The Complete Coding
Interview Guide in Java

Anghel Leonard

The Complete
Coding Interview
Guide in Java

An effective guide for aspiring Java developers to ace
their programming interviews

Anghel Leonard

Packt

BIRMINGHAM—MUMBAI

The Complete Coding Interview Guide in Java
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.
Commissioning Editor: Kunal Chaudhari

Acquisition Editor: Alok Dhuri

Senior Editor: Rohit Singh

Content Development Editor: Kinnari Chohan

Technical Editor: Gaurav Gala

Copy Editor: Safis Editing

Project Coordinator: Deeksha Thakkar

Proofreader: Safis Editing

Indexer: Rekha Nair

Production Designer: Joshua Misquitta
First published: August 2020
Production reference: 2030321

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83921-206-2

www . packt.com

http://www.packt.com

Packh

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

« Spend less time learning and more time coding with practical eBooks and videos
from over 4,000 industry professionals

o Improve your learning with Skill Plans designed especially for you
 Get a free eBook or video every month
o Fully searchable for easy access to vital information

 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt . com and, as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www . packt . com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

Contributors

About the author

Anghel Leonard is a chief technology strategist with more than 20 years” experience

in the Java ecosystem. In his daily work, he is focused on architecting and developing
Java-distributed applications that empower robust architectures, clean code, and high
performance. He is also passionate about coaching, mentoring, and technical leadership.

I would like to thank the Packt team for making this book possible.

About the reviewer

Tejaswini Mandar Jog is a passionate and enthusiastic Java trainer. She has more than 12
years experience in the IT training field, specializing in Java, J2EE, Spring, Spring Cloud,
microservices, and relevant technologies.

She has worked with many renowned corporate companies on training and skill
enhancement programs. She is also involved in the development of projects using
Java, Spring, and Hibernate and is the author of three books related to Spring, reactive
programming, and modular programming.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Table of Contents

Preface

Section 1: The Non-Technical Part of an

Interview

1

Where to Start and How to Prepare for the Interview

The novice interview roadmap 4

List the most relevant projects (top five) 19

Know yourself 4 Nominate your technical skills 20
Know the market 8 LinkedIn resume 21
It's all about getting the right The job application process 22
experience 11 Finding companies that are hiring 22
Start something 1" Submitting the resume 23
It's time to shine online 12 . .

| got an interview! Now what? 23
Time to write your resume 18 The phone screening stage 23
What resume screeners are looking for 18 Going to in-person interviews 24
How long the resume should be 18 Avoiding common mistakes 24
How to list your employment history 19

Summary 25
2
What Interviews at Big Companies Look Like
Interviews at Google 28 Interviews at Crossover 30
Interviews at Amazon 28 Summary 31
Interviews at Microsoft 29

Interviews at Facebook 29

ii Table of Contents

3

Common Non-Technical Questions and How To Answer Them

What is the purpose of non-

Why are you looking to change

technical questions? 34 jobs? 37

What is your experience? 35 What is your salary history? 38

What is your favorite Why should we hire you? 38

programming language? 35 How much money do you want

What do you want to do? 36 to make? 38

What are your career goals? 36 Do you have a question for me? 40

What's your working style? 36 Summary 40

4

How to Handle Failures

Accepting or rejecting an offer 42 the mismatches 44

Failure is an option 42 Don't form an obsession for a

A company can reject you for a company 44

lot Don't lose confidence in

of reasons 43 yourself - sometimes, they

Getting feedback after the interview 43 don't deserve you! 44
Summary 45

Objectively identifying and
eliminating

5

How to Approach a Coding Challenge

Technical quiz
Coding challenge

The problems specific to coding
challenges are meant to be difficult
Tackling a coding challenge problem

Summary

48
50

50
52

59

Table of Contents iii

Section 2: Concepts
6

Object-Oriented Programming

Technical requirements 64
Understanding OOP concepts 64
What is an object? 65
What is a class? 66
What is abstraction? 67
What is encapsulation? 70
What is inheritance? 73
What is polymorphism? 75
What is association? 79
What is aggregation? 81
What is composition? 83

Getting to know the SOLID

principles 86
What is S? 86
What is L? 93
Whatis I? 98
What is D? 102

Popular questions pertaining
to OOP, SOLID, and GOF design

patterns 105
What is method overriding in OOP

(Java)? 105
What is method overloading in OOP

(Java)? 106

What is covariant method overriding in
Java?

What are the main restrictions in
terms of working with exceptions in
overriding and overloading methods?
How can the superclass overridden
method be called from the subclass
overriding method?

Can we override or overload the main()

107

109

110

method?

Can we override a non-static method
as static in Java?

What are the main differences
between interfaces with default
methods and abstract classes?

What is the main difference between
abstract classes and interfaces?

Can we have an abstract class without
an abstract method?

Can we have a class that is both
abstract and final at the same time?
What is the difference between
polymorphism, overriding, and
overloading?

What are the main differences
between static and dynamic binding?
What is method hiding in Java?

Can we write virtual methods in Java?
What is the difference between
polymorphism

and abstraction?

Do you consider overloading

an approach for implementing
polymorphism?

Which OOP concept serves the
Decorator design pattern?

When should the Singleton design
pattern be used?

What is the difference between the
Strategy and State design patterns?
What is the difference between the
Proxy and Decorator patterns?

What is the difference between the
Facade and Decorator patterns?

110

110

114

115

115

115

115
116

116
118

118

118

119

119

119

120

120

iv Table of Contents

What is the key difference between

the Builder and Factory patterns? 121
What is the key difference between

the Adapter and Bridge patterns? 122
Coding challenges 123
Example 1: Jukebox 123
Example 2: Vending machine 126
Example 3: Deck of cards 129

7

Big O Analysis of Algorithms

Example 4: Parking lot 133
Example 5: Online reader system 139
Example 6: Hash table 145
Example 7: File system 148
Example 8: Tuple 149
Example 9: Cinema with a movie ticket

booking system 149
Summary 150

Analogy 152 Example 13 - identifying O(1) loops 169
Big O complexity time 153 Example 14 - Ioopin.g haI.f of the array 170
The best case, worst case, and Examplg 15 - reducing Big O
expressions 170

expected case 154 L

. Example 16 - looping with O(log n) 171
Big O examples 154 Example 17 - string comparison 172
Example 1 - O(1) 155 Example 18 - factorial Big O 173
Example 2 - O(n), linear time algorithms155 gxample 19 - using n notation with
Example 3 - O(n), dropping the caution 174
constants 156 Example 21 - the number of iteration
Example 6 - different steps are counts in Big O 175
summed or multiplied 160 Example 22 - digits 175
Example 7 - log n runtimes 161 Example 23 - sorting 176
Example 9 - in-order traversal of a . .
binary tree 164 Key hints to look for in an
Example 10 - n may vary 165 interview 177
Example 11 - memoization 166 Summary 178
Recursion and Dynamic Programming
Technical requirements 180 Memoization (or Top-Down Dynamic
Recursion in a nutshell 180 Programming) 182
- nizing a recursive oroblem 180 Tabulation (or Bottom-Up Dynamic

ecog § a recursive proble Programming) 184
Dynamic Programming in a Coding challenges 185

nutshell 181

Table of Contents v

Coding challenge 1 - Robot grid (1) 186 permutations 208
Coding challenge 3 - Josephus 191 Coding challenge 11 - Knight tour 214
Coding challenge 6 - Five towers 198 Coding challenge 12 - Curly braces 217
Coding challenge 8 - The falling ball 204 Coding challenge 13 - Staircase 219
Coding challenge 9 - The highest Coding challenge 14 - Subset sum 220
colored tower 206 Coding challenge 15 - Word break (this
Coding challenge 10 - String is a famous Google problem) 227
9

Bit Manipulation

Technical requirements 236 incode 256
Bit manipulation in a nutshell 236 Coding challenge 12 - Replacing bits 257

Obtaining the binary representation of

aJava integer 236
Bitwise operators 237
Bit shift operators 239
Tips and tricks 241
Coding challenges 242
Coding challenge 1 - Getting the bit

value 242
Coding challenge 2 - Setting the bit

value 243
Coding challenge 3 - Clearing bits 245
Coding challenge 4 - Summing binaries

on paper 246
Coding challenge 5 - Summing binaries

in code 247
Coding challenge 6 - Multiplying

binaries on paper 249
Coding challenge 7 - Multiplying

binaries in code 250
Coding challenge 8 - Subtracting

binaries on paper 252
Coding challenge 9 - Subtracting

binaries in code 253
Coding challenge 10 - Dividing binaries

on paper 254

Coding challenge 11 - Dividing binaries

Coding challenge 13 - Longest

sequence of 1 259
Coding challenge 14 - Next and

previous numbers 262
Coding challenge 15 - Conversion 266
Coding challenge 16 - Maximizing
expressions 267
Coding challenge 17 - Swapping odd

and even bits 269

Coding challenge 18 - Rotating bits 270
Coding challenge 19 - Calculating

numbers 272
Coding challenge 20 - Unique elements 273
Coding challenge 21 - Finding

duplicates 277
Coding challenge 22 - Two non-
repeating elements 278

Coding challenge 23 - Power set of a set 281
Coding challenge 24 - Finding the

position of the only set bit 283
Coding challenge 25 - Converting a

float into binary and vice versa 284
Summary 285

vi Table of Contents

Section 3: Algorithms and Data Structures

10

Arrays and Strings

Technical requirements 289
Arrays and strings in a nutshell 290

Coding challenges 290
Coding challenge 1 - Unique
characters (1) 292
Coding challenge 2 - Unique
characters (2) 294

Coding challenge 3 - Encoding strings 296
Coding challenge 4 - One edit away 297
Coding challenge 5 - Shrinking a string 299
Coding challenge 6 - Extracting integers 301
Coding challenge 7 - Extracting the

code points of surrogate pairs 302
Coding challenge 8 - Is rotation 305
Coding challenge 9 - Rotating a matrix

by 90 degrees 306
Coding challenge 10 - Matrix

containing zeros 309
Coding challenge 11 - Implementing

three stacks with one array 313
Coding challenge 12 - Pairs 318
Coding challenge 13 - Merging sorted
arrays 321
Coding challenge 14 - Median 324

Coding challenge 15 - Sub-matrix of one330
Coding challenge 16 - Container with

11

Linked Lists and Maps

the most water 334
Coding challenge 17 - Searching in a
circularly sorted array 339

Coding challenge 18 - Merging intervals 342
Coding challenge 19 - Petrol bunks

circular tour 348
Coding challenge 20 - Trapping

rainwater 351
Coding challenge 21 - Buying and

selling stock 356

Coding challenge 22 - Longest sequence367
Coding challenge 23 - Counting game

score 369
Coding challenge 24 - Checking for
duplicates 370
Coding challenge 25 - Longest distinct
substring 374
Coding challenge 26 - Replacing

elements with ranks 374

Coding challenge 27 - Distinct
elements in every

sub-array 375
Coding challenge 28 - Rotating the

array k times 375
Coding challenge 29 - Distinct absolute
values in sorted arrays 375
Summary 376

378
378

Technical requirements
Linked lists in a nutshell

379
380

Maps in a nutshell
Coding challenges

Table of Contents vii

Coding challenge 1 - Map put, get, and

remove 381
Coding challenge 2 - Map the key set
and values 384

Coding challenge 3 - Nuts and bolts 385
Coding challenge 4 - Remove duplicates 386
Coding challenge 5 - Rearranging

linked lists 389
Coding challenge 6 - The nt to last node391
Coding challenge 7 - Loop start

detection 393
Coding challenge 8 - Palindromes 397
Coding challenge 9 - Sum two linked

lists 399

Coding challenge 10 - Linked lists

12

Stacks and Queues

intersection 401
Coding challenge 11 - Swap adjacent

nodes 403
Coding challenge 12 - Merge two

sorted linked lists 406
Coding challenge 13 - Remove the
redundant path 411
Coding challenge 14 - Move the last

node to the front 413
Coding challenge 15 - Reverse a singly
linked list in groups of k 415
Coding challenge 16 - Reverse a doubly
linked list 417
Coding challenge 17 - LRU cache 418
Summary 423

Technical requirements 426
Stacks in a nutshell 426
Queues in a nutshell 429
Coding challenges 432

Coding challenge 1 - Reverse string 432
Coding challenge 2 - Stack of curly

Coding challenge 6 - Queue via stacks 446
Coding challenge 7 - Stack via queues 448
Coding challenge 8 - Max histogram

area 452
Coding challenge 9 - Smallest number 455
Coding challenge 10 - Islands 457

Coding challenge 11 - Shortest path 461

braces 433

Coding challenge 3 - Stack of plates 435 Infix, postfix, and prefix

Coding challenge 4 - Stock span 438 €expressions 464
Coding challenge 5 - Stack min 442 Summary 465
Trees and Graphs

Technical requirements 467 Complete binary tree 477
Trees in a nutshell 468 Full binary tree 478
General tree 469 Perfect binary tree 478
Binary Search Tree 473 Binary Heaps 479

Balanced and unbalanced binary trees 474

Graphs in a nutshell 481

viii Table of Contents

Adjacency matrix 482
Adjacency list 483
Graph traversal 484
Coding challenges 486
Coding challenge 1 - Paths between

two nodes 486
Coding challenge 2 - Sorted array to
minimal BST 487
Coding challenge 3 - List per level 489
Coding challenge 4 - sub-tree 491
Coding challenge 5 - Landing

reservation system 494
Coding challenge 6 - Balanced binary

tree 499

Coding challenge 7 - Binary tree is a BST502
Coding challenge 8 - Successor node 504
Coding challenge 9 - Topological sort 507
Coding challenge 10 - Common

ancestor 509
Coding challenge 11 - Chess knight 511

Coding challenge 12 - Printing binary
tree corners 514

Coding challenge 13 - Max path sum 516

Coding challenge 15 - Handling

duplicates in BSTs 524
Coding challenge 16 - Isomorphism of
binary trees 526
Coding challenge 17 - Binary tree right
view 529
Coding challenge 18 - k™" largest

element 531

Coding challenge 19 - Mirror binary tree533
Coding challenge 20 - Spiral-level order

traversal of a binary tree 535
Coding challenge 21 - Nodes at a

distance k from leafs 539
Coding challenge 22 - Pair for a given

sum 541
Coding challenge 23 - Vertical sums in

a binary tree 546
Coding challenge 23 - Converting a

max heap into a min heap 548
Coding challenge 24 - Finding out

whether a binary tree is symmetric 551
Coding challenge 25 - Connecting n

ropes at the minimum cost 554

Coding chall 4D | Advanced topics 556
oding challenge 14 - Diagona
traversal 519 Summary 557
Sorting and Searching
Technical requirements 559 Coding challenge 1 - Merging two
Sorting algorithms 560 z°r;f3d a:ah’s) eroun >80
oding challenge 2 - Grouping

;eap Sgrt :21 anagrams together 583
Qergkes o:t a7 Coding challenge 3 - List of unknown

uick Sor :

size 587

Bucl'(et Sort 570 Coding challenge 4 - Merge sorting a
Radix Sort 575 linked list 589
Searching algorithms 577 Codingchallenge 5 - Strings
Codi hall 580 interspersed with empty strings 593

oding challenges

Coding challenge 6 - Sorting a queue

Table of Contents ix

with the help of another queue 595

Coding challenge 12 - First position of

Coding challenge 7 - Sorting a queue first one 613
without Coding challenge 13 - Maximum
extra space 599 difference between two elements 614
Coding challenge 8 - Sorting a stack Coding challenge 14 - Stream ranking 616
with the help of another stack 602 Coding challenge 15 - Peaks and valleys 619
Coding challenge 9 - Sorting a stack in Coding challenge 16 - Nearest left
place 604 smaller number 622
Coding challenge 10 - Searching in a Coding challenge 17 - Word search 624
full sorted matrix 608 Coding challenge 18 - Sorting an array
Coding challenge 11 - Searching in a based on another array 625
sorted matrix 610

Summary 627
15
Mathematics and Puzzles
Technical requirements 630 Coding challenge 13 - Clock angle 657
Tips and suggestions 630 nging challenge 14 - Pythagorean
Coding challenges 631 triplets 059

g g Coding challenge 15 - Scheduling one

Coding challenge 1 - FizzBuzz 631 elevator 662
Coding challenge 2 - Roman numerals 632
Coding challenge 3 - Visiting and Summary 667

toggling 100 doors 635
Coding challenge 4 - 8 teams 638
Coding challenge 5 - Finding the k"
number with the prime factors 3, 5,

and 7 639
Coding challenge 6 - Count decoding a
digit's sequence 640
Coding challenge 7 - ABCD 643
Coding challenge 8 - Rectangles
overlapping 644
Coding challenge 9 - Multiplying large
numbers 648
Coding challenge 10 - Next greatest
number with the same digits 651
Coding challenge 11 - A number

divisible by its digits 654

Coding challenge 12 - Breaking
chocolate 655

x Table of Contents

Section 4: Bonus - Concurrency and
Functional Programming

16

Concurrency

Technical Requirements 672
Java concurrency

(multithreading)

in a nutshell 672
Questions and coding

challenges 674
Coding challenge 1 - Thread life cycle
states 674
Coding challenge 2 - Deadlocks 676

Coding challenge 3 - Race conditions 677

Coding challenge 5 - Executor and
ExecutorService 678

Coding challenge 7 - Starvation 679
Coding challenge 10 - Thread versus

17

Functional-Style Programming

Runnable 680
Coding challenge 12 - wait() versus

sleep() 681
Coding challenge 14 - ThreadLocal 682
Coding challenge 15 - submit() versus
execute() 682
Coding challenge 16 - interrupted()

and isInterrupted() 682
Coding challenge 18 - sharing data

between threads 684
Coding challenge 20 - Producer-

Consumer 684
Producer-Consumer via wait() and

notify() 685

Java functional-style
programming

in a nutshell 690
Key concepts of functional-style
programming 690
Questions and coding

challenges 693

Coding challenge 1 - Lambda parts 693
Coding challenge 2 - Functional

interface 695
Coding challenge 3 - Collections versus
streams 696

Coding challenge 4 - The map() function 696

Coding challenge 5 - The flatMap()

function 697
Coding challenge 6 - map() versus
flatMap() 697

Coding challenge 7 - The filter() function699

Coding challenge 8 - Intermediate
versus
terminal operations 700

Coding challenge 9 - The peek() function700
Coding challenge 10 - Lazy streams 701
Coding challenge 11 - Functional

interfaces versus regular interfaces 701
Coding challenge 12 - Supplier versus
Consumer 701

Table of Contents xi

Coding challenge 13 - Predicates 702
Coding challenge 14 - findFirst() versus
findAny() 702
Coding challenge 15 - Converting

arrays to streams 703

Coding challenge 16 - Parallel streams 704
Coding challenge 17 - The method

Coding challenge 18 - The default

method 705
Coding challenge 19 - Iterator versus

Spliterator 705
Coding challenge 20 - Optional 706
Coding challenge 21 - String::valueOf 707
Summary 707

reference 704
Unit Testing

Technical Requirements 709
Unit testing in a nutshell 710
Questions and coding

challenges 712
Coding challenge 1 - AAA 712
Coding challenge 2 - FIRST 713
Coding challenge 3 - Test fixtures 713

Coding challenge 4 - Exception testing 714

Coding challenge 5 - Developer or
tester 716

Coding challenge 6 - JUnit extensions 716

Coding challenge 7 - @Before* and
@After* annotations 717

19

System Scalability

Coding challenge 8 - Mocking and

stubbing 717
Coding challenge 9 - Test suite 717
Coding challenge 10 - Ignoring test

methods 719
Coding challenge 11 - Assumptions 719
Coding challenge 12 - @Rule 721
Coding challenge 13 - Method test

return type 721

Coding challenge 14 - Dynamic tests 721
Coding challenge 15 - Nested tests 722

Summary 724

Scalability in a nutshell 726
Questions and coding

challenges 727
Coding challenge 1 - Scaling types 727
Coding challenge 2 - High availability 728
Coding challenge 3 - Low latency 728
Coding challenge 4 - Clustering 728
Coding challenge 5 - Latency,

bandwidth,

and throughput 729

Coding challenge 6 - Load balancing 729
Coding challenge 7 - Sticky session 730

Coding challenge 8 - Sharding 731
Coding challenge 9 - Shared-nothing
architecture 732
Coding challenge 10 - Failover 732
Coding challenge 11 - Session

replication 732

Coding challenge 12 - The CAP theorem 733
Coding challenge 13 - Social networks 733

xii Table of Contents

Practicing is the key to success 735
Designing bitly, TinyURL, and goo.gl (a

service for shorting URLs) 735
Designing Netflix, Twitch, and YouTube

(a global video streaming service) 736
Designing WhatsApp and Facebook
Messenger (a global chat service) 736

Designing Reddit, HackerNews, Quora,

and Voat (a message board service and
social network) 736
Designing Google Drive, Google

Photos, and Dropbox (a global file

storage and sharing service) 737

Designing Twitter, Facebook, and
Instagram (an extremely large social
media service)

Designing Lyft, Uber, and RideAustin
(a ride-sharing service)

Designing a type-ahead and web
crawler (a search engine related
service)

Designing an API rate limiter (for
example, GitHub or Firebase)
Designing nearby places/friends and
Yelp (a proximity server)

Summary

737

737

737

738

738
739

Other Books You May Enjoy

Index

Preface

Java is a very popular language, featuring in a high number of I'T job offers across a wide
range of fields and industries. Since Java empowers billions of devices all over the world,
it's become a very appealing technology to learn. However, learning Java is one thing;
starting to develop a career in the Java field is something else. This book is dedicated to
people who want to develop a Java career and want to ace Java-centric interviews.

With this book, you'll learn how to do the following:

« Solve the 220+ most popular Java coding interview problems in a contretemps
fashion encountered in a wide range of companies, including top firms such as
Google, Amazon, Microsoft, Adobe, and Flipkart.

o Collect the best techniques for solving a wide range of Java coding problems.
o Tackle brain-teasing algorithms meant to develop strong and fast logic abilities.

o Iterate the common non-technical interview questions that can make the difference
between success and failure.

 Get an overall picture of what employers want from a Java developer.
By the end of this book, you will have a solid informational foundation for solving Java

coding interview problems. The knowledge achieved from this book will give you high
confidence in yourself to obtain your Java-centric dream job.

Who this book is for

The Complete Coding Interview Guide in Java is a comprehensive resource for those who
are looking for a Java developer (or related) job and need to tackle coding problems in a
contretemps fashion. It is especially dedicated to entry- and middle-level candidates.

xiv Preface

What this book covers

Chapter 1, Where to Start and How to Prepare for the Interview, is a comprehensive guide
that tackles the preparation process for a Java interview from zero to hire. More precisely,
we want to highlight the main checkpoints that can ensure a smooth and successful career
path ahead.

Chapter 2, What Interviews at Big Companies Look Like, talks about how interviews are
conducted in the main Big Tech firms of Google, Amazon, Microsoft, Facebook, and
Crossover.

Chapter 3, Common Non-Technical Questions and How To Answer Them, tackles the main
aspects of the non-technical questions. This part of the interview is commonly carried out
by a hiring manager or even an HR person.

Chapter 4, How to Handle Failures, discusses a delicate aspect of the interview — handling
failures. The main purpose of this chapter is to show you how to identify the causes of
failure and how to mitigate them in the future.

Chapter 5, How to Approach a Coding Challenge, covers the technical quizzes and coding
challenge topics that are commonly referred to as the technical interview.

Chapter 6, Object-Oriented Programming, explains the most popular questions and
problems concerning object-oriented programming encountered at Java interviews,
including the SOLID principles and coding challenges such as Jukebox, Parking Lot, and
Hash Table.

Chapter 7, Big O Analysis of Algorithms, provides the most popular metric for analyzing
the efficiency and scalability of algorithms, the Big O notation, in the context of a
technical interview.

Chapter 8, Recursion and Dynamic Programming, covers one of the favorite topics of
interviewers — recursion and Dynamic Programming. Both of these topics work hand in
hand with each other, so you have to be able to cover both.

Chapter 9, Bit Manipulation, explains the most important aspects of bit manipulation
that you should know in a technical interview. Such problems are often encountered in
interviews and they are not easy. In this chapter, you have 25 such coding challenges.

Chapter 10, Arrays and Strings, covers 29 popular problems involving strings and arrays.

Chapter 11, Linked Lists and Maps, teaches you the 17 most famous coding challenges that
involve maps and linked lists encountered in interviews.

Preface xv

Chapter 12, Stacks and Queues, explains the 11 most popular interview coding challenges
involving stacks and queues. Mainly, you have to learn how to provide a stack/queue
implementation from scratch and how to tackle coding challenges via the Java built-in
implementations.

Chapter 13, Trees and Graphs, covers one of the most tricky topics in interviews — trees
and graphs. While there are tons of problems related to these two topics, only a handful of
them are actually encountered in interviews. It is therefore very important to give a high
priority to the most popular problems concerning trees and graphs.

Chapter 14, Sorting and Searching, covers the most popular sorting and searching
algorithms encountered in technical interviews. We will cover sorting algorithms such as
Merge Sort, Quick Sort, Radix Sort, Heap Sort, and Bucket Sort, and searching algorithms
such as Binary Search. By the end of this chapter, you should be able to tackle a wide range
of problems that involve sorting and searching algorithms.

Chapter 15, Mathematics and Puzzles, talks about a controversial topic in interviews:
mathematics and puzzle problems. A significant number of companies consider that these
kinds of problems should not be part of a technical interview, while other companies still
regard this topic as relevant for interviews.

Chapter 16, Concurrency, covers the most popular questions about Java concurrency
(multithreading) that occur in general interviews involving the Java language.

Chapter 17, Functional-Style Programming, examines the most popular questions about
Java functional-style programming. We cover key concepts, lambdas, and streams.

Chapter 18, Unit Testing, talks about unit-testing interview problems that you may
encounter if you apply for a position such as a developer or software engineer. Of course,
if you are looking for a tester (manual/automation) position, then this chapter may
represent just another perspective on testing. Therefore, do not expect to see questions
here specific to manual/automation tester positions.

Chapter 19, System Scalability, provides the widest range of scalability interview questions
you may be asked during a junior/middle-level interview for a position such as a web
application software architect, Java architect, or software engineer.

To get the most out of this book

All you need is Java (preferably Java 8+) and your favorite IDE (NetBeans, Intelli] IDEA,
Eclipse, and so on).

I also strongly recommend that readers consult the Java Coding Problems book, also from
Packt, to improve your skills further.

xvi Preface

Download the example code files

You can download the example code files for this book from your account at www .
packt . com. If you purchased this book elsewhere, you can visit www . packtpub . com/
support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Login or register at www . packt .com.
2. Select the Support tab.

3. Click on Code Downloads.

4

Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

o WinRAR/7-Zip for Windows
« Zipeg/iZip/UnRarX for Mac
o 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java. In
case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781839212062 ColorImages.pdf

Conventions used

There are a number of text conventions used throughout this book.

http://www.packt.com
http://www.packt.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packt.com.
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781839212062_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781839212062_ColorImages.pdf

Preface xvii

Code in text:Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: 'The Triangle, Rectangle, and Circle classes implement
the Shape interface and override the draw () method to draw the corresponding shape."

A block of code is set as follows:

public static void

Shape triangle

Shape rectangle

Shape circle

main (String[] args)

{

new Triangle () ;

new Rectangle () ;

new Circle() ;

triangle.draw() ;

rectangle.draw () ;

circle.draw () ;

}

When we wish to draw your attention to a particular part of a code block, the relevant

lines or items are set in bold:

public static void

Shape triangle
Shape rectangle

Shape circle

triangle.draw() ;

rectangle.draw (

circle.draw () ;

main (String[] args)

{

new Triangle() ;

new Rectangle() ;

new Circle() ;

I

) 7

xviii Preface

Bold: Indicates a new term, an important word, or words that you see on

screen. For example, words in menus or dialog boxes appear in the text like

this. Here is an example: "However, this approach does not work for the third case,
339809 (1010010111101100001)."

Tips or important notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub. com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www . packtpub. com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

Section 1:
The Non-Technical
Part of an Interview

The objective of this section consists of covering the non-technical part of an interview.
This includes interview idioms and the patterns of big companies, such as Amazon,
Microsoft, Google, and so on. You will become familiar with the main non-technical
interview questions and their meaning (how the interviewer interprets the answers).

This section comprises the following chapters:

o Chapter 1, Where to Start and How to Prepare for the Interview

o Chapter 2, What Interviews at Big Companies Look Like

o Chapter 3, Common Non-Technical Questions and How To Answer Them
 Chapter 4, How to Handle Failures

o Chapter 5, How to Approach a Coding Challenge

1

Where to Start and
How to Prepare for
the Interview

This chapter is a comprehensive guide that tackles the preparation process for a Java
interview from the very start, to getting hired. More precisely, we want to highlight the
main checkpoints that can ensure a smooth and successful career road ahead. Of course,
at the time you read this book, you might find yourself at any of these checkpoints:

« Start your interview preparation as early as possible
+ Get the right experience
« Show your work to the world
o Prepare your resume
o Take the interview
By the end of this chapter, you'll have a clear picture of how to achieve the preceding

checkpoints depending on your current status. So, let's start by covering the first
checkpoint and take a look at the novice interview roadmap.

4 Where to Start and How to Prepare for the Interview

The novice interview roadmap

Let's start from a fundamental truth that is absolutely necessary, but not sufficient, to
become a successful developer: the best Java developers are passionate about their work,
and, in time, true passions become professions. Over the long term, passion is priceless
and it will make you stand out of the crowd of skilled but dispassionate people.

Since you bought this book, you want to invest some time and money in a Java software
development career. Mainly, you want to become part of the amazing Java ecosystem!
You already feel the power and the energy that comes from focusing on working with
Java, therefore, even if you haven't yet actively thought about it, you've already started to
prepare yourself for a Java interview.

Most probably, you are a student or you've just got a bachelor's degree in IT, computer
science, or you've simply discovered your propensity for the Java language. Nevertheless,
since you are here, you have a lot of questions and doubts about how to get the dream job
in the Java ecosystem.

It is time to bake a plan for success! The following flowchart represents the interview
roadmap for a student or Java novice who wants to be part of the Java ecosystem:

Prepare yourself to I

application
become a Java developer I
n process

Figure 1.1 - Novice interview roadmap

In this chapter, we will cover each item of the preceding diagram. Let's get started with the
first item, Know yourself.

Know yourself

Before searching for a job, it is important to know yourself. This means that you should
know what kind of developer you are and what kind of job you want.

Know yourself 5

This is crucial to getting the right experience, evolving your package of skills, and finding
the right employer. Most probably, you can cover a wide range of Java programming tasks,
but do you find all of them equally engaging? Doing something that you don't like for a
short period of time is OK, but it will not work for the long term.

