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			Preface

			After 60 years of high-level language development, programming is still too difficult. The demand for software of ever-increasing size and complexity has exploded due to hardware advances, while programming languages have improved far more slowly. Creating new languages for specific purposes is one antidote for this software crisis.

			This book is about building new programming languages. The topic of programming language design is introduced, although the primary emphasis is on programming language implementation. Within this heavily studied subject, the novel aspect of this book is its fusing of traditional compiler-compiler tools (Flex and Byacc) with two higher-level implementation languages. A very high-level language (Unicon) plows through a compiler's data structures and algorithms like butter, while a mainstream modern language (Java) shows how to implement the same code in a more typical production environment.

			One thing I didn't really understand after my college compiler class is that the compiler is only one part of a programming language implementation. Higher-level languages, including most newer languages, may have a runtime system that dwarfs their compiler. For this reason, the second half of this book spends quality time on a variety of aspects of language runtime systems, ranging from bytecode interpreters to garbage collection.

			Who this book is for

			This book is for software developers interested in the idea of inventing their own language or developing a domain-specific language. Computer science students taking compiler construction courses will also find this book highly useful as a practical guide to language implementation to supplement more theoretical textbooks. Intermediate-level knowledge and experience working with a high-level language such as Java or C++ are required in order to get the most out of this book.

			What this book covers

			Chapter 1, Why Build Another Programming Language?, discusses when to build a programming language, and when to instead design a function library or a class library. Many readers of this book will already know that they want to build their own programming language. Some should design a library instead.

			Chapter 2, Programming Language Design, covers how to precisely define a programming language, which is important to know before trying to build a programming language. This includes the design of the lexical and syntax features of the language, as well as its semantics. Good language designs usually use as much familiar syntax as possible.

			Chapter 3, Scanning Source Code, presents lexical analysis, including regular expression notation and the tools Ulex and JFlex. By the end, you will be opening source code files, reading them character by character, and reporting their contents as a stream of tokens consisting of the individual words, operators, and punctuation in the source file.

			Chapter 4, Parsing, presents syntax analysis, including context-free grammars and the tools iyacc and byacc/j. You will learn how to debug problems in grammars that prevent parsing, and report syntax errors when they occur.

			Chapter 5, Syntax Trees, covers syntax trees. The main by-product of the parsing process is the construction of a tree data structure that represents the source code's logical structure. The construction of tree nodes takes place in the semantic actions that execute on each grammar rule.

			Chapter 6, Symbol Tables, shows you how to construct symbol tables, insert symbols into them, and use symbol tables to identify two kinds of semantic errors: undeclared and illegally redeclared variables. In order to understand variable references in executable code, each variable's scope and lifetime must be tracked. This is accomplished by means of table data structures that are auxiliary to the syntax tree.

			Chapter 7, Checking Base Types, covers type checking, which is a major task required in most programming languages. Type checking can be performed at compile time or at runtime. This chapter covers the common case of static compile-time type checking for base types, also referred to as atomic or scalar types.

			Chapter 8, Checking Types on Arrays, Method Calls, and Structure Accesses, shows you how to perform type checks for the arrays, parameters, and return types of method calls in the Jzero subset of Java. The more difficult parts of type checking are when multiple or composite types are involved. This is the case when functions with multiple parameters' types must be checked, or when arrays, hash tables, class instances, or other composite types must be checked.

			Chapter 9, Intermediate Code Generation, shows you how to generate intermediate code by looking at examples for the Jzero language. Before generating code for execution, most compilers turn the syntax tree into a list of machine-independent intermediate code instructions. Key aspects of control flow, such as the generation of labels and goto instructions, are handled at this point.

			Chapter 10, Syntax Coloring in an IDE, addresses the challenge of incorporating information from syntax analysis into an IDE in order to provide syntax coloring and visual feedback about syntax errors. A programming language requires more than just a compiler or interpreter - it requires an ecosystem of tools for developers. This ecosystem can include debuggers, online help, or an integrated development environment. The chapter is a Unicon example, drawn from the Unicon IDE.

			Chapter 11, Bytecode Interpreters, covers designing the instruction set and the interpreter that executes bytecode. A new domain-specific language may include high-level domain programming features that are not supported directly by mainstream CPUs. The most practical way to generate code for many languages is to generate bytecode for an abstract machine whose instruction set directly supports the domain, and then execute programs by interpreting that instruction set.

			Chapter 12, Generating Bytecode, continues with code generation, taking the intermediate code from Chapter 9, Intermediate Code Generation, and generating bytecode from it. Translation from intermediate code to bytecode is a matter of walking through a giant linked list, translating each intermediate code instruction into one or more bytecode instructions. Typically, this is a loop to traverse the linked list, with a different chunk of code for each intermediate code instruction.

			Chapter 13, Native Code Generation, provides an overview of generating native code for x86_64. Some programming languages require native code to achieve their performance requirements. Native code generation is like bytecode generation, but more complex, involving register allocation and memory addressing modes.

			Chapter 14, Implementing Operators and Built-In Functions, describes how to support very high-level and domain-specific language features by adding operators and functions that are built into the language. Very high-level and domain-specific language features are often best represented by operators and functions that are built into the language, rather than library functions. Adding built-ins may simplify your language, improve its performance, or enable side effects in your language semantics that would otherwise be difficult or impossible. The examples in this chapter are drawn from Unicon, as it is much higher level than Java and implements more complex semantics in its built-ins.

			Chapter 15, Domain Control Structures, covers when you need a new control structure, and provides example control structures that process text using string scanning, and render graphics regions. The generic code in previous chapters covered basic conditional and looping control structures, but domain-specific languages often have unique or customized semantics for which they introduce novel control structures. Adding new control structures is substantially more difficult than adding a new function or operator, but it is what makes domain-specific languages worth developing instead of just writing class libraries.

			Chapter 16, Garbage Collection, presents a couple of methods with which you can implement garbage collection in your language. Memory management is one of the most important aspects of modern programming languages, and all the cool programming languages feature automatic memory management via garbage collection. This chapter provides a couple of options as to how you might implement garbage collection in your language, including reference counting, and mark-and-sweep garbage collection.

			Chapter 17, Final Thoughts, reflects on the main topics presented in the book and gives you some food for thought. It considers what was learned from writing this book and gives you many suggestions for further reading.

			Appendix, Unicon Essentials, describes enough of the Unicon programming language to understand those examples in this book that are in Unicon. Most examples are given side by side in Unicon and Java, but the Unicon versions are usually shorter and easier to read.

			To get the most out of this book

			In order to understand this book, you should be an intermediate-or-better programmer in Java or a similar language; a C programmer who knows an object-oriented language will be fine.

			
				
					[image: ]
				

			

			Instructions for installing and using the tools are spread out a bit to reduce the startup effort, appearing in Chapter 3, Scanning Source Code, to Chapter 5, Syntax Trees. If you are technically gifted, you may be able to get all these tools to run on macOS, but it was not used or tested during the writing of this book.

			Note

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book's GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Build-Your-Own-Programming-Language. If there's an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Code in Action

			The Code in Action videos for this book can be viewed at https://bit.ly/3njc15D.

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781800204805_ColorImages.pdf.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in the text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "The corresponding Java main() must be put in a class."

			A block of code is set as follows:

			procedure main(argv)

			   simple := simple()

			   yyin := open(argv[1])

			   while i := yylex() do

			      write(yytext, ": ", i)

			end 

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			MethodHeader: PUBLIC STATIC MethodReturnVal

			                               MethodDeclarator {

			  $$=j0.node("MethodHeader",1070,$3,$4);

			  j0.calctype($$);

			}; 

			Any command-line input or output is written as follows:

			$ jflex nnws.l

			$ javac simple 	.java yylex.java

			Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words in menus or dialog boxes appear in bold. Here is an example: "Select System info from the Administration panel."

			Tips or Important Notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you've read Build Your Own Programming Language, we'd love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

		

	
		
			Section 1: Programming Language Frontends

			In this section, you will create a basic language design and implement the frontend of a compiler for it, including a lexical analyzer and a parser that builds a syntax tree from an input source file.

			This section comprises the following chapters:

			
					Chapter 1, Why Build Another Programming Language?

					Chapter 2, Programming Language Design

					Chapter 3, Scanning Source Code

					Chapter 4, Parsing

					Chapter 5, Syntax Trees

			

		

	
		
			Chapter 1: Why Build Another Programming Language?

			This book will show you how to build your own programming language, but first, you should ask yourself, why would I want to do this? For a few of you, the answer will be simple: because it is so much fun. However, for the rest of us, it is a lot of work to build a programming language, and we need to be sure about it before we make a start. Do you have the patience and persistence that it takes?

			This chapter points out a few good reasons for building your own programming language, as well as some situations where you don't have to build your contemplated language; after all, designing a class library for your application domain might be simpler and just as effective. However, libraries have their downsides, and sometimes only a new language will do.

			After this chapter, the rest of this book will, having considered things carefully, take for granted that you have decided to build a language. In that case, you should determine some of the requirements for your language. But first, we're going to cover the following main topics in this chapter:

			
					Motivations for writing your own programming language

					The difference between programming languages and libraries

					The applicability of programming language tools to other software projects

					Establishing the requirements for your language

					A case study that discusses the requirements for the Unicon language

			

			Let's start by looking at motivations.

			So, you want to write your own programming language…

			Sure, some programming language inventors are rock stars of computer science, such as Dennis Ritchie or Guido van Rossum! But becoming a rock star of computer science was easier back then. I heard the following report a long time ago from an attendee of the second History of Programming Languages Conference: The consensus was that the field of programming languages is dead. All the important languages have been invented already. This was proven wildly wrong a year or two later when Java hit the scene, and perhaps a dozen times since then when languages such as Go emerged. After a mere six decades, it would be unwise to claim our field is mature and that there's nothing new to invent that might make you famous.

			Still, celebrity is a bad reason for building a programming language. The chances of acquiring fame or fortune from your programming language invention are slim. Curiosity and desire to know how things work are valid reasons, so long as you've got the time and inclination, but perhaps the best reasons for building your own programming language are need and necessity.

			Some folks need to build a new language or a new implementation of an existing programming language to target a new processor or compete with a rival company. If that's not you, then perhaps you've looked at the best languages (and compilers or interpreters) available for some domain that you are developing programs for, and they are missing some key features for what you are doing, and those missing features are causing you pain. Every once in a blue moon, someone comes up with a whole new style of computing that a new programming paradigm requires a new language for.

			While we are discussing your motivations for building a language, let's talk about the different kinds of languages, organization, and the examples this book will use to guide you. Each of these topics is worth looking at.

			Types of programming language implementations

			Whatever your reasons, before you build a programming language, you should pick the best tools and technologies you can find to do the job. In our case, this book will pick them for you. First, there is a question of the implementation language that you are building your language in. Programming language academics like to brag about writing their language in that language itself, but this is usually only a half-truth (or someone was being very impractical and showing off at the same time). There is also the question of just what kind of programming language implementation to build:

			
					A pure interpreter that executes source code itself

					A native compiler and a runtime system, such as in C

					A transpiler that translates your language into some other high-level language

					A bytecode compiler with an accompanying bytecode machine, such as Java

			

			The first option is fun but usually too slow. The second option is the best, but usually, it's too labor-intensive; a good native compiler may take many person-years of effort.

			While the third option is by far the easiest and probably the most fun, and I have used it before with success, if it isn't a prototype, then it is sort of cheating. Sure, the first version of C++ was a transpiler, but that gave way to compilers and not just because it was buggy. Strangely, generating high-level code seems to make your language even more dependent on the underlying language than the other options, and languages are moving targets. Good languages have died because their underlying dependencies disappeared or broke irreparably on them. It can be the death of a thousand small cuts.

			This book chooses the fourth option: we will build a bytecode compiler with an accompanying bytecode machine because that is a sweet spot that gives the most flexibility while still offering decent performance. A chapter on native code compilation is included for those of you who require the fastest possible execution.

			The notion of a bytecode machine is very old; it was made famous by UCSD's Pascal implementation and the classic SmallTalk-80 implementation, among others. It became ubiquitous to the point of entering lay English with the promulgation of Java's JVM. Bytecode machines are abstract processors interpreted by software; they are often called virtual machines (as in Java Virtual Machine), although I will not use that terminology because it is also used to refer to software tools that use real hardware instruction sets, such as IBM's classic platforms or more modern tools such as Virtual Box.

			A bytecode machine is typically quite a bit higher level than a piece of hardware, so a bytecode implementation affords much flexibility. Let's have a quick look at what it will take to get there…

			Organizing a bytecode language implementation

			To a large extent, the organization of this book follows the classic organization of a bytecode compiler and its corresponding virtual machine. These components are defined here, followed by a diagram to summarize them:

			
					A lexical analyzer reads in source code characters and figures out how they are grouped into a sequence of words or tokens.

					A syntax analyzer reads in a sequence of tokens and determines whether that sequence is legal according to the grammar of the language. If the tokens are in a legal order, it produces a syntax tree.

					A semantic analyzer checks to ensure that all the names being used are legal for the operations in which they are being used. It checks their types to determine exactly what operations are being performed. All this checking makes the syntax tree heavy, laden with the extra information about where variables are declared and what their types are.

					An intermediate code generator figures out memory locations for all the variables and all the places where a program may abruptly change execution flow, such as loops and function calls. It adds them to the syntax tree and then walks this even fatter tree before building a list of machine-independent intermediate code instructions.

					A final code generator turns the list of intermediate code instructions into the actual bytecode in a file format that will be efficient to load and execute.

			

			Independent from the steps of this bytecode virtual machine compiler, a bytecode interpreter is written to load and execute programs. It is a gigantic loop with a switch statement in it, but for exotic programming languages, the compiler might be no big deal and all the magic will happen in the bytecode interpreter. The whole organization can be summarized by the following diagram:
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			Figure 1.1 – Phases and dataflow in a simple programming language

			It will take a lot of code to illustrate how to build a bytecode machine implementation of a programming language. How that code is presented is important and will tell you what you need to know going in, and much of what you may learn from going through this book.

			Languages used in the examples

			This book provides code examples in two languages using a parallel translations model. The first language is Java, because that language is ubiquitous. Hopefully, you know it or C++ and will be able to read the examples with intermediate proficiency. The second example language is the author's own language, Unicon. While reading this book, you can judge for yourself which language is better suited to building your own programming language. As many examples as possible will be provided in both languages, and the examples in the two languages will be written as similarly as possible. Sometimes, this will be to the advantage of the lesser language.

			The differences between Java and Unicon will be obvious, but they are somewhat lessened in importance by the compiler construction tools we will use. We will use modern descendants of the venerable Lex and YACC tools to generate our scanner and parser, and by sticking to tools for Java and Unicon that remain as compatible as possible with the original Lex and YACC, the frontends of our compiler will be nearly identical in both languages. Lex and YACC are declarative programming languages that solve some of our hard problems at an even higher level than Java or Unicon.

			While we are using Java and Unicon as our implementation languages, we will need to talk about one more language: the example language we are building. It is a stand-in for whatever language you decide to build. Somewhat arbitrarily, I will introduce a language called Jzero for this purpose. Niklaus Wirth invented a toy language called PL/0 (programming language zero; the name is a riff on the language name PL/1) that was used in compiler construction courses. Jzero will be a tiny subset of Java that serves a similar purpose. I looked pretty hard (that is, I googled Jzero and then Jzero compiler) to see whether someone had already posted a Jzero definition we could use, and did not spot one by that name, so we will just make it up as we go along.

			The Java examples in this book will be tested using OpenJDK 14; maybe other versions of Java (such as OpenJDK 12 or Oracle Java JDK) will work the same, but maybe not. You can get OpenJDK from http://openjdk.java.net, or if you are on Linux, your operating system probably has an OpenJDK package that you can install. Additional programming language construction tools (Jflex and byacc/j) that are required for the Java examples will be introduced in subsequent chapters as they are used. The Java implementations we will support might be more constrained by which versions will run these language construction tools than anything else.

			The Unicon examples in this book work with Unicon version 13.2, which can be obtained from http://unicon.org. To install Unicon on Windows, you must download a .msi file and run the installer. To install on Linux, you usually do a git clone of the sources and type make. You will then want to add the unicon/bin directory to your PATH:

			git clone git://git.code.sf.net/p/unicon/unicon

			make

			Having gone through our organization and the implementation that this book will use, perhaps we should take another look at when a programming language is called for, and when one can be avoided by developing a library instead.

			Language versus library – what's the difference?

			Don't make a programming language when a library will do the job. Libraries are by far the most common way to extend an existing programming language to perform a new task. A library is a set of functions or classes that can be used together to write applications for some hardware or software technology. Many languages, including C and Java, are designed almost completely to revolve around a rich set of libraries. The language itself is very simple and general, while much of what a developer must learn to develop applications consists of how to use the various libraries.

			The following is what libraries can do:

			
					Introduce new data types (classes) and provide public functions (an API) for manipulating them

					Provide a layer of abstraction on top of a set of hardware or operating system calls

			

			The following is what libraries cannot do:

			
					Introduce new control structures and syntax in support of new application domains

					Embed/support new semantics within the existing language runtime system

			

			Libraries do some things badly, in that you might end up preferring to make a new language:

			
					Libraries often get larger and more complex than necessary.

					Libraries can have even steeper learning curves and poorer documentation than languages.

					Every so often, libraries have conflicts with other libraries, and version incompatibilities often break applications that use libraries.

			

			There is a natural evolutionary path from the library to language. A reasonable approach to building a new language to support an application domain is to start by making or buying the best library available for that application domain. If the result does not meet your requirements in terms of supporting the domain and simplifying the task of writing programs for that domain, then you have a strong argument for a new language.

			This book is about building your own language, not just building your own library. It turns out that learning about these tools and techniques is useful in other contexts.

			Applicability to other software engineering tasks

			The tools and technologies you learn about from building your own programming language can be applied to a range of other software engineering tasks. For example, you can sort almost any file or network input processing task into three categories:

			
					Reading XML data with an XML library

					Reading JSON data with a JSON library

					Reading anything else by writing code to parse it in its native format

			

			The technologies in this book are useful in a wide array of software engineering tasks, which is where the third of these categories is encountered. Frequently structured data must be read in a custom file format.

			For some of you, the experience of building your own programming language might be the single largest program you have written thus far. If you persist and finish it, it will teach you lots of practical software engineering skills, besides whatever you learn about compilers and interpreters and such. This will include working with large dynamic data structures, software testing, and debugging complex problems, among other skills.

			That's enough of the inspirational motivation. Let's talk about what you should do first: figure out your requirements.

			Establishing the requirements for your language

			After you are sure you need a new programming language for what you are doing, take a few minutes to establish the requirements. This is open-ended. It is you defining what success for your project will look like. Wise language inventors do not create a whole new syntax from scratch. Instead, they define it in terms of a set of modifications to make to a popular existing language. Many great programming languages (Lisp, Forth, SmallTalk, and many others) had their success significantly limited by the degree to which their syntax was unnecessarily different from mainstream languages. Still, your language requirements include what it will look like, and that includes syntax.

			More importantly, you must define a set of control structures or semantics where your programming language needs to go beyond existing language(s). This will sometimes include special support for an application domain that is not well-served by existing languages and their libraries. Such domain-specific languages (DSLs) are common enough that whole books are focused on that topic. Our goal for this book will be to focus on the nuts and bolts of building the compiler and runtime system for such a language, independent of whatever domain you may be working in.

			In a normal software engineering process, requirements analysis would start with brainstorming lists of functional and non-functional requirements. Functional requirements for a programming language involve the specifics of how the end user developer will interact with it. You might not anticipate all the command-line options for your language upfront, but you probably know whether interactivity is required, or whether a separate compile step is OK. The discussion of interpreters and compilers in the previous section, and this book's presentation of a compiler, might seem to make that choice for you, but Python is an example of a language that provides a fully interactive interface, even though the source code you type in it gets crunched into bytecode rather than interpreted.

			Non-functional requirements are properties that your programming language must achieve that are not directly tied to the end user developer's interactions. They include things such as what operating system(s) it must run on, how fast execution must be, or how little space the programs written in your language must run within.

			The non-functional requirement regarding how fast execution must be usually determines the answer as to whether you can target a software (bytecode) machine or need to target native code. Native code is not just faster; it is also considerably more difficult to generate, and it might make your language considerably less flexible in terms of runtime system features. You might choose to target bytecode first, and then work on a native code generator afterward.

			The first language I learned to program on was a BASIC interpreter in which the programs had to run within 4 KB of RAM. BASIC at the time had a low memory footprint requirement. But even in modern times, it is not uncommon to find yourself on a platform where Java won't run by default! For example, on virtual machines with configured memory limits for user processes, you may have to learn some awkward command-line options to compile or run even simple Java programs.

			Many requirements analysis processes also define a set of use cases and ask the developer to write descriptions for them. Inventing a programming language is different from your average software engineering project, but before you are finished, you may want to go there. A use case is a task that someone performs using a software application. When the software application is a programming language, if you are not careful, the use cases may be too general to be useful, such as write my application and run my program. While those two might not be very useful, you might want to think about whether your programming language implementation must support program development, debugging, separate compilation and linking, integration with external languages and libraries, and so forth. Most of those topics are beyond the scope of this book, but we will consider some of them.

			Since this book will present the implementation of a language called Jzero, here are some requirements for it. Some of these requirements may appear arbitrary. If it is not clear to you where one of them came from, it either came from our source inspiration language (plzero) or previous experience teaching compiler construction:

			
					Jzero should be a strict subset of Java. All legal Jzero programs should be legal Java programs. This requirement allows us to check the behavior of our test programs when we are debugging our language implementation.

					Jzero should provide enough features to allow interesting computations. This includes if statements, while loops, and multiple functions, along with parameters.

					Jzero should support a few data types, including Booleans, integers, arrays, and the String type. It only needs to support a subset of their functionality, as described later. These are enough types to allow input and output of interesting values into a computation.

					Jzero should emit decent error messages, showing the filename and line number, including messages for attempts to use Java features not in Jzero. We will need reasonable error messages to debug the implementation.

					Jzero should run fast enough to be practical. This requirement is vague, but it implies that we won't be doing a pure interpreter. Pure interpreters are a very retro thing, evocative of the 1960s and 1970s.

					Jzero should be as simple as possible so that I can explain it. Sadly, this rules out generating native code or even JVM bytecode; we will provide our own simple bytecode machine.

			

			Perhaps more requirements will emerge as we go along, but this is a start. Since we are constrained for time and space, perhaps this requirements list is more important for what it does not say, rather than for what it does say. By way of comparison, here are some of the requirements that led to the creation of the Unicon programming language.

			Case study – requirements that inspired the Unicon language

			This book will use the Unicon programming language, located at http://unicon.org, for a running case study. We can start with reasonable questions such as, why build Unicon, and what are its requirements? To answer the first question, we will work backward from the second one.

			Unicon exists because of an earlier programming language called Icon, from the University of Arizona (http://www.cs.arizona.edu/icon/). Icon has particularly good string and list processing abilities and is used for building many scripts and utilities, as well as both programming language and natural language processing projects. Icon's fantastic built-in data types, including structure types such as lists and (hash) tables, have influenced several languages, including Python and Unicon. Icon's signature research contribution is integrating goal-directed evaluation, including backtracking and automatic resumption of generators, into a familiar mainstream syntax. Unicon requirement #1 is to preserve these best bits of Icon.

			Unicon requirement #1 – preserve what people love about Icon

			One of the things that people love about Icon is its expression semantics, including its generators and goal-directed evaluation. Icon also provides a rich set of built-in functions and data types so that many or most programs can be understood directly from the source code. Unicon's goal would be 100% compatibility with Icon. In the end, we achieved more like 99% compatibility.

			It is a bit of a leap from preserving the best bits to the immortality goal of ensuring old source code will run forever, but for Unicon, we include that in requirement #1. We have placed a harder requirement on backward compatibility than most modern languages. While C is very backward compatible, C++, Java, Python, and Perl are examples of languages that have wandered away, in some cases far away, from being compatible with the programs written in them back in their glory days. In the case of Unicon, perhaps 99% of Icon programs run unmodified as Unicon programs.

			Icon was designed for maximum programmer productivity on small-sized projects; a typical Icon program is less than 1,000 lines of code, but Icon is very high level and you can do a lot of computing in a few hundred lines of code! Still, computers keep getting more capable and users want to write much larger programs than Icon was designed to handle. Unicon requirement #2 was to support programming in large-scale projects.

			Unicon requirement #2 – support large-scale programs working on big data

			For this reason, Unicon adds classes and packages to Icon, much like C++ adds them to C. Unicon also improved the bytecode object file format and made numerous scalability improvements to the compiler and runtime system. It also refines Icon's existing implementation to be more scalable in many specific items, such as adopting a much more sophisticated hash function.

			Icon is designed for classic UNIX pipe-and-filter text processing of local files. Over time, more and more people were wanting to write with it and required more sophisticated forms of input/output, such as networking or graphics. Unicon requirement #3 is to support ubiquitous input/output capabilities at the same high level as the built-in types.

			Unicon requirement #3 – high-level input/output for modern applications

			Support for I/O is a moving target. At first, it included networking facilities and GDBM and ODBC database facilities to accompany Icon's 2D graphics. Then, it grew to include various popular internet protocols and 3D graphics. The definition of what input/output capabilities are ubiquitous continues to evolve and varies by platform, but touch input and gestures or shader programming capabilities are examples of things that have become rather ubiquitous by this point.

			Arguably, despite billionfold improvements in CPU speed and memory size, the biggest difference between programming in 1970 and programming in 2020 is that we expect modern applications to use a myriad of sophisticated forms of I/O: graphics, networking, databases, and so forth. Libraries can provide access to such I/O, but language-level support can make it easier and more intuitive.

