[i - 1]];

 }

 }

 }

 printSubsetMatrix(arr, givenSum, matrix);

 printOneSubset(matrix, arr, arr.length, givenSum);

 return matrix[arr.length][givenSum];

}

The printSubsetMatrix() and printOneSubset() methods can be found in the
complete code named SubsetSum.

Coding challenge 15 – Word break (this is a famous
Google problem)
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider that you're given a dictionary of words and a string, str. Write a
snippet of code that returns true if the given string (str) can be segmented into a space-
separated sequence of dictionary words.

228 Recursion and Dynamic Programming

Solution: This problem is common to Google and Amazon and at the time of writing, it is
adopted by a lot of medium-large companies. If we type a string that doesn't make sense
into Google, then Google attempts to break it down into words and asks us if that is what
we actually tried to type. For example, if we type "thisisafamousproblem", then Google
will ask us if we wanted to type "this is a famous problem".

Plain recursion-based solution
So, if we assume that the given string is str="thisisafamousproblem" and the given
dictionary is {"this" "is" "a" "famous" "problem"}, then we can form the result; that is,
"this is a famous problem".

So, how can we obtain this? How can we check if the given string can be segmented into a
space-separated sequence of dictionary words?

Let's start with an observation. If we start from the first character of the given string, then
we notice that "t" is not a word in the given dictionary. We can continue by appending the
second character to "t", so we get "th". Since "th" is not a word in the given dictionary, we
can append the third character, "i". Obviously, "thi" is not a word in the dictionary, so we
append the fourth character, "s". This time, we found a word because "this" is a word in the
dictionary. This word becomes part of the result.

Taking this logic further, if we found "this", then the initial problem is reduced to a smaller
problem that consists of finding the remaining words. So, by appending every character,
the problem reduces to a smaller problem but essentially remains the same. This sounds
like an ideal case for a recursive implementation.

If we elaborate on the recursive algorithm, then we have the following steps that we
must perform:

1.	 Iterate the given string, str, from the first character (index 0).

2.	 Take each substring from the given string (by substring, we understand substring
from index to 1, substring from index to 2, ...substring from index to str.length). In
other words, as long as the current substring is not a word in the given dictionary,
we continue to add a character from the given string, str.

3.	 If the current substring is a word in the given dictionary, then we update the
index so that it's the length of this substring and rely on recursion by checking the
remaining string from index to str.length.

4.	 If index reaches the length of the string, we return true; otherwise, we
return false.

Coding challenges 229

The code for this is as follows:

private static boolean breakItPlainRecursive(

 Set<String> dictionary, String str, int index) {

 if (index == str.length()) {

 return true;

 }

 boolean canBreak = false;

 for (int i = index; i < str.length(); i++) {

 canBreak = canBreak

 || dictionary.contains(str.substring(index, i + 1))

 && breakItPlainRecursive(dictionary, str, i + 1);

 }

 return canBreak;

}

There is no surprise that the runtime of this code is exponential. Now, it is time to deploy
Dynamic Programming.

Bottom-up solution
We can avoid recursion and deploy Dynamic Programming instead. More precisely, we
can use the Bottom-Up solution shown here:

public static boolean breakItBottomUp(

 Set<String> dictionary, String str) {

 boolean[] table = new boolean[str.length() + 1];

 table[0] = true;

 for (int i = 0; i < str.length(); i++) {

 for (int j = i + 1; table[i] && j <= str.length(); j++) {

 if (dictionary.contains(str.substring(i, j))) {

 table[j] = true;

 }

230 Recursion and Dynamic Programming

 }

 }

 return table[str.length()];

}

This code still runs in exponential time O(n2).

Trie-based solution

The most efficient solution to solve this problem relies on Dynamic Programming and
the Trie data structure since it provides the best time complexity. You can find a detailed
implementation of the Trie data structure in the book Java Coding Problems: (https://
www.amazon.com/gp/product/B07Y9BPV4W/).

Let's consider the problem of breaking a given string into a set of components
representing its words. If p is a prefix of str and q is the suffix of str (the remaining
characters), then pq is str (the concatenation of p with q is str). And, if we can break p and
q into words via recursion, then we can break pq = str by merging the two sets of words.

Now, let's continue this logic in the context of a Trie representing the given dictionary
of words. We can assume that p is a word from the dictionary, and we must find a way to
construct it. This is exactly where the Trie comes in. Because p is considered a word from
the dictionary and p is a prefix of str, we can say that p must be found in the Trie via a path
consisting of the first few letters of str. To accomplish this via Dynamic Programming,
we use an array, let's denote it as table. Every time we find an appropriate q, we signal it
in the table array by setting a solution at |p| + 1, where |p| is the length of the prefix, p.
This means that we can continue by checking the last entry to determine if the whole
string can be broken up. Let's see the code for this:

public class Trie {

 // characters 'a'-'z'

 private static final int CHAR_SIZE = 26;

 private final Node head;

 public Trie() {

 this.head = new Node();

 }

 // Trie node

https://www.amazon.com/gp/product/B07Y9BPV4W/
https://www.amazon.com/gp/product/B07Y9BPV4W/

Coding challenges 231

 private static class Node {

 private boolean leaf;

 private final Node[] next;

 private Node() {

 this.leaf = false;

 this.next = new Node[CHAR_SIZE];

 }

 };

 // insert a string in Trie

 public void insertTrie(String str) {

 Node node = head;

 for (int i = 0; i < str.length(); i++) {

 if (node.next[str.charAt(i) - 'a'] == null) {

 node.next[str.charAt(i) - 'a'] = new Node();

 }

 node = node.next[str.charAt(i) - 'a'];

 }

 node.leaf = true;

 }

 // Method to determine if the given string can be

 // segmented into a space-separated sequence of one or

 // more dictionary words

 public boolean breakIt(String str) {

 // table[i] is true if the first i

 // characters of str can be segmented

 boolean[] table = new boolean[str.length() + 1];

 table[0] = true;

232 Recursion and Dynamic Programming

 for (int i = 0; i < str.length(); i++) {

 if (table[i]) {

 Node node = head;

 for (int j = i; j < str.length(); j++) {

 if (node == null) {

 break;

 }

 node = node.next[str.charAt(j) - 'a'];

 // [0, i]: use our known decomposition

 // [i+1, j]: use this String in the Trie

 if (node != null && node.leaf) {

 table[j + 1] = true;

 }

 }

 }

 }

 // table[n] would be true if

 // all characters of str can be segmented

 return table[str.length()];

 }

}

Apparently, because we have two nested loops, the runtime of this solution is O(n2).
Actually, the inner loop breaks if the node is null. And, in the worst-case scenario, this
happens after k steps, where k is the deepest path in the Trie. So, for a dictionary that
contains the longest word of size z, we have k=z+1. This means that the time complexity
of the inner loop is O(z) and that the total time complexity is O(nz). The extra space is
O(space of the Trie + str.length).

Coding challenges 233

The complete application is called WordBreak. This application also contains a
method that prints all the strings that can be generated for the given string. For
example, if the given string is "thisisafamousproblem" and the dictionary is
{"this", "th", "is", "a", "famous", "f ", "a", "m", "o", "u", "s", "problem"}, then the output
will contain four sequences:

•	 th is is a f a m o u s problem

•	 th is is a famous problem

•	 this is a f a m o u s problem

•	 this is a famous problem

Done! Now, it's time to summarize this chapter.

Summary
In this chapter, we covered one of the most popular topics in interviews: recursion and
Dynamic Programming. Mastering this topic requires a lot of practice. Fortunately,
this chapter provided a comprehensive set of problems that covered the most common
recursive patterns. From permutations to grid-based problems, from classical problems
such as Tower of Hanoi to tricky problems such as generating curly braces, this chapter
has covered a wide range of recursive cases.

Don't forget that the key to solving recursive problems consists of drawing a meaningful
sketch and practicing several cases. This way, you can identify patterns and recursive calls.

In the next chapter, we will discuss problems that require bit manipulation.

9
Bit Manipulation

This chapter covers the most important aspects of bit manipulation that you should know
about when it forms part of a technical interview. Such problems are often encountered in
interviews and they are not easy. The human mind was not designed to manipulate bits;
computers were designed for that. This means that manipulating bits is quite hard and
extremely prone to mistakes. Hence, it is advisable to always double-check every
bit operation.

Two things are extremely important for mastering these kinds of problems, as follows:

•	 You must understand the theory of bits very well (for example, bit operators)

•	 You must practice bit manipulation as much as possible

We need to keep these two statements in mind as we tackle the following topics:

•	 Understanding bit manipulation

•	 Coding challenges

Let's start with the theoretical part. It is strongly recommended that you extract
the diagrams from this section. They will be your best friends in the second part of
this chapter.

236 Bit Manipulation

Technical requirements
All the code present in this chapter can be found on GitHub at
https://github.com/PacktPublishing/The-Complete-Coding-
Interview-Guide-in-Java/tree/master/Chapter09.

Bit manipulation in a nutshell
In Java, we can manipulate bits of the following data types: byte (8-bit), short (16-bit),
int (32-bit), long (64-bit), and char (16-bit).

For example, let's use the positive number, 51. In this situation, we have the following
statements:

•	 The binary representation of 51 is 110011.

•	 Because 51 is an int, it is represented as a 32-bit value; that is, 32 values of 1 or 0
(from 0 to 31).

•	 All the positions to the left of 110011 are actually filled with zeros, up to 32 bits in
total.

•	 This means that 51 is 00000000 00000000 00000000 00110011 (we render it as
110011 since the additional zeros are usually not needed for displaying the binary
representation).

Obtaining the binary representation of a Java integer
How do we know that 110011 is the binary representation of 51? How can we compute
the binary representation of 112 or any other Java integer? A simple approach consists of
successively dividing the number by 2 until the quotient is less than 1 and interpret the
remainder as 0 or 1. A remainder of 0 is interpreted as 0, while a remainder greater than 0
is interpreted as 1. For example, let's apply this to 51:

1.	 51/2 = 25.5 has a quotient of 25 and a remainder of 5 -> store 1

2.	 25/2 = 12.5 has a quotient of 12 and a remainder of 5 -> store 1

3.	 12/2 = 6 has a quotient of 6 and a remainder of 0 -> store 0

4.	 6/2 = 3 has a quotient of 3 and a remainder of 0 -> store 0

5.	 3/2 = 1.5 has a quotient of 1 and a remainder of 5 -> store 1

6.	 1/2 = 0.5 has a quotient of 0 and a remainder of 5 -> store 1

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter09
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter09

Bit manipulation in a nutshell 237

So, we stored 110011, which is the binary representation of 51. The rest of the 26 bits are
zeros (00000000 00000000 00000000 00110011). The reverse process starts from right to
left and involves adding powers of 2 where the bits are equal to 1. So here,
51 = 20+21+24+25. The following diagram can help us understand this:

Figure 9.1 – Binary to decimal (32-bit integer)

In Java, we can quickly see the binary representation of a number via
Integer#toString(int i, int radix) or
Integer#toBinaryString(int i). For example, a radix of 2 means binary:

// 110011

System.out.println("Binary: " + Integer.toString(51, 2));

System.out.println("Binary: " + Integer.toBinaryString(51));

The reverse process (from binary to decimal) can be obtained via
Integer#parseInt(String nr, int radix):

System.out.println("Decimal: "

 + Integer.parseInt("110011", 2)); //51

Next, let's tackle bitwise operators. These operators allow us to manipulate bits, so it is
very important to understand them.

Bitwise operators
Manipulating bits involves several operators. These operators are as follows:

•	 Unary bitwise complement operator [~]: Being unary, this operator needs a
single operand that is placed before the number. This operator takes every bit of
the number and flips its value, so 1 becomes 0 and vice versa; for example, 5 = 101,
~5 = 010.

•	 Bitwise AND [&]: This operator needs two operands and is placed between two
numbers. This operator compares the bits of both numbers one by one. It acts as the
logical AND (&&), meaning that it returns 1 only if the compared bits are equal to
1; for example, 5 = 101, 7 = 111, 5 & 7 = 101 & 111 = 101 = 5.

238 Bit Manipulation

•	 Bitwise OR [|]: This operator needs two operands and is placed between two
numbers. This operator compares the bits of both numbers one by one. It acts as
the logical OR (||), meaning that it returns 1 if at least one of the compared bits is
1 (or both). Otherwise, it returns 0; for example, 5 = 101, 7 = 111, 5 | 7 = 101 | 111 =
111 = 7.

•	 Bitwise Exclusive OR (XOR) [^]: This operator needs two operands and is placed
between two numbers. This operator compares the bits of both numbers one by one.
It returns 1 only if the compared bits have a different value. Otherwise, it returns 0;
for example, 5 = 101, 7 = 111, 5 ^ 7 = 101 | 111 = 010 = 2.

The following diagram is a handy tool that you should keep close when you need to deal
with bits. Basically, it summarizes how bit operators work (I suggest you keep this table
close when you read through the Coding challenges section):

Figure 9.2 – Bitwise operators

Moreover, the following diagram represents several tips that are quite useful for
manipulating bits. The 0s notation represents a sequence of zeros, while the 1s notation
represents a sequence of ones:

Figure 9.3 – Bitwise tips

Take your time and explore each of these tips. Take a paper and a pen and go through
each of them. Moreover, try to discover other tips as well.

Bit manipulation in a nutshell 239

Bit shift operators
Shifting is a common operation when working on bits. Here, we have Signed Left Shift
[<<], Signed Right Shift [>>], and Unsigned Right Shift [>>>]. Shifting works for byte
(8-bit), short (16-bit), int (32-bit), long (64-bit), and char (16-bit); bit shift operators
don't throw exceptions.

Signed Left Shift [<<]
Signed Left Shift, or shortly Left Shift , takes two operands. Left Shift gets the bit pattern
of the first operand (left-hand side operand) and shifts it to the left by the number of
positions given by the second operand (right-hand operand).

For example, the following is the result of left shifting 23 by 3 positions, 23 << 3:

Figure 9.4 – Signed Left Shift

As we can see, every bit of the integer 12 (10111) is shifted 3 positions to the left, while all
the positions to the right are automatically padded with zeros.

Important note
Here are two hints that can be quite useful in certain scenarios:

1. Left shifting a number by n positions is equivalent to multiplying by 2n (for
example, 23 << 3 is equal to 184, which is equivalent to 184 = 23 * 23).

2. The number of positions to shift is automatically reduced to modulo 32; that
is, 23 << 35 is equivalent to 23 << (35 % 32), which is equivalent to 23 << 3.

Negative integers in Java
First of all, it is important to keep in mind that the binary representation itself doesn't
tell us whether a number is negative. This means that computers need some rules for
representing negative numbers. Commonly, computers store integers in what is known as
the two's complement representation. Java uses this representation as well.

240 Bit Manipulation

In short, the two's complement representation takes the binary representation of a negative
number and flips (negates) all its bits. After that, it adds 1 and appends it to the left of the
bit sign. If the leftmost bit is 1, then the number is negative. Otherwise, it is positive.

Let's look at the 4-bit integer, -5, as an example. We have one bit for the sign and three bits
for the value. We know that 5 (positive number) is represented as 101, while -5 (negative
number) is represented as 1011. This is obtained by flipping 101 so that it becomes 010,
adding 1 to obtain 011 and appending it to the left of the sign bit (1) to obtain 1011. The 1
in bold is the sign bit. So, we have one bit for sign and three bits for value.

Another way to do this is to know that the binary representation of -Q (negative Q) as an
n-bit number is obtained by concatenating 1 with 2n - 1 – Q.

Signed Right Shift [>>]
Signed Right Shift, or Arithmetic Right Shift [>>], takes two operands. Signed Right Shift
gets the bit pattern of the first operand (left-hand side operand) and shifts it to the right by
the number of positions given by the second operand (right-hand operand) by preserving
the sign.

For example, the following is the result of -75 >> 1 (-75 is an 8-bit integer where the sign
bit is the Most Significant Bit (MSB)):

Figure 9.5 – Signed Right Shift

As we can see, every bit of -75 (10110101) is shifted by 1 position to the right (notice that
the Least Significant Bit (LSB) has changed) and the bit sign is preserved.

Important note
Here are three hints that can be quite useful in certain scenarios:

Right shifting a number by n positions is equivalent to dividing by 2n (for
example, 24 >> 3 is equal to 3, which is equivalent to 3 = 24/23).

The number of positions to shift is automatically reduced to modulo 32; that is,
23 >> 35 is equivalent to 23 >> (35 % 32), which is equivalent to 23 >> 3.

A sequence of all 1s in (signed) binary terms represents -1 in decimal form.

Bit manipulation in a nutshell 241

Unsigned Right Shift [>>>]
Unsigned Right Shift, or Logical Right Shift [>>>], takes two operands. Unsigned Right
Shift gets the bit pattern of the first operand (left-hand side operand) and shifts it to the
right by the number of positions given by the second operand (right-hand operand). The
MSB is set to 0. That means that, for positive numbers, the Signed and Unsigned Right
Shift return the same result, while negative numbers always become positives.

For example, the following is the result of -75 >>> 1 (-75 is an 8-bit integer where the sign
bit is the MSB):

Figure 9.6 – Unsigned Right Shift

Important note
The number of positions to shift is automatically reduced to modulo 32; that
is, 23 >>> 35 is equivalent to 23 >>> (35 % 32), which is equivalent to 23 >>> 3.

Now that you have an idea of what bit shift operators are, it's time to tackle more tips
and tricks.

Tips and tricks
Manipulating bits involves great skill when working with bits operators and knowing
some tips and tricks. You already saw several tips earlier in this chapter. Now, let's add
some more as a bullet point list:

•	 If we XOR[^] a number with itself for an even number of times, then the result is
0 (x ^ x = 0; x ^ x ^ x^ x = (x ^ x) ^ (x ^ x) = 0 ^ 0 = 0).

•	 If we XOR[^] a number with itself for an odd number of times, then the result is
that number (x ^ x ^ x = (x ^ (x ^ x)) = (x ^ 0) = x; x ^ x ^ x ^ x ^ x = (x ^ (x ^ x) ^
(x ^ x)) = (x ^ 0 ^ 0) = x).

242 Bit Manipulation

•	 We can compute the value of the expression p % q with p > 0, q > 0, where q is
a power of 2; that is, p & (q - 1). A simple application where you can see this is
ComputeModuloDivision.

•	 For a given positive integer p, we say that it is odd if ((p & 1) != 0) and even if ((p &
1) == 0). A simple application where you can see this is OddEven.

•	 For two given numbers p and q, we can say that p is equal to q if ((p ^ q) == 0). A
simple application where you can see this is CheckEquality.

•	 For two given integers p and q, we can swap them via p = p ^ q ^ (q = p). A simple
application where you can see this is SwapTwoIntegers.

Ok, it is time to tackle some coding challenges.

Coding challenges
In the next 25 coding challenges, we will exploit different aspects of bit manipulations.
Since these kinds of problems are really brain-teasing, they are preferred in interviews.
Understanding a snippet of code that manipulates bits is not an easy task, so take your
time and dissect each problem and snippet of code. This is the only way to obtain some
patterns and templates in order to solve these kinds of problems.

The following figure contains a set of four bit-mask that are important to have in your
toolbelt:

Figure 9.7 – Bit-masks

They can be useful for solving a variety of problems where you need to manipulate bits.

Coding challenge 1 – Getting the bit value
Problem: Consider a 32-bit integer, n. Write a snippet of code that returns the bit value of
n at the given position, k.

Coding challenges 243

Solution: Let's consider that n=423. Its binary representation is 110100111. How can we
say what the value of the bit at position k=7 is (the bold bit at position 7 has a value of 1)?
A solution will consist of right shifting the given number by k positions (n >> k). This way,
the kth bit becomes the bit at position 0 (110100111 >> 7 = 000000011). Next, we can apply
the AND [&] operator as 1 & (n >> k):

Figure 9.8 – Binary representation

If the value of the bit at position 0 is 1, then the AND[&] operator will return 1; otherwise,
it will return 0. In terms of code, we have the following:

public static char getValue(int n, int k) {

 int result = n & (1 << k);

 if (result == 0) {

 return '0';

 }

 return '1';

}

Another approach consists of replacing the expression 1 & (n >> k) with the expression
n & (1 << k). Take your time and try to dissect it. The complete application is called
GetBitValue.

Coding challenge 2 – Setting the bit value
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider a 32-bit integer, n. Write a snippet of code that sets the bit value of n at
the given position, k to 0 or 1.

244 Bit Manipulation

Solution: Let's consider that n=423. Its binary representation is 110100111. How can we
set the bit from position k=7, which is now 1, to 0? Having the bitwise operators table in
front of us helps us see that the AND[&] operator is the only operator with two operands
that allows us to write that 1 & 0 = 0 or the 7th bit & 0 = 0. Moreover, we have 1 & 1 = 1, 0
& 1 = 0 and 0 & 0 = 0, so we can take a bit-mask as 1...101111111 and write the following:

Figure 9.9 – Binary representation

This is exactly what we want. We want to turn the 7th bit from 1 into 0 and leave the rest
untouched. But how do we obtain the 1...101111... mask? Well, there are two bit-masks
that you need to know about. First, a bit-mask, that has a 1 and the rest are 0s (10000...).
This can be obtained by left shifting 1 by k positions (for example, the bit mask 1000
can be obtained as 1 << 3, though if we represent it as a 32-bit mask, we get 00000000
00000000 00000000 0001000). The other bit-mask contains a 0, while the remainder are 1s
(01111...). This can be obtained by applying the unary bitwise complement operator [~] to
the bit-mask 10000.... (for example, ~(1000) = 0111, though if we represent it as a 32-bit
mask, we get 11111111 11111111 11111111 1110111). So, we can obtain the 1...101111...
bit-mask as ~(1 << k). Finally, all we have to do is use the AND[&] operator, as shown in
the following code:

public static int setValueTo0(int n, int k) {

 return n & ~(1 << k);

}

If we take k=3, 4, or 6, then we get 0 & 0 = 0.

Let's consider that n=295. Its binary representation is 100100111. How can we set the bit
from position k=7, which is now 0, to 1? Having the bitwise operators table in front of us
helps us see that the OR[|] and XOR[^] operators are the operators with two operands
that allow us to write that 0 | 1 = 1 or 0 ^ 1 = 1, respectively.

Or, we can write that 7th | 1 = 1 and 7th ^ 1 = 1.

By going one step further, we can see that in the case of the OR[|] operator, we can write
the following:

1 | 1 = 1, while in the case of the XOR[^] operator, we write 1 ^ 1 = 0.

Coding challenges 245

Since we want to turn the 7th bit value from 0 to 1, we can use either of these two
operators. However, if k indicates a bit with an initial value of 1, then 1 ^ 1 = 0 doesn't
help us anymore, while 1 | 1 = 1 is exactly what we want. So here, we should use the
10000... bit-mask, as shown here:

Figure 9.10 – Binary representation

In terms of code, we have the following:

public static int setValueTo1(int n, int k) {

 return n | (1 << k);

}

If we take k=0, 1, 2, 5, or 8, then we get 1 | 1 = 1.

The complete application is called SetBitValue.

Coding challenge 3 – Clearing bits
Amazon, Google, Adobe

Problem: Consider a 32-bit integer, n. Write a snippet of code that clears the bits of n (sets
their value to 0) between the MSB and the given k.

Solution: Let's consider that n=423. Its binary representation is 110100111. How can we
clear the bits between MSB and position k=6 so that there are 110 bits? Having the bitwise
operators table in front of us helps us see that we need a bit-mask of type 00011111. Let's
see what happens if we apply the AND[&] operator between n and this bit-mask:

Figure 9.11 – Binary representation

246 Bit Manipulation

So, we cleared the bits between MSB and k=6. Generally speaking, we need a bit-mask that
contains 0s between the MSB and k (inclusive) and 1s between k (exclusive) and LSB. We
can do this by left shifting the bits of 1 with k positions (for example, for k=6, we obtain
1000000) and subtracting 1. This way, we obtain the needed bit-mask, 0111111. So, in
terms of code, we have the following:

public static int clearFromMsb(int n, int k) {

 return n & ((1 << k) - 1);

}

How about clearing the bits between the given k and the LSB? Let me show you the code:

public static int clearFromPosition(int n, int k) {

 return n & ~((1 << k) - 1);

}

Now, take your time and dissect this solution. Moreover, we can replace this solution with
this one: n & (-1 << (k + 1)).

Again, use a paper and a pen and take it step by step. The complete application is
called ClearBits.

Coding challenge 4 – Summing binaries on paper
Problem: Consider several positive 32-bit integers. Take a pen and some paper and show
me how you sum up their binary representation.

Note: This is not quite a coding challenge, but it is important to know about.

Solution: Summing binary numbers can be done in several ways. A simple approach is to
do the following:

1.	 Sum all the bits of the current column (the first column is the column of LSB).

2.	 Convert the result into binary (for example, via successive divisions by 2).

3.	 Keep the rightmost bit as the result.

4.	 Carry the remains bits into the remaining columns (one bit per column).

5.	 Go to the next column and repeat from step 1.

Coding challenges 247

An example will clarify things. Let's add 1 (1) + 9 (1001) + 29 (011101) + 124 (1111100) =
163 (10100011).

The following diagram represents the result of summing these numbers:

Figure 9.12 – Summing binary numbers

Now, let's see this step by step (the bold sections are carried):

•	 Sum bits on column 0: 1 + 1 + 1 + 0 = 3		 = 11 	 1

•	 Sum bits on column 1: 1 + 0 + 0 + 0 = 1		 = 1	 1

•	 Sum bits on column 2: 0 + 1 + 1 = 2		 = 10	 0

•	 Sum bits on column 3: 1 + 1 + 1 + 1 = 4		 = 100 	 0

•	 Sum bits on column 4: 0 + 1 + 1 = 2		 = 10	 0

•	 Sum bits on column 5: 1 + 1 + 0+1 = 3		 = 11	 1

•	 Sum bits on column 6: 1 + 1 = 2			 = 10	 0

•	 Sum bits on column 7: 1 = 1			 = 1	 1

So, the result is 10100011.

Coding challenge 5 – Summing binaries in code
Problem: Consider two 32-bit integers, q and p. Write a snippet of code that computes q +
p using their binary representation.

248 Bit Manipulation

Solution: We can try an implementation of the algorithm presented in the previous
coding challenge, or we can try another approach. This approach introduces an equation
that is useful to know:

Notice the presence of the AND[&] and XOR[^] bitwise operators. If we denote p & q
with and, and p ^ q with xor, then we can write that as follows:

If p and q have no common bits, then we can reduce this to the following:

For example, if p = 1010 and q = 0101, then p & q = 0000. Since 2*0000 = 0, we remain
with p + q = xor, or p + q = 1111.

However, if p and q have common bits, then we must deal with the addition of and and
xor. So, and + xor can be solved if we force the and expression to return 0. This can be
done via recursion.

Through recursion, we can write the first step of recursion as:

Alternatively, if we denote and{1} = 2 * and & xor, and xor{1} = 2 * and ^ xor where {1}
means one step of recursion, then we can write this:

But when does this recursion stop? Well, it should stop when the intersection between the
two bit sequences (p and q) in the and{n} expression returns 0. So, here, we forced the and
expression to return 0.

In terms of code, we have the following:

public static int sum(int q, int p) {

 int xor;

 int and;

 int t;

Coding challenges 249

 and = q & p;

 xor = q ^ p;

 // force 'and' to return 0

 while (and != 0) {

 and = and << 1; // this is multiplication by 2

 // prepare the next step of recursion

 t = xor ^ and;

 and = and & xor;

 xor = t;

 }

 return xor;

}

The complete application is called SummingBinaries.

Coding challenge 6 – Multiplying binaries on paper
Problem: Consider two positive 32-bit integers, q and p. Take some paper and a pen and
show me how you multiply the binary representation of these two numbers (q*p).

Note: This is not quite a coding challenge, but it is important to know about.

Solution: When we multiply binary numbers, we must keep in mind that multiplying a
binary number by 1 gives us back exactly the same binary number, while multiplying a
binary number by 0 gives us back 0. The steps for multiplying two binary numbers are
as follows:

1.	 Multiply every bit of the second binary number by every bit of the first binary
number, starting from the rightmost column (column 0).

2.	 Sum up the results.

Let's do 124 (1111100) * 29 (011101) = 3596 (111000001100).

250 Bit Manipulation

The following diagram represents the result of our computation:

Figure 9.13 – Multiplying binary numbers

So, we multiply every bit of 29 with every bit of 124. Next, we sum up those binaries, as
you saw earlier in the Coding challenge 4 – Summing binaries on paper section.

Coding challenge 7 – Multiplying binaries in code
Amazon, Google, Adobe

Problem: Consider two 32-bit integers, q and p. Write a snippet of code that computes
q * p using their binary representation.

Solution: We can try an implementation of the algorithm presented in the previous coding
challenge, or we can try another approach. This approach starts by assuming that p=1, so
here, we have q*1=q. We know that any q multiplied by 1 is q, so we can say that q*1 follows
the next sum (we go from 0 to 30, so we ignore the signed bit on position 31):

Figure 9.14 – Multiplying binaries in a code

For example, if q=5 (101), then 5 * 1 = 0*230 + 0*229 + ...1*22 + 0*21 + 1*20 = 5.

So, 5 * 1 = 5.

So far, this is not such a big deal, but let's continue with 5 * 2; that is, with 101 * 10. If we
think that 5 * 2 = 5 * 0 + 10 * 1, then this means that 101 * 10 = 101 * 0 + 1010 * 1. So, we
left shifted 5 by one position and we right shifted 2 by one position.

Let's continue with 5 * 3. This is 101 * 011. However, 5 * 3 = 5 * 1 + 10 * 1. Hence it is like
101 * 1 + 1010 * 1.

Coding challenges 251

Let's continue with 5 * 4. This is 101 * 100. However, 5 * 4 = 5 * 0 + 10 * 0 + 20 * 1. Thus, it
is like 101 * 0 + 1010 * 0 + 10100 * 1.

Now, we can start to see a pattern that follows these steps (initially, result=0):

1.	 If the LSB of p is 1, then we write the following:

Figure 9.15 – LSB of p is 1

2.	 We left shift q by one position and logical right shift p by one position.

3.	 We repeat from step 1 until p is 0.

If we put these three steps into code, then we obtain the following output:

public static int multiply(int q, int p) {

 int result = 0;

 while (p != 0) {

 // we compute the value of q only when the LSB of p is 1

 if ((p & 1) != 0) {

 result = result + q;

 }

 q = q << 1; // q is left shifted with 1 position

 p = p >>> 1; // p is logical right shifted with 1 position

 }

 return result;

}

The complete application is called MultiplyingBinaries.

252 Bit Manipulation

Coding challenge 8 – Subtracting binaries on paper
Problem: Consider two positive 32-bit integers, q, and p. Take some paper and a pen and
show me how you subtract the binary representation of these two numbers (q-p).

Note: This is not quite a coding challenge, but it is important to know about.

Solution: Subtracting binary numbers can be reduced in order to compute 0 minus 1.
Mainly, we know that 1 minus 1 is 0, 0 minus 0 is 0, and 1 minus 0 is 1. To compute 0
minus 1, we must follow these steps:

1.	 From the current column, we search the left column(s) until we find a bit of 1.

2.	 We borrow this bit and put it in the preceding column as two values of 1.

3.	 We then borrow one of these two values of 1 from the preceding column as other
two of 1.

4.	 Repeat step 3 for each column until we reach the current column.

5.	 Now, we can perform the computation.

6.	 If we encounter another 0 minus 1, then we repeat this process from step 1.

Let's do 124 (1111100) - 29 (011101) = 95 (1011111).

The following diagram represents the result of our computation:

Figure 9.16 – Subtracting binary numbers

Now, let's see this step by step:

1.	 Start from column 0, so from 0 minus 1. We search in the left column(s) until we
find a bit of 1. We find it at column 2 (this bit corresponds to 22=4). We borrow
this bit in column 1 and use it as two values of 1 (in other words, two of 2 is 21+21).
We borrow one of these two values of 1 (this is 21=2) in column 0 and use them as
two other two values of 1 (in other words, two of 1 is 20+20). Now, we can do the
computation as 2 minus 1 equals 1. We write down 1 and move on to column 1.

Coding challenges 253

2.	 We continue with column 1, so with 1 minus 0 equals 1. We write down 1 and we
move to column 2.

3.	 We then continue with column 2, so with 0 minus 1. We search in the left column(s)
until we find a bit of 1. We find it at column 3 (this bit corresponds to 23=8). We
borrow this bit from column 2 and use it as two values of 1 (in other words, two of
2 is 22+22). Now, we can do the computation as 2 minus 1 equals 1. We write down 1
and we move to column 3.

4.	 We continue with column 3, so with 0 minus 1. We search in the left column(s)
until we find a bit of 1. We find it at column 4 (this bit corresponds to 24=16). We
borrow this bit in column 3 and use it as two values of 1 (in other words, two of 2
is 23+23). Now, we can do the computation as 2 minus 1 equals 1. We write down 1
and we move to column 4.

5.	 We continue with column 4, so with 0 minus 1. We search in the left column(s)
until we find a bit of 1. We find it at column 5 (this bit corresponds to 25=32). We
borrow this bit in column 4 and use it as two values of 1 (in other words, two of 2 is
24+24). Now, we can do the computation as 2 minus 1 equals 1. We write down
1 and we move to column 5.

6.	 We continue with column 5, so with 0 minus 0. We write down 0 and we move to
column 6.

7.	 We continue with column 6, so with 1 minus 0. We write down 1 and then
we're done.

So, the result is 1011111.

Coding challenge 9 – Subtracting binaries in code
Problem: Consider two 32-bit integers, q and p. Write a snippet of code that computes q -
p using their binary representation.

Solution: We already know from the previous coding challenge that subtracting binary
numbers can be reduced to compute 0 minus 1. Moreover, we know how to solve 0 minus
1 by using the borrowing technique. Besides the borrowing technique, it is important to
notice that |q - p| = q ^ p; for example:

|1 - 1| = 1 ^ 1 = 0, |1 - 0| = 1 ^ 0 = 1, |0 - 1| = 0 ^ 1 = 1 and |0 - 0| = 0 ^ 0 = 0.

254 Bit Manipulation

Based on these two statements, we can implement the subtraction of two binaries,
as follows:

public static int subtract(int q, int p) {

 while (p != 0) {

 // borrow the unset bits of q AND set bits of p

 int borrow = (~q) & p;

 // subtraction of bits of q and p

 // where at least one of the bits is not set

 q = q ^ p;

 // left shift borrow by one position

 p = borrow << 1;

 }

 return q;

}

The complete application is called SubtractingBinaries.

Coding challenge 10 – Dividing binaries on paper
Problem: Consider two positive 32-bit integers, q and p. Take some paper and a pen and
show me how you divide the binary representation of these two numbers (q/p).

Note: This is not quite a coding challenge, but it is important to know about.

Solution: In binary division, there are only two possibilities: either 0 or 1. Division
involves the dividend (q), the divisor (p), the quotient, and the remainder. For example,
we know that 11(dividend) / 2(divisor) = 5(quotient) 1(remainder). Or, in binary
representation, we have 1011(dividend) / 10 (divisor) = 101(quotient) 1(remainder)

Coding challenges 255

We start by comparing the divisor with the MSB of the dividend (let's call this the
sub-dividend) and do the following:

a.	 If the divisor doesn't fit into the sub-dividend (divisor > sub-dividend), then we
append 0 to the quotient.

a.a) We append the next bit of the dividend to the sub-dividend and continue from
step a).

b.	 If the divisor fits into the sub-dividend (divisor <= sub-dividend), then we append
1 to the quotient.

b.a) We subtract the divisor from the current sub-dividend.

b.b) We append the next bit of the dividend to the result of the subtraction (this is
the new sub-dividend) and we repeat from step a).

c.	 When we've processed all the bits of the dividend, we should have the quotient and
the remainder, which is the result of the division.

c.a) We can stop here and express the result in terms of the obtained quotient and
the remainder.

c.b) We can append a dot (".") to the quotient and a 0 to the current remainder
(this is the new sub-dividend) and continue from step a until the remainder
is 0 or we are satisfied by the result.

The following diagram represents the 11/2 division:

Figure 9.17 – Dividing binary numbers

256 Bit Manipulation

Now, let's see this step by step (focus on the left-hand side of the preceding diagram):

•	 Sub-dividend = 1, 10 > 1 since 2 > 1, therefore we append 0 to the quotient.

•	 Sub-dividend = 10, 10 = 10 since 2 = 2, therefore we append 1 to the quotient.

•	 Do subtraction, 10 - 10 = 0.

•	 Sub-dividend = 01, 10 > 01 since 2 > 1, therefore we append 0 to the quotient.

•	 Sub-dividend = 011, 10 < 011 since 2 < 3, therefore we append 1 to the quotient.

•	 Do subtraction, 011 - 10 = 1.

•	 There are no more bits to process from the dividend, so we can say that 11/2 has the
quotient 101 (which is 5) and that the remainder is 1.

If you look at the right-hand side of the preceding diagram, then you will see that we can
continue the computation until the remainder is 0 by applying the step c.b given.

Coding challenge 11 – Dividing binaries in code
Amazon, Google, Adobe

Problem: Consider two 32-bit integers, q and p. Write a snippet of code that computes q/p
using their binary representation.

Solution: There are several approaches we can use to divide two binaries. Let's focus
on implementing a solution that computes only the quotient, which means we skip the
remainder.

This approach is quite straightforward. We know that a 32-bit integer contains the bits that
count for us between 31 and 0. All we have to do is left shift the divisor (p) by i positions
(i=31, 30, 29, ..., 2, 1, 0) and check if the result is less than the dividend (q). Each time we
find such a bit, we update the ith bit position. We accumulate the result and pass it to the
next position. The following code speaks for itself:

private static final int MAX_BIT = 31;

...

public static long divideWithoutRemainder(long q, long p) {

 // obtain the sign of the division

 long sign = ((q < 0) ^ (p < 0)) ? -1 : 1;

 // ensure that q and p are positive

Coding challenges 257

 q = Math.abs(q);

 p = Math.abs(p);

 long t = 0;

 long quotient = 0;

 for (int i = MAX_BIT; i >= 0; --i) {

 long halfdown = t + (p << i);

 if (halfdown <= q) {

 t = t + p << i;

 quotient = quotient | 1L << i;

 }

 }

 return sign * quotient;

}

The complete application is called DividingBinaries. It also contains the implementation
that computes the remainder.

Coding challenge 12 – Replacing bits
Amazon, Google, Adobe

Problem: Consider two positive 32-bit integers, q and p, and two bit positions, i and j.
Write a snippet of code that replaces the bits from q between positions i and j with the bits
of p. You can assume that, between i and j, there is enough space to fit all bits of p.

258 Bit Manipulation

Solution: Let's consider that q=4914 (in binary, 1001100110010), p=63 (in binary,
111111), i=4, and j=9. The following diagram shows what we have and what we want
to obtain:

Figure 9.18 – Replacing the bits between i and j

As we can see, the solution should accomplish three main steps. First, we need to clear the
bits of q between i and j. Second, we need to left shift p by i positions (this way, we place p
in the right position). Finally, we merge p and q in the final result.

In order to clear the bits of q between i and j (set those bits to 0, no matter their initial
value), we can use the AND[&] operator. We know that only 1 & 1 return 1, so if we have
a bit-mask that contains 0s between i and j, then q & bit mask will result in a sequence of
bits containing only 0s between i and j since 1 & 0 and 0 & 0 are 0. Moreover, between the
MSB and j (exclusive), and i (exclusive) and the LSB of the bit mask, we should have only
values of 1. This way, q & bit mask will preserve the q bits since 1 & 1 = 1 and 0 & 1 = 0.
So, our bit mask should be 1110000001111. Let's see it at work:

Figure 9.19 – Bit-mask (a)

But how can we obtain this mask? We can obtain it via the OR[|] operator, as follows:

Figure 9.20 – Bit-mask (b)

Coding challenges 259

The 1110000000000 bit mask can be obtained by left shifting -1 by j+1 positions, while the
0000000001111 bit mask can be obtained by left shifting 1 by i positions and subtracting 1.

Here, we solved the first two steps. Finally, we need to put p in the right position. This is
easy: we just left shift p by i positions. Finally, we apply the OR[|] operator between q with
cleared bits between i and j, and the shifted p:

Figure 9.21 – Binary representation

We're done! Now, let's put this into code:

public static int replace(int q, int p, int i, int j) {

 int ones = ~0; // 11111111 11111111 11111111 11111111

 int leftShiftJ = ones << (j + 1);

 int leftShiftI = ((1 << i) - 1);

 int mask = leftShiftJ | leftShiftI;

 int applyMaskToQ = q & mask;

 int bringPInPlace = p << i;

 return applyMaskToQ | bringPInPlace;

}

The complete application is called ReplaceBits.

Coding challenge 13 – Longest sequence of 1
Amazon, Adobe, Microsoft, Flipkart

Problem: Consider a 32-bit integer, n. A sequence of 101 can be considered 111. Write a
snippet of code that computes the length of the longest sequence of 1.

260 Bit Manipulation

Solution: We will look at several examples (the following three columns represent the
integer number, its binary representation, and the length of the longest sequence of 1):

Figure 9.22 – Three examples

The solution to this problem is quite easy to implement if we know that n & 1 = 1 if the
LSB of n is 1 and n & 0 = 0 if the LSB of n is 0. Let's focus on the first example, 67534
(10000011111001110). Here, we do the following:

•	 Initialize the longest sequence = 0.

•	 Apply AND[&]:10000011111001110 & 1 = 0, longest sequence = 0.

•	 Right shift and apply AND[&]:1000001111100111 & 1 = 1, longest sequence = 1.

•	 Right shift and apply AND[&]:100000111110011 & 1 = 1, longest sequence = 2.

•	 Right shift and apply AND[&]:10000011111001 & 1 = 1, longest sequence = 3.

•	 Right shift and apply AND[&]:1000001111100 & 1 = 0, longest sequence = 0

•	 Right shift and apply AND[&]:100000111110 & 1 = 0, longest sequence = 0.

•	 Right shift and apply AND[&]:10000011111 & 1 = 1, longest sequence = 1.

•	 Right shift and apply AND[&]:1000001111 & 1 = 1, longest sequence = 2.

•	 Right shift and apply AND[&]:100000111 & 1 = 1, longest sequence = 3.

•	 Right shift and apply AND[&]:10000011 & 1 = 1, longest sequence = 4.

•	 Right shift and apply AND[&]:1000001 & 1 = 1, longest sequence = 5.

•	 Right shift and apply AND[&]:100000 & 1 = 0, longest sequence = 0.

Coding challenges 261

So, as long as we don't have any 0s interleaved in the longest sequence of 1, we can
implement the preceding approach. However, this approach does not work for the third
case, 339809 (1010010111101100001). Here, we need to do some additional checks;
otherwise, the longest sequence will have a length equal to 4. But since 101 can be treated
as 111, the correct answer is 9. This means that when we have n & 1 = 0, we must perform
the following checks (mainly, we check that the current bit of 0 is guarded by two bits of 1
as 101):

•	 Check that the next bit is 1 or 0, (n & 2) == 1 or 0

•	 If the next bit is 1, then check whether the previous bit was 1

We can put this into code as follows:

public static int sequence(int n) {

 if (~n == 0) {

 return Integer.SIZE; // 32

 }

 int currentSequence = 0;

 int longestSequence = 0;

 boolean flag = true;

 while (n != 0) {

 if ((n & 1) == 1) {

 currentSequence++;

 flag = false;

 } else if ((n & 1) == 0) {

 currentSequence = ((n & 0b10) == 0) // 0b10 = 2

 ? 0 : flag

 ? 0 : ++currentSequence;

 flag = true;

 }

 longestSequence = Math.max(

 currentSequence, longestSequence);

 n >>>= 1;

262 Bit Manipulation

 }

 return longestSequence;

}

The complete application is called LongestSequence.

Coding challenge 14 – Next and previous numbers
Adobe, Microsoft

Problem: Consider a 32-bit integer, n. Write a snippet of code that returns the next largest
number that contains exactly the same number of 1 bits.

Solution: Let's consider that n=124344 (11110010110111000). To obtain another number
with the same number of 1 bits, we have to flip a bit of 1 to turn it into 0 and another bit
of 0 to turn it into 1. The resulting number will be different from the given one and will
contain the same number of 1 bits. Now, if we want this number to be bigger than the
given one, then the bit that was flipped from 0 to 1 should be at the left of the bit that was
flipped from 1 to 0. In other words, having two bit positions, i and j, and flipping the bit
at position i from 1 to 0 and the bit at position j from 0 to 1, this will result in the new
number being smaller than the given number if i > j, while bigger if i < j, respectively.

This means that we must find the first bit of 0 that doesn't contain only zeros on its right
(in other words, the first bit of non-trailing zero). This way, if we flip this bit from 0 to 1,
then we know that there is at least one bit of 1 in the right of this bit that can be flipped
from 1 to 0. This means that we obtain a bigger number with the same number of 1 bits.
The following diagram shows these numbers in pictorial form:

Figure 9.23 – The non-trailing zero

Coding challenges 263

So, for our number, the first non-trailing zero is at bit 6. If we flip this bit from 0 to 1, then
the resulting number is bigger than the given number. But now, we must choose a bit,
from the right of this bit, that will flip from 1 to 0. Basically, we must choose between the
bits from positions 3, 4, and 5. However, is this the proper logic? Remember that we must
return the next largest number, NOT any number larger than the given one. Flipping the
bit at position 5 is better than flipping the bit from position 3 or 4, but this is not the next
largest number. Check out the following relationships (the subscript is the decimal value
corresponding to the binary representation):

Figure 9.24 – Several relationships

So far, we can conclude that 11110010111011000124376 looks like the proper choice.
However, we should also take note of the following:

11110010111011000124376 > 11110010111000011124355

So, the next largest number is obtained if we count the number of bits of 1 between
positions 6 (exclusive) and 0 (let's denote it with k=3), clear all the bits between positions
6 (exclusive) and 0 (set them to 0), and set k-1 bits to 1 between positions k-1 and 0.

OK; so far, so good! Now, let's put this algorithm into code. First, we need to find the
position of the first bit of non-trailing zero. This means we need to sum the count of
trailing zeros with the count of 1s until we get the first 0. Counting the trailing zeros can
be done as follows (we are working on a copy of n since we don't want to shift the bits of
the given number):

int copyn = n;

int zeros = 0;

while ((copyn != 0) && ((copyn & 1) == 0)) {

 zeros++;

 copyn = copyn >> 1;

}

264 Bit Manipulation

Counting the 1s until the first 0 can be done like so:

int ones=0;

while ((copyn & 1) == 1) {

 ones++;

 copyn = copyn >> 1;

}

Now, marker = zeros + ones gives us the searched position. Next, we flip the bit
from this position from 0 to 1 and clear all the bits between this position (exclusive) and 0:

n = n | (1 << marker);

In our case, marker=6. The effect of this line produces the following output:

Figure 9.25 – Output (1)

n = n & (-1 << marker);

Figure 9.26 – Output (2)

Finally, we set the bits between (ones - 1) and 0 to 1:

n = n | (1 << (ones - 1)) - 1;

In our case, ones=3. The effect of this line produces the following output:

Figure 9.27 – Output (3)

Coding challenges 265

So, the final result is 11110010111000011, which is 124355. So, the final method looks
as follows:

public static int next(int n) {

 int copyn = n;

 int zeros = 0;

 int ones = 0;

 // count trailing 0s

 while ((copyn != 0) && ((copyn & 1) == 0)) {

 zeros++;

 copyn = copyn >> 1;

 }

 // count all 1s until first 0

 while ((copyn & 1) == 1) {

 ones++;

 copyn = copyn >> 1;

 }

 // the 1111...000... is the biggest number

 // without adding more 1

 if (zeros + ones == 0 || zeros + ones == 31) {

 return -1;

 }

 int marker = zeros + ones;

 n = n | (1 << marker);

 n = n & (-1 << marker);

 n = n | (1 << (ones - 1)) - 1;

 return n;

}

266 Bit Manipulation

The complete application is called NextNumber. It also contains a method that returns
the next smallest number that contains exactly the same number of 1 bits. Take up the
challenge and try to provide a solution by yourself. When you're done, just confront your
solution with the one from the bundled code. As a hint, you will need the number of
trailing 1s (let's denote this with k) and the number of 0s immediately to the left of the
trailing 1s until you reach the first 1. Summing up these values will give you the position
of the bit that should be flipped from 1 to 0. Next, clear up all the bits to the right of this
position and set (k + 1) bits to 1 immediately to the right of this position.

Coding challenge 15 – Conversion
Amazon, Google, Adobe

Problem: Consider two positive 32-bit integers, q and p. Write a snippet of code that
counts the number of bits that we should flip in q in order to convert it into p.

Solution: The solution to this problem becomes clear if we observe that the XOR[^]
operator only returns 1 when the operands are different. Let's consider q = 290932
(1000111000001110100) and p = 352345 (1010110000001011001). Let's apply the XOR[^]
operator:

Figure 9.28 – Conversion

In other words, if we denote q ^ p with xor (xor = q ^ p), then all we have to do is count
the number of bits of 1 in xor (in our example, we have six of 1). This can be done using
the AND[&] operator, which only returns 1 for 1 & 1 = 1, so we can count xor & 1 for
each bit in xor. After each comparison, we right shift xor by one position. The code
speaks for itself:

public static int count(int q, int p) {

 int count = 0;

 // each 1 represents a bit that is

 // different between q and p

 int xor = q ^ p;

 while (xor != 0) {

Coding challenges 267

 count += xor & 1; // only 1 & 1 = 1

 xor = xor >> 1;

 }

 return count;

}

The complete application is called Conversion.

Coding challenge 16 – Maximizing expressions
Problem: Consider two positive 32-bit integers, q and p, where q≠ p. What is the
relationship between q and p that maximizes the expression (q AND s) * (p AND s),
where AND is the logical operator [&]?

Solution: This is the kind of problem that sounds hard but is extremely simple. Let's start
with a simple a * b. When is a * b at its maximum? Well, let's consider that b = 4. When is
a * 4 at its maximum? Let's write some test cases:

a = 1, 1 * 4 = 4

a = 2, 2 * 4 = 8

a = 3, 3 * 4 = 12

a = 4, 4 * 4 = 16

So, when a = b, we have reached the maximum value, 16. However, a can be 5 and 5 *
4 = 20 > 16. This is correct, but this means that b can be 5 as well, so 5 * 5 =, 25 > 20.
This is far away from a mathematical demonstration, but we can notice that a * b is at its
maximum if a = b.

For those interested in the mathematical demonstration, let's say that we have the
following:

Figure 9.29 – Maximizing expressions (1)

268 Bit Manipulation

This means that we have the following:

Figure 9.30 – Maximizing expressions (2)

Furthermore, this means that we have the following:

Figure 9.31 – Maximizing expressions (3)

Now, if we say that a * b is the maximum when a = b, then let's denote a = (q AND s)
and b = (p AND s). So, (q AND s) * (p AND s) is at its maximum when (q AND s) =
(p AND s).

Let's consider that q = 822 (1100110110) and p = 663 (1010010111). The LSB of q is 0,
while the LSB of p is 1, so we can write the following:

(1 AND s) = (0 AND s) → s = 0 → (1 & 0) = (0 & 0) = 0

If we right shift q and p by 1 position, then we find that the LSB of q is 1 and that the LSB
of p is 1:

Figure 9.32 – Right shifting q and p by 1 position

Here, we have two more cases that can be intuited as follows:

Figure 9.33 – Two cases

Coding challenges 269

Here, we can see that the answer to our problem is q & p = s. Let's see this at work:

Figure 9.34 – Answer

The answer is 1000010110, which is 534. This means that (822 AND 534) = (663
AND 534).

Coding challenge 17 – Swapping odd and even bits
Adobe, Microsoft, Flipkart

Problem: Consider a positive 32-bit integer, n. Write a snippet of code that swaps the odd
and even bits of this integer.

Solution: Let's consider that n = 663 (1010010111). If we perform the swap manually,
then we should obtain 0101101011. We can do this in two steps:

1.	 We take the odd bits and shift them to the right by one position.

2.	 We take the even bits and shift them to the left by one position.

But how we can do this?

We can take the odd bits via the AND[&] operator and a bit-mask that contains bits of 1
in the odd positions: 10101010101010101010101010101010. Let's see this in action:

Figure 9.35 – Swapping odd and even bits (1)

The result reveals that 1010010111 contains the odd bits of 1 at positions 1, 7, and 9. Next,
we shift the result, 1010000010, to the right by one position. This results in 0101000001.

270 Bit Manipulation

We can take the even bits via the AND[&] operator and a bit-mask that contains bits of 1
in the even positions: 1010101010101010101010101010101. Let's see this in action:

Figure 9.36 – Swapping odd and even bits (2)

The result reveals that 1010010111 contains the even bits of 1 at positions 0, 2, and 4. Next,
we shift the result, 0000010101, to the left by one position. This results in 0000101010.

To obtain the final result, we just need to apply the OR[|] operator to these two results:

Figure 9.37 – Final result

The final result is 0101101011. The implementation follows these steps ad litteram, so this
is straightforward:

public static int swap(int n) {

 int moveToEvenPositions

 = (n & 0b10101010101010101010101010101010) >>> 1;

 int moveToOddPositions

 = (n & 0b1010101010101010101010101010101) << 1;

 return moveToEvenPositions | moveToOddPositions;

}

The complete application is called SwapOddEven.

Coding challenge 18 – Rotating bits
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider a positive 32-bit integer, n. Write a snippet of code that rotates k bits
to the left or the right. By rotation, we understand that the bits that fall off at one end of
the binary representations are sent to the other end. So, in the left rotation, the bits that
fall off the left end are sent to the right end, while in the right rotation, the bits that fall off
the right end are sent to the left end.

Coding challenges 271

Solution: Let's focus on the left rotation (typically, the right rotation solution is a mirrored
left rotation solution). We already know that by shifting k bits to the left, we move the bits
to the left and the empty spots are padded with zeros. However, in place of these zeros, we
have to put the bits that fell off the left end.

Let's consider that n= 423099897 (00011001001101111111110111111001) and k=10, so
we rotate 10 bits to the left. The following diagram highlights the falling bits and the final
result:

Figure 9.38 – Left rotating bits

The preceding diagram gives us the solution. If we look carefully at points b) and c), we
will see that the fallen bits appear in the final result. This result can be obtained by right
shifting the fallen bits by 32-10 = 22 positions.

So, if we left shift n by 10 positions, we obtain a binary representation padded with zeros
on the right-hand side (as in point b) of the preceding diagram or the dividend of the next
division). If we right shift n by 22 positions, we obtain a binary representation padded
with zeros on the left-hand side (as the divisor of the next division). At this point, the
OR[|] operator enters the scene, as shown in the following example:

Figure 9.39 – Applying the OR[|] operator

The final result of the left rotation is 11011111111101111110010001100100. Now, we can
easily put this into code, as follows:

public static int leftRotate(int n, int bits) {

 int fallBits = n << bits;

 int fallBitsShiftToRight = n >> (MAX_INT_BITS - bits);

272 Bit Manipulation

 return fallBits | fallBitsShiftToRight;

}

Now, challenge yourself by implementing the right rotation.

For the right rotation, the code will look as follows (you should be able to follow this
solution with no issues):

public static int rightRotate(int n, int bits) {

 int fallBits = n >> bits;

 int fallBitsShiftToLeft = n << (MAX_INT_BITS - bits);

 return fallBits | fallBitsShiftToLeft;

}

The complete application is called RotateBits.

Coding challenge 19 – Calculating numbers
Problem: Consider two positions, i and j (j > i), representing the positions of two bits in
a binary representation. Write a snippet of code that returns a 32-bit integer containing 1s
(set) between i (inclusive) and j (inclusive) and where the rest of the bits are 0s (unset).

Solution: Let's consider that i=3 and j=7. We know that the required 32-bit integer is 248,
or, in binary representation, 11111000 (or with all 0s, 000000000000000000000000111110
00).

If you paid attention to Coding challenge 8 – Subtracting binaries on paper, then you should
know that 0 minus 1 is an operation that can be accomplished by borrowing a bit from
the left of the current bit. The borrowing technique is propagated to the left until a bit of
1 is found. Moreover, if we remember that 1 minus 0 is 1, then we can write the following
subtraction:

Figure 9.40 – Subtraction

Coding challenges 273

Look at the result of this subtraction. The 1s are exactly between positions i=3 (inclusive)
and j=7 (inclusive). This is exactly the number that we are looking for: 248. The dividend
and the divisor are obtained by left shifting 1 by (j+1) positions and by i positions,
respectively.

With these statements in place, it is very easy to put them into code:

public static int setBetween(int left, int right) {

 return (1 << (right + 1)) - (1 << left);

}

The complete application is called NumberWithOneInLR.

Coding challenge 20 – Unique elements
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider a given array of integers, arr. Every element from this array occurs
exactly three times, except for one element, which occurs only once. This makes it unique.
Write a snippet of code that finds this unique element in O(n) complexity time and O(1)
extra space.

Solution: Let's consider that the given array is arr={4, 4, 3, 1, 7, 7, 7, 1, 1, 4}, so 3 is the
unique element. If we write the binary representation of these numbers, we obtain the
following: 100, 100, 011, 001, 111, 111, 111, 001, 001, 100. Now, let's sum up the bits at the
same positions and check whether the resulting sums are multiples of 3, as follows:

•	 Sum of first bits % 3 = 0+0+1+1+1+1+1+1+1+0 = 7 % 3 = 1

•	 Sum of second bits % 3 = 0+0+1+0+1+1+1+0+0+0 = 4 % 3 = 1

•	 Sum of third bits % 3 = 1+1+0+0+1+1+1+0+0+1 = 6 % 3 = 0

The unique number is 011 = 3.

274 Bit Manipulation

Let's take a look at another example. This time, arr={51, 14, 14, 51, 98, 7, 14, 98, 51, 98},
so 7 is the unique element. Let's apply the same logic we used previously to the binary
representation: 110011, 1110, 1110, 110011, 1100010, 111, 1110, 1100010, 110011,
1100010. This time, let's use a diagram since this makes things clearer:

Figure 9.41 – Finding the unique element in the given array

So, based on these two examples, we can elaborate the following algorithm:

1.	 Sum up the bits on the same positions.

2.	 For each sum, compute the modulus 3.

3.	 If sum % 3 = 0 (sum is a multiple of 3), this means that the bit is set in the elements
that appear thrice among the given elements.

4.	 If sum % 3 ! = 0 (sum is not a multiple of 3), this means that the bit is set in the
element that appears once (but it is not sure if that bit is unset or set in the
elements that appear thrice).

5.	 We have to repeat steps 1, 2, and 3 for all the given elements and for all the positions
of the bits. By doing this, we will get the element that appears only once, exactly as
you saw in the preceding diagram.

Coding challenges 275

The code for this is as follows:

private static final int INT_SIZE = 32;

public static int unique(int arr[]) {

 int n = arr.length;

 int result = 0;

 int nr;

 int sumBits;

 // iterate through every bit

 for (int i = 0; i < INT_SIZE; i++) {

 // compute the sum of set bits at

 // ith position in all array

 sumBits = 0;

 nr = (1 << i);

 for (int j = 0; j < n; j++) {

 if ((arr[j] & nr) == 0) {

 sumBits++;

 }

 }

 // the sum not multiple of 3 are the

 // bits of the unique number

 if ((sumBits % 3) == 0) {

 result = result | nr;

 }

 }

 return result;

}

276 Bit Manipulation

This was one approach to solving this problem. Another approach starts from the fact that
the XOR[^] operator, when applied to the same number twice, returns 0. Moreover, the
XOR[^] operator is associative (gives the same result, regardless of grouping: 1 ^ 1 ^ 2 ^
2 = 1 ^ 2 ^ 1 ^ 2 = 0) and commutative (independent of order: 1 ^ 2 = 2 ^ 1). However,
if we XOR[^] the same number three times, then the result will be the same number, so
using XOR[^] on all the numbers will not be helpful here. However, we can employ the
following algorithm:

Use a variable to note that the variable appeared for the first time.

1.	 For each new element, put the XOR[^] of it in a variable, oneAppearance.

2.	 If the element appears a second time, then it will be removed from
oneAppearance and we put the XOR[^] of it in another variable,
twoAppearances.

3.	 If the element appears a third time, then it will be removed from oneAppearance
and twoAppearances . The oneAppearance and twoAppearances variables
become 0 and we start looking for a new element.

4.	 For all the elements that appear three times, the oneAppearance and
twoAppearances variables will be 0. On the other hand, for the element that
appears only once, the oneAppearance variable will be set with that value.

In terms of code, this looks as follows:

public static int unique(int arr[]) {

 int oneAppearance = 0;

 int twoAppearances = 0;

 for (int i = 0; i < arr.length; i++) {

 twoAppearances = twoAppearances

 | (oneAppearance & arr[i]);

 oneAppearance = oneAppearance ^ arr[i];

 int neutraliser = ~(oneAppearance & twoAppearances);

 oneAppearance = oneAppearance & neutraliser;

 twoAppearances = twoAppearances & neutraliser;

 }

Coding challenges 277

 return oneAppearance;

}

The runtime of this code is O(n) with O(1) extra time. The complete application is called
OnceTwiceThrice.

Coding challenge 21 – Finding duplicates
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider that you're given an array of integers ranging from 1 to n, where n
can be, at most, 32,000. The array may contain duplicates and you don't know the value of
n. Write a snippet of code that prints all the duplicates from the given array using only 4
kilobytes (KB) of memory.

Solution: The solution should start from the fact that 4 KB of memory is the equivalent to
4 * 8 * 210 bits. Since 4 * 8 * 210 is greater than 32,000, we can create a vector of 32,000 bits
and represent each integer as 1 bit. There is no need to write our own implementation for
a vector of bits; we can simply use Java's built-in BitSet class (this class implements a
vector of bits that grows as needed).

With a BitSet, we can iterate the given array and, for each traversed element, flip the bit
from the corresponding index from 0 to 1. If we attempt to flip a bit that is already 1, then
we find and print a duplicate. The code for this is quite simple:

 private static final int MAX_N = 32000;

 public static void printDuplicates(int[] arr) {

 BitSet bitArr = new BitSet(MAX_N);

 for (int i = 0; i < arr.length; i++) {

 int nr = arr[i];

 if (bitArr.get(nr)) {

 System.out.println("Duplicate: " + nr);

 } else {

 bitArr.set(nr);

 }

 }

 }

278 Bit Manipulation

The complete application is called FindDuplicates.

Coding challenge 22 – Two non-repeating elements
Amazon, Google, Adobe

Problem: Consider that you're given an array of integers containing 2n+2 elements. The
2n elements are n elements repeated once. So, each element in 2n appears twice in the
given array. The remaining two elements appear only once. Write a snippet of code that
finds these two elements.

Solution: Let's consider that the given array is arr={2, 7, 1, 5, 9, 4, 1, 2, 5, 4}. The two
numbers that we are looking for are 7 and 9. These two numbers appear only once in the
array, while 2, 1, 5, and 4 appear twice.

If we consider the brute-force approach, then it is quite intuitive to iterate the array
and check the number of occurrences for each element. But the interviewer will not be
impressed by this solution since its runtime is O(n2).

Another approach consists of sorting the given array. This way, the repeated elements
are grouped together so that we can count the number of occurrences for each group.
The group of size 1 represents a non-repeated value. It is good to mention this approach
during the process of finding a better solution.

A better solution relies on hashing. Create a Map<Element, Count> and fill it with
elements and the number of occurrences (for example, for our data, we will have the
following pairs: (2, 2), (7, 1), (1, 2), (5, 2), (9, 1), and (4, 2)). Now, traverse the map and
locate the elements whose count is 1. It is good to mention this approach during the
process of finding a better solution.

In this chapter, we are dealing with bits, so the best solution should rely on bit
manipulation. This solution relies on the XOR[^] operator and a tip that we mentioned
in the Tips and tricks section:

•	 If we XOR[^] a number with itself for an even number of times, then the result is
as follows 0 (x ^ x = 0; x ^ x ^ x^ x = (x ^ x) ^ (x ^ x) = 0 ^ 0 = 0)

On the other hand, if we apply the XOR[^] operator to two different numbers, p and
q, then the result is a number that contains the set of bits (bits of 1) at the places where
p and q differ. This means that if we apply XOR[^] to all the elements in the array (xor
= arr[0]^arr[1]^arr[2] ^ ... ^ arr[arr.length-1]), then all the repeating elements would
nullify each other.

Coding challenges 279

So, if we take any set bit (for example, the rightmost bit) of the result of XOR[^] and
divide the elements of the array into two sets, then one set will contain elements with the
same bit set and the other set will contain elements with the same bit not set. In other
words, we divide the elements into two sets by comparing the rightmost set bit of XOR[^]
with the bit at the same position in each element. By doing so, we will get p in one set and
q in the other set.

Now, if we apply the XOR[^] operator to all the elements in the first set, then we will
get the first non-repeating element. Doing the same in the other set will get the second
non-repeating element.

Let's apply this flow to our data, arr={2, 7, 1, 5, 9, 4, 1, 2, 5, 4}. So, 7 and 9 are the
non-repeating values. First, we apply the XOR[^] operator to all the numbers:

xor = 2 ^ 7 ^ 1 ^ 5 ^ 9 ^ 4 ^ 1 ^ 2 ^ 5 ^ 4 = 0010 (2) ^ 0111 (7) ^ 0001 (1) ^ 0101 (5) ^
1001 (9) ^ 0100 (4) ^ 0001 (1) ^ 0010 (2) ^ 0101 (5) ^ 0100 (4) = 1110 = 7 ^ 9 = 0111 &
1001 = 1110 = 14.

So, 7 ^ 9 ! = 0 if 7 ! = 9. Hence, there will be at least one set bit (at least one bit of 1). We
can take any set bit, but it is quite simple to take the rightmost bit as xor & ~(xor-1). So,
we have 1110 & ~(1101) = 1110 & 0010 = 0010. Feel free to take any other set bit.

So far, we found this set bit (0010) in XOR[^] of these two numbers (7 and 9), so this bit
must be present in 7 or 9 (in this case, it is present in 7). Next, let's divide the elements
into two sets by comparing the rightmost set bit of XOR[^] with the bit at the same
position in each element. We obtain the first set, containing the elements {2, 7, 2}, and the
second set, containing the elements {1, 5, 9, 4, 1, 5, 4}. Since 2, 7, and 2 contain the set bit,
they are in the first set, while 1, 5, 9, 4, 1, 5, and 4 don't contain the set bit, which means
they are part of the second set.

With that, we've isolated the first non-repeated element (7) in a set and put the second
non-repeated element (9) in the other set. Moreover, each repeated element will be in the
same set of bit representations (for example, {2, 2} will always be in the same set).

Finally, we apply XOR[^] to each set. So, we have xor_first_set = 2 ^ 7 ^ 2 = 010 ^ 111 ^
010 = 111 = 7 (the first non-repeated element).

For the second set, we have:

xor_second_set = 1 ^ 5 ^ 9 ^ 4 ^ 1 ^ 5 ^ 4 = 0001 ^ 0101 ^ 1001 ^ 0100 ^ 0001 ^ 0101 ^
0100 = 1001 = 9 (the second non-repeated element).

Done!

280 Bit Manipulation

In terms of code, we have the following:

public static void findNonRepeatable(int arr[]) {

 // get the XOR[^] of all elements in the given array

 int xor = arr[0];

 for (int i = 1; i < arr.length; i++) {

 xor ^= arr[i];

 }

 // get the rightmost set bit (you can use any other set bit)

 int setBitNo = xor & ~(xor - 1);

 // divide the elements in two sets by comparing the

 // rightmost set bit of XOR[^] with the bit at the same

 // position in each element

 int p = 0;

 int q = 0;

 for (int i = 0; i < arr.length; i++) {

 if ((arr[i] & setBitNo) != 0) {

 // xor of the first set

 p = p ^ arr[i];

 } else {

 // xor of the second set

 q = q ^ arr[i];

 }

 }

 System.out.println("The numbers are: " + p + " and " + q);

}

The runtime of this code is O(n) with an O(1) auxiliary space (n is the number of
elements from the given array). The complete application is called TwoNonRepeating.

Coding challenges 281

Coding challenge 23 – Power set of a set
Amazon, Google, Adobe

Problem: Consider a given set, S. Write a snippet of code that returns the Power Set of S.
A Power Set, P(S), of a set, S, is the set of all possible subsets of S, including the empty set
and S itself.

Solution: Consider that the given S is {a, b, c}. If so, the Power Set includes {}, {a}, {b}, {c},
{a, b}, {a, c}, {a, c} and {a, b, c}. Notice that for a set containing three elements, the
Power Set contains 23=8 elements. For a set containing four elements, the Power Set
contains 24=16 elements. Generally speaking, for a set of n elements, the Power Set
contains 2n elements.

Now, if we generate all the binary numbers from 0 to 2n-1, then we obtain something
similar to the following (this example is for 23-1):

20=000, 21=001, 22=010, 23=011, 24=100, 25=101, 26=110, 27=111

Next, if we list these binaries and we consider that the first set bit (rightmost bit) is
associated with a, the second set bit is associated with b, and the third set bit (the leftmost
bit) is associated with c, then we obtain the following:

20 = 000 = {}

21 = 001 = {a}

22 = 010 = {b}

23 = 011 = {a, b}

24 = 100 = {c}

25 = 101 = {a, c}

26 = 110 = {b, c}

27 = 111 = {a, b, c}

Notice that if we replace the bits of 1 with a, b, and c, then we obtain the Power Set of the
given set. Based on these statements, we can create the following pseudo-code for the
given set, S:

Compute the Power Set size as 2 size of S

Iterate via i from 0 to Power Set size

 Iterate via j from 0 to size of S

 If jth bit in i is set then

282 Bit Manipulation

 Add jth element from set to current subset

 Add the resulted subset to subsets

Return all subsets

So, a solution to this problem can be written as follows:

public static Set<Set<Character>> powerSet(char[] set) {

 // total number of subsets (2^n)

 long subsetsNo = (long) Math.pow(2, set.length);

 // store subsets

 Set<Set<Character>> subsets = new HashSet<>();

 // generate each subset one by one

 for (int i = 0; i < subsetsNo; i++) {

 Set<Character> subset = new HashSet<>();

 // check every bit of i

 for (int j = 0; j < set.length; j++) {

 // if j'th bit of i is set,

 // add set[j] to the current subset

 if ((i & (1 << j)) != 0) {

 subset.add(set[j]);

 }

 }

 subsets.add(subset);

 }

 return subsets;

}

The complete code is called PowerSetOfSet.

Coding challenges 283

Coding challenge 24 – Finding the position of the only
set bit
Adobe, Microsoft

Problem: Consider a positive integer, n. The binary representation of this number has a
single bit set (a single bit of 1). Write a snippet of code that returns the position of this bit.

Solution: The problem itself give us an important detail or constraint: the given number
contains a single bit of 1. This means that the given number must be a power of 2. Only
20, 21, 22, 23, 24, 25, ..., 2n have binary representations containing a single bit of 1. All other
numbers contain 0 or multiple values of 1.

An n & (n-1) formula can tell us whether the given number is a power of two. Check out
the following diagram:

Figure 9.42 – The n & (n-1) formula gives us the powers of two

So, the numbers 0, 1, 2, 8, 16, ... have their binary representation of n & (n-1) as 0000. So
far, we can say that the given number is a power of two. If it is not, then we can return -1
since there is no bit of 1 or there are multiple bits of 1.

Next, we can shift n to the right as long as n is not 0 while tracking the number of shifts.
When n is 0, this means we've shifted the single bit of 1, so we can stop and return the
counted shifts. Based on these statements, the code for this is quite simple:

public static int findPosition(int n) {

 int count = 0;

 if (!isPowerOfTwo(n)) {

 return -1;

284 Bit Manipulation

 }

 while (n != 0) {

 n = n >> 1;

 ++count;

 }

 return count;

}

private static boolean isPowerOfTwo(int n) {

 return (n > 0) && ((n & (n - 1)) == 0);

}

The complete code is called PositionOfFirstBitOfOne.

Coding challenge 25 – Converting a float into binary
and vice versa
Problem: Consider a Java float number, n. Write a snippet of code that converts this
float into an IEEE 754 single-precision binary floating-point (binary-32) and vice versa.

Solution: To solve this problem, it is important to know that Java uses IEEE 754 single-
precision binary floating-point representation for float numbers. The IEEE 754
standard specifies a binary-32 as having the sign bit (1 bit), exponent width (8 bits that can
represent 256 values), and significant precision (24 bits (23 explicitly stored)), also known
as the mantissa.

The following diagram represents a binary-32 in the IEEE 754 standard:

Figure 9.43 – IEEE 754 single-precision binary floating-point (binary 32)

Summary 285

The float value, when represented by the 32-bit binary data with a given sign, biased
exponent, e, (the 8-bit unsigned integer), and a 23-bit fraction, is as follows:

Figure 9.44 – Float value

The exponent stored on 8 bits uses values from 0 to 127 to represent negative exponents
(for example, 2-3) and uses the values from 128-255 for positive exponents. A negative
exponent of 10-7 would have a value of -7+127=120. The 127 value is known as the
exponent bias.

With this information, you should be able to convert a float number into the IEEE 754
binary-32 representation and vice versa. Before checking the source code for this, called
FloatToBinaryAndBack, try using your own implementation.

This was the last coding challenge of this chapter. Let's quickly summarize it!

Summary
Since this chapter is a comprehensive resource for bit manipulation, then if you got this
far, you've seriously boosted your bit manipulation skills. We covered the main theoretical
aspects and solved 25 coding challenges in order to help you learn patterns and templates
for solving bit manipulation problems.

In the next chapter, we'll continue our journey with arrays and strings.

Section 3:
Algorithms and Data

Structures

One of the climaxes of a technical interview is represented by the questions that are meant
to discover your skills in the field of algorithms and data structures. Commonly, special
attention is given to the problems in this area. This is perfectly understandable since
algorithms and data structures are used in the various daily tasks of a Java developer.

This section comprises the following chapters:

•	 Chapter 10, Arrays and Strings

•	 Chapter 11, Linked Lists and Maps

•	 Chapter 12, Stacks and Queues

•	 Chapter 13, Trees and Graphs

•	 Chapter 14, Sorting and Searching

•	 Chapter 15, Mathematics and Puzzles

10
Arrays and Strings

This chapter covers a wide range of problems involving strings and arrays. Since Java
strings and arrays are common topics for developers, I will briefly introduce them via
several headlines that you must remember. However, if you need to deep dive into this
topic, then consider the official Java documentation (https://docs.oracle.com/
javase/tutorial/java/).

By the end of this chapter, you should be able to tackle any problem involving Java strings
and/or arrays. It is highly likely that they will show up in a technical interview. So, the
topics that will be covered in this chapter are pretty short and clear:

•	 Arrays and strings in a nutshell

•	 Coding challenges

Let's start with a quick recap of strings and arrays.

Technical requirements
All the code present in this chapter can be found on GitHub at https://github.com/
PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/
tree/master/Chapter10.

https://docs.oracle.com/javase/tutorial/java/
https://docs.oracle.com/javase/tutorial/java/
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter10
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter10
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter10

290 Arrays and Strings

Arrays and strings in a nutshell
In Java, arrays are objects and are dynamically created. Arrays can be assigned to variables
of the Object type. They can have a single dimension (for example, m[]) or multiple
dimensions (for example, as a three-dimensional array, m[][][]). The elements of an
array are stored starting with index 0, so an array of length n stores its elements between
indexes 0 and n-1 (inclusive). Once an array object is created, its length never changes.
Arrays cannot be immutable except for the useless array of length 0 (for example,
String[] immutable = new String[0]).

In Java, strings are immutable (String is immutable). A string can contain ASCII
characters (unprintable control codes between 0-31, printable characters between
32-127, and extended ASCII codes between 128-255) and Unicode characters. Unicode
characters less than 65,535 (0xFFFF) are represented in Java using the 16-bit char data
type (for example, calling charAt(int index) works as expected – index is the
index varying from 0 to string length - 1). Unicode characters that exceed 65,535 until
1,114,111 (0x10FFFF) don't fit into 16 bits (Java char). They are stored as 32-bit integer
values (known as code points). This aspect is detailed in the Coding challenge 7 – Extracting
code points of surrogate pairs section.

A very useful class for manipulating strings is StringBuilder (and the thread-safe
StringBuffer).

Now, let's look at some coding challenges.

Coding challenges
In the following 29 coding challenges, we'll tackle a set of popular problems encountered
in Java technical interviews done by medium to large companies (including Google,
Amazon, Flipkart, Adobe, and Microsoft). Besides these 29 coding challenges (discussed
in this book), you may like to check out the following non-exhaustive list of strings
and arrays coding challenges that you can find in my other book, Java Coding Problems
(https://www.amazon.com/gp/product/1789801419/), published by Packt
as well:

•	 Counting duplicate characters

•	 Finding the first non-repeated character

•	 Reversing letters and words

•	 Checking whether a string contains only digits

•	 Counting vowels and consonants

https://www.amazon.com/gp/product/1789801419/

Coding challenges 291

•	 Counting the occurrences of a certain character

•	 Removing white spaces from a string

•	 Joining multiple strings with a delimiter

•	 Checking whether a string is a palindrome

•	 Removing duplicate characters

•	 Removing a given character

•	 Finding the character with the most appearances

•	 Sorting an array of strings by length

•	 Checking that a string contains a substring

•	 Counting substring occurrences in a string

•	 Checking whether two strings are anagrams

•	 Declaring multiline strings (text blocks)

•	 Concatenating the same string n times

•	 Removing leading and trailing spaces

•	 Finding the longest common prefix

•	 Applying indentation

•	 Transforming strings

•	 Sorting an array

•	 Finding an element in an array

•	 Checking whether two arrays are equal or mismatched

•	 Comparing two arrays lexicographically

•	 Minimum, maximum, and average of an array

•	 Reversing an array

•	 Filling and setting an array

•	 Next greater element

•	 Changing array size

The 29 coding challenges tackled in this chapter are not covered in the preceding
challenges and vice versa.

292 Arrays and Strings

Coding challenge 1 – Unique characters (1)
Google, Adobe, Microsoft

Problem: Consider a string that can contain ASCII and Unicode characters ranging
between 0-65,535. Write a snippet of code that returns true if this string contains unique
characters. The whitespaces can be ignored.

Solution: Let's consider the following three valid given strings:

Figure 10.1 – Strings

First of all, it is important to know that we can fetch any character between 0 and 65,535
via the charAt(int index) method (index is the index varying from 0 to string
length – 1) because these characters are represented in Java using the 16-bit char
data type.