Ideally, in the long term, you must focus on what you like to do the most! This way, you
maximize your chances of becoming a top Java developer. But, doing what you like the
most should be considered in the context of what the IT market offers (in both the short
term, and most importantly, the long term). Some Java technologies are widely covered by
job offers, while others may require a lot of time to find a job or must make some really
unpleasant trade-offs (for example, relocation). It is strongly advisable to periodically
consult and participate (every vote counts) in the most relevant Java surveys conducted by
websites such asblogs.oracle.com, snyk.io, jaxenter.com, codeburst.
io, jetbrains.com, and dzone.com. Having a wide range of companies to choose
from statistically maximizes the chances of finding the right company for you. This is half
of the problem, while the other half is to prepare yourself to make sure that the company
with the job you want will want you.

Now, let's examine 10 questions that will help you to identify what kind of developer you
plan to become. Look inside yourself and try to overlap your personality and skills in
considering the following questions and explanations:

1. Areyou interested in developing user interfaces or the heavy business logic that
is executed behind the scenes? Developing great user interfaces is an extremely
important aspect of a graphical interface. After all, the graphical interface is what
the end user sees and interacts with. It requires creativity, innovation, vision, and
psychology (for example, developing multi-device interfaces is quite challenging).
It requires knowledge of Java AWT, Swing, JavaFX, Vaadin, and so on. On the other
hand, the business logic that is executed behind the scenes and answers to end user
actions is the engine behind the interface, but, for the end user, most of the time it
is a black box. The business logic requires strong coding skills and solid knowledge
of algorithms, data structures, frameworks (such as Spring Boot, Jakarta EE, and
Hibernate), databases, and so on. Most Java developers opt for coding the business
logic behind the scenes (for desktop and web applications).

2. What kind of applications do you find most engaging (desktop, mobile, web, or
others)? Each type of application has specific challenges and dedicated suites of
tools. Today, companies target as many consumers as possible, therefore, modern
applications should be available for multi-platform devices. Most of all, you should
be able to code in the knowledge that the application will be exposed on different
devices and will interact with other systems.

6 Where to Start and How to Prepare for the Interview

3. Areyou especially interested in testing, debugging, and/or code review? Having
strong skills in writing valuable tests, finding bugs, and reviewing the code are the
most important skills for guaranteeing a high-quality final product. Of these three
areas, we should focus on testing, as almost any Java developer job description
requires the candidate to have strong skills in writing unit tests and integration tests
(the most commonly preferred tools are JUnit, TestNG, Mockito, and Cucumber-
JVM). Nevertheless, trying to find a dedicated Java tester job or Java code reviewer
is quite challenging and is usually encountered in big companies (especially
in companies that provide remote jobs, such as Upstack or Crossover). Most
companies prefer pair code review and each Java developer should write meaningful
tests that provide high coverage for the code that they wrote. So you have to be able
do both: write astonishing code, and write the tests for that code.

4. Areyou interested in applications that interact with databases or do you try
to avoid such applications? Most Java applications use a database (a relational
database or a NoSQL database). A wide range of Java developer jobs will
imperatively require you to have strong knowledge of coding against a database via
Object Relational Mapping frameworks (such as Hibernate), JPA implementations
(such as Hibernate JPA or Eclipse Link), or SQL-centric libraries (such as jOOQ).
Most Java applications interact with a relational database such as MySQL,
PostgreSQL, Oracle, or SQL Server. But NoSQL databases such as MongoDB, Redis,
or Cassandra are also encountered in a significant number of applications. Trying
to avoid developing applications that interact with a database may seriously limit
the range of jobs on offer. If this is your case, then you should reconsider this aspect
starting today.

5. Do you have a predilection for code optimization and performance? Caring
about the performance of your code is a highly appreciated skill. Such actions will
catalog you as a perfectionist with great attention to detail. Having solutions that
optimize the code and increase its performances will place you pretty quickly in the
position of getting involved in designing and architecting the solutions of functional
requirements. But at the interview (the code challenge stage), don't focus on code
optimizations and performance! Simply focus on delivering a working solution and,
as much as possible, clean code.

Know yourself 7

What is more appealing to you: a coding-focused job or being a software
architect? At the beginning of your career as a Java developer, you will be focused
on coding and taking implementation design decisions at code level. In time, some
developers discover their abilities and interest in architecting large applications.
This means that it's time to evolve from a Java developer to a Java architect, or even
a Java chief architect. While coding is still part of your job, as an architect you will
wear different hats on the same day. You have to split your time between meetings,
architecting, and coding. If you feel that you have the aptitude for designing and
architecting different pieces of a project, then it is advisable to consider some
training in software architecture as well. Moreover, during your coding-focused job,
challenge yourself to see what solutions you can find and compare them with those
implemented by the current architect of the application.

Are you aiming for a small or a big company? Choosing between a small or a big
company is a matter of trade-offs. Ideally, a big company (a brand) will give stability,
a career path, and a good salary plan. But you may feel stifled by the bureaucracy,
lack of communication and rivalry between departments, and a cold and rigid
environment. In a small company, you have the chance to feel more intensely that
you are part of the success and will get a nice, warm feeling of being part of a small
community (even a family). However, small companies may fail fast and you might
be fired in a year or two, most likely without any compensation package.

Do you target a software company (working on a wide range of projects) or

a certain industry (for example, the oil industry, medicine, the automobile
industry, and so on)? A software company manages projects from a variety of fields
(for example, a software company might develop a website for a Hollywood star,

a financial application, and an airline traffic control application at the same time).
From a developer's perspective, this means that you need versatile thinking and to
be capable of quickly adapting to understand the requirements of different business
domains without diving into those domains. On the other hand, big industries (for
example, the oil industry) prefer to create their own IT departments that develop
and maintain applications specific to that company field. In such cases, you would
most likely receive some training in the given company's field as well. You will have
the advantage of becoming an expert at developing applications specific to a certain
domain.

8 Where to Start and How to Prepare for the Interview

10.

Do you prefer a remote job? In the past few years, a significant number of
companies have decided to hire remote developers. Moreover, new companies

such as Upwork, Remote|OK, X-Team, and Crossover are 100% remote companies
recruiting only for remote positions. The advantage of working from any corner of
the world with a flexible program is quite appealing. These companies offer jobs for
junior, middle, and senior developers, and some of them (for example, Crossover)
offer remote management positions as well. But, you have to be aware of some of the
other aspects of this arrangement as well: it is possible that you will be monitored
via webcam (for example, with snapshots every 10 minutes); you need to work

in a completely remote team with members from different time zones (it may be
challenging to participate in meetings at night, for example); you will have to be
familiar with tools including JIRA, GitHub, Zoom, Slack, Meetup, and in-house
marketplace platforms; you may face a lot of friction (tons of emails) and a lack of
communication; you need to pay your taxes, and last but not least, you may need to
achieve unreal metrics to the detriment of quality to maintain your position.

Does management interest you? Commonly, reaching a managerial position is

a goal that requires leadership skills. In other words, you should be able to take
important decisions at both the technical and human levels. From this perspective,
you need to avoid companies that offer a solid technical career path but don't
provide opportunities to get promoted to the ranks of management.

Important note

Knowing yourself is one of the hardest parts required in order to make the best
decisions in life. Sometimes, asking the opinion of other people is the best way
to eliminate your subjective view of yourself. Most of the time, asking your
teachers, parents, and friends will help you to better understand what your
skills are and where you fit the best. Making important decisions alone is risky.

Once you know yourself, it is time to get to know the market.

Know the market

Knowing what you want is great, but is not enough. As the next step, you should research
what the market wants from you. The goal is to obtain the perfect cocktail of what you
want and what the market offers.

Know the market 9

Important note

Developing marketable skills is an important aspect of getting a job in the
near future.

First, you must check which Java technologies have been most popular over the last few
years and what the future trends look likely to be. Technologies that maintain relatively
stable popularity over time are the most used in companies.

Take your time to read several surveys from the last 2-3 years from important websites
such asblogs.oracle.com, snyk.io, jaxenter.com, codeburst.io,
jetbrains.com, and dzone . com. Primarily, you can search on Google for java
technologies survey 2019 or similar combinations of keywords. Also, don't neglect the
financial part, so make sure to search for java salaries survey 2019 as well.

You will find a variety of surveys that nicely summarize the most popular technologies,
as you can see in the following two figures. The first one shows the popularity of
application servers:

What application servers do you regularly use, if any?

66% DN U092 Apache Tomcat

21% I Jetty
5% W Weblogic
5% WildFly
5% ma GlassFish
5% JBoss EAP
4%z WebSphere
1% 1 Payara
1% 1 Liberty
2% 1 Other

23% I MNone

https:/ fwww jetbrains.com/flpfdevecosystem-2019fjava/

Figure 1.2 - The application servers that are used

10 Where to Start and How to Prepare for the Interview

The following figure shows which frameworks developers prefer:

Which frameworks do you use as an alternative to an
application server, if any?

61% I Spring Boot
12% - MNetty
= HE Spark lava
% W Vertx
3% m Undertow
= W Other
31% I Mane

https:f fwrerw jetbrains.comflp/devecosystem-2019 fjava/

Figure 1.3 — The frameworks that developers prefer to use

While reading, make a list and note down what Java technologies are the most popular
and what technologies don't deserve your attention at this moment. It will be a list similar
to the following:

Popular Skip for now

Technology Foo

Technology Bizz
Technology Buzz

Figure 1.4 - Splitting technologies by popularity

This way, you can quickly filter the technologies that are most required by the market.
Learning popular technologies maximizes your chances of getting a job in the near future.

It's all about getting the right experience 11

Further, take the pulse of the market toward the technologies that you added to the
Popular column via the following means:

 Social networks: A significant number of social networks contain posts about
technologies and what's trending in the IT industry. Some major players are
LinkedIn, Stack Overflow, Twitter, Reddit, and Facebook.

+ Bookstores: Book publishers strive to satisfy the interest of the programming
community by covering the most popular technologies. They carry out serious
research campaigns for filtering the topics that deserve to be covered in their books.
A new book or a significant number of books on a certain topic or technology is a
good indicator of programming community interest in that topic. Nevertheless, pay
attention to technologies that are suddenly going mainstream. Most of the time,
such technologies are not adopted by companies immediately. It may take years
until they are adopted, or they may remain in the shadows forever.

» Courses and training: Besides colleges and universities, tons of websites strive to
provide courses and training for popular and hot topics.

It's all about getting the right experience

You know what you want and what the market offers. This is cool! Now it's time to get the
right experience! Without experience, there is no resume, and without a resume, there is
no interview, therefore, this is a major and laborious step. The following subsections will
help you to achieve two main goals:

« Accumulate a lot of technical knowledge and skills.

 Gain trust and visibility across the Java ecosystem.

Pay attention - these two goals won't materialize overnight! It takes time and requires
perseverance, but there is a clear and guaranteed result — you'll become a top Java
developer. So, let's start something!

Start something

For a student or a recent graduate, it is pretty hard to decide where to start from in order
to gain experience and write a resume. You are aware that you should start something,
but you cannot decide what that something should be. Well, that something should be
code. Before you have any formal work, get involved in school projects, internships,
programming, volunteering work, and any kind of practical experience.

12 Where to Start and How to Prepare for the Interview

It's time to shine online

It is mandatory to get online and show the world what you can do as early as possible (for
example, from school). Companies and programming communities are looking forward
to seeing how you grow online. But just before you jump in, ensure that you follow the
next two golden rules:

« Itisveryimportant to pay attention to the identity used to expose your work
online. Don't use dummy credentials, avatars, nicknames, emails, passwords, and so
on. Most likely, the accounts that you will create now (on GitHub, Stack Overflow,
LinkedIn, YouTube, Twitter, and so on) will be shared all over the internet and
will make you famous. Always use your complete name (for example, Mark Janel,
Joana Nimar), use a relevant photo of yourself for your profile (as in the following
figure), and use your name in accounts (for example, @markjanel, joananimar)
and in emails addresses (for example, mark.janel@gmail.com). It is more difficult
for dummy names, emails, and nicknames to become associated with you and with
your work:

Figure 1.5 - Using a relevant photo

« Always accept criticism and be polite. Exposing your work online is going
to attract critics. An extremely small percent of what you receive will be really
malicious comments with no logical arguments. The best practice, in this case, is to
ignore such comments. But most critics will be positive and constructive. Always
answer to such comments with arguments and always be polite. Common sense is
the most important skill! Be open and stay open to other opinions!

Do not get disappointed or frustrated. And never give up!

It's all about getting the right experience 13

Contribute to open source projects

Contributing to open source projects is a supersonic approach for measuring your skills
and quickly gaining experience and visibility to companies looking for candidates.
Don't underestimate yourself! Small contributions count as well. Even reading and
understanding the code of an open source project is a great opportunity to gain coding
experience and learn coding techniques.

A lot of open source projects encourage and support developers to contribute. For
example, check out the Hibernate ORM open source project in the following screenshot:

<« C {) & githubcom/hibernate/hibernate-orm/pulls

L hibernate / hibernate-orm

Code 19 Pull requests 161 Actions Wiki Security Insights

First time contributing to hibernate/hibernate-orm?

If you would like to submit code to this repository, consider opening a pull
request. You can read this repository’s contributing guidelines to learn how
to open a good pull request.

Figure 1.6 — Contributing to an open source project

You have the chance to add your footprint to the code that you will use later in your daily
work! And it is also used by millions of developers. How cool is that!?

Start your own GitHub account

Besides contributing to open source projects, it is advisable to start your own GitHub
account. Employers will evaluate the content of your GitHub profile before they meet you.
Don't neglect any aspect! Take your time and clean up your GitHub profile so it reflects
your best code. Keep in mind that the worst kind of GitHub account is an empty account
or an account that shows low activity on a long-term basis, as shown on the left in the
following screenshot:

Sep Oct Nov Dec Sep Oct Nov Dec

[| | EEEEEN EEEEEEEEN
| | ENEEETEEEETEEEEN
[| | || ENEEN EEEEEEEEN
[| | | ENEETE EEEEEEEN
EEN | | EEENENEEEEEEEEN
| | EEEEN EEEEEEN
| u] EEEEEENENEEENE NN

Not good less © W ENE More Good

Figure 1.7 - GitHub contributions over four months

Demonstrate a preference for clean code and meaningful README . md files and avoid
periods of low activity on a long-term basis, as shown in the previous screenshot.

14 Where to Start and How to Prepare for the Interview

Start your own Stack Overflow account

Stack Overflow is the next stop for companies that evaluate your work. Your questions
and answers on Stack Overflow will appear in Google searches, therefore, you have to
pay extra attention to what you post (questions and answers). As a rule of thumb, your
questions may reveal your level of knowledge, therefore, don't post simple questions,
questions that have easy answers in the documentation, questions that sit behind
trivial programming challenges, and so on. On the other hand, make sure to provide
valuable answers and don't repeat other people's answers. Provide content that will
bring you badges, not downvotes. Link your GitHub profile to your answers to provide
complete solutions.

Start your own YouTube channel

Besides entertainment, YouTube is also a huge source of technical knowledge. On
YouTube, you can post complete coding solutions that show people how to program and
how to become better programmers. You can quickly increase your YouTube subscribers if
you do the following:

Don't go for long videos (stick to 10-20-minute lessons)!

Ensure that you have a good webcam and microphone. A good webcam has at
least 1080p resolution, and a good microphone is the Snowball ICE; for recording
use free or low-cost tools such as Free2X Webcam Recorder (free2x.com/
webcam-recorder) and Loom (1oom. com); Camtasia Studio is also awesome
(techsmith.com/video-editor.html).

Demonstrate excellent English skills (English is used most commonly on YouTube).
Introduce yourself (but do it quickly).

Be enthusiastic (show people that you enjoy your work, but don't exaggerate).

Be practical (people love live coding).

Take the chance to prove your speaking skills (this opens you the door to
technical conferences).

Promote your work (add links and hints for more videos, source code, and so on).

Respond to people's feedback/questions (don't ignore what people say about
your video).

Accept criticism and be polite.

Link your GitHub and Stack Overflow accounts to your YouTube videos to get more
exposure and followers.

It's all about getting the right experience 15

Start your technical blog

Your awesome work on GitHub, Stack Overflow, and YouTube can easily be promoted
in stories on a technical blog. Write about programming topics, especially about
programming problems that you solved, and write tutorials, tips and tricks, and so

on. Constant posting and high-quality content will increase your traffic and will index
your blog on search engines. Someday, this valuable content can be exploited to write
an astonishing book or develop a great video on Udemy (udemy . com) or PluralSight
(learn.pluralsight.com).

There are a lot of blogging platforms such as Blogger (blogger . com), WordPress
(wordpress.org), and Medium (medium. com). Choose the one that you prefer and
get started.

Write articles and attract huge traffic and/or get paid

If you want to post technical articles and earn money or attract a huge amount of traffic
to your work, then a personal blog will not be very useful, at least not for a significant
amount of time (1-2 years). But you can write technical articles for websites that register
huge amounts of daily traffic themselves. For example, DZone (dzone . com) is a great
technical platform where you can write for free or you can join different programs
where you are paid for your work. By simply creating a free DZone account, you can
immediately start publishing technical articles via their online editor. In 1-5 days, they
will review your work and publish it online. Almost instantly, thousands of people will
read your articles. Besides DZone, other great technical platforms will pay you to write
for them (commonly between $10-$150 per article depending on length, topic, internal
policies, and so on). Some of these platforms include InformIT (informit . com),
InfoQ (infog. com), Mkyong (mkyong. com), developer.com (developer.com), Java
Code Geeks (javacodegeeks . com), GeeksForGeeks (geeksforgeeks.org), and
SitePoint (sitepoint . com).

Promote yourself and your work (portfolio)

It's important to work, but it is also important to show people what you've done and get
their feedback.

Important note

Managing your online profile is very important. Recruiters use online profiles to
find desirable candidates, to get to know you better, and to prepare in-depth or
custom interview questions.

16 Where to Start and How to Prepare for the Interview

Along with GitHub, Stack Overflow, and so on, recruiters will search your name on
Google and will check your personal website and social network profiles.

Personal websites

A personal website (or portfolio) is a website that shows off your work. Simply add the
screenshots of applications that you've made/contributed to and give brief descriptions
of your work. Explain your role in each project and provide a link to the project. Pay
attention to not expose private and proprietary company information. You can quickly
get inspiration from the internet (for example, codeburst.io/10-awesome-web-
developer-portfolios-d266b32e6154)

For building your personal website, you can rely on free or low-cost website builders such
as Google Sites (sites.google.com) and Wix (wix.com).

Social network profiles

One of the most important social networks is Twitter. On Twitter, you can promote your
work in front of the best Java developers in the world. Right from day 1, search and follow
the best Java developers, and soon they will follow you too! As a tip, start to follow as
many Java Champions (an exclusive community of the best Java developers in the world)
you can find. There is a huge and valuable community of Java developers on Twitter. Get
to know them as fast as you can!

Other social networks such as Facebook and Instagram are also scanned by recruiters. Pay
attention to the content of your posts. Obviously, radicalism, racism, fanaticism, trivial

or sexual content, political content, slogans and incitement to violence, defamatory and
offensive content, and so on will cause the recruiter to take a step back.

CodersRank matters

CodersRank (codersrank. io/) is a platform that harvests information about your
work (for example, it harvests information from GitHub, Stack Overflow, Bitbucket,
HakerRank, and so on) and tries to rank you against millions of other developers from
around the world. In the following screenshot, you can see a developer's profile page:

anghelleonard Top 50 Global Rank Top 5%

From 29K users
L. Java ._°—

Java, Persistence, Clean code Developer Total Scare 782.7
Romania £y Senior Level

Figure 1.8 — CodersRank profile summary

It's all about getting the right experience 17

This is another important barometer for recruiters.

Learn, code, learn, code...

Once you become a developer, you must follow the Learn->Code practice in order to get
on top and stay there. Never stop learning and never stop coding! As a rule of thumb, the
Learn->Code practice can be applied via the learning by example or teaching is my way of
learning approaches, or any other approach that fits you best.

How about certifications?

Once you access education.oracle.com/certification, you can see that
Oracle provides a suite of Java certifications. While there's nothing wrong with getting
certifications (from Oracle or an other party), they are not required in job descriptions.
Taking these certifications requires a significant amount of money and time, and most of
the time they don't pay off the effort. You can use this time more wisely and get involved
in projects (side projects, school projects, open source projects, and so on). This is a better
way to impress employers. So, certificates have limited value and it takes a lot of resources
to obtain them. Moreover, certificates are perishable. Think how useful it is today, in 2020,
to be Java 6 certified, or in 2030 to be Java 12 certified!

But if you really want to consider certifications, then here are the top certifications on
offer (for more information, search on Google for them since links can break over time):

« OCA]JP (Oracle Certified associate, Java Programmer 1) and OCPJP (Oracle
Certified Professional, Java Programmer 2)

« Spring Professional Certification
« OCEWCD (Oracle Certified Expert, Java EE 6 Web Component Developer)
» Apache Spark Cert HDPCD (HDP Certified Developer)
o Professional Scrum Master
+ Project Management (PMP)
« AWS Solutions Architect
« Oracle Certified Master
Having experience and visibility (fans) all over the internet is a tremendous plus in your

career. But you still need a useful resume for applying to Java jobs. So, it's time to write
your resume.

18 Where to Start and How to Prepare for the Interview

Time to write your resume

Writing an impressive resume is not easy. There are tons of platforms that promise you
that your resume will be amazing if you let them do it for you. There are also tons of
resume templates, most of them quite complex and cumbersome. On the other hand,
a resume is something personal, and it is better to do it yourself. Bearing the following
points in mind will be enough to produce an appealing resume for recruiters. Let's see
these points and how to approach them.

What resume screeners are looking for

First, resume screeners want to find out whether you are a good coder and you are smart.
Second, they want to find out if you are a good fit for a certain available position (they
check your experience against certain technologies and tools required for that position).

Strive to highlight that you are a good coder and are intelligent. This means being as
technical as possible in a concentrated form. Pay attention: too many words dilute the
essence of your resume and lead to loss of focus. Be technical, clear, and concise.

How long the resume should be

To answer how long a resume should be, you must answer another question: how long do
you think a recruiter spends reading a resume? Most likely, around 10-20 seconds.

In other words, recruiters read between the lines, trying to quickly identify what

interests them.

In general, a resume should not be longer than a page. If you have 10+ year's experience,
then you can go with 2 pages.

You may think that it is impossible to condense your vast experience in 1-2 pages, but
this is not true. First, prioritize content, and second, add this content until you cover
1-2 pages. Skip the remaining content. Don't worry that the recruiters will not know
everything you've done! They will be impressed by your resume highlights and will be
happy to discover the rest of your experience in the interview.

Write a resume that fits on one page.

If you have 10+ years of experience, then consider two pages. Keep in mind
that some recruiters may skip long resumes without reading a single line. They
want to find the most impressive items right away. Adding less important items
and/or too many words will distract the recruiter and makes them waste time.

Time to write your resume 19

How to list your employment history

If you have a short employment history (2-4 roles), then add all of it to the resume. Don't
go for your complete employment history if you have a long list of roles (4+ roles). Just
choose 4 roles that are the most impressive (roles in important companies, leading roles,
roles where you have achieved great results and/or made significant contributions).

For each role, follow the Achievement->Action->Effect model. Always start with the
achievement! This will act as a magnet for the recruiter. Once they read the achievement,
you've got their attention to continuing reading.

For example, let's imagine that you worked at the company Foo and you've managed

to increase the performance of the connection pool by 30% by tuning its parameters.
Now the application can accommodate a transaction throughput of 15% extra. Add this
achievement in the resume in a single statement as follows:

Increased the connection pool performance by 30% by tuning its parameters, leading to a
transaction throughput boost of 15%.

List the most relevant roles via Achievement->Action->Effect statements. Always try to
measure the benefits you created. Don't say, I reduced the memory footprint by compressing
..., and say, I reduced the memory footprint by 5% by compressing ...

List the most relevant projects (top five)

Some recruiters prefer to jump in directly into the My Projects section of your resume.
They follow the No Fluff, Just Stuff statement. You don't have to list all your projects!
Make a top five and add only those. Don't add all five from the same category. Choose
one or two independent projects, one or two open source contributions, and so on. An
independent project with a high GitHub star rating is what will really impress recruiters.

List the top projects with their relevant details. This is the right place to lose the
modesty and do your best to impress.

20 Where to Start and How to Prepare for the Interview

Nominate your technical skills

The Technical Skills section is mandatory. Here, you have to list the programming
languages, software, and tools you know. It doesn't have to be like a nomenclature, but it
doesn't have to be a short and slim section either. It has to be relevant and in harmony
with the listed projects. The following list mentions the main criteria to follow in writing
the Technical Skills section:

Don't list all Java flavors: Don't add a list such as Spring MVC, Spring Data,
Spring Data REST, Spring Security, and so on. Just say Spring. Or, if you are Java
EE guy, then don't add a list of JPA, EJB, JSE JAX-RX, JSON-B, JSON-P, JASPIC,
and so on. Just say Java EE, Jakarta EE. Or, if you see them listed that way in the job
description, then you can add them between brackets. For example: Spring (MVC,
Data including Data REST, Security) or Java EE (JPA, EJB, JSE JAX-RX, JSON-B,
JSON-B, JASPIC).

Do not add software versions: Avoid things like Java 8, Spring Boot 2, or Hibernate
5. If such details are necessary, then the interviewer will ask you about them.

Don't list utility technologies: Avoid listing utility libraries that are commonly
used in projects. For example, don't add Apache Commons, Google Guava, Eclipse
Collections, and so on. It is possible that recruiters have not heard of them. Or, if
they have, they will smile ironically.

Don't list the technologies that you have only lightly touched: It's quite risky to
list technologies that you've used only rarely and/or superficially. At the interview,
you may get asked questions about them that will put you in a difficult situation.

For each technology, add your experience: For example, write Java (expert), Spring
Boot (advanced), Jakarta EE (proficient), Hibernate (expert).

Do not measure your experience with a technology in years: Most of the time,
it's not relevant. This metric doesn't say much to the recruiter. Your experience is
shown by your projects.

Avoid common technologies: Don't list operating systems, Microsoft Office, Gmail,
Slack, and so on. Listing such things is just noise for the recruiter.

Double-check your English: A recruiter can throw away a resume if it has typos.
If you are a non-native English speaker, then find a native English speaker to
proofread your resume.

Time to write your resume 21

« Don't list a single programming language: Ideally, you should list two to three
programming languages (for example, Java (expert), C++ (medium), Python (prior
experience)), but don't say that you are an expert in all of them. Nobody will believe
you! On the other hand, a single programming language can be interpreted as
meaning that you are not open to learning new technologies.

« Split technologies into categories: Don't add the technologies as a long, comma-
separated list. For example, avoid something like Java, Ruby, C++, Java EE, Spring
Boot, Hibernate, JMeter, JUnit, MySQL, PostgreSQL, AWS, Ocean, and Vue.js. Split
them into categories and sort them by experience, as in the following example:

a. Programming languages: Java (expert), Ruby (intermediate), and C++
(beginner)

b. Frameworks: Java EE (expert), Spring Boot (advanced)
c. Object Relation Mapping (ORM): Hibernate (expert)
d. Testing: JMeter (expert), JUnit (advanced)

e. Databases: MySQL (expert), PostgreSQL (intermediate)
f. Cloud: AWS (expert), Ocean (beginner)

g. JavaScript frameworks: Vue.js (intermediate)

LinkedIn resume

Most likely, your LinkedIn profile will be the first stop for recruiters. Moreover, a
significant number of e-job platforms require your LinkedIn account whenever you try to
apply for a job. There are even cases where this account is mandatory.

LinkedIn is a social network dedicated to tracking professional connections. Essentially,
LinkedIn is an online resume on steroids. On LinkedIn, you can create job alerts, and
colleagues, customers, and friends can endorse you or your work, which can be

quite valuable.

Important note

Pay attention to keeping your LinkedIn resume in sync with your paper
resume. Also, pay attention if you are looking for a job via LinkedIn since all
your contacts receive notifications about your updates. These contacts include
people at your current company, and most likely, you don't want them to know
you're looking for a new job. The solution is to disable these notifications
before you make your updates.

Now, we can discuss the job application process.

22 Where to Start and How to Prepare for the Interview

The job application process

Technical companies prefer multi-step interviews. But, before getting invited to an
interview, you have to find companies that are hiring, apply for their jobs, and then finally
meet them.

Finding companies that are hiring

Surveys from the past few years (2017+) estimate that 70%-85% of all jobs are filled via
networking (1inkedin.com/pulse/new-survey-reveals-85-all-jobs-
filled-via-networking-lou-adler/). Technical jobs (especially in the IT field)
represent the leading segment that takes advantage of networking.

In almost any country, there are several e-jobs platforms. Let's call them local e-jobs
platforms. Commonly, the local e-jobs platforms list job offers from companies active in
that country, or companies that recruit globally.

Worldwide, we have global e-jobs platforms. These platforms include several major players
(all these websites allow you to upload your resume or create one online):

o LinkedIn (1inkedin.com): With more than 610 million users covering more
than 200 countries worldwide, this is the world's largest professional network and
social recruiting platform.

o Indeed (indeed. com): This is a leading job site with millions of jobs harvested
from thousands of websites.

o CareerBuilder (careerbuilder.com): This is another huge platform that posts
tons of jobs from all around the globe.

o Stack Overflow (stackoverflow.com/jobs): This is the largest, most trusted
online community for developers to learn, share their programming knowledge,
and build their careers.

o FlexJobs (f1lexjobs.com) and Upwork (upwork . com): These are platforms
dedicated to freelancers that offer premium, flexible remote jobs.

Other platforms that provide services useful for finding a job include the following:

» Dice (dice.com): This is the leading career destination for tech experts at every
stage of their careers.

+ Glassdoor (glassdoor. com): This is a complex platform including company-
specific ratings and reviews.

In addition to these platforms, there are many others that you will discover by yourself.

I got an interview! Now what? 23

Submitting the resume

Once you've found the companies you want to apply to, it's time to submit your resume.

First, look at the company's website. This can help you to find out the following:

o See if you can apply directly via the company website (by bypassing the placement
agency, you can speed up the process and the company can hire you directly without
paying commission to the placement agency).

+ You can register in the company database to be contacted whenever a suitable
position is opened.

+ You have the chance to find out more about the company history, vision, projects,
culture, and so on.

 You can find out contacts of relevant people at the company (for example, you can
find a phone number for details and support).

Second, double-check your resume and online profile. Most likely, if your resume
impresses the recruiter, they will search your name on Google and will inspect your
networking activity. From technical content to social media, everything will be scanned
before sending you an interview offer.

Third, don't send the exact same resume to all companies! For each company, make
adjustments to the resume so it is as relevant to the job description as possible.

| got an interview! Now what?

If you followed the roadmap so far, then it is just a matter of days until you will receive an
e-mail or a phone call to invite you to an interview. Oh, wait... you are saying that you've
already got an interview? Cool! It's time to prepare yourself!