			Icon is pretty portable, having been run on everything from Amigas to Crays to IBM mainframes with EBCDIC character sets. Although the platforms have changed almost unbelievably over the years, Unicon still retains Icon's goal of maximum source code portability: code that gets written in Unicon should continue to run unmodified on all computing platforms that matter. This leads to Unicon requirement #4.

			Unicon requirement #4 – provide universally implementable system interfaces

			For a very long time, portability meant running on PCs, Macs, and UNIX workstations. But again, the set of computing platforms that matter is a moving target. These days, work is underway in Unicon to support Android and iOS, in case you count them as computing platforms. Whether they count might depend on whether they are open enough and used for general computing tasks, but they are certainly capable of being used as such.

			All those juicy I/O facilities that were implemented for requirement #3 must be designed in such a way that they can be multi-platform portable across all major platforms.

			Having given you some of Unicon's primary requirements, here is an answer to the question, why build Unicon at all? One answer is that after studying many languages, I concluded that Icon's generators and goal-directed evaluation (requirement #1) were features that I wanted when writing programs from now on. But after allowing me to add 2D graphics to their language, Icon's inventors were no longer willing to consider further additions to meet requirements #2 and #3. Another answer is that there was a public demand for new capabilities, including volunteer partners and some financial support. Thus, Unicon was born.

			Summary

			In this chapter, you learned the difference between inventing a programming language and inventing a library API to support whatever kinds of computing you want to do. Several different forms of programming language implementations were considered. This first chapter allowed you to think about functional and non-functional requirements for your own language. These requirements might be different from the example requirements discussed for the Java subset Jzero and the Unicon programming language, which were both introduced.

			Requirements are important because they allow you to set goals and define what success will look like. In the case of a programming language implementation, the requirements include what things will look and feel like to the programmers that use your language, as well as what hardware and software platforms it must run on. The look and feel of a programming language includes answering both external questions regarding how the language implementation and the programs written in the language are invoked, as well as internal issues such as verbosity: how much the programmer must write to accomplish a given compute task.

			You may be keen to get straight to the coding part. Although the classic build and fix mentality of novice programmers might work on scripts and short programs, for a piece of software as large as a programming language, we need a bit more planning first. After this chapter's coverage of the requirements, Chapter 2, Programming Language Design, will prepare you to construct a detailed plan for the implementation that will occupy our attention for the remainder of this book!

			Questions

			
					What are the pros and cons of writing a language transpiler that generates C code, instead of a traditional compiler that generates assembler or native machine code?

					What are the major components or phases in a traditional compiler?

					From your experience, what are some pain points where programming is more difficult than it should be? What new programming language feature(s) address these pain points?

					Write a set of functional requirements for a new programming language.

			

		

	
		
			Chapter 2: Programming Language Design

			Before trying to build a programming language, you need to define it. This includes the design of the features of the language that are visible on its surface, including basic rules for forming words and punctuation. This also includes higher-level rules, called syntax, that govern the number and order of words and punctuation in larger chunks of programs, such as expressions, statements, functions, and programs. Language design also includes the underlying meaning, also known as semantics.

			Programming language design often begins by writing example code to illustrate each of the important features of your language, as well as show the variations that are possible for each construct. Writing examples with a critical eye lets you find and fix many possible inconsistencies in your initial ideas. From these examples, you can then capture the general rules that each language construct follows. Write down sentences that describe your rules as you understand them from your examples. Note that there are two kinds of rules. Lexical rules govern what characters must be treated together, such as words or multi-character operators, such as ++. Syntax rules, on the other hand, are rules for combining multiple words or punctuation to form larger meaning; in natural language, they are often phrases, sentences, or paragraphs, while in a programming language, they might be expressions, statements, functions, or programs.

			Once you have come up with examples of everything that you want your language to do, as well as written down the lexical and syntax rules, write a language design document (or language specification) that you can refer to while coding your language. You can change things later, but it helps to have a plan to work from.

			In this chapter, we're going to cover the following main topics:

			
					Determining the kinds of words and punctuation to provide in your language

					Specifying the control flow

					Deciding on what kinds of data to support

					Overall program structure

					Completing the Jzero language definition

					Case study – designing graphics facilities in Unicon

			

			Let's start by identifying the basic elements that are allowed in source code in your language.

			Determining the kinds of words and punctuation to provide in your language

			Programming languages have several different categories of words and punctuation. In natural language, words are categorized into parts of speech – nouns, verbs, adjectives, and so on. The categories that correspond to parts of speech that you will have to invent for a programming language can be constructed by doing the following:

			
					Defining a set of reserved words or keywords

					Specifying characters in identifiers that name variables, functions, and constants

					Creating a format for literal constant values for built-in data types

					Defining single and multi-letter operators and punctuation marks

			

			You should write down precise descriptions of each of these categories as part of your language design document. In some cases, you might just make lists of particular words or punctuation to use, but in other cases, you will need patterns or some other way to convey what is and is not allowed in that category.

			For reserved words, a list will do for now. For names of things, a precise description must include details such as what non-letters symbols are allowed in such names. For example, in Java, names must begin with a letter and can then include letters and digits; underscores are allowed and treated as letters. In other languages, hyphens are allowed within names, so the three symbols a, -, and b make up a valid name, not a subtraction of b from a. When a precise description fails, a complete set of examples will suffice.

			Constant values, also called literals, are a surprising and major source of complexity in lexical analyzers. Attempting to precisely describe real numbers in Java comes out something like this: Java has two different kinds of real numbers – floats and doubles – but they look the same until you get to the end, where there is an optional f (or F) or d (or D) to distinguish floats from doubles. Before that, real numbers must have either a decimal point (.) or an exponent (e or E) part, or both. If there is a decimal point, there must be at least one digit on one side of the decimal or the other. If there is an exponent part, it must have an e (or E) followed by an optional minus sign and one or more digits. To make matters worse, Java has a weird hexadecimal real constant format that few programmers have heard of, consisting of 0x or 0X followed by digits in hex format, with an optional decimal and mandatory exponent part consisting of a p (or P), followed by digits in decimal format.

			Describing operators and punctuation marks is usually almost as easy as listing the reserved words. One major difference is that operators usually have precedence rules that you will need to determine. For example, in numeric processing, the multiplication operator has almost always higher precedence than the addition operator, so x + y * z will multiply y * z before it adds x to the product of y and z. In most languages, there are at least 3-5 levels of precedence, and many popular mainstream languages have from 13 to 20 levels of precedence that must be considered carefully. The following diagram shows the operator precedence table for Java. We will need it for Jzero:
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			Figure 2.1 – Java operator precedence

			The preceding diagram shows that Java has a lot of operators organized into 10 levels of precedence, though I might be simplifying this a bit. In your language, you might get away with fewer, but you will have to address the issue of operator precedence if you want to build a real language.

			A similar issue is operator associativity. In many languages, most operators associate from left to right, but a few strange ones associate from right to left. For example, the x + y + z expression is equivalent to (x + y) + z, but the x = y = 0 expression is equivalent to x = (y = 0).

			The principle of least surprise applies to operator precedence and associativity, as well as to what operators you put in your language in the first place. If you define arithmetic operators and give them strange precedence or associativity, people will reject your language out of hand. If you happen to be introducing new, possibly domain-specific data types in your language, you have way more freedom to define operator precedence and associativity for any new operators you introduce in your language.

			Once you have worked out what the individual words and punctuation in your language should be, you can work your way up to larger constructs. This is the transition from lexical analysis to syntax, and syntax is important because it is the level at which bits of code become large enough to specify some computation to be performed. We will look at this in more detail in a later chapters, but at the design stage, you should at least think about how programmers will specify the control flow, declare data, and build entire programs. First, you must plan for the control flow.

			Specifying the control flow

			The control flow is how the program's execution proceeds from place to place within the source code. Most control flow constructs should be familiar to programmers who have been trained in mainstream programming languages. The innovations in your language design can then focus on the features that are novel or domain-specific and that motivate you to create a new language in the first place. Make these novel things as simple and as readable as possible. Envision how those new features ought to fit into the rest of the programming language.

			Every language must have conditionals and loops, and almost all of them use if and while to start them. You could invent your own special syntax for an if expression, but unless you've got a good reason to, you would be shooting yourself in the foot. Here are some control flow constructs from Java that would certainly be in Jzero:

			if (e) s;

			if (e) s1 else s2;

			while (e) s;

			for (…) s;

			Here are some other less common Java control flow constructs that are not in Jzero. If they were to appear in a program, what should a Jzero compiler do with them?

			switch (e) { … }

			do s while (e);

			By default, our compiler will print a cryptic message that doesn't explain things very well. In the next two chapters, we will make our compiler for Jzero print a nice error message about the Java features that it does not support.

			Besides conditionals and loops, languages tend to have a syntax for calling subroutines and returning afterward. All these ubiquitous forms of control flow are abstractions of the underlying machine's capability to change the location where instructions are executing – the GOTO. If you invent a better notation for changing the location where instructions are executing, it will be a big deal.

			The biggest controversy when designing many or most control flow constructs seems to be whether they are statements or whether you should make them expressions that produce a result that can be used in a surrounding expression. I have used languages where the result of if expressions are useful – C/C++/Java even have an operator for that: the i?t:e conditional operator. I have not found a language that did something very meaningful in making a while loop an expression; the best they did was have the while expressions produce a result, telling us whether the loop exited due to the test condition or due to an internal break.

			If you are inventing a new language from scratch, one of the big questions for you is whether you can come up with some new control structure(s) to support your intended application domain. For example, suppose you want your language to provide special support for investing in the stock market. If you manage to come up with a better control structure for specifying conditions, constraints, or iterative operations within this domain, you might provide a competitive edge to those who are coding in your language for this domain. The program will have to run on an underlying von Neuman instruction set, so you will have to figure out how to map any such new control structure to instructions such as Boolean logic tests and GOTO instructions.

			Whatever control flow constructs you decide to support, you will also need to design a set of data types and declarations that reflect the information that the programs in your language will manipulate.

			Deciding on what kinds of data to support

			There are at least three categories of data types to consider in your language design. The first one is atomic, scalar primitive types, often called first-class data types. The second is composite or container types, which are capable of holding and organizing collections of values. The third (which may be variants of the first or second categories) is application domain-specific types. You should formulate a plan for each of these categories.

			Atomic types

			Atomic types are generally built-in and immutable. You don't modify existing values; you just use operators to create new values. Pretty much all languages have built-in types for numbers and a few additional types. A Boolean type, null type, and maybe a string type are common atomics, but there are others.

			You decide just how complicated to get with atomics: how many different machine representations of integers and real numbers do you need? Some languages might provide a single type for all numbers, while others might provide 5 or 10 (or more) for integers and another few for real numbers. The more you add, the more flexibility and control you give to programmers that use your language, but the more difficult your implementation task will be later.

			Similarly, it is impossible to design a single-string data type that is ideal for all applications that use strings a lot. But how many string types do you want to support? One extreme is having no string type at all, only a short integer type for holding characters. Such languages would consider strings to be part of composite types. Maybe strings are supported only by a library rather than in the language. Strings may be arrays or objects, but even such languages usually have some special lexical rules that allow string constant values to be given as double-quoted sequences of characters of some kind. Another extreme is that, given the importance of strings in many application domains, your language might want to support multiple string types for various character sets (ASCII, UTF8, and so on) with auxiliary types (character sets) and special types and control structures that support analyzing and constructing strings. Many popular languages treat strings as a special atomic type.

			If you are especially clever, you may decide to support only a few built-in types for numbers and strings but make those types as flexible as possible. Popular existing programming languages vary widely regarding how many types are used for these classic built-in types, and for many other possible data types that you might include. Once you go beyond integers, real numbers, and strings, the only types that are universal are container types, which allow you to assemble data structures.

			Some of the things you must think about regarding atomic types include the following:

			
					How many values do they have?

					How are all those values encoded as literal constants in the source code?

					What kinds of operators or built-in functions use operands or parameters?

			

			The first question will tell you how many bytes the type will require in memory. The second and third questions tie back to the question of determining the rules for words and punctuation in the language. The third question may also give insight into how much effort, in terms of the code generator or runtime system, will be required to implement support for the type in your language. Atomic types can be more work or less work to implement, but they are seldom as complicated as composite types. We will discuss these next.

			Composite types

			Composite types are types that help you allocate and access multiple values in a coordinated fashion. Languages vary enormously regarding the extent of their syntax support for composite types. Some only support arrays and structs and require programmers to build all their own data structures on top of these. Many provide all higher-level composite types via libraries. However, some higher-level languages provide numerous sophisticated data structures as built-ins with syntax support.

			The most ubiquitous composite type is an array type, where multiple values are accessed using a numerically contiguous range of integer indices. You will probably have something like an array in your language. Your main design considerations should be how are the indices given, and how are changes in the size of the composite value handled? Most popular languages use indices that start at zero. Zero-based array indexes simplify index calculations and are easier for a language inventor to implement, but they are less intuitive for new programmers. Some languages use 1-based indices or allow the programmer to specify a range of indices starting at an arbitrary integer other than 0.

			Regarding changes in size, some languages allow no changes in size at all in their array types, or they make the programmer jump through hoops to build new arrays of different sizes based on existing arrays. Other languages are engineered to make adding values to an array a cheap and easy operation. No one design is perfect for all applications, so you just pick one and live with the consequences, support multiple array-like data types for different purposes, or design a very clever type that accommodates a range of common uses well.

			Besides arrays, you should think about what other composite types you need. Almost all languages support a record, struct, or class type for grouping values of several different types together and accessing them by names called fields. The more elaborate you get with this, the more complex your language implementation will be. If you need proper object orientation in your language, be prepared to pay for it in time spent writing your compiler and runtime code. As a designer, the warning is to keep it simple, but as a programmer, I would not want to use a programming language that did not give me this capability in some form.

			You might be able to think of several other composite types that are essential for your language, which is great, especially if they will be used a lot in the programs that you care about. I will talk about one more composite type that is of great practical value: the (hash) table data type, also commonly called a dictionary type. A table type is something halfway in-between an array and a record type. You index values using names, and these names are not fixed; new names can be computed while the program runs. Any modern language that omits this type is just leaving many of its prospective users out. For this reason, your language may want to include a table type. Composite types are general-purpose "glue" that's used to assemble complex data structures, but you should also consider whether some special-purpose types, either atomic or composite, belong in your language to support applications that are difficult to write in general-purpose languages.

			Domain-specific types

			Besides whatever general-purpose atomic and composite types you decide to include, you should think about whether your programming language is aimed at a domain-specific niche; if so, what data types can your language include to support that domain? There is a smooth continuum between domain-specific languages that provide domain-specific types and control structures and general-purpose languages such as C++ and Java, which provide libraries for everything. Class libraries are powerful, but for some applications and domains, the library approach may be more complex and bug-prone than a language expressly designed to support the domain. For example, Java and C++ have string classes, but they do not support complex text-processing applications better than languages that have special-purpose types and control structures for string processing. Besides data types, your language design will need an idea of how programs are assembled and organized.

			Overall program structure

			When looking at the overall program structure, we need to look at how entire programs are organized and put together, as well as the lightning rod question of how much nesting is in your language. It almost seems like an afterthought, but how and where will the source code in programs begin executing? In languages based on C, execution starts from a main() function, while in scripting languages, the source code is executed as it is read in, so there is no need for a main() function to start the ball rolling.

			Program structure also raises the basic question of whether a whole program must be translated and run together, or if different packages, classes, or functions can be separately compiled and then linked and/or loaded together for a program to run. A language inventor can dodge a lot of implementation complexity by either building things into the language (if it is built-in, there is no need to figure out linking) requiring the whole program's source code to be presented at runtime, or by generating code for some well-known standard execution format where someone else's linker and loader will do all the hard work.

			Perhaps the biggest design question relating to the overall program structure is which constructs may be nested, and what limits on nesting are present, if any. This is perhaps best illustrated by an example. Once upon a time, two obscure languages were invented around 1970 that struggled for dominance: C and Pascal.

			The C language was almost flat – a program was a set of functions linked together, and only relatively small (fine-grained) things could be nested: expressions, statements, and, reluctantly, struct definitions.

			In contrast, the Pascal language was fabulously more nested and recursive. Almost everything could be nested. Notably, functions could be embedded within functions, arbitrarily deep. Although C and Pascal were roughly equivalent in power, and Pascal had a bit of a head start and was by far the most popular in university courses, C eventually won. Why? It turns out that nesting adds complexity without adding much value. Or maybe just because of American corporate power.

			Because C won, many modern mainstream languages (I am thinking especially of C++ and Java here) started almost flat. But over time, they have added more and more nesting. Why is this? Either because hidden Pascal cultists lurk among us, or because it is natural for programming languages to add features over time until they are grossly over-engineered. Niklaus Wirth saw this coming and advocated for a return to smallness and simplicity in software, but his pleas largely fell on deaf ears, and his languages support lots of nesting in them.

			What is the practical upshot for you, as a budding language designer? Don't over-engineer your language. Keep it as simple as possible. Don't nest things unless they need to be nested. And be prepared to pay (as a language implementor) every time you ignore this advice!

			Now, it's time to draw a few language design examples from Jzero and Unicon. In the case of Jzero, since it is a subset of Java, the design is either a big nothing-burger (we use Java's design) or it is subtractive: what do we take away from Java to make Jzero, and what will that look and feel like? Despite early efforts to keep it small, Java is a large language. If, as part of our design, we make a list of everything that is in Java that is not in Jzero, it will be a long list.

			Due to the constraints of page space and programming time, Jzero must be a pretty tiny subset of Java. However, ideally, any legal Java program that is input to Jzero would not fail embarrassingly – it would either compile and run correctly, or it would print a useful explanatory message explaining what Java feature(s) are being used that Jzero does not support. So that you can easily understand the rest of this book, as well as to help keep your expectations to a manageable size, the next section will cover additional details regarding what is in Jzero and what is not.

			Completing the Jzero language definition

			In the previous chapter, we listed the requirements for the language that will be implemented in this book, and the previous section elaborated on some of its design considerations. For reference purposes, this section will describe additional details regarding the Jzero language. If you find any discrepancies between this section and our Jzero compiler, then they are bugs. Programming language designers use more precise formal tools to define various aspects of a language; notations for describing lexical and syntax rules will be presented in the next two chapters. This section will describe the language in layman's terms.

			A Jzero program consists of a single class in a single file. This class may consist of multiple methods and variables, but all of them are static. A Jzero program starts by executing a static method called main(), which is required. The kinds of statements that are allowed in Jzero are assignment statements, if statements, while statements, and invocation of void methods. The kinds of expressions that are allowed in a Jzero program include arithmetic, relational, and Boolean logic operators, as well as the invocation of non-void methods.

			The Jzero language supports the boolean, char, int, and long atomic types. The int and long types are equivalent 64-bit integer data types.

			Jzero also supports arrays. Jzero supports the String, InputStream, and PrintStream class types as built-ins, along with subsets of their usual functionality. Jzero's String type supports the concatenation operator and the charAt(), equals(), length(), and substring(b,e) methods. The String class's valueOf() static method is also supported. Jzero's InputStream type supports read() and close() methods, while Jzero's PrintStream type supports the print(), println() and close() methods.

			With that, we have defined the minimal features necessary to write basic computations in a toy language resembling Java. It is not intended to be a real language. However, you are encouraged to extend the Jzero language with additional features that we didn't have room for in this book, such as floating-point types and user-defined classes with non-static class variables. Now, let's see what we can observe about language design by looking at one aspect of the Unicon language.

			Case study – designing graphics facilities in Unicon

			Unicon's graphics are concrete and non-trivial in size. The design of Unicon's graphics facilities is a real-world example that illustrates some of the trade-offs in programming language design. Most programming languages don't feature built-in graphics (or any built-in input/output), instead relegating all input/output to libraries. The C language certainly performs input/output via libraries, and Unicon's graphics facilities are built on top of C language APIs. When it comes to libraries, many languages emulate the lower-level language they are implemented in (such as C or Java) and attempt to provide an exact 1:1 translation of the APIs of the implementation language. When higher-level languages are implemented on top of lower-level languages, this approach provides full access to the underlying API, at the cost of lowering the language level when using those facilities.

			This wasn't an option for Unicon for several reasons. Unicon's graphics were added via two separate large additions to the language: first 2D, and then 3D. We will consider their design issues separately. The next section describes Unicon's 2D graphics facilities.

			Language support for 2D graphics

			Unicon's 2D facility was the last major feature to be introduced to the Icon language before it was frozen. The design emphasized minimizing the surface changes to the language syntax because a large change would have been rejected. The only surface changes were the addition of several keywords denoting special values in the graphics system. Keywords in Unicon look like variable names with an ampersand preceding them.

			Adding 19 keywords helps make the graphics facilities feel like they belong in a language known mainly for its string processing. You might be surprised to learn that graphics output is the easy part; all but one of the keywords are devoted to simplifying the processing of input mouse and keyboard events. 10 of them are integer constants denoting mouse and resize events and are there for convenience; the other eight hold key information about the last event received, and they are updated automatically for each event. Thanks to integer constants, no header file or imports are required to process mouse input. The final, and primary, keyword addition is &window. This keyword holds the default window; all graphics facility functions use this window unless another window value is supplied as an optional first argument.

			It is interesting to compare Unicon's graphics with those provided by the underlying implementation. The underlying C APIs at the time were the X Window System's high-level toolkits (such as HP and Athena widgets) and its lower-level library, Xlib. The high-level toolkits were rejected during prototyping due to their unpredictable behavior and lack of portability at the time. The Xlib library met behavioral and portability requirements, but it was an enormous API calling for many new types (such as a separate struct type for each of dozens of different kinds of events) and had close to a thousand functions.

			Learning Xlib and then programming graphics applications in C using Xlib is an enormously complex task, and the goal for Unicon was to provide a very high-level capability that was easy to use. The most direct influence in support of ease of use was BASIC. Using TRS-80 Extended Color BASIC graphics in the 1970s was far easier than any of the X Window C APIs. For a very high-level language such as Unicon, graphics facilities should be as easy as, and more capable than, those provided by Extended Color BASIC. The requirement to preserve what people love about Icon extends to trying to keep the graphics facility's design consistent with Icon's existing input and output features. Icon's input and output facilities include a file type and built-in functions and operators that perform input and output.

			For Unicon, a single new type ("window") was introduced as a subtype (and extension) of Icon's file data type. A window is an abstraction of perhaps a dozen different Xlib entities in the underlying C code, but it was a single, simple thing for a Unicon programmer to create and draw on. All the existing (text) input/output operations on files were made to work on windows, and then graphics output capabilities were added. The following diagram illustrates some of the underlying C library entities, all rolled into a Unicon window. The leaves of this structure vary somewhat by platform; platform differences are minimized or eliminated at the Unicon level:
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			Figure 2.2 – Internal structure of a Unicon window

			Graphics output capabilities in Unicon are comprised of a set of 40 or so built-in functions for drawing different graphics primitives. The specifics of what gets output depends on many pieces of state, such as an in-memory copy of the window's contents, and abstractions of resources such as fonts and fill patterns. Instead of introducing new types for all these resources, an API for manipulating them using string values was produced. A window was eventually defined to be a pairing of two underlying entities: a canvas and a context.

			Control structures and program organization are major factors when designing language features. When writing graphics programs in C, a programmer is immediately taught (and forced) to give up the control flow to the library and organize their programs as a set of callback functions. These are functions that are called when various events occur. It was not an option to rewrite Unicon's bytecode interpreter around this organization; the bytecode interpreter needs to own the control flow of an instruction's fetch-decode-execute cycle. A multi-threaded solution could be made to work, but threads posed unacceptable portability and performance challenges at the time. Instead, a single-threaded, non-blocking solution was achieved by having the bytecode interpreter check for graphics events every so often, handle common tasks such as repainting the window's contents from the backing store and queuing others for later processing at the Unicon language level, when the application control flow requested it.

			It would have been possible to propagate a C library for 2D graphics up to the Unicon language as-is, but it would not have met language-level and ease-of-use goals. Instead, a high-level data type was introduced, composed of multiple underlying pieces of the C library's state. The maintenance and updating operations that supported that high-level data type were embedded from multiple places within the language's runtime system, achieving an easy-to-use window type in a manner that would be impossible with a strict library approach.

			After several years, 3D graphics hardware support became ubiquitous. The next section describes the design issues surrounding adding 3D graphics to the language.

			Adding support for 3D graphics

			2D graphics were added to Unicon as an extension of the file data type and supported normal file operations such as open, close, read, and write. The fact that there was an associated window in which individual pixels and other graphics primitives could be manipulated was a bonus. Similarly, 3D graphics were added as an extension of 2D graphics. The 3D windows support camera viewing primitives in a 3D space, but they support the same attributes (such as color and fonts) in the same notation as the 2D facilities, as well as provide the same input capabilities and additional graphics output primitives.

			Internally, an OpenGL implementation was required for portable 3D graphics. The OpenGL implementation changed things dramatically, and this was eventually propagated back to the source language level. Where a 2D window's canvas is a 2D array of pixels that can be read and written, a 3D window's canvas includes a display list that is redrawn each frame. OpenGL provided a display list, which was essentially a performance speedup that bundled primitives together for reuse. In Unicon, this display list can be manipulated directly to cause various animation effects, such as changing the size or position of individual primitives. The display list is central to both level of detail (LOD) management and 3D object selection. A control structure was added to mark and name sections of the display list, which can then be enabled/disabled or selected for user input. The underlying OpenGL library does not directly support 3D object selection, which is fundamental to providing users with the ability to interact with objects in a 3D scene.