A simple solution to this problem consists of using a Map<Character, Boolean>.
While we loop the characters of the given string via the charAt(int index) method,
we try to put the character from index into this map and flip the corresponding
boolean value from false to true. The Map#put(K k, V v) method returns
null if there was no mapping for the given key (character). If there is a mapping for
the given key (character), then Map#put(K k, V v) returns the previous value
(in our case, true) associated with this key. So, when the returned value is not null,
we can conclude that at least one character is duplicated, so we can say that the given
string doesn't contain unique characters.

Coding challenges 293

Moreover, before trying to put a character in the map, we ensure that its code ranges
between 0 and 65,535 via String#codePointAt(index i). This method returns the
Unicode character at the specified index as an int, which is known as the code point.
Let's see the code:

private static final int MAX_CODE = 65535;

...

public static boolean isUnique(String str) {

 Map<Character, Boolean> chars = new HashMap<>();

 // or use, for(char ch : str.toCharArray()) { ... }

 for (int i = 0; i < str.length(); i++) {

 if (str.codePointAt(i) <= MAX_CODE) {

 char ch = str.charAt(i);

 if (!Character.isWhitespace(ch)) {

 if (chars.put(ch, true) != null) {

 return false;

 }

 }

 } else {

 System.out.println("The given string

 contains unallowed characters");

 return false;

 }

 }

 return true;

}

The complete application is called UniqueCharacters.

294 Arrays and Strings

Coding challenge 2 – Unique characters (2)
Google, Adobe, Microsoft

Problem: Consider a string that can contain only characters from a-z. Write a snippet of
code that returns true if this string contains unique characters. The whitespaces can be
ignored.

Solution: The solution presented in the preceding coding challenge covers this case as
well. However, let's try to come up with a solution specific to this case. The given string
can contain only characters from a-z, so it can only contain ASCII codes from 97(a) to
122(z). Let's consider that the given string is afghnqrsuz.

If we recall our experience from Chapter 9, Bit Manipulation, then we can think of a bit
mask that covers a-z letters with bits of 1, as shown in the following figure (the bits of 1
correspond to the letters of our string, afghnqrsuz):

Figure 10.2 – Unique characters bit mask

If we represent each letter from a-z as a bit of 1, then we obtain a bit mask of the
unique characters, similar to the one shown in the preceding image. Initially, this
bit mask contains only 0s (since no letter has been processed, we have all bits equal to 0
or they're unset).

Next, we peek at the first letter from the given string and we compute the subtraction
between its ASCII code and 97 (the ASCII code of a). Let's denote this with s. Now, we
create another bit mask by left shifting 1 by s positions. This will result in a bit mask that
has the MSB of 1 followed by s bits of 0 (1000...). Next, we can apply the AND[&] operator
between the bit mask of unique characters (which is initially 0000...) and this bit mask
(1000...). The result will be 0000... since 0 & 1 = 0. This is the expected result since this
is the first processed letter, so there are no letters being flipped in the bit mask of unique
characters.

Coding challenges 295

Next, we update the unique character's bit mask by flipping the bit from position s from 0
to 1. This is done via the OR[|] operator. Now, the bit mask of unique characters is 1000....
There is a single bit of 1 since we flipped a single bit; that is, the one corresponding to the
first letter.

Finally, we repeat this process for each letter of the given string. If you encounter a
duplicate, then the AND[&] operation between the bit mask of unique characters and the
1000... mask corresponding to the currently processed letter will return 1 (1 & 1 = 1). If
this happens, then we have found a duplicate, so we can return it.

In terms of code, we have the following:

private static final char A_CHAR = 'a';

...

public static boolean isUnique(String str) {

 int marker = 0;

 for (int i = 0; i < str.length(); i++) {

 int s = str.charAt(i) - A_CHAR;

 int mask = 1 << s;

 if ((marker & mask) > 0) {

 return false;

 }

 marker = marker | mask;

 }

 return true;

}

The complete application is called UniqueCharactersAZ.

296 Arrays and Strings

Coding challenge 3 – Encoding strings
Problem: Consider a string given as a char[], str. Write a snippet of code that
replaces all whitespaces with a sequence, %20. The resulting string should be returned
as a char[].

Solution: Consider that the given char[] represents the following string:

char[] str = " String with spaces ".toCharArray();

The expected result is %20%20String%20%20%20with%20spaces%20%20.

We can solve this problem in three steps:

1.	 We count the number of whitespaces in the given char[].

2.	 Next, create a new char[] that's the size of the initial char[], str, plus the
number of whitespaces multiplied by 2 (a single whitespace occupies one element
in the given char[], while the %20 sequences will occupy three elements in the
resulting char[]).

3.	 Lastly, we loop the given char[] and create the resulting char[].

In terms of code, we have the following:

public static char[] encodeWhitespaces(char[] str) {

 // count whitespaces (step 1)

 int countWhitespaces = 0;

 for (int i = 0; i < str.length; i++) {

 if (Character.isWhitespace(str[i])) {

 countWhitespaces++;

 }

 }

 if (countWhitespaces > 0) {

 // create the encoded char[] (step 2)

 char[] encodedStr = new char[str.length

 + countWhitespaces * 2];

 // populate the encoded char[] (step 3)

Coding challenges 297

 int index = 0;

 for (int i = 0; i < str.length; i++) {

 if (Character.isWhitespace(str[i])) {

 encodedStr[index] = '0';

 encodedStr[index + 1] = '2';

 encodedStr[index + 2] = '%';

 index = index + 3;

 } else {

 encodedStr[index] = str[i];

 index++;

 }

 }

 return encodedStr;

 }

 return str;

}

The complete application is called EncodedString.

Coding challenge 4 – One edit away
Google, Microsoft

Problem: Consider two given strings, q and p. Write a snippet of code that determines
whether we can obtain two identical strings by performing a single edit in q or p. More
precisely, we can insert, remove, or replace a single character in q or in p, and q will
become equal to p.

Solution: To better understand the requirements, let's consider several examples:

•	 tank, tanc 	 One edit: Replace k with c (or vice versa)

•	 tnk, tank 	 One edit: Insert a in tnk between t and n or remove a from tank

•	 tank, tinck	 More than one edit is needed!

•	 tank, tankist	 More than one edit is needed!

298 Arrays and Strings

By inspecting these examples, we can conclude that we are one edit away if the
following occurs:

•	 The difference in length between q and p is not bigger than 1

•	 q and p are different in a single place

We can easily check the difference in length between q and p as follows:

if (Math.abs(q.length() - p.length()) > 1) {

 return false;

}

To find out whether q and p are different in a single place, we have to compare each
character from q with each character from p. If we find more than one difference, then
we return false; otherwise, we return true. Let's see this in terms of code:

public static boolean isOneEditAway(String q, String p) {

 // if the difference between the strings is bigger than 1

 // then they are at more than one edit away

 if (Math.abs(q.length() - p.length()) > 1) {

 return false;

 }

 // get shorter and longer string

 String shorter = q.length() < p.length() ? q : p;

 String longer = q.length() < p.length() ? p : q;

 int is = 0;

 int il = 0;

 boolean marker = false;

 while (is < shorter.length() && il < longer.length()) {

 if (shorter.charAt(is) != longer.charAt(il)) {

 // first difference was found

 // at the second difference we return false

 if (marker) {

 return false;

Coding challenges 299

 }

 marker = true;

 if (shorter.length() == longer.length()) {

 is++;

 }

 } else {

 is++;

 }

 il++;

 }

 return true;

}

The complete application is called OneEditAway.

Coding challenge 5 – Shrinking a string
Problem: Consider a given string containing only letters a-z and whitespaces. This string
contains a lot of consecutive repeated characters. Write a snippet of code that shrinks this
string by counting the consecutive repeated characters and creating another string that
appends each character and the number of consecutive occurrences. The whitespaces
should be copied in the resulting string as they are (don't shrink the whitespaces). If the
resulting string is not shorter than the given string, then return the given string.

Solution: Consider that the given string is abbb vvvv s rttt rr eeee f. The expected result
will be a1b3 v4 s1 r1t3 r2 e4 f1. To count the consecutive characters, we need to loop this
string character by character:

•	 If the current character and the next character are the same, then we increment a
counter.

•	 If the next character is different from the current character, then we append the
current character and the counter value to the final result, and we reset the counter
to 0.

300 Arrays and Strings

•	 In the end, after processing all the characters from the given string, we compare
the length of the result with the length of the given string and we return the
shortest string.

In terms of code, we have the following:

public static String shrink(String str) {

 StringBuilder result = new StringBuilder();

 int count = 0;

 for (int i = 0; i < str.length(); i++) {

 count++;

 // we don't count whitespaces, we just copy them

 if (!Character.isWhitespace(str.charAt(i))) {

 // if there are no more characters

 // or the next character is different

 // from the counted one

 if ((i + 1) >= str.length()

 || str.charAt(i) != str.charAt(i + 1)) {

 // append to the final result the counted character

 // and number of consecutive occurrences

 result.append(str.charAt(i))

 .append(count);

 // reset the counter since this

 // sequence was appended to the result

 count = 0;

 }

 } else {

 result.append(str.charAt(i));

 count = 0;

 }

Coding challenges 301

 }

 // return the result only if it is

 // shorter than the given string

 return result.length() > str.length()

 ? str : result.toString();

}

The complete application is called StringShrinker.

Coding challenge 6 – Extracting integers
Problem: Consider a given string containing whitespaces and a-z and 0-9 characters.
Write a snippet of code that extracts integers from this string. You can assume that any
sequence of consecutive digits forms a valid integer.

Solution: Consider that the given string is cv dd 4 k 2321 2 11 k4k2 66 4d. The expected
result will contain the following integers: 4, 2321, 2, 11, 4, 2, 66, and 4.

A straightforward solution will loop the given string character by character and
concatenate sequences of consecutive digits. A digit contains ASCII code between 48
(inclusive) and 97 (inclusive). So, any character whose ASCII code is in the range [48,
97] is a digit. We can also use the Character#isDigit(char ch) method. When a
sequence of consecutive digits is interrupted by a non-digit character, we can convert the
harvested sequence into an integer and append it as a list of integers. Let's see this in terms
of code:

public static List<Integer> extract(String str) {

 List<Integer> result = new ArrayList<>();

 StringBuilder temp = new StringBuilder(

 String.valueOf(Integer.MAX_VALUE).length());

 for (int i = 0; i < str.length(); i++) {

 char ch = str.charAt(i);

 // or, if (((int) ch) >= 48 && ((int) ch) <= 57)

 if (Character.isDigit(ch)) {

 temp.append(ch);

302 Arrays and Strings

 } else {

 if (temp.length() > 0) {

 result.add(Integer.parseInt(temp.toString()));

 temp.delete(0, temp.length());

 }

 }

 }

 return result;

}

The complete application is called ExtractIntegers.

Coding challenge 7 – Extracting the code points of
surrogate pairs
Problem: Consider a given string containing any kind of characters, including Unicode
characters, that are represented in Java as surrogate pairs. Write a snippet of code that
extracts the code points of the surrogate pairs in a list.

Solution: Let's consider that the given string contains the Unicode characters shown in
the following image (the first three Unicode characters are represented in Java as surrogate
pairs, while the last one is not):

Figure 10.3 – Unicode characters (surrogate pairs)

Coding challenges 303

In Java, we can write such a string as follows:

char[] musicalScore = new char[]{'\uD83C', '\uDFBC'};

char[] smileyFace = new char[]{'\uD83D', '\uDE0D'};

char[] twoHearts = new char[]{'\uD83D', '\uDC95'};

char[] cyrillicZhe = new char[]{'\u04DC'};

String str = "is" + String.valueOf(cyrillicZhe) + "zhe"

 + String.valueOf(twoHearts) + "two hearts"

 + String.valueOf(smileyFace) + "smiley face and, "

 + String.valueOf(musicalScore) + "musical score";

To solve this problem, we must know several things, as follows (it is advisable to keep
the following statements in mind since they are vital for solving problems that involve
Unicode characters):

•	 Unicode characters that exceed 65,535 until 1,114,111 (0x10FFFF) don't fit into 16
bits, and so 32-bit values (known as code points) were considered for the UTF-32
encoding scheme.

Unfortunately, Java doesn't support UTF-32! Nevertheless, Unicode has come up
with a solution for still using 16 bits to represent these characters. This solution
implies the following:
•	 16-bit high surrogates: 1,024 values (U+D800 to U+DBFF)

•	 16-bit low surrogates: 1,024 values (U+DC00 to U+DFFF)

•	 Now, a high surrogate followed by a low surrogate defines what is known as a
surrogate pair. These surrogate pairs are used to represent values between 65,536
(0x10000) and 1,114,111 (0x10FFFF).

•	 Java takes advantage of this representation and exposes it via a suite of methods,
such as codePointAt(), codePoints(), codePointCount(), and
offsetByCodePoints() (take a look at the Java documentation for details).

•	 Calling codePointAt() instead of charAt(), codePoints() instead of
chars(), and so on helps us write solutions that cover ASCII and Unicode
characters as well.

304 Arrays and Strings

For example, the well-known two-hearts symbol (first symbol in the preceding image)
is a Unicode surrogate pair that can be represented as a char[] containing two values:
\uD83D and \uDC95. The code point of this symbol is 128149. To obtain a String object
from this code point, call the following:

String str = String.valueOf(Character.toChars(128149));

Counting the code points in str can be done by calling str.
codePointCount(0,str.length()), which returns 1, even if the str length is 2.
Calling str.codePointAt(0) returns 128149, while calling str.codePointAt(1)
returns 56469. Calling Character.toChars(128149).length returns 2 since two
characters are needed to represent this code point as a Unicode surrogate pair. For ASCII
and Unicode 16-bit characters, it will return 1.

Based on this example, we can identify a surrogate pair quite easily, as follows:

public static List<Integer> extract(String str) {

 List<Integer> result = new ArrayList<>();

 for (int i = 0; i < str.length(); i++) {

 int cp = str.codePointAt(i);

 if (i < str.length()-1

 && str.codePointCount(i, i+2) == 1) {

 result.add(cp);

 result.add(str.codePointAt(i+1));

 i++;

 }

 }

 return result;

}

Or, like this:

public static List<Integer> extract(String str) {

 List<Integer> result = new ArrayList<>();

Coding challenges 305

 for (int i = 0; i < str.length(); i++) {

 int cp = str.codePointAt(i);

 // the constant 2 means a suroggate pair

 if (Character.charCount(cp) == 2) {

 result.add(cp);

 result.add(str.codePointAt(i+1));

 i++;

 }

 }

 return result;

}

The complete application is called ExtractSurrogatePairs.

Coding challenge 8 – Is rotation
Amazon, Google, Adobe, Microsoft

Problem: Consider two given strings, str1 and str2. Write a single line of code that tell us
whether str2 is a rotation of str1.

Solution: Let's consider that str1 is helloworld and str2 is orldhellow. Since str2 is a rotation
of str1, we can say that str2 is obtained by cutting str1 into two parts and rearranging
them. The following image shows these words:

Figure 10.4 – Cutting str1 into two parts and rearranging them

306 Arrays and Strings

So, based on this image, let's denote the left-hand side of the scissor as p1 and the right-
hand side of the scissor as p2. With these notations, we can say that p1 = hellow and p2
= orld. Moreover, we can say that str1 = p1+p2 = hellow + orld and str2 = p2+p1 = orld +
hellow. So, no matter where we perform the cut of str1, we can say that str1 = p1+p2 and
str2=p2+p1. However, this means that str1+str2 = p1+p2+p2+p1 = hellow + orld + orld +
hellow = p1+p2+p1+p2 = str1 + str1, so p2+p1 is a substring of p1+p2+p1+p2. In other
words, str2 must be a substring of str1+str1; otherwise, it cannot be a rotation of str1. In
terms of code, we can write the following:

public static boolean isRotation(String str1, String str2) {

 return (str1 + str1).matches("(?i).*"

 + Pattern.quote(str2) + ".*");

}

The complete code is called RotateString.

Coding challenge 9 – Rotating a matrix by 90 degrees
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider a given n x n matrix of integers, M. Write a snippet of code that rotates
this matrix by 90 degrees in a counterclockwise direction without using any extra space.

Solution: There are at least two solutions to this problem. One solution relies on the
transpose of a matrix, while the other one relies on rotating the matrix ring by ring.

Using the matrix transpose
Let's tackle the first solution, which relies on finding the transpose of the matrix, M. The
transpose of a matrix is a notion from linear algebra that means we need to flip a matrix
over its main diagonal, which results in a new matrix denoted as MT. For example, having
the matrix M and indices i and j, we can write the following relationship:

Figure 10.5 – Matrix transpose relationship

Once we've obtained the transpose of M, we can reverse the columns of the transpose.
This will give us the final result (the matrix M rotated by 90 degrees counterclockwise).
The following image clarifies this relationship for a 5x5 matrix:

Coding challenges 307

Figure 10.6 – The transpose of a matrix on the left and the final result on the right

To obtain the transpose (MT), we can swap M[j][i] with M[i][j] via the following method:

private static void transpose(int m[][]) {

 for (int i = 0; i < m.length; i++) {

 for (int j = i; j < m[0].length; j++) {

 int temp = m[j][i];

 m[j][i] = m[i][j];

 m[i][j] = temp;

 }

 }

}

Reversing the columns of MT can be done like so:

public static boolean rotateWithTranspose(int m[][]) {

 transpose(m);

 for (int i = 0; i < m[0].length; i++) {

 for (int j = 0, k = m[0].length - 1; j < k; j++, k--) {

 int temp = m[j][i];

 m[j][i] = m[k][i];

 m[k][i] = temp;

 }

 }

 return true;

}

308 Arrays and Strings

This solution has a time complexity of O(n2) and a space complexity of O(1), so we respect
the problem requirements. Now, let's look at another solution to this problem.

Rotating the matrix ring by ring
If we think of a matrix as a set of concentric rings, then we can try to rotate each ring
until the entire matrix is rotated. The following image is a visualization of this process
for a 5x5 matrix:

Figure 10.7 – Rotating a matrix ring by ring

We can start from the outermost ring and eventually work our way inward. To rotate the
outermost ring, we swap index by index, starting from the top, (0, 0). This way, we move
the right edge in place of the top edge, the bottom edge in place of the right edge, the left
edge in place of the bottom edge, and the top edge in place of the left edge. When this
process is done, the outermost ring is rotated by 90 degrees counterclockwise. We can
continue with the second ring, starting from index (1, 1), and repeat this process until
we rotate the second ring. Let's see this in terms of code:

public static boolean rotateRing(int[][] m) {

 int len = m.length;

 // rotate counterclockwise

 for (int i = 0; i < len / 2; i++) {

 for (int j = i; j < len - i - 1; j++) {

 int temp = m[i][j];

 // right -> top

Coding challenges 309

 m[i][j] = m[j][len - 1 - i];

 // bottom -> right

 m[j][len - 1 - i] = m[len - 1 - i][len - 1 - j];

 // left -> bottom

 m[len - 1 - i][len - 1 - j] = m[len - 1 - j][i];

 // top -> left

 m[len - 1 - j][i] = temp;

 }

 }

 return true;

 }

This solution has a time complexity of O(n2) and a space complexity of O(1), so we have
respected the problem's requirements.

The complete application is called RotateMatrix. It also contains the solution for rotating
the matrix 90 degrees clockwise. Moreover, it contains the solution for rotating the given
matrix in a separate matrix.

Coding challenge 10 – Matrix containing zeros
Google, Adobe

Problem: Consider a given n x m matrix of integers, M. If M(i, j) is equal to 0, then
the entire row, i, and column, j, should contain only zeros. Write a snippet of code that
accomplishes this task without using any extra space.

Solution: A naive approach consists of looping the matrix and for each (i, j) = 0, setting
the row, i, and column, j, to zero. The problem is that when we traverse the cells of this
row/column, we will find zeros and apply the same logic again. There is a big chance that
we will end up with a matrix of zeros.

310 Arrays and Strings

To avoid such naive approaches, it is better to take an example and try to visualize the
solution. Let's consider a 5x8 matrix, as shown in the following image:

Figure 10.8 – Matrix containing zeros

The initial matrix has a 0 at (0, 4) and another one at (2, 6). This means that the solved
matrix should contains only zeros on rows 0 and 2 and on columns 4 and 6.

An easy-to-implement approach would be storing the locations of the zeros and, at a second
traversal of the matrix, set the corresponding rows and columns to zero. However, storing
the zeros means using some extra space, and this is not allowed by the problem.

Tip
With a little trick and some work, we can keep the space complexity set to
O(1). The trick consists of using the first row and column of the matrix to mark
the zeros found in the rest of the matrix. For example, if we find a zero at cell
(i, j) with i≠0 and j≠0, then we set M[i][0] = 0 and M[0][j] = 0. Once we've
done that for the entire matrix, we can loop the first column (column 0) and
propagate each zero that's found on the row. After that, we can loop the first
row (row 0) and propagate each zero that's found on the column.

But how about the potential initial zeros of the first row and column? Of course, we have
to tackle this aspect as well, so we start by flagging whether the first row/column contains
at least one 0:

boolean firstRowHasZeros = false;

boolean firstColumnHasZeros = false;

Coding challenges 311

// Search at least a zero on first row

for (int j = 0; j < m[0].length; j++) {

 if (m[0][j] == 0) {

 firstRowHasZeros = true;

 break;

 }

}

// Search at least a zero on first column

for (int i = 0; i < m.length; i++) {

 if (m[i][0] == 0) {

 firstColumnHasZeros = true;

 break;

 }

}

Furthermore, we apply what we've just said. To do this, we loop the rest of the matrix, and
for each 0, we mark it on the first row and column:

// Search all zeros in the rest of the matrix

for (int i = 1; i < m.length; i++) {

 for (int j = 1; j < m[0].length; j++) {

 if (m[i][j] == 0) {

 m[i][0] = 0;

 m[0][j] = 0;

 }

 }

}

Next, we can loop the first column (column 0) and propagate each zero that was found
on the row. After that, we can loop the first row (row 0) and propagate each zero that was
found on the column:

for (int i = 1; i < m.length; i++) {

 if (m[i][0] == 0) {

 setRowOfZero(m, i);

 }

312 Arrays and Strings

}

for (int j = 1; j < m[0].length; j++) {

 if (m[0][j] == 0) {

 setColumnOfZero(m, j);

 }

}

Finally, if the first row contains at least one 0, then we set the entire row to 0. Also, if the
first column contains at least one 0, then we set the entire column to 0:

if (firstRowHasZeros) {

 setRowOfZero(m, 0);

}

if (firstColumnHasZeros) {

 setColumnOfZero(m, 0);

}

setRowOfZero() and setColumnOfZero() are quite simple:

private static void setRowOfZero(int[][] m, int r) {

 for (int j = 0; j < m[0].length; j++) {

 m[r][j] = 0;

 }

}

private static void setColumnOfZero(int[][] m, int c) {

 for (int i = 0; i < m.length; i++) {

 m[i][c] = 0;

 }

}

The application is called MatrixWithZeros.

Coding challenges 313

Coding challenge 11 – Implementing three stacks with
one array
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Write an implementation of three stacks using a single array. The
implementation should expose three methods: push(), pop(), and printStacks().

Solution: There are two main approaches to providing the required implementation. The
approach that we'll address here is based on interleaving the elements of these three stacks.
Check out the following image:

Figure 10.9 – Interleaving the nodes of the stacks

As you can see, there is a single array that holds the nodes of these three stacks, denoted
as Stack 1, Stack 2, and Stack 3. The key to our implementation relies on the fact that
each node that's pushed onto the stack (the array, respectively) has a backward link to
its previous node. The bottom of each stack has a link to -1. For example, for Stack 1, we
know that value 2 at index 0 has a backward link to the dummy index -1, value 12 at index
1 has a backward link to the index 0, and that value 1 at index 7 has a backward link to the
index 1.

So, a stack node holds two pieces of information – the value and the backward link:

public class StackNode {

 int value;

314 Arrays and Strings

 int backLink;

 StackNode(int value, int backLink) {

 this.value = value;

 this.backLink = backLink;

 }

}

On the other hand, the array manages a link to the next free slot. Initially, when the
array is empty, we can only create free slots, so the links are shaped as follows (notice the
initializeSlots() method):

public class ThreeStack {

 private static final int STACK_CAPACITY = 15;

 // the array of stacks

 private final StackNode[] theArray;

 ThreeStack() {

 theArray = new StackNode[STACK_CAPACITY];

 initializeSlots();

 }

 ...

 private void initializeSlots() {

 for (int i = 0; i < STACK_CAPACITY; i++) {

 theArray[i] = new StackNode(0, i + 1);

 }

 }

}

Now, when we push a node into one of the stacks, we need to find a free slot and mark it
as not free. This is done by the following code:

public class ThreeStack {

 private static final int STACK_CAPACITY = 15;

Coding challenges 315

 private int size;

 // next free slot in array

 private int nextFreeSlot;

 // the array of stacks

 private final StackNode[] theArray;

 // maintain the parent for each node

 private final int[] backLinks = {-1, -1, -1};

 ...

 public void push(int stackNumber, int value)

 throws OverflowException {

 int stack = stackNumber - 1;

 int free = fetchIndexOfFreeSlot();

 int top = backLinks[stack];

 StackNode node = theArray[free];

 // link the free node to the current stack

 node.value = value;

 node.backLink = top;

 // set new top

 backLinks[stack] = free;

 }

 private int fetchIndexOfFreeSlot()

 throws OverflowException {

 if (size >= STACK_CAPACITY) {

 throw new OverflowException("Stack Overflow");

 }

 // get next free slot in array

 int free = nextFreeSlot;

316 Arrays and Strings

 // set next free slot in array and increase size

 nextFreeSlot = theArray[free].backLink;

 size++;

 return free;

 }

}

When we pop a node from a stack, we must free that slot. This way, this slot can be reused
by a future push. The relevant code is listed here:

public class ThreeStack {

 private static final int STACK_CAPACITY = 15;

 private int size;

 // next free slot in array

 private int nextFreeSlot;

 // the array of stacks

 private final StackNode[] theArray;

 // maintain the parent for each node

 private final int[] backLinks = {-1, -1, -1};

 ...

 public StackNode pop(int stackNumber)

 throws UnderflowException {

 int stack = stackNumber - 1;

 int top = backLinks[stack];

 if (top == -1) {

 throw new UnderflowException("Stack Underflow");

 }

Coding challenges 317

 StackNode node = theArray[top]; // get the top node

 backLinks[stack] = node.backLink;

 freeSlot(top);

 return node;

 }

 private void freeSlot(int index) {

 theArray[index].backLink = nextFreeSlot;

 nextFreeSlot = index;

 size--;

 }

}

The complete code, including the usage of printStacks(), is called
ThreeStacksInOneArray.

Another approach to solving this problem is splitting the array of stacks into three
distinct zones:

•	 The first zone is assigned to the first stack and lies at the left-hand side of the array
endpoint (while we push into this stack, it grows in the right direction).

•	 The second zone is assigned to the second stack and lies at the right-hand side of the
array endpoint (while we push into this stack, it grows in the left direction).

•	 The third zone is assigned to the third stack and lies in the middle of the array
(while we push into this stack, it may grow in any direction).

318 Arrays and Strings

The following image will help you clarify these points:

Figure 10.10 – Splitting the array into three zones

The main challenge of this approach consists of avoiding stack collisions by shifting the
middle stack accordingly. Alternatively, we can divide the array into three fixed zones
and allow the individual stack to grow in that limited space. For example, if the array
size is s, then the first stack can be from 0 (inclusive) to s/3 (exclusive), the second stack
can be from s/3 (inclusive) to 2*s/3 (exclusive), and the third stack can be from 2*s/3
(inclusive) to s (exclusive). This implementation is available in the bundled code as
ThreeStacksInOneArrayFixed.

Alternatively, the middle stack could be implemented via an alternating sequence for
subsequent pushes. This way, we also mitigate shifting but we are decreasing homogeneity.
However, challenge yourself and implement this approach as well.

Coding challenge 12 – Pairs
Amazon, Adobe, Flipkart

Problem: Consider an array of integers (positive and negative), m. Write a snippet of code
that finds all the pairs of integers whose sum is equal to a given number, k.

Solution: As usual, let's consider an example. Let's assume we have an array of 15
elements, as follows: -5, -2, 5, 4, 3, 7, 2, 1, -1, -2, 15, 6, 12, -4, 3. Also, if k=10, then we have
four pairs whose sum is 10: (-15 + 5), (-2 + 12), (3 + 7), and (4 + 6). But how do we find
these pairs?

Coding challenges 319

There are different approaches to solving this problem. For example, we have the brute-
force approach (usually, interviewers don't like this approach, so use it only as a last resort
– while the brute-force approach can be a good start for understanding the details of the
problem, it is not accepted as the final solution). Conforming to brute force, we take each
element from the array and try to make a pair with each of the remaining elements. As
with almost any brute-force-based solution, this one has an unacceptable complexity time
as well.

We can find a better approach if we consider sorting the given array. We can do this via
the Java built-in Arrays.sort() method, which has a runtime of O(n log n). Having a
sorted array allows us to use two pointers that scan the whole array based on the following
steps (this technique is known as two-pointers and you'll see it at work in several problems
during this chapter):

1.	 One pointer starts from index 0 (left pointer; let's denote it as l) and the other
pointer starts from (m.length - 1) index (right pointer; let's denote it as r).

2.	 If m[l] + m[r] = k, then we have a solution and we can increment the l position and
decrement the r position.

3.	 If m[l] + m[r]<k, then we increment l and keep r in place.

4.	 If m[l] + m[r]>k, then we decrement r and keep l in place.

5.	 We repeat steps 2-4 until l>= r.

The following image will help you implement these steps:

Figure 10.11 – Finding all pairs whose sum is equal to the given number

Keep an eye on this image while we see how it works for k=10:

•	 l = 0, r = 14 → sum = m[0] + m[14] = -5 + 15 = 10 → sum = k → l++, r--

•	 l = 1, r = 13 → sum = m[1] + m[13] = -4 + 12 = 8 → sum < k → l++

•	 l = 2, r = 13 → sum = m[2] + m[13] = -2 + 12 = 10 → sum = k → l++, r--

•	 l = 3, r = 12 → sum = m[3] + m[12] = -2 + 7 = 5 → sum < k → l++

320 Arrays and Strings

•	 l = 4, r = 12 → sum = m[4] + m[12] = -1 + 7 = 6 → sum < k → l++

•	 l = 5, r = 12 → sum = m[5] + m[12] = 1 + 7 = 8 → sum < k → l++

•	 l = 6, r = 12 → sum = m[6] + m[12] = 2 + 7 = 9 → sum < k → l++

•	 l = 7, r = 12 → sum = m[7] + m[12] = 3 + 7 = 10 → sum = k → l++, r--

•	 l = 8, r = 11 → sum = m[8] + m[11] = 3 + 6 = 9 → sum < k → l++

•	 l = 9, r= 11 → sum = m[9] + m[11] = 4 + 6 = 10 → sum = k → l++, r--

•	 l = 10, r = 10 → STOP

If we put this logic into code, then we obtain the following method:

public static List<String> pairs(int[] m, int k) {

 if (m == null || m.length < 2) {

 return Collections.emptyList();

 }

 List<String> result = new ArrayList<>();

 java.util.Arrays.sort(m);

 int l = 0;

 int r = m.length - 1;

 while (l < r) {

 int sum = m[l] + m[r];

 if (sum == k) {

 result.add("(" + m[l] + " + " + m[r] + ")");

 l++;

 r--;

 } else if (sum < k) {

 l++;

 } else if (sum > k) {

 r--;

Coding challenges 321

 }

 }

 return result;

}

The complete application is called FindPairsSumEqualK.

Coding challenge 13 – Merging sorted arrays
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Imagine that you have k sorted arrays of different lengths. Write an application
that merges these arrays into O(nk log n), where n is the length of the longest array.

Solution: Let's assume that the given arrays are the following five arrays denoted with a, b,
c, d, and e:

a: {1, 2, 32, 46} b: {-4, 5, 15, 18, 20} c: {3} d: {6, 8} e: {-2, -1, 0}

The expected result will be as follows:

{-4, -2, -1, 0, 1, 2, 3, 5, 6, 8, 15, 18, 20, 32, 46}

The simplest approach consists of copying all the elements from these arrays into a single
array. This will take O(nk), where n is the length of the longest array and k is the number
of arrays. Next, we sort this array via an O(n log n) time complexity algorithm (for
example, via Merge Sort). This will result in O(nk log nk). However, the problem requires
us to write an algorithm that can perform in O(nk log n).

There are several solutions that perform in O(nk log n), and one of them is based on a
Binary Min Heap (this is detailed in Chapter 13, Trees and Graphs). In a nutshell, a Binary
Min Heap is a complete binary tree. A Binary Min Heap is typically represented as an
array (let's denote it as heap) whose root is at heap[0]. More importantly, for heap[i], we
have the following:

•	 heap[(i - 1) / 2]: Returns the parent node

•	 heap[(2 * i) + 1]: Returns the left child node

•	 heap[(2 * i) + 2]: Returns the right child node

322 Arrays and Strings

Now, our algorithm follows these steps:

1.	 Create the resulting array of size n*k.

2.	 Create a Binary Min Heap of size k and insert the first element of all the arrays into
this heap.

3.	 Repeat the following steps n*k times:

a. Get the minimum element from the Binary Min Heap and store it in the resulting 	
	 array.

b. Replace the Binary Min Heap's root with the next element from the array that 		
	 the element was extracted from (if the array doesn't have any more elements, then 	
	 replace the root element with infinite; for example, with Integer.MAX_VALUE).

c. After replacing the root, heapify the tree.
The code is too big to be listed in this book, so the following is just the end of its
implementation (the heap structure and the merge() operation):

public class MinHeap {

 int data;

 int heapIndex;

 int currentIndex;

 public MinHeap(int data, int heapIndex,

 int currentIndex) {

 this.data = data;

 this.heapIndex = heapIndex;

 this.currentIndex = currentIndex;

 }

}

The following code is for the merge() operation:

public static int[] merge(int[][] arrs, int k) {

 // compute the total length of the resulting array

 int len = 0;

 for (int i = 0; i < arrs.length; i++) {

 len += arrs[i].length;

Coding challenges 323

 }

 // create the result array

 int[] result = new int[len];

 // create the min heap

 MinHeap[] heap = new MinHeap[k];

 // add in the heap first element from each array

 for (int i = 0; i < k; i++) {

 heap[i] = new MinHeap(arrs[i][0], i, 0);

 }

 // perform merging

 for (int i = 0; i < result.length; i++) {

 heapify(heap, 0, k);

 // add an element in the final result

 result[i] = heap[0].data;

 heap[0].currentIndex++;

 int[] subarray = arrs[heap[0].heapIndex];

 if (heap[0].currentIndex >= subarray.length) {

 heap[0].data = Integer.MAX_VALUE;

 } else {

 heap[0].data = subarray[heap[0].currentIndex];

 }

 }

 return result;

}

The complete application is called MergeKSortedArr.

324 Arrays and Strings

Coding challenge 14 – Median
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider two sorted arrays, q and p (they can have different lengths). Write an
application that computes the median value of these two arrays in logarithmic runtime.

Solution: A median value separates the higher half of a data sample (for example, an
array) from the lower half. For example, the following image shows the median value of
an array with an odd number of elements (left-hand side) and with an even number of
elements (right-hand side), respectively:

Figure 10.12 – Median values for odd and even arrays

So, for an array with n number of elements, we have the following two formulas:

•	 If n is odd, then the median value is given by (n+1)/2

•	 If n is even, then the median value is given by [(n/2+(n/2+1)]/2

It is quite easy to compute the median of a single array. But how do we compute it for
two arrays of different lengths? We have two sorted arrays and we must find something
out from them. Having the experience of a candidate that knows how to prepare for
an interview should be enough to intuit that the well-known Binary Search algorithm
should be considered. Typically, having sorted arrays is something you should take into
consideration when implementing the Binary Search algorithm.

We can roughly intuit that finding the median value of two sorted arrays can be reduced
to finding the proper conditions that must be respected by this value.

Since the median value divides input into two equal parts, we can conclude that the first
condition imposes that the median value of the q array should be at the middle index. If
we denote this middle index as qPointer, then we obtain two equal parts: [0, qPointer] and
[qPointer+1, q.length]. If we apply the same logic to the p array, then the median value
of the p array should be at the middle index as well. If we denote this middle index as
pPointer, then we obtain two equal parts: [0, pPointer] and [pPointer+1, p.length]. Let's
visualize this via the following diagram:

Coding challenges 325

Figure 10.13 – Splitting arrays into two equal parts

We can conclude from this diagram that the first condition that the median value should
respect is qLeft + pLeft = qRight + pRight. In other words, qPointer + pPointer = (q.length-
qPointer) + (p.length - pPointer).

However, since our arrays aren't the same length (they can be equal, but this is just a
special case that should be covered by our solution as well), we cannot simply halve both
of them. What we can do is assume that p >= q (if they are not given like this, then we just
swap them to force this assumption). Furthermore, under the umbrella of this assumption,
we can write the following:

qPointer + pPointer = (q.length- qPointer) + (p.length - pPointer) →

		 2 * pPointer = q.length + p.length - 2 * qPointer →

		 pPointer = (q.length + p.length)/2 - qPointer

		

So far, pPointer can fall in the middle and we can avoid this by adding 1, which means we
have the following starting pointers:

•	 qPointer = ((q.length - 1) + 0)/2

•	 pPointer = (q.length + p.length + 1)/2 - qPointer

If p>=q, then the minimum (q.length + p.length + 1)/2 - qPointer will always lead to
pPointer as a positive integer. This will eliminate array-out-of-bounds exceptions and
respects the first condition as well.

326 Arrays and Strings

However, our first condition is not enough because it doesn't guarantee that all the
elements in the left array are less than the elements in the right array. In other words, the
maximum of the left part must be less than the minimum of the right part. The maximum
of the left part can be q[qPointer-1] or p[pPointer-1], while the minimum of the right
part can be q[qPointer] or p[pPointer]. So, we can conclude that the following conditions
should be respected as well:

•	 q[qPointer-1] <= p[pPointer]

•	 p[pPointer-1] <= q[qPointer]

Under these conditions, the median value of q and p will be as follows:

•	 p.length + q.length is even: The average of the maximum of the left part and the
minimum of the right part

•	 p.length + q.length is odd: The maximum of the left parts, max(q[qPointer-1],
p[pPointer-1]).

Let's try to summarize this in an algorithm with three steps and an example. We start with
qPointer as the middle of q (so as, [(q.length - 1) + 0)/2] and with pPointer as (q.length +
p.length + 1)/2 - qPointer. Let's go through the following steps:

1.	 If q[qPointer-1] <= p[pPointer] and p[pPointer-1] <= q[qPointer], then we have
found the perfect qPointer (the perfect index).

2.	 If p[pPointer-1] >q[qPointer], then we know that q[qPointer] is too small, so
qPointer must be increased and pPointer must be decreased. Since the arrays are
sorted, this action will result in a bigger q[qPointer] and a smaller p[pPointer].
Moreover, we can conclude that qPointer can only be in the right part of q (from
middle+1 to q.length). Go back to step 1.

3.	 If q[qPointer-1] >p[pPointer], then we know that q[qPointer-1] is too big. We must
decrease qPointer to get q[qPointer-1] <= p[pPointer]. Moreover, we can conclude
that qPointer can be only in the left part of q (from 0 to middle-1). Go to step 2.

Now, let's consider that q={ 2, 6, 9, 10, 11, 65, 67} and p={ 1, 5, 17, 18, 25, 28, 39, 77, 88},
and let's apply the previous steps.

Conforming to our preceding statements, we know that qPointer = (0 + 6) / 2 = 3 and
pPointer = (7 + 9 + 1) / 2 - 3 = 5. The following image speaks for itself:

Coding challenges 327

Figure 10.14 – Computing the median value (step 1)

Step 1 of our algorithm specifies that q[qPointer-1] <= p[pPointer] and p[pPointer-1] <=
q[qPointer]. Obviously, 9 < 28, but 25 > 10, so we apply step 2 and afterward, go back to
step 1. We increase qPointer and decrease pPointer, so qPointerMin becomes qPointer + 1.
The new qPointer will be (4 + 6) / 2 = 5 and the new pPointer will be (7 + 9 + 1)/2 - 5 = 3.
The following image will help you visualize this scenario:

Figure 10.15 – Computing the median value (step 2)

Here, you can see that the new qPointer and new pPointer respect step 1 of our algorithm
since q[qPointer-1], which is 11, is less than p[pPointer], which is, 18; and p[pPointer-1],
which is 17, is less than q[qPointer], which is 65. With this, we found the perfect qPointer
to be 5.

328 Arrays and Strings

Finally, we have to find the maximum of the left-hand side and the minimum of the
right-hand side and, based on the odd or even length of the two arrays, return the
maximum of the left-hand side or the average of the maximum of the left-hand side and
the minimum of the right-hand side. We know that the maximum of the left-hand side is
max(q[qPointer-1], p[pPointer-1]), so max(11, 17) = 17. We also know that the minimum
of the right-hand side is min(q[qPointer], p[pPointer]), so min(65, 18) = 18. Since the sum
of lengths is 7 + 9 = 16, we compute that the median value is the average of these two, so
avg(17, 18) = 17.5. We can visualize this as follows:

Figure 10.16 – Median value (final result)

Putting this algorithm into code results in the following output:

public static float median(int[] q, int[] p) {

 int lenQ = q.length;

 int lenP = p.length;

 if (lenQ > lenP) {

 swap(q, p);

 }

 int qPointerMin = 0;

 int qPointerMax = q.length;

 int midLength = (q.length + p.length + 1) / 2;

 int qPointer;

 int pPointer;

 while (qPointerMin <= qPointerMax) {

 qPointer = (qPointerMin + qPointerMax) / 2;

 pPointer = midLength - qPointer;

Coding challenges 329

 // perform binary search

 if (qPointer < q.length

 && p[pPointer-1] > q[qPointer]) {

 // qPointer must be increased

 qPointerMin = qPointer + 1;

 } else if (qPointer > 0

 && q[qPointer-1] > p[pPointer]) {

 // qPointer must be decreased

 qPointerMax = qPointer - 1;

 } else { // we found the poper qPointer

 int maxLeft = 0;

 if (qPointer == 0) { // first element on array 'q'?

 maxLeft = p[pPointer - 1];

 } else if (pPointer == 0) { // first element
 // of array 'p'?

 maxLeft = q[qPointer - 1];

 } else { // we are somewhere in the middle -> find max

 maxLeft = Integer.max(q[qPointer-1], p[pPointer-1]);

 }

 // if the length of 'q' + 'p' arrays is odd,

 // return max of left

 if ((q.length + p.length) % 2 == 1) {

 return maxLeft;

 }

 int minRight = 0;

 if (qPointer == q.length) { // last element on 'q'?

 minRight = p[pPointer];

 } else if (pPointer == p.length) { // last element
 // on 'p'?

 minRight = q[qPointer];

 } else { // we are somewhere in the middle -> find min

330 Arrays and Strings

 minRight = Integer.min(q[qPointer], p[pPointer]);

 }

 return (maxLeft + minRight) / 2.0f;

 }

 }

 return -1;

}

Our solution performs in O(log(max(q.length, p.length)) time. The complete application is
called MedianOfSortedArrays.

Coding challenge 15 – Sub-matrix of one
Amazon, Microsoft, Flipkart

Problem: Consider that you've been given a matrix, m x n, containing only 0 and 1
(binary matrix). Write a snippet of code that returns the maximum size of the square
sub-matrix so that it contains only elements of 1.

Solution: Let's consider that the given matrix is the one in the following image
(5x7 matrix):

Figure 10.17 – The given 5 x 7 binary matrix

Coding challenges 331

As you can see, the square sub-matrix only containing elements of 1 has a size of 3. The
brute-force approach, or the naive approach, would be to find all the square sub-matrices
containing all 1s and determine which one has the maximum size. However, for an m x n
matrix that has z=min(m, n), the time complexity will be O(z3mn). You can find the brute-
force implementation in the code bundled with this book. Of course, challenge yourself
before checking the solution.

For now, let's try to find a better approach. Let's consider that the given matrix is of size
n x n and study several scenarios of a 4x4 sample matrix. In a 4x4 matrix, we can see
that the maximum square sub-matrix of 1s can have a size of 3x3, so in a matrix of size
n x n, the maximum square sub-matrix of 1s can have a size of n-1 x n-1. Moreover, the
following image reveals two base cases that are true for an m x n matrix as well:

Figure 10.18 – Maxim sub-matrix of 1s in a 4 x 4 matrix

 These cases are explained as follows:

•	 If the given matrix contains only one row, then cells with 1's in them will be the
maximum size of the square sub-matrix. Therefore, the maximum size is 1.

•	 If the given matrix contains only one column, then cells with 1's in them will be the
maximum size of the square sub-matrix. Therefore, the maximum size is 1.

Next, let's consider that subMatrix[i][j] represents the maximum size of the square
sub-matrix, with all 1s ending at cell (i,j):

Figure 10.19 – Overall recurrence relation

332 Arrays and Strings

The preceding figure allows us to establish a recurrence relation between the given matrix
and an auxiliary subMatrix (a matrix that's the same size as the given matrix that should
be filled in based on the recurrence relation):

•	 It is not easy to intuit this, but we can see that if matrix[i][j] = 0, then
subMatrix[i][j] = 0

•	 If matrix[i][j] = 1, then subMatrix[i][j]

= 1 + min(subMatrix[i - 1][j], subMatrix[i][j - 1], subMatrix[i - 1][j - 1])
If we apply this algorithm to our 5 x 7 matrix, then we obtain the following result:

Figure 10.20 – Resolving our 5 x 7 matrix

Gluing together the preceding base cases and the recurrence relations results in the
following algorithm:

1.	 Create an auxiliary matrix (subMatrix) of the same size as the given matrix.

2.	 Copy the first row and first column from the given matrix to this auxiliary
subMatrix (these are the base cases).

3.	 For each cell from the given matrix (starting at (1, 1)), do the following:

a. Fill up the subMatrix conforming to the preceding recurrence relations.

b. Track the maximum element of subMatrix since this element gives us the
maximum size of the sub-matrix containing all 1's.

The following implementation clarifies any remaining details:

public static int ofOneOptimized(int[][] matrix) {

 int maxSubMatrixSize = 1;

 int rows = matrix.length;

Coding challenges 333

 int cols = matrix[0].length;

 int[][] subMatrix = new int[rows][cols];

 // copy the first row

 for (int i = 0; i < cols; i++) {

 subMatrix[0][i] = matrix[0][i];

 }

 // copy the first column

 for (int i = 0; i < rows; i++) {

 subMatrix[i][0] = matrix[i][0];

 }

 // for rest of the matrix check if matrix[i][j]=1

 for (int i = 1; i < rows; i++) {

 for (int j = 1; j < cols; j++) {

 if (matrix[i][j] == 1) {

 subMatrix[i][j] = Math.min(subMatrix[i - 1][j - 1],

 Math.min(subMatrix[i][j - 1],

 subMatrix[i - 1][j])) + 1;

 // compute the maximum of the current sub-matrix

 maxSubMatrixSize = Math.max(

 maxSubMatrixSize, subMatrix[i][j]);

 }

 }

 }

 return maxSubMatrixSize;

}

Since we iterate m*n times to fill the auxiliary matrix, the overall complexity of this
solution is O(mn). The complete application is called MaxMatrixOfOne.

334 Arrays and Strings

Coding challenge 16 – Container with the most water
Google, Adobe, Microsoft

Problem: Consider that you've been given n positive integers, p1, p2, ..., pn, where each
integer represents a point at coordinate (i, pi) . Next, n vertical lines are drawn so that the
two endpoints of line i are at (i, pi) and (i, 0). Write a snippet of code that finds two lines
that, together with the X-axis, form a container that contains the most water.

Solution: Let's consider that the given integers are 1, 4, 6, 2, 7, 3, 8, 5, and 3. Following the
problem statements, we can sketch the n vertical lines (line 1: {(0, 1), (0, 0)}, line 2: {(1, 4),
(1,0)}, line 3: {(2, 6), (2, 0)}, and so on). This can be seen in the following graph:

Figure 10.21 – The n vertical line representation

First of all, let's see how we should interpret the problem. We have to find the container
that contains the most water. This means that, in our 2D representation, we have to find
the rectangle that has the maximum area. In a 3D representation, this container will have
the maximum volume, so it will contain the most water.

Thinking about the solution in terms of the brute-force approach is quite straightforward.
For each line, we compute the areas showing the rest of the lines while tracking the largest
area found. This requires two nested loops, as shown here:

public static int maxArea(int[] heights) {

 int maxArea = 0;

Coding challenges 335

 for (int i = 0; i < heights.length; i++) {

 for (int j = i + 1; j < heights.length; j++) {

 // traverse each (i, j) pair

 maxArea = Math.max(maxArea,

 Math.min(heights[i], heights[j]) * (j - i));

 }

 }

 return maxArea;

}

The problem with this code is that its runtime is O(n2). A better approach consists
of employing a technique known as two-pointers. Don't worry – it is a pretty simple
technique that it is quite useful to have in your toolbelt. You never know when you'll
need it!

We know that we are looking for the maximum area. Since we are talking about a
rectangular area, this means that the maximum area must accommodate the best report
between the biggest width and the biggest height as much as possible. The biggest width is
from 0 to n-1 (in our example, from 0 to 8). To find the biggest height, we must adjust the
biggest width while tracking the maximum area. For this, we can start from the biggest
width, as shown in the following graph:

Figure 10.22 – Area with the biggest width

336 Arrays and Strings

So, if we demarcate the boundaries of the biggest width with two pointers, we can say that
i=0 and j=8 (or n-1). In this case, the container that holds the water will have an area of pi*
8 = 1 * 8 = 8. The container cannot be higher than pi = 1 because the water will flow out.
However, we can increment i (i=1, pi=4) to obtain a higher container, and potentially a
bigger container, as shown in the following graph:

Figure 10.23 – Increasing i to obtain a bigger container

Generally speaking, if pi ≤ pj, then we increment i; otherwise, we decrement j. By
successively increasing/decreasing i and j, we can obtain the maximum area. From left to
right and from top to bottom, the following image shows this statement at work for the
next six steps:

Coding challenges 337

Figure 10.24 – Computing areas while increasing/decreasing i and j

The steps are as follows:

1.	 In the top-left corner image, we decreased j since pi > pj, p1 > p8 (4 > 3).

2.	 In the top-middle image, we increased i since pi < pj, p1 < p7 (4 < 5).

3.	 In the top-right corner image, we decreased j since pi > pj, p2 > p7 (6 > 5).

4.	 In the bottom-left corner image, we increased i since pi < pj, p2 < p6 (6 < 8).

5.	 In the bottom-middle image, we increased i since pi < pj, p3 < p6 (2 < 8).

6.	 In the bottom-right corner image, we increased i since pi < pj, p4 < p6 (7 < 8).

Done! If we increase i or decrease j one more time, then i=j and the area is 0. At this
point, we can see that the maximum area is 25 (top-middle image). Well, this technique is
known as two-pointers and can be implemented in this case with the following algorithm:

1.	 Start with the maximum area as 0, i=0 and j=n-1

2.	 While i < j, do the following:

a. Compute the area for the current i and j.

b. Update the maximum area accordingly (if needed).

c. If pi ≤ pj, then i++; else, j--.

338 Arrays and Strings

In terms of code, we have the following:

public static int maxAreaOptimized(int[] heights) {

 int maxArea = 0;

 int i = 0; // left-hand side pointer

 int j = heights.length - 1; // right-hand side pointer

 // area cannot be negative,

 // therefore i should not be greater than j

 while (i < j) {

 // calculate area for each pair

 maxArea = Math.max(maxArea, Math.min(heights[i],

 heights[j]) * (j - i));

 if (heights[i] <= heights[j]) {

 i++; // left pointer is small than right pointer

 } else {

 j--; // right pointer is small than left pointer

 }

 }

 return maxArea;

}

The runtime of this code is O(n). The complete application is called ContainerMostWater.

Coding challenges 339

Coding challenge 17 – Searching in a circularly sorted
array
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider that you've been given a circularly sorted array of integers with no
duplicates, m. Write a program that searches for the given x in O(log n) complexity time.

Solution: If we could solve this problem in O(n) complexity time, then the brute-force
approach is the simplest solution. A linear search in the array will give the index of the
searched x. However, we need to come up with an O(log n) solution, so we need to tackle
the problem from another perspective.

We have enough hints that point us to the well-known Binary Search algorithm, which
we discussed in Chapter 7, Big O Analysis of Algorithms and in Chapter 14, Sorting and
Searching. We have a sorted array, we need to find a certain value, and we need to do it
in O(log n) complexity time. So, there are three hints that point us to the Binary Search
algorithm. Of course, the big issue is represented by the circularity of the sorted array, so
we cannot apply a plain Binary Search algorithm.

Let's consider that m = {11, 14, 23, 24, -1, 3, 5, 6, 8, 9, 10} and x = 14, and we expected
the output to be index 1. The following image introduces several notations and serves as
guidance in solving the problem at hand:

Figure 10.25 – Circularly sorted array and Binary Search algorithm

340 Arrays and Strings

Since the sorted array is circular, we have a pivot. This is an index pointing to the head
of the array. The elements from the left of the pivot have been rotated. When the array is
not rotated, it will be {-1, 3, 5, 6, 8, 9, 10, 11, 14, 23, 24}. Now, let's see the steps for the
solution based on the Binary Search algorithm:

1.	 We apply the Binary Search algorithm, so we start by computing the middle of the
array as (left + right) / 2.

2.	 We check whether x = m[middle]. If so, we return the middle. If not, we continue
with the next step.

3.	 Next, we check whether the right-half of the array is sorted. All the elements from
the range [middle, right] are sorted if m[middle] <= m[right]:

a. If x > m[middle] and x <= m[right], then we ignore the left-half, set left = middle +
1, and repeat from step 1.

b. If x <= m[middle] or x > m[right], then we ignore the right-half, set right = middle
- 1, and repeat from step 1.

4.	 If the right-half of the array is not sorted, then the left-half must be sorted:

a. If x >= m[left] and x < m[middle], then we ignore the right-half, set right =
middle- 1, and repeat from step 1.

b. If x < m[left] or x >= m[middle], then we ignore the left-half, set left = middle + 1,
and repeat from step 1.

We repeat steps 1-4 as long as we didn't find x or left <= right.

Let's apply the preceding algorithm to our case.

So, middle is (left + right) / 2 = (0 + 10) / 2 = 5. Since m[5] ≠14 (remember that 14 is x),
we continue with step 3. Since m[5]<m[10], we conclude that the right-half is sorted.
However, we notice that x>m[right] (14 >10), so we apply step 3b. Basically, we ignore the
right-half and we set right = middle - 1 = 5 - 1 = 4. We apply step 1 again.

The new middle is (0 + 4) / 2 = 2. Since m[2]≠14, we continue with step 3. Since
m[2] >m[4], we conclude that the left-half is sorted. We notice that x>m[left] (14 >11)
and x<m[middle] (14<23), so we apply step 4a. We ignore the right-half and we set right=
middle - 1 = 2 - 1 = 1. We apply step 1 again.

Coding challenges 341

The new middle is (0 + 1) / 2 = 0. Since m[0]≠14, we continue with step 3. Since
m[0]<m[1], we conclude that the right-half is sorted. We notice that x > m[middle]
(14 > 11) and x = m[right] (14 = 14), so we apply step 3a. We ignore the left-half and
we set left = middle + 1 = 0 + 1 = 1. We apply step 1 again.

The new middle is (1 + 1) / 2 = 1. Since m[1]=14, we stop and return 1 as the index of the
array where we found the searched value.

Let's put this into code:

public static int find(int[] m, int x) {

 int left = 0;

 int right = m.length - 1;

 while (left <= right) {

 // half the search space

 int middle = (left + right) / 2;

 // we found the searched value

 if (m[middle] == x) {

 return middle;

 }

 // check if the right-half is sorted (m[middle ... right])

 if (m[middle] <= m[right]) {

 // check if n is in m[middle ... right]

 if (x > m[middle] && x <= m[right]) {

 left = middle + 1; // search in the right-half

 } else {

 right = middle - 1;	 // search in the left-half

 }

 } else { // the left-half is sorted (A[left ... middle])

 // check if n is in m[left ... middle]

 if (x >= m[left] && x < m[middle]) {

 right = middle - 1; // search in the left-half

342 Arrays and Strings

 } else {

 left = middle + 1; // search in the right-half

 }

 }

 }

 return -1;

}

The complete application is called SearchInCircularArray. Similar problems will ask
you to find the maximum or the minimum value in a circularly sorted array. While
both applications are available in the bundled code as MaximumInCircularArray and
MinimumInCircularArray, it is advisable to use what you've learned so far and challenge
yourself to find a solution.

Coding challenge 18 – Merging intervals
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider that you've been given an array of intervals of the [start, end] type.
Write a snippet of code that merges all the intervals that are overlapping.

Solution: Let's consider that the given intervals are [12,15], [12,17], [2,4], [16,18], [4,7],
[9,11], and [1,2]. After we merge the overlapping intervals, we obtain the following result:
[1, 7], [9, 11] [12, 18].

We can start with the brute-force approach. It is quite intuitive that we take an interval
(let's denote it as pi) and compare its end (pei) with the starts of the rest of the intervals. If
the start of an interval (from the rest of the intervals) is less than the end of p, then we can
merge these two intervals. The end of the merged interval becomes the maximum of the
ends of these two intervals. But this approach will perform in O(n2), so it will not impress
the interviewer.

Coding challenges 343

However, the brute-force approach can give us an important hint for attempting a better
implementation. At any moment of time, we must compare the end of p with the start
of another interval. This is important because it can lead us to the idea of sorting the
intervals by their starts. This way, we seriously reduce the number of comparisons. Having
the sorted intervals allows us to combine all the intervals in a linear traversal.

Let's try and use a graphical representation of our sample intervals sorted in ascending
order by their starts (psi<psi+1<psi+2). Also, each interval is always forward-looking (pei>psi,
pei+1>psi+1, pei+2>psi+2, and so on). This will help us understand the algorithm that we'll cover
soon:

Figure 10.26 – Sorting the given intervals

Based on the preceding image, we can see that if the start of p is greater than the end of
the previous p, (psi>pei-1), then the start of the next p is greater than the end of the previous
p, (psi+1>pei-1), so there is no need to compare the previous p with the next p. In other
words, if pi doesn't overlap with pi-1, then pi+1 cannot overlap with pi-1 because the start of
pi+1 must be greater than or equal to pi.

If psi is less than pei-1, then we should update pei-1 with the maximum between pei-1 and pei
and move to pei+1. This can be done via a stack, as follows:

Figure 10.27 – Using a stack to solve the problem

These are the steps that occur:

Step 0: We start with an empty stack.

Step 1: Since the stack is empty, we push the first interval ([1, 2]) into the stack.

344 Arrays and Strings

Step 2: Next, we focus on the second interval ([2, 4]). The start of [2, 4] is equal to the
end of the interval from the top of the stack, [1, 2], so we don't push [2, 4] into the stack.
We continue to compare the end of [1, 2] with the end of [2, 4]. Since 2 is less than 4, we
update the interval [1, 2] to [1, 4]. So, we merged [1, 2] with [2, 4].

Step 3: Next, we focus on interval [4, 7]. The start of [4, 7] is equal to the end of the
interval from the top of the stack, [1, 4], so we don't push [4, 7] into the stack. We
continue to compare the end of [1, 4] with the end of [4, 7]. Since 4 is less than 7, we
update the interval [1, 4] to [1, 7]. So, we merged [1, 4] with [4, 7].

Step 4: Next, we focus on interval [9, 11]. The start of [9, 11] is greater than the end of the
interval from the top of the stack, [1, 7], so intervals [1, 7] and [9, 11] don't overlap. This
means that we can push interval [9, 11] into the stack.

Step 5: Next, we focus on interval [12, 15]. The start of [12, 15] is greater than the end
of the interval from the top of the stack, [9, 11], so intervals [9, 11] and [12, 15] don't
overlap. This means that we can push interval [12, 15] into the stack.

Step 6: Next, we focus on interval [12, 17]. The start of [12, 17] is equal to the end of the
interval from the top of the stack, [12, 15], so we don't push [12, 17] into the stack. We
continue and compare the end of [12, 15] with the end of [12, 17]. Since 15 is less than 17,
we update interval [12, 15] to [12, 17]. So, here, we merged [12, 15] with [12, 17].

Step 7: Finally, we focus on interval [16, 18]. The start of [16, 18] is less than the end
of the interval from the top of the stack, [12, 17], so intervals [16, 18] and [12, 17] are
overlapping. This time, we have to update the end of the interval from the top of the stack
with the maximum between the end of this interval and [16, 18]. Since 18 is greater than
17, the interval from the top of the stack becomes [12, 17].

Now, we can pop the content of the stack to see the merged intervals, [[12, 18], [9, 11], [1,
7]], as shown in the following image:

Figure 10.28 – The merged intervals

Based on these steps, we can create the following algorithm:

1.	 Sort the given intervals in ascending order based on their starts.

2.	 Push the first interval into the stack.

Coding challenges 345

3.	 For the rest of intervals, do the following:

a. If the current interval does not overlap with the interval from the top of the stack,
then push it into the stack.

b. If the current interval overlaps with the interval from the top of the stack and the
end of the current interval is greater than that of the stack top, then update the top
of the stack with the end of the current interval.

4.	 At the end, the stack contains the merged intervals.

In terms of code, this algorithm looks as follows:

public static void mergeIntervals(Interval[] intervals) {

 // Step 1

 java.util.Arrays.sort(intervals,

 new Comparator<Interval>() {

 public int compare(Interval i1, Interval i2) {

 return i1.start - i2.start;

 }

 });

 Stack<Interval> stackOfIntervals = new Stack();

 for (Interval interval : intervals) {

 // Step 3a

 if (stackOfIntervals.empty() || interval.start

 > stackOfIntervals.peek().end) {

 stackOfIntervals.push(interval);

 }

 // Step 3b

 if (stackOfIntervals.peek().end < interval.end) {

 stackOfIntervals.peek().end = interval.end;

 }

 }

346 Arrays and Strings

 // print the result

 while (!stackOfIntervals.empty()) {

 System.out.print(stackOfIntervals.pop() + " ");

 }

}

The runtime of this code is O(n log n) with an auxiliary space of O(n) for the stack.
While the interviewer should be satisfied with this approach, he/she may ask you for
optimization. More precisely, can we drop the stack and obtain a complexity space of
O(1)?

If we drop the stack, then we must perform the merge operation in-place. The algorithm
that can do this is self-explanatory:

1.	 Sort the given intervals in ascending order based on their starts.

2.	 For the rest of the intervals, do the following:

a. If the current interval is not the first interval and it overlaps with the previous
interval, then merge these two intervals. Do the same for all the previous intervals.

b. Otherwise, add the current interval to the output array of intervals.
Notice that, this time, the intervals are sorted in descending order of their starts. This
means that we can check whether two intervals are overlapping by comparing the start of
the previous interval with the end of the current interval. Let's see the code for this:

public static void mergeIntervals(Interval intervals[]) {

 // Step 1

 java.util.Arrays.sort(intervals,

 new Comparator<Interval>() {

 public int compare(Interval i1, Interval i2) {

 return i2.start - i1.start;

 }

 });

 int index = 0;

 for (int i = 0; i < intervals.length; i++) {

 // Step 2a

Coding challenges 347

 if (index != 0 && intervals[index - 1].start

 <= intervals[i].end) {

 while (index != 0 && intervals[index - 1].start

 <= intervals[i].end) {

 // merge the previous interval with

 // the current interval

 intervals[index - 1].end = Math.max(

 intervals[index - 1].end, intervals[i].end);

 intervals[index - 1].start = Math.min(

 intervals[index - 1].start, intervals[i].start);

 index--;

 }

 // Step 2b

 } else {

 intervals[index] = intervals[i];

 }

 index++;

 }

 // print the result

 for (int i = 0; i < index; i++) {

 System.out.print(intervals[i] + " ");

 }

}

The runtime of this code is O(n log n) with an auxiliary space of O(1). The complete
application is called MergeIntervals.

348 Arrays and Strings

Coding challenge 19 – Petrol bunks circular tour
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider that you've been given n petrol bunks along a circular route. Every
petrol bunk contains two pieces of data: the amount of fuel (fuel[]) and the distance from
that current petrol bunk to the next petrol bunk (dist[]). Next, you have a truck with an
unlimited gas tank. Write a snippet of code that calculates the first point from where the
truck should start in order to complete a full tour. You begin the journey with an empty
tank at one of the petrol bunks. With 1 liter of petrol, the truck can go 1 unit of distance.

Solution: Consider that you've been given the following data: dist = {5, 4, 6, 3, 5, 7}, fuel =
{3, 3, 5, 5, 6, 8}.

Let's use the following images to get a better understanding of the context of this problem
and to support us in finding a solution:

Figure 10.29 – Truck circular tour sample

From 0 to 5, we have six petrol bunks. On the left-hand side of the image, you can see a
sketch of the given circular route and the distribution of the petrol bunks. The first petrol
bunk has 3 liters of petrol, and the distance to the next petrol bunk is 5 units. The second
petrol bunk has 3 liters of petrol, and the distance to the next petrol bunk is 4 units. The
third petrol bunk has 5 liters of petrol, and the distance to the next petrol bunk is 6 units,
and so on. Obviously, a vital condition if we wish to go from petrol bunk X to petrol bunk
Y is that the distance between X and Y is less than or equal to the amount of fuel in the
tank of the truck. For example, if the truck starts the journey from petrol bunk 0, then it
cannot go to petrol bunk 1 since the distance between these two petrol bunks is 5 units
and the truck can have only 3 liters of petrol in the tank. On the other hand, if the truck
starts the journey from petrol bunk 3, then it can go to petrol bunk 4 because the truck
will have 5 liters of petrol in the tank. Actually, as shown on the right-hand side of the
image, the solution to this case is to start from petrol bunk 3 with 5 liters of petrol in the
tank – take your time and complete the tour using some paper and a pen.

Coding challenges 349

The brute-force (or naive) approach can rely on a straightforward statement: we start from
each petrol bunk and try to make the complete tour. This is simple to implement but its
runtime will be O(n2). Challenge yourself to come up with a better implementation.

To solve this problem more efficiently, we need to understand and use the following facts:

•	 If the sum of fuel ≥ the sum of distances, then the tour can be completed.

•	 If petrol bunk X cannot reach petrol bunk Z in the sequence of X → Y → Z, then Y
cannot make it either.

While the first bullet is a commonsense notion, the second bullet requires some extra
proof. Here is the reasoning behind the second bullet:

If fuel[X] < dist[X], then X cannot even reach Y
 So to reach Z from X, fuel[X] must be ≥ dist[X].

Given that X cannot reach Z, we have fuel[X] + fuel[Y] < dist[X] + dist[Y],
 and fuel[X] ≥ dist[X].
 Therefore, fuel[Y] < dist[Y] and Y cannot reach Z.

Based on these two points, we can come up with the following implementation:

public static int circularTour(int[] fuel, int[] dist) {

 int sumRemainingFuel = 0; // track current remaining fuel

 int totalFuel = 0; // track total remaining fuel

 int start = 0;

 for (int i = 0; i < fuel.length; i++) {

 int remainingFuel = fuel[i] - dist[i];

 //if sum remaining fuel of (i-1) >= 0 then continue

 if (sumRemainingFuel >= 0) {

 sumRemainingFuel += remainingFuel;

 //otherwise, reset start index to be current

 } else {

 sumRemainingFuel = remainingFuel;

 start = i;

 }

350 Arrays and Strings

 totalFuel += remainingFuel;

 }

 if (totalFuel >= 0) {

 return start;

 } else {

 return -1;

 }

}

To understand this code, try to pass the given set of data through the code using some
paper and a pen. Also, you may wish to try the following sets:

// start point 1

int[] dist = {2, 4, 1};

int[] fuel = {0, 4, 3};

// start point 1

int[] dist = {6, 5, 3, 5};

int[] fuel = {4, 6, 7, 4};

// no solution, return -1

int[] dist = {1, 3, 3, 4, 5};

int[] fuel = {1, 2, 3, 4, 5};

// start point 2

int[] dist = {4, 6, 6};

int[] fuel = {6, 3, 7};

The runtime of this code is O(n). The complete application is called PetrolBunks.

Coding challenges 351

Coding challenge 20 – Trapping rainwater
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider that you've been given a set of bars that are different heights
(non-negative integers). The width of a bar is equal to 1. Write a snippet of code that
computes the amount of water that can be trapped within the bars.

Solution: Let's consider that the given set of bars is an array, as follows: bars = { 1, 0, 0, 4,
0, 2, 0, 1, 6, 2, 3}. The following image is a sketch of these bars' heights:

Figure 10.30 – The given set of bars

Now, rain is filling up between the spaces of these bars. So, after the rain has fallen, we will
have something like the following:

Figure 10.31 – The given bars after rain

352 Arrays and Strings

So, here, we have a maximum amount of water equal to 16. The solution to this problem
depends on how we look at the water. For example, we can look at the water between the
bars or at the water on top of each bar. The second view is exactly what we want.

Check out the following image, which has some additional guidance regarding how to
isolate the water on top of each bar:

Figure 10.32 – Water on top of each bar

So, above bar 0, we have no water. Above bar 1, we have 1 unit of water. Above bar 2,
we have 1 unit of water, and so on and so forth. If we sum up these values, then we get
0 + 1 + 1 + 0 + 4 + 2 + 4 + 3 + 0 + 1 + 0 = 16, which is the precise amount of water we
have. However, to determine the amount of water on top of bar x, we must know the
minimum between the highest bars on the left- and right-hand sides. In other words, for
each of the bars, that is, 1, 2, 3 ... 9 (notice that we don't use bars 0 and 10 since they are
the boundaries), we have to determine the highest bars on the left- and right-hand sides
and compute the minimum between them. The following image reveals our computations
(the bar in the middle ranges from 1 to 9):

Coding challenges 353

Figure 10.33 – Highest bars on the left- and right-hand sides

Hence, we can conclude that a simple solution would be to traverse the bars to find the
highest bars on the left- and right-hand sides. The minimum of these two bars can be
exploited as follows:

•	 If the minimum is smaller than the height of the current bar, then the current bar
cannot hold water on top of it.

•	 If the minimum is greater than the height of the current bar, then the current bar
can hold an amount of water equal to the difference between the minimum and the
height of the current bar on top of it.

354 Arrays and Strings

So, this problem can be addressed by computing the highest bars on the left- and right-
hand sides of every bar. An efficient implementation of these statements consists of
pre-computing the highest bars on the left- and right-hand sides of every bar in O(n)
time. Then, we need to use the results to find the amount of water on the top of each bar.
The following code should clarify any other details:

public static int trap(int[] bars) {

 int n = bars.length - 1;

 int water = 0;

 // store the maximum height of a bar to

 // the left of the current bar

 int[] left = new int[n];

 left[0] = Integer.MIN_VALUE;

 // iterate the bars from left to right and

 // compute each left[i]

 for (int i = 1; i < n; i++) {

 left[i] = Math.max(left[i - 1], bars[i - 1]);

 }

 // store the maximum height of a bar to the

 // right of the current bar

 int right = Integer.MIN_VALUE;

 // iterate the bars from right to left

 // and compute the trapped water

 for (int i = n - 1; i >= 1; i--) {

 right = Math.max(right, bars[i + 1]);

 // check if it is possible to store water

 // in the current bar

 if (Math.min(left[i], right) > bars[i]) {

 water += Math.min(left[i], right) - bars[i];

 }

Coding challenges 355

 }

 return water;

}

The runtime of this code is O(n) with an auxiliary space of O(n) for the left[] array. A
similar Big O can be obtained by using an implementation based on a stack (the bundled
code contains this implementation as well). How about writing an implementation that
has O(1) space?

Well, instead of maintaining an array of size n to store all the left maximum heights,
we can use two variables to store the maximum until that bar (this technique is known
as two-pointers). As you may recall, you observed this in some of the previous coding
challenges. The two pointers are maxBarLeft and maxBarRight. The implementation
is as follows:

public static int trap(int[] bars) {

 // take two pointers: left and right pointing

 // to 0 and bars.length-1

 int left = 0;

 int right = bars.length - 1;

 int water = 0;

 int maxBarLeft = bars[left];

 int maxBarRight = bars[right];

 while (left < right) {

 // move left pointer to the right

 if (bars[left] <= bars[right]) {

 left++;

 maxBarLeft = Math.max(maxBarLeft, bars[left]);

 water += (maxBarLeft - bars[left]);

 // move right pointer to the left

 } else {

 right--;

 maxBarRight = Math.max(maxBarRight, bars[right]);

356 Arrays and Strings

 water += (maxBarRight - bars[right]);

 }

 }

 return water;

}

The runtime of this code is O(n) with an O(1) space. The complete application is called
TrapRainWater.

Coding challenge 21 – Buying and selling stock
Amazon, Microsoft

Problem: Consider that you've been given an array of positive integers representing the
price of a stock on each day. So, the ith element of the array represents the price of the
stock on day i. As a general rule, you may not perform multiple transactions (a buy-sell
sequence is known as a transaction) at the same time and you must sell the stock before
you buy again. Write a snippet of code that returns the maximum profit in one of the
following scenarios (usually, the interviewer will give you one of the following scenarios):

•	 You are allowed to buy and sell the stock only once.

•	 You are allowed to buy and sell the stock only twice.

•	 You are allowed to buy and sell the stock unlimited times.

•	 You are allowed to buy and sell the stock only k times (k is given).

Solution: Let's consider that the given array of prices is prices={200, 500, 1000, 700, 30,
400, 900, 400, 550}. Let's tackle each of the preceding scenarios.

Buying and selling the stock only once
In this scenario, we must obtain the maximum profit by buying and selling the stock
only once. This is quite simple and intuitive. The idea is to buy the stock when it is at its
cheapest and sell it when it is at its most expensive. Let's identify this statement via the
following price-trend graph:

Coding challenges 357

Figure 10.34 – Price-trend graph

Conforming to the preceding graphic, we should buy the stock at a price of 30 on day 5
and sell it at a price of 900 on day 7. This way, the profit will be at its maximum (870). To
determine the maximum profit, we can employ a simple algorithm, as follows:

1.	 Consider the cheapest price at day 1 and no profit (maximum profit is 0).

2.	 Iterate the rest of the days (2, 3, 4, ...) and do the following:

a. For each day, update the maximum profit as the max(current maximum profit,
(today's price - cheapest price)).

b. Update the cheapest price as the min(current cheapest price, today's price).

358 Arrays and Strings

Let's apply this algorithm to our data. So, we consider the cheapest price as 200 (price at
day 1) and the maximum profit is 0. The following image reveals the computations day by
day:

Figure 10.35 – Computing the maximum profit

Day 1: The minimum price is 200; the price on day 1 - minimum price = 0; therefore, the
maximum profit so far is 200.

Day 2: The minimum price is 200 (since 500 > 200); the price on day 2 - minimum price =
300; therefore, the maximum profit so far is 300 (since 300 > 200).

Day 3: The minimum price is 200 (since 1000 > 200); the price on day 3 - minimum price =
800; therefore, the maximum profit so far is 800 (since 800 > 300).

Day 4: The minimum price is 200 (since 700 > 200); the price on day 4 - minimum price =
500; therefore, the maximum profit so far is 800 (since 800 > 500).

Day 5: The minimum price is 30 (since 200 > 30); the price on day 5 - minimum price = 0;
therefore, the maximum profit so far is 800 (since 800 > 0).

Day 6: The minimum price is 30 (since 400 > 30); the price on day 6 - minimum price =
370; therefore, the maximum profit so far is 800 (since 800 > 370).

Day 7: The minimum price is 30 (since 900 > 30); the price on day 7 - minimum price =
870; therefore, the maximum profit so far is 870 (since 870 > 800).

Day 8: The minimum price is 30 (since 400 > 30); the price on day 8 - minimum price =
370; therefore, the maximum profit so far is 870 (since 870 > 370).

Day 9: The minimum price is 30 (since 550 > 30); the price on day 9 - minimum price =
520; therefore, the maximum profit so far is 870 (since 870 >520).

Finally, the maximum profit is 870.

Coding challenges 359

Let's see the code:

public static int maxProfitOneTransaction(int[] prices) {

 int min = prices[0];

 int result = 0;

 for (int i = 1; i < prices.length; i++) {

 result = Math.max(result, prices[i] - min);

 min = Math.min(min, prices[i]);

 }

 return result;

}

The runtime of this code is O(n). Let's tackle the next scenario.

Buying and selling the stock only twice
In this scenario, we must obtain the maximum profit by buying and selling the stock only
twice. The idea is to buy the stock when it is as its cheapest and sell it when it is at its most
expensive. We do this twice. Let's identify this statement via the following price-trend
graph:

Figure 10.36 – Price-trend graph

360 Arrays and Strings

Conforming to the preceding graph, we should buy the stock at a price of 200 on day 1
and sell it at a price of 1,000 on day 3. This transaction brings a profit of 800. Next, we
should buy the stock at a price of 30 on day 5 and sell it at a price of 900 on day 7. This
transaction brings a profit of 870. So, the maximum profit is 870+800=1670.

To determine the maximum profit, we must find the two most profitable transactions. We
can do this via dynamic programming and the divide and conquer technique. We divide
the algorithm into two parts. The first part of the algorithm contains the following steps:

1.	 Consider the cheapest price at day 1.

2.	 Iterate the rest of the days (2, 3, 4, ...) and do the following:

a. Update the cheapest price as the min(current cheapest price, today's price).

b. Track the maximum profit for today as the max(maximum profit of the previous
day, (today price - cheapest price)).

At the end of this algorithm, we will have an array (let's denote it as left[]) representing the
maximum profit that can be obtained before each day (inclusive of that day). For example,
until day 3 (inclusive of day 3), the maximum profit is 800 since you can buy at a price of
200 on day 1 and sell at a price of 1,000 on day 3, or until day 7 (inclusive of day 7), where
the maximum profit is 870 since you can buy at a price of 30 on day 5 and sell at a price of
900 on day 7, and so on.

This array is obtained via step 2b. We can represent it for our data as follows:

Figure 10.37 – Computing the maximum profit before each day, starting from day 1

The left[] array is useful for after we've covered the second part of the algorithm. Next, the
second part of the algorithm goes as follows:

1.	 Consider the most expensive price on the last day.

2.	 Iterate the rest of the days from (last-1) to the first day(last-1, last-2, last-3, ...) and
do the following:

a. Update the most expensive price as the max(current most expensive price, today's
price).

Coding challenges 361

b. Track the maximum profit for today as the max(maximum profit of the next day,
(most expensive price - today price)).