The phone screening stage

Most IT companies prefer to start the multi-step interview process with a phone screen. A

phone screen is usually accomplished via Skype, Zoom, or Meetup (or similar platforms),

and you'll need to share your webcam. A microphone and a set of headphones are needed

as well. Phone screens are very popular if you opt for a remote position, but lately, they are
used for all kinds of positions.

24 Where to Start and How to Prepare for the Interview

Commonly, there are two approaches used by companies:

o Phone screen with a human resources or placement agency person: This is an
optional, non-technical interview of 15-30 minutes meant to detail the offer terms,
expose your personality, concerns, both your and their expectations, and so on. This
can take place before or after the technical phone screen.

 Technical phone screen first: Some companies will invite you directly to a technical
phone screen. In such cases, you can expect several technical questions, maybe
a quiz, and one or more coding challenge sessions (tackling coding challenges is
the main focus of this book). If you pass the technical phone screen, then, most
probably, a non-technical one will follow.

Going to in-person interviews

Unless you opt for a remote position, the next step will consist of a face-to-face interview.
There are cases when there is no phone screen, and this is the first step of the interview. In
such cases, you may be interviewed by HR people, followed by a technical interview. But,
if you had a phone screen, then you may or may not be contacted. This depends on how
the company evaluates the phone screen. If they decide to not proceed with the next stage
of the interview, then it is possible you will receive some feedback covering what was good
and what was less good about your phone screen performance. Don't ignore the feedback,
read it carefully and in an objective manner. It might help you to avoid repeating the same
mistakes. Speaking about mistakes...

Avoiding common mistakes

Pay attention to the following common mistakes that may sit behind the failure of an
interview:

« Ignoring the power of information: There are cases where after failing an
interview, we meet a friend to tell them how it went. At that moment, your friend
may say: My friend, I know a person who had a successful interview at this company
2 months ago! Why you did not tell me before? I'm sure he could have given you some
insights! Obviously, it's too late to do that now! Avoid such cases and try to obtain
as much information as possible. See if you or your friends have contacts in the
company, ask on social media, and so on. This way it's possible to obtain extremely
useful information.

« Lacking clarity and coherence in answers: Your answers should be technical,
crystal clear, meaningful, expressive, and always on topic. Answer the questions
thoughtfully. Stammering, incomplete answers, interjections, and so on are not
appreciated by interviewers.

Summary 25

» Considering that image doesn't matter: Don't ignore your image! Dress
professionally, go to the barbershop, and smell nice! All these aspects are part of the
first impression. If you look sloppy, then maybe your code looks the same. If you
dress professionally, then the interviewers will treat you as if you're a cut above
the rest. However, dressing professionally doesn't mean you should be opulent.

+ Not selling yourself well: The interviewer must see your value. Nobody can
communicate your value to them better than you can. Tell them about a problem
that you had (at a previous company, in a certain project, and so on) and explain
how you solved it with your team or independently. Employers want people who are
excellent team players but are capable of working independently as well. Follow the
Situation|Action|Result (SAR) approach. Start by describing the situation. Continue
by explaining the actions you took, and finally, describe the result.

 Not practicing coding challenges: At some point, you will be scheduled for at
least one coding challenge. Most of the time, general coding skills are not enough!
These challenges are specific to interviews and you have to practice them before
the interview. As a rule of thumb, solving coding challenges (problems) follows the
Approach->Break down->Craft solution pattern. Obviously, you cannot memorize
solutions, therefore you need to practice as much as possible. Later in this book, we
will discuss the best approaches for solving coding challenges.

Once the interview is complete, it's time to wait for the response. Most companies will
tell you how much time they need to provide a final answer and will commonly provide
an answer representing the offer, rejection, next interview step, or just the status of your
application. Keep your fingers crossed!

Summary

This chapter summarized the best practices that should be followed to obtain a job in

the Java ecosystem. We talked about choosing a proper job and our eligibility, getting
experience, working on resumes, and so on. Most of this advice was addressed to students
or people who have just graduated. Of course, do not consider these pieces of advice as an
exhaustive list or a list that should be applied integrally. These practices will help you pick
up the fruits that you consider appealing and allow you to add your own touch to

the process.

Next, let's see how big companies conduct their interviews.

2

What Interviews at
Big Companies
Look Like

Interviews at big companies are relatively long processes with progressively increasing
complexity of technical questions and coding challenges (such an interview process can
take a month or even more). Most companies prefer one or more technical phone screens,
on-site technical challenges, and in-person interviews before making an offer. Commonly,
one of these interviews will be non-technical (known as a lunch interview).

Let's get an overview of how interviews are conducted in several leading IT companies.
Generally speaking, all these companies are looking for smart, passionate, and
excellent coders.

We will talk about how interviews are conducted in the following companies:
« Google

¢ Amazon

e Microsoft

28 What Interviews at Big Companies Look Like

o Facebook

o Crossover

Let's get started!

Interviews at Google

The Google interview starts with a technical phone screen (technical questions and coding
challenges). There will be 4-5 people involved in these technical phone screens. One of the
phone screens will be non-technical. At this moment, feel free to ask anything you want.

During these interview stages, you will be scored for your analytical ability, coding,
experience, and communication skills.

The interviewers submit their feedback to the Hiring Committee (HC). The HC is
responsible for making an offer or rejecting you. If the HC considers that you are the right
person for the job, then they forward the offer proposal to other committees. The final
decision is taken by the executive management committee.

The main technical focus is on analytical algorithms, brain-teasing algorithms, system
design, and scalability.

Most probably, you'll need to wait several weeks for a response.

It is advisable to search interview at Google on YouTube and watch the most relevant
testimonials and roadmap videos. Also, search for Google's most asked interview questions.

Interviews at Amazon

The Amazon interview starts with a technical phone screen conducted by a team from
Amazon. If some interviewers are not convinced after this phone screen, then it is possible
that they will ask for another one to clarify the issues.

If you pass the technical phone screen(s), then you will be invited to several face-to-face
interviews. A team of interviewers from different areas of the business will individually
conduct an interview and evaluate your technical skills (including coding). One of them
is also known as the bar raiser guy. Commonly, this guy is the most experienced, and
his questions and coding challenges will be harder. They will evaluate you against other
candidates as well, and they will decide whether to make an offer or not.

The main focus is on Object-Oriented Programming (OOP) and scalability.

Interviews at Microsoft 29

If you don't get any feedback after a week, then you should trigger a friendly follow-up
e-mail to Amazon contacts. Most probably, they will quickly reply to your e-mail and
explain the current status of your interview.

It is advisable to search interview at Amazon on YouTube and watch the most
relevant testimonials and roadmap videos. Also, search for Amazon's most asked
interview questions.

Interviews at Microsoft

The Microsoft interview starts with several technical phone screens or they might require
you to travel to one of their working branches. You will have 4-5 technical interviews with
different teams.

The final decision belongs to the hiring manager. Commonly, this hiring manager is
contacted only if you passed all the technical interview stages.

The main focus is on algorithms and data structures.

If you did not get any feedback after a week, then you should trigger a friendly follow-up
e-mail to Microsoft contacts. Sometimes, it takes just a day until they provide a decision,
but it can take a week, a month, or even more.

It is advisable to search interview at Microsoft on YouTube and watch the most
relevant testimonials and roadmap videos. Also, search for Microsoft's most asked
interview questions.

Interviews at Facebook

The Facebook interview starts with several technical and non-technical phone screens
involving questions (technical and non-technical) and coding challenges. Commonly, the
interviews are conducted by a team of software engineers and hiring managers.

Facebook uses three types of interviews covering the following areas:

« Your ability to adapt to the Facebook culture, along with some technical skills —
known as the behavioral or Jedi interview

 Your coding and algorithms skill (these are common problems that we'll cover
later, starting with Chapter 6, Object-Oriented Programming) — known as the
Ninja interview

+ Your design and architecture skills - known as the Pirate interview

30 What Interviews at Big Companies Look Like

You can expect a combination of these types of interviews. Commonly, one Jedi
and two Ninja are enough. For positions that require higher experience, there
will be Pirate interviews as well.

If you pass these technical phone screens, then you will receive some homework including
technical questions and coding challenges. This time, you have to provide elegant and
clean coding solutions.

The main focus is on your capabilities to build something fast in any language. You can
expect to code in PHP, Java, C++, Python, Erlang, and so on.

The team of interviewers will take the decision to hire you or not.

It is advisable to search interview at Facebook on YouTube and watch the most
relevant testimonials and roadmap videos. Also, search for Facebook's most asked
interview questions.

Interviews at Crossover

Crossover is a remote company. They recruit remotely via their platform and have an
exclusive on-site interview process. Their on-site interview adheres to the following
roadmap:

1 2 3 4 5 6 7 g
Basic Fit Completion Date Psychometric Language Multipe Choice Free Response Interview Offer
(5 mins) (5 mins) (15 mins) (10 mins) (20 mins) (3 hours) (30 mins)

Figure 2.1 - Crossover interview roadmap

All steps are important, which means your responses at each step must pass their internal
playbooks. If a step doesn't pass their internal playbooks, then it can lead to a sudden
closure of the interview. But, the most important steps are steps 3, 5, 6, and 7. Step 3
represents an eliminatory Criteria Cognitive Aptitude Test (CCAT). For example, you
have to answer 50 questions in 15 minutes. You have to answer correctly 25+ questions to
have a chance to advance to the next step. If you are not familiar with CCAT tests, then

it is strongly recommended to practice (there are books and websites dedicated to CCAT
tests). Without serious practice, it will be quite challenging to pass it. If you are not a
native English speaker, then you have to pay extra attention to practice the questions that
require serious English skills.

At step 5, you'll get a quiz with technical questions. There are 30+ questions with 5 answer
variants (one or more answers are correct). No coding is required at this step.

Summary 31

If you reach step 6, then you'll receive technical homework that should be completed in
3 hours and submitted (uploaded) to the platform. This homework can consist of one or
more Java applications starting from a stub application provided via download.

At step 7, you'll finally meet a person via a phone screen. This is usually a mix of technical
and non-technical questions.

The technical questions will cover a wide range of Java topics (collections, concurrency,
I/0, exceptions, and so on).

Commonly, you'll receive the final response by e-mail in less than a week. Depending on
the position, the offer will start with 1 month of paid boot camp experience. Note that
after boot camp, you can still be rejected or required to apply again. During boot camp
and after it, you'll have to maintain your position via weekly metrics that measure your
performance. You'll have to work 40 hours/week with webcam screenshots every 10
minutes. And, you are responsible for arranging to pay your own taxes. Salaries are fixed
and public on their website.

It is advisable to read the job description and testimonials on their website carefully. They
also have brand ambassadors whom you can contact to find out more about the company
culture, expectations, interview flow, and so on.

Other remote companies follow a three-step interview process. For example, Upstack
follows this pattern:

1. Initial interview: Non-technical phone screen

2. Technical interview: Technical phone screen containing coding challenge

3. Offer: Sending you an offer and signing the agreement
Of course, there are many other big companies that are not listed here. But as a rule of

thumb, the companies and their processes outlined here should give you some important
insights into what you should expect from a big player in the IT industry.

Summary

In this chapter, we had an overview of how interviews are conducted in several leading
IT companies. Most IT companies follow the same practices presented in this chapter,
with their own different combinations and flavors.

Next, let's see what the most common non-technical questions are, and how to
answer them.

3

Common
Non-Technical
Questions and How
To Answer Them

In this chapter, we will tackle the main aspects of the non-technical interview questions.
This part of the interview is commonly carried out by a hiring manager or even an HR
person. To prepare for this interview means getting familiar with the following questions:

What is the purpose of non-technical questions?
What is your experience?

What's your favorite programming language?
What do you want to do?

What are your career goals?

What's your working style?

Why are you looking to change jobs?

34 Common Non-Technical Questions and How To Answer Them

o What is your salary history?
« Why we should hire you?
« How much money do you want to make?

« Do you have a question for me?

We will discuss each question in its own specific section. Let's start.

What is the purpose of non-technical
questions?

The non-technical interview questions are meant to measure the match between your
experience, character, and personality, and your ability to fit in with other employees and
teams. Being a good fit in the existing team(s) is a must. These questions are also useful
for creating a human connection between you and the company and seeing whether
there is any compatibility or chemistry between their ideal candidate and your education,
beliefs, ideas, expectations, culture, and so on. Moreover, non-technical questions cover
the practical and pragmatic aspects of the job as well, such as salary, relocation, medical
insurance, work schedule, willingness to do overtime, and so on.

There are companies that reject candidates based on this non-technical interview, even if
they were initially minded to make an offer.

Some companies hold this interview before the technical one. These companies try to
determine right from the start whether your experience and goals make you a good
candidate for the job in question. It is like saying that the human part has priority over the
technical part.

Other companies hold this interview after the technical one. These companies try to
determine what is the best offer for you. This is like saying that the technical part has
priority over the human part.

Non-technical questions don't have right or wrong answers! In these situations, the best
answers are sincere answers. As a rule of thumb, answer as you feel; don't try to say what
the interviewer wants to hear. It's like a negotiation — there will be trade-offs. Don't forget
to be polite and respectful.

Further, let's see the most common non-technical questions and some answer suggestions.
Don't learn/copy these answers! Try to come up with your own answers and focus on
what you want to highlight. Shape and repeat the answers at home and be prepared when
you come in front of the interviewer. Don't rely on your spontaneity; rely on sincerity and
balance the trade-offs.

What is your experience? 35

What is your experience?

Most probably, after the formal introduction, you'll be asked about your experience. If you
don't have an answer prepared for this question, then you are in trouble. Let's highlight
several important aspects meant to help you to prepare an appropriate answer:

« Don't detail your experience as a boring list of chronological facts: Choose
the most representative projects and achievements and talk about them with
enthusiasm. Talk about your work with enthusiasm (but don't look desperate and
don't exaggerate), and place your achievements in the context of the team/project.
For example, avoid saying,... and I did this and that on my own! It is better
to say,... and I helped my team by doing this and that. Don't say,...I was the only one
capable of doing that. Prefer saying...I was nominated by the team to accomplish this
delicate task. If you are in your first job, then talk about your school projects (think
of your colleagues as your team) and about your independent projects. If you have
participated in programming contests, then talk about your results and experience.

« Don't highlight only the positive things: Experiences can be positive and negative.
Talk about what went right, but also about what went wrong. Most of the time, the
truly valuable lessons come from negative experiences. These kinds of experiences
force us to go beyond our limits to find solutions. Moreover, such experiences
are proof of resistance to stress, tenacity, and power of concentration. Of course,

balance positive and negative experiences and highlight what you've learned from
both sides.

« Don't provide too short or too long an answer: Calibrate your answer to fit in
1-2 minutes.

What is your favorite programming language?

Since we are talking about a Java position, it's obvious that your favorite language is Java.
But if such a question arises, then it is meant to reveal whether you are Java-addicted or an
open-minded person. In other words, the interviewer considers that it's hard to work with
rigid people who are addicted to one programming language and want to use it exclusively
in all situations. Being a Java developer doesn't mean that you should consider Java for all
your tasks and ignore everything else. So, a good answer might be, Obviously, I am a big
fan of Java, but I also consider it important to pick the best tool for the job. It is absurd to
believe that Java is the answer to all problems.

36 Common Non-Technical Questions and How To Answer Them

What do you want to do?

This is a hard question and your answer can have a lot of interpretations. Be sincere and
tell the interviewer exactly what you want to do. You read the job description; therefore,
you know that you want this job. Explain to the interviewer the main reasons behind your
decision. For example, you could say, I want to become an excellent Java backend developer
and your projects are quite challenging in this area. I want to be part of the team that works
on these projects. Or, you could say, I want to be part of a major start-up in an important
company and this looks like a great opportunity for me. I heard that a new team is being
formed and I would be very excited to be part of it. Don't omit saying something about
working in a great team! Most probably, you won't be working alone, and being a team
player is a major aspect of working in almost any company.

What are your career goals?

Via this question (or its sister, Where do you see yourself in five years?), the interviewer

is trying to see whether this position fits with your career goals. They seek to understand
if you see this position as part of your career path, or if you have other reasons (apart from
the money) for doing it. It is hard to describe a detailed career path, but you could give an
answer that shows your commitment and motivation to do your job right. For example,
you could say, My current goal is to work as a Java backend developer on challenging
projects that will help me to accumulate more experience. In several years, I see myself
involved in architecting complex Java applications. Beyond that is too far away to think of
right now.

What's your working style?

This kind of question should ring a bell to you. Most of the time, this question is specific
to companies that have an uncommon working style. For example, they often work
overtime or they work on weekends. Maybe they work long shifts or they have metrics or
deadlines that are hard to achieve. Or, they put a lot of pressure and responsibilities on
this position. Explain to the interviewer your working style and underline indirectly the
things that you do not agree with. For example, you could point out that you are not open
to doing night shifts by saying, I like to start working in the morning with the most difficult
tasks, and in the second part of the day, I will deal with the planning of the next day. Or, you
could point out that you are not open to working on weekends by saying, I like to work
hard for 40 hours/week from Monday to Friday. I like to spend weekends with my friends.

Why are you looking to change jobs? 37

If you are asked directly about a specific aspect, then provide a clear answer. For example,
the interviewer may say, You know, if you work on weekends, then you'll be paid double.
What do you say about this?. Well, think twice, and answer as you feel but without leaving
room for interpretation.

Why are you looking to change jobs?

Of course, if you are at your first job then you will not get such a question (or its sister,
How and why did you leave your last job?). But if you had a previous role (or you plan
the change your current role), then the interviewer will want to know why you took this
decision. The key here is to detail clear and solid arguments without saying anything bad
or offensive about your previous company, bosses, coworkers, and so on - follow the
principle that if you can't say anything nice about someone, don't say anything at all.

Here are some tips that will help you with this question (pay attention to how this
question is interleaved with the previous one - if the working style of this company relates
nicely to the style of your current or ex-company, then most likely, the same reasons for
leaving that job will apply to avoiding this job as well):

« Don't cite money as the first argument: Money is often a good reason to change
jobs but citing it as the first argument is a dangerous route to take. The interviewer
may think that all you care about is money. Or, they may think that your current
employer didn't raise your salary because you were not valuable enough. Sooner
or later, they might think, you will want more money and you'll proceed with the
approach of looking elsewhere if they cannot offer you the desired raise.

« Invoke a factor out of your control: Invoking a factor out of your control keeps you
in the secure zone. For example, you could say, My team was assigned to a project
that required relocation. Or, you could say, I was moved... to the night shift and I
couldn't adapt my life to this schedule.

 Invoke a major change in the environment: For example, you could say: My
company does mass layoffs and I don't want this risk. Or, you could say, I worked
for 5 years in a small company, and now I want to put my experience to use in a
big company.

o Invoke an aspect that you don't like and is known by the interviewer: You
could say, I was hired as a Java backend programmer, but I spent a lot of time
helping the frontend guys. As you saw in my resume, my experience is rooted in
backend technologies.

38 Common Non-Technical Questions and How To Answer Them

What is your salary history?

Obviously, this question is meant to determine a landmark for the new offer. If you are
satisfied by your current salary, then you can give a number. Otherwise, is better to be
polite and say that I don't want to mess things up, and I am expecting compensation that is
proper for the new position and its requirements.

Why should we hire you?

This is a pertinent and slightly offensive question. In most cases, this is a trap
question meant to reveal your reaction to criticism. If it comes at the beginning of the
interview, then you should consider it as a misleading formulation of the question,
What's your experience?.

If it comes at the end of the interview, then it is quite obvious that the interviewer knows
very well why the company should hire you, therefore, he doesn't expect to hear a strong
argument based on your resume or experience. In this case, stay calm and positive and
mention why you like this company, why you want to work in this company, and what you
know about it. Showing your interest (for example, showing that you've researched the
company and visited their website) should be flattering for the interviewer, who can then
quickly pass to the next question.

How much money do you want to make?

This question occurs right at the start (for example, in the non-technical phone screen)
or at the end, when the company is ready to prepare an offer for you. When it occurs at
the start, it means that whether the interview will continue will be based on your answer.
If your expectations are beyond the potential offer, then most probably the interview will
stop here. It is wise to postpone a clear answer as much as possible by saying something
like, I don't have a clear number in my head. Of course, money is important, but there are
other important things as well. Let's see first if my value meets your expectations, and we
can negotiate after that. Or, if you must give an answer, then it's better to give a range of
salaries. You should know the common salary range for this position (because you've done
your homework and you've researched on the internet before the interview), therefore,
provide a range that fits your expectations and respects your research.

Ideally, this question occurs at the end of the interview process. This is a clear signal that
the company wants you and is prepared to make you an offer.

Now, you start the art of negotiation!

How much money do you want to make? 39

Don't jump into saying numbers! At this point, you should be pretty aware of how you did
in the interview and how badly you want this job. Start by asking the interviewer about
the range of the offer, what other bonuses are available, and what is included in the total
compensation package. There are several scenarios you have to consider further:

 Inavery happy scenario, the offer will be higher than your expectations:
Accept it!

 More likely, the offer is near your expectations: Try to squeeze a little bit more.
For example, if you got a range between $60,000 - $65,000, then say something like,
I had in mind something pretty similar — more precisely, I will be very satisfied if we
can go for $65,000 - $70,000. This will probably help you to obtain around $63,000 -
$68,000.

 Getting an evasive answer: Instead of getting a range, you can receive an evasive
answer such as, We customize the salary depending on the applicant, therefore, I need
to know your expectations. In such a scenario, say the higher number you have in
mind. Most probably, you will not get this offer, but it gives you room to negotiate.
Be short and direct; for example, say, I'm expecting to $65,000 a year. You should get
around $60,000 or an answer that will disappoint you like, Sorry, but we had a much
lower number in mind. This leads to the next section.

+ Getting a disappointing offer: In this scenario, try to be very prompt and start
by expressing your disappointment like, I have to say that I am very disappointed
with this offer. Continue by reiterating your strong skills and experience. Try to
make clear arguments that support the requested number and underline that you
do not want anything outlandish. If you are not open to accepting this job with
these conditions, then finish your response with an ultimatum like, If this is your
final word, I cannot accept such an offer. If the company was impressed by you,
it's possible they'd require more time and get back to you with another offer. If
you're thinking about accepting the offer, then ask for a written agreement for
renegotiation in six months for now. Moreover, try to squeeze other benefits out
of the negotations, such as flexible hours, bonuses, and so on.

Important note

As a rule of thumb, try to keep in mind the following aspects:

- Don't get shy or embarrassed when talking about salaries (novices often do).
- Don't start from low numbers that don't give you room for negotiation.

- Don't underestimate yourself and sell yourself short.

- Don't lose time trying to negotiate non-negotiable things.

40 Common Non-Technical Questions and How To Answer Them

Do you have a question for me?

Almost any interview ends with this question. The interviewer wants to clarify any
remaining doubts that you may have. You can ask whatever you want, but pay attention
not to ask something stupid or something that requires a long answer. You can ask details
about something that the interviewer said but that was not very clear, or you can ask for
their personal opinion about you. Or, you could ask something like, How did you come

to this company? What has been most challenging for you? If you have nothing to ask,

then don't ask. Simply say something like, Well, I have to say that you've answered all my
important questions. Thank you for your time!.

Summary

In this chapter, we covered the most common non-technical questions that you can face in
an interview. These questions should be seriously trained for before the interview because
they represent an important part of a successful interview. It's true that great answers

to these questions will not bring you an offer alone, without a solid demonstration of

the required technical knowledge, but they can impact your salary offer, your daily job
expectations, your working style, and career goals. Therefore, don't go unprepared to such
an interview.

In the next chapter, we'll see how to face the delicate situations when we don't manage to
obtain the desired job.

4

How to Handle
Failures

This chapter discusses a delicate aspect of interviews—handling failures. The main
purpose of this chapter is to show you how to identify the causes of failure and how to
mitigate them in the future.

However, before discussing handling failures, let's quickly tackle the proper way to accept
or decline an offer. At the end of an interview, or at some point during the interview, you
may find yourself in a position to accept or decline an offer. This is not about giving a
simple and dry yes or no answer.

Our agenda for this chapter includes the following:

o+ Accepting or rejecting an offer

+ Considering that failure is an option

« Understanding that a company can reject you for a lot of reasons
+ Objectively identifying and eliminating the mismatches

» Not forming an obsession for a company

Let's get started with the first topic.

42 How to Handle Failures

Accepting or rejecting an offer

Accepting an offer is quite simple. You need to inform the company that you accept the
offer and discuss details such as the starting date (especially if you need to work a notice
period at your current workplace), paperwork, reallocation (if it is the case), and so on.

Declining an offer is a bit more of a delicate situation. It must be done in a way that
allows you to remain in good relations with everyone. The company has invested time
and resources in the interview, and so you have to decline their offer politely. You may
also, after a while, consider applying to the company again. For example, you can say
something like I want to thank you for the offer. I was impressed with your company and
I enjoyed the interview process, but I've decided it's not the right choice for me right now.
Thank you again, and maybe someday we will meet again.

There are some cases when you need to manage multiple offers. While you accept an
offer, you have to decline another. In the IT industry, it is very important to build contacts
and maintain them over time. People frequently change their jobs and positions, and in
this dynamic environment, it is important to not squander any contacts. Therefore, don't
forget to call the hiring managers (or the contact person) that made you an offer and
inform them about your decision. You can use the same phrase given previously. If you
cannot call, then send an email or go to the office to meet them in person.

Failure is an option

In movies, we often hear the expression "failure is not an option.” But those are just
movies! An interview always ends with an offer or a rejection, and so failure is an option.
It is our task to mitigate failures.

Handling failures is not easy, especially when they come one after the other. Each of us
reacts to failure in a different and human way. From feeling disappointed and resigned

to having a nervous reaction or saying things that you'll later be sorry about, these all are
normal human reactions. However, it is important that you control these reactions and
act professionally. This means applying a set of steps that will mitigate failures in the near
future. To begin with, it is important to understand why you have been rejected.

A company can reject you for a lot of reasons 43

A company can reject you for a lot
of reasons

Well, maybe the problem starts exactly with this powerful word: reject. Is it correct to
say or think that company X rejected you? I would say that this formulation is toxic
and sounds like the company has something personal against you. This formulation of
thoughts should be cut off right from the start. Instead, you should try to find out what
went wrong.

How about saying or thinking that between you and the company, there are mismatches

in skills and/or expectations? Most probably, this is much closer to reality. There are two
parties in an interview (you and the interviewer), and both parties try to identify the
matches or compatibilities that allow them to collaborate with a subjective approach. Once
you think like this, you will not blame yourself and you'll try to find out what went wrong.

Getting feedback after the interview

If you've been informed by the company that you didn't make the cut, it is time to call
them and ask for their feedback. You can say something like Thanks for interviewing me.
I'm trying to improve my interviewing skills, so it would be awesome if you could provide me
any kind of feedback that you consider useful for me.

Getting proper feedback is very important. It represents the starting point for fixing and
eliminating the mismatches, and so you can start mitigating failures. The mismatches are
commonly as follows:

o+ Performance: The candidate doesn't reach or maintain the expected performance
during the interview process.

+ Expectations: The candidate doesn't meet the interviewer's expectations (for
example, their salary expectations are beyond the company's expectations).

« Lack of skills/experience: The candidate doesn't meet the skill level for the job (for
example, lack of experience).

o Communication: The candidate has the technical skills but does not articulate
them properly.

+ Interviewer's bias: The candidate's conduct is not appropriate for the job/company.

Let's now have a look at how to identify and eliminate the mismatches.

44 How to Handle Failures

Objectively identifying and eliminating
the mismatches

While the feedback represents the starting point for fixing and eliminating the
mismatches, you have to be aware that it can be pretty subjective. It is important to read
the feedback carefully, and as you recall the phases of the interview, overlap their feedback
with your memory of it with an objective approach.

Once you have identified the objective mismatches, it is time to eliminate them.

Don't form an obsession for a company

Some people struggle to get hired by a certain company. Even after two or three attempts,
they don't stop. Is continuing to try perseverance or obsession? Has their dream job
become an obsession or they should continue to try? These are extremely personal
questions, but, as a rule of thumb, obsessions are always toxic and they don't lead to
anything good. If you find yourself in this situation, or you know somebody that is, then it
is time to change your attitude and think that maybe the following is the proper way

to think.

Don't lose confidence in yourself - sometimes,
they don't deserve you!

This title sounds like a sterile slogan of encouragement meant to make you feel better.
However, that's not true! It happens all the time and in many contexts. For example, a
singer at the beginning of her career went on a famous singing show and didn't win any
prizes; she didn't even place among the ones who were considered to be good. She didn't
try out for the contest again (as in the section title), but a few years later, she won her first
Grammy award.

There are tons of examples like this in real life. The singer didn't lose her confidence in
her skills and she were right! That famous singing show didn't deserve her. After years,
the show organizer invited the singer to sing again (this time as a guest) and the organizer
apologized for what had happened.

So, don't lose confidence in yourself - sometimes, they don't deserve you!

Summary 45

Ssummary

This chapter provided a brief overview of an important aspect that we must tackle wisely
during a job search—failures. They are a part of life, and we must know how to handle
them in a healthy and professional way. Don't get too emotional, and try to have a
professional, cold, realistic, and objective approach of each failure.

In the next chapter, we'll cover the climax of a technical interview: the coding challenge.

5

How to Approach a
Coding Challenge

This chapter covers technical quizzes and coding challenges, which are commonly used in
technical interviews.

The coding challenge is the most important part of an interview. This part can consist of a
single session or multiple sessions. Some companies prefer to split the technical interview
into two parts: the first part consists of a technical quiz, while the second part consists of
one or more coding challenges. In this chapter, we'll tackle these two topics in detail:

o Technical quiz

 Coding challenge

By the end of this chapter, you should be able to sketch a plan of your own to approach the
technical interview. You'll know how to deal with the key moments during the interview,
what the interviewer is expecting to see and hear from you, and how to deal with blocking
moments when you don't have a clue about the answer/solution.

48 How to Approach a Coding Challenge

Technical quiz

The technical quiz can take on a question-answer format with the technical interviewer, or
it can be an on-site quiz. Commonly, it contains 20-40 questions and takes less than
an hour.

When the technical interviewer conducts the process, you will have to provide free
answers and the duration may vary (for example, between 30-45 minutes). It is important
to be crystal clear, concise, and always on topic.

Usually, when a technical interviewer conducts the interview, the questions are formulated
as scenarios that require you to make a decision or choice. For example, a question may
sound like this: We need a space-efficient algorithm capable of searching millions of records
extremely quickly with a decent number of false positives. What do you recommend for us?
Most probably, the expected answer is something like, I will consider algorithms from the
Bloom filters family. If you came across a similar case in your previous projects, then you
may say it like this: We had the same scenario in a project about streaming data, and we
decided to go with the Bloom filter algorithm.

Another category of questions is meant to simply check your technical knowledge. These
questions are not in the context of a scenario or project; for example, Can you tell me what
the life cycle states of a thread in Java are? The expected answer is, At any moment, a Java
thread can be in one of the following states: NEW, RUNNABLE, RUNNING, BLOCKED,
SLEEP, WAITING/TIMED/WAITING, or TERMINATED.