			This discussion of the design of Unicon's graphics facilities is necessarily incomplete due to space limitations. Initially, in the 2D facilities, the design was intentionally minimalist. Although the result was successful, you can argue that Unicon's graphics facilities should do more. It might be possible, for example, to invent new control structures that simplify graphics output operations even further. In any case, this design discussion should give you some idea of the issues that may come up when adding support for a new domain to an existing language.

			Summary

			This chapter presented some of the issues involved in language design. The skills you acquired from this chapter include those surrounding lexical design, including creating literal constant notations for data types; syntax design, including operators and control structures; and program organization, including deciding how and where to start execution.

			The reason you should spend some time on your design is that you will need a good idea of what your programming language will do in order to implement it. If you defer design decisions until you must implement them, mistakes will cost you more at that time. Designing your language includes what data types it supports, ways to declare variables and introduce values, control structures, and the syntax needed to support code at different levels of granularity, from individual instructions to whole programs. Once you have finished or think you have finished, it is time to code, beginning with a function for reading the source code, which is the focus of the next chapter.

			Questions

			
					Some programming languages do not have any reserved words at all, but most popular mainstream languages have several dozen. What are the advantages and disadvantages of adding more reserved words to a language?

					The lexical rules for literal constants are often the largest and most complex rules in a programming language's lexical specification. Give examples of how even something as simple as integer literals can become quite a challenge to the language implementer.

					Semicolons are often used to either terminate statements or separate adjacent statements from each other. In many popular mainstream languages, the single most common syntax error is a missing semicolon. Describe one or more ways that semicolons can be made unnecessary in a programming language's syntax.

					Many programming languages define a program as starting from a function named main(). Java is unusual in that although execution starts from main(), every class can have its own main() procedure that is another way to start the program. Is there any value to this odd program organization?

					Most languages feature automatic, pre-opened files for standard input, standard output, and error messages. On modern computers, however, these pre-opened files may have no meaningful mapping, and a program is more likely to utilize a pre-opened standard network, database, or graphics window resource. Explain whether this proposition is practical and why.

			

		

	
		
			Chapter 3: Scanning Source Code

			The first step in any programming language is reading the individual characters of input source code and figuring out which characters are grouped. In a natural language, this would include looking at the adjacent sequences of letters to identify the words. In a programming language, clusters of characters form variable names, reserved words, or sometimes operators or punctuation marks that are several characters long. This chapter will teach you how to use pattern matching to read in source code and identify the words and punctuation from the raw characters.

			In this chapter, we're going to cover the following main topics:

			
					Lexemes, lexical categories, and tokens

					Regular expressions

					Using UFlex and JFlex

					Writing a scanner for Jzero

					Regular expressions are not always enough

			

			First, let's look at the several kinds of words that appear in program source code. Just as a natural language reader must distinguish the nouns from the verbs and adjectives to understand what a sentence means; your programming language must categorize each entity in the source code to determine how it is to be interpreted.

			Technical requirements

			This chapter will take you through some real technical content. To follow along, you will need to install some tools and download the examples. Let's start by taking a look at how to install UFlex and JFlex.

			UFlex comes with Unicon and requires no separate installation. You can download this book's examples from our GitHub repository: https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch3.

			The Code in Action video for the chapter can be found here: https://bit.ly/3Fnn2c2

			For JFlex, download jflex-1.8.2.tar.gz (or newer) from http://jflex.de/download.html. You will have to decompress it from a .tar.gz file into a .tar file with gunzip, and then extract the files from the .tar file with tar. It will extract itself into a subdirectory under the directory where you run tar.

			For example, you will see a subdirectory named jflex-1.8.2. On Windows, wherever you extract JFlex, if you do not move your JFlex installation into C:\JFLEX, you will need to set a JFLEX_HOME environment variable to where you install it, and you will also want to put your JFLEX\bin directory in your PATH. On Linux, you can add your JFLEX/bin directory to your PATH or create a symbolic link to the JFLEX\bin\jflex script.

			If you unpacked JFlex in /home/myname/jflex-1.8.2, you can make a symbolic link from /usr/bin/jflex to the untarred /home/myname/jflex-1.8.2/bin/jflex script:

			sudo ln -s /home/myname/jflex-1.8.2/bin/jflex /usr/bin/jflex

			Previously, we mentioned that the examples in this book will be delivered in both Unicon and Java in a parallel translations model. There is not enough horizontal space on a printed page to show the code side by side. Instead, the Unicon example will be given first, followed by the corresponding Java code. Usually, the Unicon code constitutes good executable pseudocode that we can base the Java implementation on. Now that you have UFlex and/or JFlex installed and ready to go, it is time to discuss what we are doing. Then, we will talk about how to use UFlex and JFlex to generate the scanner code.

			Lexemes, lexical categories, and tokens

			Programming languages read characters and group adjacent characters together when they are part of the same entity in the language. This can be a multi-character name or reserved word, a constant value, or an operator.

			A lexeme is a string of adjacent characters that form a single entity. Most punctuation marks are lexemes unto themselves, in addition to separating what came before from what comes after them. In reasonable languages, whitespace characters such as spaces and tabs are ignored other than to separate lexemes. Almost all languages also have a way of including comments in the source code, and comments are typically treated the same as whitespace: they can be the boundary that separates two lexemes, but they are discarded and not considered further.

			Each lexeme has a lexical category. In natural languages, lexical categories are called parts of speech. In a programming language implementation, the lexical category is generally represented by integer code and used in parsing. Variable names are a lexical category. Constants are at least one category; in most languages, there are several different categories for different constant data types. Most reserved words get their own category because they are allowed in distinct places in the syntax; in a lot of grammars, they will all be given their own category. Similarly, operators usually get at least one category per precedence level, and often, each operator will be given its own category. A typical programming language has between 50 and 100 different lexical categories, which is a lot more than the number of parts of speech attributed to most natural languages.

			The bundle of information that a programming language gathers for each lexeme that it reads in the source code is called a token. Tokens are typically represented by a struct (pointer) or an object. The fields in the token include the following:

			
					The lexeme (a string)

					The category (an integer)

					Filename (a string)

					Line number (an integer)

					Possibly other data

			

			When reading books about programming languages, you may find that some authors will use the word token in various ways to mean the string (lexeme), the integer category, or the struct/object (token), depending on context. With the vocabulary of lexemes, categories, and tokens in hand, it is time to look at the notation that is used to associate sets of lexemes with their corresponding categories. Patterns in this notation are called regular expressions.

			Regular expressions

			Regular expressions are the most widely used notations for describing patterns of symbols within files. They are formulated from very simple rules that are easy to understand. The set of symbols over which a set of regular expressions are written is called the alphabet. For simplicity, in this book, the values 0-255 that can be held in one byte will be our alphabet for reading source code.

			In some sets of input symbols, regular expressions are patterns that describe sets of strings using the members of the input symbol set and a few regular expression operators. Since they are a notation for sets, terminology such as member, union, or intersection applies when talking about the sets of strings that regular expressions can match. We will look at the rules for building regular expressions in this section, followed by examples.

			Regular expression rules

			This book will show only those operators that are needed for examples. This will be a practical superset of the regular expressions that theory books say are all that is needed; having a practical subset of the operators found in some tools' regular expression implementations is overkill. The rules of regular expressions we will consider are as follows. After the first rule, the rest are all about chaining regular expressions together into larger regular expressions that match more complicated patterns.

			
					Any symbol, such as a from the alphabet, is a regular expression that matches that symbol. The usual escape symbol, the backslash (\), turns an operator into a regular expression that just matches that operator symbol.

					Parentheses may be placed around a regular expression, (r), so that it matches the same thing as r. This is used to force operator precedence of the regular expression operators inside the parenthesis so that they're applied before operators outside the parentheses.

					When two regular expressions, re1 and re2, are adjacent, the resulting pattern, re1 re2, matches an instance of the left regular expression, followed by an instance of the right regular expression. This is called concatenation and it is sneaky because it is an invisible or implicit operator. An arbitrary string enclosed in double quotes is that sequence of characters, concatenated. Regular expression operators do not apply inside double quotes, and the usual escape sequences such as \n can be used.

					Any two regular expressions, re1 and re2, can have a vertical bar placed between them to create a regular expression, re1 | re2, that matches a member of either re1 or re2. This is called alternation because it allows either alternative. Square brackets are used as a special shorthand for regular expressions composed of lots of vertical bar operators: [abcd] is equivalent to (a|b|c|d), either a or b or c or d. The shorthand also has shorthand: the [a-d] regular expression is an even shorter equivalent of (a|b|c|d), while the [^abcd] regular expression means any one character that is neither a nor b nor c nor d. A useful shorthand for the shorthand of the shorthand is the period character, or dot (.). The period, or dot character, ., is equivalent to [^\n] and matches any character except a newline.

					Any regular expression, re, can be followed by an asterisk, or star operator. The re* regular expression matches zero or more occurrences of the re regular expression. Similarly, any regular expression can be followed by a plus sign. The re+ regular expression matches one or more occurrences of that regular expression.

			

			These rules do not say anything about whitespace in regular expressions, or comments. Programming languages have these things, but they are not part of regular expression notation! If you need a space character as part of the pattern you are matching, sure, you can escape one, or put it in double-quotes or square brackets. But if you see a comment or a space that is not escaped in a regular expression, it is a bug. If you want to insert whitespace into a regular expression just to make it more pretty, you can't. If you need to write a comment to explain what a regular expression is doing, you are probably making your regular expression too complicated; regular expressions are supposed to be self-documenting. If yours are not, you should stop what you are doing, go home, and rethink your life.

			Despite my argument of keeping things simple, the five simple rules for forming regular expressions can be combined in various ways to form powerful patterns that match very interesting sets of strings. Before we dive into the lexical analyzer generator tools that use them, we'll look at some additional examples that will give you a feel for some of the kinds of patterns that can be described by regular expressions.

			Regular expression examples

			Regular expressions are easy once you have written a few of them. Here are some that could conceivably be used in your scanner:

			
					The while regular expression is a concatenation of five regular expressions, one for each letter: w, h, i, l, and e. It matches the "while" string.

					The "+"|"-"|"*"|"/" regular expression matches a string of length one that is either a plus, a minus, an asterisk, or a slash. Double quotes are used to ensure that none of these punctuation marks are interpreted as a regular expression operator. You could specify the same pattern as [+\-*/]. Regular expression operators such as * do not apply inside square brackets, but characters such as minus or caret that have special interpretations inside square brackets must be escaped with a backslash.

					The [0-9]*\.[0-9]* regular expression matches zero or more digits, followed by a period, followed by zero or more digits. The dot is escaped because otherwise, it would mean any character other than a new line. Although this pattern looks like a good effort at matching real numbers, it allows the dot to be there without any digits on either side! You will have to do better than this. It is pretty cumbersome, I admit, to say ([0-9]+\.[0-9]*|[0-9]*\.[0-9]+), but at least you know that token will be a number of some kind.

					The "\""[^"]*"\"" regular expression matches a double quote character, followed by zero or more occurrences of any character that is not a double quote character, followed by a double quote character. This is a typical newbie attempt at a regular expression for string constants. One thing that is wrong with it is it allows newlines in the middle of the string, which most programming languages do not allow. Another problem with it is that it has no way to put a double quote character inside a string constant. Most programming languages will provide an escape mechanism that allows this. Once you start allowing escaped characters, you must be very specific about them. To just allow escaped double quotes, you might write "\""([^"\\\n]|\\")*"\"" . A more general version for a language such as C might look closer to "\""([^\\\n]|\\([abfnrtv\\?0]|[0-7][0-7][0-7]|x[0-9a-fA-F][0-9a-fA-F]))*"\"".

			

			These examples show that regular expressions range from trivial to gigantic. Regular expressions are something of a write-only notation – much harder to read than to write. Sometimes, if you get your regular expression wrong, it may be easier to rewrite it from scratch than to try and debug it. Having looked at several examples of regular expressions, it is time to learn about the tools that use regular expression notation to generate scanners for reading source code, namely UFlex and JFlex.

			Using UFlex and JFlex

			Writing a scanner by hand is an interesting task for a programmer who wants to know exactly how everything works, but it will slow down the development of your language and make it more difficult to maintain the code afterward.

			Good news, everyone! A family of tools descended from UNIX, known as lex, takes regular expressions and generates a scanner function for you. Lex-compatible tools are available for most popular programming languages. For C/C++, the most widely used lex-compatible tool is Flex, hosted at https://github.com/westes/flex/. For Unicon, we use UFlex, while for Java, you can use JFlex. These tools may have various custom extensions, but to the extent that they are compatible with UNIX lex, we can present them together as one language for writing scanners. This book's examples have been crafted carefully so that we can even use the same lex input for both the Unicon and Java implementation!

			The input files for lex are often called (lex) specifications. They use the.l extension and consist of several sections, separated by %%. This book refers generically to lex specifications, meaning the input file provided to either UFlex or JFlex, and for the most part, those files would also be valid input for C Flex.

			There are required sections in a lex specification: a header section followed by a regular expression section, and an optional helper functions section. JFlex adds an imports section to the front because Java needs imports and needs separate places to insert code fragments before the class and inside the class definition. The lex header section and the regular expression section are the sections you need to know about right now. We will start by looking at the header section.

			Header section

			Most Flex tools have options you can enable in the header section; they vary, and we will only cover them if we use them. You can also include bits of host language code there, such as variable declarations. But the main purpose of the header section is to define named macros for patterns that may appear multiple times in the regular expression section. In lex, these named macros are on single lines of the following form:

			name        regex

			On a macro line, name is a sequence of letters, and then there are one or more spaces, and then there is a regular expression. Later, in the regular expressions section, these macros may be substituted into a regular expression by surrounding the name with curly braces; for example, {name}. The most common error newbies make with lex macros is to try and insert a comment after the regular expression, so don't do that. The lex language does not support comments on these lines and will try to interpret what you write as part of the regular expression.

			In a kind of epic tragedy, JFlex breaks compatibility and requires an equals sign after the name, so its macros are like this:

			name=regex

			This incompatibility with UNIX lex is egregious enough that we elected not to use macros in this book. While writing this book, we extended UFlex to handle macros with either syntax. If you add some macros, then the code here can be shortened a little. Without macros, your header section will be almost empty, so let's look at the next part of the lex specification: the regular expressions section.

			Regular expressions section

			The primary section of a lex specification is the regular expression section. Each regular expression is given on a line by itself, followed by some whitespace, followed by a semantic action consisting of some host language code (in our case, Unicon or Java) to execute when that regular expression has been matched. Note that although each regular expression rule starts on a new line, if the semantic action uses curly braces to enclose a statement block in the usual way, it can span multiple lines of source code and lex will not start looking for the next regular expression until it finds the matching closing curly brace.

			The most common mistake that newbies make in the regular expression section is that they try to insert spaces or comments in the regular expression to improve readability. Don't do that; inserting a space into the middle of the regular expression cuts off the regular expression at the space, and the rest of the regular expression is interpreted as being host language code. You can get some cryptic error messages when you do this.

			When you run UNIX lex, which is a C tool, it generates a function called yylex() that returns an integer category for each lexeme; global variables are set with other useful bits of information. An integer, called yychar, holds the category; a string, called yytext, holds the characters that were matched for the lexeme; and yyleng tells us how many characters were matched. Lex tools vary in their compatibility with this public interface and some tools will compute more for you automatically. For example, JFlex must generate the scanner within a class and provides yytext() using a member function. Programming languages certainly will want more details, such as what line number the token came from. Now, it is time to work our way through examples that get us there.

			Writing a simple source code scanner

			This example lets you check whether you can run UFlex and JFlex. It also helps to establish to what extent their use is similar or dissimilar. The example scanner just recognizes names and numbers and whitespace; the nnws.l filename will be used for the lex specification. The first thing you must do when reading source code is identify the category of each lexeme and return what category was found. This example returns a 1 for a name and a 2 for a number. Whitespace is discarded. Anything else is an error.

			The body of nnws.l is given in this section. This specification will work as input for both UFlex and JFlex. Since the semantic actions for UFlex are Unicon code and for JFlex they are Java code, this requires some restraint. A semantic action will be legal in both Java and Unicon, but only if you limit the semantic action code to their common syntax, such as method calls and return expressions. If you start inserting if statements or assignments and language-specific syntax, your lex specification will become specific to one host language, such as Unicon or Java.

			Even this short example contains some ideas we will need later. The first two lines are for JFlex and are ignored by UFlex. The initial %% ends an empty JFlex import section. The second line is a JFlex option in the header section. By default, JFlex's yylex() function returns an object of the Yytoken type, and the %int option tells it to return type integer. The third line that starts with %% transitions us directly into the regular expressions section. On the fourth line, the [a-zA-Z]+ regular expression matches one or more lowercase or uppercase letters; it matches as many adjacent letters as it can find and returns a 1. As a byproduct, the characters matched will be stored in the yytext variable. On the fifth line, the [0-9]+ regular expression matches as many digits as it can find and returns a 2. On the sixth line, whitespace is matched by the [ \t\r\n]+ regular expression, and nothing is returned; the scanner keeps on going into the input file looking for its next lexeme by matching some other regular expression. You probably know the other whitespace besides the actual space character inside the square brackets, but \t is a tab character, \r is a carriage return character, and \n is a newline. The dot (.) on the seventh line will match any character other than the newline, so it will catch any source code that was not allowed in any of the previous patterns and report an error in that case. Errors are reported using a function named lexErr() for reporting lexical errors, in an object named simple. We will need additional error reporting functions for later phases of our compiler:

			%%

			%int

			%%

			[a-zA-Z]+  { return 1; }

			[0-9]+     { return 2; }

			[ \t\r\n]+ {  }

			.          { simple.lexErr("unrecognized character"); }

			This specification will be called from a main() function, once for each word in the input. Each time it is called, it will match the current input against all the regular expressions (four, in this case) and select whichever regular expression will match the most characters at the current location. If two or more regular expressions tie for the longest match, whichever one appears first in the specification file wins.

			Various lex tools can provide a default main() function, but for full control, you should write your own. Writing our own main() also allows the sample example to demonstrate how to call yylex() from a separate file. You will need to be able to do that to hook your scanner up to the parser in the next chapter.

			The main() function varies by language. Unicon has a C++-style program organization model where main() starts outside of any object, while Java artificially places main() functions inside of classes, but otherwise, the Unicon and Java code have many similarities.

			The Unicon implementation of the main() function can be put in any filename with Unicon's .icn extension; let's call this one simple.icn. This file contains a main() procedure and a singleton class called simple that is only needed because in nnws.l, we called a lexical error helper function in a Java-compatible way; that is, simple.lexErr(). The main() procedure initializes the simple class by replacing the class constructor function with a single instance returned by that function. main() then opens the input file from a name given in the first command-line argument. The lexical analyzer is informed of what file to read by yyin. The code then calls yylex() in a loop until the scanner has finished:

			procedure main(argv)

			   simple := simple()

			   yyin := open(argv[1])

			   while i := yylex() do

			      write(yytext, ": ", i)

			end

			class simple()

			   method lexErr(s)

			      stop(s, ": ", yytext)

			   end

			end

			The corresponding Java main() must be put in a class, and the filename must be the class name with a .java extension appended. We'll call this one simple.java. It opens a file by creating a FileReader object and attaches it to the lexical analyzer by passing the FileReader object as a parameter when it creates a lexical analyzer Yylex object. Because FileReader can fail, we have to declare that main() throws an exception. After constructing the Yylex object, main() then calls yylex() over and over again until the input is exhausted, as denoted by the Yylex.YYEOF sentinel value returned from yylex(). Despite being a bit longer, main() is doing the same thing as in the Unicon version. Compared to Unicon's simple class, the Java version has an extra proxy method, yytext(), so that other functions in the simple class or the rest of the compiler can access the most recent lexeme string without having a reference to the simple class's Yylex object:

			import java.io.FileReader;

			public class simple {

			   static Yylex lex;

			   public static void main(String argv[]) throws Exception{

			      lex = new Yylex(new FileReader(argv[0]));

			      int i;

			      while ((i=lex.yylex()) != Yylex.YYEOF) 

			         System.out.println("token "+ i +": "+ yytext());

			   }

			   public static String yytext() {

			      return lex.yytext();

			   }

			   public static void lexErr(String s) {

			      System.err.println(s + ": " + yytext());

			      System.exit(1);

			   }

			}

			This simple scanner is intended mainly to show you how the plumbing is all wired together. To ensure that that plumbing works as intended, we had better run it and find out.

			Running your scanner

			Let's run this example on the following (trivial) input file, named dorrie.in:

			Dorrie is 1 fine puppy

			Before you can run this program, you must compile it. UFlex and JFlex write out Unicon and Java code that is called from the rest of your programming language, which is written either in Unicon or Java. If you are wondering what the compilation looks like, it is shown in the following diagram. In Unicon, the two source files are compiled and linked together into an executable file named simple. In Java, the two files are compiled into separate .class files; you run Java on the simple.class file where the main() method lives, and it loads others as needed:
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			Figure 3.1 – nnws.l used to build both the Unicon (left) and Java (right) programs

			You can compile and run the program in either Unicon or Java by using the left column or the right column, as shown here:

			uflex nnws.l                 jflex nnws.l

			unicon simple nnws           javac simple.java Yylex.java

			simple dorrie.in             java simple dorrie.in

			From either implementation, the output that you should see is the five lines shown here:

			token 1: Dorrie

			token 1: is

			token 2: 1

			token 1: fine

			token 1: puppy

			So far, all the example does is categorize groups of input characters using a regular expression to identify what kind of lexeme has been found. For the rest of the compiler to work, we will need more information about that lexeme, which we will store in a token.

			Tokens and lexical attributes

			In addition to identifying what integer category each lexeme belongs to, the rest of the programming language implementation (in our case, the compiler) requires the scanner to allocate an object that holds all the associated information about the lexeme. This object is called a token.

			A token holds a group of named fields, called lexical attributes. The pieces of information that must be recorded about a given lexeme will depend on the language and implementation. Tokens will normally track the integer category, the string lexeme, and what line number the token came from. In a real compiler, tokens usually contain additional information about the lexeme. This is likely to include the filename and the column within the line where the lexeme occurred. For some tokens (literal constants), a compiler or interpreter may find it useful to store the actual binary value represented by that literal.

			You might be wondering why you should store what column a token came from on a line. Given the lexeme text itself, you can usually see it easily enough by just looking at the line of source code, and most compilers only give line numbers when they report errors, not column numbers. In truth, not all programming language implementations store column numbers in their lexical attributes. The ones that do, however, can disambiguate errors when the same token appears more than once on a line: is the error at the first closing parenthesis, or the third? You can leave it to the human to guess, or you can record the extra details. Whether you elect to store column information or not might also depend on whether your lexical analyzer will be used in an IDE that jumps the cursor to the offending token when an error occurs. If that is among your requirements, you will need column information to ensure that that feature is correct.

			Expanding our example to construct tokens

			A new token instance is allocated for each call to yylex(). In lex, tokens are transmitted to the parser by placing a pointer to the new instance in a global variable named yylval each time yylex() is called. As a transition toward a real programming language scanner, we will extend the example given previously so that it allocates these token objects. The most elegant and portable way of doing that is to insert a function called scan() into the semantic actions; the scan() function allocates the token objects and then (usually) returns its parameter, which is the integer category code in the previous example.

			A lex specification to do this can be found in the nnws-tok.l file. Fascinatingly, in JFlex, a carriage return character is neither part of a newline, nor part of the anything-but-newline dot operator, so if you use JFlex, you must account for carriage returns explicitly. In this example, they are optional in front of new lines:

			%%

			%int

			%%

			[a-zA-Z]+  { return simple2.scan(1); }

			[0-9]+     { return simple2.scan(2); }

			[ \t]+     {  }

			\r?\n      { simple2.increment_lineno(); }

			.          { simple2.lexErr("unrecognized character"); }

			The revised main() procedure in Unicon is shown in the following simple2.icn. The scan() function depends on a global variable called yylineno that is set from main() and updated in yylex() every time a newline is matched. As per the previous example, the simple2 class is a singleton class that is here so that the lex specification can work unchanged for both Unicon and Java. The representation of tokens is defined by a Unicon record type, which is like a struct in C/C++ or a class with no methods. So far, it only contains the integer category code, the lexeme string itself, and what line number it came from:

			global yylineno, yylval

			procedure main(argv)

			   simple2 := simple2()

			   yyin := open(argv[1]) | stop("usage: simple2 filename")

			   yylineno := 1

			   while i := yylex() do

			      write(yytext, " (line ",yylval.lineno, "): ", i)

			end

			class simple2()

			   method lexErr(s)

			      stop(s, ": line ", yylineno, ": ", yytext) 

			   end

			   method scan(cat)

			      yylval := token(cat, yytext, yylineno)

			      return cat

			   end

			   method increment_yylineno()

			      yylineno +:= 1

			   end

			end

			record token(cat, text, lineno)

			The corresponding Java main() in the simple2.java file looks like this:

			import java.io.FileReader;

			public class simple2 {

			   static Yylex lex;

			   public static int yylineno;

			   public static token yylval;

			   public static void main(String argv[]) throws Exception {

			      lex = new Yylex(new FileReader(argv[0]));

			      yylineno = 1;

			      int i;

			      while ((i=lex.yylex()) != Yylex.YYEOF) 

			         System.out.println("token "+ i +                  " (line " +yylval.lineno + "): "+ yytext());

			   }

			   public static String yytext() {

			      return lex.yytext();

			   }

			   public static void lexErr(String s) {

			      System.err.println(s + ": line " + yylineno +           ": " + yytext());

			      System.exit(1);

			   }

			   public static int scan(int cat) {

			      yylval = new token(cat, yytext, yylineno);

			      return cat;

			   }

			   public static void increment_lineno() {

			      yylineno++;

			   }

			}

			Another Java file is required for the simple2 example. The token.java file contains our representation of the class token. This class token will be expanded in the next section:

			public class token {

			   public int cat;

			   public String text;

			   public int lineno;

			   public token(int c, String s, int l) {

			      cat = c; text = s; lineno = l;

			   }

			}

			The following input file, dorrie2.in, has been extended to multiple lines and has a period added so that we can see the line number when unrecognized characters are reported:

			Dorrie

			is 1

			fine puppy.