At the end of this algorithm, we will have an array (let's denote it as right[]) representing
the maximum profit that can be obtained after each day (inclusive of that day). For
example, after day 3 (inclusive of day 3), the maximum profit is 870 since you can buy at a
price of 30 on day 5 and sell at a price of 900 on day 7, or after day 7 the maximum profit
is 150 since you can buy at a price of 400 on day 8 and sell at a price of 550 on day 9, and
so on. This array is obtained via step 2b. We can represent it for our data as follows:

Figure 10.38 – Computing the maximum profit after each day, starting from the previous day

So far, we have accomplished the divide part. Now, it's time for the conquer part. The
maximum profit that can be accomplished in two transactions can be obtained as the
max(left[day]+right[day]). We can see this in the following image:

Figure 10.39 – Computing the final maximum profit of transactions 1 and 2

Now, let's see the code:

public static int maxProfitTwoTransactions(int[] prices) {

 int[] left = new int[prices.length];

 int[] right = new int[prices.length];

 // Dynamic Programming from left to right

 left[0] = 0;

 int min = prices[0];

362 Arrays and Strings

 for (int i = 1; i < prices.length; i++) {

 min = Math.min(min, prices[i]);

 left[i] = Math.max(left[i - 1], prices[i] - min);

 }

 // Dynamic Programming from right to left

 right[prices.length - 1] = 0;

 int max = prices[prices.length - 1];

 for (int i = prices.length - 2; i >= 0; i--) {

 max = Math.max(max, prices[i]);

 right[i] = Math.max(right[i + 1], max - prices[i]);

 }

 int result = 0;

 for (int i = 0; i < prices.length; i++) {

 result = Math.max(result, left[i] + right[i]);

 }

 return result;

}

The runtime of this code is O(n). Now, let's tackle the next scenario.

Buying and selling the stock an unlimited amount of times
In this scenario, we must obtain the maximum profit by buying and selling the stock
an unlimited amount of times. You can identify this statement via the following price-
trend graph:

Coding challenges 363

Figure 10.40 – Price-trend graph

Conforming to the preceding graphic, we should buy the stock at a price of 200 on day
1 and sell it at a price of 500 on day 2. This transaction brings in a profit of 300. Next, we
should buy the stock at a price of 500 on day 2 and sell it at a price of 1000 on day 3. This
transaction brings in a profit of 500. Of course, we can merge these two transactions into
one by buying at a price of 200 on day 1 and selling at a price of 1000 on day 3. The same
logic can be applied until day 9. The final maximum profit will be 1820. Take your time
and identify all the transactions from day 1 to day 9.

364 Arrays and Strings

By studying the preceding price-trend graphic, we can see that this problem can be viewed
as an attempt to find all the ascending sequences. The following graph highlights the
ascending sequences for our data:

Figure 10.41 – Ascending sequences

Finding all the ascending sequences is a simple task based on the following algorithm:

1.	 Consider the maximum profit as 0 (no profit).

2.	 Iterate all the days, starting from day 2, and do the following:

a. Compute the difference between the today price and the preceding day price (for
example, at the first iteration, compute (the price of day 2 - the price of day 1), so
500 - 200).

b. If the computed difference is positive, then increment the maximum profit by this
difference.

At the end of this algorithm, we will know the final maximum profit. If we apply this
algorithm to our data, then we'll obtain the following output:

Coding challenges 365

Figure 10.42 – Computing the final maximum profit

Day 1: The maximum profit is 0.

Day 2: The maximum profit is 0 + (500 - 200) = 0 + 300 = 300.

Day 3: The maximum profit is 300 + (1000 - 500) = 300 + 500 = 800.

Day 4: The maximum profit remains 800 since 700 - 1000 < 0.

Day 5: The maximum profit remains 800 since 30 - 700 < 0.

Day 6: The maximum profit is 800 + (400 - 30) = 800 + 370 = 1170.

Day 7: The maximum profit is 1170 + (900 - 400) = 1170 + 500 = 1670.

Day 8: The maximum profit remains 1670 since 400 - 900 < 0.

Day 9: The maximum profit is 1670 + (550 - 400) = 1670 + 150 = 1820.

The final maximum profit is 1820.

In terms of code, this looks as follows:

public static int maxProfitUnlimitedTransactions(

 int[] prices) {

 int result = 0;

 for (int i = 1; i < prices.length; i++) {

 int diff = prices[i] - prices[i - 1];

 if (diff > 0) {

 result += diff;

 }

 }

 return result;

}

366 Arrays and Strings

The runtime of this code is O(n). Next, let's tackle the last scenario.

Buying and selling the stock only k times (k is given)
This scenario is the generalized version of the Buying and selling the stock only twice.
scenario. Mainly, by solving this scenario, we also solve the Buying and selling the stock
only twice scenario for k=2.

Based on our experience from the previous scenarios, we know that solving this problem
can be done via Dynamic Programming. More precisely, we need to track two arrays:

•	 The first array will track the maximum profit of p transactions when the last
transaction is on the qth day.

•	 The second array will track the maximum profit of p transactions until the qth day.

If we denote the first array as temp and the second array as result, then we have the
following two relations:

1.	

temp[p] = Math.max(result[p - 1]

 + Math.max(diff, 0), temp[p] + diff);

2.	

result[p] = Math.max(temp[p], result[p]);

For a better understanding, let's put these relations into the context of code:

public static int maxProfitKTransactions(

 int[] prices, int k) {

 int[] temp = new int[k + 1];

 int[] result = new int[k + 1];

 for (int q = 0; q < prices.length - 1; q++) {

 int diff = prices[q + 1] - prices[q];

 for (int p = k; p >= 1; p--) {

 temp[p] = Math.max(result[p - 1]

 + Math.max(diff, 0), temp[p] + diff);

 result[p] = Math.max(temp[p], result[p]);

Coding challenges 367

 }

 }

 return result[k];

}

The runtime of this code is O(kn). The complete application is called
BestTimeToBuySellStock.

Coding challenge 22 – Longest sequence
Amazon, Adobe, Microsoft

Problem: Consider that you've been given an array of integers. Write a snippet of
code that finds the longest sequence of integers. Notice that a sequence contains only
consecutive distinct elements. The order of the elements in the given array is not
important.

Solution: Let's consider that the given array is { 4, 2, 9, 5, 12, 6, 8}. The longest sequence
contains three elements and it is formed from 4, 5, and 6. Alternatively, if the given array
is {2, 0, 6, 1, 4, 3, 8}, then the longest sequence contains five elements and it is formed
from 2, 0, 1, 4, and 3. Again, notice that the order of the elements in the given array is not
important.

The brute-force or naive approach consists of sorting the array in ascending order and
finding the longest sequence of consecutive integers. Since the array is sorted, a gap breaks
a sequence. However, such an implementation will have a runtime of O(n log n).

A better approach consists of employing a hashing technique. Let's use the following image
as support for our solution:

Figure 10.43 – Sequence set

368 Arrays and Strings

First, we build a set from the given array {4, 2, 9, 5, 12, 6, 8}. As the preceding image
reveals, the set doesn't maintain the order of insertion, but this is not important for
us. Next, we iterate the given array and, for each traversed element (let's denote it as
e), we search the set for e-1. For example, when we traverse 4, we search the set for 3,
when we traverse 2, we search for 1, and so on. If e-1 is not in the set, then we can say
that e represents the start of a new sequence of consecutive integers (in this case, we
have sequences starting with 12, 8, 4, and 2); otherwise, it is already part of an existing
sequence. When we have the start of a new sequence, we continue to search the set for the
consecutive elements: e+1, e+2, e+3, and so on. As long as we find consecutive elements,
we count them. If e+i (1, 2, 3, ...) cannot be found, then the current sequence is complete,
and we know its length. Finally, we compare this length with the longest length we've
found so far and proceed accordingly.

The code for this is quite simple:

public static int findLongestConsecutive(int[] sequence) {

 // construct a set from the given sequence

 Set<Integer> sequenceSet = IntStream.of(sequence)

 .boxed()

 .collect(Collectors.toSet());

 int longestSequence = 1;

 for (int elem : sequence) {

 // if 'elem-1' is not in the set then
 // start a new sequence

 if (!sequenceSet.contains(elem - 1)) {

 int sequenceLength = 1;

 // lookup in the set for elements

 // 'elem + 1', 'elem + 2', 'elem + 3' ...

 while (sequenceSet.contains(elem + sequenceLength)) {

 sequenceLength++;

 }

 // update the longest consecutive subsequence

Coding challenges 369

 longestSequence = Math.max(

 longestSequence, sequenceLength);

 }

 }

 return longestSequence;

}

The runtime of this code is O(n) with an auxiliary space of O(n). Challenge yourself and
print the longest sequence. The complete application is called LongestConsecutiveSequence.

Coding challenge 23 – Counting game score
Amazon, Google, Microsoft

Problem: Consider a game where a player can score 3, 5, or 10 points in a single move.
Moreover, consider that you've been given a total score, n. Write a snippet of code that
returns the number of ways to reach this score.

Solution: Let's consider that the given score is 33. There are seven ways to reach this score:

(10+10+10+3) = 33

(5+5+10+10+3) = 33

(5+5+5+5+10+3) = 33

(5+5+5+5+5+5+3) = 33

(3+3+3+3+3+3+3+3+3+3+3) = 33

(3+3+3+3+3+3+5+5+5) = 33

(3+3+3+3+3+3+5+10) = 33

370 Arrays and Strings

We can solve this problem with the help of Dynamic Programming. We create a table (an
array) whose size is equal to n+1. In this table, we store the counts of all scores from 0 to
n. For moves 3, 5, and 10, we increment the values in the array. The code speaks for itself:

public static int count(int n) {

 int[] table = new int[n + 1];

 table[0] = 1;

 for (int i = 3; i <= n; i++) {

 table[i] += table[i - 3];

 }

 for (int i = 5; i <= n; i++) {

 table[i] += table[i - 5];

 }

 for (int i = 10; i <= n; i++) {

 table[i] += table[i - 10];

 }

 return table[n];

}

The runtime of this code is O(n) with O(n) extra space. The complete application is called
CountScore3510.

Coding challenge 24 – Checking for duplicates
Amazon, Google, Adobe

Problem: Consider that you've been given an array of integers, arr. Write several solutions
that return true if this array contains duplicates.

Coding challenges 371

Solution: Let's assume that the given integer is arr={1, 4, 5, 4, 2, 3}, so 4 is a duplicate. The
brute-force approach (or the naive approach) will rely on nested loops, as shown in the
following trivial code:

public static boolean checkDuplicates(int[] arr) {

 for (int i = 0; i < arr.length; i++) {

 for (int j = i + 1; j < arr.length; j++) {

 if (arr[i] == arr[j]) {

 return true;

 }

 }

 }

 return false;

}

This code is very simple but it performs in O(n2) and O(1) auxiliary space. We can
sort the array before checking for duplicates. If the array is sorted, then we can compare
adjacent elements. If any adjacent elements are equal, we can say that the array contains
duplicates:

public static boolean checkDuplicates(int[] arr) {

 java.util.Arrays.sort(arr);

 int prev = arr[0];

 for (int i = 1; i < arr.length; i++) {

 if (arr[i] == prev) {

 return true;

 }

 prev = arr[i];

 }

 return false;

}

372 Arrays and Strings

This code performs in O(n log n) (since we sort the array) and O(1) auxiliary space. If we
want to write an implementation that performs in O(n) time, we must also consider an
auxiliary O(n) space. For example, we can rely on hashing (if you are not familiar with the
concept of hashing, then please read Chapter 6, Object-Oriented Programming, the Hash
table problem). In Java, we can use hashing via the built-in HashSet implementation,
so there is no need to write a hashing implementation from scratch. But how is this
HashSet useful? While we iterate the given array, we add each element from the array to
HashSet. But if the current element is already present in HashSet, this means we found
a duplicate, so we can stop and return:

public static boolean checkDuplicates(int[] arr) {

 Set<Integer> set = new HashSet<>();

 for (int i = 0; i < arr.length; i++) {

 if (set.contains(arr[i])) {

 return true;

 }

 set.add(arr[i]);

 }

 return false;

}

So, this code performs in O(n) time and auxiliary O(n) space. But we can simplify
the preceding code if we remember that HashSet doesn't accept duplicates. In other
words, if we insert all the elements of the given array into HashSet and this array
contains duplicates, then the size of HashSet will differ from the size of the array. This
implementation and a Java 8-based implementation that has an O(n) runtime and an O(n)
auxiliary space can be found in the code bundled with this book.

How about an implementation that has an O(n) runtime and an O(1) auxiliary space? This
is possible if we take two important constraints of the given array into consideration:

•	 The given array doesn't contain negative elements.

•	 The elements lies in the range [0, n-1], where n=arr.length.

Coding challenges 373

Under the umbrella of these two constraints, we can employee the following algorithm.

1.	 We iterate over the given array and for each arr[i], we do the following:

a. If arr[abs(arr[i])] is greater than 0, then we make it negative.

b. If arr[abs(arr[i])] is equal to 0, then we make it -(arr.length-1).

c. Otherwise, we return true (there are duplicates).
Let's consider our array, arr={1, 4, 5, 4, 2, 3}, and apply the preceding algorithm:

•	 i=0, since arr[abs(arr[0])] = arr[1] = 4 > 0 results in arr[1] = -arr[1] = -4.

•	 i=1, since arr[abs(arr[1])] = arr[4] = 2 > 0 results in arr[4] = -arr[4] = -2.

•	 i=2, since arr[abs(arr[5])] = arr[5] = 3 > 0 results in arr[5] = -arr[5] = -3.

•	 i=3, since arr[abs(arr[4])] = arr[4] = -2 < 0 returns true (we found a duplicate)

Now, let's look at arr={1, 4, 5, 3, 0, 2, 0}:

•	 i=0, since arr[abs(arr[0])] = arr[1] = 4 > 0 results in arr[1] = -arr[1] = -4.

•	 i=1, since arr[abs(arr[1])] = arr[4] = 0 = 0 results in arr[4] = -(arr.length-1) = -6.

•	 i=2, since arr[abs(arr[2])] = arr[5] = 2 > 0 results in arr[5] = -arr[5] = -2.

•	 i=3, since arr[abs(arr[3])] = arr[3] = 3 > 0 results in arr[3] = -arr[3] = -3.

•	 i=4, since arr[abs(arr[4])] = arr[6] = 0 = 0 results in arr[6] = -(arr.length-1) = -6.

•	 i=5, since arr[abs(arr[5])] = arr[2] = 5 > 0 results in arr[2] = -arr[2] = -5.

•	 i=6, since arr[abs(arr[6])] = arr[6] = -6 < 0 returns true (we found a duplicate).

Let's put this algorithm into code:

public static boolean checkDuplicates(int[] arr) {

 for (int i = 0; i < arr.length; i++) {

 if (arr[Math.abs(arr[i])] > 0) {

 arr[Math.abs(arr[i])] = -arr[Math.abs(arr[i])];

 } else if (arr[Math.abs(arr[i])] == 0) {

 arr[Math.abs(arr[i])] = -(arr.length-1);

 } else {

 return true;

 }

374 Arrays and Strings

 }

 return false;

}

The complete application is called DuplicatesInArray.

For the following five coding challenges, you can find the solutions in the code bundled
with this book. Take your time and challenge yourself to come up with a solution before
checking the bundled code.

Coding challenge 25 – Longest distinct substring
Problem: Consider you've been given a string, str. The accepted characters of str belong to
the extended ASCII table (256 characters). Write a snippet of code that finds the longest
substring of str containing distinct characters.

Solution: As a hint, use the sliding window technique. If you are not familiar with this
technique, then consider reading Sliding Window Technique by Zengrui Wang (https://
medium.com/@zengruiwang/sliding-window-technique-360d840d5740)
before continuing. The complete application is called LongestDistinctSubstring.
You can visit the following link to check the code: https://github.com/
PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/
tree/master/Chapter10/LongestDistinctSubstring

Coding challenge 26 – Replacing elements with ranks
Problem: Consider you've been given an array without duplicates, m. Write a snippet
of code that replaces each element of this array with the element's rank. The minimum
element in the array has a rank of 1, the second minimum has a rank of 2, and so on.

Solution: As a hint, you can use a TreeMap. The complete application is called
ReplaceElementWithRank. You can visit the following link to check the code: https://
github.com/PacktPublishing/The-Complete-Coding-Interview-
Guide-in-Java/tree/master/Chapter10/ReplaceElementWithRank

https://medium.com/@zengruiwang/sliding-window-technique-360d840d5740
https://medium.com/@zengruiwang/sliding-window-technique-360d840d5740
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter10/LongestDistinctSubstring
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter10/LongestDistinctSubstring
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter10/LongestDistinctSubstring
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter10/ReplaceElementWithRank
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter10/ReplaceElementWithRank
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter10/ReplaceElementWithRank

Coding challenges 375

Coding challenge 27 – Distinct elements in every
sub-array
Problem: Consider you've been given an array, m, and an integer, n. Write a snippet of
code that counts the number of distinct elements in every sub-array of size n.

Solution: As a hint, use a HashMap to store the frequency of the elements in the current
window whose size is n. The complete application is called CountDistinctInSubarray.
You can visit the following link to check the code: https://github.com/
PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/
tree/master/Chapter10/CountDistinctInSubarray

Coding challenge 28 – Rotating the array k times
Problem: Consider you've been given an array, m, and an integer, k. Write a snippet of
code that rotates the array to the right k times (for example, array {1, 2, 3, 4, 5}, when
rotated three times, results in {3, 4, 5, 1, 2}).

Solution: As a hint, rely on the modulo (%) operator. The complete application is called
RotateArrayKTimes. You can visit the following link to check the code: https://
github.com/PacktPublishing/The-Complete-Coding-Interview-
Guide-in-Java/tree/master/Chapter10/RotateArrayKTimes.

Coding challenge 29 – Distinct absolute values in
sorted arrays
Problem: Consider you've been given a sorted array of integers, m. Write a snippet of
code that counts the distinct absolute values (for example, -1 and 1 are considered a
single value).

Solution: As a hint, use the sliding window technique. If you are not familiar with this
technique, then consider reading Sliding Window Technique by Zengrui Wang (https://
medium.com/@zengruiwang/sliding-window-technique-360d840d5740)
before continuing. The complete application is called CountDistinctAbsoluteSortedArray.
You can visit the following link to check the code: https://github.com/
PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/
tree/master/Chapter10/CountDistinctAbsoluteSortedArray

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter10/CountDistinctInSubarray
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter10/CountDistinctInSubarray
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter10/CountDistinctInSubarray
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter10/RotateArrayKTimes
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter10/RotateArrayKTimes
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter10/RotateArrayKTimes
https://medium.com/@zengruiwang/sliding-window-technique-360d840d5740
https://medium.com/@zengruiwang/sliding-window-technique-360d840d5740
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter10/CountDistinctAbsoluteSortedArray
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter10/CountDistinctAbsoluteSortedArray
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter10/CountDistinctAbsoluteSortedArray

376 Arrays and Strings

Summary
The goal of this chapter was to help you master various coding challenges involving
strings and/or arrays. Hopefully, the coding challenges in this chapter have provided
various techniques and skills that will be very useful in tons of coding challenges that fall
under this category. Don't forget that you can enrich your skills even more via the book
Java Coding Problems (https://www.amazon.com/gp/product/1789801419/),
which is published by Packt as well. Java Coding Problems comes with 35+ strings and
arrays problems that were not tackled in this book.

In the next chapter, we will discuss linked lists and maps.

https://www.amazon.com/gp/product/1789801419/

11
Linked Lists and

Maps
This chapter covers the most popular coding challenges involving maps and linked lists
that you will encounter in coding interviews. Since singly linked lists are preferred in
technical interviews, most of the problems in this chapter will exploit them. However,
you can challenge yourself and try to solve each such problem in the context of a doubly
linked list as well. Commonly, the problems become easier to solve for a doubly linked
list because a doubly linked list maintains two pointers for each node and allows us to
navigate back and forth within the list.

By the end of this chapter, you'll know all of the popular problems involving linked lists
and maps, and you'll have enough knowledge and understanding of numerous techniques
to help you to tackle any other problem in this category. Our agenda is quite simple; we'll
cover the following topics:

•	 Linked lists in a nutshell

•	 Maps in a nutshell

•	 Coding challenges

378 Linked Lists and Maps

Technical requirements
All of the code files in this chapter are available on GitHub and can be accessed at
https://github.com/PacktPublishing/The-Complete-Coding-
Interview-Guide-in-Java/tree/master/Chapter11.

However, before going into the coding challenges, let's first learn about linked lists and
maps.

Linked lists in a nutshell
A linked list is a linear data structure that represents a sequence of nodes. The first node
is commonly referred to as the head, while the last node is commonly referred to as the
tail. When each node points to the next node, we have a singly linked list, as shown in the
following diagram:

Figure 11.1 – A singly linked list

When each node points to the next node and to the previous node, we have a doubly
linked list, as shown in the following diagram:

Figure 11.2 – A doubly linked list

Let's consider a singly linked list. If the tail points to the head, then we have a circular
singly linked list. Alternatively, let's consider a doubly linked list. If the tail points to the
head and the head points to the tail, then we have a circular doubly linked list.

In a singly linked list, a node holds the data (for example, an integer or an object) and the
pointer to the next node. The following code represents the node of a singly linked list:

private final class Node {

 private int data;

 private Node next;

}

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter11
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter11

Maps in a nutshell 379

A doubly linked list also requires the pointer to the previous node:

private final class Node {

 private int data;

 private Node next;

 private Node prev;

}

Unlike an array, a linked list doesn't provide constant time to access the nth element. We
have to iterate n-1 elements to obtain the nth element. We can insert, remove, and update
nodes in constant time from the beginning of a linked list (singly and doubly). If our
implementation manages the tail of the doubly linked list (known as a two-head doubly
linked list), then we can insert, remove, and update nodes in constant time from the end
of the linked list as well; otherwise, we need to iterate the linked list until the last node.
If our implementation manages the tail of the singly linked list (known as a two-head
singly linked list), then we can insert nodes in constant time at the end of the linked list;
otherwise, we need to iterate the linked list until the last node.

The code bundle for this book comes with the following applications (each application
exposes the insertFirst(), insertLast(), insertAt(), delete(),
deleteByIndex(), and print() methods):

•	 SinglyLinkedList: Implementation of a two-head singly linked list

•	 SinglyLinkedListOneHead: Implementation of a single-head singly linked list

•	 DoublyLinkedList: Implementation of a two-head doubly linked list

•	 DoublyLinkedListOneHead: Implementation of a single-head doubly linked list

It is highly recommended that you dissect, to the bone, each of these applications on
your own. Each of them is heavily commented to help you to understand each step. The
following coding challenges rely on these linked list implementations.

Maps in a nutshell
Imagine that you are looking for a word in a dictionary. The word itself is unique and can
be considered a key. The meaning of this word can be considered the value. Therefore,
the word and its meaning form a key-value pair. Similarly, in computing, a key-value pair
accommodates a piece of data in which the value can be found by searching with the key.
In other words, we know the key and we can use it to find the value.

380 Linked Lists and Maps

A map is an Abstract Data Type (ADT) that manages key-value pairs (known as entries)
via an array. The characteristics of a map include the following:

•	 Keys are unique (that is, no duplicate keys are allowed).

•	 We can view the list of keys, the list of values, or both.

•	 The most common methods to work with a map are get(), put(),
and remove().

Now that we've briefly overviewed the notions of linked lists and maps, let's begin our
coding challenges.

Coding challenges
In the following 17 coding challenges, we will cover a number of problems involving
maps and linked lists. Since linked lists are a more popular topic in technical interviews,
we will allocate a higher number of problems to them. However, to master the concept of
map data structures, especially built-in Java map implementations, I strongly recommend
that you buy the book Java Coding Problems, which is also published by Packt Publishing
(https://www.packtpub.com/programming/java-coding-problems).
Besides being an awesome companion to this book, Java Coding Problems contains the
following problems with maps (note that this is not a complete list):

•	 Creating unmodifiable/immutable collections

•	 Mapping a default value

•	 Computing whether a value is absent/present in a Map

•	 Removal from a Map

•	 Replacing entries from a Map

•	 Comparing two maps

•	 Sorting a Map

•	 Copying a HashMap

•	 Merging two maps

•	 Removing all the elements of a collection that match a predicate

Now that we have a basic idea of what linked lists and maps are, let's take a look at the
most popular problems in interviews to do with maps and linked lists.

https://www.packtpub.com/programming/java-coding-problems
https://www.packtpub.com/programming/java-coding-problems

Coding challenges 381

Coding challenge 1 – Map put, get, and remove
Problem: Write a basic implementation of a map data structure that allows you to put, get,
and remove values. You should have one method named put(K k, V v), one method
named get(K k), and one method named remove(K k).

Solution: As you know, a map is a key-value pair data structure. Each key-value pair is
an entry to the map. Therefore, we cannot implement a map's functionalities until we
materialize an entry. Since an entry holds two pieces of information, we need to define a
class that wraps the key and the value in a generic approach.

The code is quite simple:

private final class MyEntry<K, V> {

 private final K key;

 private V value;

 public MyEntry(K key, V value) {

 this.key = key;

 this.value = value;

 }

 // getters and setters omitted for brevity

}

Now that we have an entry, we can declare a map. A map is managed via an array of
entries that have a default size, which is known as the map capacity. A map with an initial
capacity of 16 elements is declared as follows:

private static final int DEFAULT_CAPACITY = 16;

private MyEntry<K, V>[] entries

 = new MyEntry[DEFAULT_CAPACITY];

382 Linked Lists and Maps

Next, we can focus on working with this array to act as a map for the client. Putting an
entry into the map can only be done if the entry's key is unique across the map. If the
given key exists, then we just update its value. In addition to this, we can add an entry as
long as we haven't exceeded the map capacity. The typical approach in such a case is to
double the size of the map. The code based on these statements is as follows:

private int size;

public void put(K key, V value) {

 boolean success = true;

 for (int i = 0; i < size; i++) {

 if (entries[i].getKey().equals(key)) {

 entries[i].setValue(value);

 success = false;

 }

 }

 if (success) {

 checkCapacity();

 entries[size++] = new MyEntry<>(key, value);

 }

}

The following helper method is used to double the capacity of the map. Since a Java array
cannot be resized, we need to tackle this issue by creating a copy of the initial array, but
with a double the size of the initial array:

private void checkCapacity() {

 if (size == entries.length) {

 int newSize = entries.length * 2;

 entries = Arrays.copyOf(entries, newSize);

 }

}

Coding challenges 383

Getting a value is done using the key. If the given key is not found, then we return null.
Getting a value doesn't remove the entry from the map. Let's take a look at the code:

public V get(K key) {

 for (int i = 0; i < size; i++) {

 if (entries[i] != null) {

 if (entries[i].getKey().equals(key)) {

 return entries[i].getValue();

 }

 }

 }

 return null;

}

Finally, we need to remove an entry using the key. Removing an element from an array
involves shifting the remaining elements by one position. After the elements are shifted,
the penultimate and last elements are equal. You can avoid memory leaks by nullifying the
last element of the array. It is a common mistake to forget this step:

public void remove(K key) {

 for (int i = 0; i < size; i++) {

 if (entries[i].getKey().equals(key)) {

 entries[i] = null;

 size--;

 condenseArray(i);

 }

 }

}

private void condenseArray(int start) {

 int i;

 for (i = start; i < size; i++) {

384 Linked Lists and Maps

 entries[i] = entries[i + 1];

 }

 entries[i] = null; // don't forget this line

}

The production implementation of a map is much more complicated than the one exposed
here (for example, a map uses buckets). However, most probably, you won't need to know
more than this implementation in an interview. Nevertheless, it is a good idea to mention
this to the interviewer. That way, you can show them you understand the complexity of
the problem and that you are aware of it.

Done! The complete application is named Map.

Coding challenge 2 – Map the key set and values
Problem: Consider the previous coding challenge as a basic implementation of a map
data structure. Enrich this implementation with a method that returns a set of keys
(keySet()) and a method that returns a collection of values (values()).

Solution: Returning a set of keys is a straightforward operation that involves looping the
map's keys and adding them, one by one, to a Set. The following code speaks for itself:

public Set<K> keySet() {

 Set<K> set = new HashSet<>();

 for (int i = 0; i < size; i++) {

 set.add(entries[i].getKey());

 }

 return set;

}

To return a collection of values, we loop the map and add the values, one by one, to a
List. We use a List since values can contain duplicates:

public Collection<V> values() {

 List<V> list = new ArrayList<>();

 for (int i = 0; i < size; i++) {

 list.add(entries[i].getValue());

Coding challenges 385

 }

 return list;

}

Done! This was simple; a map implemented for production is far more complex than what
is shown here. For example, the values are cached instead of being extracted every time.
Mention this to the interviewer so she/he can see that you are aware of how a production
map works. Take your time and check the Java built-in Map and HashMap source code.

The complete application is named Map.

Coding challenge 3 – Nuts and bolts
Google, Adobe

Problem: Given n nuts and n bolts, consider a one-to-one mapping between them. Write
a snippet of code that finds all matches between the nuts and bolts with the minimum
number of iterations.

Solution: Let's consider that the nuts and bolts are represented by the following two
arrays:

char[] nuts = {'$', '%', '&', 'x', '@'};

char[] bolts = {'%', '@', 'x', '$', '&'};

The most intuitive solution relies on a brute-force approach. We can choose a nut and
iterate the bolts to find its mate. For example, if we choose nuts[0], we can find its mate
with bolts[3]. Additionally, we can take nuts[1] and find its mate with bolts[0].
This algorithm is very simple to implement via two for statements and has a complexity
time of O(n2).

Alternatively, we can consider sorting the nuts and bolts. This way, the matches between
the nuts and bolts will automatically align. This will also work, but it will not include the
minimum number of iterations.

386 Linked Lists and Maps

In order to obtain a minimum number of iterations, we can use a hash map. In this hash
map, first, we put each nut as a key and its position in the given array of nuts as a value.
Next, we iterate the bolts, and we check whether the hash map contains each bolt as a key.
If the hash map contains a key for the current bolt, then we have found a match (a pair);
otherwise, there is no match for this bolt. Let's take a look at the code:

public static void match(char[] nuts, char[] bolts) {

 // in this map, each nut is a key and

 // its position is as value

 Map<Character, Integer> map = new HashMap<>();

 for (int i = 0; i < nuts.length; i++) {

 map.put(nuts[i], i);

 }

 //for each bolt, search a nut

 for (int i = 0; i < bolts.length; i++) {

 char bolt = bolts[i];

 if (map.containsKey(bolt)) {

 nuts[i] = bolts[i];

 } else {

 System.out.println("Bolt " + bolt + " has no nut");

 }

 }

 System.out.println("Matches between nuts and bolts: ");

 System.out.println("Nuts: " + Arrays.toString(nuts));

 System.out.println("Bolts: " +Arrays.toString(bolts));

}

The runtime for this code is O(n). The complete code is named NutsAndBolts.

Coding challenge 4 – Remove duplicates
Amazon, Google, Adobe, Microsoft

Problem: Consider an unsorted singly linked list of integers. Write a snippet of code that
removes duplicates.

Coding challenges 387

Solution: A trivial solution consists of iterating the given linked list and storing the data
of each node in a Set<Integer>. However, before adding the data of the current node
into the Set, we check the data against the current contents of the Set. If the Set already
contains that data, we remove the node from the linked list; otherwise, we just add its data
to the Set. Removing a node from a singly linked list can be done by linking the previous
node to the next node of the current node.

The following diagram illustrates this statement:

Figure 11.3 – Removing a node from a singly linked list

Since a singly linked list holds a pointer to only the next node, we cannot know the node
previous to the current node. The trick is to track two consecutive nodes starting with the
current node as the linked list head and the previous node as null. When the current
node advances to the next node, the previous node advances to the current node. Let's
look at the code that glues these statements together:

// 'size' is the linked list size

public void removeDuplicates() {

 Set<Integer> dataSet = new HashSet<>();

 Node currentNode = head;

 Node prevNode = null;

 while (currentNode != null) {

 if (dataSet.contains(currentNode.data)) {

 prevNode.next = currentNode.next;

 if (currentNode == tail) {

 tail = prevNode;

 }

 size--;

388 Linked Lists and Maps

 } else {

 dataSet.add(currentNode.data);

 prevNode = currentNode;

 }

 currentNode = currentNode.next;

 }

}

This solution works in the time and space complexity of O(n), where n is the number of
nodes in the linked list. We can try another approach that reduces space complexity to
O(1). First, let's consider the following diagram as a guide for the next steps:

Figure 11.4 – Removing a node from a singly linked list

This approach uses two pointers:

1.	 The current node, which starts from the head of the linked list and traverses the
linked list, node by node, until it reaches the tail (for example, in the preceding
diagram, the current node is the second node).

2.	 The runner node, which starts from the same place as the current node, that is, the
head of the linked list.

Additionally, the runner node iterates through the linked list and checks whether the
data of each node is equal to the data of the current node. While the runner code iterates
through the linked list, the current node's position remains fixed.

If the runner node detects a duplicate, then it removes it from the linked list. When the
runner node reaches the tail of the linked list, the current node advances to the next node,
and the runner node iterates through the linked list again starting from the current node.
So, this is an O(n2) time complexity algorithm, but with an O(1) space complexity. Let's
take a look at the code:

public void removeDuplicates() {

 Node currentNode = head;

Coding challenges 389

 while (currentNode != null) {

 Node runnerNode = currentNode;

 while (runnerNode.next != null) {

 if (runnerNode.next.data == currentNode.data) {

 if (runnerNode.next == tail) {

 tail = runnerNode;

 }

 runnerNode.next = runnerNode.next.next;

 size--;

 } else {

 runnerNode = runnerNode.next;

 }

 }

 currentNode = currentNode.next;

 }

}

The complete code is named LinkedListRemoveDuplicates.

Coding challenge 5 – Rearranging linked lists
Adobe, Flipkart, Amazon

Problem: Consider an unsorted singly linked list of integers and a given integer, n. Write a
snippet of code that rearranges the nodes around n. In other words, by the end, the linked
list will contain all of the values that are less than n followed by all of the nodes that are
larger than n. The order of the nodes can be altered and n itself can be anywhere between
the values that are larger than n.

390 Linked Lists and Maps

Solution: Consider that the given linked list is 1 → 5 → 4 → 3 → 2 → 7 → null, and n=3. So,
3 is our pivot. The rest of the nodes should be rearranged around this pivot conforming to
the problem requirement. One solution to this problem is to iterate the linked list node
by node and each node that is smaller than the pivot is put at the head, while each node
that is larger than the pivot is put at the tail. The following diagram helps us to visualize
this solution:

Figure 11.5 – Linked list rearranging

So, the nodes with the values of 5, 4, and 3 are moved to the tail, while the node with the
value of 2 is moved to the head. By the end, all values smaller than 3 are on the left side of
the dashed line, while all values larger than 3 are on the right side of the dashed line. We
can put this algorithm into code as follows:

public void rearrange(int n) {

 Node currentNode = head;

 head = currentNode;

 tail = currentNode;

 while (currentNode != null) {

 Node nextNode = currentNode.next;

 if (currentNode.data < n) {

 // insert node at the head

 currentNode.next = head;

 head = currentNode;

 } else {

 // insert node at the tail

Coding challenges 391

 tail.next = currentNode;

 tail = currentNode;

 }

 currentNode = nextNode;

 }

 tail.next = null;

}

The complete application is named LinkedListRearranging.

Coding challenge 6 – The nth to last node
Adobe, Flipkart, Amazon, Google, Microsoft

Problem: Consider a singly linked list of integers and a given integer, n. Write a snippet of
code that returns the value of the nth to last node.

Solution: We have a bunch of nodes and we have to find the nth node that satisfies a
given constraint. Based on our experience from Chapter 8, Recursion and Dynamic
Programming, we can intuit that this problem has a solution involving recursion. But we
can also solve it via an iterative solution. Since the iterative solution is more interesting, I
will present it here, while the recursive solution is available in the bundled code.

Let's use the following diagram to present the algorithm (follow the diagram from top
to bottom):

Figure 11.6 – The nth to last node

392 Linked Lists and Maps

So, we are given a linked list, 2 → 1 → 5 → 9 → 8 → 3 → 7 → null, and we want to find the fifth
to last node value, which is 5 (you can see this at the top of the preceding diagram). The
iterative solution uses two pointers; let's denote them as runner1 and runner2. Initially,
both of them point to the head of the linked list. In step 1 (the middle of the preceding
diagram), we move the runner1 from the head to the 5th to head (or nth to head) node.
This is easy to accomplish in a for loop from 0 to 5 (or n). In step 2 (the bottom of the
preceding diagram), we move runner1 and runner2 simultaneously until runner1 is null.
When runner1 is null, runner2 will point to the fifth from the head to last node (or nth
from the head to last). In code lines, we do it as follows:

public int nthToLastIterative(int n) {

 // both runners are set to the start

 Node firstRunner = head;

 Node secondRunner = head;

 // runner1 goes in the nth position

 for (int i = 0; i < n; i++) {

 if (firstRunner == null) {

 throw new IllegalArgumentException(

 "The given n index is out of bounds");

 }

 firstRunner = firstRunner.next;

 }

 // runner2 run as long as runner1 is not null

 // basically, when runner1 cannot run further (is null),

 // runner2 will be placed on the nth to last node

 while (firstRunner != null) {

 firstRunner = firstRunner.next;

 secondRunner = secondRunner.next;

 }

 return secondRunner.data;

}

The complete application is named LinkedListNthToLastNode.

Coding challenges 393

Coding challenge 7 – Loop start detection
Adobe, Flipkart, Amazon, Google, Microsoft

Problem: Consider a singly linked list of integers that contains a loop. In other words, the
tail of the linked list points to one of the previous nodes defining a loop or a circularity.
Write a snippet of code that detects the first node of the loop (that is, the node from which
the loop starts).

Solution: If we manage the tail node of the linked list, then it is obvious that the searched
node (the loop start) is at tail.next. If we don't manage the tail, then we can search
for the node that has two nodes pointing to it. This is also quite easy to implement. If
we know the size of the linked list, then we can iterate from 0 to size, and the last
node.next points to the node that marks the loop start.

The Fast Runner/Slow Runner approach
However, let's try another algorithm that requires more imagination. This approach is
called the Fast Runner/Slow Runner approach. It is important because it can be used in
certain problems involving linked lists.

Primarily, the Fast Runner/Slow Runner approach involves using two pointers that start
from the head of the linked list and iterate through the list simultaneously until a certain
condition(s) is met. One pointer is named Slow Runner (SR) because it iterates through
the list node by node. The other pointer is named Fast Runner (FR) because it iterates
through the list by jumping over the next node at every move. The following diagram is an
example of four moves:

Figure 11.7 – Fast Runner/Slow Runner example

So, at the first move, FR and SR are pointing to the head. At the second move, SR points to
the head.next node with value 1, while FR points to the head.next.next node with value 4.
The moves continue following this pattern. When FR reaches the tail of the linked list, SR
is pointing to the middle node.

394 Linked Lists and Maps

As you will see in the next coding challenge, the Fast Runner/Slow Runner approach can
be used to detect whether a linked list is a palindrome. However, for now, let's resume
our problem. So, can we use this approach to detect whether a linked list has a loop and
to find the start node of this loop? This question generates another question. If we apply
the Fast Runner/Slow Runner approach to a linked list having a loop, do the FR and SR
pointers collide or meet? The answer is yes, they will collide.

To explain this, let's assume that before starting the loop, we have q preceding nodes
(these are the nodes that are outside the loop). For every q nodes traversed by SR, FR has
traversed 2*q nodes (this is obvious since FR jumps over a node at every move). Therefore,
when SR enters the loop (reaches the loop start node), FR has traversed 2*q nodes. In
other words, FR is at 2*q-q nodes in the loop portion; therefore, it is at q nodes in the loop
portion. Let's visualize this via the following test case:

Figure 11.8 – Linked list with a loop

So, when SR enters the loop (reaches the fourth node), FR reaches the fourth node into
the loop. Of course, we need to consider that q (the number of preceding non-loop
nodes) might be much larger than the loop length; therefore, we should express 2*q-q as
Q=modulo(q, LOOP_SIZE).

For example, consider Q = modulo(3, 8) =3, where we have three non-loop nodes (q=3)
and the loop size is eight (LOOP_SIZE=8). In this case, we can apply 2*q-q as well since
2*3-3=3. Hence, we can conclude that SR is at three nodes from the start of the list and FR
is at three nodes from the start of the loop. However, if the linked list has 25 nodes that
precede a loop of 7 nodes, then Q = modulo (25, 7) = 4 nodes, while 2*25-25=25, which is
wrong.

In addition to this, FR and SR are moving inside the loop. Since they are moving in a
circle, it means that when FR moves away from SR, it also moves closer to SR and vice
versa. The following diagram isolates the loop and shows how it continues moving FR and
SR until they collide:

Coding challenges 395

Figure 11.9 – FR and SR collision

Take your time tracking SR and FR until they reach the meet point. We know that FR is at
LOOP_SIZE – Q nodes behind FR and that SR is Q nodes behind FR. In our test case, FR
is 8-3=5 nodes behind SR, and SR is 3 nodes behind FR. By continuing to move SR and
FR, we can see that FR catches up at a rate of 1 step per move.

So, where do they meet? Well, if FR catches up at a rate of 1 step per move and FR is
LOOP_SIZE – Q nodes behind SR, then they will meet Q steps before the head of the loop.
In our test case, they will meet 3 steps before the head of the loop at the node with a value
of 8.

If the meet point is at Q nodes from the head of the loop, we can continue by recalling that
the meet point is at q nodes from the head of the loop as well, since Q=modulo(q, LOOP_
SIZE). This means that we can develop the following four-step algorithm:

1.	 Start with FR and SR from the head of the linked list.

2.	 Move SR at a rate of 1 node and FR at a rate of 2 nodes.

3.	 When they collide (at the meet point), move SR to the head of the linked list and
keep FR where it is.

4.	 Move SR and FR at a rate of 1 node until they collide (this is the node representing
the head of the loop).

396 Linked Lists and Maps

Let's put this into code:

public void findLoopStartNode() {

 Node slowRunner = head;

 Node fastRunner = head;

 // fastRunner meets slowRunner

 while (fastRunner != null && fastRunner.next != null) {

 slowRunner = slowRunner.next;

 fastRunner = fastRunner.next.next;

 if (slowRunner == fastRunner) { // they met

 System.out.println("\nThe meet point is at

 the node with value: " + slowRunner);

 break;

 }

 }

 // if no meeting point was found then there is no loop

 if (fastRunner == null || fastRunner.next == null) {

 return;

 }

 // the slowRunner moves to the head of the linked list

 // the fastRunner remains at the meeting point

 // they move simultaneously node-by-node and

 // they should meet at the loop start

 slowRunner = head;

 while (slowRunner != fastRunner) {

 slowRunner = slowRunner.next;

 fastRunner = fastRunner.next;

 }

 // both pointers points to the start of the loop

 System.out.println("\nLoop start detected at

 the node with value: " + fastRunner);

}

Coding challenges 397

As a quick note, don't expect that FR can jump over SR, so they will not meet. This
scenario is not possible. Imagine that FR has jumped over SR and it is at node a, then SR
must be at node a-1. This means that, at the previous step, FR was at node a-2 and SR was
at node (a-1)-1=a-2; therefore, they have collided.

The complete application is named LinkedListLoopDetection. In this code, you'll find a
method named generateLoop(). This method is called to generate random linked lists
with loops.

Coding challenge 8 – Palindromes
Adobe, Flipkart, Amazon, Google, Microsoft

Problem: Consider a singly linked list of integers. Write a snippet of code that returns
true if the linked list is a palindrome. The solution should involve the Fast Runner/Slow
Runner approach (this approach was detailed in the previous coding challenge).

Solution: Just as a quick reminder, a palindrome (whether a string, a number, or a
linked list) looks unchanged when it's reversed. This means that processing (reading) a
palindrome can be done from both directions and the same result will be obtained (for
example, the number 12321 is a palindrome, while the number 12322 is not).

We can intuit a solution that involves the Fast Runner/Slow Runner approach by thinking
that when FR reaches the end of the linked list, SR is in the middle of the linked list.

If the first half of the linked list is the reverse of the second half, then the linked list is a
palindrome. So, if, in a stack, we store all of the nodes traversed by SR until FR reaches
the end of the linked list, the resulting stack will contain the first half of the linked list in
reverse order. Let's visualize this via the following diagram:

Figure 11.10 – Linked list palindrome using the Fast Runner/Slow Runner approach

398 Linked Lists and Maps

So, when FR has reached the end of the linked list and SR has reached the fourth node
(the middle of the linked list), the stack contains the values of 2, 1, and 4. Next, we can
continue to move SR at a rate of 1 node until the end of the linked list. At each move, we
pop a value from the stack, and we compare it with the current node value. If we find a
mismatch, then the linked list is not a palindrome. In the code, we have the following:

public boolean isPalindrome() {

 Node fastRunner = head;

 Node slowRunner = head;

 Stack<Integer> firstHalf = new Stack<>();

 // the first half of the linked list is added into the stack

 while (fastRunner != null && fastRunner.next != null) {

 firstHalf.push(slowRunner.data);

 slowRunner = slowRunner.next;

 fastRunner = fastRunner.next.next;

 }

 // for odd number of elements we to skip the middle node

 if (fastRunner != null) {

 slowRunner = slowRunner.next;

 }

 // pop from the stack and compare with the node by node of

 // the second half of the linked list

 while (slowRunner != null) {

 int top = firstHalf.pop();

 // a mismatch means that the list is not a palindrome

 if (top != slowRunner.data) {

 return false;

 }

Coding challenges 399

 slowRunner = slowRunner.next;

 }

 return true;

}

The complete application is named LinkedListPalindrome.

Coding challenge 9 – Sum two linked lists
Adobe, Flipkart, Microsoft

Problem: Consider two positive integers and two singly linked lists. The first integer is
stored in the first linked list digit by digit (the first digit is the head of the first linked list).
The second integer is stored in the second linked list digit by digit (the first digit is the
head of the second linked list). Write a snippet of code that adds the two numbers and
returns the sum as a linked list having one digit per node.

Solution: Let's start with a visualization of a test case:

Figure 11.11 – Summing two numbers as linked lists

If we compute the sum from the preceding diagram step by step, we obtain the following:

We add 7 + 7 = 14, so we write down 4 and carry 1:

	 The resulting linked list is 4 → ?

We add 3 + 9 + 1 = 13, so we write down 3 and carry 1:

	 The resulting linked list is 4 → 3 → ?

We add 8 + 8 + 1 = 17, so we write down 7 and carry 1:

	 The resulting linked list is 4 → 3 → 7 → ?

400 Linked Lists and Maps

We add 9 + 4 + 1 = 14, so we write down 4 and carry 1

	 The resulting linked list is 4 → 3 → 7 → 4 → ?

We add 4 + 1 = 5, so we write down 5 and carry nothing:

	 The resulting linked list is 4 → 3 → 7 → 4 → 5 → ?

We add 1 + 0 = 1, so we write down 1 and carry nothing:

	 The resulting linked list is 4 → 3 → 7 → 4 → 5 → 1 → ?

We add 2 + 0 = 2, so we write down 2 and carry nothing:

	 The resulting linked list is 4 → 3 → 7 → 4 → 5 → 1 → 2

If we write the resulting linked list as a number, we obtain 4374512; therefore, we need
to reverse it to 2154734. While the method for reversing the resulting linked list (which
can be considered a coding challenge itself) can be found in the bundled code, the
following method applies the preceding steps in a recursive approach (if you are not
skilled in recursion problems, don't forget to cover Chapter 8, Recursion and Dynamic
Programming). Essentially, the following recursion works by adding data node by node,
carrying over any excess data to the next node:

private Node sum(Node node1, Node node2, int carry) {

 if (node1 == null && node2 == null && carry == 0) {

 return null;

 }

 Node resultNode = new Node();

 int value = carry;

 if (node1 != null) {

 value += node1.data;

 }

 if (node2 != null) {

 value += node2.data;

 }

 resultNode.data = value % 10;

Coding challenges 401

 if (node1 != null || node2 != null) {

 Node more = sum(node1 == null

 ? null : node1.next, node2 == null

 ? null : node2.next, value >= 10 ? 1 : 0);

 resultNode.next = more;

 }

 return resultNode;

}

The complete application is named LinkedListSum.

Coding challenge 10 – Linked lists intersection
Adobe, Flipkart, Google, Microsoft

Problem: Consider two singly linked lists. Write a snippet of code that checks whether
the two lists intersect. The intersection is based on reference, not on value, but you should
return the value of the intersection node. So, check the intersection by reference and
return the value.

Solution: If you are not sure what the intersection of two linked lists means, then we
recommended that you sketch a test case and discuss the details with the interviewer. The
following diagram shows such a case:

Figure 11.12 – The intersection of two lists

In this diagram, we have two lists that intersect at the node with value 8. Because we are
talking about an intersection by reference, this means that the nodes with the value of 9,
and value of 4, point to the memory address of the node with the value of 8.

402 Linked Lists and Maps

The main issue is that the lists are not of the same size. If their sizes were equal, we
could traverse both of them, node by node, from head to tail until they collide (until
node_list_1.next= node_list_2.next). If we could skip the nodes with values of 2 and 1,
our lists will be the same size (refer to the next diagram; since the first list is longer than
the second list, we should start iterating from the node marked virtual head):

Figure 11.13 – Removing the first two nodes of the top list

Keeping this statement in mind, we can deduce the following algorithm:

1.	 Determine the sizes of the lists.

2.	 If the first list (let's denote it as l1) is longer than the second one (let's denote it as
l2), then move the pointer of the first list to (l1-l2).

3.	 If the first list is shorter than the second one, then move the pointer of the second
list to (l2-l1).

4.	 Move both pointers, node by node, until you reach the end or until they collide.

Putting these steps into code is straightforward:

public int intersection() {

 // this is the head of first list

 Node currentNode1 = {head_of_first_list};

 // this is the head of the second list

 Node currentNode2 = {head_of_second_list};

 // compute the size of both linked lists

 // linkedListSize() is just a helper method

 int s1 = linkedListSize(currentNode1);

 int s2 = linkedListSize(currentNode2);

Coding challenges 403

 // the first linked list is longer than the second one

 if (s1 > s2) {

 for (int i = 0; i < (s1 - s2); i++) {

 currentNode1 = currentNode1.next;

 }

 } else {

 // the second linked list is longer than the first one

 for (int i = 0; i < (s2 - s1); i++) {

 currentNode2 = currentNode2.next;

 }

 }

 // iterate both lists until the end or the intersection node

 while (currentNode1 != null && currentNode2 != null) {

 // we compare references not values!

 if (currentNode1 == currentNode2) {

 return currentNode1.data;

 }

 currentNode1 = currentNode1.next;

 currentNode2 = currentNode2.next;

 }

 return -1;

}

The complete application is named LinkedListsIntersection. In the code, you will see a
helper method named generateTwoLinkedListWithInterection(). This is used
to generate random lists with an intersection point.

Coding challenge 11 – Swap adjacent nodes
Amazon, Google

Problem: Consider a singly linked list. Write a snippet of code that swaps the adjacent
nodes so that a list such as 1 → 2 → 3 → 4 → null becomes 2 → 1 → 4 → 3 → null. Consider
swapping the adjacent nodes, not their values!

404 Linked Lists and Maps

Solution: We can reduce the problem of finding a solution to swap two consecutive nodes,
n1 and n2. A well-known technique to swap two values (for example, two integers, v1 and
v2) relies on an auxiliary variable and can be written as follows:

aux = v1; v1 = v2; v2 = aux;

However, we cannot apply this plain approach to nodes because we have to deal with their
links. It is not enough to write the following:

aux = n1; n1 = n2; n2 = aux;

If we rely on this plain approach to swap n1 with n2, then we will obtain something
similar to the following diagram (notice that after swapping n1 with n2, we have n1.next =
n3 and n2.next = n1, which is totally wrong):

Figure 11.14 – Plain swapping with broken links (1)

But we can fix the links, right? Well, we can explicitly set n1.next to point to n2, and set
n2.next to point to n3:

n1.next = n2

n2.next = n3

Now it should be good! We can swap two consecutive nodes. However, when we swap
a pair of nodes, we also break the links between two consecutive pairs of nodes. The
following diagram illustrates this issue (we swap and fix the links for the n1-n2 pair and
the n3-n4 pair):

Coding challenges 405

Figure 11.15 – Plain swapping with broken links (2)

Notice that after swapping these two pairs, n2.next points to n4, which is wrong. Hence,
we must fix this link as well. For this, we can store n2, and, after swapping n3-n4, we can
repair the link by setting n2.next=n3. Now, everything looks good and we can put it
into code:

public void swap() {

 if (head == null || head.next == null) {

 return;

 }

 Node currentNode = head;

 Node prevPair = null;

 // consider two nodes at a time and swap their links

 while (currentNode != null && currentNode.next != null) {

 Node node1 = currentNode; // first node

 Node node2 = currentNode.next; // second node

 Node node3 = currentNode.next.next; // third node

 // swap node1 node2

 Node auxNode = node1;

 node1 = node2;

 node2 = auxNode;

 // repair the links broken by swapping

 node1.next = node2;

 node2.next = node3;

406 Linked Lists and Maps

 // if we are at the first swap we set the head

 if (prevPair == null) {

 head = node1;

 } else {

 // we link the previous pair to this pair

 prevPair.next = node1;

 }

 // there are no more nodes, therefore set the tail

 if (currentNode.next == null) {

 tail = currentNode;

 }

 // prepare the prevNode of the current pair

 prevPair = node2;

 // advance to the next pair

 currentNode = node3;

 }

}

The complete application is named LinkedListPairwiseSwap. Consider challenging yourself
to swap sequences of n nodes.

Coding challenge 12 – Merge two sorted linked lists
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider two sorted singly linked lists. Write a snippet of code that merges
these two lists without extra space.

Solution: So, we have two sorted lists, list1: 4 → 7 → 8 → 10 → null and list2: 5 → 9 → 11 →
null, and we want to obtain the result, 4 → 5 → 7 → 8 → 9 → 10 → 11 → null. Moreover, we
want to obtain this result without allocating new nodes.

Coding challenges 407

Since we cannot allocate new nodes, we have to choose one of these lists to become the
final result or the merged linked list. In other words, we can start with list1 as the merged
linked list and add nodes from list2 at the appropriate place in list1. After processing each
comparison, we move the pointer (list1) to the last node in the merged list.

For example, we start by comparing the heads of these two lists. If the head of list1 is
smaller than the head of list2, we choose the head of list1 as the head of the merged list.
Otherwise, if the head of list1 is bigger than the head of list2, we swap the heads. The
following diagram illustrates this step:

Figure 11.16 – Merging two sorted linked lists (step 1)

Since the head of list1 is less than the head of list2 (4 < 5), it becomes the head of the
merged list. We said that list1 will point to the last node of the merged list; therefore, the
next node to compare should be list1.next (the node with value 7) and list2 (the node with
value 5). The following diagram reveals the result of this comparison:

Figure 11.17 – Merging two sorted linked lists (step 2)

Because list1 follows the merged list (the final result), we have to move list1.next to the
node with value 5, but we cannot do it directly. If we say list1.next=list2, then we lose the
rest of list1. Therefore, we have to perform a swap, as follows:

Node auxNode = list1.next; // auxNode = node with value 7

list1.next = list2; // list1.next = node with value 5

list2 = auxNode; // list2 = node with value 7

408 Linked Lists and Maps

Next, we move list1 to list1.next, which is the node with value 9. We compare list.next
with list2; therefore, we compare 9 with 7. The following diagram reveals the result of this
comparison:

Figure 11.18 – Merging two sorted linked lists (step 3)

Because list1 follows the merged list (the final result), we have to move list1.next to the
node with value 7 (since 7 < 9), and we do it using the swap that we discussed earlier.
Next, we move list1 to list1.next, which is the node with value 8. We compare list.next with
list2; therefore, we compare 8 with 9. The following diagram reveals the result of
this comparison:

Figure 11.19 – Merging two sorted linked lists (step 4)

Since 8 < 9, no swap is needed. We move list1.next to the next node (the node with value
10) and compare 10 with 9. The next diagram reveals the result of this comparison:

Figure 11.20 – Merging two sorted linked lists (step 5)

Coding challenges 409

As list1 follows the merged list (the final result), we have to move list1.next to the node
with value 9 (since 9 < 10), and we do it using the swap that we discussed earlier. Next, we
move list1 to list1.next, which is the node with value 11. We compare list.next with list2;
therefore, we compare 11 with 10. The next diagram reveals the result of
this comparison:

Figure 11.21 – Merging two sorted linked lists (step 6)

Because list1 follows the merged list (the final result), we have to move list1.next to the
node with value 10 (since 10 < 11), and we do it using the swap that we discussed earlier.
Next, we move list1 to list1.next, which is null; therefore, we copy the remaining part
from list2. The next diagram reveals the result of this comparison:

Figure 11.22 – Merging two sorted linked lists (last step)

At this point, the merged linked list is complete. It is time to reveal the code (this method
is added to the well-known SinglyLinkedList):

public void merge(SinglyLinkedList sll) {

 // these are the two lists

 Node list1 = head; // the merged linked list

 Node list2 = sll.head; // from this list we add nodes at

 // appropriate place in list1

 // compare heads and swap them if it is necessary

 if (list1.data < list2.data) {

410 Linked Lists and Maps

 head = list1;

 } else {

 head = list2;

 list2 = list1;

 list1 = head;

 }

 // compare the nodes from list1 with the nodes from list2

 while (list1.next != null) {

 if (list1.next.data > list2.data) {

 Node auxNode = list1.next;

 list1.next = list2;

 list2 = auxNode;

 }

 // advance to the last node in the merged linked list

 list1 = list1.next;

 }

 // add the remaining list2

 if (list1.next == null) {

 list1.next = list2;

 }

}

The complete application is named LinkedListMergeTwoSorted. A similar problem
may require you to merge two sorted linked lists via recursion. While you can find this
application named as LinkedListMergeTwoSortedRecursion, I advise you to challenge
yourself to try an implementation. Additionally, based on this recursive implementation,
challenge yourself to merge n-linked lists. The complete application is named
LinkedListMergeNSortedRecursion.

Coding challenges 411

Coding challenge 13 – Remove the redundant path
Problem: Consider a singly linked list storing a path in a matrix. The data of a node is of
type (row, column) or, in short, (r, c). The path can only be either horizontal (by column)
or vertical (by row). The complete path is given by the end points of all of the horizontal
and vertical paths; therefore, the middle points (or points in between) are redundant.
Write a snippet of code that removes the redundant path.

Solution: Let's consider a linked list containing the following path: (0, 0) → (0, 1) → (0, 2)
→ (1, 2) → (2, 2) → (3, 2) → (3, 3) → (3, 4) → null. The redundant path includes the following
nodes: (0, 1), (1, 2), (2, 2), and (3, 3). So, after removing the redundant path, we should
remain with a list that contains four nodes: (0, 0) → (0, 2) → (3, 2) → (3, 4) → null. The
following diagram represents the redundant path:

Figure 11.23 – The redundant path

After removing the redundant path, we obtain the following diagram:

Figure 11.24 – The remaining path after removing the redundancy

412 Linked Lists and Maps

The preceding diagrams should suggest a solution to this problem. Notice that the nodes
that define a vertical path have the same column since we move only down/up on the
rows, while the nodes that define a horizontal path have the same row since we move only
left/right on the columns. This means that if we consider three consecutive nodes having
the same value for the column or the row, then we can remove the middle node. Repeating
this process for adjacent triplets will remove all redundant nodes. The code should be
quite simple to follow:

public void removeRedundantPath() {

 Node currentNode = head;

 while (currentNode.next != null

 && currentNode.next.next != null) {

 Node middleNode = currentNode.next.next;

 // check for a vertical triplet (triplet with same column)

 if (currentNode.c == currentNode.next.c

 && currentNode.c == middleNode.c) {

 // delete the middle node

 currentNode.next = middleNode;

 } // check for a horizontal triplet

 else if (currentNode.r == currentNode.next.r

 && currentNode.r == middleNode.r) {

 // delete the middle node

 currentNode.next = middleNode;

 } else {

 currentNode = currentNode.next;

 }

 }

}

The complete application is named LinkedListRemoveRedundantPath.

Coding challenges 413

Coding challenge 14 – Move the last node to the front
Problem: Consider a singly linked list. Write a snippet of code that moves the last node to
the front via two approaches. So, the last node of the linked list becomes its head.

Solution: This is the kind of problem that sounds simple, and it is simple. The first
approach will follow these steps:

1.	 Move a pointer to the second to last node (let's denote it as currentNode).

2.	 Store the currentNode.next (let's denote it as nextNode – this is the
last node).

3.	 Set currentNode.next to null (so, the last node becomes the tail).

4.	 Set the new head as the stored node (so, the head becomes nextNode).

In code lines, we have the following:

public void moveLastToFront() {

 Node currentNode = head;

 // step 1

 while (currentNode.next.next != null) {

 currentNode = currentNode.next;

 }

 // step 2

 Node nextNode = currentNode.next;

 // step 3

 currentNode.next = null;

 // step 4

 nextNode.next = head;

 head = nextNode;

}

414 Linked Lists and Maps

The second approach can be performed with the following steps:

1.	 Move a pointer to the second to last node (let's denote it as currentNode).

2.	 Convert the linked list into a circular list (link currentNode.next.next
to the head).

3.	 Set the new head as currentNode.next.

4.	 Break the circularity by setting currentNode.next to null.

In code lines, we have the following:

public void moveLastToFront() {

 Node currentNode = head;

 // step 1

 while (currentNode.next.next != null) {

 currentNode = currentNode.next;

 }

 // step 2

 currentNode.next.next = head;

 // step 3

 head = currentNode.next;

 // step 4

 currentNode.next = null;

}

The complete application is named LinkedListMoveLastToFront.

Coding challenges 415

Coding challenge 15 – Reverse a singly linked list in
groups of k
Amazon, Google, Adobe, Microsoft

Problem: Consider a singly linked list and an integer, k. Write a snippet of code that
reverses the linked list's nodes in k groups.

Solution: Let's consider that the given linked list is 7 → 4 → 3 → 1 → 8 → 2 → 9 → 0 → null
and k=3. The result should be 3 → 4 → 7 → 2 → 8 → 1 → 0 → 9 → null.

Let's consider that the given k is equal to the size of the linked list. In this case, we reduced
the problem to reversing the given linked list. For example, if the given list is 7 → 4 → 3 →
null and k=3, then the result should be 3 → 4 → 7 → null. So, how can we obtain this result?

In order to reverse the nodes, we need the current node (current), the node next to the
current node (next), and the node previous to the current node (previous), and we apply
the following algorithm representing the rearrangement of nodes:

1.	 Start with a counter from 0.

2.	 As the current node (initially the head) is not null and we haven't reached the
given k, the following occurs:

a. The next node (initially null) becomes the node next to the current node
(initially the head).

b. The node next to the current node (initially the head) becomes the previous node
(initially null).

c. The previous node becomes the current node (initially the head).

d. The current node becomes the next node (the node from step 2a).

e. Increment the counter.

416 Linked Lists and Maps

So, if we apply this algorithm, we can reverse the whole list. But we need to reverse it in
the groups; therefore, we must solve the k subproblems of what we've done. If this sounds
like recursion to you, then you are right. At the end of the preceding algorithm, the node
set at step 2a (next) points to the node where the counter is pointing as well. We can say
that we've reversed the first k nodes. Next, we continue with the next group of k nodes via
recursion starting from the next node. The following diagram illustrates this idea:

Figure 11.25 – Reversing the list in k groups (k=3)

And the following code implements this idea:

public void reverseInKGroups(int k) {

 if (head != null) {

 head = reverseInKGroups(head, k);

 }

}

private Node reverseInKGroups(Node head, int k) {

 Node current = head;

 Node next = null;

 Node prev = null;

 int counter = 0;

Coding challenges 417

 // reverse first 'k' nodes of linked list

 while (current != null && counter < k) {

 next = current.next;

 current.next = prev;

 prev = current;

 current = next;

 counter++;

 }

 // 'next' points to (k+1)th node

 if (next != null) {

 head.next = reverseInKGroups(next, k);

 }

 // 'prev' is now the head of the input list

 return prev;

}

This code runs in O(n), where n is the number of nodes in the given list. The complete
application is named ReverseLinkedListInGroups.

Coding challenge 16 – Reverse a doubly linked list
Microsoft, Flipkart

Problem: Consider a doubly linked list. Write a snippet of code that reverses its nodes.

Solution: Reversing a doubly linked list can take advantage of the fact that a doubly linked
list maintains the link to the previous node. This means that we can simply swap the
previous pointers and the next pointers for each node, as shown in the following code:

public void reverse() {

 Node currentNode = head;

 Node prevNode = null;

418 Linked Lists and Maps

 while (currentNode != null) {

 // swap next and prev pointers of the current node

 Node prev = currentNode.prev;

 currentNode.prev = currentNode.next;

 currentNode.next = prev;

 // update the previous node before moving to the next node

 prevNode = currentNode;

 // move to the next node in the doubly linked list

 currentNode = currentNode.prev;

 }

 // update the head to point to the last node

 if (prevNode != null) {

 head = prevNode;

 }

}

The complete application is named DoublyLinkedListReverse. To sort a singly and doubly
linked list, please refer to Chapter 14, Sorting and Searching.

Coding challenge 17 – LRU cache
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Write a snippet of code to implement a fixed-size LRU cache. LRU cache stands
for Least Recently Used Cache. This means that, when the cache is full, adding a new entry
will instruct the cache to automatically evict the least recently used entry.

Coding challenges 419

Solution: Any cache implementation must provide a fast and efficient way of retrieving
data. This means that our implementation must respect the following constraints:

•	 Fixed size: The cache must use a limited amount of memory. Therefore, it needs to
have some bounds (for example, a fixed size).

•	 Fast access to data: Inserting and searching operations should be fast; preferably,
O(1) complexity time.

•	 Fast eviction of data: When the cache is full (it has reached its allocated bounds),
the cache should empower an efficient algorithm to evict an entry.

In the context of the last bullet point, eviction from an LRU cache means evicting the least
recently used data. To accomplish this, we have to keep track of the recently used entries
and of the entries that have not been used for a long time. Moreover, we have to ensure
O(1) complexity time for inserting and searching operations. There is no built-in data
structure in Java that can give us this cache out of the box.

But we can start with a HashMap data structure. In Java, a HashMap allows us to insert
and search (lookup) data by key in O(1) time. So, using a HashMap solves half of the
problem. The other half, that is, keeping track of the recently used entries and of the
entries that have not been used for a long time, cannot be accomplished with a HashMap.

However, if we imagine a data structure that provides fast insertions, updates, and
deletions, then we have to think of a doubly linked list. Essentially, if we know the address
of a node in a doubly linked list, then inserting, updating, and deleting can be performed
in O(1).

This means that we can provide an implementation that relies on the symbiosis between a
HashMap and a doubly linked list. Essentially, for each entry (key-value pair) in the LRU
cache, we can store the key of the entry and the address of the associated linked list's node
in the HashMap, while this node will store the value of the entry. The following diagram is
a visual representation of this statement:

Figure 11.26 – An LRU cache using a HashMap and doubly linked list

420 Linked Lists and Maps

But how does the doubly linked list help us to track the recently used entries? The secret
relies on the following points:

•	 Inserting a new entry in the cache will result in adding the corresponding node to
the head of the linked list (so, the head of the linked list holds the most recently
used value).

•	 When an entry is accessed, we move its corresponding node to the head of the
linked list.

•	 When we need to evict an entry, we evict the tail of the linked list (so, the tail of the
linked list holds the least recently used value).

Well, based on these statements, we can provide the following straightforward
implementation:

public final class LRUCache {

 private final class Node {

 private int key;

 private int value;

 private Node next;

 private Node prev;

 }

 private final Map<Integer, Node> hashmap;

 private Node head;

 private Node tail;

 // 5 is the maximum size of the cache

 private static final int LRU_SIZE = 5;

 public LRUCache() {

 hashmap = new HashMap<>();

 }

 public int getEntry(int key) {

Coding challenges 421

 Node node = hashmap.get(key);

 // if the key already exist then update its usage in cache

 if (node != null) {

 removeNode(node);

 addNode(node);

 return node.value;

 }

 // by convention, data not found is marked as -1

 return -1;

 }

 public void putEntry(int key, int value) {

 Node node = hashmap.get(key);

 // if the key already exist then update

 // the value and move it to top of the cache

 if (node != null) {

 node.value = value;

 removeNode(node);

 addNode(node);

 } else {

 // this is new key

 Node newNode = new Node();

 newNode.prev = null;

 newNode.next = null;

 newNode.value = value;

 newNode.key = key;

 // if we reached the maximum size of the cache then

422 Linked Lists and Maps

 // we have to remove the Least Recently Used

 if (hashmap.size() >= LRU_SIZE) {

 hashmap.remove(tail.key);

 removeNode(tail);

 addNode(newNode);

 } else {

 addNode(newNode);

 }

 hashmap.put(key, newNode);

 }

 }

 // helper method to add a node to the top of the cache

 private void addNode(Node node) {

 node.next = head;

 node.prev = null;

 if (head != null) {

 head.prev = node;

 }

 head = node;

 if (tail == null) {

 tail = head;

 }

 }

 // helper method to remove a node from the cache

 private void removeNode(Node node) {

 if (node.prev != null) {

 node.prev.next = node.next;

 } else {

 head = node.next;

 }

Summary 423

 if (node.next != null) {

 node.next.prev = node.prev;

 } else {

 tail = node.prev;

 }

 }

}

The complete application is named LRUCache.

Well, this was the last coding challenge of the chapter. It's time to summarize the chapter!

Summary
This chapter brought your attention to the most common problems involving linked lists
and maps. Among these problems, the ones that involve singly linked lists are preferred;
therefore, this chapter was primarily focused on this category of coding challenges.

In the next chapter, we will tackle coding challenges related to stacks and queues.

12
Stacks and Queues

This chapter covers the most popular interview coding challenges involving stacks
and queues. Mainly, you will learn how to provide a stack/queue implementation from
scratch and how to tackle coding challenges via Java's built-in implementations, such as
the Stack class, and the Queue interface implementations, especially ArrayDeque.
Commonly, a coding challenge from this category will ask you to build a stack/queue or
will ask you to solve a certain problem using Java's built-in implementations. Depending
on the problem, it may explicitly disallow you to call certain built-in methods that will
lead you to finding an easy solution.

By the end of this chapter, you'll have a deep insight into stacks and queues, you'll be able
to exploit their capabilities, and also recognize and write solutions that depend on stacks
and queues.

In this chapter, you'll learn about the following topics:

•	 Stacks in a nutshell

•	 Queues in a nutshell

•	 Coding challenges

Let's start by briefly covering the data structures of stacks.

426 Stacks and Queues

Technical requirements
All the code files presented in this chapter are available on GitHub at https://
github.com/PacktPublishing/The-Complete-Coding-Interview-
Guide-in-Java/tree/master/Chapter12.

Stacks in a nutshell
A stack is a linear data structure that uses the Last-In-First-Out (LIFO) principle. Think
of a stack of plates that needs to be washed. You take the first plate from the top (which
was the last one to be added) and you wash it. Afterward, you take the next plate from the
top and so on. This is exactly what a real-life stack is (for example, a stack of plates, a stack
of books, a stack of CDs, and so on).

So, technically speaking, in a stack, the elements are only added (known as the push
operation) and removed (known as the pop operation) to/from one end of it (known as
the top).

The most common operations that are performed in a stack are as follows:

•	 push(E e): Adds an element to the top of the stack

•	 E pop(): Removes the top element from the stack

•	 E peek(): Returns (but doesn't remove) the top element from the stack

•	 boolean isEmpty(): Returns true if the stack is empty

•	 int size(): Returns the size of the stack

•	 boolean isFull(): Returns true if the stack is full

Unlike an array, a stack does not provide access to the nth element in constant time.
However, it does provide constant time for adding and removing elements. A stack can
be implemented on top of an array or even on top of a linked list. The implementation
that's being used here is based on an array and is named MyStack. The stub of this
implementation is listed here:

public final class MyStack<E> {

 private static final int DEFAULT_CAPACITY = 10;

 private int top;

 private E[] stack;

Stacks in a nutshell 427

 MyStack() {

 stack = (E[]) Array.newInstance(

 Object[].class.getComponentType(),

 DEFAULT_CAPACITY);

 top = 0; // the initial size is 0

 }

 public void push(E e) {}

 public E pop() {}

 public E peek() {}

 public int size() {}

 public boolean isEmpty() {}

 public boolean isFull() {}

 private void ensureCapacity() {}

}

Pushing an element into a stack means adding that element to the end of the underlying
array. Before pushing an element, we have to ensure that the stack is not full. If it is full,
then we can signal this via a message/exception, or we can increase its capacity, as
shown here:

// add an element 'e' in the stack

public void push(E e) {

 // if the stack is full, we double its capacity

 if (isFull()) {

 ensureCapacity();

 }

 // adding the element at the top of the stack

 stack[top++] = e;

}

// used internally for doubling the stack capacity

private void ensureCapacity() {

428 Stacks and Queues

 int newSize = stack.length * 2;

 stack = Arrays.copyOf(stack, newSize);

}

As you can see, every time we reach the stack's capacity, we double its size. Popping
an element from the stack means that we return the element that was last added to the
underlying array. This element is removed from the underlying array by nullifying the last
index, as shown here:

// pop top element from the stack

public E pop() {

 // if the stack is empty then just throw an exception

 if (isEmpty()) {

 throw new EmptyStackException();

 }

 // extract the top element from the stack

 E e = stack[--top];

 // avoid memory leaks

 stack[top] = null;

 return e;

}

Peeking an element from a stack means returning the element that was added last to the
underlying array but without removing it from this array:

// return but not remove the top element in the stack

public E peek() {

 // if the stack is empty then just throw an exception

 if (isEmpty()) {

 throw new EmptyStackException();

 }

Queues in a nutshell 429

 return stack[top - 1];

}

Since this implementation can represent the coding challenge you may face in an
interview, it is advised that you take your time and dissect its code. The complete
application is called MyStack.

Queues in a nutshell
A queue is a linear data structure that uses the First-In-First-Out (FIFO) principle. Think
of people standing in a queue to buy stuff. You can also imagine ants that are walking in
a queue formation.

So, technically speaking, the elements are removed from the queue in the same order
that they are added. In a queue, the elements added at one end referred to as the rear
(this operation is known as the enqueue operation) and removed from the other end
referred to as the front (this operation is known as the dequeue or poll operation).

The common operations in a queue are as follows:

•	 enqueue(E e): Adds an element to the rear of the queue

•	 E dequeue(): Removes and returns the element from the front of the queue

•	 E peek(): Returns (but doesn't remove) the element from the front of the queue

•	 boolean isEmpty(): Returns true if the queue is empty

•	 int size(): Returns the size of the queue

•	 boolean isFull() : Returns true if the queue is full

Unlike an array, a queue does not provide access to the nth element in constant time.
However, it does provide constant time for adding and removing elements. A queue can
be implemented on top of an array or even on top of a linked list or a stack (which is built
on top of an array or a linked list). The implementation used here is based on an array and
is named MyQueue. The stub of this implementation is listed here:

public final class MyQueue<E> {

 private static final int DEFAULT_CAPACITY = 10;

 private int front;

 private int rear;

430 Stacks and Queues

 private int count;

 private int capacity;

 private E[] queue;

 MyQueue() {

 queue = (E[]) Array.newInstance(

 Object[].class.getComponentType(),

 DEFAULT_CAPACITY);

 count = 0; // the initial size is 0

 front = 0;

 rear = -1;

 capacity = DEFAULT_CAPACITY;

 }

 public void enqueue(E e) {}

 public E dequeue() {}

 public E peek() {}

 public int size() {}

 public boolean isEmpty() {}

 public boolean isFull() {}

 private void ensureCapacity() {}

}

Enqueuing an element into a queue means adding this element to the end of the
underlying array. Before enqueuing an element, we have to ensure that the queue is not
full. If it is full, then we can signal this via a message/exception, or we can increase its
capacity, as follows:

// add an element 'e' in the queue

public void enqueue(E e) {

 // if the queue is full, we double its capacity

 if (isFull()) {

 ensureCapacity();

Queues in a nutshell 431

 }

 // adding the element in the rear of the queue

 rear = (rear + 1) % capacity;

 queue[rear] = e;

 // update the size of the queue

 count++;

}

// used internally for doubling the queue capacity

private void ensureCapacity() {

 int newSize = queue.length * 2;

 queue = Arrays.copyOf(queue, newSize);

 // setting the new capacity

 capacity = newSize;

}

Dequeuing an element from a queue means returning the next element from the
beginning of the underlying array. This element is removed from the array:

// remove and return the front element from the queue

public E dequeue() {

 // if the queue is empty we just throw an exception

 if (isEmpty()) {

 throw new EmptyStackException();

 }

 // extract the element from the front

 E e = queue[front];

 queue[front] = null;

 // set the new front

 front = (front + 1) % capacity;

432 Stacks and Queues

 // decrease the size of the queue

 count--;

 return e;

}

Peeking an element from a queue means returning the next element from the beginning
of the underlying array without removing it from the array:

// return but not remove the front element in the queue

public E peek() {

 // if the queue is empty we just throw an exception

 if (isEmpty()) {

 throw new EmptyStackException();

 }

 return queue[front];

}

Since this implementation can represent the coding challenge you may face in an
interview, it is advised that you take your time and dissect its code. The complete
application is called MyQueue.

Coding challenges
In the next 11 coding challenges, we will cover the most popular problems involving
stacks and queues that have appeared in interviews in the past few years in a wide range
of companies that hire Java developers. One of the most common problems, Implementing
three stacks with one array, was covered in Chapter 10, Arrays and Strings.

The solutions to the following coding challenges rely on the Java built-in Stack and
ArrayDeque APIs. So, let's get started!

Coding challenge 1 – Reverse string
Problem: Consider you've been given a string. Use a stack to reverse it.

Coding challenges 433

Solution: Reversing a string using a stack can be done as follows:

1.	 Loop the string from left to right and push each character into the stack.

2.	 Loop the stack and pop the characters one by one. Each popped character is put
back into the string.

The code based on these two steps is as follows:

public static String reverse(String str) {

 Stack<Character> stack = new Stack();

 // push characters of the string into the stack

 char[] chars = str.toCharArray();

 for (char c : chars) {

 stack.push(c);

 }

 // pop all characters from the stack and

 // put them back to the input string

 for (int i = 0; i < str.length(); i++) {

 chars[i] = stack.pop();

 }

 // return the string

 return new String(chars);

}

The complete application is called StackReverseString.

Coding challenge 2 – Stack of curly braces
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given a String containing curly braces. Write a snippet
of code that returns true if there are matching pairs of curly braces. If we can find a
closing curly brace for an opening one in the proper order, then we can say that we have a
matching pair. For example, a string containing matching pairs looks like this: {{{}}}{}{{}}.