Typically, answering technical questions is a three-step approach, as shown in the
following diagram. First, you should understand the question. If you have any doubts,
then ask for clarification. Second, you must know that the interviewer expects you to
identify several keywords or key points in your answer. This is like a checklist. This means
that you must know about the key things that should be highlighted in the answer. Third,
you just need to wrap the keywords/key points in a logical and meaningful answer:

Understand Wrap keywords

Figure 5.1 — The process of tackling a technical quiz

You will see plenty of examples from Chapter 6, Object-Oriented Programming, onward.

As a rule of thumb, your answers should be technical, articulated in a concise but
comprehensive way, and communicated with confidence in yourself. A common mistake
of shy people is to provide an answer that sounds like a question. Their tone is like they're
asking for confirmation for every word. When your answer sounds like a question, the
interviewer will probably tell you to just give the answer without asking him.

Technical quiz 49

Important note

When you can only partially answer a question, don't rush to answer or say
you don't know. Try to ask the interviewer for more details and/or a 20-second
thinking time period. Sometimes, this will help you provide an incomplete but
decent answer. For example, the interviewer may ask you, What is the main
difference between checked and unchecked exceptions in Java? If you don't know
the difference, then you can give an answer such as, The checked exceptions

are subclasses of Exception, while the unchecked exceptions are subclasses of
RuntimeException. You didn't actually answer the question, but it is better
than saying, I don't know! Alternatively, you could formulate a question such
as, Are you referring to the exceptions that we are forced to catch? By doing this,
you may get more details from the interviewer. Pay attention and don't ask it
like, Are you referring to the exceptions that we are forced to catch and to the
exceptions that we are not forced to catch? You will probably receive a short
answer, such as Yes. This doesn't help you!

On the other hand, if you really have no clue about the answer/solution, then it
is better to say, I don't know. This is not necessarily a strike against you, while
trying to baffle the interviewer with too much gobbledygook will definitely be
against you.

There are companies that prefer an on-site multiple choice quiz. In this case, there is no
human assistance, and you'll have to finish the quiz in a fixed period of time (for example,
in 30 minutes). It is important to try to answer as many questions as possible. If you don't
know a question, then move on to the next one. The clock is ticking! At the end (the last
2-3 minutes), you can come back and try to provide an answer to those questions that you
passed on.

Nevertheless, there are platforms that don't allow you to navigate backward and forward
between the questions. In such a case, when you don't know the answer to a question, you
are forced to risk it and try to guess an answer. Spending a lot of time answering a single
question will result in a poor score at the end. Ideally, you should try to spend the same
amount of time on each question. For example, if you have 20 questions to answer in 30
minutes, then you can allocate 30/20 = 1.5 minutes to each question.

One of the best techniques to approaching a technical quiz (no matter what type of quiz)
is to perform several mock interviews. Grab a friend and ask him to act as the interviewer.
Put the questions in a bowl and ask him to randomly choose them one by one. Answer the
questions and act exactly as if you were in front of the real interviewer.

50 How to Approach a Coding Challenge

Coding challenge

The coding challenge is the climax of any technical interview. This is the moment
where you can show all your coding skills. It's time to demonstrate that you can do this
job. Having working and clean code can help you make a great impression.

A great impression may fill in the gaps that you left open during any other stage of

the interview.

The coding challenge is a double-edged sword that may radically change the final result of
the interview. One edge can cut you off from the scheme, while the other edge can bring
you an offer in spite of other shortcomings.

However, the problems specific to these coding challenges are really hard for a variety of
reasons. These will be covered in the next section.

The problems specific to coding challenges are meant
to be difficult

Have you ever seen a problem specific to the coding challenge stage and found it weird,
silly, or maybe pointless and nothing to do with real problems? If so, then you've seen an
excellent problem specific to the coding challenge stage.

To better understand how to prepare for such problems, it is important to know their
characteristics and requirements. So, let's have a look at them:

« They are not real-world problems: Commonly, real-world problems need a lot
of time to be coded, so they are not a good candidate for coding challenges. The
interviewer will ask you to solve problems that can be explained and coded in a
reasonable amount of time, and such problems are usually not real-world problems.

+ They can be quite silly: It is not uncommon to see problems that are quite silly and
look like they have been invented just to complicate your life. They don't seem to be
useful for something or serve a goal. This is normal since, most of the time, they are
not real-world problems.

« They are fairly complex: Even if they can be solved pretty quickly, they are not
easy! Most probably, you'll be asked to code a method or a class, but this doesn't
mean that it will be easy. Commonly, they require all kinds of tricks, they are brain-
teasing, and/or they exploit less well-known features of the programming languages
(for example, working with bits).

Coding challenge 51

« The solution is not obvious: Since they are fairly complex, the solutions to these
problems are not obvious. Don't expect to find a solution immediately! Almost
nobody does! These questions are specially designed to see how you handle a
situation where you cannot immediately see the solution. This is why you may have
couple of hours to solve it (most commonly, between 1 and 3 hours).

« Prohibit the common solving paths: Most of the time, such problems have clear
clauses that prohibit the usage of common solving paths. For example, you may
receive a problem that sounds like this: Write a method that extracts a substring
of a string between the given positions without using a built-in method such as
String#substring(). There are countless examples like this one. Simply choose one or
more built-in Java methods (for example, utility methods) that can be implemented
in a relatively short amount of time and formulate it; for example, Write a method
that does X without using a built-in solution such as Y. Exploring API source code,
participating in open source projects, and practicing such problems is quite useful
for solving such problems.

o They are meant to place you in an exclusive range of candidates that receive
offers: The difficulty of these coding challenges is calibrated to place you in an
exclusive percentage of candidates. Some companies are making offers to less than
5% of candidates. If a certain problem can be easily solved by most candidates, then
it will be replaced.

Important note

The problems specific to coding challenges are meant to be difficult and are
usually asked in ascending order of difficulty. Most probably, to pass these
coding challenges, your experience and coding skills will not be enough. So,
don't get frustrated if, in spite of your knowledge, you cannot see a solution
right away. Many such problems are meant to test your ability to find solutions
to uncommon scenarios and test your coding skills. They might have ridiculous
clauses and/or obscure solutions that exploit uncommon features of a
programming language. They might contain silly requirements and/or dummy
cases. Focus only on how to solve them and always do it by the rules.

A single coding challenge session is, most of the time, enough for the interviewers.
Nevertheless, there are cases where you'll have to pass two or even three such challenges.
The key is to practice as much as possible. The next section shows you how to handle, in
general, a coding challenge problem.

52 How to Approach a Coding Challenge

Tackling a coding challenge problem

Before we discuss the process of tackling a coding challenge problem, let's quickly set up a
possible environment for a coding challenge. Mainly, there are two coordinates that define
this environment: the presence of the interviewer during the coding challenge and the
paper-pen versus computer approach.

The interviewer's presence during the coding challenge

Most commonly, the interviewer is present (by phone screen or in-person) during the
coding challenge. They will evaluate your final result (code), but they are not there just
for this reason. Measuring just your coding ability doesn't require their presence and is
usually encountered in programming contests. An interview coding challenge is not a
programming contest. The interviewer wants to see you during the entire process in order
to analyze your behavior and communication skills. They want to see whether you have a
plan to solve the problem, whether you act in an organized or chaotic way, whether you
write ugly code, whether you are willing to communicate your actions, or whether you are
introverted. Moreover, they want to assist and guide you. Of course, you need to strive for
no guidance or as little as possible, but a proper reaction to guidance is also appreciated.
However, striving for no guidance doesn't mean that you should not interact with the
interviewer.

Keep talking!

Interaction with the interviewer is an important factor. The following list explains several
aspects of the interactivity plan:

« Explain your solution before coding: Before you start coding, it is important to
squeeze some valuable information from the interviewer. Describe to them how
you want to solve the problem, what steps you want to follow, and what you'll
use. For example, you could say, I think that a HashSet is the proper choice here
because the order of insertion is not relevant and we don't need duplicate values.
You'll get a thumbs up or some guidance or advice that will help you obtain the
expected results.

 Explain what you are doing while coding: While you're coding, explain it to the
interviewer. For example, you could say, First, I will create an instance of ArrayList,
or, Here, I load the file from the local folder into memory.

Coding challenge 53

o Ask the proper questions: As long as you know and respect the limits, you can
ask questions that can save you time. For example, it is OK to ask, I can't remember
- what is the default MySQL port, 3308 or 3306¢ However, don't exaggerate with
these questions!

« Mention the aspects that matter: If you know additional information related to the
problem, then share it with the interviewer. This is a good chance to expose your
programming knowledge, your thoughts, and your ideas around the problem.

If you encounter a problem that you already know (maybe you've solved it while
practicing such problems), then don't blurt 'it' out. This will not impress the interviewer,
and you will probably get another coding challenge. It is better to follow the same process
that you'd follow for any other problem. Before we cover this process, let's tackle one more
aspect of the interview environment.

Paper-pen versus computer approach

If the coding challenge takes place via a phone screen, then the interviewer will ask you
to share your screen and code in your favorite Integrated Development Environment
(IDE). This way, the interviewer can see how you take advantage of IDE help as well (for
example, they can see if you use the IDE to generate getters and setters or if you write
them by hand).

Important note

Avoid running the application after each line of code. Instead, run the
application after each logical block of code. Make the corrections and run it
again. Take advantage of the IDE debugging tool.

If you meet the interviewer in person, then you could be asked to use paper or a
whiteboard for coding. This time, coding can be in Java or even pseudocode. Since your
code cannot be compiled and executed, you have to test it manually. It is important to
show that your code works by taking an example and passing it through your code.

Important note

Avoid excessive write-delete code cycles in a chaotic approach. Think twice and
write once! Otherwise, you will give the interviewer a headache.

Now, let's take a look at the general steps that are meant to provide a methodological and
logical approach to solving a problem.

54 How to Approach a Coding Challenge

The process of tackling a coding challenge problem

The process of tackling a coding challenge problem can be done in a suite of steps that
should be applied sequentially. The following diagram shows these steps:

Figure 5.2 - The process of tackling a coding challenge problem

Now, let's detail each of these steps. While applying this problem-solving process, don't
forget the interactivity component.

Understand the problem

It is very important to understand the problem. Don't start solving the problem based

on assumptions or a partial understanding of the problem. Read the problem at least
twice! Don't rely on a single read since, in most cases, these problems contain hidden and
obscure requirements or details that are easy to miss.

Coding challenge 55

Don't hesitate to ask your interviewer questions about the problem. There are cases
when details are intentionally forgotten to test your ability to discover the
underlying problem.

Important note

Only if you understand the problem will you have a chance of solving it.

Next, it is time to build an example. If you manage to build an example, then this is a clear
signal that you have understood the problem.

Build an example

As they say, A picture's worth a thousand words, but we can say the same thing about
an example.

Sketching the problem and building an example will clarify any remaining
misunderstandings. It will give you the chance to discover the problem in detail via a
methodological approach (step by step). Once you have a working example, you should
start seeing the overall solution. This is also useful for testing your final code.

Important note

A sketch and an example are useful for solidifying your understanding of the
problem.

Now, it is time to think about the overall solution and decide on the algorithm(s) to use.

Deciding on the algorithm(s) to use and explaining them

At this point, you have understood the problem and even built an example. Now, it is time
to shape an overall solution and split it into steps and algorithms.

This is a time-consuming process. At this point, it is important to apply the Communicate
What You Think approach. If you don't say anything, then the interviewer doesn't know if
you are clueless or if you are in a brainstorm. For example, you could say, I think I can use
a List for storing the emails, ... hmmm ... no, this is not OK because a List accepts duplicates.
While you are talking (even if it looks like you are talking to yourself), the interviewer can
judge the correctness of your reasoning, can see your knowledge level, and can provide
you with some tips. The interviewer may reply with something like, Yes, that is a good
point, but nevertheless, do not forget that you need to maintain the order of insertion.

56 How to Approach a Coding Challenge

Most of the time, the problem requires some form of data (strings, numbers, bits, objects,
and so on) manipulation, such as sorting, ordering, filtering, reversing, flattening,
searching, computing, and so on. Where there is data, there are data structures as well
(arrays, lists, sets, maps, trees, and so on). The trick is to find the proper matches between
the data manipulations that you need and the data structures. Usually, a proper match
means the following:

 You can easily apply certain manipulations to the data structure.

+ You can obtain good performance (Big O - see Chapter 7, Big O Analysis
of Algorithms).

« You can maintain harmony between the used data structure(s). This means that you
don't need heavy or complex algorithms, nor do you need to perform conversion to
move/exploit the data between data structures.

These are the big pieces of the puzzle. Managing to identify the proper matches is half
of the job. The other half is to bring these pieces together to shape the solution. In other
words, you need to bring logic into the equation.

It is very tempting to start coding immediately after you read the problem or after you've
understood it and shaped the big picture of the solution in your mind. Don't do that!
Often, this will lead to a chain of failures that will make you lose your temper. Very soon,
all your ideas will be surrounded by a dense mist of distrust and you will start to code
hastily, even with ridiculous mistakes.

Important note

Take your time and think about the solution deeply before starting to code.

Now, it's time to start coding your solution and impress the interviewer with your
coding skills.

Coding the skeleton

Start coding the solution with a skeleton. More precisely, define your classes, methods,
and interfaces without implementation (behavior/actions). You will fill them up with code
in the next step. This way, you're showing the interviewer that your coding stage follows

a clear road. Don't jump into the code too hastily? Moreover, respect the fundamental
principles of programming, such as Single responsibility, Open-closed, Liskov
substitution, Interface segregation, Dependency inversion (SOLID) and Don't Repeat
Yourself (DRY). Most probably, the interviewer will watch out for these principles.

Coding challenge 57

Important note

Coding the skeleton of your solution helps the interviewer follow you easily
and better understand your reasoning.

At this point, you have the attention of the interviewer. Now, it's time to bring your
skeleton to life.

Coding the solution

Now, it's time to code the solution. While you're doing so, explain the main code lines
that you write to the interviewer. Pay attention and respect the well-known Java coding
style (for example, follow the Google Java Style Guide at google .github.io/
styleguide/javaguide.html).

Important note

Following a well-known Java coding style and communicating your actions to
the interviewer will be a big plus for the final result.

Once you've done the core implementation of your solution, it is time to increase the
robustness of your code. So, as a final touch, don't ignore exceptions handling and
validations (for example, validating the arguments of methods). Also, ensure that you've
covered all the requirements of the problem and that you've employed the right data types.
Finally, it is time to keep your fingers crossed that your code will pass the testing step.

Testing the solution is the final step of this process.

Testing the solution

In the second step of this process, you built an example. Now, it is time to show the
interviewer that your code works by passing the example through it. It is very important to
demonstrate that your code works at least for this example. It may go to the first key or run
successfully after you've repaired some minor bugs, but in the end, it is just important that
it works.

Don't relax! You have won the current battle, but not the war! Often, the interviewer will
want to see your code working for corner cases or special cases as well. Usually, such
special cases involve dummy values, boundaries values, improper inputs, actions that
force exceptions, and so on. If your code is not robust and it fails these attempts, then the
interviewer will think that this is exactly how you'll code the production applications as
well. On the other hand, if your code works, then the interviewer will be totally impressed.

58 How to Approach a Coding Challenge

Important note

Code that works should put a smile on your interviewer's face. At the very least,
you will feel that they are a little bit more friendly toward you and relaxed.

If you made a good impression, then the interviewer may want to ask you some extra
questions. You should expect to be asked about the code's performance and alternative
solutions. Of course, you can provide such information without being asked. The
interviewer will be pleased to see that you can tackle a problem in multiple ways and that
you understand the pros and cons of each solution and decision.

Getting stuck makes you freeze

First of all, it is normal to get stuck. Don't panic! Don't get frustrated! Don't quit!

If you get stuck, then others taking the interview will probably get stuck as well. The main
problem is how to handle such a blockage, not the blockage itself. You have to stay calm
and try to do the following:

Get back to your example: Sometimes, it is helpful to detail your example, or to
take a look at one more example. Having two examples can help you shape the
general case in your mind and understand the pillars of the problem.

Isolate the problem in the example: Every example has a suite of steps. Identify the
step where you got stuck and focus on it as a separate problem. Sometimes, pulling
out the issue from its context allows you to understand it better and solve it.

Try a different approach: Sometimes, the solution is to tackle the issue from
different angles. A different perspective can give you a new view. Maybe another
data structure, a hidden feature of Java, a brute-force approach, and so on can help.
An ugly solution is better than no solution!

Mock or postpone the issue: Struggling for a long time to solve a step may lead

to the unpleasant situation of you not being able to finish the problem on time.
Sometimes, it is better to mock or postpone the step that causes you trouble and
continue with the other steps. It is possible that, in the end, when you come back to
this step, you will have a much clearer picture of it and will know how to code it.

Ask for guidance: This should be your last resort, but in a crisis, you must apply
desperate solutions. You can ask something such as, I am confused about this aspect
because... (and explain; try to justify your confusion). Can you please give me a tip
about what I am missing here?

Summary 59

The interviewer is aware of the difficulty of the step(s), so they will not be surprised that
you got stuck. They will appreciate your perseverance, analytical capabilities, and calmness
in trying to find a solution, even if you don't find it. The interviewer knows that you'll
encounter similar situations in your daily job and that the most important thing in such
scenarios is to stay calm and search for solutions.

Summary

In this chapter, we talked about the process of tackling a coding challenge problem.
Besides the steps we enumerated earlier — understand the problem, build an example,
decide and explain the algorithm(s), code the skeleton, and code and test the solution —
there is one more step that will become the objective of the chapters that follow: practice
a lot of problems! In the next chapter, we will start with the fundamental concepts of
programming.

Section 2:
Concepts

This section covers questions regarding concepts. Providing excellent knowledge in this
area is a great indicator that you have the fundamental skills required, which means you
have a solid and healthy technical foundation to answer questions at the interview stage.
Companies look for such people as possible candidates that can be trained to solve very
specific and complex tasks.

This section comprises the following chapters:
o Chapter 6, Object-Oriented Programming
o Chapter 7, Big O Analysis of Algorithms
o Chapter 8, Recursion and Dynamic Programming

o Chapter 9, Bit Manipulation

6

Object-Oriented
Programming

This chapter covers the most popular questions and problems relating to Object-Oriented
Programming (OOP) that are encountered at Java interviews.

Please bear in mind that my goal is not to teach you about OOP or, in more general

terms, the aim of this book is not to teach you about Java. My goal is to teach you how to
answer questions and solve problems in the context of an interview. In such a context, the
interviewer wants a clear and concise answer; you'll not have the time for dissertations
and tutorials. You have to be able to express your ideas lucidly and cogently. Your answers
should be meaningful and you have to convince the interviewer that you really understand
what you are saying and that you are not just reciting a number of sterile definitions. Most
of the time, you should be able to express an article of several pages or a chapter of a book
in one or several key paragraphs.

By the end of this chapter, you'll know how to answer 40+ questions and problems that
cover the fundamental aspects of OOP. Being fundamental aspects, you have to know
them in detail. There is no excuse in the event that you don't know the correct and concise
answers to these problems. A lack of knowledge in this area can severely affect your
chances of success at interview.

64 Object-Oriented Programming

So, let's summarize our agenda as follows:

o OOQOP concepts

o SOLID principles

o GOF design patterns
« Coding challenges

Let's start with questions relating to OOP concepts.

Technical requirements

You can find all the codes present in this chapter on GitHub. Please visit the following
link:

https://github.com/PacktPublishing/The-Complete-Coding-
Interview-Guide-in-Java/tree/master/Chapter06

Understanding OOP concepts

The OOP model is based on several concepts. These concepts must be familiar to any
developer who is planning to design and program applications relying on objects.
Therefore, let's start by enumerating them as follows:

« Object

o Class

« Abstraction

+ Encapsulation
« Inheritance

« Polymorphism
o Association

o Aggregation

« Composition

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter06
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter06

Understanding OOP concepts

65

Commonly, when these concepts are wrapped in questions, they are prefixed by What
is ...? For example, What is an object?, or What is polymorphism?

Important note

The correct answers to these questions are a combination of technical
knowledge and real-world analogies or examples. Avoid cold answers with
super-technical details and no examples (for example, don't talk about the
internal representation of an object). Pay attention to what you're saying
because the interviewer may extract questions directly from your answers. If
your answer has mentioned a notion in passing, then the next question may
refer to that notion. In other words, don't add to your answer any aspects that
you are unfamiliar with.

So, let's answer the questions relating to OOP concepts in an interview context. Notice
that we apply what we've learned in Chapter 5, How to Approach a Coding Challenge.
More precisely, we follow the Understand the question|Nominate the key words/key
points|Wrap an answer technique. To begin with, in order to become familiar with this
technique, I'll extract the key points as a bulleted list, and I will italicize them in

the answer.

What is an object?

The key points that you should encapsulate in your answer are the following:

An object is one of the core concepts of OOP.

An object is a real-world entity.

An object has state (fields) and behaviors (methods).
An object represents an instance of a class.

An object takes up some space in memory.

An object can communicate with other objects.

Now, we can present an answer as follows:

66 Object-Oriented Programming

An object is one of the core concepts of OOP. An object is a real-world entity, such as a car,
table, or cat. During its life cycle, an object has state and behaviors. For example, a cat's
state can be color, name, and breed, while its behaviors can be playing, eating, sleeping,
and meowing. In Java, an object is an instance of a class usually built via the new keyword,
and it has state stored in fields and exposes its behavior through methods. Each instance
takes some space in memory and can communicate with other objects. For example, a boy,
which is another object, can caress a cat and it sleeps.

If further details are required, then you may want to talk about the fact that objects can
have different access modifiers and visibility ranges, can be mutable, unmodifiable, or
immutable, and are collected via the garbage collector.

What is a class?

The key points that you should encapsulate in your answer are the following:

o A class is one of the core concepts of OOP.

o A class is a template or a blueprint for creating objects.
o A class doesn't consume memory.

o A class can be instantiated multiple times.

o A class does one, and only one, thing.

Now, we can present an answer as follows:

A class is one of the core concepts of OOP. A class is a set of instructions that are required to
build a specific type of object. We can think of a class as a template, a blueprint, or a recipe
that tells us how to create objects of that class. Creating an object of that class is a process
called instantiation and is usually done via the new keyword. We can instantiate as many
objects as we wish. A class definition doesn't consume memory being saved as a file on the
hard drive. One of the best practices that a class should follow is the Single Responsibility
Principle (SRP). While conforming to this principle, a class should be designed and
written to do one, and only one, thing.

If further details are required, then you may want to talk about the fact that classes can
have different access modifiers and visibility ranges, support different types of variables
(local, class, and instance variables), and can be declared as abstract, final, or
private, nested in another class (inner class), and so on.

Understanding OOP concepts 67

What is abstraction?

The key points that you should encapsulate in your answer are the following:

« Abstraction is one of the core concepts of OOP.

+ Abstraction is the concept of exposing to the user only those things that are relevant
to them and hiding the remainder of the details.

« Abstraction allows the user to focus on what the application does instead of how it
does it.

o Abstraction is achieved in Java via abstract classes and interfaces.

Now, we can present an answer as follows:

Einstein claims that Everything should be made as simple as possible, but not simpler.
Abstraction is one of the main OOP concepts that strive to make things as simple as possible
for the user. In other words, abstraction exposes the user only to the things that are relevant
to them and hides the remainder of the details. In OOP terms, we say that an object should
expose to its users only a set of high-level operations, while the internal implementation of
those operations is hidden. So, abstraction allows the user to focus on what the application
does instead of how it does it. This way, abstraction reduces the complexity of exposing the
things, increases code reusability, avoids code duplications, and sustains low coupling and
high cohesion. Moreover, it maintains the security and discretion of the application by
exposing only the important details.

Let's consider a real-life example: a man driving a car. The man knows what each pedal
does and what the steering wheel does, but he doesn't know how these things are done
internally by the car. He doesn't know about the inner mechanisms that empower these
things. This is what abstraction is. In Java, abstraction can be achieved via abstract classes
and interfaces.

If further details are required, then you may share the screen or use paper and a pen and
code your example.

So, we said that a man is driving a car. The man can speed up or slow down the car via the
corresponding pedals. He also can turn left and right with the aid of the steering wheel.
All these actions are grouped in an interface named Car:

public interface Car ({
public void speedUp () ;

public void slowDown () ;
public void turnRight () ;

68 Object-Oriented Programming

public void turnLeft () ;
public String getCarType () ;

}

Next, each type of car should implement the Car interface and override these methods to
provide the implementation of these actions. This implementation is hidden from the user
(the man driving the car). For example, the ElectricCar class appears as follows (in
reality, in place of System. out . print1n, we have complex business logic):

public class ElectricCar implements Car
private final String carType;

public ElectricCar (String carType) ({
this.carType = carType;

@Override
public void speedUp() {

System.out.println ("Speed up the electric car");

@Override
public void slowbDown () {

System.out.println("Slow down the electric car");

@Override
public void turnRight () {

System.out.println ("Turn right the electric car");

@Override
public void turnLeft ()

System.out.println ("Turn left the electric car");

Understanding OOP concepts 69

@Override
public String getCarType()

return this.carType;

}

The user of this class has access to these public methods without being aware of the
implementation:

public class Main {
public static void main(String[] args) {
Car electricCar = new ElectricCar ("BMW") ;

System.out.println ("Driving the electric car: "
+ electricCar.getCarType () + "\n");

electricCar.speedUp ()

7

electricCar.turnLeft () ;
electricCar.slowDown ()

}

The output is listed as follows:

Driving the electric car: BMW
Speed up the electric car
Turn left the electric car

Slow down the electric car

So, this was an example of abstraction via an interface. The complete application is named
Abstraction/Abstraction Vialnterface. In the code bundled to this book, you can find the
same scenario implemented via an abstract class. The complete application is named
Abstraction/AbstractionViaAbstractClass.

Moving on, let's talk about encapsulation.

70 Object-Oriented Programming

What is encapsulation?

The key points that you should encapsulate in your answer are the following:

« Encapsulation is one of the core concepts of OOP.

« Encapsulation is the technique whereby the object state is hidden from the outer
world and a set of public methods for accessing this state are exposed.

« Encapsulation is achieved when each object keeps its state private, inside a class.
« Encapsulation is known as the data-hiding mechanism.

 Encapsulation has a number of important advantages associated with it, such as
loosely coupled, reusable, secure, and easy-to-test code.

« In Java, encapsulation is implemented via the access modifiers - public,
private, and protected.

Now, we can present an answer as follows:

Encapsulation is one of the core concepts of OOP. Mainly, encapsulation binds together

the code and data in a single unit of work (a class) and acts as a defensive shield that
doesn't allow external code to access this data directly. Mainly, it is the technique of

hiding the object state from the outer world and exposing a set of public methods for
accessing this state. When each object keeps its state private inside a class, we can say that
encapsulation was achieved. This is why encapsulation is also referenced as the data-hiding
mechanism. The code that takes advantage of encapsulation is loosely coupled (for example,
we can change the names of the class variables without breaking the client code), reusable,
secure (the client is not aware of how data is manipulated inside the class), and easy to
test (it is easier to test methods than fields). In Java, encapsulation can be achieved via

the access modifiers, public, private, and protected. Commonly, when an object
manages its own state, its state is declared via private variables and is accessed and/or
modified via public methods. Let's consider an example: a Cat class can have its state
represented by fields such as mood, hungry, and energy. While the code external to the
Cat class cannot modify any of these fields directly, it can call public methods, such as
play (), feed(),and sleep () that modify the Cat state internally. The Cat class may
also have private methods that are not accessible outside the class, such as meow () .
This is encapsulation.

If further details are required, then you may share the screen or use paper and a pen and
code your example.

Understanding OOP concepts 71

So, the Cat class from our example can be coded as indicated in the following code block.
Notice that the state of this class was encapsulated via private fields, and is therefore
not directly accessible from outside the class:

public class Cat {
private int mood = 50;

50 ¢
50 ¢

private int hungry

private int energy

public void sleep() {
System.out.println("Sleep ...");
energy++;

hungry++;

public void play() {
System.out .println("Play ...");
mood++ ;
energy--;

meow () ;

public void feed() {
System.out.println("Feed ...");

hungry--;
mood++ ;
meow () ;
}
private void meow() {
System.out.println ("Meow!") ;
}

public int getMood () ({

return mood;

72 Object-Oriented Programming

public int getHungry () {

return hungry;

public int getEnergy () {

return energy;

}

The only way to modify the state is via the public methods, play (), feed (), and
sleep (), as in the following example:

public static void main(String[] args) {
Cat cat = new Cat();

cat.feed() ;
cat.play () ;
cat.feed() ;
cat.sleep() ;

System.out.println ("Energy: " + cat.getEnergy()) ;
System.out.println ("Mood: " + cat.getMood()) ;
System.out.println ("Hungry: " + cat.getHungry()) ;

}

The output will be as follows:

Feed ...Meow!Play ...Meow!Feed ...Meow!Sleep
Energy: 50

Mood: 53

Hungry: 49

The complete application is named Encapsulation. Now, let's have a rundown
on inheritance.

Understanding OOP concepts 73

What is inheritance?

The key points that you should encapsulate in your answer are the following:

« Inheritance is one of the core concepts of OOP.
« Inheritance allows an object to be based on another object.

o Inheritance sustains code reusability by allowing an object to reuse the code of
another object and adds its own logic as well.

o Inheritance is known as an IS-A relationship, also referenced as a parent-child
relationship.

« InJava, inheritance is achieved via the extends keyword.

o The inherited object is referenced as the superclass, and the object that inherits the
superclass is referenced as the subclass.

« In Java, multiple classes cannot be inherited.

Now, we can present an answer as follows:

Inheritance is one of the core concepts of OOP. It allows an object to be based on another
object, which is useful when different objects are pretty similar and share some common
logic, but they are not identical. Inheritance sustains code reusability by allowing an object
to reuse the code of another object while it adds its own logic as well. So, in order to achieve
inheritance, we reuse the common logic and extract the unique logic in another class.
This is known as an IS-A relationship, also referenced as a parent-child relationship. It is
just like saying Foo IS-A Buzz type of thing. For example, cat IS-A feline, and train IS-A
vehicle. An IS-A relationship is the unit of work used to define hierarchies of classes. In
Java, inheritance is accomplished via the extends keyword by deriving the child from its
parent. The child can reuse the fields and methods of its parent and add its own fields
and methods. The inherited object is referenced as the superclass, or the parent class, and
the object that inherits the superclass is referenced as the subclass, or the child class. In Java,
inheritance cannot be multiple; therefore, a subclass or child class cannot inherit fields
and methods of more than one superclass or parent class. For example, an Employee
class (parent class) can define the common logic of any employee in a software company,
while another class (child class), named Programmer, can extend the Employee to use
this common logic and add logic specific to a programmer. Other classes can extend the
Programmer or Employee classes as well.