			You can run the program in either Unicon or Java, as follows:

			uflex nnws-tok.l              jflex nnws-tok.l

			                              javac token.java

			unicon simple2 nnws-tok       javac simple2.java Yylex.java

			simple2 dorrie2.in            java simple2 dorrie2.in

			From either implementation, the output that you should see is as follows:

			token 1 (line 1): Dorrie

			token 1 (line 2): is

			token 2 (line 2): 1

			token 1 (line 3): fine

			token 1 (line 3): puppy

			unrecognized character: line 3: .

			The output from this example includes line numbers, and the input file includes an unrecognized character so that we can see that the error message includes a line number as well.

			Writing a scanner for Jzero

			In this section, we will build a scanner for Jzero, our subset of the Java language. This extends the previous simple2 example to a realistic language size and adds column information, as well as additional lexical attributes for literal constants. The big change is the introduction of many regular expressions for more complex patterns than what we've seen previously. The entire Java language is recognized, but a significant fraction of Java categories cause executions to terminate with an error so that our grammar in the next chapter, along with the rest of the compiler, does not have to consider them.

			The Jzero flex specification

			Compared to the previous examples, a real programming language lex specification will have a lot more, and more complicated, regular expressions. The following file is called javalex.l and it will be presented in several pieces.

			The beginning of javalex.l includes the header and the regular expressions for comments and whitespace. These regular expressions match and consume characters from the source code without returning integer code for them; they are invisible to the rest of the compiler. As a subset of Java, Jzero includes both C-style comments bounded by /* and */ as well as C++-style comments starting with // that go to the end of the line. The regular expression for C comments is a whopper; if your language has any patterns like this, it is very easy and common to get them wrong. It reads as: start with a /* and then eat chunks of non-asterisk characters or asterisks so long as they don't end the comment, and finish when you find asterisk(s) followed by a slash:

			%%

			%int

			%%

			"/*"([^*]|"*"+[^/*])*"*"+"/" { j0.comment(); }

			"//".*\r?\n                  { j0.comment(); }

			[ \t\r\f]+                   { j0.whitespace(); }

			\n                           { j0.newline(); }

			The next part of javalex.l contains the reserved words, whose regular expressions are trivial. Since these words are common in semantic actions, use double quotes to emphasize that they are just the characters themselves and that you are not accidentally looking at some semantic action code. Many of the integer category codes here are accessed from the parser class, specified in a separate file. In the remaining chapters of this book, the integer codes are specified by the parser. The lexical analyzer must use the parser's codes for these two phases of the compiler to communicate successfully.

			You might be wondering, why use separate integer category code for each reserved word? You only need separate category code for each unique role in the syntax. Reserved words that can be used in the same places may use the same integer category code. If you do so, your grammar will be shorter, but you defer their differences to later in semantic analysis and make your grammar a bit vague. An example of this would be true and false; they are syntactically the same kind of thing, so they are both returned as a BOOLLIT. We might find other reserved words, such as the names of types, where we could assign them the same category code. This is a design decision to consider. When in doubt, play it safe and be un-vague by giving each reserved word its own integer:

			"break"                { return j0.scan(parser.BREAK); }

			"double"               { return j0.scan(parser.DOUBLE); } 

			"else"                 { return j0.scan(parser.ELSE); }

			"false"                { return j0.scan(parser.BOOLLIT); }

			"for"                  { return j0.scan(parser.FOR); }

			"if"                   { return j0.scan(parser.IF); }

			"int"                  { return j0.scan(parser.INT); }

			"null"                 { return j0.scan(parser.NULLVAL); }

			"return"               { return j0.scan(parser.RETURN); }

			"string"               { return j0.scan(parser.STRING); }

			"true"                 { return j0.scan(parser.BOOLLIT); }

			"bool"                 { return j0.scan(parser.BOOL); }

			"void"                 { return j0.scan(parser.VOID); }

			"while"                { return j0.scan(parser.WHILE); }

			"class"                { return j0.scan(parser.CLASS); }

			"static"               { return j0.scan(parser.STATIC); }

			"public"               { return j0.scan(parser.PUBLIC); }

			The third part of javalex.l consists of the operators and punctuation marks. The regular expressions are quoted to indicate that they just mean the characters themselves. As with reserved words, in some cases, operators can be lumped together into a shared category code if they appear to have the same operator precedence and associativity. This would make the grammar shorter at the expense of vagueness. Another wrinkle compared to reserved words is that many operators and punctuation marks are only a single character. In that case, it is shorter and more readable to use their ASCII code as their integer category code, so we do. The j0.ord(s) function provides a way to do this that runs on both Unicon and Java. For multi-character operators, a parser constant is defined, as per the reserved words:

			"("              { return j0.scan(j0.ord("(")); }

			")"              { return j0.scan(j0.ord(")")); }

			"["              { return j0.scan(j0.ord("[")); }

			"]"              { return j0.scan(j0.ord("]")); }

			"{"              { return j0.scan(j0.ord("{")); }

			"}"              { return j0.scan(j0.ord("}")); }

			";"              { return j0.scan(j0.ord(";")); }

			":"              { return j0.scan(j0.ord(":")); }

			"!"              { return j0.scan(j0.ord("!")); }

			"*"              { return j0.scan(j0.ord("*")); }

			"/"              { return j0.scan(j0.ord("/")); }

			"%"              { return j0.scan(j0.ord("%")); }

			"+"              { return j0.scan(j0.ord("+")); }

			"-"              { return j0.scan(j0.ord("-")); }

			"<"              { return j0.scan(j0.ord("<")); }

			"<="             { return j0.scan(parser.LESSTHANOREQUAL);}

			">"              { return j0.scan(j0.ord(">")); }

			">="             { return j0.scan(parser.GREATERTHANOREQUAL);}

			"=="             { return j0.scan(parser.ISEQUALTO); }

			"!="             { return j0.scan(parser.NOTEQUALTO); }

			"&&"             { return j0.scan(parser.LOGICALAND); }

			"||"             { return j0.scan(parser.LOGICALOR); }

			"="              { return j0.scan(j0.ord("=")); }

			"+="             { return j0.scan(parser.INCREMENT); }

			"-="             { return j0.scan(parser.DECREMENT); }

			","              { return j0.scan(j0.ord(",")); }

			"."              { return j0.scan(j0.ord(".")); }

			The fourth and final part of javalex.l contains the more difficult regular expressions. The rule for variable names, whose integer category is IDENTIFIER, must come after all the reserved words. The reserved words regular expressions are overriding the far more general identifier regular expression, but only because lex's semantics breaks ties by picking whichever regular expression came first in the lex specification.

			If it will make your code more readable, you can have as many regular expressions as you want, all returning the same integer category. This example uses multiple regular expressions for real numbers, which are numbers with either a decimal point, a scientific notation, or both. After the last regular expression, a catch-all pattern is used to generate a lexical error if some binary or other strange characters appear in the source code:

			[a-zA-Z_][a-zA-Z0-9_]*{ return j0.scan(parser.IDENTIFIER);}

			[0-9]+                { return j0.scan(parser.INTLIT); }

			[0-9]+"."[0-9]*([eE][+-]?[0-9]+)? { return j0.scan                                     (parser.DOUBLELIT);}

			[0-9]*"."[0-9]+([eE][+-]?[0-9]+)? { return j0.scan                                     (parser.DOUBLELIT);}

			 ([0-9]+)([eE][+-]?([0-9]+))  {return j0.scan                                     (parser.DOUBLELIT);}

			\"([^\"])|(\\.)*\"    { return j0.scan(parser.STRINGLIT); }

			.                   { j0.lexErr("unrecognized character");}

			Although it has been split into four portions for presentation here, the javalex.l file is not very long, at around 58 lines of code. Since it works for both Unicon and Java, this is a lot of bang for your coding buck. The supporting Unicon and Java code is non-trivial, but we are letting lex (UFlex and JFlex) do most of the work here.

			Unicon Jzero code

			The Unicon implementation of the Jzero scanner resides in a file named j0.icn. Unicon has a pre-processor and normally introduces defined symbolic constants via $include files. To use the same lex specification in Unicon and Java, this Unicon scanner creates a parser object whose fields, such as parser.WHILE, contain the integer category code:

			global yylineno, yycolno, yylval

			procedure main(argv)

			   j0 := j0()

			   parser := parser(257,258,259,260,261,262,263,264,265,

			                    266, 267,268,269,270,273,274,275,276,

			                    277,278,280,298,300,301,302,303,304,

			                    306,307,256)

			   yyin := open(argv[1]) | stop("usage: simple2 filename")

			   yylineno := yycolno := 1

			   while i := yylex() do

			      write(yytext, ":",yylval.lineno, " ", i)

			end

			The second part of j0.icn consists of the j0 class. Compared to the simple2 class from the previous simple2.icn example, additional methods have been added for the semantic actions to call when various whitespace and comments are encountered. This allows the current column number to be calculated in a global variable called yycolno:

			class j0()

			   method lexErr(s)

			      stop(s, ": ", yytext) 

			   end

			   method scan(cat)

			      yylval := token(cat, yytext, yylineno, yycolno)

			      yycolno +:= *yytext

			      return cat

			   end

			   method whitespace()

			      yycolno +:= *yytext

			   end

			   method newline()

			      yylineno +:= 1; yycolno := 1

			   end

			   method comment()

			      yytext ? {

			         while tab(find("\n")+1) do newline()

			         yycolno +:= *tab(0)

			      }

			   end

			   method ord(s)

			      return proc("ord",0)(s[1])

			   end

			end

			In the third part of j0.icn, the token type has been promoted from a record to a class, because now it has added complexity in its constructor, as well as a method for processing string escape characters and computing the binary representation of string literal constants. In Unicon, the constructor code comes at the end of the method in an initially section.

			The deEscape() method discards leading and trailing double-quote characters and then processes a string literal character by character using Unicon string scanning. Inside the string scanning control structure, s ? { … }, the s string is examined from left to right. The move(1) function grabs the next character from the string and moves the scanning position forward by 1. A longer explanation of string scanning is given in Appendix, Unicon Essentials.

			In the deEscape() method, normal characters are copied over from the sin input string to the sout output string. Escape characters cause one or more characters that follow to be interpreted differently. The Jzero subset only handles tabs and newlines; Java has a lot more escapes that you could add. There is something funny about turning a backslash followed by a "t" into a tab character, but every compiler that you have ever used has had to do something like that:

			class token(cat, text, lineno, colno, ival, dval, sval)

			   method deEscape(sin)

			      local sout := ""

			      sin := sin[2:-1]

			      sin ? {

			         while c := move(1) do {

			            if c == "\\" then {

			               if not (c := move(1)) then

			                  j0.lexErr("malformed string literal")

			               else case c of {

			                  "t":{ sout ||:= "\t" }

			                  "n":{ sout ||:= "\n" }

			                  }

			               }

			            }

			            else sout ||:= c

			         }

			      }

			      return sout

			   end

			initially

			   case cat of {

			     parser.INTLIT:    { ival := integer(text) }

			     parser.DOUBLELIT: { dval := real(text) }

			     parser.STRINGLIT: { sval := deEscape(text) }

			   }

			end

			record parser(BREAK,PUBLIC,DOUBLE,ELSE,FOR,IF,INT,RETURN,VOID,

			            WHILE,IDENTIFIER,CLASSNAME,CLASS,STATIC,STRING,

			            BOOL,INTLIT,DOUBLELIT,STRINGLIT,BOOLLIT,

			            NULLVAL,LESSTHANOREQUAL,GREATERTHANOREQUAL,

			            ISEQUALTO,NOTEQUALTO,LOGICALAND,LOGICALOR,

			            INCREMENT,DECREMENT,YYERRCODE)

			The singleton parser record here looks rather silly to an experienced Unicon programmer who can just $define all these token category names and skip introducing a parser type. If you are a Unicon programmer, just remind yourself that this is for Java compatibility – specifically byacc/j compatibility.

			Java Jzero code

			The Java implementation of the Jzero scanner includes a main class in the j0.java file. It resembles the simple2.java example. It is presented here in four parts. The first part includes the main() function and should be familiar, other than the addition of extra variables such as the yycolno variable, which tracks the current column number:

			import java.io.FileReader;

			public class j0 {

			   static Yylex lex;

			   public static int yylineno, yycolno;

			   public static token yylval;

			   public static void main(String argv[]) throws Exception {

			      lex = new Yylex(new FileReader(argv[0]));

			      yylineno = yycolno = 1;

			      int i;

			      while ((i=lex.yylex()) != Yylex.YYEOF) {

			         System.out.println("token " + i + ": " + 

			             yytext());

			      }

			   }

			The j0 class continues with several helper functions that were seen in previous examples:

			   public static String yytext() {

			      return lex.yytext();

			   }

			   public static void lexErr(String s) {

			      System.err.println(s + ": line " + yylineno +                             ": " + yytext());

			      System.exit(1);

			   }

			   public static int scan(int cat) {

			      last_token = yylval =

			         new token(cat, yytext(), yylineno, yycolno);

			      yycolno += yytext().length();

			      return cat;

			   }

			   public static void whitespace() {

			      yycolno += yytext().length();

			      }

			   public short ord(String s) {return(short)(s.charAt(0));}

			The j0 class's function for handling newline characters in the source code is longer than you might expect. Sure, it increments the line number and sets the column back to 1, but for semicolon insertion, it now includes a switch statement that determines whether to insert a semicolon in place of that newline character or not. The comment-handling method is going character-by-character through the comment to keep the line number and column number correct:

			   public static void newline() {

			      yylineno++; yycolno = 1;

			      if (last_token != null)

			         switch(last_token.cat) {

			            case parser.IDENTIFIER: case parser.INTLIT:

			            case parser.DOUBLELIT: case parser.STRINGLIT:

			            case parser.BREAK: case parser.RETURN:

			            case parser.INCREMENT: case parser.DECREMENT:

			            case ')': case ']': case '}':

			               return true;

			         }

			      return false;

			   }

			   public static void comment() {

			      int i, len;

			      String s = yytext();

			      len = s.length();

			      for(i=0; i<len; i++)

			         if (s.charAt(i) == '\n') {             yylineno++; yycolno=1;

			         }

			         else yycolno++;

			   }

			}

			There is a supporting module named parser.java. It provides a set of named constants, similar to an enumerated type, but it declares the constants directly as short integers so that they're compatible with the iyacc parser, which will be discussed in the next chapter. The integers that are chosen start above 256 because that's where iyacc starts them so that they don't conflict with integer codes of single-byte lexemes that we produce via calls to j0.ord():

			public class parser {

			public final static short BREAK=257;

			public final static short PUBLIC=258;

			public final static short DOUBLE=259;

			public final static short ELSE=260;

			public final static short FOR=261;

			public final static short IF=262;

			public final static short INT=263;

			public final static short RETURN=264;

			public final static short VOID=265;

			public final static short WHILE=266;

			public final static short IDENTIFIER=267;

			public final static short CLASSNAME=268;

			public final static short CLASS=269;

			public final static short STATIC=270;

			public final static short STRING=273;

			public final static short BOOL=274;

			public final static short INTLIT=275;

			public final static short DOUBLELIT=276;

			public final static short STRINGLIT=277;

			public final static short BOOLLIT=278;

			public final static short NULLVAL=280;

			public final static short LESSTHANOREQUAL=298;

			public final static short GREATERTHANOREQUAL=300;

			public final static short ISEQUALTO=301;

			public final static short NOTEQUALTO=302;

			public final static short LOGICALAND=303;

			public final static short LOGICALOR=304;

			public final static short INCREMENT=306;

			public final static short DECREMENT=307;

			public final static short YYERRCODE=256;

			}

			There is also a supporting module named token.java that contains the token class. It has grown to include a column number, and for literal constants, their binary representation is stored in ival, sval, and dval for integers, strings, and doubles, respectively. The deEscape() method, which is used to construct the binary representation of string literals, was discussed in the Unicon implementation of this class. Once again, the algorithm goes character by character and just copies the character unless it is a backslash, in which case it grabs the following character and interprets it differently. You can see the efficacy of the Java String class by comparing this code with the Unicon version:

			public class token {

			   public int cat;

			   public String text;

			   public int lineno, colno, ival;

			   String sval;

			   double dval;

			   private String deEscape(String sin) {

			      String sout = "";

			      sin = String.substring(sin,1,sin.length()-1);

			      int i = 0;

			      while (sin.length() > 0) {

			         char c = sin.charAt(0);

			         if (c == '\\') {

			            sin = String.substring(sin,1);

			            if (sin.length() < 1)

			               j0.lexErr("malformed string literal");

			            else {

			               c = sin.charAt(0);

			               switch(c) {

			               case 't': sout = sout + "\t"; break;

			               case 'n': sout = sout + "\n"; break;

			               default: j0.lexErr("unrecognized escape");

			               }

			             }

			             else sout = sout + c;

			         }

			      }

			      return sout;

			   }

			   public token(int c, String s, int ln, int col) {

			      cat = c; text = s; lineno = ln; colno = col;

			      switch (cat) {

			      case parser.INTLIT:

			         ival = Integer.parseInt(s);

			         break;

			      case parser.DOUBLELIT:

			         dval = Double.parseDouble(s);

			         break;

			      case parser.STRINGLIT:

			         sval = deEscape(s);

			         break;

			      }

			   }

			}

			The token constructor performs the same four assignments; that is, initializing the token fields for all tokens. It then uses a switch statement with branches for three categories of tokens. For literal constant values only, there is an extra lexical attribute that must be initialized. Using Java's built-in Integer.parseInt() and Double.parseDouble() to convert the lexeme is a simplification for Jzero – a real Java compiler would have to do some more work here. The sval string is constructed by the deEscape() method because no built-in converter in Java takes a Java source code string and builds the actual string value for you. There are third-party libraries that you can find, but for Jzero purposes, it is simpler to provide our own.

			Running the Jzero scanner

			You can run the program in either Unicon or Java, as follows. This time, let's run the program on the following sample input file, named hello.java:

			public class hello {

			   public static void main(String argv[]) {

			      System.out.println("hello, jzero!");

			   }

			}

			Remember that, to your scanner, this hello.java program is just a sequence of lexemes. The commands to compile and run the Jzero scanner are similar to those in earlier examples, with more Java files creeping in:

			uflex javalex.l              jflex javalex.l

			unicon j0 javalex            javac j0.java Yylex.java

			                             javac token.java parser.java

			j0 hello.java                java j0 hello.java

			From either implementation, the output that you should see should look like this:

			token 258: public

			token 269: class

			token 267: hello

			token 123: {

			token 258: public

			token 270: static

			token 265: void

			token 267: main

			token 40: (

			token 267: String

			token 267: argv

			token 91: [

			token 93: ]

			token 41: )

			token 123: {

			token 267: System

			token 46: .

			token 267: out

			token 46: .

			token 267: println

			token 40: (

			token 277: "hello, jzero!"

			token 41: )

			token 59: ;

			token 125: }

			token 125: }

			The Jzero scanner will make a lot more sense in the next chapter when its output provides the parser's input. Before we move on, though, we should remind you that regular expressions can't do everything a programming language lexical analyzer might need. Sometimes, you must go beyond the lex scanning model. The next section is a real-world example of that.

			Regular expressions are not always enough

			If you take a theory of computation course, you'll probably be treated to proof that regular expressions cannot match some common patterns that occur in programming languages, particularly patterns that nest instances of the same pattern inside themselves. This section shows that regular expressions are not always enough in other aspects.

			If regular expressions are not always able to handle every lexical analysis task in your language, what do you do? A lexical analyzer written by hand can handle weird cases that a lexical analyzer generated from regular expressions can't handle, perhaps at the cost of an extra day, week, or month of your time. However, in almost all real programming languages, regular expressions can get you close enough to where you only need a few extra tricks to produce the finished scanner. Here is a small real-world example.

			Unicon and Go are examples of languages that provide semicolon insertion. The language defines lexical rules under which semicolons are inserted so that programmers don't have to worry about them for the most part. You may have noticed that the Unicon code examples tend to contain very few semicolons. Unfortunately, these semicolon insertion rules are not something that can be described with a regular expression.

			In the case of the Go language, you can almost do it by remembering the previously returned token and doing some checks in the semantic action for a newline character; that newline can return as a semicolon if the checks are satisfied. But in Unicon, you must scan further forward and read the next token after the newline to decide whether a semicolon ought to be inserted! This allows Unicon semicolon insertion to be more precise and create fewer problems than in the Go language. As an example, in Go, you cannot format your code in classic C style:

			func main()

			{

			   ...

			}

			Instead, you must write the curly brace on the function header line:

			func main() {

			   ...

			}

			To avoid this laughable limitation, the lexical analyzer must provide one token of look ahead. It will have to read the first token on the next line to decide whether a semicolon should be inserted at a new line.

			It would be very un-Javalike to implement semicolon insertion in our Jzero scanner. But if we were going to that, we could do it the Go way, or we could do it the Unicon way. We will show you a subset of the Go way. For your reference, the Go definition of semicolon insertion semantics can be found at https://golang.org/ref/spec#Semicolons.

			This example illustrates rule #1 from the Go semi-colon insertion semantics. OK, so you see a newline – do you insert a semicolon? Let's just remember the last token we saw, and if it is an identifier, a literal, a break, continue, return, ++, --, ), ], or }, then the newline itself should return a new dummy semicolon token. You can modify the newline() method so that it returns a boolean true if a semicolon is to be inserted.

			This defeats our strategy of using a common lex specification for both Unicon and Java. We need to write a conditional in the lex specification to say whether to return a semicolon or not, but the syntax is different in the two languages. In Unicon, our lex specification would have an if statement that might look like the following line:

			\n         { if j0.newline() then return j0.semicolon() }

			However, in Java, it would require parentheses and not say the then reserved word:

			\n         { if (j0.newline()) return j0.semicolon(); }

			The Unicon version of the modified j0 main module with semicolon insertion code has been provided in this book's GitHub repository, in the j0go.icn file. It is j0.icn with a new global variable called last_token, a modification of the scan() and newline() method, and the addition of a method called semicolon() that constructs an artificial token. Here are the changed methods. Checking whether the last token category is one of several that triggers a semicolon shows off Unicon's generators. The!")]}" expression is a clever way of writing ")"|"]"|"}", which will be fed one at a time into ord() until all three are tried:

			   method scan(cat)

			      last_token := yylval := token(cat, yytext, yylineno)

			      return cat

			   end

			   method newline()

			      yylineno +:= 1

			      if (\last_token).cat ===

			           ( parser.IDENTIFIER|parser.INTLIT|

			             parser.DOUBLELIT|parser.STRINGLIT|

			             parser.BREAK|parser.RETURN|

			             parser.INCREMENT|parser.DECREMENT|

			             ord(!")]}") ) then return

			   end

			   method semicolon()

			      yytext := ";"

			      yylineno -:= 1

			      return scan(parser.SEMICOLON)

			   end

			There are two fascinating things here. One is that a given element of source code – a newline character, which is just whitespace in most languages – will sometimes return integer code (for an inserted semicolon) and sometimes not. That is why we introduced an if statement into the lex specification semantic actions for newlines. The other fascinating thing is the artificial token produced by the semicolon() method. It produces output that's indistinguishable from if the programmer had typed a semicolon themselves into the source code input of your programming language.

			Important note

			The Java implementation of this is too long to present here, so it has been provided in this book's GitHub repository, in the j0go.java file. The next paragraph presents the key parts of it.

			The Java implementation behaves the same as the Unicon version in j0go.icn, with a new global variable called last_token, a modification of the scan() and newline() methods, and the addition of the semicolon() method, which constructs an artificial token. However, it is a bit longer. In the newline() method within the following block, a Java switch statement is being used to check if the last token's category triggers a semicolon insertion:

			   public static int scan(int cat) {

			      last_token = yylval =

			         new token(cat, yytext(), yylineno);

			      return cat;

			   }

			   public static void newline() {

			      yylineno++;

			      if (last_token != null)

			         switch(last_token.cat) {

			            case parser.IDENTIFIER: case parser.INTLIT:

			            case parser.DOUBLELIT: case parser.STRINGLIT:

			            case parser.BREAK: case parser.RETURN:

			            case parser.INCREMENT: case parser.DECREMENT:

			            case ')': case ']': case '}':

			               return true;

			         }

			      return false;

			   }

			   public int semicolon() {

			       yytext = ";";

			       yylineno--;

			       return scan(parser.SEMICOLON);

			   }

			The full Go semicolon insertion semantics are a bit more involved, but inserting a semicolon when the scanner has seen the regular expression for a newline is rather easy. If you want to learn how Unicon does better semicolon insertion, check out the Unicon Implementation Compendium at http://www.unicon.org/book/ib.pdf.

			Summary

			In this chapter, you learned about the crucial technical skills and tools used in programming languages when they are reading the characters of program source code. Thanks to these skills, the rest of your programming language compiler or interpreter has a much smaller sequence of words/tokens to deal with, instead of the enormous number of characters that were in the source file. If we were successful, you will have taken away the following skills that you can use in your programming language or similar projects.