434 Stacks and Queues

Solution: Our solution should consider two major scenarios. First, if the number of
opened curly braces is not equal to the number of closed curly braces, then we return
false. Second, if their number is equal, then they must be in the proper order;
otherwise, we return false. By the proper order, we understand that the last opened
curly brace is the first one to be closed, the one prior to the last is the second to be closed,
and so on. If we rely on a stack, then we can elaborate on the following algorithm:

1.	 For each character of the given string, take one of the following decisions:

a. If the character is an opening curly brace, {, then put it on the stack.

b. If the character is a closing curly brace, }, then do the following:

i. Check the top of stack, and if it is {, pop and move it to the next character.

ii. If it is not {, then return false.

2.	 If the stack is empty, return true (we found all pairs); otherwise, return false
(the stack contains curly braces that do not match).

Putting these steps into code results in the following:

public static boolean bracesMatching(String bracesStr) {

 Stack<Character> stackBraces = new Stack<>();

 int len = bracesStr.length();

 for (int i = 0; i < len; i++) {

 switch (bracesStr.charAt(i)) {

 case '{':

 stackBraces.push(bracesStr.charAt(i));

 break;

 case '}':

 if (stackBraces.isEmpty()) { // we found a mismatch

 return false;

 }

 // for every match we pop the corresponding '{'

 stackBraces.pop();

 break;

Coding challenges 435

 default:

 return false;

 }

 }

 return stackBraces.empty();

}

The complete application is called StackBraces. Challenge yourself by implementing
a similar problem but for multiple types of parentheses (for example, allow () {} [] in the
same given string).

Coding challenge 3 – Stack of plates
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider a stack of n plates. If the number of plates is bigger than n, then we
need to arrange them in a new stack of n plates. So, each time the current stack exceeds
the n capacity, a new stack of that capacity is created. Write a snippet of code that
shapes these stacks so that they act as a single stack. In other words, the push() and
pop() methods will work like there is a single stack. Additionally, write a popAt(int
stackIndex) method that pops a value from the stack, as indicated via stackIndex.

Solution: We know how to deal with a single stack, but how do we link multiple stacks
together? Well, since we have to link, how about a linked list? If the linked list contains
a stack in each node, then the next pointer of a node will point to the next stack. The
following diagram visualizes this solution:

Figure 12.1 – Linked list of stacks

436 Stacks and Queues

Whenever the current stack capacity is exceeded, we create a new node and append it
to the linked list. Java's built-in linked list (LinkedList) gives us access to the last
node via the getLast() method. In other words, via LinkedList#getLast(), we
can easily operate on the current stack (for example, we can push or pop an element).
Adding a new stack is quite simple via the LinkedList#add() method. Based on these
statements, we can implement the push() method, as shown here:

private static final int STACK_SIZE = 3;

private final LinkedList<Stack<Integer>> stacks

 = new LinkedList<>();

public void push(int value) {

 // if there is no stack or the last stack is full

 if (stacks.isEmpty() || stacks.getLast().size()

 >= STACK_SIZE) {

 // create a new stack and push the value into it

 Stack<Integer> stack = new Stack<>();

 stack.push(value);

 // add the new stack into the list of stacks

 stacks.add(stack);

 } else {

 // add the value in the last stack

 stacks.getLast().push(value);

 }

}

Coding challenges 437

If we want to pop an element, then we have to do so from the last stack, so
LinkedList#getLast() is very handy here. The corner-case here is represented by
the moment we pop the last element from the last stack. When this happens, we must
remove the last stack, in which case the one before the last (if any) will become the last.
The following code speaks for itself:

public Integer pop() {

 // find the last stack

 Stack<Integer> lastStack = stacks.getLast();

 // pop the value from the last stack

 int value = lastStack.pop();

 // if last stack is empty, remove it from the list of stacks

 removeStackIfEmpty();

 return value;

}

private void removeStackIfEmpty() {

 if (stacks.getLast().isEmpty()) {

 stacks.removeLast();

 }

}

Finally, let's focus on implementing the popAt(int stackIndex) method. We can
pop from the stackIndex stack by simply calling stacks.get(stackIndex).
pop(). Once we've popped an element, we must shift the remaining elements. The
bottom element of the next stack will become the top element of the stack being pointed
to by stackIndex and so on. If the last stack contains a single element, then shifting the
other elements will eliminate the last stack, and the one before it will become the last. Let's
see this in terms of code:

public Integer popAt(int stackIndex) {

 // get the value from the correspondind stack

 int value = stacks.get(stackIndex).pop();

438 Stacks and Queues

 // pop an element -> must shift the remaining elements

 shift(stackIndex);

 // if last stack is empty, remove it from the list of stacks

 removeStackIfEmpty();

 return value;

}

private void shift(int index) {

 for (int i = index; i<stacks.size() - 1; ++i) {

 Stack<Integer> currentStack = stacks.get(i);

 Stack<Integer> nextStack = stacks.get(i + 1);

 currentStack.push(nextStack.remove(0));

 }

}

The complete application is called StackOfPlates.

Coding challenge 4 – Stock span
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given an array of prices of a single stock for multiple
consecutive days. A stock span is represented by the number of consecutive days prior
to the current day (today) when the price of a stock was less than or equal to the price
of the current day. For example, consider the prices of a stock covering 10 days; that is,
{55, 34, 22, 23, 27, 88, 70, 42, 51, 100}. The resulting stock span is {1, 1, 1, 2, 3, 6, 1, 1, 2,
10}. Notice that, for the first day, the stock span is always 1. Write a snippet of code that
computes the stock span for the given list of prices.

Solution: We can start from the given example and try to visualize it, as follows:

Coding challenges 439

Figure 12.2 – Stock span for 10 days

From the preceding figure, we can observe the following:

•	 For the first day, the span is always 1.

•	 For day 2, the price is 34. Since 34 is less than the price of the prior day (55), the
stock span of day 2 is also 1.

•	 For day 3, the price is 22. Since 22 is less than the price of the prior day (34), the
stock span of day 3 is also 1. Days 7 and 8 fall under the same scenario.

•	 For day 4, the price is 23. Since 23 is greater than the price of the prior day (22), but
is less than the price of day 2, the stock span is 2. Day 9 is similar to day 4.

•	 For day 5, the price is 27. Since this price is greater than the prices of days 3 and 4
but less than the price of day 2, the stock span is 3.

•	 For day 6, the price is 88. This is the biggest price so far, so the stock span is 6.

•	 For day 10, the price is 100. This is the biggest price so far, so the stock span is 10.

Notice that we compute the stock span of the current day as the difference between the
index of the current day and the index of the day corresponding to the last biggest stock
price. After tracking this scenario, the first idea that we have may sound like this: for each
day, scan all days prior to it and increment the stock span until the price of the stock is
bigger than the current day. In other words, we are using the brute-force approach. As
I mentioned earlier in this book, the brute-force approach should be used as a last resort
in an interview since it has a poor performance and the interviewers won't be impressed.
In this case, the brute-force approach works in O(n2) complexity time.

440 Stacks and Queues

However, let's try another perspective of thought. For each day, we want to find a prior
day that has a bigger price than the current day. In other words, we are looking for the last
price that is bigger than the price of the current day.

Here, we should choose a LIFO data structure that allows us to push the prices in
descending order and pop the last pushed price. Once we have this in place, we can go
through each day and compare the price at the top of the stack with the current day's
price. Until the price on top of the stack is less than the current day's price, we can pop
from the stack. But if the price at the top of the stack is bigger than the price of the current
day, then we compute the stock span of the current day as the difference in days between
the current day and the day for the price on top of the stack. This will work if we push
the prices into the stack in descending order – the biggest price is at the top of the stack.
However, since we can compute the stock span as the difference between the index of the
current day and the index of the day corresponding to the last biggest stock price (let's
denote it with i), we can simply store the i index in the stack; stackPrices[i]
(let's denote the prices array as stackPrices) will return the price of the stock on
the ith day.

This can be accomplished by the following algorithm:

1.	 The first day has a stock span of 1 and an index of 0 – we push this index into the
stack (let's denote it as dayStack; therefore, dayStack.push(0)).

2.	 We loop the remaining days (day 2 has index 1, day 3 has index 2, and so on) and
do the following:

a. While stockPrices[i] > stockPrices[dayStack.peek()] and
!dayStack.empty(), we pop from the stack (dayStack.pop()).

3.	 If dayStack.empty(), then the stock span in i+1.

4.	 If stockPrices[i] <= stockPrices[dayStack.peek()], then the stock
span is i - dayStack.peek().

5.	 Push the index of the current day, i, into the stack (dayStack).

Let's see how this algorithm works for our test case:

1.	 The first day has a stock span of 1 and an index of 0 – we push this index into the
stack, dayStack.push(0).

2.	 For the second day, stockPrices[1]=34 and stockPrices[0]=55. Since
34 < 55, the stock span of day 2 is i - dayStack.peek() = 1 - 0 = 1. We push
in stack 1, dayStack.push(1).

Coding challenges 441

3.	 For the third day, stockPrices[2]=22 and stockPrices[1]=34. Since
22 < 34, the stock span of day 3 is 2 - 1 = 1. We push in stack 1, dayStack.
push(2).

4.	 For the fourth day, stockPrices[3]=23 and stockPrices[2]=22. Since
23 > 22 and the stack is not empty, we pop the top, so we pop the value 2. Since
23 < 34 (stockPrices[1]), the stock span of day 4 is 3 - 1 = 2. We push in
stack 3, dayStack.push(3).

5.	 For the fifth day, stockPrices[4]=27 and stockPrices[3]=23. Since
27 > 23 and the stack is not empty, we pop the top, so we pop the value 3. Next,
27 < 34 (remember that we popped the value 2 in the previous step, so the next
top has the value 1), and the stock span of day 5 is 4 - 1 = 3. We push in stack 4,
dayStack.push(4).

6.	 For the sixth day, stockPrices[5]=88 and stockPrices[4]=27. Since
88 > 27 and the stack is not empty, we pop the top, so we pop the value 4. Next,
88 > 34 and the stack is not empty, so we pop the value 1. Next, 88 > 55 and the
stack is not empty, so we pop the value 0. Next, the stack is empty and the stock
span of day 6 is 5 + 1 = 6.

Well, I think you got the idea, so now, challenge yourself and continue until day 10. For
now, we have enough information to put this algorithm into code:

public static int[] stockSpan(int[] stockPrices) {

 Stack<Integer> dayStack = new Stack();

 int[] spanResult = new int[stockPrices.length];

 spanResult[0] = 1; // first day has span 1

 dayStack.push(0);

 for (int i = 1; i < stockPrices.length; i++) {

 // pop until we find a price on stack which is

 // greater than the current day's price or there

 // are no more days left

 while (!dayStack.empty()

 && stockPrices[i] > stockPrices[dayStack.peek()]) {

 dayStack.pop();

442 Stacks and Queues

 }

 // if there is no price greater than the current

 // day's price then the stock span is the numbers of days

 if (dayStack.empty()) {

 spanResult[i] = i + 1;

 } else {

 // if there is a price greater than the current

 // day's price then the stock span is the

 // difference between the current day and that day

 spanResult[i] = i - dayStack.peek();

 }

 // push current day onto top of stack

 dayStack.push(i);

 }

 return spanResult;

}

The complete application is called StockSpan.

Coding challenge 5 – Stack min
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Design a stack that computes the minimum value in constant time. The
push(), pop(), and min() methods should operate in O(1) time.

Solution: The classical approach consists of declaring an instance variable that holds
the minimum of the stack. When the value that's popped from the stack is equal to the
minimum, we search through the stack for the new minimum. This works fine but not
under the constraints of this problem, which require push() and pop() to run
in O(1) time.

Coding challenges 443

The solution that respects the problem's constraints requires an additional stack for
tracking the minimum. Mainly, when the pushed value is smaller than the current
minimum, we add this value to the auxiliary stack (let's denote it as stackOfMin)
and the original stack. If the value that's popped from the original stack is the top of
stackOfMin, then we pop it from stackOfMin as well. In terms of code, we have the
following:

public class MyStack extends Stack<Integer> {

 Stack<Integer> stackOfMin;

 public MyStack() {

 stackOfMin = new Stack<>();

 }

 public Integer push(int value) {

 if (value <= min()) {

 stackOfMin.push(value);

 }

 return super.push(value);

 }

 @Override

 public Integer pop() {

 int value = super.pop();

 if (value == min()) {

 stackOfMin.pop();

 }

 return value;

 }

 public int min() {

444 Stacks and Queues

 if (stackOfMin.isEmpty()) {

 return Integer.MAX_VALUE;

 } else {

 return stackOfMin.peek();

 }

 }

}

Done! Our solution performed in O(1) complexity time. The complete application is
called MinStackConstantTime. A problem related to this one requires you to implement
the same functionality in constant time and space. The solution to this problem imposes
several restrictions, as follows:

•	 The pop() method returns void to avoid returning incorrect values.

•	 The given value multiplied by 2 should not exceed the int data type domain.

In short, these restrictions are caused by the solution itself. We cannot use extra space;
therefore, we will use the initial stack of values to store the minimum as well. Moreover,
we need to multiply the given value by 2, so we should ensure that the int domain is not
exceeded. Why do we need to multiply the given value by 2?

Let's bring some light to this subject! Let's assume that we need to push a value into a
stack that has a certain minimum value. If this value is bigger than or equal to the current
minimum value, then we can simply push it into the stack. But if it is smaller than the
minimum, then we push 2*value-minimum, which should be smaller than the value itself.
Then, we update the current minimum as value.

When we pop a value, we have to consider two aspects. If the popped value is bigger or
equal to the minimum, then this is the real value that was pushed earlier. Otherwise, the
popped value is not the pushed value. The real pushed value is stored in the minimum.
After we pop the top of the stack (the minimum value), we have to restore the previous
minimum. The previous minimum is obtained as 2*minimum - top. In other words,
since the current top is 2*value - previous_minimum and the value is the current
minimum, the previous minimum is 2*current_minimum - top. The following code
illustrates this algorithm:

public class MyStack {

 private int min;

 private final Stack<Integer> stack = new Stack<>();

Coding challenges 445

 public void push(int value) {

 // we don't allow values that overflow int/2 range

 int r = Math.addExact(value, value);

 if (stack.empty()) {

 stack.push(value);

 min = value;

 } else if (value > min) {

 stack.push(value);

 } else {

 stack.push(r - min);

 min = value;

 }

 }

 // pop() doesn't return the value since this may be a wrong

 // value (a value that was not pushed by the client)!

 public void pop() {

 if (stack.empty()) {

 throw new EmptyStackException();

 }

 int top = stack.peek();

 if (top < min) {

 min = 2 * min - top;

 }

 stack.pop();

 }

 public int min() {

 return min;

 }

}

446 Stacks and Queues

The complete application is called MinStackConstantTimeAndSpace.

Coding challenge 6 – Queue via stacks
Google, Adobe, Microsoft, Flipkart

Problem: Design a queue via two stacks.

Solution: In order to find the proper solution to this problem, we must start from the
main difference between a queue and a stack. We know that a queue works on FIFO, while
a stack works on LIFO. Next, we have to think of the main operations (push, pop, and
peek) and identify the differences.

Both of them push new elements in the same way. When we push an element into a queue,
we push it at one end (the rear of the queue). When we push an element into a stack, we
push it from the new top of the stack, which can be considered the same as the rear of the
queue.

When we pop or peek a value from a stack, we do so from the top. However, when we
perform the same operations on a queue, we do so from the front. This means that,
while popping or peeking an element, a reversed stack will act as a queue. The following
diagram exemplifies this statement:

Figure 12.3 – Queue via two stacks

So, each new element is pushed into the enqueue stack as the new top. When we need
to pop or peek a value, we use the dequeue stack, which is the reversed version of the
enqueue stack. Notice that we don't have to reverse the enqueue stack at each pop/peek
operation. We can let the elements sit in the dequeue stack until we absolutely must reverse
the elements. In other words, for each pop/peek operation, we can check if the dequeue
stack is empty. As long as the dequeue stack is not empty, we don't need to reverse the
enqueue stack because we have at least one element to pop/peek.

Coding challenges 447

Let's see this in terms of code:

public class MyQueueViaStack<E> {

 private final Stack<E> stackEnqueue;

 private final Stack<E> stackDequeue;

 public MyQueueViaStack() {

 stackEnqueue = new Stack<>();

 stackDequeue = new Stack<>();

 }

 public void enqueue(E e) {

 stackEnqueue.push(e);

 }

 public E dequeue() {

 reverseStackEnqueue();

 return stackDequeue.pop();

 }

 public E peek() {

 reverseStackEnqueue();

 return stackDequeue.peek();

 }

 public int size() {

 return stackEnqueue.size() + stackDequeue.size();

 }

 private void reverseStackEnqueue() {

 if (stackDequeue.isEmpty()) {

 while (!stackEnqueue.isEmpty()) {

 stackDequeue.push(stackEnqueue.pop());

448 Stacks and Queues

 }

 }

 }

}

The complete application is called QueueViaStack.

Coding challenge 7 – Stack via queues
Google, Adobe, Microsoft

Problem: Design a stack via two queues.

Solution: In order to find the proper solution to this problem, we must start from the
main difference between a stack and a queue. We know that a stack is a LIFO, while a
queue is a FIFO. Next, we have to think of the main operations (push, pop, and peek) and
identify the differences.

Both of them push new elements in the same way. When we push an element into a stack,
we push it from the new top of the stack. When we push an element into a queue, we push
it from one end (the rear of the queue). The rear of the queue is like the top of the stack.

When we pop or peek a value from a queue, we do so from the front. However, when we
perform the same operations on a stack, we do so from the top. This means that, while
popping or peeking an element from a queue that acts as a stack, we need to poll all the
elements except the last one. The last element is the one that we pop/peek. The following
diagram exemplifies this statement:

Figure 12.4 – Stack via two queues

Coding challenges 449

As the left-hand side of the preceding diagram reveals, pushing an element into a stack
and a queue is a simple operation. The right-hand side of the preceding diagram shows
that problems occur when we want to pop/peek an element from the queue that acts as
a stack. Mainly, before popping/peeking an element, we have to move the elements from
the queue (denoted in the preceding diagram as queue1) between (rear-1) and front into
another queue (denoted in the preceding diagram as queue2). In the preceding diagram,
on the right-hand side, we poll the elements 2, 5, 3, and 1 from queue1 and add them
to queue2. Next, we pop/peek the last element from queue1. If we pop element 6, then
queue1 remains empty. If we peek element 6, then queue1 remains with this element.

Now, the remaining elements are in queue2, so in order to perform another operation
(push, peek, or pop), we have two options:

•	 Restore queue1 by moving the remaining elements from queue2 back.

•	 Use queue2 as if it was queue1, which means using queue1 and queue2 alternatively.

In the case of the second option, we avoid the overhead of moving the elements from
queue2 back to queue1, with the purpose of performing the next operation on queue1.
While you can challenge yourself to implement the first option, let's focus more on the
second one.

Trying to use queue1 and queue2 alternatively can be done if we consider that the queue
that we should use for the next operation is the one that is not empty. Since we move the
elements between these two queues, one of them is always empty. Hence, a problem arises
when we peek an element because the peek operation doesn't remove the element, so one
of the queues remains with that element. Since none of the queues are empty, we don't
know which queue should be used for the next operation. The solution is quite simple: we
poll the last element, even for the peek operation, and we store it as an instance variable.
Subsequent peek operations will return this instance variable. A push operation will push
this instance variable back into the queue before pushing the given value and will set this
instance variable to null. The pop operation will check if this instance variable is null
or not. If it is not null, then this is the element to pop.

Let's see the code:

public class MyStackViaQueue<E> {

 private final Queue<E> queue1;

 private final Queue<E> queue2;

 private E peek;

 private int size;

450 Stacks and Queues

 public MyStackViaQueue() {

 queue1 = new ArrayDeque<>();

 queue2 = new ArrayDeque<>();

 }

 public void push(E e) {

 if (!queue1.isEmpty()) {

 if (peek != null) {

 queue1.add(peek);

 }

 queue1.add(e);

 } else {

 if (peek != null) {

 queue2.add(peek);

 }

 queue2.add(e);

 }

 size++;

 peek = null;

 }

 public E pop() {

 if (size() == 0) {

 throw new EmptyStackException();

 }

 if (peek != null) {

 E e = peek;

 peek = null;

 size--;

 return e;

Coding challenges 451

 }

 E e;

 if (!queue1.isEmpty()) {

 e = switchQueue(queue1, queue2);

 } else {

 e = switchQueue(queue2, queue1);

 }

 size--;

 return e;

 }

 public E peek() {

 if (size() == 0) {

 throw new EmptyStackException();

 }

 if (peek == null) {

 if (!queue1.isEmpty()) {

 peek = switchQueue(queue1, queue2);

 } else {

 peek = switchQueue(queue2, queue1);

 }

 }

 return peek;

 }

 public int size() {

 return size;

 }

 private E switchQueue(Queue from, Queue to) {

452 Stacks and Queues

 while (from.size() > 1) {

 to.add(from.poll());

 }

 return (E) from.poll();

 }

}

The complete application is called StackViaQueue.

Coding challenge 8 – Max histogram area
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given the histogram shown in the following image:

Figure 12.5 – Histogram with the class interval equal to 1

We define a histogram as a diagram of rectangular bars where the area is proportional
to the frequency of a certain variable. The width of a bar is known as the histogram class
interval. For example, the histogram in the preceding image has a class interval equal to 1.
There are six bars whose widths are equal to 1 and whose heights are 4, 2, 8, 6, 5, and 3.

Consider you've been given these heights as an array of integers (this is the input of the
problem). Write a snippet of code that uses a stack for computing the largest rectangular
area in the histogram. For a better understanding of this, the following image highlights
several rectangles (not all) that can be formed:

Coding challenges 453

Figure 12.6 – Rectangles of a histogram

In the preceding image, the largest rectangular area (that is, the largest rectangle) is the
one in the middle, 3 x 5 = 15.

Solution: This problem is harder than it may seem at first sight. First of all, we need
to analyze the given image and formulate several statements. For example, it is very
important to notice that a bar can only be part of a rectangular area if its height is less
than or equal to the height of that area. Moreover, for each bar, we can say that all the bars
from the left-hand side that are higher than the current bar can form a rectangular area
with the current bar. Similarly, all the bars on the right-hand side that are higher than the
current bar can form a rectangular area with the current bar.

This means that every rectangular area is delimited by a left and a right boundary, and
(right - left) * current_bar give us the value of this area. We should compute all the possible
areas and peek the highest area as the output of our implementation. The following image
highlights the left and right boundaries of the 3 x 5 rectangle:

Figure 12.7 – Left and right boundaries

454 Stacks and Queues

Remember that we must use a stack to solve this problem. Now that we have some
statements that can lead us to the solution, it is time to bring the stack into the discussion.
Mainly, we can use the stack to compute the left and right boundaries.

We start from the first bar and we push the index of it (index 0) into the stack. We
continue with the remaining bars and do the following:

1.	 Repeat steps 1a, 1b, and 1c as long as the current bar is smaller than the top of the
stack and the stack is not empty:

a. We pop the top of the stack.

b. We compute the left boundary.

c. We compute the width of the rectangular area that can be formed between the
computed left boundary bar and the current bar.

d. We compute the area as the computed width multiplied by the height of the bar
that we popped in step 1a.

e. If this area is bigger than the previous one, then we store this one.

2.	 Push the index of the current bar into the stack.

3.	 Repeat from step 1 until every bar is processed.

Let's see this in terms of code:

public static int maxAreaUsingStack(int[] histogram) {

 Stack<Integer> stack = new Stack<>();

 int maxArea = 0;

 for (int bar = 0; bar <= histogram.length; bar++) {

 int barHeight;

 if (bar == histogram.length) {

 barHeight = 0; // take into account last bar

 } else {

 barHeight = histogram[bar];

 }

 while (!stack.empty()

 && barHeight < histogram[stack.peek()]) {

Coding challenges 455

 // we found a bar smaller than the one from the stack

 int top = stack.pop();

 // find left boundary

 int left = stack.isEmpty() ? -1 : stack.peek();

 // find the width of the rectangular area

 int areaRectWidth = bar - left - 1;

 // compute area of the current rectangle

 int area = areaRectWidth * histogram[top];

 maxArea = Integer.max(area, maxArea);

 }

 // add current bar (index) into the stack

 stack.push(bar);

 }

 return maxArea;

}

The time complexity of this code is O(n). Moreover, the additional space complexity is
O(n). The complete application is called StackHistogramArea.

Coding challenge 9 – Smallest number
Problem: Consider you've been given a string representing a number of n digits. Write a
snippet of code that prints the smallest possible number after removing the given k digits.

Solution: Let's consider that the given number is n=4514327 and k=4. In this case, the
smallest number after removing four digits is 127. If n=2222222, then the smallest number
is 222.

456 Stacks and Queues

The solution can be easily implemented via a Stack and the following algorithm:

1.	 Iterate the given number from left to right, digit by digit.

a. While the given k is greater than 0, the stack is not empty and the top element in
the stack is greater than the currently traversed digit:

i. Pop out the top element from the stack.

ii. Decrement k by 1.

b. Push the current digit to the stack.

2.	 While the given k is greater than 0, do the following (to handle special cases such
as 222222):

a. Pop out elements from the stack.

b. Decrement k by 1.
In terms of code, we have the following:

public static void smallestAfterRemove(String nr, int k) {

 int i = 0;

 Stack<Character> stack = new Stack<>();

 while (i < nr.length()) {

 // if the current digit is less than the previous

 // digit then discard the previous one

 while (k > 0 && !stack.isEmpty()

 && stack.peek() > nr.charAt(i)) {

 stack.pop();

 k--;

 }

 stack.push(nr.charAt(i));

 i++;

 }

 // cover corner cases such as '2222'

 while (k > 0) {

 stack.pop();

 k--;

Coding challenges 457

 }

 System.out.println("The number is (as a printed stack; "

 + "ignore leading 0s (if any)): " + stack);

 }

}

The complete application is called SmallestNumber.

Coding challenge 10 – Islands
Amazon, Adobe

Problem: Consider you've been given a matrix, mxn, containing only 0s and 1s. By
convention, 1 means land and 0 means water. Write a snippet of code that counts the
number of islands. An island is defined as a group of 1s surrounded by 0s.

Solution: Let's visualize a test case. The following is a 10x10 matrix that contains 6 islands,
highlighted as 1, 2, 3, 4, 5, and 6:

Figure 12.8 – Islands via a 10x10 matrix

458 Stacks and Queues

In order to find the islands, we have to traverse the matrix. In other words, we have to
traverse each cell of the matrix. Since a cell is characterized by a row (let's denote it as r)
and a column (let's denote it as c), we observe that, from a cell (r, c), we can move in eight
directions: (r-1, c-1), (r-1, c), (r-1, c+1), (r, c-1), (r, c+1), (r+1, c-1), (r+1, c), and (r+1, c+1).
This means that from the current cell (r, c), we can move to (r+ROW[k], c+COL[k]) as
long as ROW and COL are the below arrays and 0 ≤ k ≤ 7:

// top, right, bottom, left and 4 diagonal moves

private static final int[] ROW = {-1, -1, -1, 0, 1, 0, 1, 1};

private static final int[] COL = {-1, 1, 0, -1, -1, 1, 0, 1};

Moving to a cell is valid as long as we do the following:

•	 Don't fall from the grid.

•	 Step on a cell representing land (a cell of 1).

•	 Haven't been in that cell before.

In order to ensure that we don't visit the same cell multiple times, we use a boolean matrix
denoted as flagged[][]. Initially, this matrix contains only values of false, and each
time we visit a cell (r, c), we flip the corresponding flagged[r][c] to true.

The following is the preceding three bullet points in code form:

private static booleanisValid(int[][] matrix,

 int r, int c, boolean[][] flagged) {

 return (r >= 0) && (r < flagged.length)

 && (c >= 0) && (c < flagged[0].length)

 && (matrix[r][c] == 1 && !flagged[r][c]);

}

So far, we know how to decide if a move from the current cell to another cell (from the
eight possible movements) is valid or not. Furthermore, we have to define an algorithm
to determine a movement pattern. We know that from a cell (r, c), we can move in eight
directions in neighboring cells. So, the most convenient algorithm consists of trying to
move from the current cell into all the valid neighbors, as follows:

1.	 Start with an empty queue.

2.	 Move to a valid cell (r, c), enqueue it, and mark it as flagged – the starting point
should be cell (0, 0).

Coding challenges 459

3.	 Dequeue the current cell and resolve all its eight neighboring cells – resolving a cell
means to enqueue it if it is valid and mark it as flagged.

4.	 Repeat step 3 until the queue is empty. When the queue is empty, this means we've
found an island.

5.	 Repeat from step 2 until there are no more valid cells.

In terms of code, we have the following:

private static class Cell {

 int r, c;

 public Cell(int r, int c) {

 this.r = r;

 this.c = c;

 }

}

// there are 8 possible movements from a cell

private static final int POSSIBLE_MOVEMENTS = 8;

// top, right, bottom, left and 4 diagonal moves

private static final int[] ROW = {-1, -1, -1, 0, 1, 0, 1, 1};

private static final int[] COL = {-1, 1, 0, -1, -1, 1, 0, 1};

public static int islands(int[][] matrix) {

 int m = matrix.length;

 int n = matrix[0].length;

 // stores if a cell is flagged or not

 boolean[][] flagged = new boolean[m][n];

 int island = 0;

 for (int i = 0; i < m; i++) {

 for (int j = 0; j < n; j++) {

460 Stacks and Queues

 if (matrix[i][j] == 1 && !flagged[i][j]) {

 resolve(matrix, flagged, i, j);

 island++;

 }

 }

 }

 return island;

}

private static void resolve(int[][] matrix,

 boolean[][] flagged, int i, int j) {

 Queue<Cell> queue = new ArrayDeque<>();

 queue.add(new Cell(i, j));

 // flag source node

 flagged[i][j] = true;

 while (!queue.isEmpty()) {

 int r = queue.peek().r;

 int c = queue.peek().c;

 queue.poll();

 // check for all 8 possible movements from current

 // cell and enqueue each valid movement

 for (int k = 0; k < POSSIBLE_MOVEMENTS; k++) {

 // skip this cell if the location is invalid

 if (isValid(matrix, r + ROW[k], c + COL[k], flagged)) {

 flagged[r + ROW[k]][c + COL[k]] = true;

 queue.add(new Cell(r + ROW[k], c + COL[k]));

 }

 }

Coding challenges 461

 }

}

The complete application is called QueueIslands.

Coding challenge 11 – Shortest path
Amazon, Google, Adobe

Problem: Consider you've been given a matrix, m x n, containing only 0s and 1s. By
convention, 1 means safe land, while 0 represents unsafe land. More precisely, a 0
represents a sensor that should not be activated. Moreover, all eight adjacent cells can
activate the sensor. Write a snippet of code that computes the shortest route from any cells
of the first column to any cell of the last column. You can only move one step at a time;
either left, right, up, or down. The resulting route (if its exists) should contain only values
of 1.

Solution: Let's visualize a test case. The following is a 10 x 10 matrix.

On the left-hand side of the following image, you can see the given matrix. Notice the
values of 0 representing sensors that should not be activated. On the right, you can see
the matrix being used by the application and a possible solution. This matrix is obtained
from the given matrix by expanding the sensor's coverage area. Remember that the eight
adjacent cells of a sensor can activate the sensor as well. The solution starts from the first
column (cell(4, 0)) and ends in the last column (cell (9, 9)) and contains 15 steps (from 0
to 14). You can see these steps in the following image:

Figure 12.9 – The given matrix (left-hand side) and the resolved matrix (right-hand side)

462 Stacks and Queues

From a safe cell of coordinates (r, c), we can move in four safe directions: (r-1, c), (r, c-1),
(r+1, c), and (r, c+1). If we think of the possible movements as directions (edges) and the
cells as vertices, then we can visualize this problem in the context of a graph. The edges
are the possible moves, while the vertices are the possible cells where we can go. Each
move holds the distance from the current cell to the start cell (a start cell is a cell from
the first column). For each move, the distance is increased by 1. So, in the context of a
graph, the problem reduces to finding the shortest path in a graph. Hence, we can use
the Breadth-first Search (BFS) approach to solve this problem. In Chapter 13, Trees and
Graphs, you were provided with a description of the BFS algorithm, and another problem
was solved in the same manner as the one being solved here – the Chess Knight problem.

Now, based on the experience provided by the previous problem, we can elaborate on this
algorithm:

1.	 Start with an empty queue.

2.	 Enqueue all the safe cells of the first column and set their distances to 0 (here, 0
represents the distance from each cell to itself). Moreover, these cells are marked as
visited or flagged.

3.	 As long as the queue is not empty, do the following:

a. Pop the cell representing the top of the queue.

b. If the popped cell is the destination cell (that is, it is on the last column), then
simply return its distance (the distance from the destination cell to the source cell
on the first column).

c. If the popped cell is not the destination then, for each of the four adjacent cells of
this cell, enqueue each valid cell (safe and unvisited) into the queue with distance
(+1) and mark it as visited.

d. If we processed all the cells in the queue without reaching the destination, then
there is no solution. Return -1.

Coding challenges 463

Since we rely on the BFS algorithm, we know that all the cells whose shortest paths are 1
are visited first. Next, the visited cells are the adjacent cells who have the shortest paths as
1+1=2 and so on. So, the cell that has the shortest path is equal to the shortest path of its
parent + 1. This means that, when we traverse the target cell for the first time, it gives us
the final result. This is the shortest path. Let's see the most relevant part of the code
for this:

private static int findShortestPath(int[][] board) {

 // stores if cell is visited or not

 boolean[][] visited = new boolean[M][N];

 Queue<Cell> queue = new ArrayDeque<>();

 // process every cell of first column

 for (int r1 = 0; r1 < M; r1++) {

 // if the cell is safe, mark it as visited and

 // enqueue it by assigning it distance as 0 from itself

 if (board[r1][0] == 1) {

 queue.add(new Cell(r1, 0, 0));

 visited[r1][0] = true;

 }

 }

 while (!queue.isEmpty()) {

 // pop the front node from queue and process it

 int rIdx = queue.peek().r;

 int cIdx = queue.peek().c;

 int dist = queue.peek().distance;

 queue.poll();

 // if destination is found then return minimum distance

 if (cIdx == N - 1) {

 return (dist + 1);

 }

464 Stacks and Queues

 // check for all 4 possible movements from

 // current cell and enqueue each valid movement

 for (int k = 0; k < 4; k++) {

 if (isValid(rIdx + ROW_4[k], cIdx + COL_4[k])

 && isSafe(board, visited, rIdx + ROW_4[k],

 cIdx + COL_4[k])) {

 // mark it as visited and push it into

 // queue with (+1) distance

 visited[rIdx + ROW_4[k]][cIdx + COL_4[k]] = true;

 queue.add(new Cell(rIdx + ROW_4[k],

 cIdx + COL_4[k], dist + 1));

 }

 }

 }

 return -1;

}

The complete application is called ShortestSafeRoute.

Infix, postfix, and prefix expressions
Prefix, postfix, and infix expressions are not a very common interview topic these days,
but it can be considered a topic that should be covered at least once by any developer. The
following is a quick overview:

•	 Prefix expressions: This is a notation (algebraic expression) that's used for writing
arithmetic expressions in which the operands are listed after their operators.

•	 Postfix expressions: This is a notation (algebraic expression) that's used for writing
arithmetic expressions in which the operands are listed before their operators.

•	 Infix expressions: This is a notation (algebraic expression) that's typically used
in arithmetic formulas or statements where the operators are written in between
their operands.

Summary 465

If we have three operators, a, b, and c, we can write the expressions shown in the
following image:

Figure 12.10 – Infix, postfix, and prefix

The most common problems refer to evaluating prefix and postfix expressions and
converting between prefix, infix, and postfix expressions. All these problems have
solutions that rely on stacks (or binary trees) and are covered in any serious book
dedicated to fundamental algorithms. Take your time and harvest some resources about
this topic to get familiar with it. Since this topic is widely covered in dedicated books and
is not a common topic in interviews, we will not cover it here.

Summary
This chapter covered the must-know stack and queue problems for any candidate that is
preparing for a Java developer technical interview. Stacks and queues occur in many real
applications, so mastering them is one of the top skills that an interviewer will test you on.

In the next chapter, Trees, Tries, and Graphs, you'll see that stacks and queues are
frequently used for solving problems that involve trees and graphs as well, which means
they also deserve your attention.

13
Trees and Graphs

This chapter covers one of the trickiest topics asked in interviews: trees and graphs. While
there are tons of problems related to these two topics, only a handful of them are actually
encountered in interviews. Therefore, it is very important to prioritize the most popular
problems with trees and graphs.

In this chapter, we'll start with a brief overview of trees and graphs. Later, we'll tackle the
most popular and challenging problems encountered in interviews at IT giants such as
Amazon, Microsoft, Adobe, and other companies. By the end of this chapter, you'll know
how to answer interview questions and solve coding challenges regarding trees and graphs
in an efficient and comprehensive way.

This chapter covers the following topics:

•	 Trees in a nutshell

•	 Graphs in a nutshell

•	 Coding challenges

So, let's get started!

Technical requirements
All the code present in this chapter can be found on GitHub at https://github.com/
PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/
tree/master/Chapter13.

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter13
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter13
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter13

468 Trees and Graphs

Trees in a nutshell
A tree is a non-linear data structure that organizes data hierarchically in nodes and cannot
contain cycles. A tree has a specific terminology that may vary slightly, but commonly, the
following notions are adopted:

•	 Root is the topmost node.

•	 Edge is the link or connection between two nodes.

•	 Parent is a node that has an edge to a child node.

•	 Child is a node that has a parent node.

•	 Leaf is a node that does not have a child node.

•	 Height is the length of the longest path to a leaf.

•	 Depth is the length of the path to its root.

The following diagram exemplifies these terms when used on a tree:

Figure 13.1 – Tree terminology

Typically, any tree can have a root. The nodes of the tree can respect a certain order (or
not), can store any type of data, and may have links to their parents.

Tree coding challenges are rife with ambiguous details and/or incorrect assumptions. It
is very important to clarify every single detail with the interviewer in order to eliminate
ambiguity. One of the most important aspects refers to the type of tree. Let's take a look at
the most common types of trees.

Trees in a nutshell 469

General tree
Roughly speaking, we can categorize trees into binary trees and the rest of the allowed
trees. A binary tree is a tree in which each node has up to two children. In the following
diagram, the left-hand side image is of a non-binary tree, while the right-hand side image
is of a binary tree:

Figure 13.2 – Non-binary tree versus binary tree

In terms of code, a binary tree can be shaped as follows (this implementation is used later
in the Coding challenges section, so keep this in mind):

private class Node {

 private Node left;

 private Node right;

 private final T element;

 public Node(T element) {

 this.element = element;

 this.left = null;

 this.right = null;

 }

 public Node(Node left, Node right, T element) {

 this.element = element;

 this.left = left;

 this.right = right;

470 Trees and Graphs

 }

 // operations

}

As you can see, each Node keeps references to two other Node elements, as well as a
generic data (element). The left and right nodes represent the children of the current
node. Most tree coding challenges that are encountered in interviews use binary trees, so
they deserve special attention. Binary trees can be categorized as follows.

Knowing binary tree traversal
Before attending a technical interview, you must know how to traverse a binary tree.
Often, traversing a binary tree will not be a problem in itself, but you have to be
comfortable with the Breadth-first Search (BFS) and the Depth-first Search (DFS)
algorithms, along with their three variations: Pre-Order, In-Order, and Post-Order. The
following diagram represents the result of each traversal type:

Figure 13.3 – Binary tree traversal

Let's have a brief overview of the BFS and DFS algorithms.

Breadth-first Search (BFS) for trees
BFS for trees is also referred as Level-Order traversal. The main idea is to maintain a
queue of nodes that will ensure the order of traversal. Initially, the queue contains only the
root node. The steps of the algorithm are as follows:

1.	 Pop the first node from the queue as the current node.

2.	 Visit the current node.

3.	 If the current node has a left node, then enqueue that left node.

4.	 If the current node has a right node, then enqueue that right node.

5.	 Repeat from step 1 until the queue is empty.

Trees in a nutshell 471

In terms of code, we have the following:

private void printLevelOrder(Node node) {

 Queue<Node> queue = new ArrayDeque<>();

 queue.add(node);

 while (!queue.isEmpty()) {

 // Step 1

 Node current = queue.poll();

 // Step 2

 System.out.print(" " + current.element);

 // Step 3

 if (current.left != null) {

 queue.add(current.left);

 }

 // Step 4

 if (current.right != null) {

 queue.add(current.right);

 }

 }

}

Next, let's focus on DFS.

Depth-first Search (DFS) for trees
DFS for trees has three variations: Pre-Order, In-Order, and Post-Order.

Pre-Order traversal visits the current node before its child nodes, as follows (root | left
sub-tree | right sub-tree):

private void printPreOrder(Node node) {

 if (node != null) {

 System.out.print(" " + node.element);

 printPreOrder(node.left);

472 Trees and Graphs

 printPreOrder(node.right);

 }

}

In-Order traversal visits the left branch, then the current node, and finally, the right
branch, as follows (left sub-tree | root | right sub-tree):

private void printInOrder(Node node) {

 if (node != null) {

 printInOrder(node.left);

 System.out.print(" " + node.element);

 printInOrder(node.right);

 }

}

Post-Order visits the current node after its child nodes, as follows (left sub-tree | right
sub-tree | root):

private void printPostOrder(Node node) {

 if (node != null) {

 printPostOrder(node.left);

 printPostOrder(node.right);

 System.out.print(" " + node.element);

 }

}

The complete application is called BinaryTreeTraversal. Besides the preceding
examples, the complete code also contains BFS and DFS implementations that return a
List and an Iterator.

Trees in a nutshell 473

Binary Search Tree
A Binary Search Tree (BST) is a binary tree that follows an ordering rule. Typically, in a
BST, the left descendants (all the elements on the left-hand side of the root) are smaller
than or equal to the root element and, the right descendants (all the elements on the right-
hand side of the root) are bigger than the root element. However, this order doesn't apply
to just the root element. It applies to each node, n, so, in a BST, the left descendants of n
≤ n < right descendants of n. In the following diagram, the image on the left is of a binary
tree, while the image on the right is of a BST:

Figure 13.4 – Binary tree versus BST

Commonly, a BST doesn't accept duplicates, but when it does, they can be on one side (for
example, only on the left-hand side) or on both sides. The duplicates can also be stored in
a separated hash map, or directly in the structure of the tree via a counter. Pay attention
and clarify these details with the interviewer. Handling duplicates in a BST is a problem
encounter in interviews at Amazon, Flipkart, and Microsoft, which is why it will be
tackled in the Coding challenges section.

In the code bundled with this book, you can find an application called
BinarySearchTreeTraversal that exposes the following set of methods: insert(T
element), contains(T element), delete(T element), min(), max(),
root(), size(), and height(). Moreover, it contains an implementation of BFS and
DFS for printing nodes and for returning nodes as a List or an Iterator. Take your
time and dissect the code.

474 Trees and Graphs

Balanced and unbalanced binary trees
When a binary tree guarantees O(log n) times for insert and find operations, we can say
that we have a balanced binary tree, but one that's not necessarily as balanced as it could
be. When the difference between the heights of the left sub-tree and the right sub-tree for
any node in the tree is no more than 1, then the tree is height-balanced. In
the following diagram, the left-hand side tree is an unbalanced binary tree, the middle
tree is a balanced binary tree but not height-balanced, and the right-hand side tree is a
height-balanced tree:

Figure 13.5 – Unbalanced binary tree versus balanced binary tree versus height-balanced binary tree

There are two types of balanced trees: Red-Black trees and AVL trees.

Red-Black tree
A Red-Black tree is a self-balancing BST where each node is under the incident of the
following rules:

•	 Every node is either red or black

•	 The root node is always black

•	 Every leaf (NULL) is black

•	 Both children of a red node are black

•	 Every path from a node to a NULL node has the same number of black nodes

The following diagram represents a Red-Black tree:

Trees in a nutshell 475

Figure 13.6 – Red-Black tree example

A Red-Black tree never gets terribly unbalanced. If all the nodes are black, then the tree
becomes a perfectly balanced tree. The Red-Black tree becomes its maximum height
when the nodes in its longest path are alternate black and red nodes. The height of a
Black-Red tree is always less than or equal to 2log2(n+1), so its height is always in the
order of O(log n).

Because of their complexity and time to implement, the problems that involve Red-Black
trees are not a common topic in interviews. However, when they occur, the problem may
ask you to implement the insert, delete, or find operations. In the code bundled with this
book, you can find a Red-Black tree implementation that shows these operations at work.
Take your time studying the code and getting familiar with the Red-Black tree concept.
The application is called RedBlackTreeImpl.

More implementations that you may want to check out can be found at github.com/
williamfiset/data-structures/blob/master/com/williamfiset/
datastructures/balancedtree/RedBlackTree.java and algs4.
cs.princeton.edu/33balanced/RedBlackBST.java.html. For a graphical
visualization, please consider www.cs.usfca.edu/~galles/visualization/
RedBlack.html.

If you need to deep dive into this topic, I strongly recommend that you read a book
dedicated to data structures since this is a quite vast topic.

http://github.com/williamfiset/data-structures/blob/master/com/williamfiset/datastructures/balancedtree/RedBlackTree.java
http://github.com/williamfiset/data-structures/blob/master/com/williamfiset/datastructures/balancedtree/RedBlackTree.java
http://github.com/williamfiset/data-structures/blob/master/com/williamfiset/datastructures/balancedtree/RedBlackTree.java
http://algs4.cs.princeton.edu/33balanced/RedBlackBST.java.html
http://algs4.cs.princeton.edu/33balanced/RedBlackBST.java.html
http://www.cs.usfca.edu/~galles/visualization/RedBlack.html
http://www.cs.usfca.edu/~galles/visualization/RedBlack.html

476 Trees and Graphs

AVL tree
An AVL tree (named after their inventors, Adelson-Velsky and Landis) is a
self - balancing BST that respects the following rules:

•	 The height of a sub-tree can differ at most by 1.

•	 The balance factor (BN) of a node (n) is -1, 0, or 1 and is defined as the height (h)
difference: BN=h(right_subtree(n)) - h(left_subtree(n)) or BN=h(left_subtree(n)) -
h(right_subtree(n)).

The following diagram represents an AVL tree:

Figure 13.7 – AVL tree example

An AVL tree allows all operations (insert, delete, find min, find max, and so on) to
perform in O(log n), where n is the number of nodes.

Because of their complexity and time to implement, the problems that involve AVL trees
are not a common topic in interviews. However, when they occur, the problem may ask
you to implement the insert, delete, or find operations. In the code bundled with this
book, you can find an AVL tree implementation that shows these operations at work.
Take your time studying the code and getting familiar with the AVL trees concept. The
application is called AVLTreeImpl.

Trees in a nutshell 477

More implementations that you may want to check out can be found at github.com/
williamfiset/data-structures/blob/master/com/williamfiset/
datastructures/balancedtree/AVLTreeRecursiveOptimized.java
and algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/
AVLTreeST.java.html. For a graphical visualization, please consider www.
cs.usfca.edu/~galles/visualization/AVLtree.html.

If you need to deep dive into this topic, I strongly recommend that you read a book
dedicated to data structures since this is a quite vast topic.

Complete binary tree
A complete binary tree is a binary tree in which every level, except possibly the last, is
fully filled. Moreover, all the nodes are as far left as possible. In the following diagram,
the left-hand side shows a non-complete binary tree, while the right-hand side shows a
complete binary tree:

Figure 13.8 – A non-complete binary tree versus a complete binary tree

A complete binary tree must be filled from left to right, so the left-hand side tree shown
in the preceding diagram is not complete. A complete binary tree with n nodes always has
O(log n) height.

http://github.com/williamfiset/data-structures/blob/master/com/williamfiset/datastructures/balancedtree/AVLTreeRecursiveOptimized.java
http://github.com/williamfiset/data-structures/blob/master/com/williamfiset/datastructures/balancedtree/AVLTreeRecursiveOptimized.java
http://github.com/williamfiset/data-structures/blob/master/com/williamfiset/datastructures/balancedtree/AVLTreeRecursiveOptimized.java
http://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/AVLTreeST.java.html
http://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/AVLTreeST.java.html
http://www.cs.usfca.edu/~galles/visualization/AVLtree.html
http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

478 Trees and Graphs

Full binary tree
A full binary tree is a binary tree in which every node has two children or none. In other
words, a node cannot have only one child. In the following diagram, the left-hand side
shows a non-full binary tree, while the right-hand side shows a full binary tree:

Figure 13.9 – A non-full binary tree versus a full binary tree

The left-hand side tree in the preceding diagram is not full because node 68 has one child.

Perfect binary tree
A perfect binary tree is complete and full at the same time. The following diagram shows
one such tree:

Figure 13.10 – Perfect binary tree

So, in a perfect binary tree, all the leaf nodes are at the same level. This means that the
last level contains the maximum number of nodes. These kinds of tree are pretty rare
in interviews.

Trees in a nutshell 479

Important note
Pay attention to problems that sound like this: Consider you've been given a
binary tree. Write a snippet of code that... Do not make any assumptions about
the given binary tree! Always ask the interviewer for more details, such as
Is this a balanced tree? Is it a full binary tree?, Is it a BST?. In other words,
don't base your solution on assumptions that may not be true for the given
binary tree.

Now, let's discuss binary heaps in more detail.

Binary Heaps
In a nutshell, a Binary Heap is a complete binary tree that has a heap property. When the
elements are in ascending order (the heap property says that the element of each node
is greater than or equal to the element of its parent), we have a Min Binary Heap (the
minimum element is the root element), while when they are in descending order (the
heap property says that the element of each node is less than or equal to the element of its
parent), we have a Max Binary Heap (the maximum element is the root element).

The following diagram shows a complete binary tree (left-hand side), a Min Binary Heap
(in the middle), and a Max Binary Heap (right-hand side):

Figure 13.11 – Complete binary tree and min and max heaps

A Binary Heap is not sorted. It is partially ordered. There is no relationship between the
nodes on any given level.

A Binary Heap is typically represented as an array (let's denote it as heap) whose root is at
heap[0]. More importantly, for heap[i], we have that the following:

•	 heap[(i - 1) / 2]: Returns the parent node

•	 heap[(2 * i) + 1]: Returns the left child node

•	 heap[(2 * i) + 2]: Returns the right child node

480 Trees and Graphs

A Max Binary Heap, when implemented via an array, looks as follows:

public class MaxHeap<T extends Comparable<T>> {

 private static final int DEFAULT_CAPACITY = 5;

 private int capacity;

 private int size;

 private T[] heap;

 public MaxHeap() {

 capacity = DEFAULT_CAPACITY;

 this.heap = (T[]) Array.newInstance(

 Comparable[].class.getComponentType(),DEFAULT_CAPACITY);

 }

 // operations

}

The common operations that are used with a heap are add(), poll(), and peek().
After adding or polling an element, we must fix the heap so that it respects the heap
property. This step is commonly referenced as heapifying the heap.

Adding an element to a heap is an O(log n) time operation. The new element is added at
the end of the heap tree. If the new element is smaller than its parent, then we don't need
to do anything. Otherwise, we have to traverse the heap upward to fix the violated heap
property. This operation is known as heapify-up. The algorithm behind heapify-up has
two steps:

1.	 Start from the end of the heap as the current node.

2.	 While the current node has a parent and the parent is less than the current node,
swap these nodes.

Graphs in a nutshell 481

Polling an element from a heap is also an O(log n) time operation. After we've polled the
root element of the heap, we have to fix the heap so that it respects the heap property. This
operation is known as heapify-down. The algorithm behind heapify-down has three steps:

1.	 Start from the root of the heap as the current node.

2.	 Determine the largest node between the children of the current node.

3.	 If the current node is less than its largest children, then swap these two nodes and
repeat from step 2; otherwise, there is nothing else to do, so stop.

Finally, peeking is an O(1) operation that returns the root element of the heap.

In the code bundled with this book, you can find an application called MaxHeap that
exposes the following set of methods: add(T element), peek(), and poll().

Important note
A special case of a tree is known as a Trie. Also known as a digital tree or
a prefix tree, a Trie is an ordered tree structure used commonly for storing
strings. Its name comes from the fact that Trie is a reTrieval data structure.
Its performance is better than a binary tree. Trie is detailed in my book, Java
Coding Problems (https://www.packtpub.com/programming/
java-coding-problems), next to other data structures such as tuples,
disjoint-set, binary indexed trees (Fenwick trees), and Bloom filters.

Next, let's have a brief overview of graphs.

Graphs in a nutshell
A graph is a data structure that's used to represent a collection of nodes that can be
connected with edges. For example, a graph can be used to represent a network of
members on a social media platform, so it is a great data structure for representing real-
life connections. A tree (as detailed in the previous section) is a particular type of graph.
In other words, a tree is a graph without cycles. In graph terms, a graph without cycles is
called an acyclic graph.

The specific terminology for graphs involves two main terms:

•	 Vertex represents the information (for example, a member, a dog, or a value)

•	 Edge is the connection or the relationship between two vertices

https://www.packtpub.com/programming/java-coding-problems
https://www.packtpub.com/programming/java-coding-problems

482 Trees and Graphs

The connection can be unidirectional (as in the case of binary trees) or bidirectional.
When the connection is bidirectional (such as a two-way street), the graph is known as
an undirected graph and it has undirected edges. When the connection is unidirectional
(such as a one-way street), then the graph is known as a directed graph and it has
directed edges.

The edges of a graph can carry information known as the weight (for example, the length
of a road). In this case, the graphs are called weighted graphs. When a graph has a single
edge that points to the same vertex, it is called a self-loop graph. The following diagram
provides representations for each of these graph types:

Figure 13.12 – Graph types

Unlike binary trees, representing graphs via node links is not practical. In computers, a
graph is commonly represented via the adjacency matrix or adjacency list. Let's tackle the
former; that is, the adjacency matrix.

Adjacency matrix
An adjacency matrix is represented by a boolean two-dimensional array (or an integer
two-dimensional array that contains only 0s and 1s) of size n x n, where n is the number
of vertices. If we denote this two-dimensional array as a matrix, then matrix[i][j] is true
(or 1) if there is an edge from vertex i to vertex j; otherwise, it is false (or 0). The following
diagram shows an example of an adjacency matrix for an undirected graph:

Figure 13.13 – An adjacency matrix for an undirected graph

Graphs in a nutshell 483

In order to save space, a bit-matrix can be used as well.

In the case of weighted graphs, the adjacency matrix can store the weight of the edge,
while 0 can be used to indicate the absence of the edge.

Implementing a graph based on the adjacency matrix can be done as follows (all we need
is the list of vertices since the edges are passed to each method that has to traverse the
graph as the adjacency matrix):

public class Graph<T> {

 // the vertices list

 private final List<T> elements;

 public Graph() {

 this.elements = new ArrayList<>();

 }

 // operations

}

Another approach we can use to represent a graph in a computer is the adjacency list.

Adjacency list
An adjacency list is an array of lists whose size is equal to the number of vertices in the
graph. Every vertex is stored in this array and it stores a list of adjacent vertices. In other
words, the list at index i of the array contains the adjacent vertices of the vertex stored in
the array at index i. The following diagram shows an example of an adjacency list for an
undirected graph:

Figure 13.14 – An adjacency list for an undirected graph

484 Trees and Graphs

Implementing a graph based on the adjacency list can be done as follows (here, we are
using a Map to implement the adjacency list):

public class Graph<T> {

 // the adjacency list is represented as a map

 private final Map<T, List<T>> adjacencyList;

 public Graph() {

 this.adjacencyList = new HashMap<>();

 }

 // operations

}

Next, let's briefly cover the traversal of a graph.

Graph traversal
The two most common ways to traverse a graph are via Depth-first Search (DFS) and
Breadth-first Search (BFS). Let's have a rundown of each. BFS is mainly used for graphs.

In the case of graphs, we must consider that a graph may have cycles. A plain BFS
implementation (as you saw in the case of binary trees) doesn't take cycles into account,
so we risk an infinite loop while traversing the BFS queue. Eliminating this risk can be
done via an additional collection that holds the visited nodes. The steps for this algorithm
are as follows:

1.	 Mark the start node (current node) as visited (add it to the collection of visited
nodes) and add it to the BFS queue.

2.	 Pop the current node from the queue.

3.	 Visit the current node.

4.	 Get the adjacent nodes of the current node.

Graphs in a nutshell 485

5.	 Loop the adjacent nodes. For each non-null and unvisited node, do the following:

a. Mark it as visited (add it to the collection of visited nodes).

b. Add it to the queue.

6.	 Repeat from step 2 until the queue is empty.

Depth-first Search (DFS) for graphs
In the case of graphs, we can implement the DFS algorithm via recursion or iterative
implementation.

DFS for graphs via recursion
The steps for implementing the DFS algorithm for graphs via recursion are as follows:

1.	 Start from the current node (the given node) and mark the current node as visited
(add it to the collection of visited nodes).

2.	 Visit the current node.

3.	 Traverse the unvisited adjacent vertices via recursion.

DFS for graphs – iterative implementation
The iterative implementation of the DFS algorithm relies on a Stack. The steps are
as follows:

1.	 Start from the current node (the given node) and push the current node into
Stack.

2.	 While Stack is not empty, do the following:

a. Pop the current node from Stack.

b. Visit the current node.

c. Mark the current node as visited (add it to the collection of visited nodes).

d. Push the unvisited adjacent vertices into Stack.
In the code bundled with this book, you can find a graph implementation based on the
adjacency matrix called GraphAdjacencyMatrixTraversal. You can also find one based on
the adjacency list called GraphAdjacencyListTraversal. Both applications contain BFS and
DFS implementations.

486 Trees and Graphs

Coding challenges
Now that we have had a brief overview of trees and graphs, it is time to challenge ourselves
with the 25 most popular coding problems encountered in interviews about these topics.

As usual, we have a mix of problems that are usually encountered by the top companies
of the world, including IT giants such as Amazon, Adobe and Google. So, let's
get started!

Coding challenge 1 – Paths between two nodes
Problem: Consider you've been given a directed graph. Write a snippet of code that
returns true if there is a path (route) between two given nodes.

Solution: Let's consider the directed graph shown in the following diagram:

Figure 13.15 – Paths from D to E and vice versa

If we consider nodes D and E, then we can see that from D to E, there are three paths,
while from E to D, there are none. So, if we start from D and traverse the graph (via BFS
or DFS) then, at some point, we have to pass through node E, otherwise there will be no
path between D and E. So, the solution to this problem consists of starting from one of the
given nodes and traversing the graph until we reach the second given node or until there
are no more valid moves. For example, we can do this via BFS as follows:

public boolean isPath(T from, T to) {

 Queue<T> queue = new ArrayDeque<>();

 Set<T> visited = new HashSet<>();

 // we start from the 'from' node

 visited.add(from);

 queue.add(from);

Coding challenges 487

 while (!queue.isEmpty()) {

 T element = queue.poll();

 List<T> adjacents = adjacencyList.get(element);

 if (adjacents != null) {

 for (T t : adjacents) {

 if (t != null && !visited.contains(t)) {

 visited.add(t);

 queue.add(t);

 // we reached the destination (the 'to' node)

 if (t.equals(to)) {

 return true;

 }

 }

 }

 }

 }

 return false;

}

The complete application is called DirectedGraphPath.

Coding challenge 2 – Sorted array to minimal BST
Amazon, Google

Problem: Consider you've been given a sorted (ascending order) array of integers. Write a
snippet of code that creates the minimal BST from this array. We define the minimal BST
as the BST with the minimum height.

488 Trees and Graphs

Solution: Consider the given array as {-2, 3, 4, 6, 7, 8, 12, 23, 90}. The minimal BST that
can be created from this array looks as follows:

Figure 13.16 – Sorted array to minimal BST

In order to obtain a BST of minimal height, we must strive to distribute an equal number
of nodes in the left and right sub-trees. With this statement in mind, note that we can
choose the middle of the sorted array as the root. The elements of the array on the left-
hand side of the middle are smaller than the middle, so they can form the left sub-tree.
The elements of the array on the right-hand side of the middle are greater than the middle,
so they can form the right sub-tree.

So, we can choose 7 as the root of the tree. Next, -2, 3, 4, and 6 should form the left
sub-tree, while 8, 12, 23, and 90 should form the right sub-tree. However, we know that we
cannot simply add these elements to the left or right sub-trees since we have to respect the
BST property: in a BST, for each node, n, the left descendants of n ≤ n < right descendants
of n.

However, we can simply follow the same technique. If we consider -2, 3, 4, and 6 as an
array, then its middle is 3, and if we consider 8, 12, 24, and 90 as an array, then its middle
is 12. So, 3 is the root of the left sub-sub-tree containing -2, and the right sub-sub-tree is
the one that contains 4 and 6. Similarly, 12 is the root of the left sub-sub-tree containing 8,
and the right sub-sub-tree is the one that contains 24 and 90.

Well, I think we have enough experience to intuit that the same technique can be applied
until we've processed all the sub-arrays. Moreover, it is quite intuitive that this solution
can be implemented via recursion (if you don't consider recursion one of your top
skills, review Chapter 8, Recursion and Dynamic Programming). So, we can resume our
algorithm in four steps:

1.	 Insert the middle element of the array into the tree.

2.	 Insert the elements of the left sub-array into the left sub-tree.

Coding challenges 489

3.	 Insert the elements of the right sub-array into the right sub-tree.

4.	 Trigger the recursive call.

The following implementation puts these steps into code:

public void minimalBst(T m[]) {

 root = minimalBst(m, 0, m.length - 1);

}

private Node minimalBst(T m[], int start, int end) {

 if (end < start) {

 return null;

 }

 int middle = (start + end) / 2;

 Node node = new Node(m[middle]);

 nodeCount++;

 node.left = minimalBst(m, start, middle - 1);

 node.right = minimalBst(m, middle + 1, end);

 return node;

}

The complete application is called SortedArrayToMinBinarySearchTree.

Coding challenge 3 – List per level
Problem: Consider you've been given a binary tree. Write a snippet of code that creates
a list of elements for each level of the tree (for example, if the tree has a depth of d, then
you'll have d lists).

490 Trees and Graphs

Solution: Let's consider the binary tree shown in the following diagram:

Figure 13.17 – List per level

So, we have a binary tree of depth 3. On depth 0, we have the root, 40. On depth 1, we
have 47 and 45. On depth 2, we have 11, 13, 44, and 88. Finally, on depth 3, we have 3
and 1.

It is quite intuitive to think like this: if we traverse the binary tree level by level, then we
can create a list of elements for each level. In other words, we can adapt the BFS algorithm
(also known as Level-Order traversal) in such a way that we capture the elements at each
traversed level. More precisely, we start by traversing the root (and create a list containing
this element), continue by traversing level 1 (and create a list containing the elements
from this level), and so on.

When we reach level i, we will have already fully visited all the nodes on the previous level,
i-1. This means that to get the elements on level i, we must traverse all the children of the
nodes of the previous level, i-1. The following solution runs in O(n) time:

public List<List<T>> fetchAllLevels() {

 // each list holds a level

 List<List<T>> allLevels = new ArrayList<>();

 // first level (containing only the root)

 Queue<Node> currentLevelOfNodes = new ArrayDeque<>();

 List<T> currentLevelOfElements = new ArrayList<>();

 currentLevelOfNodes.add(root);

 currentLevelOfElements.add(root.element);

Coding challenges 491

 while (!currentLevelOfNodes.isEmpty()) {

 // store the current level as the previous level

 Queue<Node> previousLevelOfNodes = currentLevelOfNodes;

 // add level to the final list

 allLevels.add(currentLevelOfElements);

 // go to the next level as the current level

 currentLevelOfNodes = new ArrayDeque<>();

 currentLevelOfElements = new ArrayList<>();

 // traverse all nodes on current level

 for (Node parent : previousLevelOfNodes) {

 if (parent.left != null) {

 currentLevelOfNodes.add(parent.left);

 currentLevelOfElements.add(parent.left.element);

 }

 if (parent.right != null) {

 currentLevelOfNodes.add(parent.right);

 currentLevelOfElements.add(parent.right.element);

 }

 }

 }

 return allLevels;

}

The complete application is called ListPerBinaryTreeLevel.

Coding challenge 4 – sub-tree
Adobe, Microsoft, Flipkart

Problem: Consider you've been given two binary trees, p and q. Write a snippet of code
that returns true if q is a sub-tree of p.

492 Trees and Graphs

Solution: Consider the following diagram:

Figure 13.18 – Binary tree's sub-tree of another binary tree

As we can see, the binary tree in the middle, q, is a sub-tree of the p1 binary tree (left-hand
side) but is not a sub-tree of the p2 binary tree (right-hand side).

Moreover, this diagram reveals two cases:

•	 If the root of p matches the root of q (p.root.element == q.root.element), then the
problem reduces to check whether the right sub-tree of q is the same as the right
sub-tree of p, or whether the left sub-tree of q is the same as the left sub-tree of p.

•	 If the root of p doesn't match the root of q (p.root.element != q.root.element), then
the problem reduces to check whether the left sub-tree of p is the same as q, or
whether the right sub-tree of p is the same as q.

In order to implement the first bullet, we need two methods. To better understand why we
need two methods, check out the following diagram:

Figure 13.19 – Roots and leaves match but the intermediate nodes don't

If the roots of p and q match but some of the nodes from the left/right sub-trees don't
match, then we have to go back to where we started with p and q to check whether q is
a sub-tree of p. The first method should check whether the trees are the same once their
roots are the same. The second method should handle the case where we find that the
trees are not the same but start at a certain node. Pay attention to this aspect, since many
candidates don't take it into account.

Coding challenges 493

So, in terms of code, we have the following (for n nodes, this runs in O(n) time):

public boolean isSubtree(BinaryTree q) {

 return isSubtree(root, q.root);

}

private boolean isSubtree(Node p, Node q) {

 if (p == null) {

 return false;

 }

 // if the roots don't match

 if (!match(p, q)) {

 return (isSubtree(p.left, q) || isSubtree(p.right, q));

 }

 return true;

}

private boolean match(Node p, Node q) {

 if (p == null && q == null) {

 return true;

 }

 if (p == null || q == null) {

 return false;

 }

 return (p.element == q.element

 && match(p.left, q.left)

 && match(p.right, q.right));

}

The application is called BinaryTreeSubtree.

494 Trees and Graphs

Coding challenge 5 – Landing reservation system
Amazon, Adobe, Microsoft

Problem: Consider an airport with a single runway. This airport receives landing requests
from different airplanes. A landing request contains the landing time (for example, 9:56)
and the time in minutes needed to complete the procedure (for example, 5 minutes). We
denote it as 9:56 (5). Write a snippet of code that uses a BST to design this reservation
system. Since there is a single runway, the code should reject any landing request that
overlaps an existing one. The order of requests dictates the order of reservations.

Solution: Let's consider a time screenshot of our landing timeline (the order for the
landing requests was 10:10 (3), 10:14 (3), 9:55 (2), 10:18 (1), 9:58 (5), 9:47 (2), 9:41 (2),
10:22 (1), 9:50 (6), and 10:04 (4). This can be seen in the following diagram:

Figure 13.20 – Timeline screenshot

So, we have already done several reservations, as follows: at 9:41, an airplane will land
and it will need 2 minutes to complete the procedure; at 9:47 and 9:55, there are two
other airplanes that need 2 minutes to complete landing; at 9:58, we have an airplane that
needs 5 minutes to complete landing; and so on. Moreover, we also have two new landing
requests denoted in the diagram as R1 and R2.

Notice that we cannot approve the R1 landing request. The landing time is 9:50 and it
needs 6 minutes to complete, so it ends at 9:56. However, at 9:56, we already have the
airplane from 9:55 on the runway. Since we have a single runway, we reject this landing
request. We consider such cases as overlappings.

Coding challenges 495

On the other hand, we approve the R2 landing request. The request time is 10:04 and it
needs 4 minutes to complete, so it ends at 10:08. At 10:08, there is no other airplane on the
runway since the next landing is at 10:10.

Notice that we have to use a BST to solve this problem, but using an array (sorted or
unsorted) or a linked list (sorted or unsorted) is also a valid approach. Using an unsorted
array (or linked list) will need O(1) time for inserting a landing request and O(n) time
for checking the potential overlapping. If we were to use a sorted array (or linked list) and
the Binary Search algorithm, then we could check the potential overlapping in O(log n).
However, to insert a landing request, we will need O(n) because we have to shift all the
elements to the right from the position of insertion.

How about using a BST? First, let's represent the preceding timeline screenshot as a BST.
Check out the following diagram (the order of the landing requests was 10:10 (3), 10:14
(3), 9:55 (2), 10:18 (1), 9:58 (5), 9:47 (2), 9:41 (2), 10:22 (1), 9:50 (6), and 10:04 (4)):

Figure 13.21 – Timeline screenshot as a BST

This time, for each landing request, we only have to scan half of the tree. This is the
consequence of using a BST (all the nodes on the left are smaller than all the nodes on the
right, so a landing request time can only be in the left or the right sub-tree). For example,
the landing request at 10:04 is less than the root (10:10), so it goes in the left sub-tree. If,
at any given landing request, we encounter an overlapping, then we just return without
inserting the corresponding node into the tree. We can find the potential overlappings in
O(h), where h is the height of the BST, and we can insert it in O(1) time.

496 Trees and Graphs

An overlapping is given by the following simple computation (we're using the Java 8 Date-
Time API, but you can reduce it to simple integers as well – if you are not familiar with
the Java 8 Date-Time API, then I strongly recommend that you buy my book, Java Coding
Problems, published by Packt (https://www.packtpub.com/programming/
java-coding-problems). This book has an astonishing chapter about this topic that
is a must-read for any candidate:

long t1 = Duration.between(current.element.

 plusMinutes(current.time), element).toMinutes();

long t2 = Duration.between(current.element,

 element.plusMinutes(time)).toMinutes();

if (t1 <= 0 && t2 >= 0) {

 // overlapping found

}

So, in t1, we compute the time between the (landing time + time needed to complete) of
the current node and the landing time of the current request. In t2, we compute the time
between the landing time of the current node and the (current request landing time + time
needed to complete). If t1 is less than or equal to t2, then we have found an overlapping, so
we reject the current landing request. Let's see the complete code:

public class BinarySearchTree<Temporal> {

 private Node root = null;

 private class Node {

 private Node left;

 private Node right;

 private final LocalTime element;

 private final int time;

 public Node(LocalTime element, int time) {

 this.time = time;

 this.element = element;

https://www.packtpub.com/programming/java-coding-problems
https://www.packtpub.com/programming/java-coding-problems

Coding challenges 497

 this.left = null;

 this.right = null;

 }

 public Node(Node left, Node right,

 LocalTime element, int time) {

 this.time = time;

 this.element = element;

 this.left = left;

 this.right = right;

 }

 }

 public void insert(LocalTime element, int time) {

 if (element == null) {

 throw new IllegalArgumentException("...");

 }

 root = insert(root, element, time);

 }

 private Node insert(Node current,

 LocalTime element, int time) {

 if (current == null) {

 return new Node(element, time);

 }

 long t1 = Duration.between(current.element.

 plusMinutes(current.time), element).toMinutes();

 long t2 = Duration.between(current.element,

 element.plusMinutes(time)).toMinutes();

 if (t1 <= 0 && t2 >= 0) {

 System.out.println("Cannot reserve the runway at "

498 Trees and Graphs

 + element + " for " + time + " minutes !");

 return current;

 }

 if (element.compareTo(current.element) < 0) {

 current.left = insert(current.left, element, time);

 } else {

 current.right = insert(current.right, element, time);

 }

 return current;

 }

 public void printInOrder() {

 printInOrder(root);

 }

 private void printInOrder(Node node) {

 if (node != null) {

 printInOrder(node.left);

 System.out.print(" " + node.element

 + "(" + node.time + ")");

 printInOrder(node.right);

 }

 }

}

Notice that we can easily print the timeline by using the In-Order traversal of a BST. The
complete application is called BinaryTreeLandingReservation.

Coding challenges 499

Coding challenge 6 – Balanced binary tree
Amazon, Microsoft

Problem: Consider you've been given a binary tree. We consider it balanced if the heights
of the two sub-trees of any node don't differ by more than one (this is what we call a
height-balanced binary tree). Write a snippet of code that returns true if the binary tree
is balanced.

Solution: So, in order to have a balanced binary tree, for each node, the two sub-trees
cannot differ in height by more than one. Conforming to this statement, the image on
the right represents a balanced binary tree, while the image on the left represents an
unbalanced binary tree:

Figure 13.22 – Unbalanced and balanced binary trees

The binary tree on the left is unbalanced since the difference between the heights of
the left sub-trees corresponding to nodes 40 (the root) and 30 and the right sub-trees is
greater than one (for example, the left-height(40) = 4 while the right-height(40) = 2).

The right-hand side binary tree is balanced since, for each node, the difference between
the height of the left sub-tree and the right sub-tree is not greater than one.

500 Trees and Graphs

Based on this example, we can intuit that a simple solution consists of a recursive
algorithm. We can traverse each node and compute the height of the left and right
sub-trees. If the difference between these heights is greater than one, then we return
false. In terms of code, this is quite straightforward:

public boolean isBalanced() {

 return isBalanced(root);

}

private boolean isBalanced(Node root) {

 if (root == null) {

 return true;

 }

 if (Math.abs(height(root.left) - height(root.right)) > 1) {

 return false;

 } else {

 return isBalanced(root.left) && isBalanced(root.right);

 }

}

private int height(Node root) {

 if (root == null) {

 return 0;

 }

 return Math.max(height(root.left), height(root.right)) + 1;

}

Coding challenges 501

This approach performs in O(n log n) time because, on each node, we apply the recursion
through its entire sub-tree. So, the problem is the number of height() calls. At this
moment, the height() method only computes the heights. But it can be improved to
check whether the tree is balanced as well. All we need to do is signal an unbalanced
sub-tree via an error code. On the other hand, for a balanced tree, we return the
corresponding height. In place of an error code, we can use Integer.MIN_VALUE,
as follows:

public boolean isBalanced() {

 return checkHeight(root) != Integer.MIN_VALUE;

}

private int checkHeight(Node root) {

 if (root == null) {

 return 0;

 }

 int leftHeight = checkHeight(root.left);

 if (leftHeight == Integer.MIN_VALUE) {

 return Integer.MIN_VALUE; // error

 }

 int rightHeight = checkHeight(root.right);

 if (rightHeight == Integer.MIN_VALUE) {

 return Integer.MIN_VALUE; // error

 }

 if (Math.abs(leftHeight - rightHeight) > 1) {

 return Integer.MIN_VALUE; // pass error back

 } else {

 return Math.max(leftHeight, rightHeight) + 1;

 }

}

This code runs in O(n) time and O(h) space, where h is the height of the tree. The
application is called BinaryTreeBalanced.

502 Trees and Graphs

Coding challenge 7 – Binary tree is a BST
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given a binary tree that may contain duplicates. Write a
snippet of code that returns true if this tree is a Binary Search Tree (BST).

Solution: Right from the start, we notice that the problem is explicitly mentioning that
the given binary tree may contain duplicates. Why is this important? Because if the binary
tree doesn't allow duplicates, then we can rely on a simple In-Order traversal and an array.
If we add each traversed element to an array, then the resulting array will be sorted only if
the binary tree is a BST. Let's clarify this aspect via the following diagram:

Figure 13.23 – Valid and invalid BSTs

We know that the BST property says that for each node, n, of a BST, the left descendants
of n ≤ n < right descendants of n. This means that the first two binary trees shown in the
previous diagram are valid BST, while the last one is not a valid BST. Now, adding the
elements of the middle and the last binary tree to the array will result in an array of [40,
40]. This means we cannot validate or invalidate a BST based on this array since we cannot
distinguish between the trees. So, in conclusion, you should rely on this simple algorithm
if the given binary tree doesn't accept duplicates.

Now, it's time to take this a step further. Let's examine the left descendants of n ≤ n < right
descendants of n statement shown in the following binary tree:

Figure 13.24 – Invalid BST

Coding challenges 503

Check this out! For each node, n, we can write that n.left ≤ n < n.right, but it is clear
that 55 is in the wrong place. So, let's reinforce that all the left nodes of the current
node should be less than or equal to the current node, which must be less than all the
right nodes.

In other words, it is not enough to validate the left and right nodes of the current node.
We must validate each node against a range of nodes. More precisely, all the nodes of a
left or a right sub-tree should be validated against a range bounded by the minimum
accepted element, respectively the maximum accepted element (min, max). Let's consider
the following tree:

Figure 13.25 – Validating a BST

We start from the root (40) and we consider (min=null, max=null), so 40 meets the
condition since there is no minimum or maximum limit. Next, we go to the left sub-tree
(let's denote this sub-tree as 40-left-sub-tree). All the nodes from the 40-left-sub-tree
should range between (null, 40). Next, we go to the left again, and we meet the 35-left-sub-
tree, which should range between (null, 35). Basically, we continue to go left until there
are no nodes left. At this point, we start going to the right, so the 35-right-sub-tree should
range between (35, 40), the 40-right-sub-tree should range between (40, null), and so on.
So, when we go to the left, the maximum value gets updated. When we go to the right, the
minimum gets updated. If anything goes wrong, then we stop and return false. Let's see
the code based on this algorithm:

public boolean isBinarySearchTree() {

 return isBinarySearchTree(root, null, null);

504 Trees and Graphs

}

private boolean isBinarySearchTree(Node node,

 T minElement, T maxElement) {

 if (node == null) {

 return true;

 }

 if ((minElement != null &&

 node.element.compareTo(minElement) <= 0)

 || (maxElement != null && node.element.

 compareTo(maxElement) > 0)) {

 return false;

 }

 if (!isBinarySearchTree(node.left, minElement, node.element)

 || !isBinarySearchTree(node.right,

 node.element, maxElement)) {

 return false;

 }

 return true;

}

The complete application is called BinaryTreeIsBST.

Coding challenge 8 – Successor node
Google, Microsoft

Problem: Consider you've been given a Binary Search Tree (BST) and a node from
this tree. Write a snippet of code that prints the successor node of the given node in the
context of In-Order traversal.

Coding challenges 505

Solution: So, let's recall the In-Order traversal of a binary tree. This Depth-first Search
(DFS) flavor traverses the left sub-tree, then the current node, and then the right sub-tree.
Now, let's assume that we arbitrarily choose a node from a BST (let's denote it as n) and
we want to find its successor (let's denote it as s) in the context of In-Order traversal.

Let's consider the following diagram as the given BST. We can use it as support for
distinguishing between the possible cases:

Figure 13.26 – BST sample with start and successor nodes

As shown in the preceding diagram, we denoted two main cases as (a) and (b). In case
(a), the node, n, has the right sub-tree. In case (b), the node, n, doesn't contain the right
sub-tree.