If further details are required, then you may share the screen or use paper and a pen and
code your example.

74 Object-Oriented Programming

The Employee class is quite simple. It wraps the name of the employee:

public class Employee {
private String name;

public Employee (String name) {

this.name = name;

// getters and setters omitted for brevity

}

Then, the Programmer class extends the Employee. As any employee, a programmer
has a name, but they are also assigned to a team:

public class Programmer extends Employee {
private String team;

public Programmer (String name, String team) {
super (name) ;

this.team = team;

// getters and setters omitted for brevity

}

Now, let's test inheritance by creating a Programmer and calling getName (), inherited
from the Employee class, and getTeam (), inherited from the Programmer class:

public static void main(String[] args) {
Programmer p = new Programmer ("Joana Nimar", "Toronto") ;

String name = p.getName () ;

String team = p.getTeam() ;

System.out .println(name + " is assigned to the "

Understanding OOP concepts 75

+ team + " team") ;

}

The output will be as follows:
Joana Nimar is assigned to the Toronto team

The complete application is named Inheritance. Moving on, let's talk about polymorphism.

What is polymorphism?

The key points that you should encapsulate in your answer are the following:

 Polymorphism is one of the core concepts of OOP.
+ Polymorphism means many forms in Greek.
« Polymorphism allows an object to behave differently in certain cases.

+ Polymorphism can be shaped via method overloading (known as Compile-Time
Polymorphism) or via method overriding in the case of an IS-A relationship
(known as Runtime Polymorphism).

Now, we can present an answer as follows:

Polymorphism is one of the core concepts of OOP. Polymorphism is a word composed of
two Greek words: poly, which means many, and morph, which means forms. Therefore,
polymorphism means many forms.

More precisely, in the OOP context, polymorphism allows an object to behave differently
in certain cases or, in other words, allows an action to be accomplished in different ways
(approaches). One way to implement polymorphism is via method overloading. This is
known as Compile-Time Polymorphism because the compiler can identify at compile time
which form of an overloaded method to call (multiple methods with the same name but
different arguments). So, depending on which form of the overloaded method is called,
the object behaves differently. For example, a class named Triangle can define multiple
methods named draw () with different arguments.

76 Object-Oriented Programming

Another way to implement polymorphism is via method overriding, and this is the common
approach when we have an IS-A relationship. It is known as Runtime Polymorphism, or
Dynamic Method Dispatch. Typically, we start with an interface containing a bunch of
methods. Next, each class implements this interface and overrides these methods to
provide a specific behavior. This time, polymorphism allows us to use any of these classes
exactly like its parent (the interface) without any confusion of their types. This is possible
because, at runtime, Java can distinguish between these classes and knows which one is
used. For example, an interface named Shape can declare a method named draw (), and
the Triangle, Rectangle, and Circle classes implement the Shape interface and
override the draw () method to draw the corresponding shape.

If further details are required, then you may share the screen or use paper and a pen and
code your example.

Polymorphism via method overloading (compile time)

The Triangle class contains three draws () methods, as follows:

public class Triangle {

public void draw() {
System.out.println ("Draw default triangle ...");

public void draw(String color) {
System.out.println ("Draw a triangle of color "

+ color) ;

public void draw(int size, String color) {
System.out.println ("Draw a triangle of color " + color

+ " and scale it up with the new size of " + size);

Understanding OOP concepts

77

Next, notice how the corresponding draw () method is called:

public static void main(String[] args)

Triangle triangle = new Triangle () ;
triangle.draw() ;
triangle.draw("red") ;

triangle.draw (10, "blue");

}

The output will be as follows:

Draw default triangle
Draw a triangle of color red
Draw a triangle of color blue and scale it up

with the new size of 10

The complete application is named Polymorphism/CompileTime. Moving on, let's look at
an example of implementing runtime polymorphism.

Polymorphism via method overriding (runtime)
This time, the draw () method is declared in an interface, as follows:

public interface Shape

public void draw () ;

}

The Triangle, Rectangle, and Circle classes implement the Shape interface and
override the draw () method to draw the corresponding shape:

public class Triangle implements Shape {
@Override

public void draw() {

System.out.println("Draw a triangle ...");

78 Object-Oriented Programming

public class Rectangle implements Shape

@Override
public void draw() {
System.out.println ("Draw a rectangle ...");

public class Circle implements Shape {

@Override
public void draw() {

System.out.println("Draw a circle ...");

}

Next, we create a triangle, a rectangle, and a circle. For each of these instances, let's call the
draw () method:

public static void main(String[] args) {

Shape triangle = new Triangle() ;
Shape rectangle = new Rectangle() ;

Shape circle = new Circle() ;

triangle.draw() ;
rectangle.draw() ;

circle.draw() ;

}

The output reveals that, at runtime, Java called the proper draw () method:

Draw a triangle
Draw a rectangle

Draw a circle

Understanding OOP concepts

79

The complete application is named Polymorphism/Runtime. Moving on, let's talk
about association.

Important note

There are people who consider polymorphism as the most important concept
in OOP. Moreover, there are voices that consider runtime polymorphism as the
only genuine polymorphism, while compile-time polymorphism is not actually
a form of polymorphism. During an interview, initiating such a debate is not
recommended. It is better to act as a mediator and present both sides of the
coin. We will discuss soon how to tackle such situations.

What is association?

The key points that you should encapsulate in your answer are the following:

 Association is one of the core concepts of OOP.

+ Association defines the relation between two classes that are independent of one
another.

o Association has no owner.

» Association can be one-to-one, one-to-many, many-to-one, and many-to-many.

Now, we can present an answer as follows:

Association is one of the core concepts of OOP. The association goal is to define the relation
between two classes independent of one another and is also referenced as the multiplicity
relation between objects. There is no owner of the association. The objects involved in an
association can use one another (bidirectional association), or only one uses the other
one (unidirectional association), but they have their own life span. Association can be
unidirectional/bidirectional, one-to-one, one-to-many, many-to-one, and many-to-many.
For example, between the Person and Address objects, we may have a bidirectional
many-to-many relationship. In other words, a person can be associated with multiple
addresses, while an address can belong to multiple people. However, people can exist
without addresses, and vice versa.

If further details are required, then you may share the screen or use paper and a pen and
code your example.

80 Object-Oriented Programming

The Person and Address classes are very simple:

public class Person {
private String name;

public Person (String name) {

this.name = name;

// getters and setters omitted for brevity

public class Address {

private String city;

private String zip;

public Address(String city, String zip) {
this.city = city;
this.zip = zip;

// getters and setters omitted for brevity

}

The association between Person and Address is accomplished in the main () method,
as shown in the following code block:

public static void main(String[] args) {

Person pl = new Person ("Andrei") ;

Person p2 = new Person("Marin") ;

Address al = new Address ("Banesti", "107050") ;
Address a2 new Address ("Bucuresti", "229344") ;

// Association between classes in the main method

Understanding OOP concepts 81

System.out.println(pl.getName() + " lives at address "
+ a2.getCity () + ", " + a2.getZip()
+ " but it also has an address at "
+ al.getCity () + ", " + al.getZip());
System.out.println (p2.getName () + " lives at address "
+ al.getCity () + ", " + al.getZip()
+ " but it also has an address at "

+ a2.getCity() + ", " + a2.getzip());

}

The output is listed as follows:

Andrei lives at address Bucuresti, 229344 but it also has an
address at Banesti, 107050

Marin lives at address Banesti, 107050 but it also has an
address at Bucuresti, 229344

The complete application is named Association. Moving on, let's talk about aggregation.

What is aggregation?

The key points that you should encapsulate in your answer are the following:

« Aggregation is one of the core concepts of OOP.
» Aggregation is a special case of unidirectional association.
» Aggregation represents a HAS-A relationship.

« Two aggregated objects have their own life cycle, but one of the objects is the owner
of the HAS-A relationship.

Now, we can present an answer as follows:

Aggregation is one of the core concepts of OOP. Mainly, aggregation is a special case of
unidirectional association. While an association defines the relationship between two
classes independent of one another, aggregation represents a HAS-A relationship between
these two classes. In other words, two aggregated objects have their own life cycle, but one
of the objects is the owner of the HAS-A relationship. Having their own life cycle means
that ending one object will not affect the other object. For example, a TennisPlayer
has a Racket. This is a unidirectional association since a Racket cannot have a
TennisPlayer. Even if the TennisPlayer dies, the Racket is not affected.

82 Object-Oriented Programming

Important note

Notice that, when we define the notion of aggregation, we also have a statement
regarding what an association is. Follow this approach whenever two notions
are tightly related and one of them is a special case of the other one. The

same practice is applied next for defining composition as a special case of
aggregation. The interviewer will notice and appreciate that you have an
overview of things and that you can provide a meaningful answer that didn't
overlook the context.

If further details are required, then you may share the screen or use paper and a pen and
code your example.

We start with the Rocket class. This is a simple representation of a tennis racket:

public class Racket {

private String type;
private int size;

private int weight;

public Racket (String type, int size, int weight) {

type;
this.size = size;

this.type

this.weight = weight;

// getters and setters omitted for brevity

}

A TennisPlayer HAS-A Racket. Therefore, the TennisPlayer class must be
capable of receiving a Racket as follows:

public class TennisPlayer ({

private String name;

private Racket racket;

public TennisPlayer (String name, Racket racket) {
this.name = name;

this.racket = racket;

Understanding OOP concepts

83

// getters and setters omitted for brevity

1
Next, we create a Racket and a TennisPlayer that uses this Racket:
public static void main(String[] args) {
Racket racket = new Racket ("Babolat Pure Aero", 100, 300);

TennisPlayer player = new TennisPlayer ("Rafael Nadal",

racket) ;

System.out.println ("Player " + player.getName ()
+ " plays with " + player.getRacket () .getType()) ;

}

The output is as follows:

Player Rafael Nadal plays with Babolat Pure Aero

The complete application is named Aggregation. Moving on, let's talk about composition.

What is composition?

The key points that you should encapsulate in your answer are the following:

« Composition is one of the core concepts of OOP.
« Composition is a more restrictive case of aggregation.

« Composition represents a HAS-A relationship that contains an object that cannot
exist on its own.

« Composition sustains code reuse and the visibility control of objects.

84 Object-Oriented Programming

Now, we can present an answer as follows:

Composition is one of the core concepts of OOP. Primarily, composition is a more restrictive
case of aggregation. While aggregation represents a HAS-A relationship between two
objects having their own life cycle, composition represents a HAS-A relationship that
contains an object that cannot exist on its own. In order to highlight this coupling, the
HAS-A relationship can be named PART-OF as well. For example, a Car has an Engine.
In other words, the engine is PART-OF the car. If the car is destroyed, then the engine is
destroyed as well. Composition is said to be better than inheritance because it sustains
code reuse and the visibility control of objects.

If further details are required, then you may share the screen or use paper and a pen and
code your example.

The Engine class is quite simple:
public class Engine {

private String type;

private int horsepower;

public Engine(String type, int horsepower) {
this.type = type;

this.horsepower = horsepower;

// getters and setters omitted for brevity

}

Next, we have the Car class. Check out the constructor of this class. Since Engine is part
of Car, we create it with the Car:

public class Car {

private final String name;

private final Engine engine;

public Car (String name) {

this.name = name;

Understanding OOP concepts

85

Engine engine = new Engine ("petrol", 300) ;

this.engine=engine;

public int getHorsepower ()

return engine.getHorsepower () ;

public String getName () {

return name;

}
Next, we can test composition from the main () method as follows:

public static void main(String[] args) {
Car car = new Car ("MyCar") ;

System.out.println ("Horsepower: " + car.getHorsepower ()) ;

}

And the output is as follows:
Horsepower: 300

The complete application is named Composition.

So far, we have covered the essential questions regarding OOP concepts. Keep in mind
that such questions can occur in Java technical interviews for almost any position that
involves coding or architecting applications. Especially if you have around 2-4 years of

experience, the chances are high that you will be asked the preceding questions, and you

must know the answers, otherwise this will be a black mark against you.

Now, let's continue with the SOLID principles. This is another fundamental area and a

must-know topic alongside the OOP concepts. A lack of knowledge in this area will prove

detrimental when it comes to a final decision regarding your interview.

86 Object-Oriented Programming

Getting to know the SOLID principles

In this section, we will formulate answers to the questions corresponding to the five
famous design patterns for writing classes — the SOLID principles. By way of a quick
remainder, SOLID is an acronym of the following:

« S: Single Responsibility Principle

o O: Open Closed Principle

o L: Liskov's Substitution Principle

o I Interface Segregation Principle

« D: Dependency Inversion Principle
In interviews, the most common questions pertaining to SOLID are of the What is
...2 type. For example, What is S? or What is D? Typically, OOP-related questions are
intentionally vague. This way, the interviewer tests your level of knowledge and wants to

see whether you request further clarification. So, let's tackle each of these questions in
turn and provide an awesome answer that will impress the interviewer.

What is S?

The key points that you should encapsulate in your answer are the following:

o S stands for the Single Responsibility Principle (SRP).
o S stands for One class should have one, and only one, responsibility.
o Stells us to write a class for only one goal.

« S sustains high maintainability and visibility control across the application modules.

Now, we can present an answer as follows:

First of all, SOLID is an acronym for the first five Object-Oriented Design (OOD)
principles enunciated by Robert C. Martin, also known as Uncle Bob (optional phrase).

S is the first principle from SOLID and is known as the Single Responsibility Principle
(SRP). This principle translates to the fact that one class should have one, and only one,
responsibility. This is a very important principle that should be followed in any type of
project for any type of class (model, service, controller, manager class, and so on). As

long as we write a class for only one goal, we will sustain high maintainability and visibility
control across the application modules. In other words, by sustaining high maintainability,
this principle has a significant business impact, and by providing visibility control across the
application modules, this principle sustains encapsulation.

Getting to know the SOLID principles 87

If further details are required, then you may share the screen or use paper and a pen to
code an example as the one presented here.

For example, you want to calculate the area of a rectangle. The dimensions of the rectangle
are initially given in meters and the area is computed in meters as well, but we want to be
able to convert the computed area to other units, such as inches. Let's see the approach
that breaks the SRP.

Breaking the SRP

Implementing the preceding problem in a single class, RectangleAreaCalculator,
can be done as follows. But this class does more than one thing: it breaks SRP. Keep in
mind that, typically, when you use the word and to express what a class does, this is a sign
that the SRP is broken. For example, the following class computes the area and converts it
to inches:

public class RectangleAreaCalculator {
private static final double INCH TERM = 0.0254d;

private final int width;
private final int height;

public RectangleAreaCalculator (int width, int height) {
this.width = width;
this.height = height;

}
public int area()

return width * height;
}

// this method breaks SRP
public double metersToInches (int area)
return area / INCH TERM;

}

Since this code contravenes the SRP, we must fix it in order to follow the SRP.

88 Object-Oriented Programming

Following the SRP

The situation can be remedied by removing the metersToInches () method from
RectangleAreaCalculator, as follows:

public class RectangleAreaCalculator

private final int width;

private final int height;

public RectangleAreaCalculator (int width, int height) {
this.width = width;
this.height = height;

public int area() {

return width * height;

}

Now, RectangleAreaCalculator does only one thing (it computes the rectangle
area), thereby observing the SRP.

Next, metersToInches () can be extracted in a separate class. Moreover, we can add a
new method for converting from meters to feet as well:

public class AreaConverter ({

private static final double INCH TERM = 0.0254d;
private static final double FEET TERM 0.3048d;

public double metersToInches (int area) {

return area / INCH TERM;

public double metersToFeet (int area) {

return area / FEET TERM;

Getting to know the SOLID principles 89

This class also follows the SRP, hence our job is done. The complete application is named
SingleResponsabilityPrinciple. Moving on, let's talk about the second SOLID principle, the
Open Closed Principle.

What is O?

The key points that you should encapsulate in your answer are the following:

o O stands for the Open Closed Principle (OCP).

+ O stands for Software components should be open for extension, but closed for
modification.

« O sustains the fact that our classes should not contain constraints that will require
other developers to modify our classes in order to accomplish their job - other
developers should only extend our classes to accomplish their job.

+ O sustains software extensibility in a versatile, intuitive, and non-harmful way.

Now, we can present an answer as follows:

First of all, SOLID is an acronym for the first five Object-Oriented Design (OOD)
principles enunciated by Robert C. Martin, also known as Uncle Bob (optional phrase). O
is the second principle from SOLID and is known as the Open Closed Principle (OCP).
This principle stands for Software components should be open for extension, but closed for
modification. This means that our classes should be designed and written in such a way
that other developers can change the behavior of these classes by simply extending them.
So, our classes should not contain constraints that will require other developers to modify our
classes in order to accomplish their job — other developers should only extend our classes to
accomplish their job.

While we must sustain software extensibility in a versatile, intuitive, and non-harmful way,
we don't have to think that other developers will want to change the whole logic or the
core logic of our classes. Primarily, if we follow this principle, then our code will act as a
good framework that doesn't give us access to modify their core logic, but we can modify
their flow and/or behavior by extending some classes, passing initialization parameters,
overriding methods, passing different options, and so on.

If further details are required, then you may share the screen or use paper and a pen to
code an example like the one presented here.

Now, for instance, you have different shapes (for example, rectangles, circles) and we want
to sum their areas. First, let's see the implementation that breaks the OCP.

90 Object-Oriented Programming

Breaking the OCP

Each shape will implement the Shape interface. Therefore, the code is pretty
straightforward:

public interface Shape {

}

public class Rectangle implements Shape

private final int width;

private final int height;

// constructor and getters omitted for brevity

public class Circle implements Shape {
private final int radius;

// constructor and getter omitted for brevity

}

At this point, we can easily use the constructors of these classes to create rectangles and
circles of different sizes. Once we have several shapes, we want to sum their areas. For this,
we can define an AreaCalculator class as follows:

public class AreaCalculator {
private final List<Shape> shapes;

public AreaCalculator (List<Shape> shapes) ({

this.shapes = shapes;

// adding more shapes requires us to modify this class
// this code is not OCP compliant
public double sum() {

int sum = 0O;

Getting to know the SOLID principles 91

for (Shape shape : shapes) {
if (shape.getClass() .equals(Circle.class)) {
sum += Math.PI * Math.pow(((Circle) shape)

.getRadius (), 2);
} else
if (shape.getClass () .equals (Rectangle.class)) {
sum += ((Rectangle) shape) .getHeight ()
* ((Rectangle) shape) .getWidth() ;
}

return sum;

}

Since each shape has its own formula for area, we require an if-else (or switch)
structure to determine the type of shape. Furthermore, if we want to add a new shape (for
example, a triangle), we have to modify the AreaCalculator class to add a new if
case. This means that the preceding code breaks the OCP. Fixing this code to observe the
OCP imposes several modifications in all classes. Hence, be aware that fixing code that
doesn't follow the OCP can be quite tricky, even in the case of a simple example.

Following the OCP

The main idea is to extract from AreaCalculator the area formula of each shape in the
corresponding Shape class. Hence, the rectangle will compute its area, the circle as well,
and so on. To enforce the fact that each shape must calculate its area, we add the area ()
method to the Shape contract:

public interface Shape {

public double area() ;

Next, Rectangle and Circle implements Shape as follows:

public class Rectangle implements Shape {

private final int width;

92 Object-Oriented Programming

Now, the AreaCalculator can loop the list of shapes and sum the areas by calling the
proper area () method:

Getting to know the SOLID principles 93

public double sum() {
int sum = 0;
for (Shape shape : shapes) ({

sum += shape.areal() ;

return sum;

}

The code is OCP-compliant. We can add a new shape and there is no need to modify the

AreaCalculator. So, AreaCalculator is closed for modifications and, of course, is
open for extension. The complete application is named the OpenClosedPrinciple. Moving
on, let's talk about the third SOLID principle, Liskov's Substitution Principle.

What is L?

The key points that you should encapsulate in your answer are the following:

o L stands for Liskov's Substitution Principle (LSP).
o L stands for Derived types must be completely substitutable for their base types.

L sustains the fact that objects of subclasses must behave in the same way as the
objects of superclasses.

o L is useful for runtime-type identification followed by the cast.

Now, we can present an answer as follows:

First of all, SOLID is an acronym for the first five Object-Oriented Design (OOD)
principles enunciated by Robert C. Martin, also known as Uncle Bob (optional phrase). L
is the third principle from SOLID and is known as Liskov's Substitution Principle (LSP).
This principle stands for Derived types must be completely substitutable for their base types.
This means that the classes that extend our classes should be usable across the application
without causing failures. More precisely, this principle sustains the fact that objects of
subclasses must behave in the same way as the objects of superclasses, so every subclass (or
derived class) should be capable of substituting their superclass without any issues. Most
of the time, this is useful for runtime-type identification followed by the cast. For example,
consider foo (p) , where p is of the type T. Then, foo (q) should work fine if g is of the
type S and S is a subtype of T.

94 Object-Oriented Programming

If further details are required, then you may share the screen or use paper and a pen to
code an example like the one presented here.

We have a chess club that accepts three types of members: Premium, VIP, and Free.

We have an abstract class named Member that acts as the base class, and three subclasses
- PremiumMember, VipMember, and FreeMember. Let's see whether each of these
member types can substitute the base class.

Breaking the LSP

The Member class is abstract, and it represents the base class for all members of our
chess club:

public abstract class Member {
private final String name;

public Member (String name) {

this.name = name;

public abstract void joinTournament () ;

public abstract void organizeTournament () ;

}

The PremiumMember class can join chess tournaments or organize such tournaments as
well. So, its implementation is quite simple:

public class PremiumMember extends Member {

public PremiumMember (String name) {

super (name) ;

@Override
public void joinTournament () {

System.out.println ("Premium member joins tournament") ;

Getting to know the SOLID principles

95

@Override
public void organizeTournament () {
System.out.println ("Premium member organize

tournament") ;

}

The VipMember class is roughly the same as PremiumMember, so we can skip it
and focus on the FreeMember class. The FreeMember class can join tournaments,
but cannot organize tournaments. This is an issue that we need to tackle in the
organizeTournament () method. We can throw an exception with a meaningful
message or we can display a message as follows:

public class FreeMember extends Member

public FreeMember (String name) {

super (name) ;

@Override
public void joinTournament () {

System.out.println ("Classic member joins tournament

'll);

// this method breaks Liskov's Substitution Principle

@Override

public void organizeTournament () {
System.out.println ("A free member cannot organize

tournaments") ;

96 Object-Oriented Programming

But throwing an exception or displaying a message doesn't mean that we follow LSP. Since
a free member cannot organize tournaments, it cannot be a substitute for the base class,
therefore it breaks the LSP. Check out the following list of members:

List<Member> members = List.of (
new PremiumMember ("Jack Hores"),
new VipMember ("Tom Johns"),
new FreeMember ("Martin Vilop")

) g

The following loop reveals that our code is not LSP-compliant because when the
FreeMember class has to substitute the Member class, it cannot accomplish its job since
FreeMember cannot organize chess tournaments:

for (Member member : members) {

member.organizeTournament () ;

}

This situation is a showstopper. We cannot continue the implementation of our
application. We must redesign our solution to obtain a code that is LSP-compliant. So let's
do this!

Following the LSP

The refactoring process starts by defining two interfaces meant to separate the two actions,
joining and organizing chess tournaments:

public interface TournamentJoiner ({

public void joinTournament () ;

public interface TournamentOrganizer {

public void organizeTournament () ;

Getting to know the SOLID principles

97

Next, the abstract base class implements these two interfaces as follows:
public abstract class Member
implements TournamentJoiner, TournamentOrganizer {

private final String name;

public Member (String name) {

this.name = name;

}

PremiumMember and VipMember remain untouched. They extend the Member
base class. However, the FreeMember class, which cannot organize tournaments,
will not extend the Member base class. It will implement the TournamentJoiner
interface only:

public class FreeMember implements TournamentJoiner {
private final String name;

public FreeMember (String name) {

this.name = name;

@Override
public void joinTournament () {

System.out.println ("Free member joins tournament ...");

Now, we can define a list of members who can join chess tournaments as follows:

List<TournamentJoiner> members = List.of (
new PremiumMember ("Jack Hores"),
new PremiumMember ("Tom Johns"),
new FreeMember ("Martin Vilop")

D5

98 Object-Oriented Programming

Looping this list and substituting the TournamentJoiner interface with each type of
member works as expected and observes the LSP:

// this code respects LSP
for (TournamentJoiner member : members) {

member . joinTournament () ;

}

Following the same logic, a list of members who can organize chess tournaments can be
written as follows:

List<TournamentOrganizer> members = List.of (
new PremiumMember ("Jack Hores"),
new VipMember ("Tom Johns")

) g

FreeMember doesn't implement the TournamentOrganizer interface.

Therefore, it cannot be added to this list. Looping this list and substituting the
TournamentOrganizer interface with each type of member works as expected and
follows the LSP:

// this code respects LSP
for (TournamentOrganizer member : members) {

member.organizeTournament () ;

}

Done! Now we have an LSP-compliant code. The complete application is named
LiskovSubstitutionPrinciple. Moving on, let's talk about the fourth SOLID principle, the
Interface Segregation Principle.

What is I?

The key points that you should encapsulate in your answer are the following:

« Istands for the Interface Segregation Principle (ISP).

o Istands for Clients should not be forced to implement unnecessary methods that they
will not use.

o Isplits an interface into two or more interfaces until clients are not forced to
implement methods that they will not use.

Getting to know the SOLID principles 99

Now, we can present an answer as follows:

First of all, SOLID is an acronym for the first five Object-Oriented Design (OOD)
principles enunciated by Robert C. Martin, also known as Uncle Bob (optional phrase).
It is the fourth principle from SOLID, and is known as the Interface Segregation
Principle (ISP). This principle stands for Clients should not be forced to implement
unnecessary methods that they will not use. In other words, we should split an interface
into two or more interfaces until clients are not forced to implement methods that they will
not use. For example, consider the Connection interface, which has three methods:
connect (), socket (), and http (). A client may want to implement this interface
only for connections via HTTP. Therefore, they don't need the socket () method. Most
of the time, the client will leave this method empty, and this is a bad design. In order

to avoid such situations, simply split the Connection interface into two interfaces;
SocketConnection with the socket () method, and Ht tpConnect ion with the
http () method. Both interfaces will extend the Connection interface that remains
with the common method, connect ().

If further details are required, then you may share the screen or use paper and a pen
to code an example like the one presented here. Since we've described the preceding
example, let's jump into the section about breaking the ISP.

Breaking the ISP

The Connection interface defines three methods as follows:

public interface Connection {

public void socket () ;
public void http() ;

public void connect () ;

}

WwwPingConnection is a class that pings different websites via HT'TP; hence, it
requires the http () method, but doesn't need the socket () method. Notice the
dummy socket () implementation - since WwwPingConnection implements
Connection, it is forced to provide an implementation to the socket () method
as well:

public class WwwPingConnection implements Connection {

private final String www;

100 Object-Oriented Programming

}

public WwwPingConnection (String www) {

this.www = www;

@Override
public void http() ({
System.out.println("Setup an HTTP connection to "

+ WwWw) ;

@Override
public void connect () {
System.out.println ("Connect to " + www) ;

// this method breaks Interface Segregation Principle
@Override

public void socket () {

}

Having an empty implementation or throwing a meaningful exception from methods that
are not needed, such as socket (), is a really ugly solution. Check the following code:

WwwPingConnection www

= new WwwPingConnection 'www.yahoo.com') ;

www.socket (); // we can call this method!

www . connect () ;

What do we expect to obtain from this code? A working code that does nothing, or an
exception caused by the connect () method because there is no HTTP endpoint? Or, we
can throw an exception from socket () of the type: Socket is not supported!. Then, why is
it here?! Hence, it is now time to refactor the code to follow the ISP.

Getting to know the SOLID principles 101

Following the ISP

In order to comply with the ISP, we need to segregate the Connection interface. Since
the connect () method is required by any client, we leave it in this interface:

public interface Connection {

public void connect () ;

}

The http () and socket () methods are distributed in to separate interfaces that extend
the Connection interface as follows:

public interface HttpConnection extends Connection

public void http () ;

public interface SocketConnection extends Connection {

public void socket () ;

}

This time, the WwwPingConnection class can implement only the Ht tpConnection
interface and use the http () method:

public class WwwPingConnection implements HttpConnection {
private final String www;

public WwwPingConnection (String www) {

this.www = www;

@Override
public void http()
System.out .println ("Setup an HTTP connection to "

+ Www) ;

102 Object-Oriented Programming

@Override
public void connect () {

System.out.println ("Connect to " + www) ;

}

Done! Now, the code follows the ISP. The complete application is named
InterfaceSegregationPrinciple. Moving on, let's talk about the last SOLID principle, the
Dependency Inversion Principle.

What is D?

The key points that you should encapsulate in your answer are the following:

D stands for the Dependency Inversion Principle (DIP).
« D stands for Depend on abstractions, not on concretions.

D sustains the use of abstract layers to bind concrete modules together instead of
having concrete modules that depend on other concrete modules.

D sustains the decoupling of concrete modules.

Now, we can present an answer as follows:

First of all, SOLID is an acronym for the first five Object-Oriented Design (OOD)
principles enunciated by Robert C. Martin, also known as Uncle Bob (optional phrase). D
is the last principle from SOLID and is known as the Dependency Inversion Principle
(DIP). This principle stands for Depend on abstractions, not on concretions. This means
that we should rely on abstract layers to bind concrete modules together instead of having
concrete modules that depend on other concrete modules. To accomplish this, all concrete
modules should expose abstractions only. This way, the concrete modules allow extension
of the functionality or plug-in in another concrete module while retaining the decoupling
of concrete modules. Commonly, high coupling occurs between high-level concrete
modules and low-level concrete modules.

If further details are required, then you may share the screen or use paper and a pen to
code an example.

A database JDBC URL, PostgreSQLJdbcUrl, can be a low-level module, while
a class that connects to the database may represent a high-level module, such as
ConnectToDatabase#iconnect ().

Getting to know the SOLID principles 103

Breaking the DIP

If we pass to the connect () method an argument of the PostgreSQLJIdbcUr1 type,
then we have violated the DIP. Let's look at the code of PostgreSQLJdbcUr1 and
ConnectToDatabase:

public class PostgreSQLJdbcUrl
private final String dbName;

public PostgreSQLJdbcUrl (String dbName) {
this.dbName = dbName;

public String get() {
return "jdbc:// ... " + this.dbName;

public class ConnectToDatabase {

public void connect (PostgreSQLJdbcUrl postgresqgl)
System.out .println ("Connecting to "
+ postgresqgl.get()) ;

}

If we create another type of JDBC URL (for example, MySQLJdbcUr1), then we cannot
use the preceding connect (PostgresSQLJdbcUrl postgreSQL) method. So, we
have to drop this dependency on concrete and create a dependency on abstraction.