			As input characters are read in, they are analyzed and grouped into lexemes. Lexemes are either discarded (in the case of comments and whitespace) or categorized for subsequent parsing purposes.

			Besides categorizing lexemes, you learned to make tokens from them. A token is an object instance that is created for each lexeme when it is categorized. The token is a record of that lexeme, its category, and where it came from.

			The lexemes' categories are the main input of the parsing algorithm described in the next chapter. During parsing, the tokens will eventually be inserted as leaves into an important data structure called a syntax tree.

			You are now ready to start stringing together the words into phrases in your source code. The next chapter will cover parsing, which checks whether the phrases make sense according to the grammar of the language.

			Questions

			
					Write a regular expression to match dates in dd/mm/yyyy format. Is it possible to write this regular expression so that it only allows legal dates?

					Explain the difference between the return value that yylex() returns to the caller, the lexeme that yylex() leaves in yytext, and the token value that yylex() leaves in yylval.

					Not all the yylex() regular expressions return an integer category after they match. When a regular expression does not return a value, what happens?

					Lexical analysis has to deal with ambiguity and it is entirely possible to write several regular expressions that all can match at a given point in the input. Describe Flex's tie-breaking rules for when more than one regular expression can match at the same place.

			

		

	
		
			Chapter 4: Parsing

			In this chapter, you will learn how to take individual words and punctuation, the lexemes, and group them into larger programming constructs, such as expressions, statements, functions, classes, and packages. This task is called parsing. The code module is called a parser. You will make a parser by specifying syntax rules using grammars, and then using a parser generator tool that takes your language grammar and generates a parser for you. We will also look at writing useful syntax error messages.

			This chapter covers the following main topics: 

			
					Syntax analysis

					Context-free grammars

					Using iyacc and BYACC/J

					Writing a parser for Jzero

					Improving syntax error messages

			

			We will review the technical requirements for this chapter, and then it will be time to refine your ideas of syntax and syntax analysis.

			Technical requirements

			In this chapter, you will need the following tools:

			
					Iyacc, a parser generator for Unicon. You should use the version on the book's website (https://github.com/PacktPublishing/Build-Your-Own-Programming-Language).

					BYACC/J, a parser generator for Java (http://byaccj.sourceforge.net).

					You can download this chapter code from our GitHub repository: https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch4.

			

			The Code in Action video for the chapter can be found here: https://bit.ly/3ClVCSf

			At the time of writing, the Windows BYACC/J binary distribution consists of a byaccj1.15_win32.zip file, which sounds old and contains one file named yacc.exe. There is no installer. You should unzip and copy the yacc.exe file into a directory on your path or make a new directory for it and add that directory to your path. Verify that these packages have been added to your path by opening a new Command Prompt or Terminal window and trying the iyacc and yacc commands. Note that you may already have a different program on your computer named yacc! In this case, we recommend renaming the BYACC/J instance that you install for this book as byaccj or byaccj.exe instead of yacc or yacc.exe. If you do this, everywhere in this book that it says to use yacc, you should type byaccj instead. To use this book successfully, you will have to keep your yaccs straight!  You have been warned!

			There is one additional technical requirement for this chapter. You must set your CLASSPATH environment variable. If you are working with the examples in this chapter in C:\users\Alfrede Newmann\ch4 you may need to set the CLASSPATH to point at the Alfrede Newmann directory above the ch4 directory. On Windows, it is best to set this once and for all in the Control Panel or Settings, but you can set it manually if you have to with a command such as this one:

			set CLASSPATH=".;c:\users\Alfrede Newmann"

			Adding the directory above us on the CLASSPATH can be achieved with .. on Linux, while you must supply the full path of the parent directory on Windows. On Linux, this is best set in ~/.bashrc or similar, but on the command line, it looks like this:

			export CLASSPATH=.:..

			Before we get into the nuts and bolts of yacc, let's look at the bigger picture of what we are trying to accomplish by parsing, which is to analyze the syntax of the input program.

			Analyzing syntax

			As a programmer, you are probably already familiar with syntax error messages and the general idea of syntax, which is to understand what kinds of words or lexemes must appear, in what order, for a given communication to be well formed in a language. Most human languages are picky about this, while a few are more flexible about word order. Fortunately, most programming languages are far simpler and more restrictive than natural human languages about what constitutes a legal input.

			The input for syntax analysis consists of the output of the previous chapter on lexical analysis. Communication, such as a message or a program, is broken down into a sequence of component words and punctuation. This could be an array or list of token objects, although for parsing, all the algorithm requires is the sequence of integer codes returned from calls to yylex(), one after another. It is the job of syntax analysis to determine whether the communication, in a given language, such as English or Java, is correct or not. The result of syntax analysis is a simple Boolean true or false. In practice, in order to interpret or translate the message, more is needed than a Boolean value that tells us whether its syntax is correct. In the next chapter, you will learn how to build a syntax tree that forms the basis for the subsequent translation of a program into code. But first, we must check the syntax, so let's look at how programming language syntax is specified, which is called context-free grammar notation.

			Understanding context-free grammars

			In this section, we will define the notation used by programming language inventors to describe the syntax of their language. You will be able to use what you learn in this section to supply syntax rules as input to the parser generators used in the next section. Let's begin by understanding what context-free grammars are.

			Context-free grammars are the most widely used notation for describing the syntax allowed in a programming language in terms of patterns of lexemes. They are formulated from very simple rules that are easy to understand. Context-free grammars are built from the following components:

			
					Terminal symbols: A set of input symbols are called terminal symbols. Terminal symbols in a grammar are read in from a scanner such as the one we produced in the last chapter. Although they are referred to as symbols, terminal symbols correspond to an entire word, operator, or punctuation mark; a terminal symbol identifies the category of a lexeme. As you saw in the previous chapter, these symbols' categories are represented by integer codes that are usually given mnemonic names such as IDENTIFIER or INTCONST or WHILE. In our grammars, we will also use character literal notation for the more trivial terminal symbols; a single character inside apostrophes is just a terminal symbol that consists of that character itself. For example, ';' is the terminal symbol that consists of just a semi-colon and literally denotes the integer 59, which is the ASCII code for a semi-colon.

					Non-terminal symbols: Unlike regular expressions, context-free grammar rules utilize a second set of symbols called non-terminal symbols. Non-terminal symbols refer to sequences of other symbols that make sense together, such as noun phrases or sentences (in natural languages), or function or class definitions, or entire programs (in programming languages). One special non-terminal symbol is designated as the start symbol of the entire grammar. In a programming language grammar, the start symbol denotes an entire well-formed source file.

					Production rules: A set of rules called production rules explain how to form non-terminal symbols from smaller words and component phrases. Because the production rules control what terminal and non-terminal symbols are used, it is common to give the grammar by just giving its production rules.

			

			Now it is time to look in more detail at the rules for building context-free grammars, followed by examples.

			Writing context-free grammar rules

			Production rules, also called context-free grammar rules, are patterns that describe legal sequences of lexemes using the terminal symbols and additional non-terminal symbols that represent other sequences of zero or more symbols. In this book, we will use yacc notation for writing context-free grammars. Each production rule consists of a single non-terminal symbol, followed by a colon, followed by zero or more terminal and non-terminal symbols, ending with a semi-colon, as shown in the following notation:

			X : symbols ; 

			There is only one symbol to the left of the colon and, by definition, it is non-terminal because the meaning of the grammar rule is as follows: a non-terminal X can be constructed from a sequence of terminals and non-terminals that appear on the right-hand side.

			A context-free grammar can have as many such rules as desired, including multiple rules that build the same non-terminal by different combinations of symbols on the right-hand side. In fact, multiple rules for the same non-terminal are so common, they have their own shorthand consisting of a vertical bar. You can see an example of a vertical bar in the following code:

			X : symbols | other_symbols ; 

			When the vertical bar (read as or) is used in a grammar, it states that there are different ways to build a non-terminal X. Using the vertical bar is optional because you could write the same rules as separate statements of the non-terminal, colon, right-hand side, and semicolon. For example, here is a statement of different ways to build an X:

			X : A | B | C ; 

			This line is equivalent to the following three lines:

			X : A ;

			X : B ;

			X : C ;

			Both of the previous cases describe the same three production rules. The vertical bar is just a shorthand notation for writing multiple production rules.

			So, what does a production rule mean, anyhow? It can be read and used either forward or backward. If you start from the start symbol and replace a non-terminal with one of its production rules' right-hand sides (called a derivation step), you work your way down from the top. If you repeat this process and eventually get to a sequence of terminal symbols with no non-terminals remaining, you have generated a legal instance of that grammar.

			On the other hand, a programming language starts from the other end. The scanner from the last chapter will produce for you a sequence of terminal symbols. Given a sequence of terminal symbols, can you find within it the right side of a production rule, and replace it with its non-terminal? If you can do that repeatedly and make your way back to the start symbol, you have proved that the input source program is legal according to the grammar. This is called parsing.

			Now it is time to look at some simple grammar examples. Some of the most intuitive grammars that we can suggest come from natural (human) languages. Other simple examples show how context-free grammars apply to programming language syntax.

			Recursion

			Are you on top of your recursion? In math and computer science, recursion is when something is defined in terms of a simpler version of itself; see https://en.wikipedia.org/wiki/Recursion if you need a refresher. You will need that concept to build your programming language syntax. In context-free grammars, a non-terminal X is often used on the right side of a production rule that builds an X. This is a form of recursion. The one logical rule that you must learn when you use recursion is this: there must be another grammar rule (a basis case) that is not recursive. Otherwise, the recursion never ends, and your grammar doesn't make sense.

			Writing rules for programming constructs

			Context-free grammars are easy, once you have written a few of them. You should start with the simplest rules you can think of and work your way up one tiny bit at a time. The simplest values in a language are its literal constants. Suppose we have two kinds of values in our language, Booleans and integers:

			literal : INTLIT | BOOLLIT ;

			The preceding production rule says that there are two kinds of literal values, integers and Booleans. Some language constructs, such as addition, may be defined only for certain types, while other constructs, such as assignment, are defined for all types. It is often best to feature a common syntax for all types, and then ensure that types are correct later, during semantic analysis. We will cover that in Chapter 7, Checking Base Types, and Chapter 8, Checking Types on Arrays, Method Calls, and Structure Accesses. Now consider a grammar rule that allows either variables or literal constants:

			simple_expr : IDENTIFIER | literal ;

			As you saw in Chapter 3, Scanning Source Code, IDENTIFIER denotes a name. The preceding production rule says that both variables and literals are allowed in simple expressions. Complex expressions are constructed by applying operators or functions to simple expressions:

			expr : expr '+' expr | expr '-' expr | simple_expr ;

			The preceding three production rules present a common design question. The first two rules are recursive, multiple times over. They are also ambiguous. When multiple operators are chained together, the grammar does not specify which operator is applied first.

			Ambiguity

			When a grammar can accept the same string two or more different ways, the grammar is ambiguous. In the preceding example, 1 + 2 – 3 could be parsed by applying the production rule for the plus sign first, and then the subtraction, or vice versa. Ambiguity can sometimes force you to rewrite your grammar so there is only one way to parse the input.

			There are a lot more operators in real languages, and there is the issue of operator precedence to consider. You can look at these topics in the Writing a parser for Jzero section in this chapter. For now, let's briefly explore larger language structures, such as statements. A simple representation of an assignment statement is given here:

			statement : IDENTIFIER '=' expr ';' ;

			This version of assignment allows only a name on the left side of the equals sign. The right side can take any expression. There are several other fundamental kinds statements found in many languages. Of these, consider the two most common ones, the IF statement and the WHILE statement:

			statement : IF '(' expr ')' statement ;

			statement : WHILE '(' expr ')' statement ;

			These statements contain other (sub)statements. Grammars build larger constructs from smaller ones using recursive rules such as this. IF and WHILE statements have almost identical syntax for preceding a statement with a conditional expression:

			statements : statements statement | statement ;

			Multiple statements can be accepted by repeated application of the first rule in this grammar. Good language designers write recursive rules all the time in order to repeat a construct. In the case of languages such as Java, semi-colons do not appear in this grammar rule as a statement separator, but they appear as terminators at the ends of various grammar rules, like the previous rule for assignment statements.

			In this section, you saw that grammar rules for a programming language use reserved words and punctuation marks as building blocks. Larger expressions and statements are composed of smaller ones using recursion. Now it is time to learn the tools that use context-free grammar notation to generate parsers for reading source code, namely iyacc and BYACC/J.

			Using iyacc and BYACC/J

			The name yacc stands for yet-another-compiler-compiler. This category of tools takes a context-free grammar as input and generates a parser from it. Yacc-compatible tools are available for most popular programming languages.

			In this book, for Unicon we use iyacc (short for Icon yacc) and for Java you can use BYACC/J (short for Berkeley YACC extended for Java). They are highly compatible with UNIX yacc and we can present them together as one language for writing parsers. In the rest of this chapter, we will just say yacc when we mean both iyacc and BYACC/J (which is invoked as yacc, at least on Windows). Complete compatibility required a bit of Kobayashi Maru, mostly when it comes to the semantic actions, which are written in native Unicon and Java respectively.

			Yacc files are often called (yacc) specifications. They use the extension .y and consist of several sections, separated by %%. This book refers generically to yacc specifications meaning the input file provided to either iyacc or BYACC/J and, for the most part, those files would also be valid input for C yacc.

			There are required sections in a yacc specification: a header section followed by a context-free grammar section, and an optional helper functions section. The yacc header section and the context-free grammar section are the sections you need to know about for this book. In the following section, you will learn how to declare your terminal symbols in the yacc header section. Some versions of yacc require these declarations.

			Kobayashi Maru?

			A Kobayashi Maru scenario is a no-win situation where the best answer is to change the rules of the game. In this case, I modified iyacc and BYACC/J a bit so that our no-win situation was winnable.

			Declaring symbols in the header section

			Most yacc tools have options you can enable in the header section; they vary, and we will only cover them if we use them. You can also include bits of host language code there, such as variable declarations, inside %{ … %} blocks. The main purpose of the header section is to declare the terminal and non-terminal symbols in the grammar. In the context-free grammar section, these symbols are used in production rules.

			Whether a symbol is terminal or non-terminal can be inferred from how the symbol is used in a grammar, but unless they are ASCII codes, you must declare all your terminal symbols anyhow. Terminal symbols are declared in the header section using a line beginning with %token, followed by as many terminal symbol names as you want, separated by spaces. Non-terminals can be declared by a similar %nonterm line. Among other things, yacc uses your terminal symbol declarations to generate a file that assigns integer constants to those names, for use in your scanner.

			Advanced yacc declarations

			There are other declarations that can be placed in the yacc header section beyond those used in this book. If you don't want to place your starting non-terminal at the top of your grammar, you can put it anywhere and then identify it explicitly in the header via the %start declaration for some non-terminal symbol. Also, instead of just declaring tokens with %token, you can use %left, %right, and %nonassoc to specify operator precedence and associativity in increasing order.

			Now that we have learned about the header section, let's have a look at the context-free grammar section.

			Putting together the yacc context-free grammar section

			The primary section of a yacc specification is the context-free grammar section. Each production rule of the context-free grammar is given, followed by an optional semantic action consisting of some host language code (in our case, Unicon or Java) to execute when that production rule has been matched. The yacc syntax is typically like the following example:

			X : symbols { semantic action code } ; 

			It is also legal to place semantic actions before or in between symbols in addition to the end of the rule, but if you do that, you are really declaring a new non-terminal with an empty production rule that just contains that semantic action. We will not do that in this book, as it is a frequent source of bugs.

			Yacc is less picky about whitespace than lex was. The following example shows three equivalent ways to format production rules with different whitespace. Which you prefer depends on what is best for readability:

			A : B | C;

			A : B |

			    C ;

			A : B

			  | C

			  ;

			Although each production rule starts on a new line, it can span multiple lines and is terminated by one of the following: a semi-colon, a vertical bar indicating another production rule for the same non-terminal, a %% indicating the start of the helper functions section, or an end-of-file. Like in lex, if the semantic action uses curly braces to enclose a statement block in the usual way, the semantic action can span multiple lines of source code. Yacc will not start looking for the next production rule until it finds the matching closing curly brace to finish the semantic action, and then goes on to find one of the terminators listed earlier, such as a semi-colon or vertical bar that ends the production rule.

			A common mistake that newbies make in the context-free grammar section is trying to insert comments in the production rules to improve readability. Don't do that; you can get some very cryptic error messages when you do this.

			When you run classic UNIX yacc, which is a C tool, it generates a function called yyparse() that returns whether the input sequence of terminal symbols returned from yylex() was legal according to the grammar. Global variables may be set with other useful bits of information. You can use such global variables to store anything you want, such as the root of your syntax tree. Before we progress to some larger examples, take a look at how yacc parsers work. You will need to know this in order to debug your parser when things do not go according to plan.

			Understanding yacc parsers

			The algorithm of the parser generated by yacc is called LALR(1). It comes from a family of parsing algorithms invented by Donald Knuth of Stanford and made practical by Frank DeRemer of UC Santa Cruz and others. If you are interested in the theory, you should check out the Wikipedia page for the LALR parser at https://en.wikipedia.org/wiki/LALR_parser or consult a serious compiler construction book, such as Douglas Thain's Introduction to Compilers and Language Design, from https://www3.nd.edu/~dthain/compilerbook/.

			For our purposes, you need to know that the generated algorithm consists of a long while loop. In each iteration of the loop, the parser takes one tiny step forward. The algorithm uses a stack of integers to keep track of what it has seen. Each element on the parse stack is an integer code called a parse state that encodes all the terminal and non-terminal symbols seen up to that point. The parse state on top of the stack and the current input symbol, which is an integer terminal symbol obtained from function yylex(), are the two pieces of information used to decide what to do at each step. For no intrinsic reason, it is common to visualize this like a horizontal piece of string, with a string of beads on the right being slid left onto a stack that is depicted horizontally. Figure 4.1 illustrates the yacc parse stack on the left and its input on the right.
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			Figure 4.1 – yacc's parse stack and its input

			The dollar sign on the left denotes the bottom of the stack, while the dollar sign on the right denotes end-of-file. Yacc generates two big tables, computed from the grammar, called the action table and the goto table. These tables encode what to do at each step. The primary table is an action table that looks up the parse state and current input and returns one of the following possibilities:

			
					The top few elements on the stack contain a production rule that can be used to get us (eventually) back to the starting non-terminal. This is called a reduce.

					The algorithm needs to look at the next input symbol. Place the current input onto the parse stack, and read the next one using yylex(). This is called a shift.

					If neither a shift nor a reduce will work, a syntax error is reported by calling the yyerror() function that you must write.

					If we are looking at the starting non-terminal and there is no more input pending, you win! yyparse() returns the code that says there were no errors.

			

			In the following list, you can see the Yacc parsing algorithm in pseudocode form. In this code, there are several key variables and operations, described here:

			
					parsestk is the parse stack, an array of integer finite automaton parse states.

					index top tracks the subscript of the top of the parse stack.

					current is the current input symbol.

					shift_n means to move the input from the right to the left, pushing parse state n onto the stack and moving current to the next input symbol.

					reduce_m means to apply production rule m by popping the number of parse states equal to the right side of production rule m and pushing the new parse state corresponding to the non-terminal on the left side of production rule m. The goto table tells what the new parse state is that the reduce is to push.

			

			Here is the parsing algorithm in pseudocode form:

			repeat:

			     x = action_table[parsestk[top], current]

			     if x == shift_n then {

			        push(state_n, parsestk)

			        current = next

			        }

			     else if x == reduce_m then {

			       pop(parsestk) |m| times

			       push(goto_table[parsestk[top],m], parsestk)

			       }

			    else if x == accept then return 0 // no errors

			    else { yyerror("syntax error") }

			This pseudocode is a direct embodiment of the preceding bulleted list. A large percentage of the world's programming languages perform their syntax analysis with this method. You may find it interesting to compare this pseudocode with the generated .icn or .java file output by iyacc or BYACC/J.

			Importantly, because this parsing algorithm is just a loop with a couple of table lookups, it runs quite fast.

			The point of the yacc tool is to just supply the context-free grammar and get a parser without having to worry about how it works; yacc is thus a declarative language. The algorithm works, and you don't have to know a lot about it, but if you change a grammar or invent a new language using the yacc tool, you might have to know about these shifts and reduce operations in order to debug your context-free grammar if your parser isn't doing what you want. The most common way that a yacc programmer encounters this is when you run yacc and it reports conflicts that you may need to fix.

			Fixing conflicts in yacc parsers

			Earlier in this chapter, in the section titled Writing rules for programming constructs, you learned that grammars can be ambiguous. When a grammar is ambiguous, yacc will have more than one possible action that it can encode for a given (parse state, current input) lookup in the action table. Yacc reports this as a problem, and in that case the generated parser will use only one of the possible interpretations of the ambiguity. There are two kinds of conflicts that yacc reports:

			
					A shift/reduce is when one production rule says it can shift the current input at this point, but another production rule says it is all finished and ready to reduce. In this case, yacc will only shift and you are in trouble if you needed it to reduce.

					A reduce/reduce is even worse. Different production rules are saying they want to reduce at this point? Which one is correct? Yacc will arbitrarily pick whichever one appears earlier in your .y file, which is correct 50% of the time.

			

			For shift/reduce conflicts, the default rule is usually correct. I have seen production language grammars with literally hundreds of shift/reduce conflicts that are ignored with seemingly no ill effects – they are asymptomatic. But once in a blue moon, and I have seen it in real life, the default on a shift/reduce conflict is not what the language needs.

			For reduce/reduce conflicts, we cannot use the default rule. Part of your grammar will not be triggered. In any reduce/reduce situation, or if you determine a shift/reduce conflict is a problem, you will need to modify your grammar to eliminate the conflict. Modifying your grammar to avoid conflicts is beyond the scope of this book, but it usually involves refactoring to eliminate redundant bits of grammar or creating new non-terminals and making production rules pickier. Now we will explore what happens when the parser encounters an error.

			Syntax error recovery

			Syntax error recovery is when your parser continues after reporting a syntax error. If recovery is successful, the compiler can go on to find the rest of the errors, if any. In the days of batch processing, it was important to recover as well as possible. However, error recovery is known for its spectacular failures! Compilers tend to give numerous cascading error messages after the first one, because the attempt to recover and continue parsing is based on wild guesses as to whether tokens were missing, or extra tokens were present, or the wrong token was used unintentionally…there are just too many possibilities. For this reason, we will stick to minimal error recovery in this book.

			A yacc parser will try to recover if extra production rules are added to the grammar that depict likely locations of errors using a special token named error where a syntax error is expected. When an actual syntax error occurs, the shift/reduce parser throws away parse states from its parse stack and tokens from its input, until it finds a state that has a rule that allows it to proceed forward on an error. In the Jzero language, we might have a rule that throws away a syntax error within statements that discards tokens until it sees a semi-colon. There might be one or two higher-level locations in the grammar where an error token skips to the end of a function body, or a declaration, and that is it.

			Although we are only just touching on the topic, if your programming language becomes famous and popular, you should probably eventually learn to recover from at least the simplest and most common errors. Since errors are inevitable, besides recovering and continue parsing, you need to think about reporting error messages. Error reporting is covered in the Improving syntax error messages section at the end of this chapter. Now let's put together some working parsers using the scanners developed in the previous chapter.

			Putting together a toy example

			This example lets you check whether you can install and run iyacc and BYACC/J. The example parser just parses sequences of alternating names and numbers. The filename ns.y (for name sequence) will be used for the yacc specification. The code generated by yacc from this specification will use two helper functions that, on Java, might motivate a start to our yacc header section that looks like the following:

			%{

			import static ch4.lexer.yylex;

			import static ch4.yyerror.yyerror;

			%}

			If you are building the Java implementation using stock BYACC/J 1.15, ns.y should begin with the preceding four lines. The code inside the %{ … %} consists of two import static declarations. This is how Java allows generated parser code to call yylex() and yyerror(), functions that are located in different classes, in different source files.

			We want to put yylex() and yyerror() in different classes and source files instead of the helper functions section of the .y file because they will be different in Unicon and Java. Another reason is because yylex() and yyerror() may be generated by separate tools: uflex and jflex from the preceding chapter, and merr described later in this chapter. Unfortunately, Java cannot to do an import static without placing these classes and functions inside a package. The package is named ch4 because this chapter's code is in a directory named ch4, and Java requires package names and directory names to match. Thanks to packages, code from Chapter 3, Scanning Source Code, must be altered slightly, and you also can look forward to tricky CLASSPATH issues and cryptic error messages.

			Since the import static lines do not work for Unicon, for this book I modified BYACC/J to add command-line options for static imports that are required. If you are using a version of these tools from the book's website or other new/current source, you can skip the four lines from earlier and do them from the command line, allowing the entire ns.y file to work unmodified as input for both Unicon and Java projects.

			In the following ns.y example there is no semantic action code; this chapter focuses solely on syntax analysis. The next chapter deals with semantic actions extensively.

			%token NAME NUMBER

			%%

			sequence : pair sequence | ;

			pair : NAME NUMBER ;

			From this specification, yacc will produce a function, yyparse(). It executes the LALR parsing algorithm with a net effect described as follows:

			
					yyparse() is called from a main() function.

					yyparse()calls yylex() to get a terminal symbol.

					yyparse() matches each terminal symbol returned from yylex() against all possible parses using all possible combinations of production rules.

					Parsing eventually selects whichever production rule is correct at the current location and executes its semantic action (if any).