Case (a), exemplified in the left-hand side BST, reveals that if the node, n, has the right
sub-tree, then the successor node, s, is the leftmost node of this right sub-tree. For
example, for n=50, the successor node is 54.

Case (b) has two sub-cases: a simple case and a tricky case. The simple case is exemplified
by the middle BST shown in the preceding diagram. When the node, n, doesn't contain
the right sub-tree and n is the left child of its parent, then the successor node is this
parent. For example, for n=40, the successor node is 50. This is the simple sub-case of (b).

The tricky sub-case of (b) is exemplified by the right-hand side BST shown in the
preceding diagram. When the node, n, doesn't contain the right sub-tree and n is the
right child of its parent, then we have to traverse upward until n becomes the left child
of its parent. Once we've done that, we return this parent. For example, if n=59, then the
successor node is 60.

Moreover, we must consider that if n is the last node in the traversal, then we return the
root's parent, which can be null.

506 Trees and Graphs

If we glue these cases to form some pseudocode, then we get the following:

Node inOrderSuccessor(Node n) {

 if (n has a right sub-tree) {

 return the leftmost child of right sub-tree

 }

 while (n is a right child of n.parent) {

 n = n.parent; // traverse upwards

 }

 return n.parent; // parent has not been traversed

}

Now, we can translate this pseudocode into code, as follows:

public void inOrderSuccessor() {

 // choose the node

 Node node = ...;

 System.out.println("\n\nIn-Order:");

 System.out.print("Start node: " + node.element);

 node = inOrderSuccessor(node);

 System.out.print(" Successor node: " + node.element);

}

private Node inOrderSuccessor(Node node) {

 if (node == null) {

 return null;

 }

 // case (a)

 if (node.right != null) {

 return findLeftmostNode(node.right);

 }

Coding challenges 507

 // case (b)

 while (node.parent != null && node.parent.right == node) {

 node = node.parent;

 }

 return node.parent;

}

The complete application is called BinarySearchTreeSuccessor. This application also
contains the same problem, but is resolved via Pre-Order and Post-Order traversal.
Before checking the solutions for the Pre-Order and Post-Order contexts, you should
challenge yourself by identifying the possible cases and sketching the pseudocode and its
implementation.

Coding challenge 9 – Topological sort
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given a Directed Acyclic Graph (DAG); that is, a directed
graph without cycles. Write a snippet of code that returns the linear ordering of vertices
such that for every directed edge, XY, vertex X comes before Y in the ordering. In other
words, for every edge, the source node comes before the destination. This is also known as
topological sort, and it only works for DAGs.

Solution: Let's dive into this problem via the following DAG:

Figure 13.27 – Directed acyclic graph (DAG)

508 Trees and Graphs

Let's start the topological sort from vertex D. Before vertex D, there is no other vertex (no
edge), so we can add D to the result, (D). From D, we can go to B or A. Let's go to vertex
A. We cannot add A to the result because we didn't process vertex B of edge BA, so let's go
to vertex B. Before B, we have only D, which was added to the result, so we can add B to
the result, (D, B). From B, we can go to A, E, C, and F. We cannot go to C since we didn't
process AC, and we cannot go to F since we didn't process CF. However, we can go to A
since DA and BA have been processed, and we can go to E since before E, there's only B,
which is in the result. Notice that the topological sort may provide different results. Let's
go to E. Due to this, E is added to the result (D, B, E). Next, we can add A to the result,
which allows us to add C, which allows us to add F. So, the result is now (D, B, E, A, C, F).
From F, we can go to G. Since EG has been processed, we can add G to the result. Finally,
from G, we go to H and we obtain the topological sort result as (D, B, E, A, C, F, G, H).

This traversal is just an arbitrary traversal that we cannot put it into code. However, we
know that a graph can be traversed via the BFS and DFS algorithms. If we try to think in
the context of DFS, then we start from node D and we traverse B, A, C, F, G, H, and E.
While we perform the DFS traversal, we cannot simply add the vertices to the result since
we break the problem requirement (for every directed edge, XY, vertex X comes before
Y in the ordering). However, we can use a Stack and push a vertex into this stack after
traversing all its neighbors. This means that H is the first vertex that's pushed into the
stack, followed by G, F, C, A, E, B, and D. Now, popping from the stack until it is empty
will give us the topological sort as D, B, E, A, C, F, G, and H.

So, topological sort is just a DFS flavor based on a Stack that can be implemented
as follows:

public Stack<T> topologicalSort(T startElement) {

 Set<T> visited = new HashSet<>();

 Stack<T> stack = new Stack<>();

 topologicalSort(startElement, visited, stack);

 return stack;

}

private void topologicalSort(T currentElement,

 Set<T> visited, Stack<T> stack) {

 visited.add(currentElement);

Coding challenges 509

 List<T> adjacents = adjacencyList.get(currentElement);

 if (adjacents != null) {

 for (T t : adjacents) {

 if (t != null && !visited.contains(t)) {

 topologicalSort(t, visited, stack);

 visited.add(t);

 }

 }

 }

 stack.push(currentElement);

}

The complete application is called GraphTopologicalSort.

Coding challenge 10 – Common ancestor
Amazon, Google, Microsoft, Flipkart

Problem: Consider you've been given a binary tree. Write a snippet of code that finds
the first common ancestor of two given nodes. You cannot store additional nodes in a
data structure.

Solution: The best way to analyze this kind of problem is by taking some paper and a pen
and drawing a binary tree with some samples. Notice that the problem doesn't say that
this is a BST. Practically, it can be any valid binary tree.

In the following diagram, we have three possible scenarios:

Figure 13.28 – Finding the first common ancestor

510 Trees and Graphs

Here, we can see that the given nodes can be in different sub-trees (left- and right-hand
trees) or in the same sub-tree (middle tree). So, we can traverse the tree starting from the
root using a method of the commonAncestor(Node root, Node n1, Node n2)
type and return it as follows (n1 and n2 are the two given nodes):

•	 Returns n1 if the root's sub-tree includes n1 (and doesn't include n2)

•	 Returns n2 if the root's sub-tree includes n2 (and doesn't include n1)

•	 Returns null if neither n1 nor n2 are in the root's sub-tree

•	 Else, it returns the common ancestor of n1 and n2.

When commonAncestor(n.left, n1, n2) and commonAncestor(n.right,
n1, n2) return non-null values, this means that n1 and n2 are in different sub-trees and
n is the common ancestor. Let's see this in terms of code:

public T commonAncestor(T e1, T e2) {

 Node n1 = findNode(e1, root);

 Node n2 = findNode(e2, root);

 if (n1 == null || n2 == null) {

 throw new IllegalArgumentException("Both nodes

 must be present in the tree");

 }

 return commonAncestor(root, n1, n2).element;

}

private Node commonAncestor(Node root, Node n1, Node n2) {

 if (root == null) {

 return null;

 }

 if (root == n1 && root == n2) {

 return root;

 }

Coding challenges 511

 Node left = commonAncestor(root.left, n1, n2);

 if (left != null && left != n1 && left != n2) {

 return left;

 }

 Node right = commonAncestor(root.right, n1, n2);

 if (right != null && right != n1 && right != n2) {

 return right;

 }

 // n1 and n2 are not in the same sub-tree

 if (left != null && right != null) {

 return root;

 } else if (root == n1 || root == n2) {

 return root;

 } else {

 return left == null ? right : left;

 }

}

The complete application is called BinaryTreeCommonAncestor.

Coding challenge 11 – Chess knight
Amazon, Microsoft, Flipkart

Problem: Consider you've been given a chess board and a knight. Initially, the knight is
placed in a cell (start cell). Write a snippet of code that computes the minimum number of
moves needed to move the knight from the start cell to a given target cell.

512 Trees and Graphs

Solution: Let's consider an example. The chess board is 8x8 in size and the knight starts
from cell (1, 8). The target cell is (8, 1). As the following image reveals, the knight needs to
make a minimum of 6 moves to go from cell (1, 8) to cell (8, 1):

Figure 13.29 – Moving the knight from cell (1, 8) to cell (8, 1)

As this image reveals, a knight can move from an (r, c) cell to eight other valid cells,
as follows: (r+2, c+1), (r+1, c+2), (r-1,c+2), (r-2, c+1), (r-2, c-1), (r-1, c-2), (r+1, c-2),
and (r+2, c-1). So, there are eight possible movements. If we think of these possible
movements as directions (edges) and the cells as vertices, then we can visualize this
problem in the context of a graph. The edges are the possible moves, while the vertices are
the possible cells for the knight. Each move holds the distance from the current cell to the
start cell. For each move, the distance is increased by 1. So, in the context of a graph, the
problem reduces to finding the shortest path in a graph. Hence, we can use BFS to solve
this problem.

The steps for this algorithm are as follows:

1.	 Create an empty queue.

2.	 Enqueue the starting cell so that it has a distance of 0 from itself.

3.	 As long as the queue is not empty, do the following:

a. Pop the next unvisited cell from the queue.

b. If the popped cell is the target cell, then return its distance.

c. If the popped cell is not the target cell, then mark this cell as visited and enqueue
each of the eight possible movements into the queue by increasing the distance by 1.

Coding challenges 513

Since we rely on the BFS algorithm, we know that all the cells whose shortest path is 1 are
visited first. Next, the visited cells are the adjacent cells whose shortest paths are 1+1=2
and so on; hence any cell whose shortest path is equal to the shortest path of its parent +
1. This means that when we traverse the target cell for the first time, it gives us the final
result. This is the shortest path. Let's see the code:

private int countknightMoves(Node startCell,

 Node targetCell, int n) {

 // store the visited cells

 Set<Node> visited = new HashSet<>();

 // create a queue and enqueue the start cell

 Queue<Node> queue = new ArrayDeque<>();

 queue.add(startCell);

 while (!queue.isEmpty()) {

 Node cell = queue.poll();

 int r = cell.r;

 int c = cell.c;

 int distance = cell.distance;

 // if destination is reached, return the distance

 if (r == targetCell.r && c == targetCell.c) {

 return distance;

 }

 // the cell was not visited

 if (!visited.contains(cell)) {

 // mark current cell as visited

 visited.add(cell);

 // enqueue each valid movement into the queue

 for (int i = 0; i < 8; ++i) {

514 Trees and Graphs

 // get the new valid position of knight from current

 // position on chessboard and enqueue it in the queue

 // with +1 distance

 int rt = r + ROW[i];

 int ct = c + COL[i];

 if (valid(rt, ct, n)) {

 queue.add(new Node(rt, ct, distance + 1));

 }

 }

 }

 }

 // if path is not possible

 return Integer.MAX_VALUE;

}

// Check if (r, c) is valid

private static boolean valid(int r, int c, int n) {

 if (r < 0 || c < 0 || r >= n || c >= n) {

 return false;

 }

 return true;

}

The application is called ChessKnight.

Coding challenge 12 – Printing binary tree corners
Amazon, Google

Problem: Consider you've been given a binary tree. Write a snippet of code that prints the
corners of this tree at each level.

Solution: Let's consider the following tree:

Coding challenges 515

Figure 13.30 – Printing binary tree corners

So, the main idea is to print the leftmost and rightmost nodes at each level. This means
that a Level-Order traversal (BFS) can be useful since we can traverse each level. All
we have to do is identify the first and the last node on each level. To do this, we need to
adjust the classical Level-Order traversal by adding a condition that's meant to determine
whether the current node represents a corner. The code speaks for itself:

public void printCorners() {

 if (root == null) {

 return;

 }

 Queue<Node> queue = new ArrayDeque<>();

 queue.add(root);

 int level = 0;

 while (!queue.isEmpty()) {

 // get the size of the current level

 int size = queue.size();

 int position = size;

 System.out.print("Level: " + level + ": ");

 level++;

 // process all nodes present in current level

 while (position > 0) {

516 Trees and Graphs

 Node node = queue.poll();

 position--;

 // if corner node found, print it

 if (position == (size - 1) || position == 0) {

 System.out.print(node.element + " ");

 }

 // enqueue left and right child of current node

 if (node.left != null) {

 queue.add(node.left);

 }

 if (node.right != null) {

 queue.add(node.right);

 }

 }

 // level done

 System.out.println();

 }

}

The application is called BinaryTreePrintCorners.

Coding challenge 13 – Max path sum
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given a non-empty binary tree. Write a snippet of code
that computes the maximum path sum. A path is considered any sequence of nodes
starting from any node and ending in any node in the tree, along with the parent-child
connections. The path must contain at least one node and may or may not go through the
root of the tree.

Solution: The following diagram shows three examples of a max path sum:

Coding challenges 517

Figure 13.31 – Three examples of a max path sum

Finding a solution to this problem requires us to identify the number of ways in which the
current node can be a part of the maximum path. By inspecting the preceding examples,
we can isolate four cases, as shown in the following diagram (take your time and look at
more examples until you reach the same conclusion):

Figure 13.32 – Number of ways the current node can be a part of the maximum path

So, a node that is part of the max path is put into one of the following four cases:

1.	 The node is the only node in the max path

2.	 The node is part of the max path next to its left child

3.	 The node is part of the max path next to its right child

4.	 The node is part of the max path next to its left and right children

518 Trees and Graphs

These four steps lead us to a clear conclusion: we must iterate over all the nodes of
the tree. A good choice is the DFS algorithm, but, more precisely, the Post-Order tree
traversal, which imposes the traversal order as left sub-tree | right sub-tree | root.
While we traverse the tree, we pass the maximum of the rest of the tree to the parent.
The following diagram reveals this algorithm:

Figure 13.33 – Post-order traversal and passing the maximum in the tree to the parent

So, if we apply this algorithm step by step to the preceding diagram, we get the following
(remember that this is a Post-Order traversal):

•	 41 does not have children, so 41 is added to max(0, 0), 41+max(0, 0)=41.

•	 3 only has the left child, -5, so 3 is added to max(-5, 0), 3+max(-5, 0)=3.

•	 -2 is added to the max(41, 3) sub-trees, so -2+max(41, 3)=39.

•	 -7 does not have children, so -7 is added to max(0, 0), -7+max(0, 0)=-7.

•	 70 does not have children, so 70 is added to max(0, 0), 70+max(0, 0)=70.

•	 -1 is added to the max(-7, 70) sub-trees, so -1+70=69.

•	 50 is added to the maximum of the left (39) and the right (69) sub-trees, so
39+69+50=158 (this is the max path sum).

Coding challenges 519

The following code reveals the implementation of this algorithm:

public int maxPathSum() {

 maxPathSum(root);

 return max;

}

private int maxPathSum(Node root) {

 if (root == null) {

 return 0;

 }

 // maximum of the left child and 0

 int left = Math.max(0, maxPathSum(root.left));

 // maximum of the right child and 0

 int right = Math.max(0, maxPathSum(root.right));

 // maximum at the current node (all four cases 1,2,3 and 4)

 max = Math.max(max, left + right + root.element);

 //return the maximum from left, right along with current

 return Math.max(left, right) + root.element;

}

The application is called BinaryTreeMaxPathSum.

Coding challenge 14 – Diagonal traversal
Amazon, Adobe, Microsoft

Problem: Consider you've been given a non-empty binary tree. Write a snippet of
code that prints all the nodes for each negative diagonal (\). A negative diagonal has a
negative slope.

520 Trees and Graphs

Solution: If you are not familiar with the notion of a binary tree negative diagonal, then
ensure you clarify this aspect with the interviewer. They will probably provide you with an
example, similar to the one shown in the following diagram:

Figure 13.34 – Negative diagonals of a binary tree

In the preceding diagram, we have three diagonals. The first diagonal contains nodes
50, 12, and 70. The second diagonal contains nodes 45, 3, 14, and 65. Finally, the third
diagonal contains nodes 41 and 11.

Recursion-based solution
One solution to this problem is to use recursion and hashing (if you are not familiar
with the concept of hashing, then please read Chapter 6, Object-Oriented Programming,
the Hash table problem). In Java, we can use hashing via the built-in HashMap
implementation, so there is no need to write a hashing implementation from scratch.
But how is this HashMap useful? What should we store in an entry (key-value pair) of
this map?

We can associate each diagonal in the binary tree with a key in the map. Since each
diagonal (key) contains multiple nodes, it is very convenient to represent the value as a
List. While we traverse the binary tree, we need to add the current node to the proper
List, so under the proper diagonal. For example, here, we can perform a Pre-Order
traversal. Every time we go to the left sub-tree, we increase the diagonal by 1, and every
time we go to the right sub-tree, we maintain the current diagonal. This way, we obtain
something similar to the following:

Coding challenges 521

Figure 13.35 – Pre-Order traversal and increasing the diagonal by 1 for the left child

The time complexity of the following solution is O(n log n) with an auxiliary space of
O(n), where n is the number of nodes in the tree:

// print the diagonal elements of given binary tree

public void printDiagonalRecursive() {

 // map of diagonals

 Map<Integer, List<T>> map = new HashMap<>();

 // Pre-Order traversal of the tree and fill up the map

 printDiagonal(root, 0, map);

 // print the current diagonal

 for (int i = 0; i < map.size(); i++) {

 System.out.println(map.get(i));

 }

}

// recursive Pre-Order traversal of the tree

// and put the diagonal elements in the map

private void printDiagonal(Node node,

 int diagonal, Map<Integer, List<T>> map) {

522 Trees and Graphs

 if (node == null) {

 return;

 }

 // insert the current node in the diagonal

 if (!map.containsKey(diagonal)) {

 map.put(diagonal, new ArrayList<>());

 }

 map.get(diagonal).add(node.element);

 // increase the diagonal by 1 and go to the left sub-tree

 printDiagonal(node.left, diagonal + 1, map);

 // maintain the current diagonal and go

 // to the right sub-tree

 printDiagonal(node.right, diagonal, map);

}

Now, let's look at another solution for this problem.

Iterative-based solution
Solving this problem can be done iteratively as well. This time, we can employ Level-Order
traversal and enqueue the nodes of a diagonal using a Queue. The main pseudocode for
this solution can be written as follows:

(first diagonal)

Enqueue the root and all its right children

While the queue is not empty

	 Dequeue (let's denote it as A)

	 Print A

 (next diagonal)

	 If A has a left child then enqueue it

 (let's denote it as B)

		 Continue to enqueue all the right children of B

Coding challenges 523

When this pseudocode is put into code, we get the following:

public void printDiagonalIterative() {

 Queue<Node> queue = new ArrayDeque<>();

 // mark the end of a diagonal via dummy null value

 Node dummy = new Node(null);

 // enqueue all the nodes of the first diagonal

 while (root != null) {

 queue.add(root);

 root = root.right;

 }

 // enqueue the dummy node at the end of each diagonal

 queue.add(dummy);

 // loop while there are more nodes than the dummy

 while (queue.size() != 1) {

 Node front = queue.poll();

 if (front != dummy) {

 // print current node

 System.out.print(front.element + " ");

 // enqueue the nodes of the next diagonal

 Node node = front.left;

 while (node != null) {

 queue.add(node);

 node = node.right;

 }

 } else {

 // at the end of the current diagonal enqueue the dummy

 queue.add(dummy);

524 Trees and Graphs

 System.out.println();

 }

 }

}

The preceding code runs in O(n) time with an auxiliary space of O(n), where n is the
number of nodes in the tree. The complete application is called BinaryTreePrintDiagonal.

Coding challenge 15 – Handling duplicates in BSTs
Amazon, Microsoft, Flipkart

Problem: Consider you've been given a BST that allows duplicates. Write an
implementation that supports the insert and delete operations while handling duplicates.

Solution: We know that the property of a BST claims that for each node, n, we know that
the left descendants of n ≤ n < right descendants of n. Commonly, problems that involve
BSTs don't allow duplicates, so duplicates cannot be inserted. However, if duplicates are
allowed, then our convention will be to insert the duplicate into the left sub-tree.

However, the interviewer probably expects to see an implementation that allows us to
associate a count with each node, as shown in the following diagram:

Figure 13.36 – Handling duplicates in a BST

To provide this implementation, we need to modify the structure of a classical BST so that
it supports a counter:

private class Node {

 private T element;

 private int count;

 private Node left;

Coding challenges 525

 private Node right;

 private Node(Node left, Node right, T element) {

 this.element = element;

 this.left = left;

 this.right = right;

 this.count = 1;

 }

}

Every time we create a new node (a node that doesn't exist in the tree), the counter will be
equal to 1.

When we insert a node, we need to distinguish between a new node and a duplicate node.
If we insert a duplicate node, then all we need to do is increase the counter of that node by
one, without creating a new node. The relevant part of the insert operation is listed here:

private Node insert(Node current, T element) {

 if (current == null) {

 return new Node(null, null, element);

 }

 // START: Handle inserting duplicates

 if (element.compareTo(current.element) == 0) {

 current.count++;

 return current;

 }

 // END: Handle inserting duplicates

...

}

526 Trees and Graphs

Deleting a node follows similar logic. If we delete a duplicate node, then we just decrease
its counter by one. If the counter is already equal to 1, then we just delete the node. The
relevant code is as follows:

private Node delete(Node node, T element) {

 if (node == null) {

 return null;

 }

 if (element.compareTo(node.element) < 0) {

 node.left = delete(node.left, element);

 } else if (element.compareTo(node.element) > 0) {

 node.right = delete(node.right, element);

 }

 if (element.compareTo(node.element) == 0) {

 // START: Handle deleting duplicates

 if (node.count > 1) {

 node.count--;

 return node;

 }

 // END: Handle deleting duplicates

 ...

}

The complete application is called BinarySearchTreeDuplicates. Another solution to this
problem consists of using a hash table to keep count of the nodes. This way, you don't
modify the tree structure. Challenge yourself and complete this implementation.

Coding challenge 16 – Isomorphism of binary trees
Amazon, Google, Microsoft

Problem: Consider you've been given two binary trees. Write a snippet of code that
decides whether these two binary trees are isomorphic to each other.

Coding challenges 527

Solution: If you are not familiar with the term isomorphic, then you have to clarify this
with the interviewer. This term is very well-defined in mathematics, but the interviewer
probably won't give a mathematical explanation/demonstration, and, as you know,
mathematicians have their own language that hardly passes for fluent and easy-to-
understand English. Moreover, in mathematics, the notion of isomorphism refers to
any two structures, not only binary trees. So, the interviewer will probably give you an
explanation, as follows (let's denote the trees as T1 and T2):

Definition 1: T1 and T2 are isomorphic if T1 can be changed to T2 via swapping the
children several times. T1 and T2 don't have to be the same physical shape at all.

Definition 2: T1 and T2 are isomorphic if you can translate T1 into T2 and T2 into T1
without losing information.

Definition 3: Think of two strings, AAB and XXY. If A is transformed into X and B is
transformed into Y, then AAB becomes XXY, so these two strings are isomorphic. So, two
binary trees are isomorphic if T2 is a structure-wise mirror of T1.

No matter what definition you get from the interviewer, I am pretty sure that all of them
will attempt to give you an example. The following diagram shows a bunch of examples of
isomorphic binary trees:

Figure 13.37 – Isomorphic binary tree examples

528 Trees and Graphs

Based on the preceding definitions and examples, we can shape the following algorithm
for determining whether two binary trees are isomorphic:

1.	 If T1 and T2 are null, then they are isomorphic, so return true.

2.	 If T1 or T2 is null, then they are not isomorphic, so return false.

3.	 If T1.data is not equal to T2.data, then they are not isomorphic, so return false.

4.	 Traverse the left sub-tree of T1 and the left sub-tree of T2.

5.	 Traverse the right sub-tree of T1 and the right sub-tree of T2:

a. If the structures of T1 and T2 are identical, then return true.

b. If the structures of T1 and T2 are not identical, then we check whether one tree
(or sub-tree) is mirroring another tree (sub-tree),

6.	 Traverse the left sub-tree of T1 and the right sub-tree of T2.

7.	 Traverse the right sub-tree of T1 and the left sub-tree of T2:

a. If the structures are mirrored, then return true; otherwise, return false.
Putting this algorithm into code results in the following:

private boolean isIsomorphic(Node treeOne, Node treeTwo) {

 // step 1

 if (treeOne == null && treeTwo == null) {

 return true;

 }

 // step 2

 if ((treeOne == null || treeTwo == null)) {

 return false;

 }

 // step 3

 if (!treeOne.element.equals(treeTwo.element)) {

 return false;

 }

 // steps 4, 5, 6 and 7

 return (isIsomorphic(treeOne.left, treeTwo.right)

Coding challenges 529

 && isIsomorphic(treeOne.right, treeTwo.left)

 || isIsomorphic(treeOne.left, treeTwo.left)

 && isIsomorphic(treeOne.right, treeTwo.right));

}

.

The complete application is called TwoBinaryTreesAreIsomorphic.

Coding challenge 17 – Binary tree right view
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given a binary tree. Write a snippet of code that prints the
right view of this tree. Printing the right view means printing all the nodes that you can
see if you look at the binary tree from its right-hand side.

Solution: If you're unsure what the right view of a binary tree is, then clarify this with the
interviewer. For example, the following diagram highlights the nodes that represent the
right view of a binary tree:

Figure 13.38 – Right view of a binary tree

So, if you are placed in the right-hand side of this tree, you'll only see nodes 40, 45, 44, 9,
and 2. If we think about Level-Order traversal (BFS), we obtain the following output:

•	 40, 47, 45, 11, 3, 44, 7, 5, 9, 2

530 Trees and Graphs

The highlighted nodes are the ones that represent the right view. However, each of these
nodes represents the rightmost node at each level in the tree. This means that we can
adjust the BFS algorithm and print the last node of each level.

This is an O(n) complexity time algorithm with an auxiliary O(n) space (represented by
the queue), where n is the number of nodes in the tree:

private void printRightViewIterative(Node root) {

 if (root == null) {

 return;

 }

 // enqueue root node

 Queue<Node> queue = new ArrayDeque<>();

 queue.add(root);

 Node currentNode;

 while (!queue.isEmpty()) {

 // number of nodes in the current level is the queue size

 int size = queue.size();

 int i = 0;

 // traverse each node of the current level and enqueue its

 // non-empty left and right child

 while (i < size) {

 i++;

 currentNode = queue.poll();

 // if this is last node of current level just print it

 if (i == size) {

 System.out.print(currentNode.element + " ");

 }

 if (currentNode.left != null) {

Coding challenges 531

 queue.add(currentNode.left);

 }

 if (currentNode.right != null) {

 queue.add(currentNode.right);

 }

 }

 }

}

Here, we can implement a recursive solution as well.

This is an O(n) complexity time algorithm with an auxiliary O(n) space (represented by
a map), where n is the number of nodes in the tree. You can find the recursive approach
in the code bundled with this book in the BinaryTreeRightView application. Challenge
yourself and implement the binary tree's left view.

Coding challenge 18 – kth largest element
Google, Flipkart

Problem: Consider you've been given a BST. Write a snippet of code that prints the kth
largest element without changing the BST.

Solution: Let's consider the following BST:

Figure 13.39 – kth largest element in a BST

For k=1, we can see that 56 is the first largest element. For k=2, we can see that 55 is the
second largest element, and so on.

532 Trees and Graphs

The brute-force solution is quite simple and will run in O(n) time, where n is the number
of nodes in the tree. All we have to do is extract an array and place it in the In-Order
traversal (left sub-tree | right sub-tree | root) of the tree: 45, 47, 50, 52, 54, 55, 56. Once
we've done that, we can find the kth element as array[n-k]. For example, for k=3, the third
element is array[7-3] = array[4]=54. You can challenge yourself if you wish and provide
this implementation.

However, another approach that runs in O(k+h) complexity time, where h is the
height of the BST, can be written based on the Reverse-In-Order traversal
(right sub-tree | left sub-tree | root), which gives us the elements in descending
order: 56, 55, 54, 52, 50, 47, 45.

The code speaks for itself (the c variable counts the visited nodes):

public void kthLargest(int k) {

 kthLargest(root, k);

}

private int c;

private void kthLargest(Node root, int k) {

 if (root == null || c >= k) {

 return;

 }

 kthLargest(root.right, k);

 c++;

 // we found the kth largest value

 if (c == k) {

 System.out.println(root.element);

 }

 kthLargest(root.left, k);

}

The complete application is called BinarySearchTreeKthLargestElement.

Coding challenges 533

Coding challenge 19 – Mirror binary tree
Amazon, Google, Adobe, Microsoft

Problem: Consider you've been given a binary tree. Write a snippet of code that
constructs the mirror of this tree.

Solution: A mirrored tree looks as follows (the tree on the right is the mirrored version of
the left-hand side tree):

Figure 13.40 – Given tree and the mirrored tree

So, a mirrored tree is like a horizontal flip of the given tree. To create the mirror of a tree,
we have to decide whether we will return the mirror tree as a new tree or mirror the given
tree in place.

Mirroring the given tree in a new tree
Returning the mirror as a new tree can be done via a recursive algorithm that follows
these steps:

Figure 13.41 - Recursive Algorithm

534 Trees and Graphs

In terms of code, we have the following:

private Node mirrorTreeInTree(Node root) {

 if (root == null) {

 return null;

 }

 Node node = new Node(root.element);

 node.left = mirrorTreeInTree(root.right);

 node.right = mirrorTreeInTree(root.left);

 return node;

}

Now, let's try to mirror the given tree in place.

Mirroring the given tree in place
Mirroring the given tree in place can be done via recursion as well. This time, the
algorithm follows these steps:

1.	 Mirror the left sub-tree of the given tree.

2.	 Mirror the right sub-tree of the given tree.

3.	 Swap the left and right sub-trees (swap their pointers).

In terms of code, we have the following:

private void mirrorTreeInPlace(Node node) {

 if (node == null) {

 return;

 }

 Node auxNode;

 mirrorTreeInPlace(node.left);

 mirrorTreeInPlace(node.right);

Coding challenges 535

 auxNode = node.left;

 node.left = node.right;

 node.right = auxNode;

}

The complete application is called MirrorBinaryTree.

Coding challenge 20 – Spiral-level order traversal of a
binary tree
Amazon, Google, Microsoft

Problem: Consider you've been given a binary tree. Write a snippet of code that prints
the spiral-level traversal of this binary tree. More precisely, all the nodes present at level
1 should be printed from left to right, followed by all the nodes present at level 2 printed
from right to left, followed by all the nodes present at level 3 printed from left to right, and
so on. So, odd levels should be printed from left to right and even levels should be printed
from right to left.

Solution: The spiral-level traversal can be formulated in two ways, as follows:

•	 Odd levels should be printed from left to right and even levels from right to left.

•	 Odd levels should be printed from right to left and even levels from left to right.

The following diagram represents these statements:

Figure 13.42 – Spiral order traversal

536 Trees and Graphs

So, on the left-hand side, we obtain 50, 12, 45, 12, 3, 65, 70, 24, and 41. On the other hand,
on the right-hand side, we obtain 50, 45, 12, 70, 65, 3, 12, 41, and 24.

Recursive approach
Let's try to implement the spiral order traversal from the left-hand side of the preceding
diagram. Notice that the odd levels should be printed from left to right, while the even
levels should be printed in reverse order. Basically, we need to adjust the well-known
Level-Order traversal by flipping the direction of the even levels. This means that we can
use a boolean variable to alternate the printing order. So, if the boolean variable is true
(or 1), then we print the current level from left to right; otherwise, we print it from right
to left. At each iteration (level), we flip the boolean value.

Applying this via recursion can be done as follows:

public void spiralOrderTraversalRecursive() {

 if (root == null) {

 return;

 }

 int level = 1;

 boolean flip = false;

 // as long as printLevel() returns true there

 // are more levels to print

 while (printLevel(root, level++, flip = !flip)) {

 // there is nothing to do

 };

}

// print all nodes of a given level

private boolean printLevel(Node root,

 int level, boolean flip) {

 if (root == null) {

 return false;

 }

 if (level == 1) {

Coding challenges 537

 System.out.print(root.element + " ");

 return true;

 }

 if (flip) {

 // process left child before right child

 boolean left = printLevel(root.left, level - 1, flip);

 boolean right = printLevel(root.right, level - 1, flip);

 return left || right;

 } else {

 // process right child before left child

 boolean right = printLevel(root.right, level - 1, flip);

 boolean left = printLevel(root.left, level - 1, flip);

 return right || left;

 }

}

This code runs in O(n2) time, which is quite inefficient. Can we do this more efficiently?
Yes – we can do it in O(n) time with extra space, O(n), via an iterative approach.

Iterative approach
Let's try to implement the spiral order traversal from the right-hand side of the given
diagram. We'll do this via an iterative approach this time. Mainly, we can use two stacks
(Stack) or a double ended queue (Deque). Let's learn how we can do this via two stacks.

The main idea of using two stacks is quite straightforward: we use one stack to print the
left-to-right nodes and the other stack to print the right-to-left nodes. At each iteration
(or level), we have the corresponding nodes in one of the stacks. While we print the nodes
from a stack, we push the nodes of the next level into the other stack.

The following code puts these statements into code form:

private void printSpiralTwoStacks(Node node) {

 if (node == null) {

 return;

 }

538 Trees and Graphs

 // create two stacks to store alternate levels

 Stack<Node> rl = new Stack<>(); // right to left

 Stack<Node> lr = new Stack<>(); // left to right

 // Push first level to first stack 'rl'

 rl.push(node);

 // print while any of the stacks has nodes

 while (!rl.empty() || !lr.empty()) {

 // print nodes of the current level from 'rl'

 // and push nodes of next level to 'lr'

 while (!rl.empty()) {

 Node temp = rl.peek();

 rl.pop();

 System.out.print(temp.element + " ");

 if (temp.right != null) {

 lr.push(temp.right);

 }

 if (temp.left != null) {

 lr.push(temp.left);

 }

 }

 // print nodes of the current level from 'lr'

 // and push nodes of next level to 'rl'

 while (!lr.empty()) {

 Node temp = lr.peek();

 lr.pop();

 System.out.print(temp.element + " ");

Coding challenges 539

 if (temp.left != null) {

 rl.push(temp.left);

 }

 if (temp.right != null) {

 rl.push(temp.right);

 }

 }

 }

}

The complete application is called BinaryTreeSpiralTraversal. In this application, you can
also find the implementation based on a Deque.

Coding challenge 21 – Nodes at a distance k from leafs
Amazon, Google, Microsoft, Flipkart

Problem: Consider you've been given a binary tree of integers and an integer, k. Write a
snippet of code that prints all the nodes that are at a distance k from a leaf node.

Solution: We can intuit that a distance of k from a leaf means k levels above the leaf. But
to clarify any doubts, let's follow the classical approach and try to visualize an example.
The following diagram represents a binary tree; the highlighted nodes (40, 47, and 11)
represent the nodes that are at a distance of k=2 from a leaf node:

Figure 13.43 – Nodes at a distance of k=2 from a leaf node

540 Trees and Graphs

From the preceding diagram, we can make the following observations:

•	 Node 40 is at a distance of 2 from leaf 44.

•	 Node 47 is at a distance of 2 from leaf 9 and leaf 5.

•	 Node 11 is at a distance of 2 from leaf 2.

If we look at each level, then we can see the following:

•	 The nodes at distance 1 from a leaf node are 3, 11, 7, and 45.

•	 The nodes at distance 2 from a leaf node are 11, 47, and 40.

•	 The nodes at distance 3 from a leaf node are 40 and 47.

•	 The node at distance 4 from a leaf node is 40 .

So, the root node is the greatest distance away from a leaf, and k doesn't make sense to
be greater than the number of levels; that is, 1. If we start from the root and we go down
the tree until we find a leaf, then the resulting path should contain a node that it is at a
distance of k from that leaf.

For example, a possible path is 40 (the root), 47, 11, 7, and 2 (the leaf). If k=2, then node
11 is at a distance of 2 from the leaf. Another possible path is 40 (the root), 47, 11, and 5
(the leaf). If k=2, then node 47 is at a distance of 2 from the leaf. Yet another path is 40
(the root), 47, 3, and 9 (the leaf). If k=2, then node 47 is at a distance of 2 from the leaf.
We already found this node; therefore, we now have to pay attention and remove the
duplicates.

The paths that have been listed so far indicate that there's a Pre-Order traversal of the
tree (root | left sub-tree | right sub-tree). During the traversal, we must keep track of
the current path. In other words, the constructed path is made up of the ancestors of the
current node in the Pre-Order traversal. When we find a leaf node, we have to print the
ancestor that is at a distance k from this leaf.

To eliminate duplicates, we can use a Set (let's denote it as nodesAtDist), as shown in
the following code:

private void leafDistance(Node node,

 List<Node> pathToLeaf, Set<Node> nodesAtDist, int dist) {

 if (node == null) {

 return;

 }

Coding challenges 541

 // for each leaf node, store the node at distance 'dist'

 if (isLeaf(node) && pathToLeaf.size() >= dist) {

 nodesAtDist.add(pathToLeaf.get(pathToLeaf.size() - dist));

 return;

 }

 // add the current node into the current path

 pathToLeaf.add(node);

 // go to left and right subtree via recursion

 leafDistance(node.left, pathToLeaf, nodesAtDist, dist);

 leafDistance(node.right, pathToLeaf, nodesAtDist, dist);

 // remove the current node from the current path

 pathToLeaf.remove(node);

}

private boolean isLeaf(Node node) {

 return (node.left == null && node.right == null);

}

The preceding code runs in O(n) time complexity and auxiliary space O(n),
where n is the number of nodes in the tree. The complete application is called
BinaryTreeDistanceFromLeaf.

Coding challenge 22 – Pair for a given sum
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given a BST and a sum. Write a snippet of code that
returns true if there is a pair of nodes that have this sum.

542 Trees and Graphs

Solution: Let's consider the BST shown in the following diagram and sum=74:

Figure 13.44 – The pair for sum=74 contains nodes 6 and 68

So, for sum=74, we can find the pair (6, 68). If sum=89, then the pair is (43, 46). If
sum=99, then the pair is (50, 49). The nodes that form the pair can be from the same
sub-tree or different sub-trees and can include the root and leaf nodes as well.

One solution to this problem relies on hashing and recursion. Mainly, we traverse the tree
using In-Order traversal (left sub-tree | root | right sub-tree) and we insert each node's
element into a set (for example, into a HashSet). Moreover, before inserting the current
node into the set, we check whether (the given sum - the current node's element) is present
in the set. If it is, then we have found a pair, so we stop the process and return true.
Otherwise, we insert the current node into the set and continue this process until we find
a pair, or the traversal is done.

The code for this is listed here:

public boolean findPairSum(int sum) {

 return findPairSum(root, sum, new HashSet());

}

private static boolean findPairSum(Node node,

 int sum, Set<Integer> set) {

 // base case

 if (node == null) {

 return false;

Coding challenges 543

 }

 // find the pair in the left subtree

 if (findPairSum(node.left, sum, set)) {

 return true;

 }

 // if pair is formed with current node then print the pair

 if (set.contains(sum - node.element)) {

 System.out.print("Pair (" + (sum - node.element) + ", "

 + node.element + ") = " + sum);

 return true;

 } else {

 set.add(node.element);

 }

 // find the pair in the right subtree

 return findPairSum(node.right, sum, set);

}

The runtime of this code is O(n) with an auxiliary space of O(n). The complete application
is called BinarySearchTreeSum.

Another solution that you may like to consider and challenge yourself with starts from
the fact that a BST, when traversed using In-Order traversal, outputs the nodes in sorted
order. This means that if we scan the BST and store the outputs in an array, then the
problem is exactly the same as finding the pair for the given sum in an array. But this
solution requires two traversals of all the nodes and an auxiliary space of O(n).

Another approach starts from the BST property: left descendants of n ≤ n < right
descendants of n. In other words, the minimum node in the tree is the leftmost node (in
our case, 6) and the maximum node in the tree is the rightmost node (in our case, 71).
Now, consider two traversals of the tree:

•	 A Forward In-Order traversal (the leftmost node is the first visited node)

•	 A Reverse In-Order traversal (the rightmost node is the first visited node)

544 Trees and Graphs

Now, let's evaluate the (minimum + maximum) expression:

•	 If (minimum + maximum) < sum, then go to the next minimum (next node returned
by the Forward In-Order traversal).

•	 If (minimum + maximum) > sum, then go to the next maximum (next node
returned by the Reverse In-Order traversal).

•	 If (minimum + maximum) = sum, then return true.

The main problem here is that we need to manage these two traversals. An approach can
rely on two stacks. In one stack, we store the outputs of the Forward In-Order traversal,
while in another stack, we store the outputs of the Reverse In-Order traversal. When we
reach the minimum (leftmost) and the maximum (rightmost) nodes, we must pop the tops
of the stacks and perform an equality check against the given sum.

This equality check passes through one of the preceding checks (given by the preceding
three bullets) and is interpreted as follows:

•	 If (minimum + maximum) < sum, then we go to the right sub-tree of the popped
node via the Forward In-Order traversal. This is how we can find the next greatest
element.

•	 If (minimum + maximum) > sum, then we go to the left sub-tree of the popped
node via the Reverse In-Order traversal. This is how we can find the next smallest
element.

•	 If (minimum + maximum) = sum, then we have found a pair that validates the
given sum.

The algorithm is applied as long as the Forward In-Order and Reverse In-Order traversals
do not meet. Let's see the code for this:

public boolean findPairSumTwoStacks(int sum) {

 return findPairSumTwoStacks(root, sum);

}

private static boolean findPairSumTwoStacks(

 Node node, int sum) {

 Stack<Node> fio = new Stack<>(); // fio - Forward In-Order

 Stack<Node> rio = new Stack<>(); // rio - Reverse In-Order

Coding challenges 545

 Node minNode = node;

 Node maxNode = node;

 while (!fio.isEmpty() || !rio.isEmpty()

 || minNode != null || maxNode != null) {

 if (minNode != null || maxNode != null) {

 if (minNode != null) {

 fio.push(minNode);

 minNode = minNode.left;

 }

 if (maxNode != null) {

 rio.push(maxNode);

 maxNode = maxNode.right;

 }

 } else {

 int elem1 = fio.peek().element;

 int elem2 = rio.peek().element;

 if (fio.peek() == rio.peek()) {

 break;

 }

 if ((elem1 + elem2) == sum) {

 System.out.print("\nPair (" + elem1 + ", "

 + elem2 + ") = " + sum);

 return true;

 }

 if ((elem1 + elem2) < sum) {

 minNode = fio.pop();

 minNode = minNode.right;

 } else {

 maxNode = rio.pop();

 maxNode = maxNode.left;

 }

546 Trees and Graphs

 }

 }

 return false;

}

The runtime of this code is O(n) with an auxiliary space of O(n). The complete application
is called BinarySearchTreeSum.

Coding challenge 23 – Vertical sums in a binary tree
Amazon, Google, Flipkart

Problem: Consider you've been given a binary tree. Write a snippet of code that computes
the vertical sums for this binary tree.

Solution: In order to have a clear picture of this problem, it is very important that you
sketch a meaningful diagram. It will be quite useful to use a notebook with squares (a
math notebook). This is useful because you must draw the edges between the nodes at 45
degrees; otherwise, it is possible that you won't see the vertical axes of the nodes correctly.
Commonly, when we draw a binary tree, we don't care about the angle between the nodes,
but in this case, this is a vital aspect for understanding the problem and finding a solution
to it.

The following diagram is a sketch of the binary tree. It shows some helpful landmarks that
will lead us to the solution:

Figure 13.45 – Vertical sums in a binary tree

Coding challenges 547

If we scan the tree from the left-hand side to the right-hand side, we can identify seven
vertical axes whose sums are 5, 7, 16, 35, 54, 44, and 6. At the top of the diagram, we've
added the horizontal distance of each node from the root node. If we consider the root
node as having the distance 0, then we can easily uniquely identify each vertical axis
from the left or the right of the root by decreasing, respectively increasing 1
as, -3, -2, -1, 0 (the root), 1, 2, 3.

Each axis is uniquely identified by its distance from the root, and each axis holds the
nodes that we have to sum up. If we think about the unique distance of an axis as a key
and the sum of the nodes on this axis as a value, then we can intuit that this problem can
be solved via hashing (if you are not familiar with the concept of hashing, then please take
a look at Chapter 6, Object-Oriented Programming, the Hash table problem). In Java, we
can use hashing via the built-in HashMap implementation, so there is no need to write a
hashing implementation from scratch.

But how can we fill up this map? It is quite obvious that we have to traverse the tree while
we are filling up the map. We can start from the root and add the key to the map as 0 (0
corresponds to the axis that contains the root) and the value as the root (21). Next, we
can use recursion to go to the left-axis of the root by decreasing the distance from the
root by 1. We can also use recursion to go through the right-axis of the root by increasing
the distance from the root by 1. At every node, we update the value in the map that
corresponds to the key that identifies the current axis. So, if we recursively follow path
root|left sub-tree|right sub-tree, then we use the Pre-Order traversal of a binary tree.

In the end, our map should contain the following key-value pairs: (-3, 5), (-2, 7), (-1, 16),
(0, 35), (1, 54), (2, 44), and (3, 6).

Putting this algorithm into code results in the following (map contains the vertical sums):

private void verticalSum(Node root,

 Map<Integer, Integer> map, int dist) {

 if (root == null) {

 return;

 }

 if (!map.containsKey(dist)) {

 map.put(dist, 0);

 }

 map.put(dist, map.get(dist) + root.element);

548 Trees and Graphs

 // or in functional-style

 /*

 BiFunction <Integer, Integer, Integer> distFunction

 = (distOld, distNew) -> distOld + distNew;

 map.merge(dist, root.element, distFunction);

 */

 // decrease horizontal distance by 1 and go to left

 verticalSum(root.left, map, dist - 1);

 // increase horizontal distance by 1 and go to right

 verticalSum(root.right, map, dist + 1);

}

The preceding code runs in O(n log n) time with an auxiliary space of O(n), where n is
the total number of nodes of the tree. Adding to a map has an O(log n) complexity time
and since we make an addition for each node of the tree, this means we get O(n log n).
For an interview, the solution presented here should be enough. However, you can
challenge yourself and decrease the complexity of time to O(n) by using an additional
doubly linked list. Mainly, you need to store each vertical sum in a node of a linked list.
First, add the vertical sum corresponding to the axis that contains the root to the linked
list. Then, node.next and node.prev of the linked list should store the vertical sums of the
axis from the left and the right of the root axis. Finally, rely on recursion to update the
linked list while traversing the tree.

The complete application is called BinaryTreeVerticalSum.

Coding challenge 23 – Converting a max heap into a
min heap
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given an array representing a Min Binary Heap. Write a
snippet of code that converts the given Min Binary Heap into a Max Binary Heap in linear
time and without extra space.

Solution: The solution to this problem is inspired by the Heap Sort algorithm (this
algorithm is presented in Chapter 14, Sorting and Searching).

Coding challenges 549

Initially, this problem may sound complicated, but after a few minutes of reflection, you
may come to the conclusion that the problem can be reduced to building a Max Binary
Heap from an unsorted array. So, the fact that the given array is, or isn't, a Min Binary
Heap is not important. We can build the required Max Binary Heap from any array
(sorted or unsorted) by following two steps:

1.	 Start from the rightmost, bottommost node (last internal node) of the given array.

2.	 Heapify all the nodes via the bottom-up technique.

The code speaks for itself:

public static void convertToMinHeap(int[] maxHeap) {

 // build heap from last node to all

 // the way up to the root node

 int p = (maxHeap.length - 2) / 2;

 while (p >= 0) {

 heapifyMin(maxHeap, p--, maxHeap.length);

 }

}

// heapify the node at index p and its two direct children

private static void heapifyMin(int[] maxHeap,

 int p, int size) {

 // get left and right child of node at index p

 int left = leftChild(p);

 int right = rightChild(p);

 int smallest = p;

 // compare maxHeap[p] with its left and

 // right child and find the smallest value

 if ((left < size) && (maxHeap[left] < maxHeap[p])) {

 smallest = left;

 }

 if ((right < size)

550 Trees and Graphs

 && (maxHeap[right] < maxHeap[smallest])) {

 smallest = right;

 }

 // swap 'smallest' with 'p' and heapify

 if (smallest != p) {

 swap(maxHeap, p, smallest);

 heapifyMin(maxHeap, smallest, size);

 }

}

/* Helper methods */

private static int leftChild(int parentIndex) {

 return (2 * parentIndex + 1);

}

private static int rightChild(int parentIndex) {

 return (2 * parentIndex + 2);

}

// utility function to swap two indices in the array

private static void swap(int heap[], int i, int j) {

 int aux = heap[i];

 heap[i] = heap[j];

 heap[j] = aux;

}

The runtime of this code is O(n) with no extra space needed. The complete application is
called MaxHeapToMinHeap. It also contains the conversion of a Min Binary Heap into a
Max Binary Heap.

Coding challenges 551

Coding challenge 24 – Finding out whether a binary
tree is symmetric
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given a binary tree. Write a snippet of code that returns
true if this binary tree is symmetric (a mirror image of itself or not; the left sub-tree and
right sub-tree are mirror images of each other).

Solution: First, let's take a look at a diagram containing symmetric and asymmetric
binary trees. The binary trees labeled (a), (b), and (d) are asymmetric, while the binary
trees labeled (c), (e), and (f) are symmetric. Notice that a binary tree is symmetric if both
the structure and the data are symmetric:

Figure 13.46 – Symmetric and asymmetric binary tree examples

552 Trees and Graphs

We can think of this problem as mirroring root.left and checking whether it is identical
to root.right. If they are identical, then the binary tree is symmetric. However, we can
also express the symmetry of two binary trees via three conditions, as follows (the easiest
way to understand these conditions is to take each of them and pass them to the samples
shown in the preceding diagram):

1.	 The root node's elements are the same.

2.	 The left sub-tree of the left tree and the right sub-tree of the right tree must be
mirror images.

3.	 The right sub-tree of the left tree and the left sub-tree of the right tree must be
mirror images.

I think that we have enough experience to recognize that these conditions can be
implemented via recursion, as follows:

private boolean isSymmetricRecursive(

 Node leftNode, Node rightNode) {

 boolean result = false;

 // empty trees are symmetric

 if (leftNode == null && rightNode == null) {

 result = true;

 }

 // conditions 1, 2, and 3 from above

 if (leftNode != null && rightNode != null) {

 result = (leftNode.element.equals(rightNode.element))

 && isSymmetricRecursive(leftNode.left, rightNode.right)

 && isSymmetricRecursive(leftNode.right, rightNode.left);

 }

 return result;

}

Coding challenges 553

The time complexity of this code is O(n) with O(h) extra space, where h is the height
of the tree. How about an iterative implementation? We can provide an iterative
implementation via a queue. The following code is the best explanation for this approach:

public boolean isSymmetricIterative() {

 boolean result = false;

 Queue<Node> queue = new LinkedList<>();

 queue.offer(root.left);

 queue.offer(root.right);

 while (!queue.isEmpty()) {

 Node left = queue.poll();

 Node right = queue.poll();

 if (left == null && right == null) {

 result = true;

 } else if (left == null || right == null

 || left.element != right.element) {

 result = false;

 break;

 } else {

 queue.offer(left.left);

 queue.offer(right.right);

 queue.offer(left.right);

 queue.offer(right.left);

 }

 }

 return result;

}

554 Trees and Graphs

The time complexity of this code is O(n) with O(h) extra space, where h is the height of
the tree. The complete application is called IsSymmetricBinaryTree.

Coding challenge 25 – Connecting n ropes at the
minimum cost
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given an array containing the lengths of n ropes, and we
need to connect all these ropes to a single rope. Consider that connecting two ropes has a
cost equal to the sum of their lengths. Write a snippet of code that connects all the ropes
to a single rope at the minimum cost.

Solution: Let's consider that we have four ropes whose lengths are 1, 3, 4, and 6. Let's
connect the shortest two ropes first. This means we need to connect ropes 1 and 3, which
has a cost of 1+3=4. Continuing with the same logic, the next two ropes are 4 (the one we
just obtained) and 4 in length. The cost is 4+4=8, so the total cost is 4+8=12. We have two
ropes left that are 8 and 6 in length. The cost of connecting them is 8+6=14. Hence, the
total and final cost is 12+14=26.

Now, let's try another strategy. Let's connect the longest two ropes first. This means we
need to connect ropes 4 and 6, which has a cost of 4+6=10. Continuing with the same
logic, the next two ropes are 10 (the one we just obtained) and 3 in length. The cost is
10+3=13, so the total cost is 10+13=23. We have two ropes left that are 13 and 1 in length.
The cost of connecting them is 13+1=14. Therefore, the total and final cost is 23+14=37.

Since 37>26, it is obvious that the first approach is better than the second one. But what's
the catch? Well, in case you haven't noticed yet, the lengths of the ropes that are connected
first occur in the rest of the connections. For example, when we connect ropes 1 and 3, we
write 1+3=4. So, 4 is the total cost so far. Next, we add 4+4=8, so the new total cost is the
previous total cost + 8, which is 4+8, but 4 was obtained from 1+3, so 1+3 occurs again.
Finally, we connect 8+6=14. The new total cost is the previous cost + 14, which is 12 + 14,
but 12 was obtained from 4+8, and 4 was obtained from 1+3, so 1+3 occurs again.

Analyzing the preceding statement leads us to the conclusion that we can obtain the
minimum cost of connecting all the ropes if the repeated added rope is the smallest,
then the second smallest, and so on. In other words, we can think of the algorithm for
this as follows:

1.	 Sort the ropes by their lengths in descending order.

2.	 Connect the first two ropes and update the partial minimum cost.

3.	 Replace the first two ropes with the resulting one.

Coding challenges 555

4.	 Repeat from step 1 until there is a single rope left (the result of connecting all
the ropes).

After implementing this algorithm, we should obtain the final minimum cost. If we try to
implement this algorithm via a sorting algorithm such as Quick Sort or Merge Sort, then
the result will perform in O(n2 log n) time. As you know from Chapter 7, Big O Analysis of
Algorithms, these sorting algorithms perform in O(n log n) time, but we have to sort the
array each time two ropes are connected.

Can we do this better? Yes, we can! At any moment, we only need the two ropes with
the smallest lengths; we don't care about the rest of the array. In other words, we need a
data structure that gives us efficient access to the minimum element. Hence, the answer
is a Min Binary Heap. Adding and removing from a Min Binary Heap is an O(log n)
complexity time operation. The algorithm for this can be expressed as follows:

1.	 Create the Min Binary Heap from the array of rope lengths (O(log n)).

2.	 Poll the root of the Min Binary Heap, which will give us the smallest rope
(O(log n)).

3.	 Poll the root again, which will give us the second smallest rope (O(log n)).

4.	 Connect two ropes (sum up their lengths) and put the result back into the Min
Binary Heap.

5.	 Repeat from step 2 until there is a single rope left (the result of connecting all
the ropes).

So, the algorithm that performs in O(n log n) complexity time is as follows:

public int minimumCost(int[] ropeLength) {

 if (ropeLength == null) {

 return -1;

 }

 // add the lengths of the ropes to the heap

 for (int i = 0; i < ropeLength.length; i++) {

 add(ropeLength[i]);

 }

 int totalLength = 0;

556 Trees and Graphs

 while (size() > 1) {

 int l1 = poll();

 int l2 = poll();

 totalLength += (l1 + l2);

 add(l1 + l2);

 }

 return totalLength;

}

The complete application is called HeapConnectRopes.

Advanced topics
Right from the start, you should know that the following topics are rarely encountered in
technical interviews. First, let me enumerate these topics as a non-exhaustive list:

•	 AVL trees (a brief description and an implementation are available in the code
bundled with this book)

•	 Red-Black trees (a brief description and an implementation are available in the code
bundled with this book)

•	 Dijkstra's algorithm

•	 Rabin-Karp substring search

•	 The Bellman-Ford algorithm

•	 The Floyd-Warshall algorithm

•	 Interval trees

•	 Minimum spanning trees

•	 B-trees

•	 Bipartite graph

•	 Graph coloring

•	 P, NP, and NP-complete

Summary 557

•	 Combinatory and probability

•	 Regular expressions

•	 A*

If you have mastered all the problems covered in this book, then I strongly recommend
that you continue learning by looking into the aforementioned topics. If you don't do this,
then please consider all the problems as having a higher priority than these topics.

Most of the topics outlined here may or may not be asked in interviews. They represent
complex algorithms that you either know or you don't – the interviewer cannot get a true
insight into your logic and thinking capabilities just because you are able to reproduce a
famous algorithm. The interviewer wants to see that you are capable of exploiting your
knowledge. These algorithms don't reveal your capability to solve a problem that you
haven't seen before. It is obvious that you cannot intuit such complex algorithms, so your
footprint is almost insignificant. Don't worry if you don't know these algorithms! They
don't make you look smarter or stupider! Furthermore, since they are complex, they
require a lot of time to implement, and, in an interview, time is limited.

However, it doesn't hurt to study more! That's a rule, so if you have the time, then take a
look at these advanced topics as well.

Summary
This was one of the tough chapters of this book and a must-read for any technical
interview. Trees and graphs are such wide, wonderful, and challenging topics that entire
books have been dedicated to them. However, when you have to prepare for an interview,
you don't have the time to study tons of books and deep dive into every topic. This is
exactly where the magic of this chapter comes into the picture: this chapter (just like
the entire book) is totally focused on the fact that you must achieve your goal: ace a
technical interview.

In other words, this chapter contained the most popular tree and graph problems that may
be encountered in technical interviews, along with meaningful figures, comprehensive
explanations, and clear and clean code.

In the next chapter, we'll tackle problems related to sorting and searching.

14
Sorting and

Searching
This chapter covers the most popular sorting and searching algorithms that are
encountered in technical interviews. We will cover sorting algorithms such as Merge Sort,
Quick Sort, Radix Sort, Heap Sort, and Bucket Sort, and searching algorithms such as
Binary Search.

By the end of this chapter, you should be able to tackle a wide range of problems that
involve sorting and searching algorithms. We'll cover the following topics:

•	 Sorting algorithms

•	 Searching algorithms

•	 Coding challenges

Let's get started!

Technical requirements
You can find all the code files for this chapter on GitHub at https://github.com/
PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/
tree/master/Chapter14.

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter14
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter14
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter14

560 Sorting and Searching

Sorting algorithms
Considering the sorting algorithms from the perspective of a person preparing for an
interview reveals two main categories: a category containing a lot of relatively simple
sorting algorithms that don't occur in interviews, such as Bubble Sort, Insertion Sort,
Counting Sort, and so on, and a category containing Heap Sort, Merge Sort, Quick Sort,
Bucket Sort, and Radix Sort. These represent the top five sorting algorithms that occur in
technical interviews.

If you are not familiar with the simple sorting algorithms, then I strongly recommend
that you buy my book, Java Coding Problems (www.packtpub.com/programming/
java-coding-problems), published by Packt. In Chapter 5, Arrays, Collections, and
Data Structures, of Java Coding Problems, you can find detailed coverage of Bubble Sort,
Insertion Sort, Counting Sort, and so on.

Furthermore, the application called SortArraysIn14Ways contains the implementations of
14 different sorting algorithms that you should know. The complete list is as follows:

•	 Bubble Sort

•	 Bubble Sort with a Comparator

•	 Bubble Sort optimized

•	 Bubble Sort optimized with a Comparator

•	 Pancake Sort

•	 Exchange Sort

•	 Selection Sort

•	 Shell Sort

•	 Insertion Sort

•	 Insertion Sort with a Comparator

•	 Counting Sort

•	 Merge Sort

•	 Heap Sort

•	 Heap Sort with a Comparator

•	 Bucket Sort

•	 Cocktail Sort

https://www.packtpub.com/programming/java-coding-problems
https://www.packtpub.com/programming/java-coding-problems

Sorting algorithms 561

•	 Cycle Sort

•	 Quick Sort

•	 Quick Sort with a Comparator

•	 Radix Sort

In the following sections, we will have a brief overview of the main algorithms that are
encountered in interviews: Heap Sort, Merge Sort, Quick Sort, Bucket Sort, and Radix
Sort. If you are already familiar with these algorithms, then consider jumping directly to
the Searching algorithms section, or even to the Coding challenges section.

Heap Sort
If you are not familiar with the heap concept, then consider reading the Binary Heaps
section of Chapter 13, Trees and Graphs.

Heap Sort is an algorithm that relies on a binary heap (a complete binary tree). The time
complexity cases are as follows: best case O(n log n), average case O(n log n), worst case
O(n log n). The space complexity case is O(1).

Sorting elements in ascending order can be accomplished via a Max Heap (the parent
node is always greater than or equal to the child nodes), and in descending order via a
Min Heap (the parent node is always smaller than or equal to the child nodes).

The Heap Sort algorithm has several main steps, as follows:

1.	 Transform the given array into a Max Binary Heap.

2.	 Next, the root is swapped with the last element from the heap and the heap's size
is reduced by 1 (this is like deleting the root element of the heap). So, the greater
element (the heap root) goes to the last position. In other words, the elements that
are at the root of the heap come out one by one in sorted order.

3.	 The final step consists of heapifying the remaining heap (apply the recursive process
that reconstructs the max heap in a top-down manner).

4.	 Repeat from step 2 while the heap size is greater than 1.

562 Sorting and Searching

The following diagram represents a test case of applying the Heap Sort algorithm:

Figure 14.1 – Heap Sort

For example, let's assume the array from the preceding diagram; that is, 4, 5, 2, 7, 1:

1.	 So, at the first step, we build the Max Heap: 7, 5, 2, 4, 1 (we swapped 5 with 7, 4 with
7, and 4 with 5).

2.	 Next, swap the root (7) with the last element (1) and delete 7. Result: 1, 5, 2, 4, 7.

3.	 Furthermore, we construct the Max Heap again: 5, 4, 2, 1 (we swapped 1 with 5 and
1 with 4).

4.	 We swap the root (5) with the last element (1) and delete 5. Result: 1, 4, 2, 5, 7.

5.	 Next, we construct the Max Heap again: 4, 1, 2 (we swapped 1 with 4).

6.	 We swap the root (4) with the last element (2) and delete 4. Result: 2, 1, 4, 5, 7.

7.	 This is a Max Heap already, so we simply swap the root (2) with the last element (1)
and remove 2: 1, 2, 4, 5, 7.

8.	 Done! There is a single element left in the heap (1). So, the final result is 1, 2, 4,
5, 7.

In terms of code, the preceding example can be generalized as follows:

public static void sort(int[] arr) {

 int n = arr.length;

 buildHeap(arr, n);

 while (n > 1) {

 swap(arr, 0, n - 1);

 n--;

 heapify(arr, n, 0);

Sorting algorithms 563

 }

}

private static void buildHeap(int[] arr, int n) {

 for (int i = arr.length / 2; i >= 0; i--) {

 heapify(arr, n, i);

 }

}

private static void heapify(int[] arr, int n, int i) {

 int left = i * 2 + 1;

 int right = i * 2 + 2;

 int greater;

 if (left < n && arr[left] > arr[i]) {

 greater = left;

 } else {

 greater = i;

 }

 if (right < n && arr[right] > arr[greater]) {

 greater = right;

 }

 if (greater != i) {

 swap(arr, i, greater);

 heapify(arr, n, greater);

 }

}

private static void swap(int[] arr, int x, int y) {

 int temp = arr[x];

 arr[x] = arr[y];

 arr[y] = temp;

}

564 Sorting and Searching

Heap Sort is not a stable algorithm. A stable algorithm guarantees the order of duplicate
elements. The complete application is called HeapSort. This application contains an
implementation based on Comparator as well – this is useful for sorting objects.

Merge Sort
Now, let's discuss the Merge Sort algorithm. The time complexity cases are as follows: best
case O(n log n), average case O(n log n), worst case O(n log n). The space complexity may
vary, depending on the chosen data structures (it can be O(n)).

The Merge Sort algorithm is a recursive algorithm based on the famous divide and
conquer strategy. Considering that you've been given an unsorted array, applying the
Merge Sort algorithm requires you to continually split the array in half until we obtain
empty sub-arrays or sub-arrays that contains a single element (this is divide and conquer).
If a sub-array is empty or contains one element, it is sorted by its definition – this is the
recursion base case.

If we haven't reached the base case yet, we divide both these sub-arrays again and
attempt to sort them. So, if the array contains more than one element, we split it and we
recursively invoke the sort operation on both sub-arrays. The following diagram shows the
splitting process for the 52, 28, 91, 19, 76, 33, 43, 57, 20 array:

Figure 14.2 – Splitting the given array in the Merge Sort algorithm

Once the splitting is done, we call the fundamental operation of this algorithm: the merge
operation (also known as the combine operation). Merging is the operation of taking two
smaller sorted sub-arrays and combining them into a single, sorted, new sub-array. This
is done until the entire given array is sorted. The following diagram shows the merging
operation for our array:

Sorting algorithms 565

Figure 14.3 – Merging operation for Merge Sort

The following code implements the Merge Sort algorithm. The flow begins from the
sort() method. Here, we begin by asking the base case question. If the size of the array
is greater than 1, then we call the leftHalf() and rightHalf() methods, which will
split the given array into two sub-arrays. The rest of the code from sort() is responsible
for calling the merge() method, which sorts two unsorted sub-arrays:

public static void sort(int[] arr) {

 if (arr.length > 1) {

 int[] left = leftHalf(arr);

 int[] right = rightHalf(arr);

 sort(left);

 sort(right);

 merge(arr, left, right);

 }

}

private static int[] leftHalf(int[]arr) {

 int size = arr.length / 2;

 int[] left = new int[size];

566 Sorting and Searching

 System.arraycopy(arr, 0, left, 0, size);

 return left;

}

private static int[] rightHalf(int[] arr) {

 int size1 = arr.length / 2;

 int size2 = arr.length - size1;

 int[] right = new int[size2];

 for (int i = 0; i < size2; i++) {

 right[i] = arr[i + size1];

 }

 return right;

}

Next, the merge operation places the elements back into the original array one at a time by
repeatedly taking the smallest element from the sorted sub-arrays:

private static void merge(int[] result,

 int[] left, int[] right) {

 int t1 = 0;

 int t2 = 0;

 for (int i = 0; i < result.length; i++) {

 if (t2 >= right.length

 || (t1 < left.length && left[t1] <= right[t2])) {

 result[i] = left[t1];

 t1++;

 } else {

 result[i] = right[t2];

 t2++;

 }

 }

}

Sorting algorithms 567

Note that the left[t1] <= right[t2] statement guarantees that the algorithm is
stable. A stable algorithm guarantees the order of duplicate elements.

The complete application is called MergeSort.

Quick Sort
Quick Sort is another recursive sorting algorithm based on the famous divide and conquer
strategy. The time complexity cases are as follows: best case O(n log n), average case O(n
log n), worst case O(n2). The space complexity is O(log n) or O(n).

The Quick Sort algorithm debuts with an important choice. We have to choose one of
the elements of the given array as the pivot. Next, we partition the given array so that all
the elements that are less than the pivot come before all the elements that are greater than
it. The partitioning operation takes place via a bunch of swaps. This is the divide step in
divide and conquer.

Next, the left and the right sub-arrays are again partitioned using the corresponding
pivot. This is achieved by recursively passing the sub-arrays into the algorithm. This is the
conquer step in divide and conquer.

The worst case scenario (O(n2)) takes place when all the elements of the given array are
smaller than the chosen pivot or larger than the chosen pivot. Choosing the pivot element
can be done in at least four ways, as follows:

•	 Choose the first element as the pivot.

•	 Choose the end element as the pivot.

•	 Choose the median element as the pivot.

•	 Choose the random element as the pivot.

568 Sorting and Searching

Consider the array 4, 2, 5, 1, 6, 7, 3. Here, we're going set the pivot as the end element. The
following diagram depicts how Quick Sort works:

Figure 14.4 – Quick Sort

Step 1: We choose the last element as the pivot, so 3 is the pivot. Partitioning begins by
locating two position markers – let's call them i and m. Initially, both point to the first
element of the given array. Next, we compare the element at position i with the pivot, so
we compare 4 with 3. Since 4 > 3, there is nothing to do, and i becomes 1 (i++), while m
remains 0.

Step 2: We compare the element at position i with the pivot, so we compare 2 with 3. Since
2<3, we swap the element at position m with the element at position i, so we swap 4 with
2. Both m and i are increased by 1, so m becomes 1 and i becomes 2.

Step 3: We compare the element at position i with the pivot, so we compare 5 with 3. Since
5 > 3, there is nothing to do, so i becomes 3 (i++), while m remains as 1.

Step 4: We compare the element on position i with the pivot, so we compare 1 with 3.
Since 1 < 3, we swap the element at position m with the element at position i, so we swap 1
with 4. Both m and i are increased by 1, so m becomes 2 and i becomes 4.

Step 5 and 6: We continue to compare the element at position i with the pivot. Since 6>3
and 7 > 3, there is nothing to do at these two steps. After these steps, i=7.

Sorting algorithms 569

Step 7: The next element for i is the pivot itself, so there are no more comparisons to
perform. We just swap the element at position m with the pivot, so we swap 5 with 3. This
brings the pivot to its final position. All the elements from its left are smaller than it, while
all the elements from its right are greater than it. Finally, we return m.

Furthermore, the algorithm is repeated for the array bounded by 0 (left) and m-1 and for
the array bounded by m+1 and the array's end (right). The algorithm is repeated as long as
left<right is true. When this condition is evaluated as false, the array is sorted.

The pseudocode for the quick sort algorithm is as follows:

sort(array, left, right)

 if left < right

 m = partition(array, left, right)

 sort(array, left, m-1)

 sort(array, m+1, right)

 end

end

partition(array, left, right)

 pivot = array[right]

 m = left

 for i = m to right-1

 if array[i] <= pivot

 swap array[i] with array[m]

 m=m+1

 end

 end

 swap array[m] with array[right]

 return m

end

To sort the entire array, we call sort(array, 0, array.length-1). Let's see its
implementation:

public static void sort(int[] arr, int left, int right) {

 if (left < right) {

 int m = partition(arr, left, right);

570 Sorting and Searching

 sort(arr, left, m - 1);

 sort(arr, m + 1, right);

 }

}

private static int partition(int[] arr, int left, int right) {

 int pivot = arr[right];

 int m = left;

 for (int i = m; i < right; i++) {

 if (arr[i] <= pivot) {

 swap(arr, i, m++);

 }

 }

 swap(arr, right, m);

 return m;

}

Quick Sort can swap non-adjacent elements; therefore, it is not stable. The complete
application is called QuickSort. This application contains an implementation based on
Comparator as well – this is useful for sorting objects.

Bucket Sort
Bucket Sort (or Bin Sort) is another sorting technique that's encountered in interviews.
It is commonly used in computer science and useful when the elements are uniformly
distributed over a range. The time complexity cases are as follows: the best and average
cases O(n+k), where O(k) is the time for creating the bucket (this will be O(1) for a linked
list or hash table), while O(n) is the time needed to put the elements of the given array
into the bucket (this will also be O(1) for a linked list or hash table). The worst case is
O(n2). The space complexity is O(n+k).

Its climax relies on dividing the elements of the given array into groups that are called
buckets. Next, each bucket is sorted individually using a different suitable sorting
algorithm or using the bucket sorting algorithm via recursion.

Sorting algorithms 571

Creating the buckets can be done in several ways. One approach relies on defining a
number of buckets and filling each bucket with a specific range of elements from the
given array (this is known as scattering). Next, each bucket is sorted (via bucket sorting or
other sorting algorithms). Finally, the elements are collected from each bucket to obtain
the sorted array (this is known as gathering). This is also known as the scatter-sort-gather
technique and is exemplified in the following diagram. Here, we are using bucket sort on
the 4, 2, 11, 7, 18, 3, 14, 7, 4, 16 array:

Figure 14.5 – Bucket Sort via the scatter-sort-gather approach

So, as the preceding diagram reveals, we have defined four buckets for the elements in
intervals; that is, 0-5, 5-10, 10-15, and 15-20. Each element of the given array fits into a
bucket. After distributing all the elements of the given array into buckets, we sort each
bucket. The first bucket contains elements 2, 3, 4, and 4. The second bucket contains
elements 7, 7, and so on. Finally, we gather the elements from the buckets (from left to
right) and we obtain the sorted array; that is, 2, 3, 4, 4, 7, 7, 11, 14, 16, 18.

So, for this, we can write the following pseudocode:

sort(array)

 create N buckets each of which can hold a range of elements

 for all the buckets

 initialize each bucket with 0 values

572 Sorting and Searching

 for all the buckets

 put elements into buckets matching the range

 for all the buckets

 sort elements in each bucket

 gather elements from each bucket

end

An implementation of this pseudocode using lists can be done as follows (the hash()
methods that are being called in this code are available in the code bundled with
this book):

/* Scatter-Sort-Gather approach */

public static void sort(int[] arr) {

 // get the hash codes

 int[] hashes = hash(arr);

 // create and initialize buckets

 List<Integer>[] buckets = new List[hashes[1]];

 for (int i = 0; i < hashes[1]; i++) {

 buckets[i] = new ArrayList();

 }

 // scatter elements into buckets

 for (int e : arr) {

 buckets[hash(e, hashes)].add(e);

 }

 // sort each bucket

 for (List<Integer> bucket : buckets) {

 Collections.sort(bucket);

 }

 // gather elements from the buckets

 int p = 0;

 for (List<Integer> bucket : buckets) {

 for (int j : bucket) {

Sorting algorithms 573

 arr[p++] = j;

 }

 }

}

Another approach to creating buckets consists of putting a single element into a bucket, as
shown in the following diagram (this time, there is no sorting involved):

Figure 14.6 – Bucket Sort via the scatter-gather approach

In this scatter-gather approach, we store the number of occurrences of an element in each
bucket, not the element itself, while the position (the index) of the bucket represents the
element value. For example, in bucket number 2, we store the number of occurrences of
element 2, which in array 4, 2, 8, 7, 8, 2, 2, 7, 4, 9 occurs three times. Since elements 1, 3,
5, and 6 are not present in the given array, their buckets are empty (have 0s in them). The
gathering operation collects the elements from left to right and obtains the sorted array.

So, for this, we can write the following pseudocode:

sort(array)

 create N buckets each of which can track a

 counter of a single element

 for all the buckets

 initialize each bucket with 0 values

 for all the buckets

 put elements into buckets matching a single

 element per bucket

 for all the buckets

 gather elements from each bucket

end

574 Sorting and Searching

An implementation of this pseudocode may look as follows:

/* Scatter-Gather approach */

public static void sort(int[] arr) {

 // get the maximum value of the given array

 int max = arr[0];

 for (int i = 1; i < arr.length; i++) {

 if (arr[i] > max) {

 max = arr[i];

 }

 }

 // create max buckets

 int[] bucket = new int[max + 1];

 // the bucket[] is automatically initialized with 0s,

 // therefore this step is redundant

 for (int i = 0; i < bucket.length; i++) {

 bucket[i] = 0;

 }

 // scatter elements in buckets

 for (int i = 0; i < arr.length; i++) {

 bucket[arr[i]]++;

 }

 // gather elements from the buckets

 int p = 0;

 for (int i = 0; i < bucket.length; i++) {

 for (int j = 0; j < bucket[i]; j++) {

 arr[p++] = i;

 }

 }

}

Sorting algorithms 575

Bucket Sort is not a stable algorithm. A stable algorithm guarantees the order of duplicate
elements. The complete application is called BucketSort.

Radix Sort
Radix Sort is a sorting algorithm that works very well for integers. In Radix Sort, we
sort the elements by grouping the individual digits by their positions in the numbers.
Next, we sort the elements by sorting the digits at each significant position. Commonly,
this is done via Counting Sort (the Counting Sort algorithm is detailed in the book Java
Coding Problems (www.packtpub.com/programming/java-coding-problems),
published by Packt, but you can find an implementation of it in the application called
SortArraysIn14Ways). Mainly, sorting the digits can be done via any stable sorting
algorithm.

A simple approach to understanding the Radix Sort algorithm relies on an example.
Let's consider the array 323, 2, 3, 123, 45, 6, 788. The following image reveals the steps of
sorting this array by sequentially sorting the units, the tens, and the hundreds:

Figure 14.7 – Radix Sort

So, first, we sort the elements based on the digit corresponding to the unit place. Second,
we sort the elements based on the digit corresponding to the tenth place. Third, we
sort the elements based on the digit corresponding to the hundreds place. Of course,
depending on the maximum number from the array, the process continues with
thousands, ten thousands, and so on until no more digits are left.

https://www.packtpub.com/programming/java-coding-problems
https://www.packtpub.com/programming/java-coding-problems

576 Sorting and Searching

The following code is an implementation of the Radix Sort algorithm:

public static void sort(int[] arr, int radix) {

 int min = arr[0];

 int max = arr[0];

 for (int i = 1; i < arr.length; i++) {

 if (arr[i] < min) {

 min = arr[i];

 } else if (arr[i] > max) {

 max = arr[i];

 }

 }

 int exp = 1;

 while ((max - min) / exp >= 1) {

 countSortByDigit(arr, radix, exp, min);

 exp *= radix;

 }

}

private static void countSortByDigit(

 int[] arr, int radix, int exp, int min) {

 int[] buckets = new int[radix];

 for (int i = 0; i < radix; i++) {

 buckets[i] = 0;

 }

 int bucket;

 for (int i = 0; i < arr.length; i++) {

 bucket = (int) (((arr[i] - min) / exp) % radix);

 buckets[bucket]++;

 }

 for (int i = 1; i < radix; i++) {

 buckets[i] += buckets[i - 1];

Searching algorithms 577

 }

 int[] out = new int[arr.length];

 for (int i = arr.length - 1; i >= 0; i--) {

 bucket = (int) (((arr[i] - min) / exp) % radix);

 out[--buckets[bucket]] = arr[i];

 }

 System.arraycopy(out, 0, arr, 0, arr.length);

}

The time complexity of Radix Sort depends on the algorithm that's used to sort the digits
(remember that this can be any stable sorting algorithm). Since we are using the Counting
Sort algorithm, the time complexity is O(d(n+b)), where n is the number of elements, d
is the number of digits, and b is the radix or base (in our case, the base is 10). The space
complexity is O(n+b).

The complete application is called RadixSort. Well, so far, we've managed to cover the top
five sorting algorithms that occur in technical interviews. Now, let's quickly provide an
overview of the searching algorithms.

Searching algorithms
The main searching algorithm that occurs in interviews as a standalone problem or part
of another problem is the Binary Search algorithm. The best case time complexity is O(1),
while the average and worst case is O(log n). The worst case auxiliary space complexity
of Binary Search is O(1) for the iterative implementation and O(log n) for the recursive
implementation due to the call stack.

The Binary Search algorithm relies on the divide and conquer strategy. Mainly, this
algorithm debuts by dividing the given array into two sub-arrays. Furthermore, it discards
one of these sub-arrays and operates on the other one iteratively or recursively. In other
words, at each step, this algorithm halves the search space (which is initially the whole
given array).