Following the DIP

The abstraction can be represented by an interface that should be implemented by each
type of JDBC URL:

public interface JdbcUrl (

public String get () ;

104 Object-Oriented Programming

Next, PostgreSQLJdbcUrl implements JdbcUr1 to return a JDBC URL specific to
PostgreSQL databases:

public class PostgreSQLJdbcUrl implements JdbcUrl ({
private final String dbName;

public PostgreSQLJdbcUrl (String dbName) {
this.dbName = dbName;

@Override
public String get () {
return "jdbc:// ... " + this.dbName;

}

In precisely the same manner, we can write MySQLJdbcUr1, OracleddbcUrl, and
so on. Finally, the ConnectToDatabase#connect () method is dependent on

the JdbcUr1 abstraction, so it can connect to any JDBC URL that implements this
abstraction:

public class ConnectToDatabase {

public void connect (JdbcUrl jdbcUrl) {
System.out.println ("Connecting to " + jdbcUrl.get()) ;

}

Done! The complete application is named DependencylnversionPrinciple.

So far, we've covered the OOP fundamental concepts and the popular SOLID principles.
If you plan to apply for a Java position that includes the design and architecture of
applications, then it is recommended that you take a look at the General Responsibility
Assignment Software Principles (GRASP) as well (https://en.wikipedia.
org/wiki/GRASP (object-oriented design). This is not a popular topic in
interviews, but you never know!

https://en.wikipedia.org/wiki/GRASP_(object-oriented_design)
https://en.wikipedia.org/wiki/GRASP_(object-oriented_design)

Popular questions pertaining to OOP, SOLID, and GOF design patterns 105

Moving on, we will scan a bunch of popular questions that combine these notions. Now
that you are familiar with the Understand the Question | Nominate key points | Answer
technique, I will only highlight the key points in the answer without extracting them as a
list beforehand.

Popular questions pertaining to OOP, SOLID,
and GOF design patterns

In this section, we will tackle some more difficult questions that require a true
understanding of OOP concepts, SOLID design principles, and Gang of Four (GOF)
design patterns. Note that this book doesn't cover GOF design patterns, but there are
great books and videos out there that are dedicated to this topic. I recommend that you
try Learn Design Patterns with Java, by Aseem Jain (https://www.packtpub.com/
application-development/learn-design-patterns-java-video).

What is method overriding in OOP (Java)?

Method overriding is an object-oriented programming technique that allows the developer
to write two methods (non-static, non-private and non-final) with the same name

and signature but different behavior. Method overriding can be used in the presence of
Inheritance or Runtime Polymorphism.

In the presence of inheritance, we have a method in the superclass (referenced as the
overridden method) and we override it in the subclass (referenced as the overriding
method). In Runtime Polymorphism, we have a method in an interface and the classes
that implements this interface are overriding this method.

Java decides at runtime the actual method that should be called, depending upon the type
of object. Method overriding sustains flexible and extensible code, or, in other words, it
sustains the addition of new functionality with minimal code changes.

If further details are required, then you can list the main rules that govern method
overriding:
+ The name and signature (including the same return type or subtype) of the method

is the same in the superclass and subclass, or in the interface and implementations.

o We cannot override a method in the same class (but we can overload it in the
same class).

o We cannot override private, static, and £inal methods.

https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video

106 Object-Oriented Programming

 The overriding method cannot reduce the accessibility of the overridden method,
but the opposite is possible.

+ The overriding method cannot throw checked exceptions that are higher in the
exception hierarchy than the checked exception thrown by the overridden method.

« Always use the @0verride annotation for the overriding method.

An example of overriding methods in Java is available in the code bundled to this book
under the name MethodOverriding.

What is method overloading in OOP (Java)?

Method overloading is an object-oriented programming technique that allows the developer
to write two methods (both static or non-static) with the same name, but a different
signature and different functionalities. By different signature, we understand a different
number of arguments, different types of arguments, and/or a different order of arguments
list. The return type is not part of the method signature. Therefore, the case when two
methods have identical signatures, but different return types, is not a valid case of
method overloading. So, this is a powerful technique that allows us to write methods
(both static or non-static) having the same name but with different inputs. The compiler
bind overloaded method calls to the actual method; therefore, no binding is done during
runtime. A famous example of method overloading is System.out .println(). The
println () method has several overloading flavors.

Hence, there are four main rules that govern method overloading:

 Overloading is accomplished by changing the method signature.
« The return type is not part of the method signature.
e We can overload private, static, and £inal methods.

e We can overload a method in the same class (but we cannot override it in the
same class).

If further details are required, you can try to code an example. An example of
overloading methods in Java is available in the code bundled to this book under the name
MethodOverloading.

Popular questions pertaining to OOP, SOLID, and GOF design patterns 107

Important note

Besides the two aforementioned questions, you may need to answer some
other related questions, including What rules govern method overloading

and overriding (see above)?, What are the main differences between method
overloading and overriding (see above)?, Can we override a static or a private
method (the short answer is No, see above)?, Can we override a final method
(the short answer is No, see above)?, Can we overload a static method (the short
answer is Yes, see above)?, Can we change the argument list of an overriding
method (the short answer is No, see above)? So, it is advisable to extract and
prepare the answers to such questions. All the information required is available
in the preceding section.

Also, pay attention to questions such as Is it true that we can only prevent
overriding a method via the final modifier? This type of wording is meant to
confuse the candidate because the answer requires an overview of the notion
involved. The answer here can be formulated as This is not true, because we
can prevent overriding a method by marking it as private or static as well. Such
methods cannot be overridden.

Moving on, let's examine several other questions related to overriding and
overloading methods.

What is covariant method overriding in Java?

Covariant method overriding is a less known feature introduced in Java 5. By means of
this feature, an overriding method can return a subtype of its actual return type. This means
that a client of the overriding method doesn't need an explicit type casting of the returned
type. For example, the Java clone () method returns Object. This means that, when

we override this method to return a clone, we get back an Object that must be explicitly
casted to the actual subclass of Object that we need. However, if we take advantage of
the Java 5 covariant method overriding feature, then the overriding clone () method can
return the requisite subclass directly instead of Object.

108 Object-Oriented Programming

Almost always, a question such as this requires an example as part of the answer, so let's
consider the Rectangle class that implements the Cloneable interface. The clone ()

method can return Rectangle instead of Object as follows:

public class Rectangle implements Cloneable {

@Override
protected Rectangle clone ()
throws CloneNotSupportedException {

Rectangle clone = (Rectangle) super.clone() ;

return clone;

}

Calling the clone () method doesn't require an explicit cast:

Rectangle r = new Rectangle (4, 3);

Rectangle clone = r.clone();

The complete application is named CovariantMethodOverriding. Pay attention to

less direct questions regarding covariant method overriding. For example, it can be
formulated like this: Can we modify the return type of method to subclass while overriding?
The answer to this question is the same as What is covariant method overriding in Java?,

discussed here.

Important note

have a deep level of knowledge and that you are up to date with the Java
via tons of examples and minimum theory, then you will love my book

programming/java-coding-problems).

Knowing the answer to questions that target less known features of Java can
be a big plus at the interview. This demonstrates to the interviewer that you

evolution. If you require a supersonic update of all JDK 8 to JDK 13 features

entitled Java Coding Problems, published by Packt (packtpub.com/au/

packtpub.com/au/programming/java-coding-problems
packtpub.com/au/programming/java-coding-problems

Popular questions pertaining to OOP, SOLID, and GOF design patterns 109

What are the main restrictions in terms of working
with exceptions in overriding and overloading
methods?

First, let's discuss the overriding methods. If we talk about unchecked exceptions, then we
must say that there are no restrictions on using them in overriding methods. Such methods
can throw an unchecked exception, hence, any Runt imeException. On the other
hand, in the case of checked exceptions, the overriding methods can throw only the checked
exception of the overridden method or a subclass of that checked exception. In other words,
an overriding method cannot throw a checked exception that has a broader scope than
the checked exception thrown by the overridden method. For example, if the overridden
method throws SQLException, then the overriding method can throw subclasses such
as BatchUpdateException, but it cannot throw super classes such as Exception.

Second, let's discuss the overloading methods. Such methods do not impose any kind of
restrictions. This means that we can modify the throw clause as required.

Important note

Pay attention to questions that are worded along the lines of What are the

main ...?, Can you enumerate the certain ...?2, Can you nominate the...?, Can you
highlight the ...?, and so on. Commonly, when the question contains words
such as main, certain, nominate, and highlight, the interviewer expects a clear
and concise answer that should sound like a bullet list. The best practice for
answering such questions is to jump into the response directly and enumerate
each item as a compressed and meaningful statement. Don't make the common
mistake of embarking on a story or dissertation of the notions involved before
giving the expected answer. The interviewer wants to see your ability to
synthesize and sanitize things and extract the essence while checking your level
of knowledge.

If more detail is required, then you can code an example like those from the code bundled
to this book. Consider checking the OverridingException and OverloadingException
applications. Now, let's continue with some more questions.

110 Object-Oriented Programming

How can the superclass overridden method be called
from the subclass overriding method?

We can call the superclass overridden method from the subclass overriding method via the
Java super keyword. For example, consider a superclass, A, that contains a method,
foo (), and a subclass of A named B. If we override the foo () method in subclass B,
and we call super. foo () from the overriding method, B#foo (), then we call the
overridden method, 2#foo ().

Can we override or overload the main() method?

We must keep in mind that the main () method is static. This means that we can overload
it. However, we cannot override it because the static methods are resolved at compile time,
while the methods that we can override are resolved at runtime depending upon the type
of object.

Can we override a non-static method as static in Java?

No. We cannot override a non-static method as static. Moreover, the reverse is not possible
either. Both lead to compilation errors.

Important note

Questions that are to the point, like the last two aforementioned questions,
deserve a short and concise answer. Interviewers trigger such flashlight
questions to measure your ability to analyze a situation and make a decision.
Mainly, the answer is brief, but you need some time to say Yes or No. Such
questions don't carry a high score, but they may have a significant negative
impact if you don't know the answer. If you know the answer, the interviewer
might say in his mind, Well, OK, this was an easy question anyway! But, if you
don't know the answer, then he might say, He missed an easy one! There is a
serious shortcoming in her/his basic knowledge.

Next, let's look at some more questions related to other OOP concepts.

Popular questions pertaining to OOP, SOLID, and GOF design patterns 111

Can we have a non-abstract method inside a
Java interface?

Until Java 8, we could not have a non-abstract method in a Java interface. All methods
from an interface were implicitly public and abstract. However, starting with Java 8, we
have new types of methods that can be added to an interface. In practical terms, starting
with Java 8, we can add methods that have implementations directly in interfaces. This

can be done by using the default and static keywords. The default keyword was
introduced in Java 8 for including in interfaces the methods known as default, defender,
or extension methods. Their main goal is to allow us to evolve the existing interfaces
while ensuring backward compatibility. JDK itself uses default methods to evolve Java

by adding new features without breaking the existing code. On the other hand, static
methods in interfaces are quite similar to the default methods, the only difference being that
we cannot override static methods in the classes that implement these interfaces. Since
static methods are not bound to an object, they can be called by using the interface
name preceded by a dot and the method name. Moreover, stat ic methods can be called
within other default and static methods.

If further details are required, then you can try to code an example. Consider that we
have an interface for shaping a vehicle like a steam car (this is an old car type exactly like
old code):

public interface Vehicle {

public void speedUp() ;
public void slowDown () ;

}

Obviously, different kinds of steam cars have been built by means of the following
SteamCar class:

public class SteamCar implements Vehicle
private String name;
// constructor and getter omitted for brevity
@Override

public void speedUp () {
System.out.println ("Speed up the steam car ...");

112 Object-Oriented Programming

@Override
public void slowDown () {
System.out.println("Slow down the steam car ...");

}

Since the SteamCar class implements the Vehicle interface, it overrides the

speedUp () and slowDown () methods. After a while, petrol cars are invented, and
people start to care about horsepower and fuel consumption. So, our code must evolve

to provide support for petrol cars as well. To compute the level of consumption, we can
evolve the Vehicle interface by adding the computeConsumption () default method
as follows:

public interface Vehicle ({
public void speedUp() ;
public void slowDown () ;

default double computeConsumption (int fuel,
int distance, int horsePower) {
// simulate the computation

return Math.random() * 10d;

}

Evolving the Vehicle interface doesn't break SteamCar compatibility. Furthermore,
electric cars have been invented. Computing the consumption of an electric car is

not the same as in the case of a petrol car, but the formula relies on the same terms:
the fuel, distance, and horsepower. This means that ElectricCar will override
computeConsumption () as follows:

public class ElectricCar implements Vehicle {

private String name;

private int horsePower;

Popular questions pertaining to OOP, SOLID, and GOF design patterns 113

// constructor and getters omitted for brevity

@Override
public void speedUp() {
System.out .println ("Speed up the electric car ...");

@Override
public void slowDown () {
System.out.println ("Slow down the electric car ...");

@Override
public double computeConsumption (int fuel,
int distance, int horsePower) {

// simulate the computation
return Math.random()*60d / Math.pow (Math.random(), 3);

}

So, we can override a default method, or we can use the implicit implementation.
Finally, we have to add a description to our interface since now it serves steam, petrol,
and electric cars. We can do this by adding to Vehicle a static method named
description (), as follows:

public interface Vehicle
public void speedUp () ;
public void slowDown () ;

default double computeConsumption (int fuel,

int distance, int horsePower) {

return Math.random() * 10d;

114 Object-Oriented Programming

static void description() {
System.out.println ("This interface control
steam, petrol and electric cars") ;

}

This static method is not bound to any type of car and it can be called directly via
Vehicle.description (). The complete code is named Java8DefaultStaticMethods.

Next, let's continue with other questions. So far, you should be pretty familiar with
the Understand the Question|Nominate key points|Answer technique, so I will stop
highlighting the key points. From now on, it is your job to spot them.

What are the main differences between interfaces
with default methods and abstract classes?

Among the differences between Java 8 interfaces and abstract classes, we can mention

the fact that an abstract class can have a constructor while an interface doesn't support
constructors. So, an abstract class can have a state while an interface cannot have a state.
Moreover, interfaces remain the first citizens of full abstraction, with the main purpose

of being implemented, while abstract classes are meant for partial abstraction. Interfaces
are still designed to target completely abstract things that don't do anything by themselves,
but specify contracts about how things will work at implementation. The default methods
represent an approach for adding additional features to the interfaces without affecting
the client code and without changing the state. They shouldn't be used for other purposes.
In other words, another difference consists of the fact that it is perfectly fine to have an
abstract class with no abstract methods, but it is an anti-pattern to have an interface

only with default methods. This means that we have created the interface as a utility

class substitute. This way, we defeat the main purpose of an interface, which is to

be implemented.

Popular questions pertaining to OOP, SOLID, and GOF design patterns 115

Important note

When you have to enumerate a bunch of differences or similarities between
two notions, pay attention to limit your answer to the coordinates settled by the
question. For example, in the case of the preceding question, do not say that
one difference lies in the fact that interfaces sustain multiple inheritance while
abstract classes don't. This is a general variation between interfaces and classes,
and not specifically between Java 8 interfaces and abstract classes.

What is the main difference between abstract classes
and interfaces?

Until Java 8, the main difference between abstract classes and interfaces consisted of the
fact that an abstract class can contain non-abstract methods, while an interface cannot
contain such methods. Starting with Java 8, the main difference consists of the fact that
an abstract class can have constructors and state while an interface cannot have either of
these.

Can we have an abstract class without an abstract
method?

Yes, we can. By adding the abstract keyword to a class, it becomes abstract. It cannot
be instantiated, but it can have constructors and only non-abstract methods.

Can we have a class that is both abstract and final at
the same time?

A final class cannot be sub-classed or inherited. An abstract class is meant to be extended
in order to be used. Therefore, final and abstract are opposite notions. This means that
they cannot be applied to the same class at the same time. The compiler will throw an
error.

What is the difference between polymorphism,
overriding, and overloading?

In the context of this question, the overloading technique is known as Compiled-Time
Polymorphism, while the overriding technique is known as Runtime Polymorphism.
Overloading involves the use of static (or early) binding, while overriding uses dynamic
(or late) binding.

116 Object-Oriented Programming

The next two questions constitute add-ons to this one, but they can be formulated as
standalone as well.

What is a binding operation?

A binding operation determines the method (or variable) to be called as a result of its
references in the code lines. In other words, the process of associating a method call to
the method body is known as a binding operation. Some references are bound at compile
time, while other references are bound at runtime. Those that are bound at runtime
depend upon the type of object. The references resolved at compile time are known as
static binding operations, while those resolved at runtime are known as dynamic
binding operations.

What are the main differences between static and
dynamic binding?

First of all, static binding occurs at compile time, while dynamic binding occurs at
runtime. The second thing to consider involves the fact that private, static, and final
members (methods and variables) use static binding, while virtual methods are bonded at
runtime based upon the type of object. In other words, static binding is accomplished via
Type (class in Java) information, while dynamic binding is accomplished via Object,
meaning that a method relying on static binding is not associated with an object, but

is instead called on Type (class in Java), while a method relying on dynamic binding

is associated with an Object. The execution of methods that rely on static binding is
marginally faster than those that rely on dynamic binding. Static and dynamic binding
are used in polymorphism as well. Static binding is used by compile-time polymorphism
(overloading methods), while dynamic binding is used in runtime polymorphism
(overriding methods). Static binding adds overhead in terms of performance at compile
time, while dynamic binding adds overhead in terms of performance at runtime, meaning
that static binding is preferable.

What is method hiding in Java?

Method hiding is specific to static methods. More precisely, if we declare two static
methods with the same signature and name in the superclass and in the subclass, then
they will hide each other. Calling the method from the superclass will call the static
method from the superclass, and calling the same method from the subclass will call the
static method from the subclass. Hiding is not the same thing with overriding because
static methods cannot be polymorphic.

Popular questions pertaining to OOP, SOLID, and GOF design patterns

117

If further details are required, then you can write an example. Consider the Vehicle
superclass having the move () static method:

public class Vehicle ({

public static void move () {
System.out.println ("Moving a vehicle") ;

}

Now, consider the Car subclass having the same static method:

public class Car extends Vehicle

// this method hides Vehicle#move ()
public static void move () {
System.out.println ("Moving a car") ;

}

Now, let's call these two static methods from the main () method:

public static void main(String[] args) {

Vehicle.move (); // call Vehicle#move ()
Car.move () ; // call Car#move ()

}

The output reveals that these two static methods are hiding one another:

Moving a vehicle

Moving a car

Notice that we call static methods via the class name. Calling static methods on instances

is a very bad practice, so avoid doing this during an interview!

118 Object-Oriented Programming

Can we write virtual methods in Java?

Yes, we can! Actually, in Java, all non-static methods are, by default, virtual methods. We
can write a non-virtual method by marking it with the private and/or £inal keyword.
In other words, the methods that can be inherited for polymorphic behavior are virtual
methods. Or, if we turn the logic of this statement on its head, the methods that cannot be
inherited (marked as private) and the methods that cannot be overridden (marked as
final) are non-virtual.

What is the difference between polymorphism
and abstraction?

Abstraction and polymorphism represent two fundamental OOP concepts that are
interdependent. Abstraction allows the developer to design general solutions that are
reusable and customizable, while polymorphism allows the developer to defer choosing
the code that should be executed at runtime. While abstraction is implemented

via interfaces and abstract classes, polymorphism relies on overriding and

overloading techniques.

Do you consider overloading an approach for
implementing polymorphism?

This is a controversial topic. Some people do not regard overloading as polymorphism;
therefore, they do not accept the idea of compile-time polymorphism. Such voices
maintain that the only overriding method is genuine polymorphism. The argument
behind this statement says that only overriding allows code to behave differently
depending on the runtime conditions. In other words, exhibiting polymorphic behavior
is the privilege of method overriding. I consider that as long as we understand the
premises of overloading and overriding, we also understand how both variants sustain
polymorphic behavior.

Important note

Questions that tackle controversial topics are delicate and hard to approach
correctly. Therefore, it is advisable to jump into the answer directly with this
statement This is a controversial topic. Of course, the interviewer is interested
to hear your opinion as well, but he will be pleased to see that you know both
sides of the coin. As a rule of thumb, try to answer in an objective manner and
don't approach one side of a coin with radicalism or with a poor arsenal of
arguments. Controversial things remain controversial after all, and this is not
the proper time and place to demystify them.

Popular questions pertaining to OOP, SOLID, and GOF design patterns 119

OK, now let's continue with some questions based on the SOLID principles and the
famous and indispensable Gang Of Four (GOF) design patterns. Note that this book
doesn't cover GOF design patterns, but there are great books and videos out there that
are dedicated to this topic. I recommend that you try Learn Design Patterns with Java,
by Aseem Jain (https://www.packtpub.com/application-development/
learn-design-patterns-java-video).

Which OOP concept serves the Decorator design

pattern?

The OOP concept that serves the Decorator design pattern is Composition. Via this OOP
concept, the Decorator design pattern provides new functionalities without modifying the
original class.

When should the Singleton design pattern be used?

The Singleton design pattern seems to be the proper choice when we need just one
application-level (global) instance of a class. Nevertheless, a Singleton should be used with
precaution because it increases the coupling between classes and can become a bottleneck
during development, testing, and debugging. As the famous Effective Java points out,
using Java enums is the best way of implementing this pattern. It is a common scenario to
rely on a Singleton pattern for global configurations (for example, loggers, java.lang.
Runtime), hardware access, database connections, and so on.

Important note

Whenever you can cite or mention famous references, do so.

What is the difference between the Strategy and State
design patterns?

The State design pattern is meant to do a certain thing depending upon the state (it
exhibits certain behaviors in different states without changing the class). The Strategy
design pattern, on the other hand, is meant to be used for switching between a range

of algorithms without modifying the code that uses it (the client uses algorithms
interchangeably via composition and runtime delegation). Moreover, in State, we have a
clear order of state transition (the flow is created by linking each state to another state),
while in Strategy, the client can choose the algorithm that it wants in any order. For
example, the State pattern can define the states of sending a package to a client.

https://www.packtpub.com/application-development/learn-design-patterns-java-video)
https://www.packtpub.com/application-development/learn-design-patterns-java-video)

120 Object-Oriented Programming

The package starts from the ordered state, and continues with the delivered state and so
on until it passes through each state and reaches the final state when the client has
received the package. On the other hand, the Strategy pattern defines different strategies
for accomplishing each state (for example, we may have different strategies for delivering
the package).

What is the difference between the Proxy and
Decorator patterns?

The Proxy design pattern is useful for providing an access control gateway to something.
Commonly, this pattern creates proxy objects that stand in place of the real object. Each
request for the real object must pass through the proxy objects, which decides how and
when to forward it to the real object. The Decorator design pattern never creates an object,
it just decorates an existing object at runtime with new functionality. While chaining
proxies is not an advisable practice, chaining decorators in a certain order exploits this
pattern in the right way. For example, while the Proxy pattern can represent a proxy server
for the internet, the Decorator pattern can be used to decorate the proxy server with
different custom settings.

What is the difference between the Facade and
Decorator patterns?

While the Decorator design pattern is meant to add new functionalities to an object

(in other words, to decorate the object), the Facade design pattern doesn't add new
functionalities at all. It just facades the existing functionalities (hides the complexities

of a system) and calls them behind the scenes via a friendly face exposed to the client.
The Facade pattern can expose a simple interface that calls individual components to
accomplish complex tasks. For example, the Decorator pattern can be used to build a car
by decorating a chassis with an engine, a gearbox, and so on, while the Facade pattern
can hide the complexity of building the car by exposing a simple interface for command
industrial robots that know the building process details.

Popular questions pertaining to OOP, SOLID, and GOF design patterns 121

What is the key difference between the Template
Method and the Strategy pattern?

The Template Method and Strategy patterns encapsulate domain-specific sets of
algorithms into objects, but they don't do it in the same way. The key difference consists of
the fact that the Strategy pattern is meant to decide at runtime between different strategies
(algorithms) based on the requirements, while the Template Method pattern is meant to
follow a fixed skeleton (predefined sequence of steps) implementation of an algorithm.
Some steps are fixed, while other steps can be modified for different uses. For example, the
Strategy pattern may decide between different payment strategies (for example, a credit
card or PayPal), while the Template Method can describe the predefined sequence of

steps for paying with a certain strategy (for example, payment via PayPal requires a fixed
sequence of steps).

What is the key difference between the Builder and
Factory patterns?

The Factory pattern creates an object in a single method call. We have to pass in this

call all the necessary parameters and the factory will return the object (commonly, by
invoking a constructor). On the other hand, the Builder pattern is designed for building
complex objects via chains of setter methods that allow us to shape any combination of
parameters. At the end of the chain, the Builder method exposes a build () method
that signals that the list of parameters is set, and it is time to build the object. In other
words, Factory acts as a wrapper of a constructor, while Builder is much granular, acting
as a wrapper of all the possible parameters you might want to pass into a constructor. Via
Builder, we avoid the telescopic constructor used to expose all the possible combinations
of parameters. For example, think back to the Book object. A book is characterized by

a hand of fixed parameters such as the author, title, ISBN, and format. Most probably,
you will not be juggling with the number of these parameters when creating books,

and therefore the factory pattern will be a good fit for factoring books. But how about a
Server object? Well, a server is a complex object with tons of optional parameters, and
so the Builder pattern is much more appropriate here, or even a combination of these
patterns where Factory relies internally on Builder.

122 Object-Oriented Programming

What is the key difference between the Adapter and
Bridge patterns?

The Adapter pattern strives to provide compatibility between an existing code that we
cannot modify (for example, third-party code) and a new system or interface. On the
other hand, the Bridge pattern is implemented upfront and is meant to decouple an
abstraction from implementation in order to avoid an insane number of classes. So,
Adapter strives to provide compatibility between things after they were designed (think
along the lines of A comes from After), while Bridge is built upfront to let the abstraction
and the implementation vary independently (think along the lines of B comes from
Before). While Adapter acts as the middle man between two systems that work fine
independently but cannot communicate with one another (they don't have compatible
input/output), the Bridge pattern enters the scene when our problem can be solved via
orthogonal class hierarchy, but we get stuck with scalability issues and limited extension.
For example, consider two classes, ReadJsonRequest and ReadXmlRequest, which
are capable of reading from several devices, such as D1, D2, and D3. D1 and D2 produce
only JSON requests, while D3 produces XML requests only. Via Adapter, we can convert
between JSON and XML, meaning that these two classes can communicate with all
three devices. On the other hand, via the Bridge pattern, we can avoid ending with many
classes such as ReadXMLRequestD1, ReadXMLRequestD2, ReadXMLRequestD3,
ReadJsonRequestD1, ReadJsonRequestD2, and ReadJsonRequestD3.

We can continue to compare design patterns until we finish all the possible combinations.
The final few of these questions have covered the most popular questions of the type
Design Pattern 1 versus Design Pattern 2. It is strongly advisable to challenge yourself
with these types of questions and try to identify similarities and differences between two
or more given design patterns. Most of the time, these questions use two design patterns
from the same category (for example, two structural or two creational patterns), but they
can be from different categories as well. In such a case, this is the first statement that the
interviewer expects to hear. So, in such cases, start by saying to which category each of the
design patterns involved belongs.

Notice that we skipped all simple questions of the type, What is an interface?, What is

an abstract class?, and so on. Typically, such questions are avoided since they don't say
much about your understanding level, being more about reciting some definitions. The
interviewer can ask What is the main difference between abstract classes and interfaces?,
and he can deduce from your answer whether you know what an interface and an abstract
class is. Always be prepared to give examples. The inability to shape an example reveals a
serious lack of understanding of the essence of things.

Coding challenges 123

Having OOP knowledge is just half of the problem. The other half is represented by
having the vision and agility to put this knowledge into designing applications. This is
what we will do in the next 10 examples. Keep in mind that we are focused on design, not
on implementation.

Coding challenges

Next, we will tackle several coding challenges regarding object-oriented programming.
For each problem, we will follow Figure 5.2 from Chapter 5, How to Approach a Coding
Challenge. Mainly, we will start by asking the interviewer a question such as What are
the design constraints? Commonly, coding challenges that orbit OOD are expressed by
the interviewer in a general way. This is done intentionally to make you ask details about
design constraints.

Once we have a clear picture of the constraints, we can try an example (which can be a
sketch, a step-by-step runtime visualization, a bullet list, and suchlike). Then, we figure
out the algorithm(s)/solution(s), and finally, we provide the design skeleton.

Example 1: Jukebox
Amazon, Google
Problem: Design the main classes of the jukebox musical machine.

What to ask: What is the jukebox playing - CDs, MP3s? What should I design - the
jukebox building process, how it works, or something else? It is a free jukebox or is
money required?

Interviewer: Is a free jukebox playing only CDs? Design its main functionalities, and
therefore design how it works.

124 Object-Oriented Programming

Solution: In order to understand what classes should be involved in our design, we can try
to visualize a jukebox and identify its main parts and functionalities. Sketching a diagram
along the lines of the one here also helps the interviewer to see how you think. I suggest
that you always take the approach of visualizing the problem in a written form - a sketch
is a perfect start:

Prev Next
Song Song
Add song Remove song

to playlist from playlist

Users

A
Playlist -

Figure 6.1 - Jukebox

So, we can identify the two main parts of a jukebox: a CD player (or a specific jukebox-
playing mechanism) and an interface with commands for the users. The CD player is
capable of managing a playlist and playing those songs. We can think of the interface of
commands as a Java interface implemented by a Jukebox as shown in the next code. Along
with the following code, you can use the UML diagram from here: https://github.
com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-
Java/blob/master/Chapter06/Jukebox/JukeboxUML.png

public interface Selector {

public void nextSongBtn () ;

public void prevSongBtn () ;

public void addSongToPlaylistBtn (Song song) ;
public void removeSongFromPlaylistBtn (Song song) ;
public void shuffleBtn() ;

public class Jukebox implements Selector

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/Jukebox/JukeboxUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/Jukebox/JukeboxUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/Jukebox/JukeboxUML.png

Coding challenges 125

private final CDPlayer cdPlayer;

public Jukebox (CDPlayer cdPlayer) {
this.cdPlayer = cdPlayer;

@Override

public void nextSongBtn() {...}

// rest of Selector methods omitted for brevity

}

The CDPlayer is the heart of the jukebox. Via Selector, we control the CDPlayer
behavior. CDPlayer must have access to the set of available CDs and to the playlist:

public class CDPlayer ({
private CD cd;

private final Set<CD> cds;
private final Playlist playlist;

public CDPlayer (Playlist playlist, Set<CD> cds) {
this.playlist = playlist;
this.cds = cds;

protected void playNextSong() {...}
protected void playPrevSong() {...}
protected void addCD(CD cd) {...}

protected void removeCD(CD cd) {...}

// getters omitted for brevity

126 Object-Oriented Programming

Next, the P1laylist manages a list of Song:

public class Playlist {

}

private Song song;
private final List<Song> songs; // or Queue

public Playlist (List<Song> songs) {
this.songs = songs;

public Playlist (Song song, List<Song> songs) {
this.song = song;

this.songs = songs;

protected void addSong (Song song) {...}
protected void removeSong(Song song) {...}
protected void shuffle() {...}

protected Song getNextSong() {...};
protected Song getPrevSong() {...};

// setters and getters omitted for brevity

The User, CD, and Song classes are skipped for now, but you can find them all in the
complete application named Jukebox. This kind of problem can be implemented in a wide
variety of ways, so feel free to try your own designs as well.