			

			Steps 2–4 repeat until the entire input is parsed, or a syntax error is found. The yylex() function is generated from the following lex specification:

			package ch4;

			%%

			%int

			%%

			[a-zA-Z]+   { return Parser.NAME; }

			[0-9]+      { return Parser.NUMBER; }

			[ \t]+      { }

			.           { lexer.lexErr("unrecognized character"); }

			This is the nnws.l file from the previous chapter, modified in order to be used with this yacc-generated parser. For one thing, in Java, it must be made a part of the ch4 package. For another thing, it must return the integers that yacc uses for NAME and NUMBER. As you may recall from the previous chapter, the Java-compatible way to access those integers by name is through a Parser object that contains them. The BYACC/J tool generates this parser object automatically for Java. For Unicon, iyacc's traditional -d option generates macro definitions in an include file (for ns.y it would be in ns_tab.icn) à la classic UNIX C yacc. For this book, iyacc was extended with a command-line option, -dd, that instead generates a Java-compatible Parser object that contains the names and their values.

			The main() function necessarily varies by language. By the time you add the yacc yyparse() module into the program, things are starting to get complicated. For this reason, the previous chapter's main() functionality is tweaked to pull out lexical analyzer initialization and lexical error handling in separate files. We will discuss the main() function first. After initialization, main() calls yyparse() to check the syntax of the source code. Here is the Unicon version of the main module, in the trivial.icn file:

			procedure main(argv)

			   yyin := open(argv[1]) | stop("usage: trivial file")

			   lexer := lexer()

			   Parser := Parser()

			   if yyparse() = 0 then write("no errors")

			end

			procedure yyerror(s)

			   stop(s)

			end

			class lexer()

			   method lexErr(s)

			      stop("lexical error: ", s)

			   end

			end

			This Unicon implementation of main()opens the input file from a name given in the first command-line argument. The lexical analyzer is informed what file to read from by assignment to the yyin variable. Lexical analyzer and parser objects are initialized; they are here just for Java compatibility of our flex specification. The code then calls yyparse() to parse the input file. The following Java code in the trivial.java file contains a main() function that corresponds with the previous Unicon example:

			package ch4;

			public class trivial {

			   static ch4.j0p par;

			   public static void main(String argv[]) throws Exception

			   {

			      ch4.lexer.init(argv[0]);

			      par = new ch4.Parser();

			      int i = par.yyparse();

			      if (i == 0)

			         System.out.println("no errors");

			   }

			}

			This main module is shorter than the simple class in the previous chapter. All it does is initialize lexical analysis, initialize the parser, and then call yyparse() to see if the input is legal. In order to call the yylex() function from yyparse() without a reference to the Yylex object and without a circular reference back to the main class trivial, the Yylex object and its initialization have been pulled out into a wrapper class named lexer. The following lexer.java file contains that code:

			package ch4;

			import java.io.FileReader;

			public class lexer {

			   public static Yylex yylexer;

			   public static void init(String s) throws Exception {

			       yylexer = new Yylex(new FileReader(s));

			   }

			   public static int YYEOF() { return Yylex.YYEOF; }

			   public static int yylex() {

			      int rv = 0;

			      try {

			        rv = yylexer.yylex();

			      } catch(java.io.IOException ioException) {

			        rv = -1;

			      }

			      return rv;

			   }

			   public static String yytext() {

			      return yylexer.yytext();

			   }

			   public static void lexErr(String s) {

			      System.err.println(s);

			      System.exit(1);

			   }

			}

			The init() method instantiates a Yylex object for later use by a static method yylex() that is callable from yyparse(). The yylex() here is just a proxy that turns around and calls yylexer.yylex().

			There is one more piece to the puzzle: yyparse() calls a function named yyerror() when it encounters a syntax error. The yyerror.java file contains a yyerror class that has a yyerror() static method, shown here:

			package ch4;

			public class yyerror {

			    public static void yyerror(String s) {

			      System.err.println(s);

			      System.exit(1);

			    }

			}

			This version of the yyerror() function just calls println() and exits, but we can modify it as needed. Although you might be willing to do this just for the sake of sharing a yacc specification file across both Unicon and Java, it will also pay off when we improve our syntax error messages in the next section.

			Now it is time to run our toy program and see what it does. Run it with the following input file, dorrie3.in:

			Dorrie 1 Clint 0

			You can build and run the program in either Unicon or Java as follows. The sequence of commands to execute under Unicon looks like this:

			uflex nnws.l 

			iyacc -dd ns.y

			unicon trivial nnws ns ns_tab

			trivial dorrie3.in

			The sequence of commands to execute under Java is as follows:

			jflex nnws.l

			yacc -Jpackage=ch4 -Jyylex=ch4.lexer.yylex \

			                   -Jyyerror=ch4.yyerror.yyerror ns.y

			javac trivial.java Yylex.java Parser.java lexer.java \

			        yyerror.java ParserVal.java

			java ch4.trivial dorrie3.in

			From either implementation, the output that you should see is as follows:

			no errors

			So far, all the example does is categorize groups of input characters using a regular expression to identify what kind of lexeme has been found. For the rest of the compiler to work, we will need more information about that lexeme, which we will store in a token.

			In this section, you learned how to integrate a yacc-generated parser with a lex-generated scanner from the previous chapter. The same lex and yacc specifications were used for Unicon and for Java, after some slight tweaks to iyacc and BYACC/J. The main challenges were the challenges in integrating these declarative languages into Java, which involved writing and importing two static methods from helper classes. Happily, we were able to make these tools work on a toy example. Now it is time to use them on an actual programming language.

			Writing a parser for Jzero

			The next example is a parser for Jzero, our subset of the Java language. This extends the previous chapter's Jzero example. The big change is the introduction of many context-free grammar rules for more complex syntax constructs than have been seen up to this point. If you wrote a new language not based on an existing one, you would have to come up with the context-free grammar from scratch. For Jzero this is not the case. The grammar we use for Jzero was adapted from a Java dialect named Godiva. To work from a real Java grammar, you can look at https://docs.oracle.com/javase/specs/.

			The Jzero lex specification

			The Jzero lex specification is as given in the previous chapter, with a one-line package declaration added to the top. The parser must be generated before the scanner is compiled. This is because yacc turns j0gram.y into a parser class whose constant values are referenced from the scanner. Because the static import of yylex() entails using packages, you must add the following line to the top of javalex.l from the previous chapter:

			package ch4;

			In order to be compatible with the previous chapter's javalex.l, the module called lexer in the trivial parser earlier this chapter is called j0 in the Jzero parser.

			With the understanding of this slight change to the Jzero Lex specification in order to call it from the parser, let's move on to the next section to learn about the Jzero yacc specification.

			The Jzero yacc specification

			Compared with the previous examples, a real(ish) programming language yacc specification has a lot more, and more complicated, production rules. The following file is called j0gram.y and it is presented in several parts.

			The first section of j0gram.y includes the header and declarations of terminal symbols. These declarations are the source of the symbolic constants in the parser class used in the previous chapter. It is not enough for the names to match in the scanner and parser; the integer codes must be identical for the two tools to talk. The scanner must return the parser's integer codes for its terminal symbols. Per the preceding description of the yacc header section, declarations of terminal symbols are made by giving their name on a line beginning with %token. Jzero declares approximately 27 symbols for reserved words, different kinds of literal constants, and multi-character operators:

			%token BREAK DOUBLE ELSE FOR IF INT RETURN VOID WHILE

			%token IDENTIFIER CLASSNAME CLASS STRING BOOL

			%token INTLIT DOUBLELIT STRINGLIT BOOLLIT NULLVAL

			%token LESSTHANOREQUAL GREATERTHANOREQUAL

			%token ISEQUALTO NOTEQUALTO LOGICALAND LOGICALOR

			%token INCREMENT DECREMENT

			%%

			After the %% are the production rules of the context-free grammar of the language we are specifying. By default, the non-terminal on the first rule listed is the starting non-terminal, which in Jzero denotes one whole source file, module, or compilation unit. In Jzero this is just one class; this is a severe simplification of Java where there are usually several declarations such as imports before the class in a given source file.

			A class declaration consists of the word class followed by an identifier giving the class name, followed by a body:

			ClassDecl:      CLASS IDENTIFIER ClassBody ';' ;

			A class body is a sequence of declarations for fields, methods, and constructors. Notice how the production rules for ClassBody allow for zero or more occurrences of declarations within the curly braces: one rule requires a list of one or more ClassBodyDecls, while a second rule explicitly allows the unusual but legal case of an empty class:

			ClassBody:      '{' ClassBodyDecls '}' | '{' '}' ;

			ClassBodyDecls: ClassBodyDecl | ClassBodyDecls 

			                ClassBodyDecl;

			ClassBodyDecl:  FieldDecl | MethodDecl | ConstructorDecl ;

			Field declarations consist of a type followed by a comma-separated list of variables. The identifier that follows the word class becomes the name of a type. Some language implementations make the lexical analyzer report a different integer category code for that word once it has become a type name instead of a variable name; Jzero does not:

			FieldDecl:      Type VarDecls ';' ;

			Type:           INT | DOUBLE | BOOL | STRING | Name ;

			Name:           IDENTIFIER | QualifiedName ;

			QualifiedName:  Name '.' IDENTIFIER ;

			VarDecls:       VarDeclarator | VarDecls ',' VarDeclarator;

			VarDeclarator:  IDENTIFIER | VarDeclarator '[' ']' ;

			The next part of j0gram.y consists of the syntax rules for the other two kinds of things that can be declared within a class, which use function syntax: methods and constructors. To begin with, they have slightly different headers followed by a block of statements.:

			MethodDecl: MethodHeader Block ;

			ConstructorDecl: FuncDeclarator Block ;

			Method headers have a return type, but otherwise methods and constructors share the same syntax in the form of common uses of non-terminals FuncDeclarator and Block:

			MethodHeader: Type FuncDeclarator | VOID FuncDeclarator ;

			A function's name (or in the case of a constructor, the class name) is followed by a parenthesized list of parameters:

			FuncDeclarator: IDENTIFIER '(' FormalParmListOpt ')' ;

			A parameter list is zero or more parameters. Non-terminal FormalParmListOpt has two production rules: either there is a (non-empty) FormalParmList or there isn't. The empty production after the vertical bar is called an epsilon rule:

			FormalParmListOpt: FormalParmList | ;

			A formal parameter list is a comma-separated list where each formal parameter consists of a type and a variable name:

			FormalParmList: FormalParm | FormalParmList ',' FormalParm;

			FormalParm: Type VarDeclarator ;

			The next part of j0gram.y contains the statement grammar. A statement is a chunk of code that does not provide a value for use by the surrounding code. Jzero has several kinds of statements. A Block (such as the body of a method) is a statement consisting of a sequence of (sub)statements enclosed in curly braces {}:

			Block: '{' BlockStmtsOpt '}' ;

			Since a Block may contain zero substatements a non-terminal with an epsilon rule is used:

			BlockStmtsOpt:    BlockStmts | ;

			Having dispensed with the optional case, BlockStmts are chained together using recursion:

			BlockStmts:       BlockStmt | BlockStmts BlockStmt ;

			The kinds of statements allowed within a block include variable declarations and ordinary executable statements:

			BlockStmt:        LocalVarDeclStmt | Stmt ;

			Local variable declarations consist of a type followed by a comma-separated list of variable names ending with a semi-colon. Non-terminal VarDecls was presented where it was previously used in class variable declarations:

			LocalVarDeclStmt: LocalVarDecl ';' ;

			LocalVarDecl:     Type VarDecls ;

			There are many kinds of ordinary executable statements, including expressions, break and return statements, if statements, and while and for loops:

			Stmt:   Block | ';' | ExprStmt | BreakStmt | ReturnStmt 

			      | IfThenStmt | IfThenElseStmt | IfThenElseIfStmt

			      | WhileStmt | ForStmt ;

			Most expressions produce a value that must be used in a surrounding expression. Three kinds of expressions can be turned into a statement by following them with a semi-colon:

			ExprStmt:  StmtExpr ';' ;

			StmtExpr:  Assignment | MethodCall | InstantiationExpr ;

			Several forms of if statements are provided, allowing for chains of else statements. If they seem excessive, it is because the Jzero subset of Java generally requires bodies of conditional and loop constructs to use curly braces, avoiding a common source of bugs:

			IfThenStmt:       IF '(' Expr ')' Block ;

			IfThenElseStmt:   IF '(' Expr ')' Block ELSE Block ;

			IfThenElseIfStmt: IF '(' Expr ')' Block ElseIfSequence

			       |  IF '(' Expr ')' Block ElseIfSequence ELSE Block ;

			ElseIfSequence:   ElseIfStmt | ElseIfSequence ElseIfStmt ;

			ElseIfStmt:       ELSE IfThenStmt ;

			WHILE loops have a simple syntax similar to IF statements:

			WhileStmt:        WHILE '(' Expr ')' Block ;

			FOR loops, on the other hand, are quite involved:

			ForStmt: FOR '(' ForInit ';' ExprOpt ';' ForUpdate ')' Block ;

			ForInit:          StmtExprList | LocalVarDecl | ;

			ExprOpt:          Expr |  ;

			ForUpdate:        StmtExprList | ;

			StmtExprList:     StmtExpr | StmtExprList ',' StmtExpr ;

			The BREAK and RETURN statements are very simple, the only difference in their syntax being that a RETURN can have an optional expression after it. VOID methods return without this expression, while non-VOID methods must include it; this must be checked during semantic analysis:

			BreakStmt:        BREAK ';' ;

			ReturnStmt:       RETURN ExprOpt ';' ;

			The next part of j0gram.y contains the expression grammar. An expression is a chunk of code that computes a value, typically for use in a surrounding expression. This expression grammar uses a one non-terminal symbol per level of operator precedence. For example, the way that multiplication is forced to be higher precedence than addition is that all multiplications are performed on a MulExpr non-terminal and then MulExpr instances are chained together using plus (or minus) operators in the AddExpr production rules:

			Primary: Literal | '(' Expr ')' | FieldAccess | MethodCall;

			Literal:  INTLIT | DOUBLELIT | BOOLLIT | STRINGLIT |NULLVAL;

			InstantiationExpr: Name '(' ArgListOpt ')' ;

			ArgList: Expr | ArgList ',' Expr ;

			ArgListOpt:  ArgList | ;

			FieldAccess: Primary '.' IDENTIFIER ;

			MethodCall: Name '(' ArgListOpt ')'

			    | Name '{' ArgListOpt '}'

			    | Primary '.' IDENTIFIER '(' ArgListOpt ')'

			    | Primary '.' IDENTIFIER '{' ArgListOpt '}' ;

			PostFixExpr: Primary | Name ;

			UnaryExpr:  '-' UnaryExpr | '!' UnaryExpr | PostFixExpr ;

			MulExpr: UnaryExpr | MulExpr '*' UnaryExpr

			    | MulExpr '/' UnaryExpr | MulExpr '%' UnaryExpr ;

			AddExpr: MulExpr | AddExpr '+' MulExpr | AddExpr '-' 

			MulExpr ;

			RelOp: LESSTHANOREQUAL | GREATERTHANOREQUAL | '<' | '>' ;

			RelExpr: AddExpr | RelExpr RelOp AddExpr ;

			EqExpr: RelExpr | EqExpr ISEQUALTO RelExpr | EqExpr 

			NOTEQUALTO RelExpr ;

			CondAndExpr: EqExpr | CondAndExpr LOGICALAND EqExpr ;

			CondOrExpr: CondAndExpr | CondOrExpr LOGICALOR CondAndExpr;

			Expr: CondOrExpr | Assignment ;

			Assignment: LeftHandSide AssignOp Expr ;

			LeftHandSide: Name | FieldAccess ;

			AssignOp: '=' | INCREMENT | DECREMENT ;

			Although it is split into five portions for presentation here, the j0gram.y file is not very long: around 120 lines of code. Since it works for both Unicon and Java, this is a lot of bang for your coding buck. The supporting Unicon and Java code are non-trivial, but we are letting yacc (iyacc and BYACC/J) do most of the work here. The j0gram.y file will get longer in the next chapter when we extend the parser to build syntax trees.

			Now it is time to look at the supporting Unicon Jzero code that invokes and works with the Jzero yacc grammar.

			Unicon Jzero code

			The Unicon implementation of the Jzero parser uses almost the same organization as in the previous chapter, starting in a file named j0.icn. Instead of calling yylex() in a loop, in a yacc-based program the main() procedure calls yyparse(), which calls yylex() every time it does a shift operation.

			As was mentioned in the last chapter, the Unicon scanner uses a parser object whose fields, such as parser.WHILE, contain the integer category codes. The parser object is no longer in j0.icn; it is now generated by yacc in a j0gram.icn file that is monstrous and will not be shown here:

			global yylineno, yycolno, yylval, parser

			procedure main(argv)

			   j0 := j0()

			   parser := Parser()

			   yyin := open(argv[1]) | stop("usage: j0 filename")

			   yylineno := yycolno := 1

			   if yyparse()=0 then

			      write("no errors, ", j0.count, " tokens parsed")

			end

			The second part of j0.icn consists of the j0 class. See the explanations in Chapter 3, Scanning Source Code, in the Unicon Jzero code section:

			class j0(count)

			   method lexErr(s)

			      stop(s, ": ", yytext) 

			   end

			   method scan(cat)

			      yylval := token(cat, yytext, yylineno, yycolno)

			      yycolno +:= *yytext

			      count +:= 1

			      return cat

			   end

			   method whitespace()

			      yycolno +:= *yytext

			   end

			   method newline()

			      yylineno +:= 1; yycolno := 1

			   end

			   method comment()

			      yytext ? {

			         while tab(find("\n")+1) do newline()

			         yycolno +:= *tab(0)

			      }

			   end

			   method ord(s)

			      return proc("ord",0)(s[1])

			   end

			initially

			   count := 0

			end

			In the third part of j0.icn, the token type with its deEscape() method has been preserved from the previous chapter:

			class token(cat, text, lineno, colno, ival, dval, sval)

			   method deEscape(sin)

			      local sout := ""

			      sin := sin[2:-1]

			      sin ? {

			         while c := move(1) do {

			            if c == "\\" then {

			               if not (c := move(1)) then

			                  j0.lexErr("malformed string literal")

			               else case c of {

			                  "t":{ sout ||:= "\t" }

			                  "n":{ sout ||:= "\n" }

			                  }

			               }

			            }

			            else sout ||:= c

			         }

			      }

			      return sout

			   end

			initially

			   case cat of {

			     parser.INTLIT:    { ival := integer(text) }

			     parser.DOUBLELIT: { dval := real(text) }

			     parser.STRINGLIT: { sval := deEscape(text) }

			   }

			end

			You might notice that the Unicon Jzero code got a bit shorter in this chapter compared with the last, thanks to yacc doing some of the work for us. Now let's look at the corresponding code in Java.

			Java Jzero parser code

			The Java implementation of the Jzero parser includes a main class in the j0.java file. It resembles the same file in the previous chapter, except its main() function calls yyparse():

			package ch4;

			import java.io.FileReader;

			public class j0 {

			   public static Yylex lex;

			   public static parser par;

			   public static int yylineno, yycolno, count;

			   public static void main(String argv[]) throws Exception

			   {

			      lex = new Yylex(new FileReader(argv[0]));

			      par = new parser();

			      yylineno = yycolno = 1;

			      count = 0;

			      int i = par.yyparse();

			      if (i == 0) {

			         System.out.println("no errors, " + j0.count +                            " tokens parsed");

			      }

			   }

			   // rest of j0.java methods are the same as in Chapter 3.

			}

			In order to run the program, you will also have to compile the module named parser.java that is generated by yacc from our input j0gram.y file. That module provides the yyparse() function along with a set of named constants declared directly as short integers. While this book lists j0gram.y instead of the parser.java file that is generated from it, you can run yacc and look at its output yourself.

			There is also a supporting module named token.java that contains the token class. It is identical to that presented in the previous chapter, so we do not duplicate it here.

			If you like to plan ahead, it may interest you to know that the instances of class token contain exactly the information that you need in the leaves of the syntax tree that you will build in the next chapter. There are different ways that a person could wire up this lexical information into the tree leaves. We will deal with that in Chapter 5, Syntax Trees.

			Running the Jzero parser

			You can run the program in either Unicon or Java as follows. This time, let's run the program on the following sample input file, named hello.java:

			public class hello {

			   public static void main(String argv[]) {

			      System.out.println("hello, jzero!");

			   }

			}

			Remember, to your parser this hello.java program is a sequence of lexemes that must be checked to see if it follows the grammar of the Jzero language that we gave earlier. The commands to compile and run the Jzero parser resemble earlier examples, with more files creeping in. The Unicon commands look like the following example:

			uflex javalex.l

			iyacc -dd j0gram.y 

			unicon j0 javalex j0gram j0gram_tab yyerror

			j0 hello.java

			The machine-generated code output by uflex for javalex.l contains a single function large enough to cause the stock version of Unicon's code generator (icont) to fail with its own parse stack overflow! I had to modify the icont yacc grammar to use a larger stack in order to run this example.

			In the next to the last line in the preceding list of commands, compiling the j0 executable with a single invocation to perform compilation plus linking is a lazy presentation choice on Unicon. On Java, there is enough of a circular dependency between the lexical analyzer (which uses parser integer constants) and the parser (which calls yylex()) that you will find it necessary to continually resort to the big inhale model of compilation. While this is a sad state of affairs, if that's what it takes for Java to smoothly combine jflex and BYACC/J, let's just relax and enjoy it.

			Big inhale model

			All serious programming languages, especially object-oriented ones, allow modules to be compiled separately, and in fact encourage modules to be small, such that a build consists of many tiny module compilations. When some code is changed, only a small portion of the whole program needs to be recompiled. Unfortunately, many programming language features, in this case, classes that use each other's static members, can cause you to need to compile several or many modules at once under Java…highly ironic for a language that eschews linking. Sometimes you can tease out a sequence of single compilations that will work in Java, and sometimes not. When you must submit many or all the Java source files on the command line at once, what would be an unwise move for a C/C++ programmer becomes routine and necessary for a Java programmer. Don't sweat it. That's what fast CPUs and multiple cores and overengineered IDEs are for.

			The Java commands to build and run the j0 parser are as follows:

			jflex javalex.l

			yacc -Jclass=parser -Jpackage=ch4 -Jyylex=ch4.j0.yylex\

			     -Jyyerror=ch4.yyerror.yyerror j0gram.y

			javac parser.java Yylex.java j0.java parserVal.java \

			         token.java yyerror.java 

			java ch4.j0 hello.java

			From either the Unicon or the Java implementation, you should see the output like this:

			no errors, 26 tokens parsed

			Not a very interesting output. The Jzero parser will become a lot more useful in the next chapter, when you learn to construct a data structure that is a record of the complete syntactic structure of the input source program. That data structure is the fundamental skeleton upon which any interpreter or compiler implementation of a programming language is based. In the meantime, what if we give an input file that is missing some required punctuation, or uses some Java constructs that are not in Jzero? We expect an error message. The following example input file named helloerror.java serves to motivate our next section:

			public class hello {

			   public static void main(String argv[]) {

			      System.out.println("hello, jzero!")

			   }

			}

			Can you see the error? It is the oldest and most common syntax error of all. A semi-colon is missing at the end of the println() statement.

			Based on the parser written so far, running j0 helloerror.java so far prints the following yacc default error message and exits:

			parse error

			While no errors was uninteresting, saying parse error when there is a problem is not user-friendly at all. It is time to consider syntax error reporting and recovery.

			Improving syntax error messages

			Earlier, we saw a bit about the yacc syntax error reporting mechanism. Yacc just calls a function named yyerror(s). Very rarely, this function can be called for an internal error such as a parse stack overflow, but usually when it is called, it is passed the string "parse error" or "syntax error" as its parameter. Neither is adequate for helping programmers find and fix their errors in the real world. If you write a function called yyerror() yourself, you can produce a better error message. The key is to have extra information available that the programmer can use. Usually, that extra information will have to be placed in a global or public static variable in order for yyerror() to access it. Let's look at how to write a better yyerror() function in Unicon, and then in Java.

			Adding detail to Unicon syntax error messages

			In the Putting together a toy example section earlier in this chapter, you saw a Unicon implementation of yyerror(s) that just consisted of calling stop(s). It is easy to do better than this, especially if we have global variables such as yylineno available. In Unicon, your yyerror() function might look like the following:

			procedure yyerror(s)

			   write(&errout, "line ", yylineno, " column ", yycolno,

			                  ", lexeme \"", yytext, "\": ", s)

			end

			This prints the line and column numbers, as well as the current lexeme at the time that the syntax error was discovered. Because yylineno, yycolno, and yytext are global variables, it is no problem to access them from the helper procedure yyerror(). The main thing that you might want to do even better than this is figure out how to produce a message that's more helpful than just saying parse error.

			Adding detail to Java syntax error messages

			The corresponding Java yyerror() function is given below. In BYACC/J, you could place this method in the helper functions section of j0gram.y, where it will be included within the Parser class where it is called from. Unfortunately, if you do this, you give up Unicon/Java portability in the yacc specification file. So instead, we place the yyerror() function in its own class and its own file. This example shows the degree of pathos inflicted by Java's semi-pure object-oriented model where everything must be in a class, even when it is inane to do so:

			public class yyerror {

			   public static void yyerror(String s) {

			      System.err.println(" line "+ j0.yylineno +                    " column "+ j0.yycolno +                    ", lexeme \""+ j0.yytext()+ "\": "+ s);

			   }

			}

			As we saw earlier in this chapter, using this yyerror() from another file from within a parser class generated by BYACC/J requires an import static declaration for which we added -Jyylex=… and -Jyyerror=… command-line options to BYACC/J.