578 Sorting and Searching

So, these algorithms describe the steps for looking for element x in an array, a. Consider a
sorted array, a, that contains 16 elements, as shown in the following image:

Figure 14.8 – Ordered array containing 16 elements

First, we compare x with the midpoint of the array, p. If they are equal, we return.
If x > p, then we search the right-hand side of the array and discard the left-hand side (the
search space is the right-hand side of the array). If x < p, then we search on the left-hand
side of the array and discard the right-hand side (the search space is the left-hand side of
the array). The following is a graphical representation of the Binary Search algorithm for
finding the number 17:

Figure 14.9 – The Binary Search algorithm

Notice that we start with 16 elements and end with 1. After the first step, we are down to
16/2 = 8 elements. At the second step, we are down to 8/2 = 4 elements. At the third step,
we are down to 4/2 = 2 elements. And, at the final step, we find the searched number, 17.
If we put this algorithm into pseudocode, then we will obtain something similar to the
following:

search 17 in {1, 4, 5, 7, 10, 16, 17, 18, 20,

 23, 24, 25, 26, 30, 31, 33}

 compare 17 to 18 -> 17 < 18

Searching algorithms 579

 search 17 in {1, 4, 5, 7, 10, 16, 17, 18}

 compare 17 to 7 -> 17 > 7

 search 17 in {7, 10, 16, 17}

 compare 17 to 16 -> 17 > 16

 search 17 in {16, 17}

 compare 17 to 17

 return

The iterative implementation is listed here:

public static int runIterative(int[] arr, int p) {

 // the search space is the whole array

 int left = 0;

 int right = arr.length - 1;

 // while the search space has at least one element

 while (left <= right) {

 // half the search space

 int mid = (left + right) / 2;

 // if domain overflow can happen then use:

 // int mid = left + (right - left) / 2;

 // int mid = right - (right - left) / 2;

 // we found the searched element

 if (p == arr[mid]) {

 return mid;

 } // discard all elements in the right of the

 // search space including 'mid'

 else if (p < arr[mid]) {

 right = mid - 1;

 } // discard all elements in the left of the

 // search space including 'mid'

 else {

 left = mid + 1;

580 Sorting and Searching

 }

 }

 // by convention, -1 means element not found into the array

 return -1;

}

The complete application is called BinarySearch. It also contains the recursive
implementation of the Binary Search algorithm. In Chapter 10, Arrays and Strings, you
can find different coding challenges that take advantage of the Binary Search algorithm.

Coding challenges
So far, we've covered the most popular sorting and searching algorithms that are
encountered in technical interviews. It is advised that you practice these algorithms
since they may occur as standalone problems that require the pseudocode or the
implementation.

That being said, let's tackle 18 problems that are related to sorting and searching
algorithms.

Coding challenge 1 – Merging two sorted arrays
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given two sorted arrays, p and q. The p array is large
enough to fit q at the end of it. Write a snippet of code that merges p and q in a sorted
order.

Solution: It is important to highlight the fact that p has enough space at the end to fit q.
This suggests that the solution shouldn't involve any auxiliary space. The solution should
output the result of merging p and q in a sorted order by inserting the elements from q in
p in order.

Mainly, we should compare the elements from p and q and insert them into p in order
until we've processed all the elements in p and q. Let's take a look at a meaningful diagram
that reveals this action (p contains elements -1, 3, 8, 0, 0, while q contains elements 2, 4):

Coding challenges 581

Figure 14.10 – Merging two sorted arrays

Let's see this test case step by step (let's denote the index of the last element from p with
pIdx and the index of the last element from q with qIdx). In the previous diagram, pIdx=2
(corresponding to element 8) and qIdx=1 (corresponding to element 4).

Step 1: We compare the last element from p (the element at index pIdx) with the last
element from q (the element at index qIdx), so we compare 8 with 4. Since 8 > 4, we copy
8 to the end of p. Since both arrays are sorted, 8 is the maximum of these arrays, so it must
go to the last position (index) in p. It will occupy an empty slot in p (remember that p is
large enough to fit q at its end). We decrease pIdx by 1.

Step 2: We compare the last element from p (the element at index pIdx) with the last
element from q (the element at index qIdx), so we compare 3 with 4. Since 3 < 4, we copy
4 to the end of p. We decrease qIdx by 1.

Step 3: We compare the last element from p (the element at index pIdx) with the last
element from q (the element at index qIdx), so we compare 3 with 2. Since 3 > 2, we copy
3 to the end of p. We decrease pIdx by 1.

Step 4: We compare the last element from p (the element at index pIdx) with the last
element from q (the element at index qIdx), so we compare -1 with 2. Since -1 < 2, we
copy 2 to the end of p. We decrease qIdx by 1. There are no more elements to compare and
p is sorted.

582 Sorting and Searching

Check this out! After each comparison, we insert the elements at the end of p. This way,
we don't need to shift any elements. However, if we choose to insert the elements at the
beginning of p, then we must shift the elements backward to make room for each inserted
element. This is not efficient!

Now, it's time to see the implementation of this algorithm:

public static void merge(int[] p, int[] q) {

 int pLast = p.length - q.length;

 int qLast = q.length;

 if (pLast < 0) {

 throw new IllegalArgumentException("p cannot fit q");

 }

 int pIdx = pLast - 1;

 int qIdx = qLast - 1;

 int mIdx = pLast + qLast - 1;

 // merge p and q

 // start from the last element in p and q

 while (qIdx >= 0) {

 if (pIdx >= 0 && p[pIdx] > q[qIdx]) {

 p[mIdx] = p[pIdx];

 pIdx--;

 } else {

 p[mIdx] = q[qIdx];

 qIdx--;

 }

 mIdx--;

 }

}

Coding challenges 583

The complete application is called MergeTwoSortedArrays. If you'd like to check/
remember how to merge k sorted arrays, then revisit Chapter 10, Arrays and Strings, the
Merging k sorted arrays in O(nk log k) coding challenge.

Coding challenge 2 – Grouping anagrams together
Adobe, Flipkart

Problem: Consider you've been given an array of words (containing characters from 'a'
to 'z') representing several mixed anagrams (for example, "calipers", "caret", "slat", "cater",
"thickset", "spiracle", "trace", "last", "salt", "bowel", "crate", "loop", "polo", "thickest", "below",
"thickets", "pool", "elbow", "replicas"). Write a snippet of code that prints this array so
that all the anagrams are grouped together (for example, "calipers", "spiracle", "replicas",
"caret", "cater", "trace", "crate", "slat", "last", "salt", "bowel", "below", "elbow", "thickset",
"thickest", "thickets", "loop", "polo", "pool").

Solution: First, here's a quick reminder regarding anagrams. Two or more strings (words)
are considered to be anagrams if they contain the same characters but in different orders.

Based on the example provided for this problem, let's define the following array of mixed
anagrams:

String[] words = {

 "calipers", "caret", "slat", "cater", "thickset",

 "spiracle", "trace", "last", "salt", "bowel", "crate",

 "loop", "polo", "thickest", "below", "thickets",

 "pool", "elbow", "replicas"

};

Since anagrams contain exactly the same characters, this means that if we sort them, then
they will be identical (for example, sorting "slat", "salt" and "last" result in "alst"). So, we
can say that two strings (words) are anagrams by comparing their sorted versions. In other
words, all we need is a sorting algorithm. The most convenient way to do this is to rely
on Java's built-in sorting algorithm, which is Dual-Pivot Quicksort for primitives and
TimSort for objects.

The built-in solution is called sort() and comes in many different flavors in the java.
util.Arrays class (15+ flavors). Two of these flavors have the following signatures:

•	 void sort(Object[] a)

•	 <T> void sort(T[] a, Comparator<? super T> c)

584 Sorting and Searching

If we convert a string (word) into char[], then we can sort its characters and return the
new string via the following helper method:

// helper method for sorting the chars of a word

private static String sortWordChars(String word) {

 char[] wordToChar = word.toCharArray();

 Arrays.sort(wordToChar);

 return String.valueOf(wordToChar);

}

Next, we just need a Comparator that indicates that two strings that are anagrams of
each other are equivalent:

public class Anagrams implements Comparator<String> {

 @Override

 public int compare(String sl, String s2) {

 return sortStringChars(sl).compareTo(sortStringChars(s2));

 }

}

Finally, we sort the given array of strings (words) via this compareTo() method:

Arrays.sort(words, new Anagrams());

However, the problem doesn't actually ask us to sort the given array of anagrams; the
problem asks us to print the anagrams grouped together. For this, we can rely on hashing
(if you are not familiar with the concept of hashing, then please read Chapter 6, Object-
Oriented Programming, the Hash table problem). In Java, we can use hashing via the
built-in HashMap implementation, so there is no need to write a hashing implementation
from scratch. But how is this HashMap useful? What should we store in an entry
(key-value pair) of this map?

Coding challenges 585

Each group of anagrams converges to the same sorted version (for example, the group
of anagrams containing the strings (words) "slat", "salt" and "last" have the unique and
common sorted version as "alst"). Being unique, the sorted version is a good candidate to
be the key in our map. Next, the value represents the list of anagrams. So, the algorithm is
quite simple; it contains the following steps:

1.	 Loop over the given array of words.

2.	 Sort the characters of each word.

3.	 Populate the map (add or update the map).

4.	 Print the result.

In code lines:

/* Group anagrams via hashing (O(nm log m) */

public void printAnagrams(String words[]) {

 Map<String, List<String>> result = new HashMap<>();

 for (int i = 0; i < words.length; i++) {

 // sort the chars of each string

 String word = words[i];

 String sortedWord = sortWordChars(word);

 if (result.containsKey(sortedWord)) {

 result.get(sortedWord).add(word);

 } else {

 // start a new group of anagrams

 List<String> anagrams = new ArrayList<>();

 anagrams.add(word);

 result.put(sortedWord, anagrams);

 }

 }

 // print the result

 System.out.println(result.values());

}

586 Sorting and Searching

If n is the number of strings (words) and each string (word) has a maximum of m
characters, then the time complexity of the preceding two approaches is O(nm log m).

Can we do this better? Well, to do this better, we have to identify the issue of the preceding
two approaches. The issue consists of the fact that we sort every string (word) and that
this will cost us extra time. However, we can use an additional char[] to count up the
number of occurrences (frequency) of each character in a string (word). After we build
this char[], we convert it into a String to obtain the key that we have to search for
in HashMap. Since Java handles char types the same as it does (unsigned) short, we
can make calculations with char. Let's see the code (the wordToChar array tracks the
frequency of characters from a to z for each string (word) in the given array):

/* Group anagrams via hashing (O(nm)) */

public void printAnagramsOptimized(String[] words) {

 Map<String, List<String>> result = new HashMap<>();

 for (int i = 0; i < words.length; i++) {

 String word = words[i];

 char[] wordToChar = new char[RANGE_a_z];

 // count up the number of occurrences (frequency)

 // of each letter in 'word'

 for (int j = 0; j < word.length(); j++) {

 wordToChar[word.charAt(j) - 'a']++;

 }

 String computedWord = String.valueOf(wordToChar);

 if (result.containsKey(computedWord)) {

 result.get(computedWord).add(word);

 } else {

 List<String> anagrams = new ArrayList<>();

 anagrams.add(word);

 result.put(computedWord, anagrams);

 }

 }

Coding challenges 587

 System.out.println(result.values());

}

If n is the number of strings (words) and each string (word) contains a maximum of m
characters, then the time complexity of the preceding two approaches is O(nm). If you
need to support more characters, not just from a to z, then use an int[] array and
codePointAt() – more details are available in Chapter 10, Arrays and Strings, in the
Extracting code points of surrogate pairs coding challenge. The complete application is
called GroupSortAnagrams.

Coding challenge 3 – List of unknown size
Problem: Consider you've been given a data structure representing a sorted list of
unknown size (this means that there is no size()or similar method) containing only
positive numbers. The code for this list is as follows:

public class SizelessList {

 private final int[] arr;

 public SizelessList(int[] arr) {

 this.arr = arr.clone();

 }

 public int peekAt(int index) {

 if (index >= arr.length) {

 return -1;

 }

 return arr[index];

 }

}

588 Sorting and Searching

However, as you can see, there is a method called peekAt() that returns the element
at the given index in O(1). If the given index is beyond the bounds of this list, then
peekAt() returns -1. Write a snippet of code that returns the index at which an element,
p, occurs.

Solution: When we must search in a sorted data structure (for example, in a sorted array),
we know that Binary Search is the proper choice. So, can we use Binary Search in this
case? Since the given list is sorted and we can access any element of it in O(1) time, this
means that Binary Search should be a good choice. Apart from that, the Binary Search
algorithm requires the size of the data structure since we have to halve the search space
(for example, list.size()/2) to find the middle point. The given data structure (list)
doesn't reveal its size.

So, the problem is reduced to finding the size of this list. We know that peekAt() returns
-1 if the given index is beyond the bounds of this list, so we can loop the list and count
the iterations until peekAt() returns -1. When peekAt() returns -1, we should know
the size of the list, so we can apply the Binary Search algorithm. Instead of looping the list
element by element (linear algorithm), we can try to do so exponentially. So, instead of
looping peekAt(1), peekAt(2), peekAt(3), peekAt(4) ..., we loop peekAt(1),
peekAt(2), peekAt(4), peekAt(8), In other words, instead of doing this in O(n)
time, we can do so in O(log n) time, where n is the size of the list. We can do this because
the given list is sorted!

The following code should clarify this approach and the remaining details:

public static int search(SizelessList sl, int element) {

 int index = 1;

 while (sl.peekAt(index) != -1

 && sl.peekAt(index) < element) {

 index *= 2;

 }

 return binarySearch(sl, element, index / 2, index);

}

private static int binarySearch(SizelessList sl,

 int element, int left, int right) {

 int mid;

Coding challenges 589

 while (left <= right) {

 mid = (left + right) / 2;

 int middle = sl.peekAt(mid);

 if (middle > element || middle == -1) {

 right = mid - 1;

 } else if (middle < element) {

 left = mid + 1;

 } else {

 return mid;

 }

 }

 return -1;

}

The complete application is called UnknownSizeList.

Coding challenge 4 – Merge sorting a linked list
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given a singly linked list. Write a snippet of code that
sorts this linked list via the Merge Sort algorithm.

Solution: Solving this problem requires knowledge of several topics that we've already
covered in this book. First, you must be familiar with linked lists. This topic was covered
in Chapter 11, Linked Lists and Maps. Second, you will need have read the Merge Sort
section of this chapter.

590 Sorting and Searching

Conforming to the Merge Sort algorithm, we have to continually split the linked list in
half until we obtain empty sub-lists or sub-lists that contain a single element (this is the
divide and conquer approach). If a sub-list is empty or contains one element, it is sorted
by definition – this is known as base case recursion. The following diagram reveals this
process for the initial linked list 2 → 1 → 4 → 9 → 8 → 3 → 7 → null:

Figure 14.11 – Using divide and conquer on a linked list

Dividing the given linked list like this can be done via the Fast Runner/Slow Runner
approach. This approach was detailed in Chapter 11, Linked Lists and Maps, in the The Fast
Runner/Slow Runner approach section. Mainly, when the Fast Runner (FR) reaches the
end of the given linked list, the Slow Runner (SR) points to the middle of this list, so we
can split the list in two. The code for this is listed here:

// Divide the given linked list in two equal sub-lists.

// If the length of the given linked list is odd,

// the extra node will go in the first sub-list

private Node[] divide(Node sourceNode) {

 // length is less than 2

 if (sourceNode == null || sourceNode.next == null) {

 return new Node[]{sourceNode, null};

 }

 Node fastRunner = sourceNode.next;

 Node slowRunner = sourceNode;

 // advance 'firstRunner' two nodes,

 // and advance 'secondRunner' one node

Coding challenges 591

 while (fastRunner != null) {

 fastRunner = fastRunner.next;

 if (fastRunner != null) {

 slowRunner = slowRunner.next;

 fastRunner = fastRunner.next;

 }

 }

 // 'secondRunner' is just before the middle point

 // in the list, so split it in two at that point

 Node[] headsOfSublists = new Node[]{

 sourceNode, slowRunner.next};

 slowRunner.next = null;

 return headsOfSublists;

}

The rest of the code is a classical Merge Sort implementation. The sort() method is
responsible for recursively sorting the sub-lists. Next, the merge() method places the
elements back into the original linked list one at a time by repeatedly taking the smallest
element from the sorted sub-lists:

// sort the given linked list via the Merge Sort algorithm

public void sort() {

 head = sort(head);

}

private Node sort(Node head) {

 if (head == null || head.next == null) {

 return head;

 }

 // split head into two sublists

 Node[] headsOfSublists = divide(head);

592 Sorting and Searching

 Node head1 = headsOfSublists[0];

 Node head2 = headsOfSublists[1];

 // recursively sort the sublists

 head1 = sort(head1);

 head2 = sort(head2);

 // merge the two sorted lists together

 return merge(head1, head2);

}

// takes two lists sorted in increasing order, and merge

// their nodes together (which is returned)

private Node merge(Node head1, Node head2) {

 if (head1 == null) {

 return head2;

 } else if (head2 == null) {

 return head1;

 }

 Node merged;

 // pick either 'head1' or 'head2'

 if (head1.data <= head2.data) {

 merged = head1;

 merged.next = merge(head1.next, head2);

 } else {

 merged = head2;

 merged.next = merge(head1, head2.next);

 }

 return merged;

}

Coding challenges 593

The complete application is called MergeSortSinglyLinkedList. Sorting a doubly linked
list is quite similar. You can find such an implementation in the application called
MergeSortDoublyLinkedList.

Coding challenge 5 – Strings interspersed with empty
strings
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given a sorted array of strings that is interspersed
with empty strings. Write a snippet of code that returns the index of the given
non-empty string.

Solution: When we must search in a sorted data structure (for example, in a sorted array),
we know that the Binary Search algorithm is the proper choice. So, can we use Binary
Search in this case? We have the size of the given array, so we can halve the searching
space and locate the middle point. If we denote the index 0 of the array as left and the
array.length-1 as right, then we can write mid = (left + right) / 2. So, mid is the middle
point of the given array.

But what we can do if the mid index falls on an empty string? In such a case, we don't
know if we should go to the right or the left. In other words, which half should be
discarded, and what half should be used for continuing our search? The answer can be
found in the following diagram (the given string is "cat", "", "", "", "", "", "", "rear", ""):

Figure 14.12 – Computing the middle point in the case of an empty string

594 Sorting and Searching

So, when the middle point (mid) falls on an empty string, we must correct its index by
moving it to the nearest non-empty string. As shown in step 2 of the preceding diagram,
we choose leftMid as mid-1 and rightMid as mid+1. We keep moving away from mid until
the leftMid or rightMid index points out a non-empty string (in the preceding diagram,
rightMid finds the string, "rear", after steps 3 and 4). When this happens, we update the
mid position and continue the classical Binary Search (step 4).

In terms of code, this is quite straightforward:

public static int search(String[] stringsArr, String str) {

 return search(stringsArr, str, 0, stringsArr.length - 1);

}

private static int search(String[] stringsArr,

 String str, int left, int right) {

 if (left > right) {

 return -1;

 }

 int mid = (left + right) / 2;

 // since mid is empty we try to find the

 // closest non-empty string to mid

 if (stringsArr[mid].isEmpty()) {

 int leftMid = mid - 1;

 int rightMid = mid + 1;

 while (true) {

 if (leftMid < left && rightMid > right) {

 return -1;

 } else if (rightMid <= right

 && !stringsArr[rightMid].isEmpty()) {

 mid = rightMid;

 break;

Coding challenges 595

 } else if (leftMid >= left

 && !stringsArr[leftMid].isEmpty()) {

 mid = leftMid;

 break;

 }

 rightMid++;

 leftMid--;

 }

 }

 if (str.equals(stringsArr[mid])) {

 // the searched string was found

 return mid;

 } else if (stringsArr[mid].compareTo(str) < 0) {

 // search to the right

 return search(stringsArr, str, mid + 1, right);

 } else {

 // search to the left

 return search(stringsArr, str, left, mid - 1);

 }

}

The worst-case time complexity for this approach is O(n). Notice that if the searched
string is an empty string, then we return -1, so we treat this case as an error. This is correct
since the problem says that the given string that needs to be found is non-empty. If the
problem doesn't provide any details about this aspect, then you have to discuss this with
the interviewer. This way, you are showing the interviewer that you pay attention to details
and corner cases. The complete application is called InterspersedEmptyStrings.

Coding challenge 6 – Sorting a queue with the help of
another queue
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given a queue of integers. Write a snippet of code that
sorts this queue with the help of another queue (an extra queue).

596 Sorting and Searching

Solution: The solution to this problem must include an extra queue, so we must think
about how to use this extra queue when sorting the given queue. There are different
approaches, but a convenient approach for an interview can be summarized as follows:

1.	 As long as the elements from the given queue are in ascending order (starting from
the front of the queue), we dequeue them and enqueue in the extra queue.

2.	 If an element breaks the preceding statement, then we dequeue and enqueue it back
in the given queue, without touching the extra queue.

3.	 After all the elements have been processed via step 1 or 2, we dequeue all the
elements from the extra queue and enqueue them back in the given queue.

4.	 As long as the size of the extra queue is not equal to the initial size of the given
queue, we repeat from step 1 since the queue is not sorted yet.

Let's consider that the given queue contains the following elements: rear → 3 → 9 → 1 → 8
→ 5 → 2 → front. The following diagram represents the given queue and the extra queue
(initially empty):

Figure 14.13 – The given queue and the extra queue

Applying step 1 of our algorithm means dequeuing 2, 5, and 8 from the given queue and
enqueuing them in the extra queue, as shown in the following diagram:

Figure 14.14 – Enqueuing 2, 5, and 8 in the extra queue

Since the next element in the given queue is smaller than the last element that's added to
the extra queue, we apply step 2 of our algorithm, so we dequeue 1 and enqueue it in the
given queue, as shown in the following diagram:

Coding challenges 597

Figure 14.15 – Dequeuing and enqueuing 1 in the given queue

Furthermore, we apply step 1 again since 9 (the front of the given queue) is bigger than the
last element that's added to the extra queue (8). So, 9 goes in the extra queue, as shown in
the following diagram:

Figure 14.16 – Enqueuing 9 in the extra queue

Next, 3 is smaller than 9, so we must dequeue and enqueue it back in the given queue, as
shown in the following diagram:

Figure 14.17 – Dequeuing and enqueuing 3 in the given queue

At this point, we've processed (visited) all the elements from the given queue, so we apply
step 3 of our algorithm. We dequeue all the elements from the extra queue and enqueue
them in the given queue, as shown in the following diagram:

Figure 14.18 – Dequeuing from the extra queue and enqueuing in the given queue

598 Sorting and Searching

Now, we repeat the whole process until the given queue is sorted in ascending order. Let's
see the code:

public static void sort(Queue<Integer> queue) {

 if (queue == null || queue.size() < 2) {

 return;

 }

 // this is the extra queue

 Queue<Integer> extraQueue = new ArrayDeque();

 int count = 0; // count the processed elements

 boolean sorted = false; // flag when sorting is done

 int queueSize = queue.size(); // size of the given queue

 int lastElement = queue.peek(); // we start from the front

 // of the given queue

 while (!sorted) {

 // Step 1

 if (lastElement <= queue.peek()) {

 lastElement = queue.poll();

 extraQueue.add(lastElement);

 } else { // Step 2

 queue.add(queue.poll());

 }

 // still have elements to process

 count++;

 if (count != queueSize) {

 continue;

 }

 // Step 4

 if (extraQueue.size() == queueSize) {

 sorted = true;

Coding challenges 599

 }

 // Step 3

 while (extraQueue.size() > 0) {

 queue.add(extraQueue.poll());

 lastElement = queue.peek();

 }

 count = 0;

 }

}

This code's runtime is O(n2). The complete application is called SortQueueViaTempQueue.

Coding challenge 7 – Sorting a queue without
extra space
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given a queue of integers. Write a snippet of code that
sorts this queue without using extra space.

Solution: In the preceding problem, we had to solve the same problem but using an extra
queue. This time, we cannot use an extra queue, so we must sort the queue in place.

We can think of sorting as a continuous process of finding the minimum element from the
given queue, extracting it from its current position, and adding it to the rear of this queue.
Expanding this idea may result in the following algorithm:

1.	 Consider the current minimum as Integer.MAX_VALUE.

2.	 Dequeue an element from the unsorted part of the queue (initially, the unsorted
part is the entire queue).

3.	 Compare this element with the current minimum.

600 Sorting and Searching

4.	 If this element is smaller than the current minimum, then do the following:

a. If the current minimum is Integer.MAX_VALUE, then this element becomes
the current minimum and we do not enqueue it back in the queue.

b. If the current minimum is not Integer.MAX_VALUE, then we enqueue
the current minimum back in the queue and this element becomes the current
minimum.

5.	 If this element is bigger than the current minimum value, then we enqueue it back
in the queue.

6.	 Repeat from step 2 until the whole unsorted part is traversed.

7.	 At this step, the current minimum is the minimum of the entire unsorted part, so
we enqueue it back in the queue.

8.	 Set the new boundary of the unsorted part and repeat from step 1 until the unsorted
part size is 0 (every time we execute this step, the unsorted part's size is decreased
by 1).

The following diagram is a snapshot of this algorithm for the queue; that is, rear → 3 → 9 →
1 → 8 → 5 → 2 → front:

Figure 14.19 – Sorting a queue without extra space

Coding challenges 601

Notice how each minimum of the unsorted part (initially, the whole queue) is added back
into the queue and becomes a member of the sorted part of the queue. Let's see the code:

public static void sort(Queue<Integer> queue) {

 // traverse the unsorted part of the queue

 for (int i = 1; i <= queue.size(); i++) {

 moveMinToRear(queue, queue.size() - i);

 }

}

// find (in the unsorted part) the minimum

// element and move this element to the rear of the queue

private static void moveMinToRear(Queue<Integer> queue,

 int sortIndex) {

 int minElement = Integer.MAX_VALUE;

 boolean flag = false;

 int queueSize = queue.size();

 for (int i = 0; i < queueSize; i++) {

 int currentElement = queue.peek();

 // dequeue

 queue.poll();

 // avoid traversing the sorted part of the queue

 if (currentElement <= minElement && i <= sortIndex) {

 // if we found earlier a minimum then

 // we put it back into the queue since

 // we just found a new minimum

 if (flag) {

 queue.add(minElement);

 }

602 Sorting and Searching

 flag = true;

 minElement = currentElement;

 } else {

 // enqueue the current element which is not the minimum

 queue.add(currentElement);

 }

 }

 // enqueue the minimum element

 queue.add(minElement);

}

This code's runtime is O(n2). The complete application is called
SortQueueWithoutExtraSpace.

Coding challenge 8 – Sorting a stack with the help of
another stack
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given an unsorted stack. Write a snippet of code that
sorts the stack in descending or ascending order. You can only use an additional
temporary stack.

Solution: If we could use two additional stacks, then we could implement an algorithm
that repeatedly searches the minimum value in the given stack and pushes it into the final
or resulting stack. A second additional stack will be used as a buffer while searching the
given stack. However, the problem requires us to use only one additional temporary stack.

Due to this constraint, we are forced to pop from the given stack (let's denote it as s1) and
push in order into the additional stack (let's denote it as s2). To accomplish this, we use
a temporary or auxiliary variable (let's denote it as t), as shown in the following diagram
(the given stack is top → 1 → 4 → 5 → 3 → 1 → 2):

Coding challenges 603

Figure 14.20 – Sorting a stack

The solution consists of two main steps:

1.	 While s1 is not empty, do the following:

a. Pop a value from s1 and store it in t (action 1 in the previous diagram shows this
for value 3).

b. Pop from s2 and push it into s1 as long as what we pop from s2 is bigger than t or
s2 is not empty (action 2 in the previous diagram).

c. Push t into s2 (action 3 in the previous diagram).

2.	 Once step 1 is complete, s1 is empty and s2 is sorted. The biggest value is at the
bottom, so the resulting stack is top → 5 → 4 → 3 → 2 → 1 → 1. The second step
consists of copying s2 into s1. This way, s1 is sorted in the reverse order of s2, so the
smallest value is at the top of s1 (top → 1 → 1 → 2 → 3 → 4 → 5).

Let's see the code:

public static void sort(Stack<Integer> stack) {

 Stack<Integer> auxStack = new Stack<>();

 // Step 1 (a, b and c)

 while (!stack.isEmpty()) {

 int t = stack.pop();

 while (!auxStack.isEmpty() && auxStack.peek() > t) {

 stack.push(auxStack.pop());

604 Sorting and Searching

 }

 auxStack.push(t);

 }

 // Step 2

 while (!auxStack.isEmpty()) {

 stack.push(auxStack.pop());

 }

}

The complete code is called SortStack.

Coding challenge 9 – Sorting a stack in place
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given an unsorted stack. Write a snippet of code that sorts
the stack in place. Note that a variation of this problem will explicitly mention that you
cannot use any repetitive statements, such as for, while, and so on.

Solution: In the preceding problem, we had to solve the same problem but using an
explicit extra stack. This time, we cannot use an explicit extra stack, so we must sort the
stack in place.

Let's consider that the given stack is top → 4 → 5 → 3 → 8 → 2 →1. The solution starts by
popping the values from the stack until the stack is empty. Afterward, we insert the values
from the recursion call stack back into the given stack in sorted position.

Let's try to apply this approach to our stack. The following diagram reveals the process of
popping the values from the stack until the stack is empty. On the left-hand side, we have
the initial state. On the right-hand side, we have the result:

Coding challenges 605

Figure 14.21 – Sorting the stack in place (1)

Next, we push back into the stack as long as the current element to push is smaller than
the current top of the stack or the stack is empty. So, we will push 1, 2, and 8. We don't
push 3 (the next element to be pushed) since 3 is less than 8 (you can see this statement
in the following diagram as action 1). At this point, we need to make room to 3, so we
must pop the top of the stack, 8 (you can see this statement in the following diagram as
action 2). Finally, we push 3 and, afterward, we push 8 into the stack (you can see this
statement in the following diagram as action 3):

Figure 14.22 – Sorting the stack in place (2)

606 Sorting and Searching

So far, so good! Next, we must repeat the flow presented in the preceding diagram. So,
the next element to be pushed from the recursion call stack into the given stack is 5. But
5 is less than 8, so we cannot push it (you can see this statement in the following diagram
as action 1). At this point, we need to make room for 5, so we have to pop the top of the
stack, which is 8 (you can see this statement in the following diagram as action 2). Finally,
we push 5 and, afterward, we push 8 into the stack (you can see this statement in the
following diagram as action 3):

Figure 14.23 – Sorting the stack in place (3)

Finally, the last element that should be pushed from the recursion call stack into the given
stack is 4. However, 4 is less than 8, so we cannot push it (you can see this statement in
the following diagram as action 1). At this point, we need to make room to 4, so we must
pop the top of the stack, which is 8 (you can see this statement in the following diagram as
action 2). However, we still cannot push 4 into the stack because 4 is less than 5 (the new
top element after popping 8). We must pop 5 as well (you can see this statement in the
following diagram as action 3). Now, we can push 4. Next, we push 5 and 8. You can see
this in the following diagram as action 4:

Figure 14.24 – Sorting the stack in place (4)

Coding challenges 607

Done! The given stack has been sorted. Let's see the code:

public static void sort(Stack<Integer> stack) {

 // stack is empty (base case)

 if (stack.isEmpty()) {

 return;

 }

 // remove the top element

 int top = stack.pop();

 // apply recursion for the remaining elements in the stack

 sort(stack);

 // insert the popped element back in the sorted stack

 sortedInsert(stack, top);

}

private static void sortedInsert(

 Stack<Integer> stack, int element) {

 // the stack is empty or the element

 // is greater than all elements in the stack (base case)

 if (stack.isEmpty() || element > stack.peek()) {

 stack.push(element);

 return;

 }

 // the element is smaller than the top element,

 // so remove the top element

 int top = stack.pop();

 // apply recursion for the remaining elements in the stack

 sortedInsert(stack, element);

 // insert the popped element back in the stack

608 Sorting and Searching

 stack.push(top);

}

The runtime of this code is O(n2) with an auxiliary space of O(n) for the recursion call
stack (n is the number of elements in the given stack). The complete application is called
SortStackInPlace.

Coding challenge 10 – Searching in a full sorted matrix
Amazon, Microsoft, Flipkart

Problem: Consider you've been given a matrix of integers of size rows x cols that is full
and sorted in ascending order. A full sorted matrix means that the integers in each row
are sorted from left to right and that the first integer of each row is greater than the last
integer of the previous row. Write a snippet of code that returns true if a given integer is
in this matrix.

Solution: The brute-force method is quite inefficient. If we try to iterate the matrix and
compare each (row, col) integer with the searched one, then this will impose a time
complexity of O(mn), where m is the number of rows and n is the number of columns in
the matrix.

Another solution will rely on the Binary Search algorithm. We have enough experience to
implement this algorithm for a sorted array, but can we do it for a sorted matrix? Yes, we
can, thanks to the fact that this sorted matrix is fully sorted. More precisely, since the first
integer of each row is greater than the last integer of the previous row, we can look at this
matrix as an array of length rows x cols. The following diagram clarifies this statement:

Figure 14.25 – Fully sorted matrix as an array

Coding challenges 609

So, if we see the given matrix as an array, then we can reduce the problem of applying
the Binary Search to a sorted array. There is no need to physically transform the matrix
into an array. All we need to do is express the Binary Search accordingly using the
following statements:

•	 The left-most integer of the array is at index 0 (let's denote it as left).

•	 The right-most integer of the array is at index (rows * cols) - 1 (let's denote it as
right).

•	 The middle point of the array is at (left + right) / 2.

•	 The integer at the middle point of the index is at matrix[mid / cols][mid % cols],
where cols is the number of columns in the matrix.

With these statements in place, we can write the following implementation:

public static boolean search(int[][] matrix, int element) {

 int rows = matrix.length; // number of rows

 int cols = matrix[0].length; // number of columns

 // search space is an array as [0, (rows * cols) - 1]

 int left = 0;

 int right = (rows * cols) - 1;

 // start binary search

 while (left <= right) {

 int mid = (left + right) / 2;

 int midElement = matrix[mid / cols][mid % cols];

 if (element == midElement) {

 return true;

 } else if (element < midElement) {

 right = mid - 1;

 } else {

 left = mid + 1;

 }

 }

610 Sorting and Searching

 return false;

}

The preceding code performs in O(log mn) time, where m is the number of rows
and n is the number of columns in the given matrix. The application is called
SearchInFullSortedMatrix.

Coding challenge 11 – Searching in a sorted matrix
Amazon, Microsoft, Flipkart

Problem: Consider you've been given a sorted matrix of integers of size rows x cols. Each
row and each column are sorted in ascending order. Write a snippet of code that returns
true if a given integer is in this matrix.

Solution: Notice that this problem is not like the previous coding challenge since the first
integer of each row doesn't have to be greater than the last integer of the previous row. If
we apply the Binary Search algorithm (as we did for the previous coding challenge), then
we must apply it to every row. Since Binary Search has a complexity time of O(log n) and
we have to apply it to every row, this means that this approach will perform in O(m log n)
time, where m is the number of rows and n is the number of columns in the given matrix.

In order to find a solution, let's consider the following diagram (a matrix of 4 x 6):

Figure 14.26 – Searching in a sorted matrix

Let's assume that we search for the element 80, which can be found at (2, 3). Let's try
to deduce this position. The climax of this deduction orbits the fact that the matrix has
sorted rows and columns. Let's analyze the start of the columns: if the start of a column is
greater than 80 (for example, column 4), then we know that 80 cannot be in that column,
since the start of the column is the minimum element in that column. Moreover, 80
cannot be found in any of the columns to the right of that column since the start element
of each column must increase in size from left to right. Furthermore, we can apply the
same logic to rows. If the start of a row is greater than 80, then we know that 80 cannot be
in that row or subsequent (downward) rows.

Coding challenges 611

Now, if we look at the end of the columns and rows, we can deduce some similar
conclusions (mirrored conclusions). If the end of a column is less than 80 (for example,
column 2), then we know that 80 cannot be in that column since the end of the column
is the maximum element in that column. Moreover, 80 cannot be found in any of the
columns to the left of that column since the start element of each column must decrease
in size from right to left. Furthermore, we can apply the same logic to rows. If the end
of a row is less than 80, then we know that 80 cannot be in that row or subsequent
(upward) rows.

If we join, synthesize, and generalize these conclusions for an element, p, then we can
deduce the following:

•	 If the start of a column is greater than p, then p must be to the left of that column.

•	 If the start of a row is greater than p, then p must be above that row.

•	 If the end of a column is less than p, then p must be to the right of that column.

•	 If the end of a row is less than p, then p must be below that row.

This is already starting to look like an algorithm. There is one more thing that we must
decide, though. Where do we start from? From which row and column? Fortunately, we
have several options. For example, we can start with the greatest column (0, last column)
and work to the left of the same row, or with the greatest row (last row, 0) and work up on
the same column.

Let's assume that we choose to start with the greatest column (0, last column) and work to
the left to find the element, p. This means that our flow will be as follows (let's denote i=0
and j=cols-1):

1.	 If matrix[i][j] > p, then move left in the same row. The elements in this column are
definitely greater than matrix[i][j] and hence, by extension, greater than p. So, we
discard the current column, decrease j by 1, and repeat.

2.	 If matrix[i][j] < p, then move down in the same column. The elements in this row
are definitely less than matrix[i][j] and hence, by extension, less than p. So, we
discard the current row, increase i by 1, and repeat.

3.	 If p is equal to matrix[i][j], return true.

612 Sorting and Searching

If we apply this algorithm to find element 80 in our 4 x 6 matrix, then the path from (0, 5)
to (2, 3) will be as follows:

Figure 14.27 – Path to the solution

If we put this algorithm into code, then we get the following:

public static boolean search(int[][] matrix, int element) {

 int row = 0;

 int col = matrix[0].length - 1;

 while (row < matrix.length && col >= 0) {

 if (matrix[row][col] == element) {

 return true;

 } else if (matrix[row][col] > element) {

 col--;

 } else {

 row++;

 }

 }

 return false;

}

The time complexity of this algorithm is O(m+n), where m is the number of rows and n is
the number of columns. The complete application is called SearchInSortedMatrix. It also
contains a recursive implementation of this algorithm.

Coding challenges 613

Coding challenge 12 – First position of first one
Amazon, Google, Adobe

Problem: Consider you've been given an array that contains only values of 0 and 1. There
is at least a 0 and a 1. All 0s comes first, followed by 1s. Write a snippet of code that
returns the index of the first 1 in this array.

Solution: Consider the array arr=[0, 0, 0, 1, 1, 1, 1]. The searched index is 3 since arr[3] is
1, and this is the first 1.

Since 0s comes first, followed by 1s, the array is sorted.

Note
Since this is a very common topic in interviews, I'll say it again: when we
have to find something in a sorted array, we have to consider the Binary
Search algorithm.

In this case, the Binary Search algorithm can be implemented quite easily. The middle
point that's computed in Binary Search can fall on 0 or 1. Since the array is sorted, if the
middle point falls on 0, then we know for sure that the first value of 1 must be on the
right-hand side of the middle point, so we discard the left-hand side of the middle point.
On the other hand, if the middle point falls on 1, then we know that the first value of 1
must on the left-hand side of the middle point, so we discard the right-hand side of the
middle point. The following code clarifies this:

public static int firstOneIndex(int[] arr) {

 if (arr == null) {

 return -1;

 }

 int left = 0;

 int right = arr.length - 1;

 while (left <= right) {

 int middle = 1 + (right - left) / 2;

 if (arr[middle] == 0) {

 left = middle + 1;

614 Sorting and Searching

 } else {

 right = middle - 1;

 }

 if (arr[left] == 1) {

 return left;

 }

 }

 return -1;

}

The complete application is called PositionOfFirstOne.

Coding challenge 13 – Maximum difference between
two elements
Problem: Consider you've been given an array of integers, arr. Write a snippet of code that
return the maximum difference between two elements when the larger integer appears
after the smaller integer.

Solution: Let's consider several examples.

If the given array is 1, 34, 21, 7, 4, 8, 10, then the maximum difference is 33 (computed as
34 (index 1) - 1 (index 0)). If the given arrays is 17, 9, 2, 26, 32, 27, 3, then the maximum
difference is 30 (computed as 32 (index 4) - 2 (index 2)).

How about an array sorted in ascending order, such as 3, 7, 9, 11? In this case, the
maximum difference is 11 - 3 = 8, so this is the difference between the maximum and
the minimum element. How about an array sorted in descending order such as 11, 9, 7,
6? In this case, the maximum difference is 6 - 7 = -1, so the maximum difference is the
difference closest to 0.

Based on these examples, we can think of several solutions. For example, we can start by
computing the minimum and maximum of the array. Next, if the index of the maximum
is greater than the index of the minimum, then the maximum difference is the difference
between the maximum and the minimum of the array. Otherwise, we need to compute
the next minimum and maximum of the array and repeat this process. This can lead to a
complexity time of O(n2).

Coding challenges 615

Another approach can start by sorting the array. Afterward, the maximum difference
will be the difference between the maximum and the minimum elements (the difference
between the last and the first elements). This can be implemented via a sorting algorithm
in O(n log n) runtime.

How about doing it in O(n) time? Instead of sorting the array or computing its maximum
or minimum, we try another approach. Note that if we consider that p is the first element
from the array, we can compute the difference between every successive element and
p. While we are doing this, we are tracking the maximum difference and updating it
accordingly. For example, if the array is 3, 5, 2, 1, 7, 4 and p=3, then the maximum
difference is 7-p=7-3=4. However, if we look carefully, the real maximum difference is
7-1=6 and 1 is smaller than p. This leads us to the conclusion that, while traversing the
elements successive to p, if the current traversed element is smaller than p, then p should
become that element. Subsequent differences are computed between the successors of
this p until the array is completely traversed or we find another element smaller than p. In
such a case, we repeat this process.

Let's see the code:

public static int maxDiff(int arr[]) {

 int len = arr.length;

 int maxDiff = arr[1] - arr[0];

 int marker = arr[0];

 for (int i = 1; i < len; i++) {

 if (arr[i] - marker > maxDiff) {

 maxDiff = arr[i] - marker;

 }

 if (arr[i] < marker) {

 marker = arr[i];

 }

 }

 return maxDiff;

}

616 Sorting and Searching

This code runs in O(n) time. The complete application is called
MaxDiffBetweenTwoElements.

Coding challenge 14 – Stream ranking
Problem: Consider you've been given a stream of integers (such as a continuous flux of
integer values). Periodically, we want to inspect the rank of a given integer, p. By rank, we
understand the number of values less than or equal to p. Implement the data structure and
algorithm that supports this operation.

Solution: Let's consider the following stream: 40, 30, 45, 15, 33, 42, 56, 5, 17, 41, 67. The
rank of 45 is 8, the rank of 5 is 0, the rank of 17 is 2, and so on.

The brute-force approach may work on a sorted array. Each time a new integer is
generated, we add it to this array. While this will be very convenient for returning the
rank of a given integer, this approach has an important drawback: each time we insert an
element, we have to shift the elements greater than the new integer to make room for it.
This is needed to maintain the array when it's sorted in ascending order.

A much better choice consists of a Binary Search Tree (BST). A BST maintains a relative
order and inserting a new integer will update the tree accordingly. Let's add the integers
from our stream to a Binary Search Tree, as follows:

Figure 14.28 – BST for stream ranking

Coding challenges 617

Let's suppose that we want to find rank 43. First, we compare 43 with the root and we
conclude that 43 must be in the right sub-tree of the root, 40. However, the root has 5
nodes in its left sub-tree (obviously, all of them are smaller than the root), so the rank of
43 is at least 6 (5 nodes of the left sub-tree of the root, plus the root). Next, we compare 43
with 45 and we conclude that 43 must be to the left of 45, so the rank remains 5. Finally,
we compare 43 with 42, and we conclude that 43 must be in the right sub-tree of 42. The
rank must be increased by 1, so the rank of 43 is 7.

So, how can we generalize this example with an algorithm? Here, we noticed that, for each
node, we already know the rank of its left sub-tree. This doesn't need to be computed each
time the rank is required since this will be quite inefficient. We can track and update the
rank of the left sub-tree each time a new element is generated and inserted into the tree. In
the preceding diagram, each node has its sub-tree rank highlighted above the node. When
the rank of a node is required, we already know the rank of its left sub-tree. Next, we have
to consider the following recursive steps, which are applied via
int getRank(Node node, int element):

1.	 If element is equal to node.element, then return node.leftTreeSize.

2.	 If element is on the left of node, then return getRank(node.left,
element).

3.	 If element is on the right of node, then return node.leftTreeSize + 1 +
getRank(node.right, element).

If the given integer is not found, then we return -1. The relevant code is listed here:

public class Stream {

 private Node root = null;

 private class Node {

 private final int element;

 private int leftTreeSize;

 private Node left;

 private Node right;

 private Node(int element) {

 this.element = element;

 this.left = null;

618 Sorting and Searching

 this.right = null;

 }

 }

 /* add a new node into the tree */

 public void generate(int element) {

 if (root == null) {

 root = new Node(element);

 } else {

 insert(root, element);

 }

 }

 private void insert(Node node, int element) {

 if (element <= node.element) {

 if (node.left != null) {

 insert(node.left, element);

 } else {

 node.left = new Node(element);

 }

 node.leftTreeSize++;

 } else {

 if (node.right != null) {

 insert(node.right, element);

 } else {

 node.right = new Node(element);

 }

 }

 }

 /* return rank of 'element' */

 public int getRank(int element) {

 return getRank(root, element);

 }

Coding challenges 619

 private int getRank(Node node, int element) {

 if (element == node.element) {

 return node.leftTreeSize;

 } else if (element < node.element) {

 if (node.left == null) {

 return -1;

 } else {

 return getRank(node.left, element);

 }

 } else {

 int rightTreeRank = node.right == null

 ? -1 : getRank(node.right, element);

 if (rightTreeRank == -1) {

 return -1;

 } else {

 return node.leftTreeSize + 1 + rightTreeRank;

 }

 }

 }

}

The preceding code will run in O(log n) time on a balanced tree and O(n) time on an
unbalanced tree, where n is the number of nodes in the tree. The complete application is
called RankInStream.

Coding challenge 15 – Peaks and valleys
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given an array of positive integers representing terrain
elevations. If an integer from this array is greater than or equal to its neighbors (adjacent
integers), then this integer is called a peak. On the other hand, if an integer from this array
is smaller than or equal to its neighbors (adjacent integers), then this integer is called a
valley. For example, for array 4, 5, 8, 3, 2, 1, 7, 8, 5, 9, we can see that 8 (both) and 9 are
peaks, while 4, 1, and 5 (except the last one) are valleys. Write a snippet of code that sorts
the given array into an alternating sequence of peaks and valleys.

620 Sorting and Searching

Solution: At first sight, a handy solution would be to start by sorting the array in
ascending order. Once the array is sorted as l1 ≤ l2 ≤ l3 ≤ l4 ≤ l5 ..., we can see each
triplet of numbers as large(l1)≤larger(l2)≤largest(l3). If we swap l2 with l3, then l1≤l3≥l2,
so l3 becomes a peak. For the next triplet, l2≤ l4 ≤ l5, we swap l4 with l5 to obtain
l2≤l5≥l4, so l5 is a peak. For the next triplet, l4≤l6≤l7, we swap l6 with l7 to obtain
l4≤l7≥l6, so l7 is a peak. If we continue these swaps, then we obtain something like this:
l1≤l3≥l2≤l5≥l4≤l7≥l6 But is this efficient? Since we have to sort the array, we can say
that the time complexity of this solution is O(n log n). Can we do better than this? Yes, we
can! Let's assume that we represent our array as follows:

Figure 14.29 – Given array of terrain elevations

Now, we can clearly see the peaks and valleys of the given array. If we focus on the first
triplet (4, 5, 8) and try to obtain a peak, then we have to swap the value from the middle
(5) with the maximum between its neighbors (adjacent integers). So, by swapping 5 with
max(4, 8), we obtain (4, 8, 5). Therefore, 8 is a peak and can be represented as follows:

Figure 14.30 – Swapping 5 with 8

Next, let's focus on the next triplet (5, 3, 2). We can obtain a peak by swapping 3 with
max(5, 2), so by swapping 3 with 5. The result is (3, 5, 2), as shown here:

Figure 14.31 – Swapping 3 with 5

Coding challenges 621

Now, 5 is a peak and 3 is a valley. We should continue with the triplet (2, 1, 7) and swap
1 with 7 to obtain the peak (2, 7, 1). The next triplet will be (1, 8, 5) and have 8 as a peak
(there is nothing to swap). In the end, we obtain the final result, as can be seen in the
following diagram:

Figure 14.32 – Final result

The interviewer will want you to pay attention to details and mention them. For example,
when we swap the middle value with the left value, can we break the already processed
terrain? Can we break a valley or a peak? The answer is no, we cannot break anything. This
is because when we swap the middle with the left, we already know that the middle value
is smaller than the left value and that the left value is a valley. Therefore, we just create a
deeper valley by adding an even smaller value to that place.

Based on these statements, the implementation is quite simple. The following code will
clarify any remaining details:

public static void sort(int[] arr) {

 for (int i = 1; i < arr.length; i += 2) {

 int maxFoundIndex = maxElementIndex(arr, i - 1, i, i + 1);

 if (i != maxFoundIndex) {

 swap(arr, i, maxFoundIndex);

 }

 }

}

private static int maxElementIndex(int[] arr,

 int left, int middle, int right) {

 int arrLength = arr.length;

 int leftElement = left >= 0 && left < arrLength

622 Sorting and Searching

 ? arr[left] : Integer.MIN_VALUE;

 int middleElement = middle >= 0 && middle < arrLength

 ? arr[middle] : Integer.MIN_VALUE;

 int rightElement = right >= 0 && right < arrLength

 ? arr[right] : Integer.MIN_VALUE;

 int maxElement = Math.max(leftElement,

 Math.max(middleElement, rightElement));

 if (leftElement == maxElement) {

 return left;

 } else if (middleElement == maxElement) {

 return middle;

 } else {

 return right;

 }

}

This code performs in O(n) complexity time. The complete application is called
PeaksAndValleys.

Coding challenge 16 – Nearest left smaller number
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given an array of integers, arr. Write a snippet of code
that finds and prints the nearest smaller number for every element so that the smaller
element is on left-hand side.

Solution: Let's consider the given array; that is, 4, 1, 8, 3, 8, 2, 6, 7, 4, 9. The expected
result is _, _, 1, 1, 3, 1, 2, 6, 2, 4. From left to right, we have the following:

•	 arr[0]=4 and in its left there is no element, so we print _.

•	 arr[1]=1 and in its left there is no element smaller than it, so we print _.

•	 arr[2]=8 and the nearest smallest element in its left is 1, so we print 1.

•	 arr[3]=3 and the nearest smallest element in its left is 1, so we print 1.

•	 arr[4]=8 and the nearest smallest element in its left is 3, so we print 3.

•	 arr[5]=2 and the nearest smallest element in its left is 1, so we print 1.

Coding challenges 623

•	 arr[6]=6 and the nearest smallest element in its left is 2, so we print 2

•	 arr[7]=7 and the nearest smallest element in its left is 6, so we print 6

•	 arr[8]=4 and the nearest smallest element in its left is 2, so we print 2

•	 arr[9]=9 and the nearest smallest element in its left is 4, so we print 4

A simple but inefficient solution relies on two loops. The outer loop can start from the
second element (index 1) and go to the length of the array (arr.length-1), while the inner
loop traverses all the elements on the left-hand side of the element picked by the outer
loop. As soon as it finds an element smaller, it stops the process. Such an algorithm is very
easy to implement, but it runs in O(n2) complexity time.

However, we can reduce the time complexity to O(n) via a Stack. Mainly, we can traverse
the given array from 0 to arr.length-1 and rely on a Stack to track the subsequence of
elements that have been traversed so far that are smaller than any later element that has
already been traversed. While this statement may sound complicated, let's clarify it by
looking at this algorithm's steps:

1.	 Create a new, empty stack.

2.	 For every element of arr, (i = 0 to arr.length-1), we do the following:

a. While the stack is not empty and the top element is greater than or equal to arr[i],
we pop from the stack.

b. If the stack is empty, then there is no element in the left of arr[i]. We can print a
symbol representing no element found (for example, -1 or _).

c. If the stack is not empty, then the nearest smaller value to arr[i] is the top element
of the stack. We can peek and print this element.

d. Push arr[i] into the stack.
In terms of code, we have the following:

public static void leftSmaller(int arr[]) {

 Stack<Integer> stack = new Stack<>();

 // While the top element of the stack is greater than

 // equal to arr[i] remove it from the stack

 for (int i = 0; i < arr.length; i++) {

 while (!stack.empty() && stack.peek() >= arr[i]) {

 stack.pop();

624 Sorting and Searching

 }

 // if stack is empty there is no left smaller element

 if (stack.empty()) {

 System.out.print("_, ");

 } else {

 // the top of the stack is the left smaller element

 System.out.print(stack.peek() + ", ");

 }

 // push arr[i] into the stack

 stack.push(arr[i]);

 }

}

This code has a runtime of O(n), where n is the number of elements in the given array.
The complete application is called FindNearestMinimum.

Coding challenge 17 – Word search
Amazon, Google

Problem: Consider you've been given a 2D board (a matrix) and a word. Each cell of the
board contains a letter. You can construct a word by concatenating the letters from cells
that are horizontally or vertically neighboring. Write a snippet of code that returns true
if the given word is present on the board. The same letter cell may not be used more
than once.

Solution: Let's consider that we have the following board:

Figure 14.33 – Board sample

Coding challenges 625

Remember that this is not the first time where we need to solve a problem that requires
us to find a certain path in a grid. In Chapter 8, Recursion and Dynamic Programming,
we had the Robot grid problems, including Color spots, Five Towers, The falling ball, and
Knight tour. In Chapter 12, Stacks and Queues, we had Islands. Finally, in Chapter 13, Trees
and Graphs, we had Chess knight.

Based on the experience you've accumulated from these problems, challenge yourself to
write an implementation for this problem without having any further instructions. The
complete application is called WordSearch. If k is the length of the given word and the
board has a size of m x n, then this application runs in O(m * n * 4k) time.

Coding challenge 18 – Sorting an array based on
another array
Amazon, Google, Microsoft

Problem: Consider you've been given two arrays. Write a snippet of code that reorders the
elements of the first array according to the order defined by the second array.

Solution: Let's consider we've been given the following two arrays:

int[] firstArr = {4, 1, 8, 1, 3, 8, 6, 7, 4, 9, 8, 2, 5, 3};

int[] secondArr = {7, 4, 8, 11, 2};

The expected result is {7, 4, 4, 8, 8, 8, 2, 1, 1, 3, 3, 5, 6, 9}.

The solution to this problem relies on hashing. More precisely, we can employ the
following algorithm:

1.	 Count and store the frequency of each element from the first array in a map.

2.	 For each element of the second array, check if the current element from the second
array is present in the map or not.

Then, do the following:

a. If so, then set it n times in the first array (n is the frequency of the current element
 from the second array in the first array).

b. Remove the current element from the map so that, in the end, the map will
 contain only the elements that are present in the first array but are not present in
 the second array.

3.	 Append the elements from the map to the end of the first array (these are already
sorted since we used a TreeSet).

626 Sorting and Searching

Let's see the code:

public static void custom(int[] firstArr, int[] secondArr) {

 // store the frequency of each element of first array

 // using a TreeMap stores the data sorted

 Map<Integer, Integer> frequencyMap = new TreeMap<>();

 for (int i = 0; i < firstArr.length; i++) {

 frequencyMap.putIfAbsent(firstArr[i], 0);

 frequencyMap.put(firstArr[i],

 frequencyMap.get(firstArr[i]) + 1);

 }

 // overwrite elements of first array

 int index = 0;

 for (int i = 0; i < secondArr.length; i++) {

 // if the current element is present in the 'frequencyMap'

 // then set it n times (n is the frequency of

 // that element in the first array)

 int n = frequencyMap.getOrDefault(secondArr[i], 0);

 while (n-- > 0) {

 firstArr[index++] = secondArr[i];

 }

 // remove the element from map

 frequencyMap.remove(secondArr[i]);

 }

 // copy the remaining elements (the elements that are

 // present in the first array but not present

 // in the second array)

 for (Map.Entry<Integer, Integer> entry :

 frequencyMap.entrySet()) {

Summary 627

 int count = entry.getValue();

 while (count-- > 0) {

 firstArr[index++] = entry.getKey();

 }

 }

}

The runtime of this code is O(m log m + n), where m is the number of elements in the
first array and n is the number of elements in the second array. The complete application is
called SortArrayBasedOnAnotherArray.

Well, this was the last problem in this chapter. Now, it's time to summarize our work!

Summary
This was a comprehensive chapter that covered sorting and searching algorithms. You saw
the implementations of Merge Sort, Quick Sort, Radix Sort, Heap Sort, Bucket Sort, and
Binary Search. Moreover, in the code bundled with this book, there's an application called
SortArraysIn14Ways that contains the implementations of 14 sorting algorithms.

In the next chapter, we will cover a suite of problems categorized as mathematical and
puzzle problems.

15
Mathematics and

Puzzles
This chapter covers a controversial topic that's faced in interviews: mathematics and
puzzle problems. A significant number of companies consider that these kinds of
problems should not be part of a technical interview, while other companies still consider
this topic relevant.

The problems included in this topic are brain-teasing and may require a decent level of
knowledge in mathematics and logic. You should expect such problems if you plan to
apply to a company that works in academic fields (mathematics, physics, chemistry, and
so on). However, big companies such as Amazon and Google are also willing to rely on
such problems.

In this chapter, we will cover the following topics:

•	 Tips and suggestions

•	 Coding challenges

By the end of this chapter, you should be familiar with these kinds of problems and be able
to explore more such problems.

630 Mathematics and Puzzles

Technical requirements
All the code files present in this chapter are available on GitHub at https://github.
com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-
Java/tree/master/Chapter15.

Tips and suggestions
When you get a brain-teaser problem, the most important aspect is to not panic. Read
the problem several times and write down your conclusions in a systematic approach. It is
mandatory to clearly identify what input, output, and constraints it should obey.

Try to take several examples (input data samples), make some sketches, and keep talking
with the interviewer while analyzing the problem. The interviewer doesn't expect you to
have the solution immediately, but they are expecting to hear you talking while trying
to solve the problem. This way, the interviewer can track the logic of your ideas and
understand how you approach the problem.

Also, it is very important to write down any rules or patterns that you noticed while
developing the solution. With every statement you write down, you are closer to the
solution. Commonly, if you look from the solution perspective (you know the solution),
such problems are not extremely hard; they just require a high level of observation and
increased attention.

Let's try a simple example. Two fathers and two sons sit down and eat eggs. They eat
exactly three eggs; each person has an egg. How is this possible?

If this is the first time you've seen such a problem, you may think that it is illogical or
impossible to solve. It is normal to think that there is some mistake in the text (there was
probably four eggs, not three) and read it again and again. These are the most common
reactions to brain-teaser problems. Once you see the solution, it looks quite simple.

Now, let's act as a candidate in the presence of the interviewer. The following paragraphs
follow a thinking aloud approach.

It may seem obvious that if each person has an egg and there are three eggs, then one of
them doesn't have any egg. So, you may think that the answer is that three people eat an
egg (each of them eats an egg) and that the fourth person doesn't eat anything. But the
problem says that two fathers and two sons sit down and eat eggs, so all four of them eat
eggs.

How about thinking like this: each person has an egg and they (four people) eat exactly
three eggs, so it doesn't say that each person eats an egg; they only have an egg. Maybe one
of them shares their egg with another person. Hmmm, this doesn't seem too logical!

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter15
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter15
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter15

Coding challenges 631

Is it possible to have only three people? If one of the fathers is also a grandfather, this
means that the other father is a son and a father at the same time. This way, we have two
fathers and two sons via three people. They eat three eggs and each of them has an egg.
Problem solved!

As you can see, the solution is the result of a cascade of reasoning that eliminates the
wrong solutions one by one. Trying to solve the problem by eliminating the wrong
solutions via logical deduction is one of the approaches to solving these kinds of problems.
Other problems are just about computing. Most of the time, there are no complicated
computations or a lot of computations, but they require mathematical knowledge and/or
deductions.

It is quite hard to claim that there are some tricks and tips that will help you solve math
and logical puzzle problems in seconds. The best approach is to practice as much as
possible. With that, let's proceed with the Coding challenges section.

Coding challenges
In the following 15 coding challenges, we will focus on the most popular problems from
the math and logical puzzles category. Let's get started!

Coding challenge 1 – FizzBuzz
Adobe, Microsoft

Problem: Consider you've been given a positive integer, n. Write a problem that prints the
numbers from 1 to n. For multiples of five, print fizz, for multiples of seven, print buzz,
and for multiples of five and seven, print fizzbuzz. Print a new line after each string or
number.

Solution: This is a simple problem that relies on your knowledge of division and the Java
modulus (%) operator. When we divide two numbers, the dividend and the divisor, we
get a quotient and the remainder. In Java, we can obtain the remainder of a division via
the modulus (%) operator. In other words, if X is the dividend and Y is the divisor, then
X modulus Y (written in Java as X % Y) returns the remainder of dividing X by Y. For
example, 11(dividend) / 2(divisor) = 5(quotient) 1(remainder), so 11 % 2 = 1.

632 Mathematics and Puzzles

Put another way, if the remainder is 0, then the dividend is a multiple of the divisor;
otherwise, it's not. So, a multiple of five must respect that X % 5 = 0, while a multiple of
seven must respect that X % 7 = 0. Based on these relations, we can write the solution to
this problem as follows:

public static void print(int n) {

 for (int i = 1; i <= n; i++) {

 if (((i % 5) == 0) && ((i % 7) == 0)) { // multiple of 5&7

 System.out.println("fizzbuzz");

 } else if ((i % 5) == 0) { // multiple of 5

 System.out.println("fizz");

 } else if ((i % 7) == 0) { // multiple of 7

 System.out.println("buzz");

 } else {

 System.out.println(i); // not a multiple of 5 or 7

 }

 }

}

The complete application is called FizzBuzz.

Coding challenge 2 – Roman numerals
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given a positive integer, n. Write a snippet of code that
converts this number into its Roman number representation. For example, if n=34, then
the Roman number is XXXIV. You've been given the following constants, which contain
the Roman number symbols:

Coding challenges 633

Figure 15.1 – Roman numbers

Solution: This problem relies on the fact that Roman numbers are common knowledge.
If you've never heard about Roman numbers, then it is advisable to mention this to the
interviewer. They will probably agree to give you another coding challenge in place of this
one. But if you do know what the Roman numbers are, then great – let's see how we can
write an application that solves this problem.

The algorithm for this problem can be deduced from several examples. Let's look at
several use cases:

•	 n = 73 = 50+10+10+1+1+1 = L+X+X+I+I+I = LXXIII

•	 n = 558 = 500+50+5+1+1+1 = D+L+V+I+I+I = DLVIII

•	 n = 145 = 100+(50-10)+5 = C+(L-X)+V = C+XL+V = CXLV

•	 n = 34 = 10+10+10+(5-1) = X+X+X+(V-I) = X+X+X+IV = XXXIV

•	 n = 49 = (50-10)+(10-1) = (L-X)+(X-I) = XL+IX = XLIX

Roughly, we take the given number and try to find the Roman symbols corresponding to
ones, tens, hundreds, or thousands. This algorithm can be expressed as follows:

1.	 Start from the thousand's place and print the corresponding Roman number. For
example, if the digit at thousand's place is 4, then print the Roman equivalent of
4,000, which is MMMM.

2.	 Continue by dividing the number using digits at hundred's place and print the
corresponding Roman number.

634 Mathematics and Puzzles

3.	 Continue by dividing the number using digits at ten's place and print the
corresponding Roman number.

4.	 Continue by dividing the number using digits at one's place and print the
corresponding Roman number.

In terms of code, this algorithm works as follows:

private static final String HUNDREDTHS[]

 = {"", "C", "CC", "CCC", "CD", "D",

 "DC", "DCC", "DCCC", "CM"};

private static final String TENS[]

 = {"", "X", "XX", "XXX",

 "XL", "L", "LX", "LXX", "LXXX", "XC"};

private static final String ONES[]

 = {"", "I", "II", "III", "IV", "V",

 "VI", "VII", "VIII", "IX"};

public static String convert(int n) {

 String roman = "";

 // Step 1

 while (n >= 1000) {

 roman = roman + 'M';

 n -= 1000;

 }

 // Step 2

 roman = roman + HUNDREDTHS[n / 100];

 n = n % 100;

 // Step 3

 roman = roman + TENS[n / 10];

 n = n % 10;

 // Step 4

 roman = roman + ONES[n];

Coding challenges 635

 return roman;

}

The complete application is called RomanNumbers. Another approach relies on
successive subtractions instead of division. The RomanNumbers application contains this
implementation as well.

Coding challenge 3 – Visiting and toggling 100 doors
Adobe, Microsoft, Flipkart

Problem: Consider you've been given 100 doors in a row that are initially closed. You have
to visit these doors 100 times and each time you do, you start from the first door. For each
visited door, you toggle it (if it is closed, then you open it, and vice versa). At the first visit,
you visit all 100 doors. At the second visit, you visit every second door (#2, #4, #6 ...). At
the third visit, you visit every third door (#3, #6, #9, ...). You follow this pattern until you
visit only the 100th door. Write a snippet of code that reveals the state of the doors (closed
or opened) after 100 visits.

Solution: The solution to this problem can be intuited by traversing several steps. At the
initial state, all 100 doors are closed (in the following image, each 0 is a closed door and
each 1 is an opened door):

Figure 15.2 – All the doors are closed (initial state)

Now, let's see what we can observe and conclude at each of the following steps:

At the first pass, we open every door (we visit each door, #1, #2, #3, #4, ..., #100):

Figure 15.3 – All the doors are opened (step 1)

At the second pass, we only visit the even doors (#2, #4, #6, #8, #10, #12 …), so the even
doors are closed and the odd ones are opened:

Figure 15.4 – The even doors are closed and the odd ones are opened (step 2)

636 Mathematics and Puzzles

At the third pass, we only visit doors #3, #6, #9, #12, …. This time, we close door #3,
which we opened on our first visit, open door #6, which was closed on our second visit,
and so on and forth:

Figure 15.5 – The result of applying the third visit (step 3)

At the fourth visit, we only visit doors #4, #8, #12 …. If we continue like this, then at the
100th visit, we will get the following result:

Figure 15.6 – The opened doors are all perfect squares (last visit)

So, at the last visit (the 100th visit), the opened doors are all perfect squares, while the rest
of the doors are closed. Obviously, even if we observe this, we don't have the necessary
time in an interview to traverse 100 visits. But maybe we don't even need to do all 100
visits to observe this result. Let's assume that we do only 15 steps and we try to see what's
happening to a certain door. For example, the following image reveals the state of door
#12 over 15 steps:

Figure 15.7 – Door #12 after 15 steps

Coding challenges 637

Check out the steps highlighted in the preceding image. The state of door #12 has changed
at steps 1, 2, 3, 4, 6, and 12. All these steps are divisors of 12. Moreover, step 1 opens the
door, step 2 closes the door, step 3 opens the door, step 4 closes the door, step 6 opens the
door, and step 12 closes the door. Starting from this observation, we can conclude that for
every pair of divisors, the door will just end up back in its initial state, which is closed. In
other words, each door that has an even number of divisors remains closed in the end.

Let's see whether this is true for a perfect square, such as 9. The reason for choosing a
perfect square relies on the fact that a perfect square always has an odd number of positive
divisors. For example, the divisors of 9 are 1, 3, and 9. This means that door #9
remains open.

Based on these two paragraphs, we can conclude that, after 100 visits, the doors that
remain opened are those that are perfect squares (#1, #4, #9, #16, ..., #100), while the rest
of the doors remain closed.

Once you understand the preceding process, it is quite straightforward to write an
application that confirms the final result:

private static final int DOORS = 100;

public static int[] visitToggle() {

 // 0 - closed door

 // 1 - opened door

 int[] doors = new int[DOORS];

 for (int i = 0; i <= (DOORS - 1); i++) {

 doors[i] = 0;

 }

 for (int i = 0; i <= (DOORS - 1); i++) {

 for (int j = 0; j <= (DOORS - 1); j++) {

 if ((j + 1) % (i + 1) == 0) {

 if (doors[j] == 0) {

 doors[j] = 1;

 } else {

 doors[j] = 0;

638 Mathematics and Puzzles

 }

 }

 }

 }

 return doors;

}

The complete application is called VisitToggle100Doors.

Coding challenge 4 – 8 teams
Amazon, Google, Adobe

Problem: Consider there's a contest where there's 8 teams. Each team plays twice with
other teams. From all these teams, only 4 go to the semi-finals. How many matches should
a team win to go through to the semi-finals?

Solution: Let's denote the teams as T1, T2, T3, T4, T5, T6, T7, and T8. If T1 plays with
T2...T8, they will play 7 matches. Since each team must play with the other teams twice,
we have 8*7=56 matches. If, at each match, a team can win a point, then we have 56 points
that are distributed between 8 teams.

Let's consider the worst-case scenario. T0 loses all their games. This means that T0 gets 0
points. On the other hand, T1 wins 2 points against T0 and loses all their other matches,
T2 wins 4 points against T0 and T1 and loses all their other matches, T3 wins 6 points
against T0, T1, and T2 and loses all their other matches, and so on. T4 wins 8 points, T5
wins 10 points, T6 wins 12 points, and T7 wins 14 points. So, a team that wins all their
matches wins 14 points. The last four teams (those that go through to the semi-finals) have
won 8+10+12+14=44 points. So, a team can be sure that they go through to the semi-
finals if they obtain a minimum of 44/4=11 points.

Coding challenges 639

Coding challenge 5 – Finding the kth number with the
prime factors 3, 5, and 7
Adobe, Microsoft

Problem: Design an algorithm to find the kth number where the only prime factors are 3,
5, and 7.

Solution: Having a list of numbers whose only prime factors are 3, 5, and 7 means a list
that looks as follows: 1, 3, 5, 7, 9, 15, 21, 25, and so on. Or, to be more suggestive, it can be
written as follows: 1, 1*3, 1*5, 1*7, 3*3, 3*5, 3*7, 5*5, 3*3*3, 5*7, 3*3*5, 7*7, and so on.

With this suggestive representation, we can see that we can initially insert the value 1 into
a list, while the rest of the elements must be computed. The simplest way to understand
the algorithm for determining the rest of the elements is to look at the implementation
itself, so let's see it:

public static int kth(int k) {

 int count3 = 0;

 int count5 = 0;

 int count7 = 0;

 List<Integer> list = new ArrayList<>();

 list.add(1);

 while (list.size() <= k + 1) {

 int m = min(min(list.get(count3) * 3,

 list.get(count5) * 5), list.get(count7) * 7);

 list.add(m);

 if (m == list.get(count3) * 3) {

 count3++;

 }

 if (m == list.get(count5) * 5) {

 count5++;

 }

640 Mathematics and Puzzles

 if (m == list.get(count7) * 7) {

 count7++;

 }

 }

 return list.get(k - 1);

}

We can provide an implementation via three queues as well. The steps of this algorithm
are as follows:

1.	 Initialize an integer, minElem=1.

2.	 Initialize three queues; that is, queue3, queue5, and queue7.

3.	 Loop from 1 to the given k-1:

a.	 Insert minElem*3, minElem*5, and minElem*7 into queue3, queue5, and
queue7, respectively.

b.	 Update minElem as min(queue3.peek, queue5.peek, queue7.peek).

c.	 If minElem is queue3.peek, then do queue3.poll.

d.	 If minElem is queue5.peek, then do queue5.poll.

e.	 If minElem is queue7.peek, then do queue7.poll.

4.	 Return minElem.

The complete application is called KthNumber357. It contains both solutions presented in
this section.

Coding challenge 6 – Count decoding a digit's sequence
Amazon, Microsoft, Flipkart

Problem: Consider that A is 1, B is 2, C is 3, ... Z is 26. For any given sequence of digits,
write a snippet of code that counts the number of possible decodings (for example, 1234
can be decoded as 1 2 3 4, 12 3 4, and 1 23 4, which means as ABCD, LCD, and AWD).
The given sequence of digits is valid if it contains digits from 0 to 9. No leading 0s, no
extra trailing 0s, and no two or more consecutive 0s are allowed.

Coding challenges 641

Solution: This problem can be solved via recursion or via dynamic programming. Both
techniques were covered in Chapter 8, Recursion and Dynamic Programming. So, let's look
at the recursive algorithm for a sequence of n digits:

1.	 Initialize the total number of decodings with 0.

2.	 Start from the end of the given sequence of digits.

3.	 If the last digit is not 0, then apply recursion for the (n-1) digits and use the result to
update the total number of decodings.

4.	 If the last two digits represent a number less than 27 (therefore, a valid character),
then apply recursion to the (n-2) digits and use the result to update the total
number of decodings.

In terms of code, we have the following:

public static int decoding(char[] digits, int n) {

 // base cases

 if (n == 0 || n == 1) {

 return 1;

 }

 // if the digits[] starts with 0 (for example, '0212')

 if (digits == null || digits[0] == '0') {

 return 0;

 }

 int count = 0;

 // If the last digit is not 0 then last

 // digit must add to the number of words

 if (digits[n - 1] > '0') {

 count = decoding(digits, n - 1);

 }

 // If the last two digits represents a number smaller

 // than or equal to 26 then consider last two digits

 // and call decoding()

642 Mathematics and Puzzles

 if (digits[n - 2] == '1'

 || (digits[n - 2] == '2' && digits[n - 1] < '7')) {

 count += decoding(digits, n - 2);

 }

 return count;

}

This code runs in an exponential time. But we can apply dynamic programming to reduce
the runtime to O(n) via a similar non-recursive algorithm, as follows:

public static int decoding(char digits[]) {

 // if the digits[] starts with 0 (for example, '0212')

 if (digits == null || digits[0] == '0') {

 return 0;

 }

 int n = digits.length;

 // store results of sub-problems

 int count[] = new int[n + 1];

 count[0] = 1;

 count[1] = 1;

 for (int i = 2; i <= n; i++) {

 count[i] = 0;

 // If the last digit is not 0 then last digit must

 // add to the number of words

 if (digits[i - 1] > '0') {

 count[i] = count[i - 1];

 }

 // If the second last digit is smaller than 2 and

 // the last digit is smaller than 7, then last

Coding challenges 643

 // two digits represent a valid character

 if (digits[i - 2] == '1' || (digits[i - 2] == '2'

 && digits[i - 1] < '7')) {

 count[i] += count[i - 2];

 }

 }

 return count[n];

}

This code runs in O(n) time. The complete application is called DecodingDigitSequence.

Coding challenge 7 – ABCD
Problem: Find a number of types, ABCD, such that when multiplied by 4, it gives
us DCBA.

Solution: These kinds of problems are usually quite hard. In this case, we have to use some
math to solve it.

Let's start with some simple inequalities:

•	 1 <= A <= 9 (A cannot be zero because ABCD is a four-digit number)

•	 0 <= B <= 9

•	 0 <= C <= 9

•	 4 <= D <= 9 (D must be at least 4*A, so it should be at least 4)

Next, we can assume that our number, ABCD, is written as 1000A + 100B + 10C + D.
Following the problem statement, we can multiply ABCD by 4 to obtain DCBA, which
can be written as 1000D + 100C + 10B + A.

Conforming to divisibility by 4, BA is a two-digit number divisible by 4. Now, the larger
ABCD is 2499, because a number greater than 2499 multiplied by 4 will result in a five-
digit number.

Next, A can be 1 and 2. However, if BA is a two-digit number divisible by 4, then A must
be even, so it must be 2.

Continuing with this logic, this means that D is either 8 or 9. However, since D times 4
would end in 2, D must be 8.

644 Mathematics and Puzzles

Moreover, 4000A + 400B + 40C + 4D = 1000D + 100C + 10B + A. Since A=2 and D=8,
this can be written as 2C-13B=1. B and C can only be a single digit integer in [1, 7], but
B must be odd since BA is a two-digit number divisible by 4. Since the greatest possible
number is 2499, this means that B can be 1 or 3.

So, the result is 2178 because 2178*4=8712, so ABCD*4=DCBA.

We can use the brute-force approach to find this number as well. The following code
speaks for itself:

public static void find() {

 for (int i = 1000; i < 2499; i++) {

 int p = i;

 int q = i * 4;

 String m = String.valueOf(p);

 String n = new StringBuilder(String.valueOf(q))

 .reverse().toString();

 p = Integer.parseInt(m);

 q = Integer.parseInt(n);

 if (p == q) {

 System.out.println("\n\nFound: " + p + " : " + (q * 4));

 break;

 }

 }

}

The complete application is called Abcd.

Coding challenge 8 – Rectangles overlapping
Amazon, Google, Microsoft

Problem: Consider you've been given two rectangles. Write a snippet of code that returns
true if these rectangles overlap (also referred to as colliding or intersecting).

Coding challenges 645

Solution: This problem sounds a little bit vague. It is important to discuss this with the
interviewer and agree about two important aspects:

The two rectangles are parallel to each other and form an angle of 0 degrees with the
horizontal plane (they are parallel to the coordinate axes) or can they be rotated under
an angle?

Most of the time, the given rectangles are parallel to each other and to the coordinate axes.
If rotation is involved, then the solution requires some geometry knowledge that is not
so obvious during an interview. Most probably, the interviewer wants to test your logic,
not your knowledge of geometry, but challenge yourself and implement the problem for
non-parallel rectangles as well.

Are the coordinates of the rectangles given in the Cartesian plane? The answer should be
affirmative since this is a common coordinates system used in mathematics. This means
that a rectangle increases its size from left to right and from bottom to top.

So, let's denote the rectangles as r1 and r2. Each of them is given via the coordinates of
the top-left corner and bottom-right corner. The top-left corner of r1 has the coordinates
r1lt.x and r1lt.y, while the bottom-right corner has the coordinates r2rb.x and r2rb.y, as
shown in the following diagram:

Figure 15.8 – Rectangle coordinates

646 Mathematics and Puzzles

We might say that two rectangles are overlapping if they touch each other (they at least
have a common point). In other words, the five pairs of rectangles shown in the following
diagram overlap:

Figure 15.9 – Overlapping rectangles

From the preceding diagram, we can conclude that two rectangles that don't overlap can
be in one of the following four cases:

•	 r1 is totally to the right of r2.

•	 r1 is totally to the left of r2.

•	 r1 is totally above r2.

•	 r1 is totally below r2.