Example 2: Vending machine
Amazon, Google, Adobe

Problem: Design the main classes that sustain the implementation of the functionalities
of a typical vending machine.

Coding challenges 127

What to ask: Is this a vending machine with different types of coins and items? Does
it expose functionalities, such as checking an item price, buying an item, a refund, and
resetting?

Interviewer: Yes, exactly! For coins, you can consider a penny, a nickel, a dime, and
a quarter.

Solution: In order to understand what classes should be involved in our design, we can
try to sketch a vending machine. There are a wide range of vending machine types. Simply
sketch one that you know (like the one in the following diagram):

Item__l:ll[ll IIII — Status details

— Insert coin

 —
Select i
item B Buy item
{check price) D-— Get change

Get item

— Refund

I
-— Reset

Figure 6.2 - Vending machine

First of all, we immediately notice that items and coins are good candidates for Java
enums. We have four types of coins and several types of items, so we can write two Java
enums as follows. Along with the following code, you can use the UML diagram from
here: https://github.com/PacktPublishing/The-Complete-Coding-
Interview-Guide-in-Java/blob/master/Chapter06/VendingMachine/
VendingMachineUML. png

public enum Coin
PENNY (1) , NICKEL(5), DIME(10), QUARTER(25) ;

public enum Item ({
SKITTLES ("Skittles", 15), TWIX("Twix", 35)

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/VendingMachine/VendingMachineUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/VendingMachine/VendingMachineUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/VendingMachine/VendingMachineUML.png

128 Object-Oriented Programming

The vending machine needs an internal inventory to track the items and status of the
coins. We can shape this generically as follows:

public final class Inventory<T>
private Map<T, Integer> inventory = new HashMap<>() ;

protected int getQuantity (T item) {...}
protected boolean hasItem(T item) {...}
protected void clear() {...}

protected void add(T item) {...}

protected void put (T item, int guantity) {...}
protected void deduct (T item) {...}

}

Next, we can focus on the buttons used by a client to interact with the vending machine.
As you saw in the previous example as well, it is common practice to extract these buttons
to an interface as follows:

public interface Selector (

public int checkPriceBtn(Item item) ;
public void insertCoinBtn (Coin coin) ;

public Map<Item, List<Coin>> buyBtn() ;

public List<Coin> refundBtn() ;

public void resetBtn() ;

}

Finally, the vending machine can be shaped to implement the Selector interface and
provide a bunch of private methods used to accomplish the internal tasks:

public class VendingMachine implements Selector {

private final Inventory<Coin> coinInventory
= new Inventory<>();
private final Inventory<Item> itemInventory

= new Inventory<>();

Coding challenges

129

}

private int totalSales;

private int currentBalance;
private Item currentItem;

public VendingMachine () {

initMachine () ;
private void initMachine() {
System.out.println("Initializing the
vending machine with coins and items ...");

// override Selector methods omitted for brevity

The complete application is named VendingMachine. By following the two aforementioned
examples, you can try to design an ATM, a washing machine, and similar things.

Example 3: Deck of cards
Amazon, Google, Adobe, Microsoft

Problem: Design the main classes of a generic deck of cards.

What to ask: Since a card can be almost anything, can you define generic?

Interviewer: A card is characterized by a symbol (suit) and a value. For example, think of
a standard 52-card set.

130 Object-Oriented Programming

Solution: In order to understand what classes should be involved in our design, we
can quickly sketch a card and a deck of cards for the standard 52-card set, as shown
in Figure 6.3:

(" h

5

@ @ Q;-\—— suit deal
&

o @cso/

iterate

value

Figure 6.3 — A deck of cards

Since every card has a suit and a value, we will need a class that encapsulates these fields.
Let's call this class StandardCard. A suit for StandardCard contains a Spade, Heart,
Diamond, or Club, so this suit is a good candidate for a Java enum. A StandardCard
value can be between 1 and 13.

A card can live as a standalone or be a part of a pack of cards. Multiple cards form a
pack of cards (for example, a standard 52-card set forms a pack of cards). The number of
cards in a pack is usually obtained as a Cartesian product between the possible suits and
values (for example, 4 suits x 13 values = 52 cards). So, 52 StandardCard objects form
StandardPack.

Finally, a deck of cards should be a class capable of performing some actions with this
StandardPack. For example, a deck of cards can shuffle the cards, can deal a hand or a
card, and so on. This means that a Deck class is also needed.

So far, we have settled on having a Java enum and the StandardCard, StandardPack,
and Deck classes. If we add the abstraction layers needed to avoid high coupling between
these concrete layers, then we obtain the following implementation. Along with the
following code, you can use the UML diagram from here: https://github.com/
PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/
blob/master/Chapter06/DeckOfCards/DeckOfCardsUML. png

 For standard card implementation:

public enum StandardSuit f{
SPADES, HEARTS, DIAMONDS, CLUBS;

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/DeckOfCards/DeckOfCardsUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/DeckOfCards/DeckOfCardsUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/DeckOfCards/DeckOfCardsUML.png

—_

Coding challenges 13

o Standard pack of cards implementation gives the following code:

._.
w
)
o)

=
o
a
T
o
=
@
=
fal
@
a
)
o

oQ
§
]
=
=]
oQ

o Deck of cards implementation provides the following:

Coding challenges

133

this.cards = pack.getCards() ;

public void shuffle() {...}

public List<T> dealHand (int numberOfCards) {...}
public T dealCard() {...}

public int remainingCards() {...}

public void removeCards (List<T> cards) {...}

@Override

public Iterator<Ts> iterator() {...}

}
A demo of the code can be quickly written as follows:
// create a single classical card

Card sevenHeart = new StandardCard(StandardSuit.HEARTS, 7) ;

// create a complete deck of standards cards
Pack cp = new StandardPack() ;
Deck deck = new Deck(cp) ;

System.out .println ("Remaining cards: "

+ deck.remainingCards ()) ;

Furthermore, you can easily add more types of cards by extending the Card and Pack

classes. The complete code is named DeckOfCards.

Example 4: Parking lot
Amazon, Google, Adobe, Microsoft

Problem: Design the main classes of a parking lot.

What to ask: Is it a single-level or multi-level parking lot? Are all parking space spots the
same? What type of vehicles should we park? Is it free parking? Do we use parking tickets?

134 Object-Oriented Programming

Interviewer: It is a synchronous automatic multi-level free parking lot. All parking spots
are the same size, but we expect cars (1 spot needed), vans (2 spots needed) and trucks

(5 spots needed). Other types of vehicles should be added without modifying the code.
The system releases a parking ticket that can be used later to unpark the vehicle. But if the
driver introduces only the vehicle information (assuming a lost ticket), the system should
still work and locate the vehicle in the parking lot and unpark it.

Solution: In order to understand what classes should be involved in our design, we
can quickly sketch a parking lot to identify the main actors and behaviors as in Figure 6.4:

Parking lot _ ﬁ:l/ Vehicle :{::;Lgrtti:;gigiflfhat
o ‘ =L —
/_\\‘ " Insert vehicle details o -I:l L park
> A Get parking ticket=———1

o =k Insert parking ticket
oy 2 Un-park 4 -» C |

F Insert vehicle details
(lost parking ticket)

Parking spot Automatic
parking system

N

Parking floor

Figure 6.4 — A parking lot

The diagram reveals two major actors: the parking lot and the automatic parking system.

First, let's focus on the parking lot. The main purpose of a parking lot is to park vehicles;
therefore, we need to shape the accepted vehicles (car, van, and truck). This looks like a
typical case for an abstract class (Vehicle) and three subclasses (Car, Van, and Truck).
But this is not true! The driver provides information about their vehicle. They don't
effectively push the vehicle (the object) into the parking system, so our system does not
need dedicated objects for cars, vans, trucks, and so on. Think from the perspective of

a parking lot. It needs the vehicle license plate and the free spots required for parking.

It doesn't care about the characteristics of a van or a truck. So, we can shape a Vehicle
as follows. Along with the following code, you can use the UML diagram from here:
https://github.com/PacktPublishing/The-Complete-Coding-
Interview-Guide-in-Java/blob/master/Chapter06/ParkingLot/
ParkingLotUML.png

public enum VehicleType {
CAR(1), VAN(2), TRUCK(5) ;

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/ParkingLot/ParkingLotUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/ParkingLot/ParkingLotUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/ParkingLot/ParkingLotUML.png

Coding challenges 135

public class Vehicle {

private final String licensePlate;
private final int spotsNeeded;

private final VehicleType type;

public Vehicle (String licensePlate,
int spotsNeeded, VehicleType type) {
this.licensePlate = licensePlate;
this.spotsNeeded = spotsNeeded;
this.type = type;

// getters omitted for brevity

// equals () and hashCode () omitted for brevity

}

Next, we have to design the parking lot. Mainly, a parking lot has several floors (or levels)
and each floor has parking spots. Among others, a parking lot should expose methods for
parking/unparking a vehicle. These methods will delegate the parking/unparking tasks to
each floor (or to a certain floor) until it succeeds or there is no floor to scan:

public class ParkingLot

private String name;

private Map<String, ParkingFloor> floors;

public ParkingLot (String name) {

this.name = name;

public ParkingLot (String name,
Map<String, ParkingFloor> floors)

this.name = name;

136 Object-Oriented Programming

this.floors = floors;

// delegate to the proper ParkingFloor
public ParkingTicket parkVehicle (Vehicle vehicle) {...}

// we have to find the vehicle by looping floors
public boolean unparkVehicle (Vehicle vehicle) {...}

// we have the ticket, so we have the needed information
public boolean unparkVehicle
ParkingTicket parkingTicket) {...}

public boolean isFull() {...}
protected boolean isFull (VehicleType type) {...}

// getters and setters omitted for brevity

}

A parking floor controls the parking/unparking process on a certain floor. It has its own
registry of parking tickets and is capable of managing its parking spots. Mainly, each
parking floor acts as an independent parking lot. This way, we can shut down a complete
floor while the remainder of the floors are not affected:

public class ParkingFloor ({

private final String name;

private final int totalSpots;

private final Map<String, ParkingSpots>
parkingSpots = new LinkedHashMap<> () ;

// here, I use a Set, but you may want to hold the parking
// tickets in a certain order to optimize search
private final Set<ParkingTickets>

parkingTickets = new HashSet<> () ;

Coding challenges 137

private int totalFreeSpots;

public ParkingFloor (String name, int totalSpots) {
this.name = name;
this.totalSpots = totalSpots;

initialize(); // create the parking spots

protected ParkingTicket parkVehicle (Vehicle vehicle) {...}

//we have to find the vehicle by looping the parking spots
protected boolean unparkVehicle (Vehicle vehicle) {...}

// we have the ticket, so we have the needed information
protected boolean unparkVehicle (

ParkingTicket parkingTicket) {...}

protected boolean isFull (VehicleType type) {...}
protected int countFreeSpots (
VehicleType vehicleType) {...}

// getters omitted for brevity

private List<ParkingSpot> findSpotsToFitVehicle (
Vehicle vehicle) {...}

private void assignVehicleToParkingSpots (
List<ParkingSpot> spots, Vehicle vehicle) {...}

private ParkingTicket releaseParkingTicket (
Vehicle vehicle) {...}

private ParkingTicket findParkingTicket (
Vehicle vehicle) {...}

private void registerParkingTicket (
ParkingTicket parkingTicket) {...}

private boolean unregisterParkingTicket (
ParkingTicket parkingTicket) {...}

138 Object-Oriented Programming

private void initialize() {...}

}

Finally, a parking spot is an object that holds information about its name (label or
number), availability (whether it is free) and vehicle (whether a vehicle is parked on that
spot). It also has methods for assigning/removing a vehicle to/from this spot:

public class ParkingSpot ({

private boolean free = true;

private Vehicle vehicle;

private final String label;

private final ParkingFloor parkingFloor;

protected ParkingSpot (ParkingFloor parkingFloor,
String label) {
this.parkingFloor = parkingFloor;
this.label = label;

protected boolean assignVehicle (Vehicle vehicle) {...}

protected boolean removeVehicle() {...}

// getters omitted for brevity

}

At this moment, we have all the major classes of the parking lot. Next, we are going to
focus on the automatic parking system. This can be shaped as a single class that acts as a
dispatcher of the parking lot:

public class ParkingSystem implements Parking {

private final String id;
private final ParkingLot parkingLot;

public ParkingSystem(String id, ParkinglLot parkingLot) {
this.id = id;

Coding challenges

139

}

this.parkinglLot = parkingLot;

@Override
public ParkingTicket parkVehicleBtn (
String licensePlate, VehicleType type) {...}

@Override
public boolean unparkVehicleBtn (
String licensePlate, VehicleType type) {...}

@Override
public boolean unparkVehicleBtn (

ParkingTicket parkingTicket) {...}

// getters omitted for brevity

The complete application containing a partial implementation as well is named
ParkingLot.

Example 5: Online reader system

Problem: Design the main classes of an online reader system.

What to ask: What are the required functionalities? How many books can be read
simultaneously?

Interviewer: The system should be capable of managing readers and books. Your code
should be able to add/remove a reader/book and to display a reader/book. The system can
serve a single reader and a single book at a time.

140 Object-Oriented Programming

Solution: In order to understand what classes should be involved in our design, we can

think about sketching something as in Figure 6.5:

I display book I
L

| delete reader

OnlineReaderSystem

Figure 6.5 — An online reader system

Displayer " Library ‘ 'HEﬂdEfME'“ﬂEET‘
i L]

In order to manage readers and books, we need to have such objects. This is a small and
easy part, and starting with such parts in an interview is very helpful for breaking the

ice and accommodating the problem at hand. When we design objects in an interview,
there is no need to come up with a full version of an object. For example, a reader having
a name and email, and a book having an author, title, and ISBN is more than sufficient.
Let's see them in the following code. Along with the following code, you can use the UML
diagram from here: https://github.com/PacktPublishing/The-Complete-
Coding-Interview-Guide-in-Java/blob/master/Chapter06/

OnlineReaderSystem/OnlineReaderSystemUML.png

public class Reader {

private String name;

private String email;

// constructor omitted for brevity

// getters, equals() and hashCode() omitted for brevity

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/OnlineReaderSystem/OnlineReaderSystemUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/OnlineReaderSystem/OnlineReaderSystemUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/OnlineReaderSystem/OnlineReaderSystemUML.png

Coding challenges 141

public class Book

private final String author;
private final String title;

private final String isbn;
// constructor omitted for brevity
public String fetchPage (int pageNr) {...}

// getters, equals() and hashCode () omitted for brevity

}

Next, if we consider that books are usually managed by a library, then we can wrap several
functionalities, such as adding, finding, and removing a book, in a class as follows:

public class Library ({

private final Map<String, Book> books = new HashMap<>() ;
protected void addBook (Book book) {

books.putIfAbsent (book.getIsbn (), book) ;

protected boolean remove (Book book) {

return books.remove (book.getIsbn (), book) ;

protected Book find(String isbn) {
return books.get (isbn) ;

142 Object-Oriented Programming

Readers can be managed by a similar class named ReaderManager. You can find this
class in the complete application. To read a book, we require a displayer. The Displayer
should display the reader and the book details and should be capable of navigating
through the books pages:

public class Displayer (

private Book book;
private Reader reader;
private String page;

private int pageNumber;

protected void displayReader (Reader reader) {
this.reader = reader;

refreshReader () ;

protected void displayBook (Book book) {
this.book = book;

refreshBook () ;

protected void nextPage() {
page = book.fetchPage (++pageNumber) ;

refreshPage () ;

protected void previousPage() {
page = book.fetchPage (--pageNumber) ;

refreshPage () ;

private void refreshReader() {...}
private void refreshBook() {...}

private void refreshPage() {...}

Coding challenges 143

Finally, all we have to do is to wrap Library, ReaderManager, and Displayer in the
OnlineReaderSystem class. This class is listed here:

public class OnlineReaderSystem {

private final Displayer displayer;
private final Library library;

private final ReaderManager readerManager;

private Reader reader;

private Book book;

public OnlineReaderSystem() {
displayer = new Displayer() ;
library = new Library() ;

readerManager = new ReaderManager () ;

public void displayReader (Reader reader) (
this.reader = reader;

displayer.displayReader (reader) ;

public void displayReader (String email)
this.reader = readerManager.find(email) ;
if (this.reader != null) {

displayer.displayReader (reader) ;

public void displayBook (Book book) {
this.book = book;
displayer.displayBook (book) ;

public void displayBook (String isbn) {
this.book = library.find(isbn) ;

144 Object-Oriented Programming

Coding challenges 145

public Reader getReader() {

return reader;

public Book getBook () ({

return book;

}

The complete application is named OnlineReaderSystem.

Example 6: Hash table
Amazon, Google, Adobe, Microsoft

Problem: Design a hash table (this is a very popular problem in interviews).

What to ask: What are the required functionalities? What technique should be applied to
solve index collisions? What is the data type of the key-value pairs?

Interviewer: Speaking about the functionalities, I don't want anything special. I only want
the typical add () and get () operations. For solving index collisions, I suggest you use
the chaining technique. The key-value pairs should be generic.

A brief overview of a hash table: A hash table is a type of data structure that stores
key-value pairs. Commonly, an array holds all the key-value entries in the table and the
size of this array is set to accommodate the amount of data anticipated. The key of each
key-value is passed through a hash function (or several hash functions) that outputs a
hash value or a hash. Mainly, the hash value represents the index of the key-value pair in
the hash table (for example, if we use an array to store all key-value pairs, then the hash
function returns the index of this array that should hold the current key-value pair).
Passing the same key through the hash function should produce the same index every
time - this is useful for finding a value via its key.

146 Object-Oriented Programming

When a hash function generates two identical indexes for different keys, we face an index
collision. The most frequently used techniques for solving an index collision problem are
linear probing (this technique searches linearly for the next free slot in the table - trying

to find in the array a slot (an index) that doesn't hold a key-value pair) and chaining (this
technique represents a hash table implemented as an array of linked lists - collisions are
stored at the same array index as linked list nodes). The following diagram is a hash table
for storing name-phone pairs. It has chaining capabilities (check the Marius-0838234 entry,
which is chained to Karina-0727928, because their keys, Marius and Karina, lead to the

same array index, 126):
Keys Indexes Key-value pairs (records)

] 0
‘ Marcel ‘ 0983 341 |

Karina | 0727928
126 /l

127 Marius | 0839234 |

ﬁash Functio:X
»
'—i
LK

B
;gg- — ™ | Joe | 0999583 |

Figure 6.6 — A hash table

Solution: First, we need to shape a hash table entry (HashEntry). As you can see in
the preceding diagram, a key-value pair has three main parts: the key, the value, and
a link to the next key-value pair (this way, we implement chaining). Since a hash table
entry should be accessed only via dedicated methods, such as get () and put (), we
encapsulate it as follows:

public class HashTable<K, V> {
private static final int SIZE = 10;

private static class HashEntry<K, V> {

HashEntry <K, V> next;

Coding challenges 147

HashEntry (K k, V v) {
this.key = k;
this.value = v;

this.next = null;

Next, we define the array that holds HashEntry. For testing purposes, a size of 10
elements is enough and it allows us to test chaining easily (having a small size is prone to
collisions). In reality, such an array is much bigger:

private final HashEntry[] entries
= new HashEntry[SIZE] ;

Next, we add the get () and put () methods. Their code is quite intuitive:
public void put (K key, V value) {
int hash = getHash (key) ;
final HashEntry hashEntry = new HashEntry (key, value) ;
if (entries[hash] == null) {
entries[hash] = hashEntry;
} else { // collision => chaining
HashEntry currentEntry = entries[hash];

while (currentEntry.next != null) {

currentEntry = currentEntry.next;

currentEntry.next = hashEntry;

public V get (K key) {

148 Object-Oriented Programming

int hash = getHash (key) ;

if (entries([hash] != null) {

HashEntry currentEntry = entries[hash];

// Loop the entry linked list for matching
// the given 'key'
while (currentEntry != null) ({

if (currentEntry.key.equals (key)) ({

return (V) currentEntry.value;

currentkEntry = currentEntry.next;

return null;

}

Finally, we add a dummy hash function (in reality, we use hash functions such as Murmur
3-https://en.wikipedia.org/wiki/MurmurHash):

private int getHash (K key) {
return Math.abs (key.hashCode () % SIZE) ;

}

Done! The complete application is named HashTable.

For the following four examples, we skipped the source code from the book. Take your
time and dissect each example. Being able to understand an existing design is just
another tool that you can use to shape your design skills. Of course, you can try your own
approach before looking into the book's code and compare the results in the end.

Example 7: File system

Problem: Design the main classes of a file system.

https://en.wikipedia.org/wiki/MurmurHash

Coding challenges 149

What to ask: What are the required functionalities? What are the pieces of the file system?

Interviewer: Your design should support the addition, deletion, and renaming of
directories and files. We are talking about a hierarchical structure of directories and files,
like most operating systems have.

Solution: The complete application is named FileSystem. Please visit the following link
to check the UML: https://github.com/PacktPublishing/The-Complete-
Coding-Interview-Guide-in-Java/blob/master/Chapter06/
FileSystem/FileSystemUML. png

Example 8: Tuple

Amazon, Google
Problem: Design a tuple data structure.

What to ask: A tuple can have from 1 to #n elements. So, what kind of tuple do you expect?
What data types should be stored in the tuple?

Interviewer: I am expecting a tuple with two generic elements. The tuple is also known as
a pair.

Solution: The complete application is named Tuple.

Please visit the following link to check the UML: https://github.com/
PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/
tree/master/Chapter06/Tuple

Example 9: Cinema with a movie ticket booking system
Amazon, Google, Adobe, Microsoft

Problem: Design a cinema with a movie ticket booking system.

What to ask: What is the main structure of the cinema? Does it have multiple cinema
rooms? What types of tickets do we have? How do we play a movie (only in a room, just
once a day)?

Interviewer: | am expecting a cinema with multiple identical rooms. A movie can run in
multiple rooms at the same time and can run multiple times in a day in the same room.
There are three types of tickets, simple, silver, and gold, based on the seat type. A movie
can be added/removed in a very versatile way (for example, we can remove a movie from
certain rooms at certain start times, or we can add a movie to all rooms).

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/FileSystem/FileSystemUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/FileSystem/FileSystemUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/FileSystem/FileSystemUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter06/Tuple
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter06/Tuple
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter06/Tuple

150 Object-Oriented Programming

Solution: The complete application is named MovieTicketBooking. Please visit the
following link to check the UML: https://github.com/PacktPublishing/
The-Complete-Coding-Interview-Guide-in-Java/blob/master/
Chapter06/MovieTicketBooking/MovieTicketBookingUML. png

Example 10: Circular byte buffer
Amazon, Google, Adobe

Problem: Design a circular byte buffer.

What to ask: It should be resizable?

Interviewer: Yes, it should be resizable. Mainly, I expect you to design the signatures of all
methods that you consider necessary.

Solution: The complete application is named CircularByteBuffer.

Please visit the following link to check the UML: https://github.com/
PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/
tree/master/Chapter06/CircularByteBuffer

So far so good! I suggest you try your own designs for the preceding 10 problems as well.

Do not consider that the solutions presented are the only ones that are correct. Practice as
much as you can by varying the context of the problem and challenge yourself with other
problems as well.

The source code bundle for this chapter is available under the name Chapter06.

Summary

This chapter covered the most popular questions about OOP fundamentals and 10 design
coding challenges that are very popular in interviews. In the first part, we began with
OOP concepts (object, class, abstraction, encapsulation, inheritance, polymorphism,
association, aggregation, and composition), continued with the SOLID principles, and
finished with an amalgam of questions combining OOP Concepts, SOLID principles,

and design pattern knowledge. In the second part, we tackled 10 carefully crafted design
coding challenges, including designing a jukebox, a vending machine, and the famous
hash table.

Practicing these questions and problems will give you the ability to tackle any OOP
problem encountered in an interview.

In the next chapter, we will tackle Big O notation and time.

https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/MovieTicketBooking/MovieTicketBookingUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/MovieTicketBooking/MovieTicketBookingUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/blob/master/Chapter06/MovieTicketBooking/MovieTicketBookingUML.png
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter06/CircularByteBuffer
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter06/CircularByteBuffer
https://github.com/PacktPublishing/The-Complete-Coding-Interview-Guide-in-Java/tree/master/Chapter06/CircularByteBuffer

7
Big O Analysis of
Algorithms

This chapter covers the most popular metric for analyzing the efficiency and scalability of
algorithms—Big O notation—in the context of a technical interview.

There are plenty of articles dedicated to this topic. Some of them are purely mathematical
(academic), while others try to explain it with a more friendly approach. The pure
mathematical approach is quite hard to digest and not very useful during an interview, so
we will go for a more friendly approach that will be much more familiar to interviewers
and developers.

Even so, this is not an easy mission because besides being the most popular metric for
measuring the efficiency and scalability of algorithms, Big O notation can often also be
the thing that you've never been motivated enough to learn about, despite knowing that
it's going to show up in every single interview. From juniors to senior warriors, Big O
notation is probably the biggest Achilles heel for everyone. However, let's make an effort
to turn this Achilles heel into a strong point for our interviews.

152 Big O Analysis of Algorithms

We will quickly go over Big O notation and highlight the things that matter the most.
Next, we'll jump into examples that have been carefully crafted to cover a wide range of
problems, and so by the end of this chapter, you'll be able to determine and express Big O
for almost any given snippet of code. Our agenda includes the following:

« Analogy
« Big O complexity time
o The best case, worst case, and expected case

« Big O examples

So, let's start our Big O journey!

Analogy

Imagine a scenario where you've found one of your favorite movies on the internet. You
can order it or download it. Since you want to see it as soon as possible, which is the best
way to proceed? If you order it, then it will take a day to arrive. If you download it, then it
will take half a day to download. So, it is faster to download it. That's the way to go!

But wait! Just when you get ready to download it, you spot the Lord of the Rings Master
Collection at a great price, and so you think about downloading it as well. Only this time,
the download will take 2 days. However, if you place an order, then it will still only take a
single day. So, placing an order is faster!

Now, we can conclude that no matters how many items we order, the shipping time
remains constant. We call this O(1). This is a constant runtime.

Moreover, we conclude that the download time is directly proportional to the file sizes.
We call this O(n). This is an asymptotic runtime.

From day-to-day observations, we can also conclude that online ordering scales better
than online downloading.

This is exactly what Big O time means: an asymptotic runtime measurement or an
asymptotic function.

As an asymptotic measurement, we are talking about Big O complexity time (this can be
complexity space as well).

Big O complexity time 153

Big O complexity time
The following diagram reveals that, at some moment in time, O(n) surpasses O(1). So,
until O(n) surpasses O(1), we can say that O(n) performs better than O(1):

0o(1)

Operations

o

Elements

Figure 7.1 - The asymptotic runtime (Big O time)

Besides the O(1)—constant time—and O(n)—linear time runtimes—we have many
other runtimes, such as O(log n), O(n log n)—logarithmic time—O(n*)—quadratic
time, O(2")— exponential time, and O(n!)—factorial time. These are the most common
runtimes, but many more also exist.

The following diagram represents the Big O complexity chart:

o(n) o(2") o(n?)
| I

O(n log n)

Operations

Elements

Horrible - Bad - Fair - Good

Figure 7.2 - Big O complexity chart

As you can see, not all O times perform the same. O(n!), O(2"), and O(n?) are considered
horrible and we should strive to write algorithms that perform outside this area. O(n log
n) is better than O(n!) but is still bad. O(n) is considered fair, while O(log n) and O(1)
are good.

154 Big O Analysis of Algorithms

Sometimes, we need multiple variables to express the runtime performance. For example,
the time for mowing the grass on a soccer field can be expressed as O(wl), where w is the
width of the soccer field and [is the length of the soccer field. Or, if you have to mow p
soccer fields, then you can express it as O(wlip).

However, it is not all about time. We care about space as well. For example, building
an array of n elements needs O(n) space. Building a matrix of # x n elements needs
O(n?) space.

The best case, worst case, and expected case

If we simplify things, then we can think of the efficiency of our algorithms in terms of
best case, worst case, and expected case. The best case is when the input of our algorithms
meets some extraordinary conditions that allow it to perform the best. The worst case is
at the other extreme, where the input is in an unfavorable shape that makes our algorithm
reveal its worst performances. Commonly, however, these amazing or terrible situations
won't happen. So, we introduce the expected performance.

Most of the time, we care about the worst and expected cases, which, in the case of most
algorithms, are usually the same. The best case is an idealistic performance, and so it
remains idealistic. Mainly, for almost any algorithm, we can find a special input that will
lead to the O(1) best-case performance.

For more details about Big O, I strongly recommended you read the Big O cheat sheet
(https://www.bigocheatsheet.com/).

Now, let's tackle a bunch of examples.

Big O examples

We will try to determine Big O for different snippets of code exactly as you will see at
interviews, and we will go through several relevant lessons that need to be learned. In
other words, let's adopt a learning-by-example approach.

The first six examples will highlight the fundamental rules of Big O, listed as follows:
e Drop constants
o Drop non-dominant terms
« Different input means different variables

« Different steps are summed or multiplied

Let us begin with trying out the examples.

https://www.bigocheatsheet.com/

Big O examples 155

Example 1 - O(1)

Consider the following three snippets of code and compute Big O for each of them:

// snippet 1
return 23;

Since this code returns a constant, Big O is O(1). Regardless of what the rest of the code
does, this line of code will execute at a constant rate:

// snippet 2 - 'cars' is an array

int thirdCar = carsl[3];

Accessing an array by index is accomplished with O(1). Regardless of how many elements
are in the array, getting an element from a specific index is a constant operation:

// snippet 3 - 'cars' is a 'java.util.Queue'

Car car = cars.peek();

The Queue#fpeek () method retrieves but does not remove, the head (first element) of
this queue. It doesn't matter how many elements follows the head, the time to retrieve the
head via the peek () method is O(1).

So, all three snippets in the preceding code block have the O(1) complexity time. Similarly,
inserting and removing from a queue, pushing and popping from a stack, inserting a node
in a linked list, and retrieving the left/right child of a node of a tree stored in an array are
also cases of O(1) time.

Example 2 - O(n), linear time algorithms
Consider the following snippet of code and compute Big O:

// snippet 1 - 'a' is an array
for (int i = 0; i < a.length; i++) {
System.out.println(alil) ;

}

In order to determine the Big O value for this snippet of code, we have to answer the
following question: how many times does this £or loop iterate? The answer is a . length
times. We cannot say exactly how much time this means, but we can say that the time will
grow linearly with the size of the given array (which represents the input). So, this snippet
of code will have an O(a . length) time and is known as linear time. It is denoted as
O(n).