			With either the Unicon or the Java implementation, when you link this yyerror() into your j0 parser and run j0 helloerror.java, you should see output that looks like the following:

			line 4 column 1, lexeme "end": parse error

			Until recently, this was as good as many production compilers such as gcc managed to do. For an expert programmer, it is enough. Looking before and after the point of failure, an expert will see a missing semi-colon. But for a novice or an intermediate programmer having a bad day, even the line number, column, and token at which an error is discovered are not enough. Good programming language tools must be able to deliver better error messages.

			Using Merr to generate better syntax error messages

			How do we write a better message that clearly indicates a parse error? The parse algorithm was looking at two integers when it realized there was an error: a parse state and a current input symbol. If you can map those two integers to a set of better error messages, you win. Unfortunately, it is not trivial to figure out what the integer parse states mean. You can do it by painful trial and error, but every time you change the grammar, those numbers change.

			A tool was created just to solve this problem, called Merr (for Meta error). Merr lives at http://unicon.org/merr. It takes as input the name of your compiler, a makefile for building it, and a meta.err specification file that contains a list of error fragments and their corresponding error messages. In order to generate yyerror(), Merr builds your compiler and runs it in a mode that causes it to print out the parse state and current input token on each of the fragment errors. It then writes out a yyerror() that contains a table showing, for each parse state and error fragment, what the associated error message is. A sample meta.err file for a few errors, including the missing semi-colon error shown earlier, is as follows:

			public {

			::: class expected 

			public class {

			::: missing class name 

			public class h public

			::: { expected 

			public class h{public static void m(S a[]){S.o.p("h")}}

			::: semi-colon expected

			You invoke the Merr tool by telling it the name of the compiler you are building; it uses this name as a target argument when it calls make to build your compiler. Various command-line options let you specify what yacc version you have and other important details. The following command lines invoke merr on Unicon (left) or Java (right):

			merr -u j0                   merr -j j0.class

			This command grinds for a while. merr rebuilds your compiler with a modified yyerror() function to report the parse state and input token at the time of each error. Merr then runs your compiler on each of the error fragments and records what parse states they die in. Finally, merr writes out a yyerror() containing a table mapping parse states to error messages.

			As you saw in both the Unicon and Java cases, writing an error message that includes line numbers or the current input symbol at the time a syntax error is found is easy. On the other hand, saying something more helpful about it can be challenging.

			Summary

			In this chapter, you learned the crucial technical skills and tools used in programming languages when they are parsing the sequence of lexemes from the program source code in order to check its organization and structure.

			You learned to write context-free grammars, and to use the iyacc and BYACC/J tools to take your context-free grammar and generate a parser for it.

			When input fails to follow the rules, an error reporting function, yyerror(), is called. You learned some basics about this error handling mechanism.

			You learned how to call a generated parser from a main() function. The parser that yacc generates is called via the yyparse() function.

			You are now ready to learn how to build the syntax tree data structure that reflects the structure of the input source code. The next chapter will cover the construction of syntax trees in detail.

			Questions

			
					What does it really mean to say a grammar symbol is terminal? Is it dying or something?

					YACC parsers are called shift/reduce parsers. What exactly is a shift? What is a reduce?

					Does the semantic action code in a YACC grammar execute when the parser performs a shift, or a reduce, or both?

					How does syntax analysis make use of the lexical analysis described in the previous chapter?

			

		

	
		
			Chapter 5: Syntax Trees

			The parser we constructed in the last chapter can detect and report syntax errors, which is a big, important job. When there is no syntax error, you need to build a data structure during parsing that represents the whole program logically. This data structure is based on how the different tokens and larger pieces of the program are grouped together. A syntax tree is a tree data structure that records the branching structure of the grammar rules used by the parsing algorithm to check the syntax of an input source file. A branch occurs whenever two or more symbols are grouped together on the right-hand side of a grammar rule to build a non-terminal symbol. This chapter will show you how to build syntax trees, which are the central data structure for your programming language implementation.

			This chapter covers the following main topics: 

			
					Learning about trees

					Creating leaves from terminal symbols

					Building internal nodes from production rules

					Forming syntax trees for the Jzero language

					Debugging and testing your syntax tree

			

			It is time to learn about tree data structures and how to build them. But first, let's learn about some new tools that will make building your language easier for the rest of this book.

			Technical requirements

			There are two tools for you to install for this chapter, as follows:

			
					Dot is part of a package called Graphviz that can be downloaded from a downloads page found at http://graphviz.org. After successfully installing Graphviz, you should have an executable named dot (or dot.exe) on your path.

					GNU's Not Unix (GNU) make is a tool to help manage large programming projects that supports both Unicon and Java. It is available for Windows from http://gnuwin32.sourceforge.net/packages/make.htm. Most programmers probably get it along with their C/C++ compiler or with a development suite such as MSYS2 or Cygwin. On Linux, you typically get make from a C development suite, although it is often also a separate package you can install.

					You can download this book's examples from our GitHub repository: https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch5.

			

			The Code in Action video for the chapter can be found here: https://bit.ly/3DgRcgC

			Before we dive into the main topics of this chapter, let's explore the basics of how to use GNU make and why you need it for developing your language.

			Using GNU make

			Command lines are growing longer and longer, and you will get very tired of typing the commands required to build a programming language. We are already using Unicon, Java, uflex, jflex, iyacc, and BYACC/J. Few tools for building large programs are multi-platform and multi-language enough for this toolset. We will use the ultimate: GNU make.

			Once a make program is installed on your path, you can store the build rules for Unicon or Java or both in a file named a makefile (or Makefile), and then just run make whenever you have changed the code and need to rebuild. A full treatment of make is beyond the scope of this book, but here are the key points.

			A makefile is like a lex or yacc specification, except instead of recognizing patterns of strings, a makefile specifies a graph of build dependencies between files. For each file, the makefile contains the source files it depends on as well as a list of one or more command lines needed to build that file. The makefile header just consists of macros defined by NAME= strings that are used in later lines by writing $(NAME) to replace a name with its definition. The rest of the makefile lines are dependencies written in the following format:

			file: source_file(s)

			    build rule

			In the first line, file is an output file you want to build, also called a target. The first line specifies that the target depends on current versions of the source file(s). They are required in order to make the target. build rule is the command line that you execute to make that output file from those source file(s).

			Don't forget the tab!

			The make program supports multiple lines of build rules, as long as the lines continue to start with a tab. The most common newbie mistake in writing a makefile is that the build rule line(s) must begin with an American Standard Code for Information Interchange (ASCII) Ctrl-I, also known as a tab character. Some text editors will totally blow this. If your build rule lines don't start with a tab, make will probably give you some confusing error message. Use a real code editor and don't forget the tab.

			The following example makefile will build both Unicon and Java if you just say make. If you run make unicon or make java, then it only builds one or the other. Added to the commands from the last chapter is a new module (tree.icn or tree.java) for this chapter. The makefile is presented in two halves, for the Unicon and then the Java build, respectively.

			The target named all specifies what to build if make is invoked without an argument saying what to build. The rest of the first half is concerned with building Unicon. The U macros (and IYU for iyacc) list the Unicon modules that are separately compiled into a machine code format called ucode. The %.u:%.icn strange dependency is called a suffix rule. It says that all .u files are built from .icn files by running unicon -c on the .icn file. The executable named j0 is built from the ucode files by running unicon on all the .u files to link them together. The javalex.icn and j0gram.icn files are built using uflex and iyacc, respectively. Let's look at the first half of our makefile for this chapter, as follows:

			all: unicon java

			LYU=javalex.u j0gram.u j0gram_tab.u

			U=j0.u token.u tree.u serial.u yyerror.u $(LYU)

			unicon: j0

			%.u : %.icn

			    unicon -c $<

			j0: $(U)

			    unicon $(U)

			javalex.icn: javalex.l

			    uflex javalex.l

			j0gram.icn j0gram_tab.icn: j0gram.y

			    iyacc -dd j0gram.y

			The Java build rules occupy the second half of our makefile. The JSRC macro gives the names of all the Java files to be compiled. BYSRC macros for BYACC/J-generated sources, BYJOPTS for BYACC/J options, and IMP and BYJIMPS for BYACC/J static imports serve to shorten later lines in the makefile so that they fit within this book's formatting constraints. We are sticking carefully to a makefile that will run on both Windows and Linux. As a reminder, the Java rules of our makefile depend on a CLASSPATH environment variable, and the syntax for that varies with your operating system and its Command Prompt (or shell) syntax. On Windows, you might say the following:

			set CLASSPATH=".;c:\users\username\byopl"

			Here, username is your username, while on Linux, you might instead say the following:

			export CLASSPATH=..

			In any case, here is the second half of our makefile:

			BYSRC=parser.java parserVal.java Yylex.java

			JSRC=j0.java tree.java token.java yyerror.java $(BYSRC)

			BYJOPTS= -Jclass=parser -Jpackage=ch5

			IMP=importstatic

			BYJIMPS= -J$(IMP)=ch5.j0.yylex -J$(IMP)=ch5.yyerror.yyerror

			j: java

			    java ch5.j0 hello.java

			    dot -Tpng foo.dot >foo.png

			java: j0.class

			j0.class: $(JSRC)

			    javac $(JSRC)

			parser.java parserVal.java: j0gram.y

			    yacc $(BYJOPTS) $(BYJIMPS) j0gram.y

			Yylex.java: javalex.l

			    jflex javalex.l

			In addition to the rules for compiling the Java code, the Java part of the makefile has an artificial target, make j, that runs the compiler and invokes the dot program to generate a Portable Network Graphic (PNG) image of your syntax tree.

			If you find makefiles strange and scary-looking, don't worry—you are in good company. This is a red pill/blue pill moment. You can close your eyes and just type make at the command line. Or, you can dig in and take ownership of this universal multi-language software development build tool. If you want to read more about make, you might want to read GNU Make: A Program for Directing Compilation, by Stallman and McGrath, or one of the other fine books on make. Now, it's time to get on with syntax trees, but first, you have to know what a tree is and how to define a tree data type for use in a programming language.

			Learning about trees

			Mathematically a tree is a kind of graph structure; it consists of nodes and edges that connect those nodes. All the nodes in a tree are connected. A single node at the top is called the root. Tree nodes can have zero or more children, and at most one parent. A tree node with zero children is called a leaf; most trees have a lot of leaves. A tree node that is not a leaf has one or more children and is called an internal node. The following diagram shows an example tree with a root, two additional internal nodes, and five leaves:
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			Figure 5.1 – A tree with a root, internal nodes, and leaves

			Trees have a property called arity that says what the maximum number of children a node can have is. An arity of 1 would give you a linked list. Perhaps the most common kinds of trees are binary trees (arity = 2). The kind of trees we need has as many children as there are symbols on the right-hand side of the rules in our grammar; these are so-called n-ary trees. While there is no arity bound for arbitrary context-free grammars, for any grammar we can just look and see which production rule has the most symbols on its right-hand side, and code our tree arity to that number if needed. In j0gram.y from the last chapter, the arity of Jzero is 9, although most non-leaf nodes will have two to four children. In the following subsections, we will dive deeper and learn how to define syntax trees and understand the difference between a parse tree and a syntax tree.

			Defining a syntax tree type

			Every node in a tree has several pieces of information that need to be represented in the class or data type used for tree nodes. This includes the following information:

			
					Labels or integer codes that uniquely identify the node and what kind of node it is

					A data payload consisting of whatever information is associated with that node

					Information about that node's children, including how many children it has and references to those children (if any)

			

			We use a class for this information in order to keep the mapping to Java as simple as possible. Here is an outline of the tree class with its fields and constructor code; the methods will be presented in the sections that follow within this chapter. The tree information can be represented in Unicon in a file named tree.icn, as follows.

			class tree(id, sym, rule, nkids, tok, kids)

			initially(s,r,x[])

			   id := serial.getid(); sym := s; rule := r

			   if type(x[1]) == "token__state" then {

			      nkids:=0; tok := x[1]

			   } else { nkids := *x; kids := x }

			end

			The tree class has the following fields:

			
					The id field is a unique integer identity or serial number that is used to distinguish tree nodes from each other. It is initialized by calling a getid() method in a singleton class named serial that will be presented later in this section.

					The label string is a human-readable description for debugging purposes.

					The member named rule holds which production rule (or, in the case of a leaf, the integer category) the node represents. Yacc does not provide a numeric encoding for production rules, so you will have to make your own, whether you just count rules starting from 1 or get fancier. If you start at 1,000 or use negative numbers, you will never confuse a production rule number for a terminal symbol code.

					The member named nkids holds the number of child nodes underneath this node. Usually, it will be 0, indicating a leaf, or a number 2 or higher, indicating an internal node.

					The member named tok holds the lexical attributes of a leaf node, which comes to us via the yylex() function setting the parser's yylval variable, as discussed in Chapter 2, Programming Language Design.

					The member named kids is an array of tree objects.

			

			The corresponding Java code looks like the following class tree in a file named tree.java. Its members match the fields in the Unicon tree class given previously: 

			package ch5;

			class tree {

			  int id;

			  String sym;

			  int rule;

			  int nkids;

			  token tok;

			  tree kids[]; 

			The tree.java file continues with two constructors for the tree class: one for leaves, which takes a token object as an argument, and one for internal nodes, which takes children. These can be seen in the following code snippet:

			  public tree(String s, int r, token t) {

			    id = serial.getid();

			    sym = s; rule = r; tok = t; }

			  public tree(String s, int r, tree[] t) {

			    id = serial.getid();

			    sym = s; rule = r; nkids = t.length;

			    kids = t;

			  }

			}

			The previous pair of constructors initialize a tree's fields in an obvious way. You may be curious about the identifiers (IDs) initialized from a serial class. These are used to give each node a unique identity required by the tool that draws the syntax trees for us graphically at the end of this chapter. Before we proceed with using these constructors, let's consider two different mindsets regarding the trees we are constructing.

			Parse trees versus syntax trees

			A parse tree is what you get when you allocate an internal node for every production rule used during the parsing of an input. Parse trees are a complete transcript of how the parser matched the input using the grammar. They are too large and unwieldy to use in practice. In real programming languages, there are lots and lots of non-terminal rules that build a non-terminal from a single non-terminal on their right-hand side. This results in a weeping tree appearance. The following diagram shows the height and shape of a parse tree for a trivial "Hello World" program. If you build a full parse tree, it will substantially slow down the rest of your compiler:

			
				
					[image: Figure 5.2 – A parse tree for a "Hello World" program (67 nodes, height 27)
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			Figure 5.2 – A parse tree for a "Hello World" program (67 nodes, height 27)

			A syntax tree has an internal node whenever a production rule has two or more children on the right-hand side and the tree needs to branch out. The following diagram shows a syntax tree for the same hello.java program. Note the differences in size and shape compared with the parse tree shown in Figure 5.2:

			
				
					[image: Figure 5.3 – A syntax tree for a "Hello World" program (20 nodes, height 8)
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			Figure 5.3 – A syntax tree for a "Hello World" program (20 nodes, height 8)

			While a parse tree may be useful for studying or debugging a parsing algorithm, a programming language implementation uses a much simpler tree. You will see this especially when we present the rules for building tree nodes for our example language, in the Forming syntax trees for the Jzero language section.

			Creating leaves from terminal symbols

			Leaves make up a large percentage of the nodes in a syntax tree. The leaves in a syntax tree built by yacc come from the lexical analyzer. For this reason, this section discusses modifications to the code from Chapter 2, Programming Language Design. After you create leaves in the lexical analyzer, the parsing algorithm must pick them up somehow and plug them into the tree that it builds. This section describes that process in detail. First, you will learn how to embed token structures into tree leaves, and you will then learn how these leaves are picked up by the parser in its value stack. For Java, you will need to know about an extra type that is needed to work with the value stack. Lastly, the section provides some guidance as to which leaves are really necessary and which can be safely omitted. Here is how to create leaves containing token information.

			Wrapping tokens in leaves

			The tree type presented earlier contains a field that is a reference to the token type introduced in Chapter 2, Programming Language Design. Every leaf will get a corresponding token and vice versa. Think of this as wrapping up the token inside a tree leaf. Here is a Unified Modeling Language (UML) diagram that depicts each tree leaf containing a token:

			[image: Figure 5.4 – Diagram of a leaf containing a token
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			Figure 5.4 – Diagram of a leaf containing a token

			You could instead add the token type's member fields directly into the tree type. However, the strategy of allocating a token object, and then a separate tree node that contains a pointer to that token object, is reasonably clean and easy to understand. In Unicon, the code to create a leaf looks like this:

			yylval := tree("token",0, token(cat, yytext, yylineno))

			In Java, the creation of a leaf node containing a token almost looks like the following code:

			yylval = new tree("token",0,           new token(cat, yytext(), yylineno));

			You could put this code within the j0.scan() method that is called for each token in the lexical analyzer. In Unicon, we are good at this point. In statically typed languages such as Java, what data type is yylval? In Chapter 2, Programming Language Design, yylval was type token; now, it looks like type tree. But yylval is declared in the generated parser, and yacc doesn't know anything about your token or tree types. For a Java implementation, you must learn the data type that the code generated by yacc uses for leaves, but first, you need to learn about the value stack.

			Working with YACC's value stack

			BYACC/J does not know about your tree class. For this reason, it generates its value stack as an array of objects whose type is named parserVal. If you rename BYACC/J's parser class to something else, such as myparse, using the -Jclass= command-line option, the value stack class will also automatically be renamed to myparseVal.

			The yylval variable is part of the public interface of yacc. Every time yacc shifts the next terminal symbol onto its parse stack, it copies the contents of yylval onto a stack that it manages in parallel with the parse stack, called the value stack. BYACC/J declares the value stack elements as well as yylval in the parser class to be of the type parserVal.

			Since a parse stack is managed in parallel with a value stack, whenever a new state is pushed on the parse stack, the value stack sees a corresponding push; the same goes for pop operations. Value stack entries whose parse state was produced by a shift operation hold tree leaves. Value stack entries whose parse state was produced by a reduce operation hold internal syntax tree nodes. The following diagram depicts a value stack in parallel with a parse stack:
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			Figure 5.5 – A parse stack and a value stack

			In Figure 5.5, $ on the left edge represents the bottom of the two stacks, which grow toward the right when values are pushed on the stack. The right side of the diagram depicts the sequence of terminal symbols whose tokens are produced by lexical analysis. Tokens are processed from left to right, with $ at the right edge of the screen representing the end of file, also depicted as EOF. The ellipses (…) on the left side represent the room on the two stacks to process additional push operations during parsing, while those on the right side represent whatever additional input symbols remain after those that are depicted.

			The parserVal type was briefly mentioned in Chapter 4, Parsing. To build syntax trees in BYACC/J, we must go into this in detail. Here is the parserVal type, as defined by BYACC/J:

			public class parserVal {

			  public int ival;

			  public double dval;

			  public String sval;

			  public Object obj;

			  public parserVal() { }

			  public parserVal(int val){ ival=val; }

			  public parserVal(double val) { dval=val; }

			  public parserVal(String val) { sval=val; }

			  public parserVal(Object val) { obj=val; }

			parserVal is a container that holds an int, a double, a String, and an Object, which can be a reference to any class instance at all. Having four fields here is a waste of memory for us since we will only use the obj field, but yacc is a generic tool. In any case, let's look at wrapping tree leaves within a parserVal object in order to place them in yylval.

			Wrapping leaves for the parser's value stack

			In terms of mechanics, parserVal is a third data type in the code that builds our syntax tree. BYACC/J requires that we use this type for the lexical analyzer to communicate tokens to the parser. For this reason, for the Java implementation, this chapter's class, j0, has a scan() method that looks like this:

			   public static int scan(int cat) {

			      ch5.j0.par.yylval =

			         new parserVal(

			            new tree("token",0,

			               new token(cat, yytext(), yylineno)));

			      return cat;

			   }

			In Java, each call to scan() allocates three objects, as shown in Figure 5.6. In Unicon, scan() allocates two objects, as shown in Figure 5.4:
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			Figure 5.6 – The three allocated objects: parserVal, leaf, and token

			OK—we wrapped tokens inside of tree nodes in order to represent leaf information, and then for Java, we wrap leaf nodes inside parserVal in order to put them onto the value stack. Let's consider what putting a leaf on the value stack looks like in slow motion. We will tell the story as it occurs in Java, recognizing that in Unicon it is a little bit simpler. Suppose you are at the beginning of your parse, and your first token is the reserved word PUBLIC. The scenario is shown in the following diagram. See the description of Figure 5.5 if you need a refresher on how this diagram is organized:
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			Figure 5.7 – The parse stack state at the start of parsing

			The first operation is a shift. An integer finite automation state that encodes the fact that we saw PUBLIC is pushed onto the stack. yylex() calls scan(), which allocates a leaf wrapped in a parserVal instance and assigns yylval a reference to it, which yylex() pushes onto the value stack. The stacks are in lock-step, as shown in the following diagram:
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			Figure 5.8 – The parse and value stack state after a shift operation

			Another of these wrapped leaves gets added to the value stack each time a shift occurs. Now, it's time to consider how all these leaves get placed into the internal nodes, and how internal nodes get assembled into higher-level nodes until you get back to the root. This all happens one node at a time when a production rule in the grammar is matched.

			Determining which leaves you need

			In most languages, punctuation marks such as semicolons and parentheses are only necessary for syntax analysis. Maybe they help for human readability or force operator precedence, or make the grammar parse unambiguously. Once you successfully parse the input, you will never again need those leaves in your syntax tree for subsequent semantic analysis or code generation.

			You can omit unnecessary leaves from the tree, or you can leave them in so that their source line number and filename information is in the tree in case it is needed for error message reporting. I usually omit them by default but add in specific punctuation leaves if I determine that they are needed for some reason.

			The flipside of this equation is this: any leaf that contains a value or a name or other semantic meaning of some kind in the language needs to be kept around in the syntax tree. This includes literal constants, IDs, and other reserved words or operators. Now, let's look at how and when to build internal nodes for your syntax tree.

			Building internal nodes from production rules

			In this section, we will learn how to construct the tree, one node at a time, during parsing. The internal nodes of your syntax tree, all the way back up to the root, are built from the bottom up, following the sequence of reduce operations with which production rules are recognized during the parse. The tree nodes used during the construction are accessed from the value stack.

			Accessing tree nodes on the value stack

			For every production rule in the grammar, there is a chance to execute some code called a semantic action when that production rule is used during a parse. As you saw in Chapter 4, Parsing, in the Putting together the yacc context-free grammar section, semantic action code comes at the end of a grammar rule, before the semicolon or vertical bar that ends a rule and starts the next one.

			You can put any code you want in a semantic action. For us, the main purpose of a semantic action is to build a syntax tree node. Use the value stack entries corresponding to the right side of the production rule to construct the tree node for the symbol on the left side of the production rule. The left-side non-terminal that has been matched gets a new entry pushed into the value stack that can hold the newly constructed tree node.

			For this purpose, yacc provides macros that refer to each position on the value stack during a reduce operation. $1, $2, … $N refer to the current value-stack contents corresponding to the grammar rule's right-hand symbols 1 through N. By the time the semantic action code executes, these symbols have already been matched at some point in the recent past. They are the top N symbols on the value stack, and during the reduce operation they will be popped, and a new value-stack entry pushed in their place. The new value-stack entry is whatever you assign to $$. By default, it will just be whatever is in $1; the default semantic action of yacc is $$=$1, and that semantic action is correct for production rules with one symbol (terminal or non-terminal) that is being reduced to the non-terminal on the left-hand side of the rule.

			All of this is a lot to unpack. Here is a specific example. Suppose you are just finishing up parsing the hello.java input shown earlier, and where it is at the point where it is time to reduce the reserved words PUBLIC, CLASS, the class name, and the class body. The grammar rule that applies at this point is ClassDecl: PUBLIC CLASS IDENTIFIER ClassBody.

			The preceding rule has four symbols on the right-hand side. The first three are terminal symbols, which means that on the value stack, their tree nodes will be leaves. The fourth symbol on the right side is a non-terminal, whose value stack entry will be an internal node, a subtree, which happens in this case to have three children. When it is time to reduce all that down to a ClassDecl production rule, we are going to allocate a new internal node. Since we are finishing parsing, in this case, it happens to be the root, but in any case, it will correspond to the class declaration that we have found, and it will have four children. The following diagram shows the contents of the parse stack and the value stack at the time of the reduce operation when the entire class is finally to be connected as one big tree:
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			Figure 5.9 – Parse and value stack right before a reduce operation

			The mission of the semantic action for the ClassDecl production rule will be to create a new node, initialize its four children from $1, $2, $3, and $4, and assign it to $$. The following diagram shows how this looks after constructing the ClassDecl rule:
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			Figure 5.10 – Subtrees are combined on the value stack during reduce operations

			The entire tree is constructed very gradually, one node at a time, and the parserVal objects are removed at the point at which children get removed from the value stack and inserted into their parent node.