The following diagram reveals these four cases:

Coding challenges 647

Figure 15.10 – Non-overlapping rectangles

We can express the preceding four bullets in terms of coordinates, as follows:

•	 r1 is totally to the right of r2	 →r1lt.x>r2rb.x

•	 r1 is totally to the left of r2 	 →r2lt.x>r1rb.x

•	 r1 is totally above r2		 →r1rb.y>r2lt.y

•	 r1 is totally below r2		 →r2rb.y>r1lt.y

So, if we group these conditions into code, we get the following:

public static boolean overlap(Point r1lt, Point r1rb,

 Point r2lt, Point r2rb) {

 // r1 is totally to the right of r2 or vice versa

 if (r1lt.x > r2rb.x || r2lt.x > r1rb.x) {

 return false;

 }

 // r1 is totally above r2 or vice versa

 if (r1rb.y > r2lt.y || r2rb.y > r1lt.y) {

 return false;

 }

648 Mathematics and Puzzles

 return true;

}

This code runs in O(1) time. Alternatively, we can condense these two conditions into a
single one, as follows:

public static boolean overlap(Point r1lt, Point r1rb,

 Point r2lt, Point r2rb) {

 return (r1lt.x <= r2rb.x && r1rb.x >= r2lt.x

 && r1lt.y >= r2rb.y && r1rb.y <= r2lt.y);

}

The complete applications is called RectangleOverlap. Note that the interviewer may
define overlapping in different ways. Based on this problem, you should be able to adapt
the code accordingly.

Coding challenge 9 – Multiplying large numbers
Amazon, Microsoft

Problem: Consider you've been given two positive large numbers as strings, a and b.
These numbers don't fit in int or long domains. Write a snippet of code that
computes a*b.

Solution: Let's consider that a=4145775 and b=771467. Then, a*b=3198328601925.
Solving this problem relies on mathematics. The following image depicts the a*b solution
that can be applied on paper and coded as well:

Figure 15.11 – Multiplying two large numbers

Coding challenges 649

Mainly, we rely on the fact that multiplication can be written as a suite of additions. So,
we can write 771467 as 7+60+400+1000+70000+700000 and we multiply each of these
numbers by 4145775. Finally, we add the results to obtain the final result, 3198328601925.
Taking this logic one step further, we can take the last digit of the first number (5) and
multiply it by all the digits of the second number (7, 6, 4, 1, 7, 7). Then, we take the second
digit of the first number (7) and multiply it by all the digits of the second number (7, 6, 4,
1, 7, 7). Then, we take the third digit of the first number (7) and multiply it by all the digits
of the second number (7, 6, 4, 1, 7, 7). We continue this process until we've multiplied
all the digits of the first number by all the digits of the second number. While adding the
results, we state that the tth multiplication shifted.

In terms of code, we have the following:

public static String multiply(String a, String b) {

 int lenA = a.length();

 int lenB = b.length();

 if (lenA == 0 || lenB == 0) {

 return "0";

 }

 // the result of multiplication is stored in reverse order

 int c[] = new int[lenA + lenB];

 // indexes to find positions in result

 int idx1 = 0;

 int idx2 = 0;

 // loop 'a' right to left

 for (int i = lenA - 1; i >= 0; i--) {

 int carry = 0;

 int n1 = a.charAt(i) - '0';

 // used to shift position to left after every

 // multiplication of a digit in 'b'

 idx2 = 0;

650 Mathematics and Puzzles

 // loop 'b' from right to left

 for (int j = lenB - 1; j >= 0; j--) {

 // current digit of second number

 int n2 = b.charAt(j) - '0';

 // multiply with current digit of first number

 int sum = n1 * n2 + c[idx1 + idx2] + carry;

 // carry of the next iteration

 carry = sum / 10;

 c[idx1 + idx2] = sum % 10;

 idx2++;

 }

 // store carry

 if (carry > 0) {

 c[idx1 + idx2] += carry;

 }

 // shift position to left after every

 // multiplication of a digit in 'a'

 idx1++;

 }

 // ignore '0's from the right

 int i = c.length - 1;

 while (i >= 0 && c[i] == 0) {

 i--;

 }

 // If all were '0's - means either both or

 // one of 'a' or 'b' were '0'

 if (i == -1) {

Coding challenges 651

 return "0";

 }

 String result = "";

 while (i >= 0) {

 result += (c[i--]);

 }

 return result;

}

The complete application is called MultiplyLargeNumbers.

Coding challenge 10 – Next greatest number with the
same digits
Amazon, Google, Microsoft

Problem: Consider you've been given a positive integer. Write a snippet of code that
returns the next greatest number with the same digits.

Solution: The solution to this problem can be observed via several examples. Let's
consider the following examples:

•	 Example 1: 6		 → Not possible

•	 Example 2: 1234		 → 1243

•	 Example 3: 1232		 → 1322

•	 Example 4: 321 		 → Not possible

•	 Example 5: 621873	 → 623178

From the preceding examples we can intuit that the solution can be obtained by
rearranging the digits of the given number. So, if we can find the set of rules for swapping
the digits that leads us to the searched number, then we can attempt an implementation.

652 Mathematics and Puzzles

Let's try several observations:

•	 From examples 1 and 4, we can see that if the digits of the given number are in
descending order, then it is impossible to find a greater number. Every swap will
lead to a smaller number.

•	 From example 2, we can see that if the digits of the given number are in ascending
order, then the next greater number that has the same digits can be obtained by
swapping the last two digits.

•	 From examples 3 and 5, we can see that we need to find the smallest of all the
greater numbers. For this, we have to process the number from the right-most side.
The following algorithm clarifies this statement.

Based on these three observations, we can elaborate the following algorithm, which has
been exemplified on the number 621873:

1.	 We start by traversing the number digit by digit from the right-most side. We keep
traversing until we find a digit that is smaller than the previously traversed digit. For
example, if the given number is 621873, then we traverse the number until digit 1
in 621873. Digit 1 is the first digit that's smaller than the previously traversed digit,
8.

2.	 Next, we focus on the digits from the right-hand side of the digit that we found
at step 1. We want to find the smallest digit among these digits (let's denote it as
t). Since these digits are sorted in descending order, the smallest digit is at the last
position. For example, 3 is the smallest digit among the digits from the right-hand
side of 1, 621873.

3.	 We swap these two digits (1 with 3) and we obtain 623871.

4.	 Finally, we sort all the digits to the right-hand side of t in ascending order. But since
we know that all the digits from the right-hand side of t are sorted in descending
order, except for the last digit, we can apply a linear reverse. This means that the
result is 623178. This is the searched number.

This algorithm can be easily implemented, as follows:

public static void findNextGreater(int arr[]) {

 int min = -1;

 int len = arr.length;

 int prevDigit = arr[arr.length - 1];

Coding challenges 653

 int currentDigit;

 // Step 1: Start from the rightmost digit and find the

 // first digit that is smaller than the digit next to it.

 for (int i = len - 2; i >= 0; i--) {

 currentDigit = arr[i];

 if (currentDigit < prevDigit) {

 min = i;

 break;

 }

 }

 // If 'min' is -1 then there is no such digit.

 // This means that the digits are in descending order.

 // There is no greater number with same set of digits

 // as the given one.

 if (min == -1) {

 System.out.println("There is no greater number with "

 + "same set of digits as the given one.");

 } else {

 // Steps 2 and 3: Swap 'min' with 'len-1'

 swap(arr, min, len - 1);

 // Step 4: Sort in ascending order all the digits

 // to the right side of the swapped 'len-1'

 reverse(arr, min + 1, len - 1);

 // print the result

 System.out.print("The next greater number is: ");

 for (int i : arr) {

 System.out.print(i);

 }

 }

}

private static void reverse(int[] arr, int start, int end) {

654 Mathematics and Puzzles

 while (start < end) {

 swap(arr, start, end);

 start++;

 end--;

 }

}

private static void swap(int[] arr, int i, int j) {

 int aux = arr[i];

 arr[i] = arr[j];

 arr[j] = aux;

}

This code runs in O(n) time. The complete application is called NextElementSameDigits.

Coding challenge 11 – A number divisible by its digits
Amazon, Google, Adobe, Microsoft

Problem: Consider you've been given an integer, n. Write a program that returns true if
the given number is divisible by its digits.

Solution: Let's consider that n=412. The output should be true since 412 is divisible by
2, 1, and 4. On the other hand, if n=143, then the output should be false since 143 is not
divisible by 3 and 4.

If you think that this problem is simple, then you're absolutely right. These kinds of
problems are used as warm-up problems and are useful to quickly filter a lot of candidates.
Most of the time, you should solve it in a given time (for example, 2-3 minutes).

Important note
It is advisable to treat these simple problems with the same degree of
seriousness as any other problem. A little mistake can prematurely eliminate
you from the race.

So, for this problem, the algorithm is comprised of the following steps:

1.	 Fetch all the digits of the given number.

2.	 For each digit, check whether the given number % digit is 0 (this means divisible).

Coding challenges 655

3.	 If any of them are non-zero, return false.

4.	 If, for all the digits the given number % digit is 0, return true.

In terms of code, we have the following:

public static boolean isDivisible(int n) {

 int t = n;

 while (n > 0) {

 int k = n % 10;

 if (k != 0 && t % k != 0) {

 return false;

 }

 n /= 10;

 }

 return true;

}

The complete application is called NumberDivisibleDigits.

Coding challenge 12 – Breaking chocolate
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been a given rectangular bar of chocolate of size width x height
and a number of tiles. As usual, the chocolate consists of a number of little tiles, so the
width and height give us the number of tiles (for example, the chocolate is 4 x 3 in size and
contains 12 tiles). Write a snippet of code that computes the number of breaks (cuts) we
need to apply to the given chocolate to obtain a piece that has exactly the required number
of tiles. You can break (cut) the given chocolate into two rectangular pieces via a single
vertical or horizontal break (cut) along the tile edges.

656 Mathematics and Puzzles

Solution: Let's consider the chocolate shown in the following image (a 3 x 6 bar of
chocolate that has 18 tiles):

Figure 15.12 – A 3 x 6 chocolate bar

The preceding image reveals seven cases that can lead us to the solution, as follows:

•	 Cases 1, 2, and 3: If the number of given tiles is greater than 3 x 6 or we cannot
arrange the tiles along with the chocolate's width or height, then it is not possible to
attain a solution. For no solution, we return -1.

•	 Case 4: If the number of given tiles is equal to 3 x 6 = 18, then this is the solution, so
we have 0 cuts. We'll return 0.

•	 Case 5: If the number of given tiles can be arranged along with the chocolate bar's
width, then there is a single cut. We'll return 1.

•	 Case 6: If the number of given tiles can be arranged along with the chocolate bar's
height, then there is a single cut. We'll return 1.

•	 Case 7: In all other cases, we need 2 cuts. We'll return 2.

Let's see the code:

public static int breakit(int width, int height, int nTiles) {

 if (width <= 0 || height <= 0 || nTiles <= 0) {

 return -1;

 }

 // case 1

 if (width * height < nTiles) {

 return -1;

 }

Coding challenges 657

 // case 4

 if (width * height == nTiles) {

 return 0;

 }

 // cases 5 and 6

 if ((nTiles % width == 0 && (nTiles / width) < height)

 || (nTiles % height == 0 && (nTiles / height) < width)) {

 return 1;

 }

 // case 7

 for (int i = 1; i <= Math.sqrt(nTiles); i++) {

 if (nTiles % i == 0) {

 int a = i;

 int b = nTiles / i;

 if ((a <= width && b <= height)

 || (a <= height && b <= width)) {

 return 2;

 }

 }

 }

 // cases 2 and 3

 return -1;

}

The complete application is called BreakChocolate.

Coding challenge 13 – Clock angle
Google, Microsoft

Problem: Consider you've been given the time in h:m format. Write a snippet of code that
calculates the shorter angle between the hour and the minute hand on an analog clock.

Solution: Right from the start, we have to take into account several formulas that will help
us come up with a solution.

658 Mathematics and Puzzles

First of all, a clock is divided into 12 equal hours (or 12 equals parts) and since it is a
complete circle, it has 360o. So, 1 hour has 360o/12 = 30o. So, at 1:00, the hour hand forms
an angle of 300 with the minute hand. At 2:00, the hour hand forms an angle of 60o with
the minute hand, and so on and so forth. The following image clarifies this aspect:

Figure 15.13 – 360 degree split at 12 hours

Taking this logic further, an hour has 60 minutes and 30o, so a minute has 30/60 = 0.5o. So,
if we refer only to the hour hand, then at 1:10, we have an angle of 30o + 10*0.5o = 30o + 5o
= 35o. Or, at 4:17, we have an angle of 4*30o + 17*0.5o = 120o + 8.5o = 128.5o.

So far, we know that we can compute the angle of the hour hand for a given h:m time as
h*300 + m*0.5o. For computing the angle of the minute hand, we can think that, in 1 hour,
the minute hand takes a complete 360o tour, so 360o/ 60 minutes = 6o for each minute. So,
at h:24, the minute hand forms an angle of 24 * 6o = 144o. At h:35, the minute hand forms
an angle of 35 * 6o = 210o, and so on and so forth.

So, the angle between the hour and the minute hand is the abs((h*30o + m*0.5o) - m*6o).
If the returned result is greater than 180o, then we have to return (360o - result) since the
problem requires us to calculate the shorter angle between the hour and the minute hand.

Now, let's try to calculate the required angle for the clocks shown in the following image:

Figure 15.14 – Three clocks

Coding challenges 659

Clock 1, 10:10:

•	 	 Hour hand: 10*30o + 10*0.5o = 300o + 5o = 305o

•	 	 Minute hand: 10 * 6o = 60o

•	 	 Result: abs(305o - 60o) = abs(245o) = 245o > 180o, so return 360o - 245o = 115o

Clock 2, 9:40:

•	 	 Hour hand: 9*30o + 40*0.5o = 270o + 20o = 290o

•	 	 Minute hand: 40 * 6o = 240o

•	 	 Result: abs(290o - 240o) = abs(50o) = 50o

Clock 3, 4:40:

•	 	 Hour hand: 4*30o + 40*0.5o = 120o + 20o = 140o

•	 	 Minute hand: 40 * 6o = 240o

•	 	 Result: abs(140o - 240o) = abs(-100o) = 100o

Based on these statements, we can write the following code:

public static float findAngle(int hour, int min) {

 float angle = (float) Math.abs(((30f * hour)

 + (0.5f * min)) - (6f * min));

 return angle > 180f ? (360f - angle) : angle;

}

The complete application is called HourMinuteAngle.

Coding challenge 14 – Pythagorean triplets
Google, Adobe, Microsoft

Problem: A Pythagorean triplet is a set of three positive integers {a, b, c} such that a2 = b2
+ c2. Consider you've been given an array of positive integers, arr. Write a snippet of code
that prints all the Pythagorean triplets of this array.

660 Mathematics and Puzzles

Solution: The brute-force approach can be implemented via three loops that can try
all the possible triples in the given array. But this will work in O(n3) complexity time.
Obviously, the brute-force approach (commonly known as the naive approach) will not
impress the interviewer, so we must do better than this.

We can, in fact, solve the problem in O(n2) time. Let's see the algorithm's steps:

1.	 Square every element in the input array (O(n)). This means that we can write
a2 = b2 + c2 as a = b + c.

2.	 Sort the given array in ascending order (O(n log n)).

3.	 If a = b + c, then a is always the largest value between a, b, and c. So, we fix a so that
it becomes the last element of this sorted array.

4.	 Fix b so that it becomes the first element of this sorted array.

5.	 Fix c so that it becomes the element right before element a.

6.	 So far, b<a and c<a. To find the Pythagorean triplets, execute a loop that increases b
from 1 to n and decreases c from n to 1. The loop stops when b and c meet:

a. Increase the index of b if b + c < a.

b. Decrease the index of c if b + c > a.

c. If b + c is equal to a, then print the found triplet. Increment the index of b and
decrement the index of c.

7.	 Repeat from step 3 for the next a.

Let's consider that arr={3, 6, 8, 5, 10, 4, 12, 14}. After the first two steps, arr={9, 16, 25, 36,
64, 100, 144, 196}. After steps 3, 4, and 5, we have a=196, b=9, and c=144, as follows:

Figure 15.15 – Setting a, b, and c

Since 9+144 < 196, the index of b is increased by 1, conforming to step 6a. The same step
applies for 16+144, 25+144, and 36+144. Since 64+144 > 196, the index of c is decreased
by 1, conforming to step 6b.

Since 64 +100 < 196, the index of b is increased by 1, conforming to step 6a. The loop
stops here since b and c have met, as follows:

Coding challenges 661

Figure 15.16 – b and c at the end of the loop

Next, conforming to step 7, we set a=144, b=9, and c=100. This process is repeated for
each a. When a becomes 100, we find the first Pythagorean triplet; that is, a=100, b=36,
and c=64, as shown here:

Figure 15.17 – A Pythagorean triplet

Let's put this algorithm into code:

public static void triplet(int arr[]) {

 int len = arr.length;

 // Step1

 for (int i = 0; i < len; i++) {

 arr[i] = arr[i] * arr[i];

 }

 // Step 2

 Arrays.sort(arr);

 // Steps 3, 4, and 5

 for (int i = len - 1; i >= 2; i--) {

 int b = 0;

 int c = i - 1;

 // Step 6

662 Mathematics and Puzzles

 while (b < c) {

 // Step 6c

 if (arr[b] + arr[c] == arr[i]) {

 System.out.println("Triplet: " + Math.sqrt(arr[b])

 + ", " + Math.sqrt(arr[c]) + ", "

 + Math.sqrt(arr[i]));

 b++;

 c--;

 }

 // Steps 6a and 6b

 if (arr[b] + arr[c] < arr[i]) {

 b++;

 } else {

 c--;

 }

 }

 }

}

The complete application is called PythagoreanTriplets.

Coding challenge 15 – Scheduling one elevator
Amazon, Google, Adobe, Microsoft, Flipkart

Problem: Consider you've been given an array representing the destination floors of
n people. The elevator has a capacity of the given k. Initially, the elevator and all the
people are on floor 0 (ground floor). It takes 1 unit of time for the elevator to reach any
consecutive floor (up or down) from the current floor. Write a snippet of code that will
schedule the elevator in such a way that we obtain the minimum total time needed to get
all the people to their destination floors and then return to the ground floor.

Solution: Let's consider that the given array of destinations is floors = {4, 2, 1, 2, 4} and
k=3. So, we have five people: one person for the first floor, two people for the second floor,
and two people for the fourth floor. The elevator can take three people at a time. So, how
can we schedule the elevator to take these five people to their floors in the shortest amount
of time?

Coding challenges 663

The solution consists of getting the people to their respective floors in descending order.
Let's tackle this scenario based on the following image:

Figure 15.18 – Scheduling an elevator example

Let's traverse the steps of this scenario:

1.	 This is the initial state. The elevator is on the ground floor and five people are ready
to take it. Let's consider that the minimum time is 0 (so, 0 units of time).

2.	 In the elevator, we take the people who are going to the 4th floor and the one person
who is going to the 2nd floor. Remember that we can take a maximum of three
people at a time. So far, the minimum time is 0.

3.	 The elevator goes up and stops at the 2nd floor. One person gets off. Since each floor
represents a unit of time, we have a minimum time of 2.

4.	 The elevator goes up and stops at the 4th floor. The remaining two people get off. The
minimum time becomes equal to 4.

5.	 At this step, the elevator is empty. It must go down to the ground floor to pick up
more people. Since it goes down four floors, the minimum time becomes 8.

6.	 We pick up the remaining two people. The minimum time remains as 8.

7.	 The elevator goes up and stops at the 1st floor. One person gets off. The minimum
time becomes 9.

8.	 The elevator goes up and stops at the 2nd floor. One person gets off. The minimum
time becomes 10.

9.	 At this step, the elevator is empty. It must go down to the ground floor. Since it goes
down two floors, the minimum time becomes 12.

664 Mathematics and Puzzles

So, the total minimum time is 12. Based on this scenario, we can elaborate the following
algorithm:

1.	 Sort the given array in descending order of destinations.

2.	 Create groups of k persons. The time needed for each group will be 2 * floors[group].

So, sorting our testing data will result in floors = {4, 4, 2, 2, 1}. We have two groups. One
group contains three people (4, 4, 2), while the other group contains two people (2, 1).
The total minimum time is (2 * floors[0]) + (2 * floors[3]) = (2 * 4) + (2 * 2) = 8 + 4 = 12.

In terms of code, we have the following:

public static int time(int k, int floors[]) {

 int aux;

 for (int i = 0; i < floors.length - 1; i++) {

 for (int j = i + 1; j < floors.length; j++) {

 if (floors[i] < floors[j]) {

 aux = floors[i];

 floors[i] = floors[j];

 floors[j] = aux;

 }

 }

 }

 // iterate the groups and update

 // the time needed for each group

 int time = 0;

 for (int i = 0; i < floors.length; i += k) {

 time += (2 * floors[i]);

 }

 return time;

}

Of course, you may end up choosing a better sorting algorithm. The complete application
is called ScheduleOneElevator. This was the last coding challenge of this chapter.

Coding challenges 665

Scheduling multiple elevators
But how do we schedule multiple elevators with an arbitrary number of floors? Well, most
probably, in an interview, you won't need to implement a solution for more than one
elevator, but you could be asked how you'd design a solution for more.

The problem of scheduling multiple elevators and the algorithm are famous and difficult.
There is no best algorithm for this problem. In other words, creating an algorithm that can
be applied to the real-world scheduling of elevators is really difficult, and apparently, it is
patented.

The Elevator algorithm (https://en.wikipedia.org/wiki/Elevator_
algorithm) is a good place to start. Before thinking about how to design a solution for
multi-elevators, you must make a list of all the assumptions or constraints that you want
to consider. Every available solution/algorithm has a list of assumptions or constraints
referring to the number of floors, number of elevators, capacity of each elevator, number
of average people, rush hour times, elevator speed, load and unload times, and so on.
Mainly, there are three solutions, as follows:

•	 Sectors: Each elevator is allocated to a sector (it services a subset of floors).

•	 Nearest elevator: Each person is assigned to the nearest elevator (it does this based
on the elevator's position, the direction of call, and the current direction of the
elevator).

•	 Nearest elevator with capacity considerations: This is similar to the nearest
elevator option, but it takes the load in each elevator into account.

Sectors
For example, a building that has eight floors and three elevators can be serviced like this:

•	 Elevator 1 serves floors 1, 2, and 3.

•	 Elevator 2 serves floors 1, 4, and 5.

•	 Elevator 3 serves floors 1, 6, 7, and 8.

Each elevator services the ground floor since the ground floor has the highest arrival rate.

666 Mathematics and Puzzles

Nearest elevator
Allocate a score to each elevator. This score represents the suitability score for an elevator
when a new person arrives:

•	 Toward the call, same direction: FS = (N + 2) - d

•	 Toward the call, opposite direction: FS = (N+ 1) - d

•	 Away from the call: FS = 1

Where, N = #Floors – 1, and d = distance between elevator and call.

Nearest elevator with capacity considerations
This is exactly the same as the nearest elevator situation, but it takes into account the
excess capacity of the elevator:

•	 Toward the call, same direction: FS = (N + 2) - d + C

•	 Toward the call, opposite direction: FS = (N + 1) - d + C

•	 Away from the call: FS = 1 + C

Here, N is #Floors – 1, d is the distance between the elevator and the call, and C is the
excess capacity.

I strongly recommend that you search and study different implementations for this
problem and try to learn the one that you find the most suitable for you. I suggest that you
start from here:

•	 https://github.com/topics/elevator-simulation

•	 https://austingwalters.com/everyday-algorithms-elevator-
allocation/.

Now, let's summarize this chapter.

https://github.com/topics/elevator-simulation
https://austingwalters.com/everyday-algorithms-elevator-allocation/
https://austingwalters.com/everyday-algorithms-elevator-allocation/
https://austingwalters.com/everyday-algorithms-elevator-allocation/

Summary 667

Summary
In this chapter, we covered the most popular problems that fit into the mathematics
and puzzles categories. While many companies avoid such problems, there are still
major players such as Google and Amazon that rely on these kinds of problems in their
interviews.

Practicing such problems represents a good exercise for our brains. Besides the math
knowledge, these problems sustain analytical thinking based on deductions and intuition,
which means they are great support for any programmer.

In the next chapter, we'll tackle a hot topic in interviews: concurrency (multithreading).

Section 4:
Bonus – Concurrency

and Functional
Programming

Companies are very sensitive to topics such as concurrency and functional programming.
This chapter covers the most popular questions surrounding these two topics. These four
chapters are bonus chapters; the approach of which is not similar to the chapters you've
read so far. Owing to the nature of the topics, we will touch upon them briefly, elaborating
on the questions asked in interviews on the respective topics. You can find the codes
used in the chapter on the GitHub repository, link to which is shared in the technical
requirements section of the chapter.

This section comprises the following chapters:

•	 Chapter 16, Concurrency

•	 Chapter 17, Functional-Style Programming

•	 Chapter 18, Unit Testing

•	 Chapter 19, System Scalability

16
Concurrency

Developing single-threaded Java applications is rarely feasible. Therefore, most of your
projects will be multithreaded (that is, they will run in a multithreaded environment).
This means that, sooner or later, you'll have to tackle certain multithreading problems.
In other words, at some point, you'll have to get your hands dirty with code that
manipulates Java threads directly or via dedicated APIs.

This chapter covers the most popular questions about Java concurrency (multithreading)
that occur in general interviews about the Java language. As usual, we will start with
a brief introduction that covers the main aspects of Java concurrency. Therefore, our
agenda is straightforward, covering the following topics:

•	 Java concurrency (multithreading) in a nutshell

•	 Questions and coding challenges

Let's begin with the fundamental knowledge of our topic, Java concurrency. Use the
following nutshell section to extract answers to some basic questions about concurrency,
such as What is concurrency?, What is a Java thread?, What is multithreading?, and more.

672 Concurrency

Technical Requirements
The codes used in this chapter can be found on GitHub on: https://github.com/
PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/
tree/master/Chapter16

Java concurrency (multithreading)
in a nutshell
Our computers can run multiple programs or applications at the same time (for example,
we can listen to music on a media player and navigate the internet at the same time).
A process is an executing instance of a program or application (for example, by
double-clicking on the NetBeans icon on your computer, you start a process that will run
the NetBeans program). Additionally, a thread is a lightweight subprocess that represents
the smallest executable unit of work of a process. A Java thread has relatively low
overhead, and it shares common memory space with other threads. A process can have
multiple threads with one main thread.

Important note
The main difference between processes and threads is the fact that threads
share common memory space while processes don't. By sharing memory,
threads shave off lots of overhead.

Concurrency is the ability of an application to handle the multiple tasks it works on. The
program or application can process one task at a time (sequential processing) or process
multiple tasks at the same time (concurrent processing).

Do not confuse concurrency with parallelism. Parallelism is the ability of an application
to handle each individual task. The application can process each task serially, or it can split
the task up into subtasks that can be processed in parallel.

Important note
Concurrency is about handling (not doing) lots of things at once, while
parallelism is about doing lots of things at once.

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter16
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter16

Java concurrency (multithreading) in a nutshell 673

Concurrency is achieved via multithreading. Multithreading is a technique that enables
a program or application to handle more than one task at a time and to also synchronize
those tasks. This means that multithreading allows the maximum utilization of a CPU
by executing two or more tasks virtually at the same time. We say virtually at the same
time here because the tasks only look like they are running simultaneously; however,
essentially, they cannot do that. They take advantage of CPU context switching or the
time slicing feature of the operating system. In other words, CPU time is shared across
all running tasks, and each task is scheduled to run for a certain period of time. Hence,
multithreading is the key to multitasking.

Important note
With a single-core CPU, we may achieve concurrency but not parallelism.

In conclusion, threads can create the illusion of multitasking; however, at any given point
in time, the CPU is executing only one thread. The CPU switches control between the
threads so quickly that it creates the illusion that the tasks are executed (or advance) in
parallel. Actually, they are executed concurrently. Nevertheless, with advances in hardware
technology, it is now common to have multi-core machines and computers. This means
that applications can take advantage of these architectures and have a dedicated CPU
running each thread.

The following diagram clarifies the confusion between concurrency and parallelism via
four threads (T1, T2, T3, and T4):

16.1 – Concurrency versus parallelism

So, an application can be one of the following:

•	 Concurrent but not parallel: It executes more than one task at the same time, but
no two tasks are executed at the same time.

674 Concurrency

•	 Parallel but not concurrent: It executes multiple subtasks of a task in a multi-core
CPU at the same time.

•	 Neither parallel nor concurrent: It executes all of the tasks one at a time
(sequential execution).

•	 Both parallel and concurrent: It executes multiple tasks concurrently in a multi-
core CPU at the same time.

A set of homogenous worker threads that are assigned to execute tasks is called a thread
pool. A worker thread that finishes a task is returned to the pool. Typically, thread pools
are bound to a queue of tasks and can be tuned to the size of the threads they hold.
Commonly, for optimal performance, the size of a thread pool is equal to the number of
CPU cores.

The synchronization of a multithreaded environment is achieved via locking. Locking is
used to orchestrate and limit access to a resource in a multithreaded environment.

If multiple threads can access the same resource without causing errors or unpredictable
behaviors/results, then we are in a thread-safe context. Thread safety can be achieved via
various synchronization techniques (for example, the Java synchronized keyword).

Next, let's tackle several questions and coding challenges regarding concurrency in Java.

Questions and coding challenges
In this section, we will cover 20 concurrency questions and coding challenges that are
very popular in interviews.

You should be aware that Java concurrency is a wide and complex topic that needs to
be covered in great detail by any Java developer. Having fundamental insights about
Java concurrency should be enough to pass a general Java language interview, but it is
not enough for specific interviews (for example, if you apply for a job that will imply
developing a concurrency API, then you must deep dive into this topic and learn
advanced concepts – most probably, the interview will be concurrency-centric).

Coding challenge 1 – Thread life cycle states
Problem: Enumerate and explain, in a few sentences, the states of a Java Thread.

Solution: The states of a Java thread are available via the Thread.State enumeration.
The possible states of a Java thread can be seen in the following diagram:

Questions and coding challenges 675

16.2 – Java thread states

The different lifecycle states of a Java Thread are as follows:

•	 The NEW state: A thread that is created but not started (this is the state until the
Thread#start() method is invoked).

•	 The RUNNABLE state: By calling the Thread#start() method, the thread passes
from NEW to RUNNABLE. In the RUNNABLE state, a thread can be running or
ready to run. A thread that is waiting for the JVM (Java Virtual Machine) thread
scheduler to allocate the necessary resources and time to run is ready to run, but
it is not running yet. As soon as the CPU is available, the thread scheduler will run
the thread.

•	 The BLOCKED state: A thread that executes synchronized blocks or I/O tasks may
enter the BLOCKED state. For example, if a thread, t1, attempts to enter into a
synchronized block of code (for example, a block of code marked synchronized)
that is already being accessed by another thread, t2, then t1 is held in the BLOCKED
state until it can acquire the required lock.

•	 The WAITING state: A thread, t1, that waits (without having set an explicit timeout
period) for another thread, t2, to finish its job is in the WAITING state.

•	 The TIMED WAITING state: A thread, t1, that waits for an explicit period of time
(typically, this is specified in milliseconds or seconds) for another thread, t2, to
finish its job is in the TIMED_WAITING state.

676 Concurrency

•	 The TERMINATED state: A Java thread that is abnormally interrupted or
successfully finishes its job is in the TERMINATE state.

Besides describing the possible states of a Java thread, the interviewer might ask you to
code an example for each state. This is why I highly recommended that you take your
time and analyze the application named ThreadLifecycleState (for brevity, the code is not
listed in the book). The application is structured in a very intuitive way, and the leading
comments explain each scenario/state.

Coding challenge 2 – Deadlocks
Problem: Explain deadlock to us and we'll hire you!

Solution: Hire me, and I'll explain it to you.

Here, we've just described a deadlock.

A deadlock can be explained like this: thread T1 holds the lock, P, and is trying to acquire
the lock, Q. At the same time, there is thread T2 that holds the lock, Q, and is trying to
acquire the lock, P. This kind of deadlock is known as circular wait or deadly embrace.

Java doesn't provide deadlock detection and/or a resolving mechanism (like databases
have, for example). This means that a deadlock can be very embarrassing for an
application. A deadlock can partially or completely block an application. This leads to
significant performance penalties, unexpected behaviors/results, and more. Commonly,
deadlocks are hard to find and debug, and they force you to restart the application.

The best way to avoid race deadlocks is to avoid using nested locks or unnecessary locks.
Nested locks are quite prone to deadlocks.

A common problem of simulating a deadlock is The Dining Philosophers problem. You
can find a detailed explanation and implementation of this problem in the Java Coding
Problems book (https://www.packtpub.com/programming/java-coding-
problems). Java Coding Problems contains two chapters that are dedicated to Java
concurrency and are meant to dive deep into this topic using specific problems.

In the code bundle for this book, you can find a simple example of causing a deadlock
named Deadlock.

https://www.packtpub.com/programming/java-coding-problems

Questions and coding challenges 677

Coding challenge 3 – Race conditions
Problem: Explain what race conditions are.

Solution: First of all, we must mention that a snippet/block of code that can be executed
by multiple threads (that is, executed concurrently) and exposes shared resources (for
example, shared data) is known as a critical section.

Race conditions occur when threads pass through such critical sections without thread
synchronization. The threads race through the critical section attempting to read/
write shared resources. Depending on the order in which threads finish this race, the
application's output changes (two runs of the application may produce different outputs).
This leads to inconsistent behavior in the application.

The best way to avoid race conditions involves the proper synchronization of critical
sections by using locks, synchronized blocks, atomic/volatile variables, synchronizers,
and/or message passing.

Coding challenge 4 – reentrant locking
Problem: Explain what is the reentrant locking concept.

Solution: Generally speaking, reentrant locking refers to a process that can acquire a lock
multiple times without deadlocking itself. If a lock is not reentrant, then the process can
still acquire it. However, when the process tries to acquire the lock again, it will be blocked
(deadlock). A reentrant lock can be acquired by another thread or recursively by the same
thread.

A reentrant lock can be used for a piece of code that doesn't contain updates that could
break it. If the code contains a shared state that can be updated, then acquiring the lock
again will corrupt the shared state since the code is called while it is executing.

In Java, a reentrant lock is implemented via the ReentrantLock class. A reentrant
lock acts like this: when the thread enters the lock for the first time, a hold count is set
to one. Before unlocking, the thread can re-enter the lock causing the hold count to be
incremented by one for each entry. Each unlock request decrements the hold count by
one, and, when the hold count is zero, the locked resource is opened.

678 Concurrency

Coding challenge 5 – Executor and ExecutorService
Problem: What are Executor and ExecutorService?

Solution: In the java.util.concurrent package, there are a number of interfaces
that are dedicated to executing tasks. The simplest one is named Executor. This
interface exposes a single method named execute (Runnable command).

A more complex and comprehensive interface, which provides many additional methods,
is ExecutorService. This is an enriched version of Executor. Java comes with a full-
fledged implementation of ExecutorService, named ThreadPoolExecutor.

In the code bundle for this book, you can find simple examples of using Executor and
ThreadPoolExecutor in the application named ExecutorAndExecutorService.

Coding challenge 6 – Runnable versus Callable
Problem: What is the difference between the Callable interface and the Runnable
interface?

Solution: The Runnable interface is a functional interface that contains a single method
named run(). The run() method doesn't take any parameters and returns void.
Moreover, it cannot throw checked exceptions (only RuntimeException). These
statements make Runnable suitable in scenarios where we are not looking for the result
of the thread execution. The run() signature is as follows:

void run()

On the other hand, the Callable interface is a functional interface that contains a single
method named call(). The call() method returns a generic value and can throw
checked exceptions. Typically, Callable is used in ExecutorService instances. It is
useful for starting an asynchronous task and then calling the returned Future instance to
get its value. The Future interface defines methods for obtaining the result generated by
a Callable object and for managing its state. The call() signature is as follows:

V call() throws Exception

Notice that both of these interfaces represent a task that is intended to be executed
concurrently by a separate thread.

In the code bundle for this book, you can find simple examples of using Runnable and
Callable in the application named RunnableAndCallable.

Questions and coding challenges 679

Coding challenge 7 – Starvation
Problem: Explain what thread starvation is.

Solution: A thread that never (or very rarely) gets CPU time or access to the shared
resources is a thread that experiences starvation. Since it cannot obtain regular access to
shared resources, this thread cannot progress its job. This happens because other threads
(so-called greedy threads) get access before this thread and make the resources unavailable
for long periods of time.

The best way to avoid thread starvation is to use fair locks, such as Java ReentrantLock.
A fair lock grants access to the thread that has been waiting the longest. Having
multiple threads run at once while preventing starvation can be accomplished via Java
Semaphore. A fair Semaphore guarantees the granting of permits under contention
using FIFO.

Coding challenge 8 – Livelocks
Problem: Explain what thread livelock is.

Solution: A livelock takes place when two threads keep taking actions in response to
another thread. The threads don't make any progress with their own jobs. Notice that the
threads are not blocked; both of them are too busy responding to each other to resume
work.

Here is an example of a livelock: imagine two people trying to cross each other in a
hallway. Mark moves to his right to let Oliver pass, and Oliver moves to his left to let Mark
pass. Both are now blocking each other. Mark sees that he's blocking Oliver and moves
to his left, and Oliver moves to his right after seeing that he's blocking Mark. They never
manage to cross each other and keep blocking each other.

We can avoid livelocks via ReentrantLock. This way, we can determine which thread
has been waiting the longest and assign it a lock. If a thread can't acquire a lock, it should
release the previously acquired locks and try again later.

Coding challenge 9 – Start() versus run()
Problem: Explain the main differences between the start() method and the run()
method in a Java Thread.

Solution: The main difference between start() and run() is the fact that the
start() method creates a new thread while the run() method doesn't. The start()
method creates a new thread and calls the block of code written inside the run() method
of this new thread. The run() method executes that code on the same thread (that is, the
calling thread) without creating a new thread.

680 Concurrency

Another difference is that calling start() twice on the thread object will throw an
IllegalStateException. On the other hand, calling the run() method twice
doesn't lead to an exception.

Typically, novices ignore these differences, and, since the start() method eventually
calls the run() method, they believe there is no reason to call the start() method.
Therefore, they call the run() method directly.

Coding challenge 10 – Thread versus Runnable
Problem: To implement a thread, should we extend Thread or implement Runnable?

Solution: As the question suggests, implementing a Java thread can be accomplished by
extending java.lang.Thread or by implementing java.lang.Runnable. The
preferred way to go is to implement Runnable.

Most of the time, we implement a thread just to give it something to run, not to overwrite
the behavior of the Thread. As long as all we want is to give something to run to a
thread, we definitely should stick to implementing Runnable. In fact, using Callable
or FutureTask is an even better choice.

In addition to this, by implementing Runnable, you can still extend another class. By
extending Thread, you cannot extend another class since Java doesn't support multiple
inheritances.

Finally, by implementing Runnable, we separate the task definition from the
task execution.

Coding challenge 11 – CountDownLatch versus
CyclicBarrier
Problem: Explain the main differences between CountDownLatch and
CyclicBarrier.

Solution: CountDownLatch and CyclicBarrier are two of the five Java
synchronizers next to Exchanger, Semaphore, and Phaser.

The main difference between CountDownLatch and CyclicBarrier is the fact
that a CountDownLatch instance cannot be reused once the countdown reaches zero.
On the other hand, a CyclicBarrier instance is reusable. A CyclicBarrier
instance is cyclical because it can be reset and reused. To do this, call the reset()
method after all of the threads waiting at the barrier are released; otherwise,
BrokenBarrierException will be thrown.

Questions and coding challenges 681

Coding challenge 12 – wait() versus sleep()
Problem: Explain the main differences between the wait() method and the sleep()
method.

Solution: The main difference between the wait() method and the sleep()
method is that wait() must be called from a synchronized context (for example,
from a synchronized method), while the sleep() method doesn't need a
synchronized context. Calling wait() from a non-synchronized context will throw an
IllegalMonitorStateException.

Additionally, it is important to mention that wait() works on Object, while
sleep() works on the current thread. Essentially, wait() is a non-static method
defined in java.lang.Object, while sleep() is a static method defined in
java.lang.Thread.

Moreover, the wait() method releases the lock, while the sleep() method doesn't
release the lock. The sleep() method only pauses the current thread for a certain period
of time. Both of them throw IntrupptedException and can be interrupted.

Finally, the wait() method should be called in a loop that decides when the lock should
be released. On the other hand, it is not recommended that you call the sleep() method
in a loop.

Coding challenge 13 – ConcurrentHashMap versus
Hashtable
Problem: Why is ConcurrentHashMap faster than Hashtable?

Solution: ConcurrentHashMap is faster than Hashtable because of its special
internal design. ConcurrentHashMap internally divides a map into segments (or
buckets), and it locks only a particular segment during an update operation. On the other
hand, Hashtable locks the whole map during an update operation. So, Hashtable
uses a single lock for the whole data, while ConcurrentHashMap uses multiple locks on
different segments (buckets).

Moreover, reading from a ConcurrentHashMap using get() is lock-free (no locks),
while all the Hashtable operations are simply synchronized.

682 Concurrency

Coding challenge 14 – ThreadLocal
Problem: What is Java ThreadLocal?

Solution: Java threads share the same memory. However, sometimes, we need to have
dedicated memory for each thread. Java provides ThreadLocal as a means to store
and retrieve values for each thread separately. A single instance of ThreadLocal can
store and retrieve the values of multiple threads. If thread A stores the x value and thread
B stores the y value in the same instance of ThreadLocal, then, later on, thread A
retrieves the x value, and thread B retrieves the y value. Java ThreadLocal is typically
used in the following two scenarios:

1.	 To provide per-thread instances (thread safety and memory efficiency)

2.	 To provide per-thread context

Coding challenge 15 – submit() versus execute()
Problem: Explain the main differences between the ExecutorService#submit()
and Executor#execute() methods.

Solution: While both of these methods are used to submit a Runnable task for
execution, they are not the same. The main difference can be observed by simply checking
their signatures. Notice that submit() returns a result (that is, a Future object
representing the task), while execute() returns void. The returned Future object can
be used to programmatically cancel the running thread later on (prematurely). Moreover,
by using the Future#get() method, we can wait for the task to complete. If we submit
a Callable, then the Future#get() method will return the result of calling the
Callable#call() method.

Coding challenge 16 – interrupted() and isInterrupted()
Problem: Explain the main differences between the interrupted() and
isInterrupted() methods.

Solution: The Java multithreading interrupt technique uses an internal flag known as the
interrupt status. The Thread.interrupt() method interrupts the current thread and
sets this flag to true.

The main difference between the interrupted() and isInterrupted()
methods is the fact that the interrupted() method clears the interrupt status while
isInterrupted() doesn't.

Questions and coding challenges 683

If the thread was interrupted, then Thread.interrupted() will return
true. However, besides testing, if the current thread was interrupted, Thread.
interrupted() clears the interrupted status of the thread (that is, sets it to false).

The non-static isInterrupted() method doesn't change the interrupt status flag.

As a rule of thumb, after catching InterruptedException, don't forget to restore the
interrupt by calling Thread.currentThread().interrupt(). This way, the caller
of our code will be aware of the interruption.

Coding challenge 17 – Canceling a thread
Problem: How can we stop or cancel a thread?

Solution: Java doesn't provide a preemptive way of stopping a thread. Therefore, to
cancel a task, a common practice is to rely on a loop that uses a flag condition. The task's
responsibility is to check this flag periodically, and when it finds the flag set, then it should
stop as quickly as possible. Notice that this flag is commonly declared as volatile
(also known as the lightweight synchronization mechanism). Being a volatile flag, it
is not cached by threads, and operations on it are not reordered in memory; therefore,
a thread cannot see an old value. Any thread that reads a volatile field will see the
most recently written value. This is exactly what we need in order to communicate the
cancellation action to all running threads that are interested in this action. The following
diagram illustrates this:

16.3 – Volatile flag read/write

Notice that the volatile variables are not a good fit for read-modify-write scenarios.
For such scenarios, we will rely on atomic variables (for example, AtomicBoolean,
AtomicInteger, and AtomicReference).

In the code bundle for this book, you can find an example of canceling a thread. The
application is named CancelThread.

684 Concurrency

Coding challenge 18 – sharing data between threads
Problem: How can we share data between two threads?

Solution: Sharing data between two (or more) threads can be done via thread-safe shared
objects or data structures. Java comes with a built-in set of thread-safe data structures such
as BlockingQueue, LinkedBlockingQueue, and ConcurrentLinkedDeque. It is
very convenient to rely on these data structures to share data between threads because you
don't have to bother about thread safety and inter-thread communication.

Coding challenge 19 – ReadWriteLock
Problem: Explain what ReadWriteLock is in Java.

Solution: The main purpose of ReadWriteLock is to sustain the efficiency and thread
safety of reading and writing operations in a concurrent environment. It accomplishes this
goal via the lock striping concept. In other words, ReadWriteLock uses separate locks
for reads and writes. More precisely, ReadWriteLock keeps a pair of locks: one for read-
only operations and one for writing operations. As long as there are no writer threads,
multiple reader threads can hold the read lock simultaneously (shared pessimistic lock). A
single writer can write at a time (exclusive/pessimistic locking). So, ReadWriteLock can
significantly improve the performance of the application.

Besides ReadWriteLock, Java comes with ReentrantReadWriteLock and
StampedLock. The ReentrantReadWriteLock class adds the reentrant locking
concept (refer to Coding challenge 4) to ReadWriteLock. On the other hand,
StampedLock performs better than ReentrantReadWriteLock and supports
optimistic reads. But it is not reentrant; therefore, it is prone to deadlocks.

Coding challenge 20 – Producer-Consumer
Problem: Provide an implementation for the famous Producer-Consumer problem.

Note
This is a favorite problem during any Java multithreading interview!

Solution: The Producer-Consumer problem is a design pattern that can be represented
as follows:

Questions and coding challenges 685

16.4 – Producer-Consumer design pattern

Most commonly, in this pattern, the producer thread and the consumer thread
communicate via a queue (the producer enqueues data and the consumer dequeues data)
and a set of rules specific to the modeled business. This queue is known as the data buffer.
Of course, depending on the process design, other data structures can play the role of data
buffer as well.

Now, let's assume the following scenario (set of rules):

•	 If the data buffer is empty, then the producer produces one product (by adding it to
the data buffer).

•	 If the data buffer is not empty, then the consumer consumes one product (by
removing it from the data buffer).

•	 As long as the data buffer is not empty, the producer waits.

•	 As long as the data buffer is empty, the consumer waits.

Next, let's solve this scenario via two common approaches. We will start with a solution
that is based on the wait() and notify() methods.

Producer-Consumer via wait() and notify()
Some interviewers may ask you to implement a Producer-Consumer application using
the wait() and notify() methods. In other words, they don't allow you to use a
built-in thread-safe queue such as BlockingQueue.

For example, let's consider that the data buffer (queue) is represented by a LinkedList,
that is, a non-thread-safe data structure. To ensure that this shared LinkedList is
accessible in a thread-safe manner by the producer and the consumer, we rely on the
synchronized keyword.

686 Concurrency

The producer
If the queue is not empty, then the producer waits until the consumer finishes. To do this,
the producer relies on the wait() method, as follows:

synchronized (queue) {

 while (!queue.isEmpty()) {

 logger.info("Queue is not empty ...");

 queue.wait();

 }

}

On the other hand, if the queue is empty, then the producer enqueues one product and
notifies the consumer thread via notify(), as follows:

synchronized (queue) {

 String product = "product-" + rnd.nextInt(1000);

 // simulate the production time

 Thread.sleep(rnd.nextInt(MAX_PROD_TIME_MS));

 queue.add(product);

 logger.info(() -> "Produced: " + product);

 queue.notify();

}

After adding a product to the queue, the consumer should be ready to consume it.

The consumer
If the queue is empty, then the consumer waits until the producer finishes. For this, the
producer relies on the wait() method, as follows:

synchronized (queue) {

 while (queue.isEmpty()) {

 logger.info("Queue is empty ...");

 queue.wait();

 }

}

Questions and coding challenges 687

On the other hand, if the queue is not empty, then the consumer dequeues one product
and notifies the producer thread via notify(), as follows:

synchronized (queue) {

 String product = queue.remove(0);

 if (product != null) {

 // simulate consuming time

 Thread.sleep(rnd.nextInt(MAX_CONS_TIME_MS));

 logger.info(() -> "Consumed: " + product);

 queue.notify();

 }

}

The complete code is available in the bundled code, ProducerConsumerWaitNotify.

Producer-Consumer via built-in blocking queues
If you can use a built-in blocking queue, then you can choose a BlockingQueue or
even a TransferQueue. Both of them are thread-safe. In the following code, we use a
TransferQueue or, more precisely, a LinkedTransferQueue.

The producer
The producer waits for the consumer to be available via hasWaitingConsumer():

while (queue.hasWaitingConsumer()) {

 String product = "product-" + rnd.nextInt(1000);

 // simulate the production time

 Thread.sleep(rnd.nextInt(MAX_PROD_TIME_MS));

 queue.add(product);

 logger.info(() -> "Produced: " + product);

}

After adding a product to the queue, the consumer should be ready to consume it.

688 Concurrency

The consumer
The consumer uses the poll() method with a timeout to extract the product:

// MAX_PROD_TIME_MS * 2, just give enough time to the producer

String product = queue.poll(

 MAX_PROD_TIME_MS * 2, TimeUnit.MILLISECONDS);

if (product != null) {

 // simulate consuming time

 Thread.sleep(rnd.nextInt(MAX_CONS_TIME_MS));

 logger.info(() -> "Consumed: " + product);

}

The complete code is available in the bundled code, ProducerConsumerQueue

Summary
In this chapter, we covered the most popular questions that occur in Java multithreading
interviews. Nevertheless, Java concurrency is a vast topic, and it is very important to deep
dive into it. I strongly suggest that you read Java Concurrency in Practice by Brian Goetz.
This is a must-read for any Java developer.

In the next chapter, we will cover a hot topic: Java functional-style programming.

17
Functional-Style

Programming
As you probably know, Java is not a purely functional programming language like Haskell,
but starting with version 8, Java has added some functional-style support. The effort
of adding this support was a success and functional-style code was widely adopted by
developers and companies. Functional-style programming sustains code that is more
understandable, maintainable, and testable. However, writing Java code in the functional
style requires serious knowledge of lambdas, the stream API, Optional, functional
interfaces, and so on. All these functional programming topics can be interview topics
as well and, in this chapter, we will cover some of the hot questions that are mandatory to
know for passing a regular Java interview. Our agenda contains the following topics:

•	 Java functional-style programming in a nutshell

•	 Questions and coding challenges

Let's get started!

690 Functional-Style Programming

Java functional-style programming
in a nutshell
As usual, this section is meant to highlight and refresh the main concepts of our topic and
to provide a comprehensive resource for answering the fundamental questions that may
occur in a technical interview.

Key concepts of functional-style programming
So, the key concepts of functional programming include the following:

•	 Functions as first-class objects

•	 Pure functions

•	 Higher-order functions

Let's briefly dive into each of these concepts.

Functions as first-class objects
Saying that functions are first-class objects means that we can create an instance of a
function as having a variable referencing that function instance. This is like referencing a
String, List, or any other object. Moreover, functions can be passed as parameters to
other functions. However, Java methods are not first-class objects. The best we can do is to
rely on Java lambda expressions.

Pure functions
A pure function is a function whose execution has no side effects and the return value
depends only on its input parameters. The following Java method is a pure function:

public class Calculator {

 public int sum(int x, int y) {

 return x + y;

 }

}

If a method uses member variables or mutates the states of a member variable, then it is
not a pure function.

Java functional-style programming in a nutshell 691

Higher-order functions
A higher-order function takes one or more functions as parameters and/or returns
another function as a result. Java emulates higher-order functions via lambda expressions.
In other words, in Java, a higher-order function is a method that gets one (or more)
lambda expressions as arguments and/or returns another lambda expression.

For example, the Collections.sort() method, which takes a Comparator as
parameter, is a higher-order function:

Collections.sort(list, (String x, String y) -> {

 return x.compareTo(y);

});

The first parameter of Collections.sort() is a List and the second parameter
is a lambda expression. This lambda expression parameter is what makes
Collections.sort() a higher-order function.

Pure functional programming rules
Now, let's briefly discuss pure functional programming rules. Pure functional
programming has a set of rules to follow too. These are as follows:

•	 No state

•	 No side effects

•	 Immutable variables

•	 Favoring recursion over looping

Let's briefly dive into each of these rules.

No state
By no state, we do not mean that functional programming eliminates state. Commonly, no
state means that there is no external state to the function. In other words, a function may
work with local variables that contain temporary states internally, but it cannot reference
any member variables of the class/object it belongs to.

692 Functional-Style Programming

No side effects
By no side effects, we should understand that a function cannot change (mutate) any
state outside of the function (outside of its functional scope). State outside of a function
includes the following:

•	 The member variables in the class/object that contain that function

•	 The member variables that are passed as parameters to the function

•	 Or the state in external systems (for example, databases or files).

Immutable variables
Functional programming encourages and sustains the usage of immutable variables.
Relying on immutable variables helps us to avoid side effects in a much easier and more
intuitive way.

Favoring recursion over looping
Since recursion relies on repeated function calls to emulate looping, the code becomes
more functional. This means that the following iterative approach for calculating factorials
is not encouraged by functional programming:

static long factorial(long n) {

 long result = 1;

 for (; n > 0; n--) {

 result *= n;

 }

 return result;

}

Functional programming encourages the following recursive approach:

static long factorial(long n) {

 return n == 1 ? 1 : n * factorial(n - 1);

}

Questions and coding challenges 693

We use tail recursion to improve the performance penalty caused by the fact that, in the
preceding example, every function call is saved as a frame in the recursion stack. Tail
recursion is preferred when there are many recursive calls. In tail recursion, the function
executes the recursive call as the last thing to do, so the compiler doesn't need to save the
function call as a frame in the recursion stack. Most compilers will optimize tail recursion,
hence avoiding the performance penalty:

static long factorialTail(long n) {

 return factorial(1, n);

}

static long factorial(long acc, long v) {

 return v == 1 ? acc : factorial(acc * v, v - 1);

}

Alternatively, looping can be achieved via the Java Stream API, which is functionally
inspired:

static long factorial(long n) {

 return LongStream.rangeClosed(1, n)

 .reduce(1, (n1, n2) -> n1 * n2);

}

Now, it is time to practice some questions and coding challenges.

Questions and coding challenges
In this section, we cover 21 questions and coding challenges that are very popular in
interviews. Let's begin!

Coding challenge 1 – Lambda parts
Problem: Describe the parts of a lambda expression in Java. In addition, what
characterizes a lambda expression?

694 Functional-Style Programming

Solution: As the following diagram reveals, a lambda has three main parts:

Figure 17.1 – Lambda parts

The parts of a lambda expression are as follows:

•	 On the left of the arrow, there are the parameters of this lambda that are used in the
lambda body. In this example, these are the parameters of the FilenameFilter.
accept(File folder, String fileName) method.

•	 On the right of the arrow, there is the lambda body. In this example, the lambda
body checks whether the folder (folder) in which the file (fileName) was found
can be read and whether the name of this file is suffixed with the .pdf string.

•	 The arrow that sits between the list of parameters and the body of a lambda acts as a
separator.

Next, let's talk about the characteristics of a lambda expression. So, if we write the
anonymous class version of the lambda from the preceding diagram, then it will be as
follows:

FilenameFilter filter = new FilenameFilter() {

 @Override

 public boolean accept(File folder, String fileName) {

 return folder.canRead() && fileName.endsWith(".pdf");

 }

};

Now, if we compare the anonymous version and the lambda expression, then we notice
that the lambda expression is a concise anonymous function that can be passed as a
parameter to a method or be held in a variable.

Questions and coding challenges 695

The four words shown in the following diagram characterize a lambda expression:

Figure 17.2 – Lambda characteristics

As a rule of thumb, keep in mind that lambdas sustain the Behavior Parameterization
design pattern (a behavior is passed as parameter of a function) and it can be used only in
the context of a functional interface.

Coding challenge 2 – Functional interface
Problem: What is a functional interface?

Solution: In Java, a functional interface is an interface that contains only one abstract
method. In other words, a functional interface contains only one method that is not
implemented. So, a functional interface wraps a function as an interface and the function
is represented by a single abstract method on the interface.

Optionally, besides this abstract method, a functional interface can have default
and/or static methods as well. Commonly, a functional interface is annotated with
@FunctionalInterface. This is just an informative annotation type that's used
to mark a functional interface.

Here is an example of a functional interface:

@FunctionalInterface

public interface Callable<V> {

 V call() throws Exception;

}

As a rule of thumb, if an interface has more methods without implementation (that is,
abstract methods), then it is no longer a functional interface. This means that such an
interface cannot be implemented by a Java lambda expression.

696 Functional-Style Programming

Coding challenge 3 – Collections versus streams
Problem: What are the main differences between collections and streams?

Solution: Collections and streams are quite different. Some of the differences are
as follows:

•	 Conceptual differences: The main difference between collections and streams
consists of the fact that they are conceptually two different things. While collections
are meant to store data (for example, List, Set, and Map), streams are meant to
apply operations (for example, filtering, mapping, and matching) on that data. In
other words, streams apply complex operations on a view/source represented by
data stored on a collection. Moreover, any modification/change performed on a
stream is not reflected in the original collection.

•	 Data modification: While we can add/remove elements from a collection, we
cannot add/remove elements from a stream. Practically, a stream consumes a view/
source, performs operations on it, and returns a result without modifying the view/
source.

•	 Iteration: While a stream consumes a view/source, it automatically and internally
performs the iteration of that view/source. The iteration takes place depending on
the chosen operations that should be applied to the view/source. On the other hand,
collections must be iterated externally.

•	 Traversal: While collections can be traversed multiple times, streams can be
traversed only once. So, by default, Java streams cannot be reused. Attempting
to traverse a stream twice will lead to an error reading Stream has already been
operated on or closed.

•	 Construction: Collections are eagerly constructed (all the elements are present
right from the beginning). On the other hand, streams are lazily constructed (the
so-called intermediate operations are not evaluated until a terminal operation
is invoked).

Coding challenge 4 – The map() function
Problem: What does the map() function do and why would you use it?

Questions and coding challenges 697

Solution: The map() function is an intermediate operation named mapping and available
via the Stream API. It is used to transform a type of object to other type by simply
applying the given function. So, map() traverses the given stream and transforms each
element in a new version of it by applying the given function and accumulating the results
in a new Stream. The given Stream is not modified. For example, transforming a
List<String> into a List<Integer> via Stream#map() can be done as follows:

List<String> strList = Arrays.asList("1", "2", "3");

List<Integer> intList = strList.stream()

 .map(Integer::parseInt)

 .collect(Collectors.toList());

Challenge yourself to practice more examples. Try to apply map() to transform an array
into another array.

Coding challenge 5 – The flatMap() function
Problem: What does the flatMap() function do and why would you use it?

Solution: The flatMap() function is an intermediate operation named flattening and is
available via the Stream API. This function is an extension of map(), meaning that apart
from transforming the given object into another type of object, it can also flatten it. For
example, having a List<List<Object>>, we can turn it into a List<Object> via
Stream#flatMap() as follows:

List<List<Object>> list = ...

List<Object> flatList = list.stream()

 .flatMap(List::stream)

 .collect(Collectors.toList());

The next coding challenge is related to this one, so consider this as well.

Coding challenge 6 – map() versus flatMap()
Problem: What's the difference between map() and flatMap() functions?

Solution: Both of these functions are intermediate operations capable of transforming
a given type of object into another type of object by applying the given function. In
addition, the flatMap() function is capable of flattening the given object as well. In
other words, flatMap() can also flatten a Stream object.

698 Functional-Style Programming

Why does this matter? Well, map() knows how to wrap a sequence of elements
in a Stream, right? This means that map() can produce streams such as
Stream<String[]>, Stream<List<String>>, Stream<Set<String>>, or
even Stream<Stream<R>>. But the problem is that these kinds of streams cannot be
manipulated successfully (that is, as we expected) by stream operations such as sum(),
distinct(), and filter().

For example, let's consider the following List:

List<List<String>> melonLists = Arrays.asList(

 Arrays.asList("Gac", "Cantaloupe"),

 Arrays.asList("Hemi", "Gac", "Apollo"),

 Arrays.asList("Gac", "Hemi", "Cantaloupe"));

We try to obtain the distinct names of melons from this list. If wrapping an array
into a stream can be done via Arrays.stream(), for a collection, we have
Collection.stream(). Therefore, the first attempt may look as follows:

melonLists.stream()

 .map(Collection::stream) // Stream<Stream<String>>

 .distinct();

But this will not work because map() will return Stream<Stream<String>>. The
solution is provided by flatMap(), as follows:

List<String> distinctNames = melonLists.stream()

 .flatMap(Collection::stream) // Stream<String>

 .distinct()

 .collect(Collectors.toList());

The output is as follows: Gac, Cantaloupe, Hemi, Apollo.

Moreover, if you find trouble understanding these functional programming methods, then
I strongly recommend you to read my other book, Java Coding Problems, available from
Packt (https://www.packtpub.com/programming/java-coding-problems).
That book contains two comprehensive chapters about Java functional-style programming
that provide detailed explanations, diagrams, and applications useful for deep diving into
this topic.

https://www.packtpub.com/programming/java-coding-problems

Questions and coding challenges 699

Coding challenge 7 – The filter() function
Problem: What does the filter() function do and why would you use it?

Solution: The filter() function is an intermediate operation named filtering available
via the Stream API. It is used to filter the elements of a Stream that satisfy a certain
condition. The condition is specified via the java.util.function.Predicate
function. This predicate function is nothing but a function that takes as a parameter an
Object and returns a boolean.

Let's assume that we have the following List of integers:

List<Integer> ints

 = Arrays.asList(1, 2, -4, 0, 2, 0, -1, 14, 0, -1);

Streaming this list and extracting only non-zero elements can be accomplished as follows:

List<Integer> result = ints.stream()

 .filter(i -> i != 0)

 .collect(Collectors.toList());

The resulting list will contain the following elements: 1, 2, -4, 2, -1, 14, -1.

Notice that, for several common operations, the Java Stream API already provides
out-of-the-box intermediate operations. For example, there is no need to use filter()
and define a Predicate for operations such as the following:

•	 distinct(): Removes duplicates from the stream

•	 skip(n): Discards the first n elements

•	 limit(s): Truncates the stream to be no longer than s in length

•	 sorted(): Sorts the stream according to the natural order

•	 sorted(Comparator<? super T> comparator): Sorts the stream
according to the given Comparator

All these functions are built into the Stream API.

700 Functional-Style Programming

Coding challenge 8 – Intermediate versus
terminal operations
Problem: What is the main difference between intermediate and terminal operations?

Solution: Intermediate operations return another Stream, while the terminal operations
produce a result other than Stream (for example, a collection or a scalar value). In other
words, intermediate operations allow us to chain/call multiple operations in a type of
query named a pipeline.

Intermediate operations are not executed until a terminal operation is invoked. This
means that intermediate operations are lazy. Mainly, they are executed at the moment
when a result of some given processing is actually needed. A terminal operation triggers
the traversal of the Stream and the pipeline is executed.

Among the intermediate operations, we have map(), flatMap(), filter(),
limit(), and skip(). Among the terminal operations, we have sum(), min(),
max(), count(), and collect().

Coding challenge 9 – The peek() function
Problem: What does the peek() function do and why would you use it?

Solution: The peek() function is an intermediate operation named peeking available via
the Stream API. It allows us to see through a Stream pipeline. Mainly, peek()should
execute a certain non-interfering action on the current element and forward the element to
the next operation in the pipeline. Typically, this action consists of printing a meaningful
message on the console. In other words, peek() is a good choice for debugging issues
related to streams and lambda expression processing. For example, imagine that we had
the following list of addresses:

addresses.stream()

 .peek(p -> System.out.println("\tstream(): " + p))

 .filter(s -> s.startsWith("c"))

 .sorted()

 .peek(p -> System.out.println("\tsorted(): " + p))

 .collect(Collectors.toList());

Questions and coding challenges 701

It is important to mention that, even if peek() can be used to mutate state (to modify the
data source of the stream), it stands for look, but don't touch. Mutating state via peek()
can become a real problem in case of parallel stream pipelines because the mutating action
may be called at whatever time and in whatever thread the element is made available by
the upstream operation. So, if the action modifies the shared state, it is responsible for
providing the required synchronization.

As a rule of thumb, think twice before using peek() to mutate the state. Also, be aware
that this practice is a point of contention among developers and can be categorized as bad
practice or even anti-pattern umbrellas.

Coding challenge 10 – Lazy streams
Problem: What does it mean to say that a stream is lazy?

Solution: Saying that a stream is lazy means that a stream defines a pipeline of
intermediate operations that are executed only when the pipeline encounters a terminal
operation. This question is related to Coding challenge 8 of this chapter.

Coding challenge 11 – Functional interfaces versus
regular interfaces
Problem: What is the main difference between a functional interface and a regular
interface?

Solution: The main difference between a functional interface and a regular interface
consists of the fact that a regular interface can contain any number of abstract methods,
while a functional interface can have only one abstract method.

You can consult Coding challenge 2 of this book for a deeper understanding.

Coding challenge 12 – Supplier versus Consumer
Problem: What are the main differences between Supplier and Consumer?

Solution: Supplier and Consumer are two built-in functional interfaces. Supplier
acts as a factory method or as the new keyword. In other words, Supplier defines a
method named get() that doesn't take arguments and returns an object of type T. So, a
Supplier is useful to supply some value.

702 Functional-Style Programming

On the other hand, Consumer defines a method named void accept(T t).
This method accepts a single argument and returns void. The Consumer interface
consumes the given value and applies some operations to it. Unlike other functional
interfaces, Consumer may cause side effects. For example, Consumer can be used as a
setter method.

Coding challenge 13 – Predicates
Problem: What is Predicate?

Solution: Predicate is a built-in functional interface that contains an abstract method
whose signature is boolean test(T object):

@FunctionalInterface

public interface Predicate<T> {

 boolean test(T t);

 // default and static methods omitted for brevity

}

The test() method tests a condition and returns true if that condition is met,
otherwise it returns false. A common usage of a Predicate is in conjunction with the
Stream<T> filter(Predicate<? super T> predicate) method for filtering
unwanted elements of a stream.

Coding challenge 14 – findFirst() versus findAny()
Problem: What are the main differences between findFirst() and findAny()?

Solution: The findFirst() method returns the first element from the stream and is
especially useful in obtaining the first element from a sequence. It returns the first element
from the stream as long as the stream has a defined order. If there is no encounter order,
then findFirst() returns any element from the stream.

On the other hand, the findAny() method returns any element from the stream. In
other words, it returns an arbitrary (non-deterministic) element from the stream.The
findAny() method ignores the encountered order, and, in a non-parallel operation,
it will most likely return the first element, but there is no guarantee of this. In order to
maximize performance, the result cannot be reliably determined in parallel operations.

Questions and coding challenges 703

Notice that, depending on the stream's source and the intermediate operations, streams
may or may not have a defined encounter order.

Coding challenge 15 – Converting arrays to streams
Problem: How would you convert an array to a stream?

Solution: Converting an array of objects into a stream can be done in at least three ways,
as follows:

1.	 The first is via Arrays#stream():

public static <T> Stream<T> toStream(T[] arr) {

 return Arrays.stream(arr);

}

2.	 Second, we can use Stream#of():

public static <T> Stream<T> toStream(T[] arr) {

 return Stream.of(arr);

}

3.	 The last technique is via List#stream():

public static <T> Stream<T> toStream(T[] arr) {

 return Arrays.asList(arr).stream();

}

Converting an array of primitives (for example, integers) into a stream can be done in at
least two ways, as follows:

1.	 Firstly, via Arrays#stream():

public static IntStream toStream(int[] arr) {

 return Arrays.stream(arr);

}

704 Functional-Style Programming

2.	 Secondly, by using IntStream#of():

public static IntStream toStream(int[] arr) {

 return IntStream.of(arr);

}

Of course, for longs, you can use LongStream, and for doubles, you can use
DoubleStream.

Coding challenge 16 – Parallel streams
Problem: What is a parallel stream?

Solution: A parallel stream is a stream that can parallelize the execution using multiple
threads. For example, you may need to filter a stream of 10 million integers to find the
integers smaller than a certain value. Instead of using a single thread to traverse the stream
sequentially, you can employ a parallel stream. This means that multiple threads will
concurrently search for those integers in different parts of the stream and then combine
the result.

Coding challenge 17 – The method reference
Problem: What is a method reference?

Solution: In a nutshell, method references are shortcuts for lambda expressions. Mainly,
the method reference is a technique that's used to call a method by name rather than by a
description of how to call it. The main benefit is readability. A method reference is written
by placing the target reference before the delimiter, ::, and the name of the method is
provided after it. We have the following references:

•	 A method reference to a static method: Class::staticMethod (for example,
Math::max is equivalent to Math.max(x, y))

•	 A method reference to a constructor: Class::new (for example,
AtomicInteger::new is equivalent to new AtomicInteger(x))

•	 A method reference to an instance method from instance: object::instanceMethod
(System.out::println equivalent to System.out.println(foo))

•	 A method reference to an instance method from class type: Class::instanceMethod
(String::length equivalent to str.length())

Questions and coding challenges 705

Coding challenge 18 – The default method
Problem: What is a default method?

Solution: Default methods were added to Java 8 mainly to provide support for interfaces
so that they can evolve beyond an abstract contract (that is, containing only abstract
methods). This facility is very useful for people who write libraries and want to evolve
APIs in a compatible way. Via default methods, an interface can be enriched without
disrupting existing implementations.

A default method is implemented directly in the interface and is recognized by the
default keyword. For example, the following interface defines an abstract method
called area() and a default method called perimeter():

public interface Polygon {

 public double area();

 default double perimeter(double... segments) {

 return Arrays.stream(segments)

 .sum();

 }

}

Since Polygon has a single abstract method, it is a functional interface as well. So, it can
be annotated with @FunctionalInterface.

Coding challenge 19 – Iterator versus Spliterator
Problem: What are the main differences between Iterator and Spliterator?

Solution: Iterator was created for the Collection API, while Spliterator was
created for the Stream API.

By analyzing their names, we notice that Spliterator = Splittable Iterator. Hence, a
Spliterator can split a given source and it can iterate it, too. Splitting is needed for
parallel processing. In other words, an Iterator can sequentially iterate the elements in
Collection, while a Spliterator can iterate the elements of a stream in parallel or
sequential order.

706 Functional-Style Programming

An Iterator can traverse the elements of a collection only via hasNext()/next()
because it doesn't have a size. On the other hand, a Spliterator can provide the
size of the collection either by approximating it via estimateSize() or exactly via
getExactSizeIfKnown().

A Spliterator can use several flags for internally disabling unnecessary operations
(for example, CONCURRENT, DISTINCT, and IMMUTABLE). An Iterator doesn't have
such flags.

Finally, you can create a Spliterator around an Iterator as follows:

Spliterators.spliteratorUnknownSize(

 your_Iterator, your_Properties);

In the book Java Coding Problems (https://www.amazon.com/gp/product/
B07Y9BPV4W/), you can find more details on this topic, including a complete guide for
writing a custom Spliterator.

Coding challenge 20 – Optional
Problem: What is the Optional class?

Solution: Inspired by Haskell and Scala, the Optional class was introduced in Java 8
with the main purpose of mitigating/avoiding NullPointerException. The Java
language architect Brian Goetz's definition is as follows:

Optional is intended to provide a limited mechanism for library method return types
where there needed to be a clear way to represent no result, and using null for such was
overwhelmingly likely to cause errors.

In a nutshell, you can think of Optional as a single value container that contains either a
value or is empty. For example, an empty Optional looks like this:

Optional<User> userOptional = Optional.empty();

And a non-empty Optional looks like this:

User user = new User();

Optional<User> userOptional = Optional.of(user);

In Java Coding Problems (https://www.amazon.com/gp/product/
B07Y9BPV4W/), you can find a complete chapter dedicated to best practices for using
Optional. This is a must-read chapter for any Java developer.

https://www.amazon.com/gp/product/B07Y9BPV4W/
https://www.amazon.com/gp/product/B07Y9BPV4W/
https://www.amazon.com/gp/product/B07Y9BPV4W/
https://www.amazon.com/gp/product/B07Y9BPV4W/

Summary 707

Coding challenge 21 – String::valueOf
Problem: What does String::valueOf mean?

Solution: String::valueOf is a method reference to the valueOf static method of
the String class. Consider reading Coding challenge 17 as well for more information
on this.

Summary
In this chapter, we've covered several hot topics regarding functional-style programming
in Java. While this topic is quite extensive, with many books dedicated to it, the questions
covered here should be enough to pass a regular Java interview that covers the main
features of the Java 8 language.

In the next chapter, we will discuss scaling-related questions.

18
Unit Testing

As a developer (or software engineer), you must have skills in the testing field as well. For
example, developers are responsible for writing the unit tests of their code (for example,
using JUnit or TestNG). Most probably, a pull request that doesn't contain unit tests as
well won't be accepted.

In this chapter, we will cover unit testing interview problems that you may encounter
if you apply for a position such as developer or software engineer. Of course, if you are
looking for a tester (manual/automation) position, then this chapter may represent just
another perspective of testing, so do not expect to see questions specific to manual/
automation tester positions here. In this chapter, we'll cover the following topics:

•	 Unit testing in a nutshell

•	 Questions and coding problems

Let's begin!

Technical Requirements
The codes used in this chapter can be found on GitHub on: https://github.com/
PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/
tree/master/Chapter18

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter18
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter18
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter18

710 Unit Testing

Unit testing in a nutshell
The process of testing an application contains several layers of testing. One of these layers
is the unit testing layer.

Mainly, an application is built by small functional parts called units (for example, a regular
Java method can be considered a unit). Testing the functionality and correctness of these
units under specific inputs/conditions/constraints is called unit testing.

These unit tests are written by developers using the source code and the test plan. Ideally,
every developer should be capable of writing unit tests that test/validate their code. Unit
tests should be meaningful and provide accepted code coverage.

If the unit tests fails, then the developer is responsible for fixing the issues and executing
the unit tests again. The following diagram depicts this statement:

Figure 18.1 – Unit testing flow

Unit testing uses unit test cases. A unit test case is a pair of input data and expected output
meant to shape a test for a certain functionality.

If you are in an interview where you are expected to know unit testing, don't be surprised
if you are asked questions on functional testing and/or integration testing. Hence, it is
advisable to be prepared with answers to these questions as well.

Functional testing is about testing functional requirements based on the given input
and a produced output (behavior) that needs to be compared with the expected output
(behavior). Each functional test uses the functional specification to verify the correctness
of the component (or a group of components) that represents the implementation of that
functional requirement. This is explained in the following diagram:

Figure 18.2 – Functional testing

The goal of integration testing is to find out the defects in the software components
while they are being integrated in an iteratively incremental manner. In other words, the
modules that have been unit tested are integrated (grouped together or aggregated) and
tested by following the integration plan. This has been depicted in the following diagram:

Unit testing in a nutshell 711

Figure 18.3 – Integration testing

A question regarding unit and integration testing that is frequently put to interview
candidates is about highlighting the main differences between these two. The following
table will help you prepare an answer to this question:

Figure 18.4 – Comparison between unit tests and integration tests

A good tester is capable of stressing and abusing the subject of testing without making any
kinds of assumptions or constraints regarding the input. This applies to unit tests as well.
Now that we have touched on unit testing, let's have a look at some coding challenges and
questions on unit testing.

712 Unit Testing

Questions and coding challenges
In this section, we'll cover 15 questions and coding challenges related to unit testing that
are very popular in interviews. Let's begin!

Coding challenge 1 – AAA
Problem: What is AAA in unit testing?

Solution: The AAA acronym stands for [A]rrange, [A]ct, [A]ssert, and it represents an
approach to structuring tests to sustain clean code and readability. Today, AAA is a testing
pattern that's almost a standard across the industry. The following snippet of code speaks
for itself:

@Test

public void givenStreamWhenSumThenEquals6() {

 // Arrange

 Stream<Integer> theStream = Stream.of(1, 2, 3);

 // Act

 int sum = theStream.mapToInt(i -> i).sum();

 // Assert

 assertEquals(6, sum);

}

Arrange section: In this section, we prepare or set up the test. For example, in the
preceding code, we prepared a stream of integers where the elements are 1, 2, and 3.

Act section: In this section, we perform the necessary actions to obtain the result of the
test. For example, in the preceding code, we sum the elements of the stream and store the
result in an integer variable.

Assert section: In this section, we check whether the unit test's result matches the
expected results. This is done via assertions. For example, in the preceding code, we
checked that the sum of the elements is equal to 6.

You can find this code in the application called junit5/ArrangeActAssert.

Questions and coding challenges 713

Coding challenge 2 – FIRST
Problem: What is FIRST in unit testing?

Solution: Good testers use FIRST to avoid many of the pitfalls encountered in unit tests.
The FIRST acronym stands for [F]ast, [I]solated, [R]epeatable, [S]elf-validating, [T]imely.
Let's see what each of them mean:

Fast: It is advisable to write unit tests that run fast. Fast is an arbitrary notion that depends
on how many unit tests you have, how often you run them, and how long you are willing
to wait for them to run. For example, if each unit test has an average completion time of
200 ms and you run 5,000 unit tests, then you'll wait ~17 minutes. Commonly, unit tests
are slow because they access external resources (for example, databases and files).

Isolated: Ideally, you should be able to run any test at any time, in any order. This is
possible if your unit tests are isolated and they focus on small snippets of code. Good
unit tests don't depend on other unit tests, but this is not always achievable. Nevertheless,
strive to avoid chains of dependencies since they are evil when things go wrong, and you'll
have to debug.

Repeatable: A unit test should be repeatable. This means that the unit test's assertions
should produce the same result every time you run it. In other words, the unit tests should
not depend on anything that may introduce variable results to assertions.

Self-validating: Unit tests should be self-validating. This means that you shouldn't
manually verify the results of the tests. This is time-consuming and reveals that the
assertions are not doing their job. Strive to write assertions so that they work as expected.

Timely: It is important to not postpone writing unit tests. The more you postpone, the
more defects you'll face. You'll find out that you cannot find time to come back and write
unit tests. Think of what's happening if we constantly postpone taking out the trash. The
more we postpone, the harder it will be to take it on, and we risk our health. Did I say
anything about the smell? So, write the unit tests in a timely fashion. This is a good habit!

Coding challenge 3 – Test fixtures
Problem: What are test fixtures?

Solution: By test fixtures, we mean any test data that lives outside that test and is used to
set up the application so that it's in a fixed state. Having a fixed state for the application
allows the tests to be run against a constant and known environment.

714 Unit Testing

Coding challenge 4 – Exception testing
Problem: What are the common approaches for testing exceptions in JUnit?

Solution: In JUnit 4, we commonly test exceptions via the try/catch idiom, the
expected element of @Test, and via the ExpectedException rule.