156 Big O Analysis of Algorithms

Example 3 - O(n), dropping the constants

Consider the following snippet of code and compute Big O:

// snippet
for (int i

System.
System.
System.
System.

}

1 - 'a' is an array

= 0; 1 < a.length; i++) {

out.println ("Current element:");
out.println(alil) ;
out.println ("Current element + 1:");

out.println(al[i] + 1);

Even if we added more instructions to the loop, we would still have the same runtime

as in Example 2. The runtime will still be linear in the size of its input, a . length. As in
Example 2 we had a single line of code in a loop, while here we have four lines of code in
a loop, you might expect Big O to be O(n + 4) or something like that. However, this kind
of reasoning is not precise or accurate—it's just wrong! Big O here is still O(n).

Important note

Keep in mind that Big O doesn't depend on the number of code lines. It
depends on the runtime rate of increase, which is not modified by constant-
time operations.

Just to reinforce this scenario, let's consider the following two snippets of code, which
compute the minimum and maximum of the given array, a:

Big O examples 157

// snippet 1 // snippet 2
int min = Integer.MAX VALUE; int min = Integer.MAX VATUE;
int max = Integer.MIN VALUE; int max = Integer.MIN VALUE;

tor {Ant v = - 0w = dennbbc gy for {amtE 3 — O: 0 = s dengbh s aotay

if (ali] < min) { if {a[il < min) {
min = a[i]; min = al[i];
} }
if (a[i] > max) | }
max = a[i];
! for (int i = 0; i < a.length; i++) {
} if (a[i] > max) {
max = a[i];

}

7.3 - Code Comparison

Now, which one of these two code snippets runs faster?

The first code snippet uses a single loop, but it has two if statements, while the second
code snippet uses two loops, but it has one if statement per loop.

Thinking like this opens the door to insanity! Counting the statements can continue at
a deeper level. For example, we can continue to count the statements (operations) at the
compiler level, or we might want to take into consideration the compiler optimizations.
Well, that's not what Big O is about!

Important note

Big O is not about counting the code statements. Its goal is to express the
runtime growth for input sizes and express how the runtime scales. In short,
Big O just describes the runtime rate of increase.

Moreover, don't fall into the trap of thinking that because the first snippet has one loop,
Big O is O(n), while in the case of the second snippet, because it has two loops, Big O is
O(2n). Simply remove 2 from 2n since 2 is a constant!

158 Big O Analysis of Algorithms

Important note

As a rule of thumb, when you express Big O, drop the constants in runtime.

So, both of the preceding snippets have a Big O value of O(n).

Example 4 - dropping the non-dominant terms

Consider the following snippet of code and compute Big O (a is an array):

oy afanbad — fraa Cop lengbhs i t R o

System.out.println{af[i]): Oln}

for [int i = 0: i < s.length;: it++) m—
for (int 1 = 8: 3 < a.length: 344 1

System.out.printin{afi] + aljl): >"— 0O{n?)

7.4 - Code snippet executed in O(n)

The first for loop is executed in O(n), while the second for loop is executed in O(n?).
So, we may think that the answer to this problem is O(n) + O(n?) = O(n + n*). But this is
not true! The rate of increase is given by n?, while # is a non-dominant term. If the size of
the array is increased, then n? affects the rate of increase much more than #, and so n is
not relevant. Consider a few more examples:

o O(2™+ 2n) -> drop constants and non-dominant terms -> O(2").
« O(n +logn) -> drop non-dominant terms -> O(n).

o O(3*n*+ n + 2*n) -> drop constants and non-dominant terms -> O(n?).

Big O examples 159

Important note

As a rule of thumb, when you express Big O, drop the non-dominant terms.

Next, let's focus on two examples that are a common source of confusion for candidates.

Example 5 - different input means different variables

Consider the following two snippets of code (a and b are arrays). How many variables
should be used to express Big O?

S/ snippet 1 // snippet 2

for {(int i=0; i<a.length: i++]}1{ for {int i=0; i<a.length: i++})1{
} ¥

for (int i=0; i<a.length:; 1i++)1{ for {(int i-0; i<b.length: it+)1

¥ ¥

7.5 — Code snippets 1 and 2

In the first snippet, we have two £or loops that loop the same array, a (we have the same
input for both loops), and so Big O can be expressed as O(n), where n refers to a. In the
second code snippet, we also have two for loops, but they loop different arrays (we have
two inputs, a and b). This time, Big O is not O(n)! What does # refer to — a or b? Let's say
that n refers to a. If we increase the size of b, then O(n) doesn't reflect the runtime rate

of increase. Therefore, Big O is the sum of these two runtimes (the runtime of a plus the
runtime of b). This means that Big O must refer to both runtimes. For this, we can use
two variables that refer to a and to b. So, Big O is expressed as O(a + b). This time, if we
increase the size of a and/or b, then O(a + b) captures the runtime rate increase.

Important note

As a rule of thumb, different inputs mean different variables.

Next, let's see what happens when we add and multiply the algorithm steps.

160 Big O Analysis of Algorithms

Example 6 - different steps are summed or multiplied

Consider the following two snippets of code (a and b are arrays). How do you express Big
O for each of these snippets?

f/ snippet 1 [/ snippet 2

for (int i=0;i<a.length:i++){ for (int i=0;i<a._.length:;i++]}{
Syztem.out.printlnialil); for (int j=0;j<b.length;j++){

} System.out.println(a[i]l+b[j]);

1
for (int j=0;j<b.length;j++) { }

System.out.printlnibljl};

7.6 — Code snippet a and b

We already know from the previous example that, in the case of the first snippet, Big O is
O(a + b). We sum up the runtimes since their work is not interweaved as in the case of the
second snippet. So, in the second snippet, we cannot sum up the runtimes since, for each
case of a [1], the code loops the b array, and so Big O is O(a * b).

Think twice before deciding between summing and multiplying the runtimes. This is a
common mistake made in interviews. Also, it is quite common to not notice that there is
more than one input (here, there are two) and to mistakenly express Big O using a single
variable. That would be wrong! Always pay attention to how many inputs are present. For
each input that affects the runtime rate of increase, you should have a separate variable
(see Example 5).

Important note
As a rule of thumb, different steps can be summed or multiplied. The runtimes
should be summed or multiplied based on the following two statements:

If you describe your algorithm as it foos and when it's done, it buzzes, then
sum the runtimes.

If you describe your algorithm as for each time it foos, it buzzes, then multiply
the runtimes.

Now, let's discuss log n runtimes.

Big O examples 161

Example 7 - log n runtimes
Write a snippet of pseudo-code that has Big O as O(log n).

In order to understand the O(log n) runtimes, let's start with the Binary Search algorithm.
The Binary Search algorithm details and implementation is available in Chapter 14,
Sorting and Searching. This algorithm describes the steps for looking for element x in an
array, a. Consider a sorted array, a, of 16 elements, such as the following:

114]|5]|7|10|16]17|18|20|23]24|25|26|30|31]33

o 1 2 3 4 5 & 7 a 5 0 11 1z 13 14 15

Figure 7.7 — Ordered array of 16 elements

First, we compare x with the midpoint of the array, p. If they are equal, then we return
the corresponding array index as the final result. If x > p, then we search on the right
side of the array. If x < p, then we search on the left side of the array. The following is a
graphical representation of the binary search algorithm for finding the number 17:

114|5]7]|10|16]17|18]|20]23|24|25|26|30|31]33

o 1 2 3 4 5 2 9 0 11 12 12 14 15

& 7
114|5]7]|10|16 ITE 16/2=8
& 7

F10|16|17 8/2=4

1] 1 2 3 4 5 & 7 3] 10 11 12 13 14 15

2/2=2

Figure 7.8 - The binary search algorithm

Notice that we start with 16 elements and end with 1. After the first step, we are down to
16/2 = 8 elements. At the second step, we are down to 8/2 = 4 elements. At the third step,
we are down to 4/2 = 2 elements. Then, at the last step, we find the searched number, 17. If
we translate this algorithm into pseudo-code, then we obtain something as follows:

search 17 in {1, 4, 5, 7, 10, 16, 17, 18, 20,
23, 24, 25, 26, 30, 31, 33}

162 Big O Analysis of Algorithms

compare 17 to 18 -> 17 < 18
search 17 in {1, 4, 5, 7, 10, 16, 17, 18}
compare 17 to 7 -> 17 > 7
search 17 in {7, 10, 16, 17}
compare 17 to 16 -> 17 > 16
search 17 in {16, 17}
compare 17 to 17

return

Now, let's express Big O for this pseudo-code. We can observe that the algorithm consists
of a continuous half-life of the array until only one element remains. So, the total runtime
is dependent on how many steps we need in order to find a certain number in the array.

In our example, we had four steps (we halved the array 4 times) that can be expressed
as following:

16 ! 8; 8 4; 4 L 2; 2 ! 1
*—= 8- *— = 4 *—= 2- *— =
2 ’ ’ 2 ' 2
Or, if we condense it then we get:
16 (1) 1
* —_ =
2

One step further, and we can express it for general case as (n is the size of the array, k is
the number of steps to reach the solution):

1\ 1 n
n*(z) =1 Enxz—kZIEZk*z—RZZkEZkZH

But, 2 = n is exactly what logarithm means - A quantity representing the power to
which a fixed number (the base) must be raised to produce a given number. So, we
can write the follows:

2k =n—> log,n = k
In our case, 2" = n means 2* = 16, which is log,16 = 4.

So, Big O for the Binary Search algorithm is O(log n). However, where is the logarithm
base? The short answer is that the logarithm base is not needed for expressing Big O
because logs of different bases are only different by a constant factor.

Big O examples 163

Important note

As a rule of thumb, when you have to express Big O for an algorithm that
halves its input at each step/iteration, there are big chances of it being a case of
O(log n).

Next, let's talk about evaluating Big O for recursive runtimes.

Example 8 - recursive runtimes
What is Big O for the following snippet of code?

int fibonacci (int k) {
if (k <= 1) {

return k;

return fibonacci(k - 2) + fibonacci(k - 1) ;

}

On our first impression, we may express Big O as O(n?). Most likely, we will reach

this result because we are misled by the two calls of the fibonacci () method from
return. However, let's give value to k and quickly sketch the runtime. For example, if
we call fibonacci (7) and we represent the recursive calls as a tree, then we obtain the
following diagram:

& (9]
(3) | f9) | & 051 |
lle— —— —— A
LE N f(2) 2 |)] 2] [f2] [3)] 2
flo) ®Y (Ao qy Fa)] Mo fa) Ao EB] A 2 f(2) | #3) |
o) f(2) fo) (1) (fo) f1) fo) fu f2) 2N
—y
flo) f(1)

Figure 7.9 - Tree of calls

We almost immediately notice that the depth of this tree is equal to 7, and so the depth
of the general tree is equal to k. Moreover, with the exception of the terminal levels, each
node has two children, and so almost every level has twice the number of calls as the one
above it.This means that we can express Big O as O(branches “P). In our case, this is
0O(2Y), denoted O(2").

164 Big O Analysis of Algorithms

In an interview, just saying O(2") should be an acceptable answer. If we want to be more
accurate, then we should take into account the terminal levels, especially the last level
(or the bottom of the call stack), which can sometimes contain a single call. This means
that we don't always have two branches. A more accurate answer would be O(1.6").
Mentioning that the real value is less than 2 should be enough for any interviewer.

If we want to express Big O in terms of space complexity, then we obtain O(n). Do not be
fooled by the fact that the runtime complexity is O(2"). At any moment, we cannot have
more than k numbers. If we look in the preceding tree, we can only see numbers from 1
to7.

Example 9 - in-order traversal of a binary tree

Consider a given perfect binary search tree. If you need a quick remainder of binary
trees then consider the Nutshell section of Chapter 13, Trees and Graphs.What is Big O
for the following snippet of code?

void printInOrder (Node node) {
if (node != null) {
printInOrder (node.left) ;
System.out.print (" " + node.element) ;

printInOrder (node.right) ;

}

A perfect binary search tree is a binary search tree whose internal nodes have exactly
two children and all the leaf nodes are on the same level or depth. In the following
diagram, we have a typical perfect binary search tree (again, visualizing the runtime
input is very useful):

Figure 7.10 - Height-balanced binary search tree

Big O examples 165

We know from experience (more precisely, from the previous example) that when we face
a recursive problem with branches, we can have an O(branches %) case. In our case,

we have two branches (each node has two children), and so we have O(2 “"™*). Having an
exponential time looks weird, but let's see what the relationship between the number of
nodes and the depth is. In the preceding diagram, we have 15 nodes and the depth is 4. If
we had 7 nodes, then the depth would be 3, and if we had 31 nodes, then the depth would
be 5. Now, if we don't already know from the theory that the depth of a perfect binary tree
is logarithmic, then maybe we can observe the following:

o For 15 nodes, we have a depth of 4; therefore, we have 2* = 16, equivalent to
log,16 = 4.

« For 7 nodes, we have a depth of 3; therefore, we have 2° = 8, equivalent to
log,8 = 3.

« For 31 nodes, we have a depth of 5; therefore, we have 2° = 32, equivalent to
log 32 = 5.

Based on the preceding observations, we can conclude that we can express Big O as
O(2%¢") since the depth is roughly log n. So, we can write the following:

208 — ¥ = log,X =logn=X =n=0(X) = 0(n)

Figure 7.11 - Big O expression

So, Big O in this case is O(n). We could reach the same conclusion if we recognized
that this code is in fact the In-Order traversal of a binary tree, and in this traversal
(exactly as in case of Pre-Order and Post-Order traversals), each node is visited a single
time. Moreover, for each traversed node, there is a constant amount of work, and so
Big O is O(n).

Example 10 - n may vary
What is Big O for the following snippet of code?

void printFibonacci (int k)
for (int i = 0; i < k; i++) {

System.out.println(i + ": " + fibonacci(i)) ;

int fibonacci (int k) {

166 Big O Analysis of Algorithms

if (k <= 1) {

return k;

return fibonacci(k - 2) + fibonacci(k - 1);

}

From Example 8, we already know that the Big O value of the fibonacci () method
is O(2"). printFibonacci () calls fibonacci () n times, so it is very tempting to
express the total Big O value as O(n)*O(2") = O(n2"). However, is this true or have we
rushed to give an apparently easy answer?

Well, the trick here is that n varies. For example, let's visualize the runtime:

i =0 -> fibonacci(0) -> 20§wps N

i =1 -> fibonacei(l) -> 21ﬂeps

i = 2 -> fibonaceci(2) -> 229mps =204 2+ 2%+ .+ 2" steps
. . . k-1

i = k-1 -> fibonaceci(k) -> 2 steps _/

We cannot say that we execute the same code # times, so this is O(2").

Example 11 - memoization
What is Big O for the following snippet of code?

void printFibonacci (int k) {

int [] cache = new int [k];

for (int i = 0; i < k; i++) {
System.out.println(i + ": " + fibonacci (i, cache)) ;
}
}
int fibonacci (int k, int[] cache) {
if (k <= 1) {
return k;

} else if (cachelk] > 0) {

return cache [k];

Big O examples 167

cache[k] = fibonacci(k - 2, cache)

+ fibonacci(k - 1, cache) ;

return cache [k];

}

This code computes the Fibonacci number via recursion. However, this code uses a
technique known as Memoization. Mainly, the idea is to cache the return value and

use it to reduce recursive calls. We already know from Example 8 that Big O of the
fibonacci () method is O(2"). Since Memoization should reduce recursive calls (it
introduces an optimization), we can guess that Big O of this code should do better than
O(2). However, this is just an intuition, so let's visualize the runtime for k = 7

Calling fibonacci (0):

Result of fibonacci(0) is O

Calling fibonacci (1) :
Result of fibonacci(l) is 1

Calling fibonacci (2):
fibonacci (0)
fibonacci (1)
fibonacci(2) is computed and cached at cache[2]

Result of fibonacci(2) is 1

Calling fibonacci(3):
fibonaceci (1)
fibonacci(2) is fetched from cache[2] as: 1
fibonacci(3) is computed and cached at cachel[3]

Result of fibonacci(3) is 2

Calling fibonacci (4):
fibonacci(2) is fetched from cache[2] as: 1
fibonacci(3) is fetched from cache[3] as: 2
fibonacci (4) is computed and cached at cache[4]

Result of fibonacci(4) is 3

168 Big O Analysis of Algorithms

Calling fibonacci (5):
fibonacci(3) is fetched from cache[3] as: 2
fibonacci(4) is fetched from cache[4] as: 3
fibonacci (5) is computed and cached at cache[5]

Result of fibonacci(5) is 5

Calling fibonacci (6) :
fibonacci(4) is fetched from cache[4] as: 3
fibonacci(5) is fetched from cache[5] as: 5
fibonacci(6) is computed and cached at cachel[6]

Result of fibonacci(6) is 8

Each fibonacci (k) method is computed from the cached £ibonacci (k-1) and
fibonacci (k-2) methods. Fetching the computed values from the cache and summing
them is a constant time work. Since we do this work k times, this means that Big O can be
expressed as O(n).

Besides Memoization, we can use another approach, known as Tabulation. More details
are available in Chapter 8, Recursion and Dynamic Programming.

Example 12 - looping half of the matrix

What is Big O for the following two snippets of code (a is an array)?

S/ snippet 1 // snippet 2
for (int 1=0;i<a.length;i++)}{ for (int 1=0;i<a.length;i++){
for (int j=0;j<a.length;j++}{ for (int j=i+l;j<a.length;j++) |
System.out.println{alil+alj]); System.out.printlni{alil+alj]l);
} 1

} }

7.12 - Code snippets for Big O

These snippets of code are almost identical, except that in the first snippet, j starts from 0,
while in the second snippet, it starts from 1+1.

We can easily give value to the array size and visualize the runtime of these two snippets
of code. For example, let's consider that the array size is 5. The left-hand matrix is the
runtime of the first snippet of code, while the right-hand matrix corresponds to the
runtime of the second snippet of code:

Big O examples 169

a.length=5
(0,0) (0,1) (0,2) (0,3) (0,4) (0,1) (0,2) (0,3) (0,4)
(1,0) (1,1) (1,2) (1,3) (1,4) (1,2) (1,3) (1,4)
(2,0) (2,1) (2,2) (2,3) (2,4) (2,3) (2,4)
(3,0) (3,1) (3.2) (3,3) (3,4) (3,4)

(4,0) (4,1) (4,2) (4,3) (4,4)

Figure 7.13 - Visualizing the runtime

The matrix corresponding to the first snippet of code reveals an n*n size, while the matrix
corresponding to the second snippet of code roughly reveals an n*n/2 size. So, we can
write the following:

« Snippet 1 runtime is: n *n = n? = 0(n?).

n#=n Ti2 2

1 . .y
= =n * 3 = O(nz) since we eliminate constants.

o Snippet 2 runtime is:

So, both snippets of code have O(n?).

Alternatively, you can think of it like this:

o For the first snippet, the inner loop doesn't work and it is run » times by the outer
loop, and so n*n = n?, results in O(n?).

o For the second snippet, the inner loop does roughly n/2 work and it is run » times
by the outer loop, so n*n/2 = n*/2 = n** 1/2, which results in (after removing the
constants) O(n?).

Example 13 - identifying O(1) loops

What is Big O for the following snippet of code (a is an array)?

for (int i = 0; i < a.length; i++) {
for (int j = 0; j < a.length; j++) {
for (int g = 0; g < 1 000 _000; g++) {
System.out.println(al[i] + aljl);

170 Big O Analysis of Algorithms

If we ignore the third loop (the g loop), then we already know that Big O is O(n?). So,
how does the third loop influence the total Big O value? The third loop iterates from 0

to 1 million, independent of the array size, and so Big O for this loop is O(1), which is a
constant. Since the third loop doesn't depend on how the input size varies, we can write it
as follows:

for (int i = 0; i < a.length; i++) {
for (int j = 0; j < a.length; j++) {
// 0(1)

}

Now, it is clear that Big O for this example is O(n?).

Example 14 - looping half of the array
What is Big O for the following snippet of code (a is an array)?
for (int i = 0; i < a.length / 2; i++) {

System.out.println(alil) ;

}

Confusion here can be caused by the fact that this snippet loops only half of the array.
Don't make the common mistake of expressing Big O as O(n/2). Remember that constants
should be removed, and so Big O is O(n). Iterating only half of the array doesn't impact
the Big O time.

Example 15 - reducing Big O expressions
Which of the following can be expressed as O(n)?

e O(n+p)

o O(n+logn)

The answer is that O(n + log n) can be reduced to O(n) because log # is a non-dominant
term and it can be removed. On the other hand, O(n + p) cannot be reduced to O(n)
because we don't know anything about p. Until we establish what p is and what the
relationship between » and p is, we have to keep both of them.

Big O examples 171

Example 16 - looping with O(log n)

What is Big O for the following snippet of code (a is an array)?

for (int i = 0; i < a.length; i++) {
for (int j = a.length; j > 0; j /= 2) {

System.out.println(ali]l + ", " + J);

}

Let's just focus on the outer loop. Based on the experiences from the previous examples,
we can quickly express Big O as O(n).

How about the inner loop? We can notice that j starts from the array length and, at each
iteration, it is halved. Remember the important note from Example 7 that say: When you
have to express Big O for an algorithm that halves its input at each step, there are big chances
to be in a O(log n) case.

Important note

Whenever you think that there are big chances of it being a case of O(log n),

it is advised that you use test numbers that are powers of the divisor. If the
input is divided by 2 (it is halved), then use numbers that are a power of 2 (for
example, 2° = 8, 2* = 16, 2° = 32, and so on). If the input is divided by 3, then
use numbers that are a power of 3 (for example, 3* =9, 3> = 27, and so on). This
way, it is easy to count the number of divisions.

So, let's give value to a . length and visualize the runtime. Let's say that a. length is
16. This means that j will take the 12, 8, 4, 2, and 1 values. We have divided j by 2 exactly
four times, so we have the following:

2 =16 =log,16 = 4

Figure 7.14 - Loop with O (log n)

So, Big O for the inner loop is O(log n). To compute the total Big O, we consider that the
outer loop is executed n times, and within that loop, another loop is executed log n times.
So, the total Big O result is O(n)* O (log n) = O(n log n).

As a tip, a lot of sorting algorithms (for example, Merge Sort and Heap Sort) have the

O(n log n) runtime. Moreover, a lot of O(n log n) algorithms are recursive. Generally
speaking, algorithms that are classified under the Divide and Conquer (D&C) category of
algorithms are O(n log n). Hopefully, keeping these tips in mind will be very handy

in interviews.

172 Big O Analysis of Algorithms

Example 17 - string comparison

What is Big O for the following snippet of code? (note that a is an array, and be sure to
carefully read the comments):

String[] sortArrayOfString(Stringl[] a) {
for (int i = 0; i < a.length; i++) {

// sort each string via O(n log n) algorithm

// sort the array itself via O(n log n) algorithm

return a;

}

sortArrayOfString () receives an array of String and performs two major actions.
It sorts each string from this array and the array itself. Both sorts are accomplished via
algorithms whose runtime is expressed as O(n log n).

Now, let's focus on the for loop and see the wrong answer that is commonly given by
candidates. We already know that sorting a single string gives us O(n log n). Doing this
for each string means O(n) * (nlog n) = O(n*n log n) = O(n? log n). Next, we sort the
array itself, which is also given as O(n log n). Putting all of the results together, the total
Big O value is O(n*log n) + O(n log n) = O(n*log n + n log n), which is O(n* log n) since
n log n is a non-dominant term. However, is this correct? The short answer is no! But
why not?! There are two major mistakes that we've done: we've used # to represent two
things (the size of the array and the length of the string) and we assumed that comparing
String requires a constant time as is the case for fixed-width integers.

Let's detail the first problem. So, sorting a single string gives us O(n log n), where n
represents the length of that string. We sort a . Ilength strings, so n now represents the
size of the array. This is where the confusion comes from, because when we say that the
for loop is O(n* log n), to which n are we referring to? Since we are working with two
variables, we need to denote them differently. For example, we can consider the following:

« s: The length of the longest String.

o p:'The size of the array of String.

Big O examples 173

In these terms, sorting a single string is O(s log s), and doing this p times results in
O(p)*O(slogs) = O(p*s logs).

Now, let's tackle the second problem. In our new terms, sorting the array is O(p log p) -
I've just replaced n with p. However, does the comparison of String require a constant
time as is the case of fixed-width integers? The answer is no! String sorting changes

O(p log p) because the St ring comparison itself has a variable cost. The length of
String varies, and so the comparison time varies as well. So, in our case, each String
comparison takes O(s), and since we have O(p log p) comparisons, it results that sorting
the array of strings is O(s) * O(p log p) = O(s*p log p).

Finally, we have to add O(p*s log s) to O(s*p log p) = O(s*p(log s + log p)). Done!

Example 18 - factorial Big O
What is Big O for the following snippet of code?

long factorial (int num)
if (num >= 1) {
return num * factorial (num - 1) ;
} else {

return 1;

}

It is obvious that this snippet of code is a recursive implementation of computing
factorials. Don't do the common mistake of thinking that Big O is O(n!). This is not true!
Always analyze the code carefully without prior assumption.

The recursive process traverses the sequence n-1, n-2, ... 1 times; therefore, this is O(n).

174 Big O Analysis of Algorithms

Example 19 - using n notation with caution
What is Big O for the following two snippets of code?

int multiply(int =, int y) { int powerxy(int =, int y) |

Ink recult - 1o if (v = 0y |

for (int i—l: 1<—wy: 14y | return 0;

result *= x; I eles G F (g —— By [
1 return 1;
} else |

return result; return X*powerxy(x, y-1);

} }

}

7.15 - Code snippets

The first snippet (on the left-side hand) does constant work for y times. The x input
doesn't affect the runtime rate of increase, and so Big O can be expressed as O(y). Pay
attention to the fact that we don't say O(n) since n can be confused with x as well.

The second snippet (on the right-side hand) recursively traverses y-1, y-2, ..., 0. Each y
input is traversed a single time, so Big O can be expressed as O(y). Again, the x input
doesn't affect the runtime rate of increase. Moreover, we avoid saying O(n) since there is
more than one input and O(n) will create confusion.

Example 20 - the sum and count

What is Big O for the following snippet of code (x and y are positive)?

int div(int x, int y) {
int count = 0;
int sum = y;
while (sum <= x) {
sum += y;

count++;

return count;

Big O examples 175

Let's give values to x and y and watch the count variable, which counts the number of
iterations. Consider that x=10 and y=2. For this scenario, count will be 5 (10/2 = 5).
Following the same logic, we have x=14, y=4, count=3 (14/4 = 3.5), or x=22, y=3, or
count=7 (22/3 = 7.3). We can notice that in the worst-case scenario, count is x/y, and
so Big O can be expressed as O(x/y).

Example 21 - the number of iteration counts in Big O

The following snippet of code tries to guess the square root of a number. What is Big O?

int sqrt(int n)
for (int guess = 1; guess * guess <= n; guess++) {
if (guess * guess == n) {

return guess;

return -1;

}

Let's consider that the number (n) is a perfect square root, such as 144, and we

already know that sqrt(144) = 12. Since the guess variable starts from 1 and stops at
guess*guess <= n with step 1, it is quite simple to compute that guess will take the
values 1, 2, 3, ..., 12. When guess is 12, we have 12%12 = 144, and the loop stops. So, we
had 12 iterations, which is exactly sqrt(144).

We follow the same logic for a non-perfect square root. Let's consider that n is 15. This
time, guess will take the 1, 2, and 3 values. When guess=4, we have 4*4 > 15 and the
loop stops. The returned value is -1. So, we had 3 iterations.

In conclusion, we have sqrt(n) iterations, so Big O can be expressed as O(sqrt(n)).

Example 22 - digits

The following snippet of code sum up the digits of an integer. What is Big O?

int sumbDigits(int n) {
int result = 0;
while (n > 0) {

n

result +=

o\°

10;
n /= 10;

176 Big O Analysis of Algorithms

return result;

}

At each iteration, n is divided by 10. This way, the code isolates a digit in the right-side of
the number (for example, 56643/10 = 5664.3). To traverse all the digits, the while loop
needs a number of iterations equal to the number of digits (for example, for 56,643 it
needs 5 iterations to isolate 3, 4, 6, 6, and 5).

However, a number with 5 digits can be up to 10° = 100,000, which means 99,999
iterations. Generally speaking, this means a number (n) with d digits can be up to 10%. So,
we can say the following:

104 = n = log,n = d = O(logn)

Figure 7.16 - Digits relationship

Example 23 - sorting
What is Big O for the following snippet of code?

boolean matching(int[] x, int[] y) {

mergesort (y) ;

for (int i : x) {
if (binarySearch(y, i) >= 0) {

return true;

return false;

}

In Example 16, we said that a lot of sorting algorithms (including Merge Sort) have a
runtime of O(n log n). This means that mergesort (y) has a runtime of O(y log y).

In Example 7, we said that the Binary Search algorithm has a runtime of O(log n). This
means that binarySearch (y, i) hasaruntime of O(logy). In the worst-case
scenario, the for loop will iterate the whole x array, and so the binary search algorithm
will be executed x . Length times. The for loop will have a runtime of O(x log y).

Key hints to look for in an interview 177

So, the total Big O value can be expressed as O(y logy) + O(xlogy) = O(y log y + x log y).

Done! This was the last example presented here. Next, let's try to extract several key hints
that can help you in interviews to determine and express Big O.

Key hints to look for in an interview

During an interview, time and stress are serious factors that can affect concentration.
Having the capacity to identify templates, recognize certain cases, guess the correct
answer, and so on gives you a major advantage. As we stated in Chapter 5, How to
Approach a Coding Challenge, in figure 5.2, building an example (or a use case) is the
second step to tackling a coding challenge. Even if the code is given by the interviewer,
building an example is still quite useful for determining Big O.

As you probably noticed, in almost every non-trivial example that we covered, we
preferred to visualize the runtime for one or several concrete cases. That way, you

can really understand the details of the code, identify the inputs, determine the static
(constant) and dynamic (variable) parts of the code, and get a general view of how the
code works.

The following is a non-exhaustive list of key hints that can help you in an interview:

o If the algorithm does constant work, then the Big O is O(1): This kind of example
uses the inputs to perform constant work (for example, take three integers, x, y,
and w, and do some computations, such as x-y and y*w). In some cases, to create
confusion, it adds repetitive statement as well (for example, the computations are
donein for (int i=0; 1<10; i++)). So, itisveryimportant to settle right
from the start whether the inputs of the algorithm affect its runtime or not.

o If the algorithm loops the entire array or list, then O(n) may be involved in the
total Big O value: Commonly, the code snippets contain one or more repetitive
statements that loop the whole input, which is usually an array or list (for example,
for(int i=0; i<a.length; i++), where a isan array). Typically,