The try/catch idiom prevailed in JUnit 3.x and can be used as follows:

@Test

public void givenStreamWhenGetThenException() {

 Stream<Integer> theStream = Stream.of();

 try {

 theStream.findAny().get();

 fail("Expected a NoSuchElementException to be thrown");

 } catch (NoSuchElementException ex) {

 assertThat(ex.getMessage(), is("No value present"));

 }

}

Since fail()throws an AssertionError, it cannot be used to test this error type.

Starting with JUnit 4, we can use the expected element of the @Test annotation. The
value of this element is the type of the expected exception (subclasses of Throwable).
Check out the following example, which was written using expected:

@Test(expected = NoSuchElementException.class)

public void givenStreamWhenGetThenException() {

 Stream<Integer> theStream = Stream.of();

 theStream.findAny().get();

}

This approach is alright as long as you don't want to test the value of the exception
message. Moreover, pay attention that the test passes if a NoSuchElementException
is thrown by any line of code. You may expect this exception to be caused by a particular
line of code, while it can, in fact, be caused by other code.

Questions and coding challenges 715

Another approach relies on the ExpectedException rule. This approach was
deprecated starting with JUnit 4.13. Let's take a look at the code:

@Rule

public ExpectedException thrown = ExpectedException.none();

@Test

public void givenStreamWhenGetThenException()

 throws NoSuchElementException {

 Stream<Integer> theStream = Stream.of();

 thrown.expect(NoSuchElementException.class);

 thrown.expectMessage("No value present");

 theStream.findAny().get();

}

Via this approach, you can test the value of the exception message. These examples have
been grouped into an application called junit4/TestingExceptions.

Starting with JUnit5, there are two approaches we can use to test exceptions. Both of them
rely on the assertThrows() method. This method allows us to assert that a given
function call (passed in as a lambda expression or even as a method reference) results in
the expected type of exception being thrown. The following example speaks for itself:

@Test

public void givenStreamWhenGetThenException() {

 assertThrows(NoSuchElementException.class, () -> {

 Stream<Integer> theStream = Stream.of();

 theStream.findAny().get();

 });

}

716 Unit Testing

This example just validates the type of exception. However, since the exception has been
thrown, we can assert more details of the thrown exception. For example, we can assert
the value of the exception message as follows:

@Test

public void givenStreamWhenGetThenException() {

 Throwable ex = assertThrows(

 NoSuchElementException.class, () -> {

 Stream<Integer> theStream = Stream.of();

 theStream.findAny().get();

 });

 assertEquals(ex.getMessage(), "No value present");

}

Simply use the ex object to assert anything you consider useful from Throwable.
Whenever you don't need to assert details about the exception, rely on
assertThrows(), without capturing the return. These two examples have been
grouped into an application called junit5/TestingExceptions.

Coding challenge 5 – Developer or tester
Problem: Who should use JUnit – the developer or the tester?

Solution: Commonly, JUnit is used by developers for writing unit tests in Java. Writing
unit tests is a coding process that tests the application code. JUnit is not a testing process.
However, many testers are open to learn and use JUnit for unit testing.

Coding challenge 6 – JUnit extensions
Problem: What useful JUnit extensions do you know/use?

Solution: The most widely used JUnit extensions are JWebUnit (a Java-based testing
framework for web applications), XMLUnit (a single JUnit extension class for testing
XML), Cactus (a simple testing framework for testing server-side Java code), and
MockObject (a mocking framework). You will need to say a few words about each
of these.

Questions and coding challenges 717

Coding challenge 7 – @Before* and
@After* annotations
Problem: What @Before*/@After* annotation do you know about/use?

Solution: In JUnit 4, we have @Before, @BeforeClass, @After, and @AfterClass.

When executing a method before each test, we annotate it with the @Before annotation.
This is useful for executing a common snippet of code before running a test (for example,
we may need to perform some reinitializations before each test). To clean up the stage
after each test, we annotate a method with the @After annotation.

When executing a method only once before all tests, we annotate it with the
@BeforeClass annotation. The method must be static. This is useful for global and
expensive settings, such as opening a connection to a database. To clean up the stage after
all the tests are done, we annotate a static method with the @AfterClass annotation;
for example, closing a database connection.

You can find a simple example under the name junit4/BeforeAfterAnnotations.

Starting with JUnit5, we have @BeforeEach as the equivalent of @Before and
@BeforeAll as the equivalent of @BeforeClass. Practically, @Before and
@BeforeClass were renamed with more suggestive names to avoid confusion.

You can find a simple example of this under the name junit5/BeforeAfterAnnotations.

Coding challenge 8 – Mocking and stubbing
Problem: What is mocking and stubbing?

Solution: Mocking is a technique that's used to create objects that emulate/mimic
real objects. These objects can be pre-programmed (or preset or pre-configured) with
expectations and we can check whether they have been called. Among the most widely
used mocking frameworks available, we have Mockito and EasyMock.

Stubbing is like mocking, except that we cannot check whether they have been called.
Stubs are pre-configured to respond to particular inputs with particular outputs.

Coding challenge 9 – Test suite
Problem: What is a test suite?

Solution: A test suite is the concept of aggregating multiple tests divided among multiple
test classes and packages so that they run together.

718 Unit Testing

In JUnit4, we can define a test suite via the org.junit.runners.Suite runner and
the @SuiteClasses(...) annotation. For example, the following snippet of code is a
test suite that aggregates three tests (TestConnect.class, TestHeartbeat.class,
and TestDisconnect.class):

@RunWith(Suite.class)

@Suite.SuiteClasses({

 TestConnect.class,

 TestHeartbeat.class,

 TestDisconnect.class

})

public class TestSuite {

 // this class was intentionally left empty

}

The complete code is called junit4/TestSuite.

In JUnit5, we can define a test suite via the @SelectPackages and @SelectClasses
annotations.

The @SelectPackages annotation is useful for aggregating tests from different
packages. All we have to do is specify the names of the packages, as shown in the
following example:

@RunWith(JUnitPlatform.class)

@SuiteDisplayName("TEST LOGIN AND CONNECTION")

@SelectPackages({

 "coding.challenge.connection.test",

 "coding.challenge.login.test"

})

public class TestLoginSuite {

 // this class was intentionally left empty

}

Questions and coding challenges 719

The @SelectClasses annotation is useful for aggregating tests via the names of
their classes:

@RunWith(JUnitPlatform.class)

@SuiteDisplayName("TEST CONNECTION")

@SelectClasses({

 TestConnect.class,

 TestHeartbeat.class,

 TestDisconnect.class

})

public class TestConnectionSuite {

 // this class was intentionally left empty

}

The complete code is called junit5/TestSuite.

Additionally, filtering test packages, test classes, and test methods can be done via the
following annotations:

•	 Filter packages: @IncludePackages and @ExcludePackages

•	 Filter test classes: @IncludeClassNamePatterns
and @ExcludeClassNamePatterns

•	 Filter test methods: @IncludeTags and @ExcludeTags

Coding challenge 10 – Ignoring test methods
Problem: How can we ignore a test?

Solution: In JUnit4, we can ignore a test method by annotating it with the @Ignore
annotation. In JUnit5, we can do the same thing via the @Disable annotation.

Ignoring test methods can be useful when we have written some tests in advance and we
want to run the current tests without running these particular tests.

Coding challenge 11 – Assumptions
Problem: What are assumptions?

Solution: Assumptions are used to execute tests if the specified conditions have been met.
They are commonly used to handle external conditions that are required for the test to
execute properly, but that are not under our control and/or are not directly related to what
is being tested.

720 Unit Testing

In JUnit4, assumptions are static methods that can be found in the org.
junit.Assume package. Among these assumptions, we have assumeThat(),
assumeTrue(), and assumeFalse(). The following snippet of code exemplifies the
usage of assumeThat():

@Test

public void givenFolderWhenGetAbsolutePathThenSuccess() {

 assumeThat(File.separatorChar, is('/'));

 assertThat(new File(".").getAbsolutePath(),

 is("C:/SBPBP/GitHub/Chapter18/junit4"));

}

If assumeThat() doesn't meet the given condition, then the test is skipped. The
complete application is called junit4/Assumptions.

In JUnit5, assumptions are static methods that can be found in the
org.junit.jupiter.api.Assumptions package. Among these assumptions,
we have assumeThat(), assumeTrue(), and assumeFalse(). All three come in
different flavors. The following snippet of code exemplifies the usage of assumeThat():

@Test

public void givenFolderWhenGetAbsolutePathThenSuccess() {

 assumingThat(File.separatorChar == '/',

 () -> {

 assertThat(new File(".").getAbsolutePath(),

 is("C:/SBPBP/GitHub/Chapter18/junit5"));

 });

 // run these assertions always, just like normal test

 assertTrue(true);

}

Notice that the test method (assertThat()) will only execute if the assumption is met.
Everything after the lambda will be executed, irrespective of the assumption's validity. The
complete application is called junit5/Assumptions.

Questions and coding challenges 721

Coding challenge 12 – @Rule
Problem: What is @Rule?

Solution: JUnit provides a high degree of flexibility via so-called rules. Rules allows us
to create and isolate objects (code) and reuse this code in multiple test classes. Mainly, we
enhance tests with reusable rules. JUnit comes with built-in rules and with an API that
can be used to write custom rules.

Coding challenge 13 – Method test return type
Problem: Can we return something other than void from a JUnit test method?

Solution: Yes, we can change the return of a test method from void to something
else, but JUnit will not recognize it as a test method, so it will be ignored during the
test's execution.

Coding challenge 14 – Dynamic tests
Problem: Can we write dynamic tests (tests generated at runtime) in JUnit?

Solution: Up until JUnit5, all tests were static. In other words, all the tests annotated
with @Test were static tests that were fully defined at compile time. JUnit5 introduced
dynamic tests – a dynamic test is generated at runtime.

Dynamic tests are generated via a factory method, which is a method annotated with
the @TestFactory annotation. Such a method can return Iterator, Iterable,
Collection, or Stream of DynamicTest instances. A factory method is not
annotated with @Test, and is not private or static. Moreover, dynamic tests cannot
take advantage of life cycle callbacks (for example, @BeforeEach and @AfterEach are
ignored).

Let's look at a simple example:

1: @TestFactory

2: Stream<DynamicTest> dynamicTestsExample() {

3:

4: List<Integer> items = Arrays.asList(1, 2, 3, 4, 5);

5:

6: List<DynamicTest> dynamicTests = new ArrayList<>();

7:

8: for (int item : items) {

9: DynamicTest dynamicTest = dynamicTest(

722 Unit Testing

10: "pow(" + item + ", 2):", () -> {

11: assertEquals(item * item, Math.pow(item, 2));

12: });

13: dynamicTests.add(dynamicTest);

14: }

15:

16: return dynamicTests.stream();

17: }

Now, let's point out the main lines of code:

1: At line 1, we use the @TestFactory annotation to instruct JUnit5 that this is a factory
method for dynamic tests.

2: The factory method returns a Stream<DynamicTest>.

4: The input for our tests is a list of integers. For each integer, we generate a dynamic test.

6: We define a List<DynamicTest>. In this list, we add each generated test.

8-12: We generate a test for each integer. Each test has a name and a lambda expression
containing the requisite assertion(s).

13: We store the generated test in the proper list.

16: We return the Stream of tests.

Running this test factory will produce five tests. The complete example is called
junit5/TestFactory.

Coding challenge 15 – Nested tests
Problem: Can we write nested tests in JUnit5?

Solution: Yes, we can! JUnit 5 supports nested tests via the @Nested annotation.
Practically, we create a nested test class hierarchy. This hierarchy may contain the setup,
teardown, and test methods. Nevertheless, there are some rules that we must respect, as
follows:

•	 Nested test classes are annotated with the @Nested annotation.

•	 Nested test classes are non-static inner classes.

•	 A nested test class can contain one @BeforeEach method, one @AfterEach
method, and test methods.

Questions and coding challenges 723

•	 The static members are not allowed in inner classes, which means that the
@BeforeAll and @AfterAll methods cannot be used in nested tests.

•	 The depth of the class hierarchy is unlimited.

Some sample code for a nested test can be seen here:

@RunWith(JUnitPlatform.class)

public class NestedTest {

 private static final Logger log

 = Logger.getLogger(NestedTest.class.getName());

 @DisplayName("Test 1 - not nested")

 @Test

 void test1() {

 log.info("Execute test1() ...");

 }

 @Nested

 @DisplayName("Running tests nested in class A")

 class A {

 @BeforeEach

 void beforeEach() {

 System.out.println("Before each test

 method of the A class");

 }

 @AfterEach

 void afterEach() {

 System.out.println("After each test

 method of the A class");

 }

 @Test

 @DisplayName("Test2 - nested in class A")

 void test2() {

724 Unit Testing

 log.info("Execute test2() ...");

 }

 }

}

The complete example is called junit5/NestedTests.

Summary
In this chapter, we covered several hot questions and coding challenges about unit
testing via JUnit4 and JUnit5. It is important to not neglect this topic. Most likely, in
the last part of an interview for a Java developer or software engineer position, you'll
get several questions related to testing. Moreover, those questions will be related to
unit testing and JUnit.

In the next chapter, we will discuss scaling and scaling-related interview questions.

19
System Scalability

Scalability is, for sure, one of the most critical demands for the success of a web
application. An application's capacity to scale depends on the whole system architecture,
and building a project while having scalability in mind is the best way to go. You'll be very
thankful later when the success of the business may require the application to be highly
scalable due to heavy loads of traffic.

So, as the web grows, designing and building scalable applications is also becoming more
important. In this chapter, we cover all the scalability interview questions you may be
asked during a junior/middle-level interview for a position such as a web application
software architect, Java architect, or software engineer. If you are looking for a position
that doesn't involve tasks related to software architecture and design, then most probably
scalability will not be an interview topic.

Our agenda for this chapter includes the following:

•	 Scalability in a nutshell

•	 Questions and coding challenges

Let's get started!

726 System Scalability

Scalability in a nutshell
The most predictable yet important question your interviewer will ask you is: What
is scalability? Scalability is the capability and ability of a process (system, network,
application) to cope with an increase in workload (by workload, we understand anything
that pushes the system to the limit, such as traffic, storage capacity, a maximum number
of transactions, and so on) when adding resources (typically hardware). Scalability can
be expressed as the ratio between the increase in system performance and the rise in
resources used. Moreover, scalability also means the ability to add extra resources without
affecting/modifying the structure of the main nodes.

If adding more resources results in a slight increase in performance, or even worse,
boosting the resources has no effect on performance, then you are facing so-called poor
scalability.

How can you achieve scalability? During an interview that involves scalability questions,
you will most probably be asked this question as well. Giving a general, comprehensive,
and not too time-consuming answer is the best choice. The main points that should be
touched upon are the following:

•	 Leverage 12factor (https://12factor.net/): This methodology is
independent of the programming language and can be really helpful for delivering
flexible and scalable applications.

•	 Implement persistence wisely: From choosing the proper database for your
application and developing the most optimized schema, to mastering techniques for
scaling the persistence layer (for example, clustering, replicas, sharding, and so on),
this is one of the key aspects that deserve your entire attention.

•	 Don't underestimate queries: Database queries are a key factor in acquiring short
transactions. Tune your connection pool and queries for scalability. For example,
pay attention to cross-node joins, which can quickly downgrade performance.

•	 Choose hosting and tools: Scaling is not only about the code! The infrastructure
counts a lot as well. Today, many cloud players (for example, Amazon) provide
autoscaling and dedicated tools (Docker, Kubernetes, and so on).

•	 Consider load balancing and reverse proxying: One day, you have to switch from
a single server to a multi-server architecture. Running under a cloud infrastructure
(for example, Amazon) will easily provide these facilities with just several
configurations (for most cloud providers, load balancing and reverse proxying are
part of the ready-to-go offer). Otherwise, you have to be prepared for this
significant change.

Questions and coding challenges 727

•	 Caching: While scaling your application, consider new caching strategies,
topologies, and tools.

•	 Relieve the backend: Move as many computations as possible from the backend to
the frontend. This way, you take some work from your backend shoulders.

•	 Test and monitor: Testing and monitoring your code will help you to discover
issues as soon as possible.

There are many other aspects to discuss, but at this point, the interviewer should be ready
to advance the interview to the next step.

Questions and coding challenges
In this section, we cover 13 questions and coding challenges that represent must-knows in
junior/middle-level scalability interviews. Let's begin!

Coding challenge 1 – Scaling types
Problem: What do scaling up and scaling out mean?

Solution: Scaling up (or vertical scaling) is achieved by adding more resources to an
existing system to achieve better performance and successfully face a greater workload. By
resources, we can understand more storage, more memory, more network, more threads,
more connections, more powerful hosts, more caching, and so on. Once the new resources
are added, the application should be capable of respecting the SLAs. Today, scaling up in
the cloud is very efficient and fast. Clouds such as AWS, Azure, Oracle, Heroku, Google
Cloud, and so on can automatically allocate more resources based on the threshold plan
in just a couple of minutes. When the traffic decreases, AWS can disable these extra
resources. This way, you pay only for what you use.

Scaling out (or horizontal scaling) is typically related to distributed architectures. There
are two basic forms of scaling out:

•	 Add more infrastructure capacity in pre-packaged blocks of infrastructure/nodes
(for example, hyper-converged).

•	 Use an independent distributed service that can harvest information
about customers.

728 System Scalability

Typically, scaling out is done by adding more servers or CPUs that are the same type as
those that are currently used or any compatible kind. Scaling out makes it easy for service
providers to offer customers a pay-as-you-grow infrastructure and services. Scaling out
happens quite fast since nothing has to be imported or rebuilt. Nevertheless, scale-out
speed is limited by the speed with which the servers can communicate.

Clouds such as AWS can automatically allocate more infrastructure based on the
threshold plan in just a couple of minutes. When the traffic is low, AWS can disable these
extra infrastructures. This way, you pay only for what you use.

Typically, scaling up offers better performance than scaling out.

Coding challenge 2 – High availability
Problem: What is high availability?

Solution: High availability and low latency are mission-critical for tons of businesses.

Typically expressed as a percentage of uptime in a given year, high availability is achieved
when an application is available to its users without interruption (99.9% of the time
during a year).

Achieving high availability is commonly done via clustering.

Coding challenge 3 – Low latency
Problem: What is low latency?

Solution: Low latency is a term used in relation to computer networks that are optimized
to handle and process an extremely high volume of data with minimal delay or latency.
Such networks are designed and built to handle operations that attempt to achieve near
real-time data processing capabilities.

Coding challenge 4 – Clustering
Problem: What is a cluster and why do we need clustering?

Solution: A cluster is a group of machines that can individually run an application. We
can have an application server cluster, a database server cluster, and so on.

Questions and coding challenges 729

Having a cluster significantly reduces the chances of our service becoming unavailable
in the event that one of the machines from the cluster fails. In other words, clustering's
main purpose consists of achieving 100% availability or zero downtime in service (high
availability – see Coding challenge 2). Of course, there is still be a small chance of all the
cluster machines failing at the same time, but that is typically mitigated by having the
machines located at different locations or supported by their own resources.

Coding challenge 5 – Latency, bandwidth,
and throughput
Problem: What are latency, bandwidth, and throughput?

Solution: The best way to explain these notions during an interview relies on a simple
analogy with a tube as in the following figure:

Figure 19.1 – Latency versus bandwidth versus throughput

Latency is the amount of time it takes to travel through the tube, not the tube length. It is,
however, measured as a function of the tube length.

Bandwidth is how wide the tube is.

Throughput is the amount of water flowing through the tube.

Coding challenge 6 – Load balancing
Problem: What is load balancing?

Solution: Load balancing is a technique used for distributing workloads across multiple
machines or clusters. Among the algorithms used by load balancing, we have Round
Robin, sticky session (or session affinity), and IP address affinity. A common and simple
algorithm is Round Robin, which divides the workload in a circular order, ensuring that
all the available machines get an equal number of requests and none of them is overloaded
or underloaded.

730 System Scalability

For example, the following figure marks the place of a load balancer in a typical master-
slave architecture:

Figure 19.2 – Load balancer in a master-slave architecture

By dividing the work across the machines, load balancing strives to achieve maximum
throughput and response time.

Coding challenge 7 – Sticky session
Problem: What is sticky session (or session affinity)?

Solution: Sticky session (or session affinity) is a notion encountered in a load balancer.
Typically, the user information is stored in the session, and the session is replicated on all
the machines from the cluster. But session replication (see Coding challenge 11) can be
avoided by serving a particular user session requests from the same machine.

For this, the session is associated with a machine. This happens when the sessions are
created. All the incoming requests for this session are always redirected to the associated
machine. The user data is only on that machine.

In Java, sticky session is typically done via the jsessionid cookie. At the first request,
the cookie is sent to the client. For each subsequent request, the client request contains the
cookie as well. This way, the cookie identifies the session.

The main drawback of the sticky session approach consists of the fact that if the machine
fails then the user information is lost, and that session is unrecoverable. If the client
browser doesn't support cookies or cookies are disabled, then sticky session via cookies
cannot be achieved.

Questions and coding challenges 731

Coding challenge 8 – Sharding
Problem: What is sharding?

Solution: Sharding is an architectural technique for distributing a single logical database
system across a cluster of machines. The following figure depicts this statement:

Figure 19.3 – Sharding

As you can see in the preceding figure, sharding is about the horizontal partitioning
of the database scheme. Mainly, the rows of a database table (for example, teams) are
stored separately (West Data Center holds odd rows, while East Data Center holds even
rows), instead of splitting the table into columns (splitting into columns is known as
normalization and vertical partitioning).

Each partition is called a shard. As you can see from the preceding figure, each shard can
be independently located on a physical location or on a separate database server.

The sharding goal is to make a database system highly scalable. The small number of
rows in each shard reduces the index size and improves the read/search operations'
performance.

The drawbacks of sharding are the following:

•	 The application must be aware of the data location.

•	 Adding/removing nodes from the system requires rebalancing the system.

•	 The cross-node join queries come with performance penalties.

732 System Scalability

Coding challenge 9 – Shared-nothing architecture
Problem: What is shared-nothing architecture?

Solution: Shared-nothing architecture (denoted as SN) is a distributed computing
technique that holds that each node is independent and contains everything it needs
to have autonomy. Moreover, there is no single point of contention required across the
system. The main aspects of an SN architecture are the following:

•	 The nodes work independently.

•	 No resources (memory, files, and so on) are shared between the nodes.

•	 If a node fails, then it affects only its users (other nodes continue to work).

Having a linear and theoretically infinite scalability, the SN architecture is quite popular.
Google is one of the major players that relies on SN.

Coding challenge 10 – Failover
Problem: What is failover?

Solution: Failover is a technique used for achieving high availability by switching to
another machine from the cluster when one of the machines fails. Commonly, failover
is applied automatically by a load balancer via a heartbeat check mechanism. Mainly,
the load balancer checks the machines' availability by ensuring that they respond. If a
heartbeat of a machine fails (the machine doesn't respond), then the load balancer doesn't
send any requests to it and redirects the requests to another machine from the cluster.

Coding challenge 11 – Session replication
Problem: What is session replication?

Solution: Session replication is commonly encountered in application server clusters with
the main goal of achieving session failover.

Session replication is applied every time a user changes their current session. Mainly, the
user session is automatically replicated to other machines from the cluster. This way, if a
machine fails, the load balancer sends the incoming requests to another machine from the
cluster. Since every machine in the cluster has a copy of the user session, the load balancer
can choose any of those machines.

While session replication sustains session failover, it may have extra cost in terms of
memory and network bandwidth.

Questions and coding challenges 733

Coding challenge 12 – The CAP theorem
Problem: What is the CAP theorem?

Solution: The CAP theorem was published by Eric Brewer and is specific to distributed
computing. Conforming to this theorem, a distributed computer system can
simultaneously provide only two of the following three things:

•	 Consistency: Concurrent updates are available to all nodes.

•	 Availability: Every request receives a response of success or fail.

•	 Partition tolerance: The system continues to operate despite a partial failure.

The following figure depicts the CAP theorem:

Figure 19.4 – The CAP theorem

Companies such as Google, Facebook, and Amazon use the CAP theorem to decide their
application architecture.

Coding challenge 13 – Social networks
Problem: How would you design the data structures for a social network like Facebook?
Describe the algorithm to show the shortest path between two people (for example, Tom
→ Alice → Mary → Kely).

734 System Scalability

Solution: Commonly, social networks are designed using graphs. The result is a huge
graph such as those in the next figure (this figure was gathered via Google Image via the
social network graph keywords):

Figure 19.5 – Social network graph

So, finding a path between two people means finding a path in such a graph. In this
case, the problem reduces to how to efficiently find a path between two nodes in such a
huge graph.

We can start with one person and traverse the graph to find the other person. Traversing
a graph can be done using BFS (Breadth-first Search) or DFS (Depth-first Search).
For more details about these algorithms, check out Chapter 13, Trees and Graphs.

DFS will be very inefficient! Two persons might be only one degree of separation
apart, but DFS may traverse millions of nodes (persons) before finding this relatively
immediate connection.

Hence, the winner is BFS. More precisely, we can employ bidirectional BFS. Like two
trains that come from opposite directions and intersect at some moment in time, we use
one BFS that starts from person A (the source) and one BFS that starts from person B (the
destination). When the searches collide, we have found a path between A and B.

Why not unidirectional BFS? Because going from A to B will traverse p+p*p people.
Mainly, unidirectional BFS will traverse A's p friends, and then each of their p friends.
This means that for a path of length q, the unidirectional BFS will perform in O(pq)
runtime. On the other hand, the bidirectional BFS traverses 2p nodes: each of A's p friends
and each of B's p friends. This means that for a path of length q, the bidirectional BFS
performs in O(pq/2+ pq/2) = O(pq/2). Obviously, O(pq/2) is better than O(pq).

Let's consider a path such as Ana -> Bob -> Carla -> Dan -> Elvira, where each person has
100 friends. A unidirectional BFS will traverse 100 million (1004) nodes. A bidirectional
BFS will traverse only 20,000 nodes (2 x 1002).

Practicing is the key to success 735

Finding an efficient way to connect A and B is just one of the problems. Another problem
is caused by the high number of persons, when the amount of data is so huge it cannot
be stored on a single machine. This means that our graph will use multiple machines
(for example, a cluster). If we represent the list of users as a list of IDs, then we can use
sharding and store ranges of IDs on each machine. This way, we go to the next person in
the path by going first onto the machine that contains the person's ID.

In order to mitigate a lot of random jumps between machines, which will downgrade
performance, we can distribute the users across machines by taking into account country,
city, state, and so on. It is more likely that users from the same country will be friends.

Further questions that need an answer refer to caching usage, when to stop a search with
no results, what to do if a machine fails, and so on.

It is clear that tackling problems such as the preceding one is not an easy task. It requires
addressing a lot of questions and issues, therefore reading and practicing as much as
possible is a must.

Practicing is the key to success
The topic of this short chapter deserves an entire book. But, challenging yourself to solve
the following top 10 problems will boost your insights about scalability and your chances
of becoming a software engineer.

Designing bitly, TinyURL, and goo.gl (a service for
shorting URLs)
Questions to address:

•	 How do you assign a unique identifier (ID) for each given URL?

•	 Having thousands of URLs per second, how do you generate unique identifiers
(IDs) at scale?

•	 How do you handle redirects?

•	 How do you deal with custom short URLs?

•	 How do you deal with the expired URLs (delete them)?

•	 How do you track statistics (for example, click stats)?

736 System Scalability

Designing Netflix, Twitch, and YouTube (a global video
streaming service)
Questions to address:

•	 How do you store and distribute data in a way that accommodates a large number of
simultaneous users (the users can watch and share data)?

•	 How do you track statistics (for example, the total number of views, voting, and so
on)?

•	 How do you allow users to add comments on videos (preferably, in real time)?

Designing WhatsApp and Facebook Messenger (a
global chat service)
Questions to address:

•	 How do you design one-on-one conversations/meetings between users?

•	 How do you design group chats/meetings?

•	 How do you deal with offline users (not connected to the internet)?

•	 When should you send push notifications?

•	 How do you support end-to-end encryption?

Designing Reddit, HackerNews, Quora, and Voat (a
message board service and social network)
Questions to address:

•	 How do you track the stats of each answer (the total number of views, voting, and
so on)?

•	 How do you allow users to follow other users or topics?

•	 How do you design the timeline consisting of a user's top questions (similar to
newsfeed generation)?

Practicing is the key to success 737

Designing Google Drive, Google Photos, and Dropbox
(a global file storage and sharing service)
Questions to address:

•	 How do you design user features such as upload, search, view, and share
files/photos?

•	 How do you track permissions for file sharing?

•	 How do you allow a group of users to edit the same document?

Designing Twitter, Facebook, and Instagram (an
extremely large social media service)
Questions to address:

•	 How do you efficiently store and search for posts/tweets?

•	 How do you implement newsfeed generation?

•	 How do you tackle the social graph (see Coding challenge 13)?

Designing Lyft, Uber, and RideAustin
(a ride-sharing service)
Questions to address:

•	 How do you match a ride request with nearby drivers?

•	 How do you store millions of locations (geographical coordinates) for riders and
drivers that are continuously moving?

•	 How do you update the driver/rider locations (updates every second)?

Designing a type-ahead and web crawler (a search
engine related service)
Questions to address:

•	 How do you refresh data?

•	 How do you store the previous search queries?

•	 How do you detect the best matches for the already typed string?

738 System Scalability

•	 How do you tackle a case when the user is typing too fast?

•	 How do you find new pages (web pages)?

•	 How do you assign priorities to web pages that are changing dynamically?

•	 How do you guarantee that the crawler is not stuck on the same domain forever?

Designing an API rate limiter (for example, GitHub or
Firebase)
Questions to address:

•	 How do you limit the number of requests within a time window (for example, 30
requests per second)?

•	 How do you implement rate-limiting to work in a cluster of servers?

•	 How do you tackle throttling (soft and hard)?

Designing nearby places/friends and Yelp (a proximity
server)
Questions to address:

•	 How do you search for nearby friends or places?

•	 How do you rank places?

•	 How do you store location data according to the population density?

Answering these challenges is not an easy task and requires significant experience.
However, if you are a junior/middle-level programmer and you have read this
introductory chapter about scalability, then you should be able to decide whether your
career path should go in this direction or not. However, keep in mind that designing large-
scale distributed systems is a very demanding area in software engineering interviews.

Summary 739

Summary
This is the last chapter of this book. We've just covered a bunch of problems that fit into
the scalability topic.

Congratulations on coming this far! Now, at the end of this book, remember to practice as
much as possible, have confidence in your judgment, and never give up! I really hope that
your next Java position will bring you the job of your dreams and that this book makes a
contribution to your success.

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Java Coding Problems

Anghel Leonard

ISBN: 9781789801415

•	 Adopt the latest JDK 11 and JDK 12 features in your applications

•	 Solve cutting-edge problems relating to collections and data structures

•	 Get to grips with functional-style programming using lambdas

•	 Perform asynchronous communication and parallel data processing

•	 Solve strings and number problems using the latest Java APIs

•	 Become familiar with different aspects of object immutability in Java

•	 Implement the correct practices and clean code techniques

https://www.packtpub.com/product/java-coding-problems/9781789801415

742 Other Books You May Enjoy

Learn Java 12 Programming

Nick Samoylov

ISBN: 9781789957051

•	 Learn and apply object-oriented principles

•	 Gain insights into data structures and understand how they are used in Java

•	 Explore multithreaded, asynchronous, functional, and reactive programming

•	 Add a user-friendly graphic interface to your application

•	 Find out what streams are and how they can help in data processing

•	 Discover the importance of microservices and use them to make your apps robust
and scalable

•	 Explore Java design patterns and best practices to solve everyday problems

•	 Learn techniques and idioms for writing high-quality Java code

https://www.packtpub.com/in/application-development/learn-java-12-programming

﻿ 743

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book’s Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Abcd application 643, 644
abstract class

about 115
versus interfaces 115
without abstract method 115

Abstract Data Type (ADT) 380
abstraction 67, 69
Abstraction/AbstractionViaInterface 69
acyclic graph 481
adapter patterns

versus bridge patterns 122
adjacency list 483
adjacency matrix 482
aggregation 81-83
algorithms, efficiency

best case 154
expected case 154
worst case 154

Amazon interview 28
arrays 290
ASCII characters 290
association 79-81
AVLTreeImpl application 476

B
balanced binary tree 474
base case recursion 590
best online practices, for

gaining experience
about 12
certifications 17
GitHub account, starting 13
Learn->Code practice 17
open source projects, contributing to 13
rules 12
Stack Overflow account, starting 14
technical articles, posting 15
technical blog, starting 15
work (portfolio), promoting 15
YouTube channel, starting 14

BestTimeToBuySellStock application
about 356, 367
scenarios 356-366

BiggestColorSpot application 193-196
Big O cheat sheet

reference link 154
Big O examples

Big O expressions, reducing 170
digits 175
factorial Big O 173

746

half of array, looping 170
half of matrix, looping 168, 169
in-order traversal, of binary tree 164
log n runtimes 161-163
looping, with O(log n) 171
memoization 166-168
n may vary 165, 166
n notation, using 174
non-dominant terms, dropping 158, 159
number of iteration counts, in Big O 175
O(1) loops, identifying 169, 170
O(n), dropping constants 156-158
O(n), linear time algorithms 155
recursive runtimes 163, 164
sorting 176, 177
string comparison 172
sum, and count 174, 175

binary heap 479-481
binary search algorithm 324
BinarySearch application 580
binary search tree (BST) 473, 502, 616
BinarySearchTreeDuplicates

application 526
BinarySearchTreeKthLargestElement

application 532
BinarySearchTreeSuccessor

application 507
BinarySearchTreeSum

application 543, 546
BinarySearchTreeTraversal

application 473
binary tree 469, 470
BinaryTreeBalanced application 501
BinaryTreeCommonAncestor

application 511
BinaryTreeDistanceFromLeaf

application 541
BinaryTreeIsBST application 504

BinaryTreeLandingReservation
application 498

BinaryTreeMaxPathSum application 519
BinaryTreePrintCorners application 516
BinaryTreePrintDiagonal application 524
BinaryTreeRightView application 531
BinaryTreeSpiralTraversal application 539
BinaryTreeSubtree application 493
binary tree traversal 470
BinaryTreeTraversal application 472
BinaryTreeVerticalSum application 548
binding operation 116
bin sort algorithm. See also

bucket sort algorithm
bit manipulation

about 236
binary representation, obtaining

of Java integer 236, 237
bit shift operators, using 239
bitwise operators, using 237, 238
coding challenges 242
tips and tricks 241, 242

bit shift operators
negative integers, in Java 239, 240
Signed Left Shift [<<] 239
Signed Right Shift [>>] 240
Unsigned Right Shift [>>>] 241
using 239

Bitwise AND [&] 237, 238
Bitwise Exclusive OR (XOR) [^] 238
bitwise operators

Bitwise AND [&] 237
Bitwise Exclusive OR (XOR) [^] 238
Bitwise OR [|] 238
unary bitwise complement

operator [~] 237
using, for bit manipulation 237, 238

Bitwise OR [|] 238

747

Blogger
URL 15

bottom-up dynamic programming.
See also tabulation

Braces application 217-219
breadth-first search (BFS)

about 470, 484
for trees 470

BreakChocolate application 655, 657
brute-force approach. See also

naive approach
buckets 570
bucket sort algorithm 570-574
BucketSort application 575
builder pattern

versus factory pattern 121

C
Camtasia Studio

reference link 14
CAP theorem

about 733
availability 733
consistency 733
partition tolerance 733

CareerBuilder
URL 22

certifications
reference link 17

ChessKnight application 514
circular doubly linked list 378
circular singly linked list 378
class 66
ClearBits application 245, 246
clustering 728
code 11
code points 290

CodersRank
about 16, 17
reference link 16

coding challenge
interviewer's presence 52, 53
paper-pen, versus computer

approach 53
tackling 52
tackling, process 54

coding challenge, tackling
about 54
algorithm(s), selecting 55, 56
blockage, handling 58
example, building 55
process 54
skeleton, coding 56, 57
solution, coding 57

coding challenges, for OOP
about 50, 123
CircularByteBuffer application 150
DeckOfCards application 129-133
FileSystem application 149
HashTable application 145-149
Jukebox application 123-126
MovieTicketBooking application 149
online reader system

application 139-145
ParkingLot application 133-139
specific problems 50, 51
Tuple application 149
VendingMachine application 126-129

coding challenges, for
functional-style programming

arrays, converting to streams 703, 704
collections, versus streams 696
default method 705
filter() function 699

748

findFirst() method, versus
findAny() method 702, 703

flatMap() function 697
functional interface 695
functional interface, versus

regular interface 701
intermediate operations, versus

terminal operations 700
Iterator, versus Spliterator 705
lambda expression 693-695
lazy streams 701
map() functions, versus flatMap()

functions 696-698
method reference 704
Optional class 706
parallel streams 704
peek() function 700
Predicates 702
String::valueOf 707
Supplier, versus Consumer 701

coding challenges, for Java
concurrency (multithreading)

about 674
ConcurrentHashMap, versus

Hashtable 681
CountDownLatch, versus

CyclicBarrier 680
data, sharing between threads 683
deadlocks 675
ExecutorAndExecutorService

application 677
interrupted() method 682
isInterrupted() method 682
livelocks 679
Producer-Consumer

application 684, 685
race conditions 676

ReadWriteLock application 684
reentrant locking 677
RunnableAndCallable application 678
start() method, versus run() method 679
starvation 678
submit() method, versus

execute() method 682
thread, canceling 682, 683
ThreadLifecycleStates

application 674, 675
ThreadLocal 681
Thread, versus Runnable 679
wait() method, versus sleep()

method 680, 681
coding challenges, for recursion

and dynamic programming
BiggestColorSpot application 193-196
Braces application 217-219
Coins application 196-198
FiveTowers application 198-201
HanoiTowers 188-191
HighestColoredTower

application 206-208
Josephus application 191-193
KnightTour application 214-216
MagicIndex application 202, 203
Permutations application 208-213
RobotGridMaze application 186, 188
Staircase application 219, 220
SubsetSum application 220
TheFallingBall application 204, 205
WordBreak application 228

coding challenges, for
scalability interviews

about 727
bandwidth 729, 730
CAP theorem 733
clustering 728, 729

749

failover 732
high availability 728
latency 729
low latency 728
scaling types 727, 728
session replication 732
sharding 731
shared-nothing architecture (SN) 732
social networks 733-735
sticky session 730
throughput 729

coding challenges, for solving math
and logical puzzle problems

8 teams 638
Abcd application 643, 644
about 631
BreakChocolate application 655, 656
DecodingDigitSequence

application 640, 642
FizzBuzz application 631
HourMinuteAngle application 657, 659
KthNumber357 application 639, 640
MultiplyLargeNumbers

application 648, 649
NextElementSameDigits

application 651, 652
NumberDivisibleDigits

application 654, 655
PythagoreanTriplets application 659-661
RectangleOverlap application 644-648
RomanNumbers application 632-634
ScheduleOneElevator

application 662-664
VisitToggle100Doors

application 635, 637
coding challenges, for sorting and

searching algorithms
about 580

FindNearestMinimum
application 622, 623

GroupSortAnagrams
application 583-587

InterspersedEmptyStrings
application 593-595

MaxDiffBetweenTwoElements
application 614, 615

MergeSortDoublyLinkedList
application 589, 591

MergeSortSinglyLinkedList
application 589, 591

MergeTwoSortedArrays
application 580-582

PeaksAndValleys application 619-621
PositionOfFirstOne application 613
RankInStream application 616, 617
SearchInFullSortedMatrix

application 608, 609
SearchInSortedMatrix

application 610-612
SortArrayBasedOnAnotherArray

application 625
SortQueueViaTempQueue

application 595-597
SortQueueWithoutExtraSpace

application 599-601
SortStack application 602, 603
SortStackInPlace application 604-606
UnknownSizeList application 587, 588
WordSearch application 624

coding challenges, for strings and arrays
about 290, 291
BestTimeToBuySellStock

application 356
ContainerMostWater

application 334-338

750

CountDistinctAbsoluteSortedArray
application 375

CountDistinctInSubarray
application 375

CountScore3510 application 369, 370
DuplicatesInArray application 370-373
EncodedString application 296
ExtractIntegers application 301
ExtractSurrogatePairs

application 302-304
FindPairsSumEqualK

application 318-320
LongestConsecutiveSequence

application 367, 368
LongestDistinctSubstring

application 374
MatrixWithZeros application 309-312
MaxMatrixOfOne application 330-332
MedianOfSortedArrays

application 324-328
MergeIntervals application 342-346
MergeKSortedArr application 321, 322
OneEditAway application 297
PetrolBunks application 348-350
ReplaceElementWithRank

application 374
RotateArrayKTimes application 375
RotateMatrix application 306, 309
RotateString application 305
SearchInCircularArray

application 339, 340
StringShrinker application 299
ThreeStacksInOneArrayFixed

application 313-318
TrapRainWater application 351-355
unique characters application 292

UniqueCharactersAZ
application 294, 295

coding challenges, for bit manipulations
about 242
binaries, dividing on paper 254-256
binaries, multiplying on paper 249, 250
binaries, subtracting on paper 252, 253
binaries, summing on paper 246, 247
ClearBits application 245, 246
Conversion application 266, 267
DividingBinaries application 256, 257
expressions, maximizing 267, 268
FindDuplicates application 277
FloatToBinaryAndBack application 284
GetBitValue application 242
LongestSequence application 259-262
MultiplyingBinaries application 250, 251
NextNumber application 262-266
NumberWithOneInLR

application 272, 273
OnceTwiceThrice application 273-276
PositionOfFirstBitOfOne

application 283
PowerSetOfSet application 281, 282
ReplaceBits application 257, 259
RotateBits application 270, 272
SetBitValue application 243, 244
SubtractingBinaries application 253, 254
SummingBinaries application 247-249
SwapOddEven application 269, 270
TwoNonRepeating application 278-280

coding challenges, of maps
and linked lists 380

DoublyLinkedListReverse
application 417, 418

LinkedListLoopDetection
application 393

751

LinkedListMergeTwoSortedRecursion
application 406-410

LinkedListMoveLastToFront
application 413, 414

LinkedListNthToLastNode
application 391, 392

LinkedListPairwiseSwap
application 403-406

LinkedListPalindrome
application 397-399

LinkedListRearranging
application 389-391

 LinkedListRemoveDuplicates
application 387-389

LinkedListRemoveRedundantPath
application 411, 412

LinkedListsIntersection
application 401-403

LinkedListSum application 399, 400
LRUCache application 418-420, 423
Map application 381-385
NutsAndBolts application 385, 386
ReverseLinkedListInGroups

application 415-417
coding challenges, of stacks and queues

about 432
MinStackConstantTimeAndSpace

application 442-446
QueueIslands application 457-461
QueueViaStack application 446, 448
ShortestSafeRoute application 461-464
SmallestNumber application 455-457
StackBraces application 433-435
StackHistogramAre application 452-455
StackOfPlates application 435-438
StackReverseString application 432, 433
StackViaQueue application 448-452

StockSpan application 438-440, 442
coding challenges, of unit testing

@Rule 721
about 712
developer or tester 716
dynamic tests 721, 722
FIRST 713
junit4/Assumptions application 719, 720
junit4/TestSuite application 717-719
junit5/ArrangeActAssert

application 712
junit5/BeforeAfterAnnotations

application 717
junit5/NestedTests application 722-724
junit5/TestingExceptions

application 714-716
JUnit extensions 716
method test return type 721
mocking 717
stubbing 717
test methods, ignoring 719
text fixtures 713

coding challenges, trees and graphs
about 486
balanced binary tree 499-501
binary search tree (BST) 502
binary tree corners, printing 514-516
binary tree is symmetry, finding 551-554
binary tree right view 529-531
chess knight 511-514
common ancestor 509, 511
diagonal traversal 519
duplicates, handling in BSTs 524-526
isomorphism, of binary

trees 526, 528, 529
kth largest element 531, 532
landing reservation system 494-498

752

list per level 489, 490
max heap, converting into

min heap 548, 550
max path sum 516-519
mirror binary tree 533
nodes at distance k, from

leaf nodes 539-541
n ropes, connecting with

minimum cost 554, 555
pair, for given sum 541-546
paths, between two nodes 486
sorted array, to minimal BST 487, 488
spiral Level-Order traversal,

of binary tree 535, 536
sub-tree 491, 492
successor node 504-507
topological sort 507, 508
vertical sums, in binary tree 546-548

Coins application 196-198
collections

versus streams 696
combine operation 564
Compile-Time Polymorphism 75, 115
complete binary tree 477
composition 83-85
ConcurrentHashMap

versus Hashtable 681
Consumer

versus Supplier 701
ContainerMostWater application 334, 338
Conversion application 266, 267
CountDistinctAbsoluteSortedArray

application 375
CountDistinctInSubarray application 375
CountDownLatch

versus CyclicBarrier 680
CountScore3510 application 369, 370

covariant method overriding
in Java 108

Criteria Cognitive Aptitude
Test (CCAT) 30

Crossover interview 30, 31

D
data

sharing, between threads 683
data-hiding mechanism 70

deadlocks 675, 676
DeckOfCards application 129-133
DecodingDigitSequence

application 640-643
decorator design pattern

composition 119
default method 705
Dependency Inversion Principle (DIP)

about 102
breaking 103
following 103, 104

depth-first search (DFS)
about 470, 484
for graphs 485
for trees 471, 472

depth-first search (DFS), for graphs
iterative implementation 485
via recursion 485

diagonal traversal
iterative-based solution 522, 524
recursion-based solution 520-522

Dice
URL 22

digital tree 481
directed acyclic graph (DAG) 507
DirectedGraphPath application 487
Divide and Conquer (D&C) 171

753

DividingBinaries application 256, 257
Don’t Repeat Yourself (DRY) 56
doubly linked list 378
DoublyLinkedListReverse

application 417, 418
DuplicatesInArray application 370, 374
Dynamic Method Dispatch 76
dynamic programming

about 181, 182
memoization 182
tabulation 184, 185

DZone
URL 15

E
Elevator algorithm

URL 665
encapsulation. See also

data-hiding mechanism 70, 72
EncodedString application 296, 297
entries 380
enqueue (rear) operation 429
execute() method

versus submit() method 682
ExecutorAndExecutorService

application 677
experience

gaining 11
ExtractIntegers application 301, 302
ExtractSurrogatePairs

application 302, 305

F
facade pattern

versus decorator patterns 120

Facebook interview 29, 30
failover 732
failure, handling

about 42
company obsession, avoiding 44
confidence, building up 44

Fast, Isolated, Repeatable,
Self-Validating, Timely (FIRST) 713

Fast Runner (FR) 590
Fast Runner/Slow Runner

approach 393-397
FileSystem application 149
filter() function 699
final class 115
findAny() method

versus findFirst() method 702
FindDuplicates application 277
findAny() method

versus findFirst() method 702
FindNearestMinimum

application 622, 624
FindPairsSumEqualK application 318, 321
first-in-first-out (FIFO) principle 429
FiveTowers application 198-201
FizzBuzz application 631, 632
flatMap() function

about 697
versus map() functions 697, 698

FlexJobs
URL 22

FloatToBinaryAndBack application 284
Free2X Webcam Recorder

reference link 14
front (dequeue or poll) operation 429
full binary tree 478
functional interface

about 695

754

versus regular interface 701
functional-style programming,

key concepts
about 690
as first-class objects 690
higher-order functions 691
immutable variables 692
no-side effects 692
no state 691
pure functional programming, rules 691
pure functions 690
recursion over looping, favoring 693

functional testing 710

G
gathering 571
general tree 469
GetBitValue application 242
Glassdoor

URL 22
Google interview 28
Google Sites

reference link 16
graph

about 481
adjacency list 483
adjacency matrix 482
edge 481
vertex 481

GraphAdjacencyListTraversal 485
GraphAdjacencyMatrixTraversal 485
GraphTopologicalSort application 509
graph traversal 484
GroupSortAnagrams application 583, 587

H
HanoiTowers application 188
Hashtable

versus ConcurrentHashMap 681
HashTable application 145-149
HeapConnectRopes application 556
heapify-down operation 481
heapify-up operation 480
heap sort algorithm 561, 562, 564
HeapSort application 564
high availability 728
HighestColoredTower

application 206-208
Hiring Committee (HC) 28
histogram class interval 452
HourMinuteAngle application 657, 659

I
Indeed

URL 22
infix expressions 464
InfoQ

URL 15
InformIT

URL 15
inheritance. See also IS-A relationship
(parent-child relationship) 73-75
In-Order traversal 472
integration testing 710, 711
Interface Segregation Principle (ISP)

about 98, 99
breaking 99, 100
following 101, 102

755

interfaces, with default methods
versus interfaces, with
abstract classes 114

intermediate operations
versus terminal operations 700

InterspersedEmptyStrings
application 593, 595

interview preparations
about 23
in-person interviews 24
mistakes, avoiding 24, 25
phone screening stage 23

interviews
at Amazon 28
at Crossover 30, 31
at Facebook 29, 30
at Google 28
at Microsoft 29
key hints 177

IS-A relationship (parentchild
relationship) 73-75
IsSymmetricBinaryTree application 554
Iterator

versus Spliterator 705

J
Java

covariant method overriding 107, 108
method hiding 116, 117
virtual methods, writing 118

Java Code Geeks
URL 15

Java concurrency
(multithreading) 672-674
Java functional-style programming 690
Java integer

binary representation,
obtaining 236, 237

Java interface
non-abstract method 111-14

Java interview
feedback, obtaining 43
marketable skills, developing 8-11
preparations 4-8
roadmap 4

Java surveys
URLs 5, 9

Java Virtual Machine (JVM) 675
job application process

about 22
hiring companies, searching for 22
resume, submitting 23

Josephus application 191-193
Jukebox application 123-126
junit4/Assumptions application 719, 720
junit4/TestSuite application 717-719
junit5/ArrangeActAssert application 712
junit5/BeforeAfterAnnotations

application 717
junit5/NestedTests application 722-724
junit5/TestingExceptions

application 714-716

K
key 379
key-value pair 379
KnightTour application 214-216
KthNumber357 application 639, 640

L
lambda expression 693-695
last-in-first-out (LIFO) principle 426

756

latency 729
lazy streams 701
Least Recently Used Cache (LRU) 418
Least Significant Bit (LSB) 240
LinkedIn

URL 22
LinkedIn resume 21
LinkedListLoopDetection application

about 393
Fast Runner/Slow Runner

approach 393-397
LinkedListMergeTwoSorted

application 410
LinkedListMergeTwoSortedRecursion

application 406-410
LinkedListMoveLastToFront

application 413, 414
LinkedListNthToLastNode

application 391, 392
LinkedListPairwiseSwap

application 403-406
LinkedListPalindrome

application 397-399
LinkedListRearranging

application 389-391
LinkedListRemoveRedundantPath

application 411, 412
linked lists

about 378, 379
head 378
tail 378

LinkedListsIntersection
application 401-403

LinkedListSum application 399, 400
LinkeListMergeNSortedRecursion

application 410
Liskovs Substitution Principle (LSP)

about 93

breaking 94-96
following 96-98

ListPerBinaryTreeLevel application 491
livelocks 679
load balancing 729
LongestConsecutiveSequence

application 367, 369
LongestDistinctSubstring application 374
LongestSequence application 260-262
low latency 728
LRUCache application 418-420, 423

M
MagicIndex application 201-203
main() method

overloading 110
overriding 110

Map application 381-85
map capacity 381
map() functions

versus flatMap() functions 697, 698
maps 379, 380
math and logical puzzle problems

solving, suggestions 630, 631
solving, tips 630, 631

MatrixWithZeros application 309, 312
MaxDiffBetweenTwoElements

application 614, 616
MaxHeap application 481
MaxHeapToMinHeap application 550
MaxMatrixOfOne application 330, 333
MedianOfSortedArrays

application 324, 330
Medium

URL 15
memoization 182-84
MergeIntervals application 342, 347

757

MergeKSortedArr application 321, 323
merge operation 564
merge sort algorithm 564-566
MergeSort application 567
MergeSortDoublyLinkedList

application 590, 593
MergeSortSinglyLinkedList

application 590, 593
MergeTwoSortedArrays

application 580, 583
method

hiding, in Java 116, 117
overloading, in OOP (Java) 106
overriding, in OOP (Java) 106
reference 704

Microsoft interview 29
MinStackConstantTimeAndSpace

application 442-446
MirrorBinaryTree application 535
mismatches

eliminating 44
identifying 44

Mkyong
URL 15

Most Significant Bit (MSB) 240
MovieTicketBooking application 149
MultiplyingBinaries application 250, 251
MultiplyLargeNumbers

application 648, 651
MyQueue application 432
MyStack application 429

N
naive approach 660
negative integers, in Java 239, 240
NextElementSameDigits

application 651, 654

NextNumber application 262-266
non-binary tree 469
non-static method, Java

overriding, as static 110
non-technical interview questions 35-40
normalization 731
NumberDivisibleDigits

application 654, 655
NumberWithOneInLR

application 272, 273
NutsAndBolts application 385, 386

O
object 65
Object-Oriented Programming (OOP) 28
offer

accepting 42
rejecting 42

OnceTwiceThrice application 273-276
OneEditAway application 297, 299
online reader system application 139-145
OOP concepts

about 64, 65
abstraction 67-69
aggregation 81-83
association 79-81
class 66
composition 83-85
encapsulation 70, 72
inheritance 73-75
object 65
polymorphism 75, 76

OOP (Java)
method overloading 106, 107
method overriding 105, 106

Open Closed Principle (OCP)
about 89

758

breaking 90, 91
following 91-93

Optional class 706
overloading

polymorphism, implementing with 118
overloading methods

exceptions, working with 109
overriding methods

exceptions, working with 109

P
parallel stream 704
ParkingLot application 133-139
peak 619
PeaksAndValleys application 619, 622
peek() function 700, 701
perfect binary tree 478
Permutations application 208, 210-213
personal website (portfolio)

about 16
building, reference link 16
reference link 16

PetrolBunks application 348, 350
PluralSight

URL 15
polymorphism

about 75, 76
implementing, via method overloading

(compile time) 76, 77
implementing, via method

overriding (runtime) 77, 78
implementing, with overloading 118
versus abstraction 118

pop operation 426
PositionOfFirstBitOfOne application 283
PositionOfFirstOne application 613, 614
postfix expressions 464

Post-Order traversal 472
PowerSetOfSet application 281, 282
Predicates 702
prefix expressions 464
Pre-Order traversal 471
Producer-Consumer application

about 684, 685
solving, via built-in blocking queues 687
solving, via notify() method 685, 686
solving, via wait() method 685, 686

proxy design pattern
versus decorator patterns 120

push operation 426
PythagoreanTriplets application 659, 662

Q
QueueIslands application 457-461
queues

about 429-432
operations 429

QueueViaStack application 446, 448
quick sort algorithm 567-569
QuickSort application 570

R
race conditions 676
radix sort algorithm 575, 577
RadixSort application 577
RankInStream application 616, 619
ReadWriteLock application 684
RectangleOverlap application 644, 648
recursion 180
recursive method 180
recursive problem

recognizing 180, 181
Red-Black tree 474, 475

759

RedBlackTreeImpl application 475
reentrant locking 677
regular interface

versus functional interface 701
rejection reasons 43
ReplaceBits application 257, 259
ReplaceElementWithRank

application 374
resume preparation

best practices 18-21
technical skills section, do's

and don'ts 20, 21
ReverseLinkedListInGroups

application 415-417
RobotGridMaze application 186-188
RomanNumbers application 632, 635
RotateArrayKTimes application 375
RotateBits application 270-272
RotateMatrix application 306, 309
RotateMatrix application, code

challenges solutions
matrix, rotating ring by ring 308
matrix transpose, using 306-308

RotateString application 305, 306
run() method

versus start() method 679
Runnable

versus Thread 679
RunnableAndCallable application 678
Runtime Polymorphism 75, 76, 115

S
scalability 726, 727
scalable applications

designing, practicing 735-738
scaling out (horizontal scaling) 727, 728
scaling up (vertical scaling) 727

scattering 571
scatter-sort-gather technique 571
ScheduleOneElevator application 662, 664
scheduling multiple elevators problem

about 665
solutions 665

SearchInCircularArray
application 339, 342

SearchInFullSortedMatrix
application 608, 610

searching algorithms 578
SearchInSortedMatrix

application 610, 612
session replication 732
SetBitValue application 243, 244
shard 731
sharding

about 731
drawbacks 731

shared-nothing architecture (SN) 732
ShortestSafeRoute application 461-464
Signed Left Shift [<<] 239
Single responsibility, Open-closed, Liskov

substitution, Interface segregation,
Dependency inversion (SOLID) 56

Single Responsibility Principle (SRP)
about 86
breaking 87
following 88, 89

Singleton design pattern
using 119

singly linked list 378
SitePoint

URL 15
Situation|Action|Result (SAR)

approach 25
sleep() method
versus wait() method 680

760

Sliding Window Technique
reference link 375

Slow Runner (SR) 590
SmallestNumber application 455-457
social network profiles 16
social networks 733-735
SOLID principles

about 86
Dependency Inversion

Principle (DIP) 102
Interface Segregation

Principle (ISP) 98, 99
Liskovs Substitution Principle (LSP) 93
Open Closed Principle (OCP) 89
references 105
Single Responsibility Principle (SRP) 86

solutions, for scheduling multiple
elevators problem

nearest elevator 665, 666
nearest elevator with capacity

considerations 665, 666
sectors 665

SortArrayBasedOnAnotherArray
application 625, 627

SortArraysIn14Ways application 560, 575
SortedArrayToMinBinarySearchTree

application 489
sorting algorithms

about 560, 561
bucket sort algorithm 570-574
heap sort algorithm 561-564
merge sort algorithm 564-566
quick sort algorithm 567-569
radix sort algorithm 575, 577

SortQueueViaTempQueue
application 595, 599

SortQueueWithoutExtraSpace
application 599, 602

SortStack application 602, 604
SortStackInPlace application 604, 608
spiral Level-Order traversal, of binary tree

iterative approach 537, 539
recursive approach 536, 537

Spliterator
versus Iterator 705

StackBraces application 433-435
StackHistogramAre application 452-455
StackOfPlates application 435- 437
Stack Overflow

URL 22
StackReverseString application 433
stacks

about 426-429
operations 426

StackViaQueue application 448, 449, 452
Staircase application 219, 220
start() method
versus run() method 679
starvation 678
static binding

versus dynamic binding 116
sticky session 730
StockSpan application 438-440, 442
strategy design pattern

versus state design patterns 119, 120
streams

arrays, converting to 703, 704
versus collections 696

String::valueOf 707
strings 290
StringShrinker application 299, 301
subclass overriding method

superclass overridden method,
calling from 110

submit() method
versus execute() method 682

761

SubsetSum application
about 220
dynamic programming

approach, using 222-226
recursive approach, using 221, 222

SubtractingBinaries application 253, 254
SummingBinaries application 248, 249
Supplier

versus Consumer 701
surrogate pair 303
SwapOddEven application 269, 270

T
tabulation 184, 185
technical quiz

about 48, 49
answering approaches 48, 49
approaches 49

template method
versus strategy pattern 121

terminal operations
versus intermediate operations 700

text fixtures 713
TheFallingBall application 204, 205
thread

canceling 682, 683
versus Runnable 679

ThreadLifecycleState application 675
ThreadLocal 681
ThreeStacksInOneArrayFixed

application 313-318
throughput 729
top-down dynamic programming.

See also memoization
top operation 426
Tower of Hanoi challenge 189-191
transaction 356

TrapRainWater application 351, 356
trees

about 468
advanced topics 556, 557
child node 468
depth 468
edge 468
general tree 469
height 468
leaf node 468
mirroring, in place 534
mirroring, in tree 533, 534
parent node 468
root 468

Trie 481
Tuple application 149
TwoBinaryTreesAreIsomorphic

application 529
two-head doubly linked list 379
two-head singly linked list 379
TwoNonRepeating application 278-280
two-pointers 319
two's complement 239, 240

U
Udemy

URL 15
unary bitwise complement

operator [~] 237
unbalanced binary tree 474
Unicode characters 290
unique characters application 292, 293
UniqueCharactersAZ application 294, 295
units 710
unit test case 710
unit testing

762

about 710, 711
coding challenges 712
functional testing 710
integration testing 710, 711

unit testing layer 710
UnknownSizeList application 587, 589
Unsigned Right Shift [>>>] 241
Upwork

URL 22

V
valley 619
value 379
VendingMachine application 126-129
vertical partitioning 731
virtual methods

writing, in Java 118
VisitToggle100Doors application 635, 638

W
wait() method
versus sleep() method 680
Wix

reference link 16
WordBreak application

about 227
bottom-up solution 229, 230
plain recursion-based solution 228, 229
trie-based solution 230, 232

WordPress
URL 15

WordSearch application 624, 625

	Cover
	Copyright and Credits
	About PACKT
	Contributors
	Table of Contents
	Preface
	Section 1:
The Non-Technical Part of an Interview
	Chapter 1:
Where to Start and How to Prepare for the Interview
	The novice interview roadmap
	Know yourself
	Know the market
	It's all about getting the right experience
	Start something
	It's time to shine online

	Time to write your resume
	What resume screeners are looking for
	How long the resume should be
	How to list your employment history
	List the most relevant projects (top five)
	Nominate your technical skills
	LinkedIn resume

	The job application process
	Finding companies that are hiring
	Submitting the resume

	I got an interview! Now what?
	The phone screening stage
	Going to in-person interviews
	Avoiding common mistakes

	Summary

	Chapter 2:
What Interviews at Big Companies
Look Like
	Interviews at Google
	Interviews at Amazon
	Interviews at Microsoft
	Interviews at Facebook
	Interviews at Crossover
	Summary

	Chapter 3:
Common
Non-Technical Questions and How To Answer Them
	What is the purpose of non-technical questions?
	What is your experience?
	What is your favorite programming language?
	What do you want to do?
	What are your career goals?
	What's your working style?
	Why are you looking to change jobs?
	What is your salary history?
	Why should we hire you?
	How much money do you want to make?
	Do you have a question for me?
	Summary

	Chapter 4:
How to Handle Failures
	Accepting or rejecting an offer
	Failure is an option
	A company can reject you for a lot
of reasons
	Getting feedback after the interview

	Objectively identifying and eliminating
the mismatches
	Don't form an obsession for a company
	Don't lose confidence in yourself – sometimes, they don't deserve you!
	Summary

	Chapter 5:
How to Approach a Coding Challenge
	Technical quiz
	Coding challenge
	The problems specific to coding challenges are meant to be difficult
	Tackling a coding challenge problem

	Summary

	Section 2:
Concepts
	Chapter 6:
Object-Oriented Programming
	Technical requirements
	Understanding OOP concepts
	What is an object?
	What is a class?
	What is abstraction?
	What is encapsulation?
	What is inheritance?
	What is polymorphism?
	What is association?
	What is aggregation?
	What is composition?

	Getting to know the SOLID principles
	What is S?
	What is L?
	What is I?
	What is D?

	Popular questions pertaining to OOP, SOLID, and GOF design patterns
	What is method overriding in OOP (Java)?
	What is method overloading in OOP (Java)?
	What is covariant method overriding in Java?
	What are the main restrictions in terms of working with exceptions in overriding and overloading methods?
	How can the superclass overridden method be called from the subclass overriding method?
	Can we override or overload the main() method?
	Can we override a non-static method as static in Java?
	What are the main differences between interfaces with default methods and abstract classes?
	What is the main difference between abstract classes and interfaces?
	Can we have an abstract class without an abstract method?
	Can we have a class that is both abstract and final at the same time?
	What is the difference between polymorphism, overriding, and overloading?
	What are the main differences between static and dynamic binding?
	What is method hiding in Java?
	Can we write virtual methods in Java?
	What is the difference between polymorphism
and abstraction?
	Do you consider overloading an approach for implementing polymorphism?
	Which OOP concept serves the Decorator design pattern?
	When should the Singleton design pattern be used?
	What is the difference between the Strategy and State design patterns?
	What is the difference between the Proxy and Decorator patterns?
	What is the difference between the Facade and Decorator patterns?
	What is the key difference between the Builder and Factory patterns?
	What is the key difference between the Adapter and Bridge patterns?

	Coding challenges
	Example 1: Jukebox
	Example 2: Vending machine
	Example 3: Deck of cards
	Example 4: Parking lot
	Example 5: Online reader system
	Example 6: Hash table
	Example 7: File system
	Example 8: Tuple
	Example 9: Cinema with a movie ticket booking system

	Summary

	Chapter 7:
Big O Analysis of Algorithms
	Analogy
	Big O complexity time
	The best case, worst case, and expected case
	Big O examples
	Example 1 – O(1)
	Example 2 – O(n), linear time algorithms
	Example 3 – O(n), dropping the constants
	Example 6 – different steps are summed or multiplied
	Example 7 – log n runtimes
	Example 9 – in-order traversal of a binary tree
	Example 10 – n may vary
	Example 11 – memoization
	Example 13 – identifying O(1) loops
	Example 14 – looping half of the array
	Example 15 – reducing Big O expressions
	Example 16 – looping with O(log n)
	Example 17 – string comparison
	Example 18 – factorial Big O
	Example 19 – using n notation with caution
	Example 21 – the number of iteration counts in Big O
	Example 22 – digits
	Example 23 – sorting

	Key hints to look for in an interview
	Summary

	Chapter 8:
Recursion and Dynamic Programming
	Technical requirements
	Recursion in a nutshell
	Recognizing a recursive problem

	Dynamic Programming in a nutshell
	Memoization (or Top-Down Dynamic Programming)
	Tabulation (or Bottom-Up Dynamic Programming)

	Coding challenges
	Coding challenge 1 – Robot grid (I)
	Coding challenge 3 – Josephus
	Coding challenge 6 – Five towers
	Coding challenge 8 – The falling ball
	Coding challenge 9 – The highest colored tower
	Coding challenge 10 – String permutations
	Coding challenge 11 – Knight tour
	Coding challenge 12 – Curly braces
	Coding challenge 13 – Staircase
	Coding challenge 14 – Subset sum
	Coding challenge 15 – Word break (this is a famous Google problem)

	Chapter 9:
Bit Manipulation
	Technical requirements
	Bit manipulation in a nutshell
	Obtaining the binary representation of a Java integer
	Bitwise operators
	Bit shift operators
	Tips and tricks

	Coding challenges
	Coding challenge 1 – Getting the bit value
	Coding challenge 2 – Setting the bit value
	Coding challenge 3 – Clearing bits
	Coding challenge 4 – Summing binaries on paper
	Coding challenge 5 – Summing binaries in code
	Coding challenge 6 – Multiplying binaries on paper
	Coding challenge 7 – Multiplying binaries in code
	Coding challenge 8 – Subtracting binaries on paper
	Coding challenge 9 – Subtracting binaries in code
	Coding challenge 10 – Dividing binaries on paper
	Coding challenge 11 – Dividing binaries in code
	Coding challenge 12 – Replacing bits
	Coding challenge 13 – Longest sequence of 1
	Coding challenge 14 – Next and previous numbers
	Coding challenge 15 – Conversion
	Coding challenge 16 – Maximizing expressions
	Coding challenge 17 – Swapping odd and even bits
	Coding challenge 18 – Rotating bits
	Coding challenge 19 – Calculating numbers
	Coding challenge 20 – Unique elements
	Coding challenge 21 – Finding duplicates
	Coding challenge 22 – Two non-repeating elements
	Coding challenge 23 – Power set of a set
	Coding challenge 24 – Finding the position of the only set bit
	Coding challenge 25 – Converting a float into binary and vice versa

	Summary

	Section 3: Algorithms and Data Structures
	Chapter 10:
Arrays and Strings
	Technical requirements
	Arrays and strings in a nutshell
	Coding challenges
	Coding challenge 1 – Unique characters (1)
	Coding challenge 2 – Unique characters (2)
	Coding challenge 3 – Encoding strings
	Coding challenge 4 – One edit away
	Coding challenge 5 – Shrinking a string
	Coding challenge 6 – Extracting integers
	Coding challenge 7 – Extracting the code points of surrogate pairs
	Coding challenge 8 – Is rotation
	Coding challenge 9 – Rotating a matrix by 90 degrees
	Coding challenge 10 – Matrix containing zeros
	Coding challenge 11 – Implementing three stacks with one array
	Coding challenge 12 – Pairs
	Coding challenge 13 – Merging sorted arrays
	Coding challenge 14 – Median
	Coding challenge 15 – Sub-matrix of one
	Coding challenge 16 – Container with the most water
	Coding challenge 17 – Searching in a circularly sorted array
	Coding challenge 18 – Merging intervals
	Coding challenge 19 – Petrol bunks circular tour
	Coding challenge 20 – Trapping rainwater
	Coding challenge 21 – Buying and selling stock
	Coding challenge 22 – Longest sequence
	Coding challenge 23 – Counting game score
	Coding challenge 24 – Checking for duplicates
	Coding challenge 25 – Longest distinct substring
	Coding challenge 26 – Replacing elements with ranks
	Coding challenge 27 – Distinct elements in every
sub-array
	Coding challenge 28 – Rotating the array k times
	Coding challenge 29 – Distinct absolute values in sorted arrays

	Summary

	Chapter 11:
Linked Lists and Maps
	Technical requirements
	Linked lists in a nutshell
	Maps in a nutshell
	Coding challenges
	Coding challenge 1 – Map put, get, and remove
	Coding challenge 2 – Map the key set and values
	Coding challenge 3 – Nuts and bolts
	Coding challenge 4 – Remove duplicates
	Coding challenge 5 – Rearranging linked lists
	Coding challenge 6 – The nth to last node
	Coding challenge 7 – Loop start detection
	Coding challenge 8 – Palindromes
	Coding challenge 9 – Sum two linked lists
	Coding challenge 10 – Linked lists intersection
	Coding challenge 11 – Swap adjacent nodes
	Coding challenge 12 – Merge two sorted linked lists
	Coding challenge 13 – Remove the redundant path
	Coding challenge 14 – Move the last node to the front
	Coding challenge 15 – Reverse a singly linked list in groups of k
	Coding challenge 16 – Reverse a doubly linked list
	Coding challenge 17 – LRU cache

	Summary

	Chapter 12:
Stacks and Queues
	Technical requirements
	Stacks in a nutshell
	Queues in a nutshell
	Coding challenges
	Coding challenge 1 – Reverse string
	Coding challenge 2 – Stack of curly braces
	Coding challenge 3 – Stack of plates
	Coding challenge 4 – Stock span
	Coding challenge 5 – Stack min
	Coding challenge 6 – Queue via stacks
	Coding challenge 7 – Stack via queues
	Coding challenge 8 – Max histogram area
	Coding challenge 9 – Smallest number
	Coding challenge 10 – Islands
	Coding challenge 11 – Shortest path

	Infix, postfix, and prefix expressions
	Summary

	Chapter 13:
Trees and Graphs
	Technical requirements
	Trees in a nutshell
	General tree
	Binary Search Tree
	Balanced and unbalanced binary trees
	Complete binary tree
	Full binary tree
	Perfect binary tree
	Binary Heaps

	Graphs in a nutshell
	Adjacency matrix
	Adjacency list
	Graph traversal

	Coding challenges
	Coding challenge 1 – Paths between two nodes
	Coding challenge 2 – Sorted array to minimal BST
	Coding challenge 3 – List per level
	Coding challenge 4 – sub-tree
	Coding challenge 5 – Landing reservation system
	Coding challenge 6 – Balanced binary tree
	Coding challenge 7 – Binary tree is a BST
	Coding challenge 8 – Successor node
	Coding challenge 9 – Topological sort
	Coding challenge 10 – Common ancestor
	Coding challenge 11 – Chess knight
	Coding challenge 12 – Printing binary tree corners
	Coding challenge 13 – Max path sum
	Coding challenge 14 – Diagonal traversal
	Coding challenge 15 – Handling duplicates in BSTs
	Coding challenge 16 – Isomorphism of binary trees
	Coding challenge 17 – Binary tree right view
	Coding challenge 18 – kth largest element
	Coding challenge 19 – Mirror binary tree
	Coding challenge 20 – Spiral-level order traversal of a binary tree
	Coding challenge 21 – Nodes at a distance k from leafs
	Coding challenge 22 – Pair for a given sum
	Coding challenge 23 – Vertical sums in a binary tree
	Coding challenge 23 – Converting a max heap into a min heap
	Coding challenge 24 – Finding out whether a binary tree is symmetric
	Coding challenge 25 – Connecting n ropes at the minimum cost

	Advanced topics
	Summary

	Chapter 14:
Sorting and Searching
	Technical requirements
	Sorting algorithms
	Heap Sort
	Merge Sort
	Quick Sort
	Bucket Sort
	Radix Sort

	Searching algorithms
	Coding challenges
	Coding challenge 1 – Merging two sorted arrays
	Coding challenge 2 – Grouping anagrams together
	Coding challenge 3 – List of unknown size
	Coding challenge 4 – Merge sorting a linked list
	Coding challenge 5 – Strings interspersed with empty strings
	Coding challenge 6 – Sorting a queue with the help of another queue
	Coding challenge 7 – Sorting a queue without
extra space
	Coding challenge 8 – Sorting a stack with the help of another stack
	Coding challenge 9 – Sorting a stack in place
	Coding challenge 10 – Searching in a full sorted matrix
	Coding challenge 11 – Searching in a sorted matrix
	Coding challenge 12 – First position of first one
	Coding challenge 13 – Maximum difference between two elements
	Coding challenge 14 – Stream ranking
	Coding challenge 15 – Peaks and valleys
	Coding challenge 16 – Nearest left smaller number
	Coding challenge 17 – Word search
	Coding challenge 18 – Sorting an array based on another array

	Summary

	Chapter 15:
Mathematics and Puzzles
	Technical requirements
	Tips and suggestions
	Coding challenges
	Coding challenge 1 – FizzBuzz
	Coding challenge 2 – Roman numerals
	Coding challenge 3 – Visiting and toggling 100 doors
	Coding challenge 4 – 8 teams
	Coding challenge 5 – Finding the kth number with the prime factors 3, 5, and 7
	Coding challenge 6 – Count decoding a digit's sequence
	Coding challenge 7 – ABCD
	Coding challenge 8 – Rectangles overlapping
	Coding challenge 9 – Multiplying large numbers
	Coding challenge 10 – Next greatest number with the same digits
	Coding challenge 11 – A number divisible by its digits
	Coding challenge 12 – Breaking chocolate
	Coding challenge 13 – Clock angle
	Coding challenge 14 – Pythagorean triplets
	Coding challenge 15 – Scheduling one elevator

	Summary

	Section 4:
Bonus – Concurrency and Functional Programming
	Chapter 16:
Concurrency
	Technical Requirements
	Java concurrency (multithreading)
in a nutshell
	Questions and coding challenges
	Coding challenge 1 – Thread life cycle states
	Coding challenge 2 – Deadlocks
	Coding challenge 3 – Race conditions
	Coding challenge 5 – Executor and ExecutorService
	Coding challenge 7 – Starvation
	Coding challenge 10 – Thread versus Runnable
	Coding challenge 12 – wait() versus sleep()
	Coding challenge 14 – ThreadLocal
	Coding challenge 15 – submit() versus execute()
	Coding challenge 16 – interrupted() and isInterrupted()
	Coding challenge 18 – sharing data between threads
	Coding challenge 20 – Producer-Consumer
	Producer-Consumer via wait() and notify()

	Chapter 17:
Functional-Style Programming
	Java functional-style programming
in a nutshell
	Key concepts of functional-style programming

	Questions and coding challenges
	Coding challenge 1 – Lambda parts
	Coding challenge 2 – Functional interface
	Coding challenge 3 – Collections versus streams
	Coding challenge 4 – The map() function
	Coding challenge 5 – The flatMap() function
	Coding challenge 6 – map() versus flatMap()
	Coding challenge 7 – The filter() function
	Coding challenge 8 – Intermediate versus
terminal operations
	Coding challenge 9 – The peek() function
	Coding challenge 10 – Lazy streams
	Coding challenge 11 – Functional interfaces versus regular interfaces
	Coding challenge 12 – Supplier versus Consumer
	Coding challenge 13 – Predicates
	Coding challenge 14 – findFirst() versus findAny()
	Coding challenge 15 – Converting arrays to streams
	Coding challenge 16 – Parallel streams
	Coding challenge 17 – The method reference
	Coding challenge 18 – The default method
	Coding challenge 19 – Iterator versus Spliterator
	Coding challenge 20 – Optional
	Coding challenge 21 – String::valueOf

	Summary

	Chapter 18:
Unit Testing
	Technical Requirements
	Unit testing in a nutshell
	Questions and coding challenges
	Coding challenge 1 – AAA
	Coding challenge 2 – FIRST
	Coding challenge 3 – Test fixtures
	Coding challenge 4 – Exception testing
	Coding challenge 5 – Developer or tester
	Coding challenge 6 – JUnit extensions
	Coding challenge 7 – @Before* and
@After* annotations
	Coding challenge 8 – Mocking and stubbing
	Coding challenge 9 – Test suite
	Coding challenge 10 – Ignoring test methods
	Coding challenge 11 – Assumptions
	Coding challenge 12 – @Rule
	Coding challenge 13 – Method test return type
	Coding challenge 14 – Dynamic tests
	Coding challenge 15 – Nested tests

	Summary

	Chapter 19:
System Scalability
	Scalability in a nutshell
	Questions and coding challenges
	Coding challenge 1 – Scaling types
	Coding challenge 2 – High availability
	Coding challenge 3 – Low latency
	Coding challenge 4 – Clustering
	Coding challenge 5 – Latency, bandwidth,
and throughput
	Coding challenge 6 – Load balancing
	Coding challenge 7 – Sticky session
	Coding challenge 8 – Sharding
	Coding challenge 9 – Shared-nothing architecture
	Coding challenge 10 – Failover
	Coding challenge 11 – Session replication
	Coding challenge 12 – The CAP theorem
	Coding challenge 13 – Social networks

	Practicing is the key to success
	Designing bitly, TinyURL, and goo.gl (a service for shorting URLs)
	Designing Netflix, Twitch, and YouTube (a global video streaming service)
	Designing WhatsApp and Facebook Messenger (a global chat service)
	Designing Reddit, HackerNews, Quora, and Voat (a message board service and social network)
	Designing Google Drive, Google Photos, and Dropbox (a global file storage and sharing service)
	Designing Twitter, Facebook, and Instagram (an extremely large social media service)
	Designing Lyft, Uber, and RideAustin
(a ride-sharing service)
	Designing a type-ahead and web crawler (a search engine related service)
	Designing an API rate limiter (for example, GitHub or Firebase)
	Designing nearby places/friends and Yelp (a proximity server)

	Summary

	Other Books You May Enjoy
	Index