			Using the tree node factory method

			The tree class contains an important factory method named node(). A factory method is a method that allocates and returns an object. It is like a constructor, but it allocates an object of a different type from whatever class it is within. Factory methods are used heavily in certain design patterns. In our case, the node() method takes a label, a production rule number, and any number of children, and returns an internal node to document that production rule having been matched. The Unicon code for the node() method is shown in the following snippet:

			  method node(s,r,p[])

			    return tree ! ([s,r] ||| p)

			  end

			The Java code for the node() method is more complex due to the wrapping and unwrapping of the parserVal types. Wrapping a newly constructed internal node in a parserVal object is easy enough with a call to create a new parserVal object, but in order to construct the tree's children, they are first unwrapped by a separate helper method called unwrap(). The code is shown in the following snippet:

			  public static parserVal node(String s,

			int 

			    r,parserVal...p) {

			     tree[] t = new tree[p.length];

			     for(int i = 0; i < t.length; i++)

			     t[i] = (tree)(p[i].obj);

			     return new parserVal((Object)new tree(s,r,t));

			  }

			The preceding Java code takes a variable number of arguments, unwraps them, and passes them into the constructor of the tree class. The unwrapping consists of selecting the obj field of the parserVal object and casting it to be of type tree.

			Since the semantic actions for iyacc are Unicon code and for BYACC/J they are Java code, this requires some cheating. A semantic action will be legal in both Java and Unicon only if you limit it to common syntax such as method calls. If you start inserting other things in the semantic actions, such as if statements and other language-specific syntax, your yacc specification will become specific to one host language such as Unicon or Java.

			However, it was not quite possible for this book's examples to be crafted to use the same input file for both iyacc and BYACC/J as is. The reason for this is that semantic actions in yacc typically assign a value (a reference to a parse tree node) to a special variable named $$, and Unicon uses a := operator for assignment while Java uses =. This was addressed during the writing of this book by modifying iyacc so that semantic actions that start with $$= are accepted as a special operator that generates the Unicon equivalent assignment of $$:=. 

			The strategies that you need for building internal nodes in your syntax tree are pretty simple: for every production rule, count how many children are either one of the following:

			
					A non-terminal

					A terminal that is not a punctuation mark

			

			If the number of such children is more than one, call the node() factory method to allocate a tree node, and assign it to be the value stack entry for the production rule. Now, it's time to demonstrate syntax tree construction in a non-trivial example: the Jzero language.

			Forming syntax trees for the Jzero language

			This section shows you how to build syntax trees for the Jzero language. The full j0gram.y file for this chapter is available on the book's GitHub site. The header is omitted here since the %token declarations are unchanged from how they appear in the section titled The Jzero Yacc specification in the previous chapter. Although we are again presenting many of the grammar rules shown in the last chapter, the focus now is on the construction of new tree nodes associated with each production rule, if any.

			As described earlier, the tree's internal nodes are constructed in semantic actions that are added at the ends of production rules. For each production rule that builds a new node, it is assigned to $$, the yacc value corresponding to the new non-terminal symbol built by that production rule.

			The starting non-terminal, which in the case of Jzero is a single class declaration, is the point at which the root of the entire tree is constructed. Its semantic action has extra work after assigning the constructed node to $$. At this top level, in this chapter, the code prints out the tree by calling the print() method in order to allow you to check whether it is correct. Subsequent chapters may assign the topmost tree node to a global variable named root for subsequent processing or call a different method here to translate the tree to machine code, or to execute the program directly by interpreting the statements in the tree.

			The code is illustrated in the following snippet:

			%%

			ClassDecl: PUBLIC CLASS IDENTIFIER ClassBody {

			  $$=j0.node("ClassDecl",1000,$3,$4);

			  j0.print($$);

			 } ;

			The non-terminal ClassBody either contains declarations (first production rule) or is empty. In the empty case, it is an interesting question whether to assign an explicit leaf node indicating an empty ClassBody, as is done in the following code snippet, or whether the code should just say $$=null:

			ClassBody: '{' ClassBodyDecls '}' {

			              $$=j0.node("ClassBody",1010,$2); }

			              | '{' '}' { $$=j0.node("ClassBody",1011); };

			The non-terminal ClassBodyDecls chains together as many fields, methods, and constructors as occur within the class. The first production rule terminates the recursions in the second production rule with a single ClassBodyDecl. Since there is no semantic action in the first production rule, it executes $$=$1; the subtree for ClassBodyDecl is promoted instead of creating a node for the parent. The code is illustrated in the following snippet:

			ClassBodyDecls: ClassBodyDecl

			              | ClassBodyDecls ClassBodyDecl {

			              $$=j0.node("ClassBodyDecls",1020,$1,$2); };

			There are three kinds of ClassBodyDecl to choose from. No extra tree node is allocated at this level as it can be inferred which kind of ClassBodyDecl each subtree is. The code is illustrated here:

			ClassBodyDecl: FieldDecl | MethodDecl | ConstructorDecl ;

			A field, or member variable, is declared with a base type followed by a list of variable declarations, as illustrated in the following code snippet:

			FieldDecl: Type VarDecls ';' {

			             $$=j0.node("FieldDecl",1030,$1,$2); };

			The types in Jzero are very simple and include four built-in type names and a generic rule for names of classes, as illustrated in the following code snippet. No production rule has two children, so no new internal nodes are needed at this level. Arguably, String might be handled using that latter rule and needn't be a special case:

			Type: INT | DOUBLE | BOOL | STRING | Name ;

			A name is either a single token called IDENTIFIER or a name with one or more periods in it, called QualifiedName, as illustrated in the following code snippet:

			Name: IDENTIFIER | QualifiedName ;

			QualifiedName: Name '.' IDENTIFIER {

			                 $$=j0.node("QualifiedName",1040,$1,$3);};

			Variable declarations are a comma-separated list of one or more variable declarators. In Jzero, VarDeclarator is just IDENTIFIER unless it has square brackets following it that denote an array type. As the VarDeclarator internal node implies a set of square brackets, they are not represented explicitly in the tree. The code is illustrated in the following snippet:

			VarDecls: VarDeclarator | VarDecls ',' VarDeclarator {

			            $$=j0.node("VarDecls",1050,$1,$3); };

			VarDeclarator: IDENTIFIER | VarDeclarator '[' ']' {

			            $$=j0.node("VarDeclarator",1060,$1); };

			In Jzero, a method can return a value of some return type or it can return VOID, as illustrated in the following code snippet:

			MethodReturnVal : Type | VOID ;

			A method is declared by providing a method header followed by a block of code. All methods are public static methods. After the return value, the guts of a method header consisting of the method's name and parameters are MethodDeclarator, as illustrated in the following code snippet:

			MethodDecl: MethodHeader Block {

			              $$=j0.node("MethodDecl",1380,$1,$2); };

			MethodHeader: PUBLIC STATIC MethodReturnVal 

			                 MethodDeclarator {

			              $$=j0.node("MethodHeader",1070,$3,$4); };

			MethodDeclarator: IDENTIFIER '(' FormalParmListOpt ')' {

			              $$=j0.node("MethodDeclarator",1080,$1,$3); };

			An optional formal parameter list is either a non-empty FormalParmList or it is an empty production rule, the so-called epsilon rule, between the vertical bar and the semicolon. A formal parameter list is a comma-separated list of formal parameters. This is a non-empty list and the recursion is terminated by a lone formal parameter. Each formal parameter has a type followed by a variable name, possibly including square brackets for array types, as illustrated in the following code snippet:

			FormalParmListOpt: FormalParmList | ;

			FormalParmList: FormalParm | FormalParmList ',' FormalParm {

			               $$=j0.node("FormalParmList",1090,$1,$3); };

			FormalParm: Type VarDeclarator {

			               $$=j0.node("FormalParm",1100,$1,$2); };

			Constructors are declared similarly to methods, although they have no return type, as illustrated in the following code snippet:

			ConstructorDecl: MethodDeclarator Block {

			               $$=j0.node("ConstructorDecl",1110,$1,$2); };

			A Block is a sequence of zero or more statements. Although many of the tree nodes introduce the branching of two or more children, a few tree nodes have only one child because surrounding punctuation is unnecessary. Such nodes might themselves be unnecessary, but they may also make it easier to understand and process the tree. You can see an example in the following code snippet:

			Block: '{' BlockStmtsOpt '}'{$$=j0.node("Block",1200,$2);};

			BlockStmtsOpt: BlockStmts | ;

			BlockStmts:  BlockStmt | BlockStmts BlockStmt {

			                    $$=j0.node("BlockStmts",1130,$1,$2); };

			BlockStmt:   LocalVarDeclStmt | Stmt ;

			Block statements can be either local variable declarations or statements. The syntax of LocalVarDeclStmt is indistinguishable from a FieldDecl rule. It may, in fact, be better to eliminate duplication by default. Whether you use another set of identical production rules or factor the common elements of the grammar, this may depend on whether it will be easier for you to write code that does the correct thing with various trees if they have recognizably different tree node labels and production rule numbers, or whether the differences will be recognized and handled properly due to the surrounding tree context. An example is given in the following code snippet:

			LocalVarDeclStmt: LocalVarDecl ';' ;

			LocalVarDecl: Type VarDecls {

			                $$=j0.node("LocalVarDecl",1140,$1,$2); };

			In the preceding case, a LocalVarDecl node is created, making it easy to distinguish local variables from class member variables in the syntax tree.

			The many kinds of statements each result in their own unique tree nodes. Since they are one-child production rules, introducing another tree node here is unnecessary. The following code snippet illustrates this:

			Stmt: Block | ';' | ExprStmt | BreakStmt | ReturnStmt |

			      | IfThenStmt | IfThenElseStmt | IfThenElseIfStmt

			      | WhileStmt | ForStmt ;

			ExprStmt: StmtExpr ';' ;

			StmtExpr: Assignment | MethodCall ;

			Several non-terminals in Jzero exist in order to allow common variations of if statements. Blocks are required for bodies of conditionals and loops in Jzero in order to avoid a common ambiguity when they are nested, as illustrated in the following code snippet:

			IfThenStmt: IF '(' Expr ')' Block {

			     $$=j0.node("IfThenStmt",1150,$3,$5); };

			IfThenElseStmt: IF '(' Expr ')' Block ELSE Block {

			     $$=j0.node("IfThenElseStmt",1160,$3,$5,$7); };

			IfThenElseIfStmt: IF '(' Expr ')' Block ElseIfSequence {

			     $$=j0.node("IfThenElseIfStmt",1170,$3,$5,$6); }

			|  IF '(' Expr ')' Block ElseIfSequence ELSE Block {

			     $$=j0.node("IfThenElseIfStmt",1171,$3,$5,$6,$8); };

			ElseIfSequence: ElseIfStmt | ElseIfSequence ElseIfStmt {

			     $$=j0.node("ElseIfSequence",1180,$1,$2); };

			ElseIfStmt: ELSE IfThenStmt {

			     $$=j0.node("ElseIfStmt",1190,$2); };

			Tree nodes are generally created for these control structures, and they generally introduce branching into the tree. Although while loops introduce only a single branch, the node for a for loop has four children. Did the language designers do that on purpose? You can see an example in the following code snippet:

			WhileStmt: WHILE '(' Expr ')' Stmt {

			     $$=j0.node("WhileStmt",1210,$3,$5); };

			ForStmt: FOR '(' ForInit ';' ExprOpt ';' ForUpdate ')' 

			Block {

			     $$=j0.node("ForStmt",1220,$3,$5,$7,$9); };

			ForInit: StmtExprList | LocalVarDecl | ;

			ExprOpt: Expr |  ;

			ForUpdate: StmtExprList | ;

			StmtExprList: StmtExpr | StmtExprList ',' StmtExpr {

			     $$=j0.node("StmtExprList",1230,$1,$3); };

			A break statement is adequately represented by the leaf that says BREAK, as illustrated here:

			BreakStmt: BREAK ';' ;

			ReturnStmt: RETURN ExprOpt ';' {

			     $$=j0.node("ReturnStmt",1250,$2); }; 

			A return statement needs a new node, since it is followed by an optional expression. Primary expressions, including literals, do not introduce an additional layer of tree nodes above the content of their child. The only interesting action here is for parenthesized expressions, which discard the parentheses that were used for operator precedence and promote the second child without the need for an additional tree node at this level. Here is an example of this:

			Primary:  Literal | FieldAccess | MethodCall |

			          '(' Expr ')' { $$=$2; };

			Literal: INTLIT | DOUBLELIT | BOOLLIT | STRINGLIT | NULLVAL ;

			An argument list is one or more expressions, separated by commas. To allow zero expressions, a separate non-terminal is used, as illustrated in the following code snippet:

			ArgList: Expr | ArgList ',' Expr {

			                  $$=j0.node("ArgList",1270,$1,$3); };

			ArgListOpt:  ArgList | ;

			Field accesses may be chained together since their left child, a Primary, can be another field access. When one non-terminal has a production rule that derives another non-terminal that has a production rule that derives the first non-terminal, the situation is called mutual recursion and it is normal and healthy. You can see an example of this in the following code snippet:

			FieldAccess: Primary '.' IDENTIFIER {

			               $$=j0.node("FieldAccess",1280,$1,$3); };

			A method call has defining syntax consisting of a method followed by a parenthesized list of zero or more arguments. Usually, this is a simple binary node in which the left child is pretty simple (a method name) and the right child may contain a large subtree of arguments…or it may be empty. Here is an example of this:

			MethodCall: Name '(' ArgListOpt ')' {

			              $$=j0.node("MethodCall",1290,$1,$3); }

			  | Primary '.' IDENTIFIER '(' ArgListOpt ')' {

			    $$=j0.node("MethodCall",1291,$1,$3,$5); } ;

			As seen in the previous chapter, the expression grammar in Jzero has many recursive levels of non-terminals that are not all shown here. You should consult the book's website to see the full grammar with syntax tree construction. In the following code snippet, each operator introduces a tree node. After the tree is constructed, a simple walk of the tree will allow correct calculation (or correct code generation) of the expression:

			PostFixExpr: Primary | Name ;

			UnaryExpr: '-' UnaryExpr {$$=j0.node("UnaryExpr",1300,$1,$2);}

			    | '!' UnaryExpr { $$=j0.node("UnaryExpr",1301,$1,$2); }

			    | PostFixExpr ;

			MulExpr: UnaryExpr

			    | MulExpr '*' UnaryExpr {

			      $$=j0.node("MulExpr",1310,$1,$3); }

			    | MulExpr '/' UnaryExpr {

			      $$=j0.node("MulExpr",1311,$1,$3); }

			    | MulExpr '%' UnaryExpr {

			      $$=j0.node("MulExpr",1312,$1,$3); };

			AddExpr: MulExpr

			    | AddExpr '+' MulExpr{$$=j0.node("AddExpr",1320,$1,$3); }

			    | AddExpr '-' MulExpr{$$=j0.node("AddExpr",1321,$1,$3);

			};

			In a classic C language grammar, comparison operators, also called relational operators, are just another level of precedence for integer expressions. Java and Jzero are a bit more interesting in that the Boolean type is separate from integers and type-checked as such, but that will happen in the chapters that follow, on semantic analysis and type checking. For the code shown in the following snippet, there are four relational operators. LESSTHANOREQUAL is the integer code the lexical analyzer reports for <=, while GREATERTHANOREQUAL is returned for >=. For the < and > operators, the lexical analyzer returns their ASCII codes:

			RelOp: LESSTHANOREQUAL | GREATERTHANOREQUAL | '<' | '>' ;

			The relational operators are at a slightly higher level of precedence than the comparisons of whether values are equal or not equal to each other:

			RelExpr: AddExpr | RelExpr RelOp AddExpr {

			  $$=j0.node("RelExpr",1330,$1,$2,$3); };

			EqExpr: RelExpr

			      | EqExpr ISEQUALTO RelExpr {

			        $$=j0.node("EqExpr",1340,$1,$3); }

			      | EqExpr NOTEQUALTO RelExpr {

			        $$=j0.node("EqExpr",1341,$1,$3); };

			Below the relational and comparison operators, the && and || Boolean operators operate at different levels of precedence, as illustrated in the following code snippet:

			CondAndExpr: EqExpr | CondAndExpr LOGICALAND EqExpr {

			  $$=j0.node("CondAndExpr", 1350, $1, $3); };

			CondOrExpr: CondAndExpr | CondOrExpr LOGICALOR CondAndExpr {

			  $$=j0.node("CondOrExpr", 1360, $1, $3); };

			The lowest level of precedence in many languages, as with Jzero, are the assignment operators. Jzero has += and -= but not ++ and --, which are deemed to be a can of worms for novice programmers and do not add a lot of value for teaching compiler construction. You can see these operators in use here:

			Expr: CondOrExpr | Assignment ;

			Assignment: LeftHandSide AssignOp Expr {

			   $$=j0.node("Assignment",1370, $1, $2, $3); };

			LeftHandSide: Name | FieldAccess ;

			AssignOp: '=' | AUGINCR | AUGDECR ;

			This section presented the highlights of Jzero syntax tree construction. Many production rules require the construction of a new internal node that serves as the parent of several children on the right-hand side of a production rule. However, the grammar has many cases where a non-terminal is constructed from only one symbol on the right-hand side, in which case the allocation of an extra internal node can usually be avoided. Now, let's look at how to check your tree afterward to make sure that it was assembled correctly.

			Debugging and testing your syntax tree

			The trees that you build must be rock solid. What this spectacular mixed metaphor means is: if your syntax tree structure is not built correctly, you can't expect to be able to build the rest of your programming language. The most direct way of testing that the tree has been constructed correctly is to walk back through it and look at the tree that you have built. This section contains two examples of doing that. You will print your tree first in a human-readable (more or less) ASCII text format, then you will learn how to print it out in a format that is easily rendered graphically using the popular open source Graphviz package, commonly accessed through PlantUML or the classic command-line tool called dot. First, consider some of the most common causes of problems in syntax trees.

			Avoiding common syntax tree bugs

			The most common problems with syntax trees result in program crashes when you print the tree out. Each tree node may hold references (pointers) to other objects, and when these references are not initialized correctly: boom! Debugging problems with references is difficult, even in higher-level languages.

			The first major case is this: are your leaves being constructed and picked up by the parser? Suppose you have a lex rule like the one shown here:

			";"                    { return 59; }

			The ASCII code is correct. The parse will succeed but your syntax tree will be broken. You must create a leaf and assign it to yylval whenever you return an integer code in one of your Flex actions. If you do not, yacc will have garbage sitting around in yylval when yyparse() puts it on the value stack for later insertion into your tree. You should check that every semantic action that returns an integer code in your lex file also allocates a new leaf and assigns it to yylval. You can check each leaf to ensure it is valid on the receiving end by printing its contents when you first access it as a $1 or $2 rule or whatever, in the semantic actions for the production rules of yacc.

			The second major case is: are you constructing internal nodes correctly for all the production rules that have two or more children that are significant (and not just punctuation marks, for example)? If you are paranoid, you can print out each subtree to make sure it is valid before creating a new parent that stores pointers to the child subtrees. Then, you can print out the new parent that you've created, including its children, to make sure it was assembled correctly.

			One weird special case that comes up in syntax tree construction has to do with epsilon rules: production rules where a non-terminal is constructed from an empty right-hand side. An example would be the following rule from the j0gram.y file:

			FormalParmListOpt: FormalParmList | ;

			For the second production rule in this example, there are no children. The default rule of yacc, $$=$1, does not look good since there is no $1 rule. You may construct a new leaf here, as in the following solution:

			FormalParmListOpt: FormalParmList | { $$=

			                     j0.node("FormalParamListOpt",1095); }

			But this leaf is different from normal since it has no associated token. Code that traverses the tree afterward had better not assume that all leaves have tokens. In practice, some people might just use a null pointer to represent an epsilon rule instead. If you use a null pointer, you may have to add checks for null pointers everywhere in your later tree traversal code, including the tree printers in the following subsections. If you allocate a leaf for every epsilon rule, your tree will be bigger without really adding any new information. Memory is cheap, so if it simplifies your code it is probably OK to do this.

			To sum up, and as a final warning: you may not discover fatal flaws in your tree construction code unless you write test cases that use every single production rule in your grammar! Such grammar coverage may be required of any serious language implementation project. Now, let's look at the actual methods to verify tree correctness by printing them.

			Printing your tree in a text format

			One way to test your syntax tree is to print out the tree structure as ASCII text. This is done via a tree traversal in which each node results in one or more lines of text output. The following print() method in the j0 class just asks the tree to print itself:

			   method print(root)

			      root.print()

			   end

			The equivalent code in Java must unpack the parserVal object and cast the Object to a tree in order to ask it to print itself, as illustrated in the following code snippet:

			   public static void print(parserVal root) {

			       ((tree)root.obj).print();

			   }

			Trees generally print themselves recursively. A leaf just prints itself out, while an internal node prints itself and then asks its children to print themselves. For a text printout, indentation is used to indicate the nesting level or distance of a node from the root. The indentation level is passed as a parameter and incremented for each level deeper within the tree. The Unicon version of a tree class's print() method is shown in the following code snippet:

			method print(level:0)

			  writes(repl(" ",level))

			  if \tok then

			    write(id, "  ", tok.text, " (",tok.cat,         "): ",tok.lineno)

			  else write(id, "  ", sym, " (", rule, "): ", nkids)

			  every (!kids).print(level+1);

			end

			The preceding method indents a number of spaces given in a parameter and then writes a line of text describing the tree node. It then calls itself recursively, with one higher nesting level, on each of the node's children, if there are any. The Java-equivalent code for the tree class text printout looks like this:

			  public void print(int level) {

			    int i;

			    for(i=0;i<level;i++) System.out.print(" ");

			    if (tok != null)

			      System.out.println(id + "   " + tok.text +                         " (" + tok.cat + "): "+tok.lineno);

			    else

			      System.out.println(id + "   " + sym +            " (" + rule + "): "+nkids);

			    for(i=0; i<nkids; i++)

			      kids[i].print(level+1);

			  }

			  public void print() {

			    print(0);

			  }

			When you run the j0 command with this tree print function in place, it produces the following output:

			63   ClassDecl (1000): 2

			 6   hello (266): 1

			 62   ClassBody (1010): 1

			  59   MethodDecl (1380): 2

			   32   MethodHeader (1070): 2

			    14   void (264): 2

			    31   MethodDeclarator (1080): 2

			     16   main (266): 2

			     30   FormalParm (1100): 2

			      20   String (266): 2

			      27   VarDeclarator (1060): 1

			       22   argv (266): 2

			   58   Block (1200): 1

			    53   MethodCall (1290): 2

			     46   QualifiedName (1040): 2

			      41   QualifiedName (1040): 2

			       36   System (266): 3

			       40   out (266): 3

			      45   println (266): 3

			     50   "hello, jzero!" (273): 3

			no errors

			Although the tree structure can be deciphered from studying this output, it is not exactly transparent. The next section shows a graphic way to depict the tree.

			Printing your tree using dot

			A fun way to test your syntax tree is to print out the tree in a graphical form. As mentioned in the Technical requirements section, a tool called dot will draw syntax trees for us. Writing our tree in the input format of dot is done via another tree traversal in which each node results in one or more lines of text output. To draw a graphic version of the tree, change the j0.print() method to call the tree class's print_graph() method. In Unicon, this is trivial. The code is illustrated in the following snippet:

			   method print(root)

			      root.print_graph(yyfilename || ".dot")

			   end

			The equivalent code in Java must unpack the parserVal object and cast the Object to a tree in order to ask it to print itself, as illustrated in the following snippet:

			   public static void print(parserVal root) {

			       ((tree)root.obj).print_graph(yyfilename + ".dot");

			   }

			As was true for a text-only printout, trees print themselves recursively. The Unicon version of a tree class's print_graph() method is shown in the following code snippet:

			  method print_graph(fw)

			    if type(filename) == "string" then {

			      fw := open(filename,  "w") |

			        stop("can't open ", image(filename), " for writing")

			      write(fw, "digraph {")

			      print_graph(fw)

			      write(fw, "}")

			      close(fw)

			    }

			    else if \tok then print_leaf(fw)

			    else { 

			      print_branch(fw)

			      every i := 1 to nkids do

			        if \kids[i] then {

			          write(fw, "N",id," -> N",kids[i].id,";")

			          kids[i].print_graph(fw)

			        } else {

			          write(fw, "N",id," -> N",id,"_",j,";")

			          write(fw, "N", id, "_", j,

			                    " [label=\"Empty rule\"];")

			          j +:= 1

			        }

			    }

			  end

			The Java implementation of print_graph() consists of two methods. The first is a public method that takes a filename, opens that file for writing, and writes the whole graph to that file, as illustrated in the following code snippet:

			  void print_graph(String filename){

			    try {

			      PrintWriter pw = new PrintWriter(

			        new BufferedWriter(new FileWriter(filename)));

			      pw.printf("digraph {\n");

			      j = 0;

			      print_graph(pw);

			      pw.printf("}\n");

			      pw.close();

			      }

			    catch (java.io.IOException ioException) {

			      System.err.println("printgraph exception");

			      System.exit(1);

			      }

			  }

			In Java, function overloading allows public and private parts of print_graph() to have the same name. The two methods are distinguished by their different parameters. The public print_graph() part passes the file that it opens as a parameter to the following method. This version of print_graph() prints a line or two about the current node, and calls itself recursively on each child:

			  void print_graph(PrintWriter pw) {

			  int i;

			    if (tok != null) {

			      print_leaf(pw);

			      return;

			    }

			    print_branch(pw);

			    for(i=0; i<nkids; i++) {

			        if (kids[i] != null) {

			          pw.printf("N%d -> N%d;\n", id, kids[i].id);

			          kids[i].print_graph(pw);

			        } else {

			          pw.printf("N%d -> N%d%d;\n", id, kids[i].id, j);

			          pw.printf("N%d%d [label=\"%s\"];\n", id, j,                    "Empty rule");

			        j++;

			        }

			    }

			  }

			The print_graph() method calls a couple of helper functions: print_leaf() for leaves and print_branch() for internal nodes. The print_leaf() method prints a dotted outline box containing the characteristics of a terminal symbol. The Unicon implementation of print_leaf() is shown here:

			  method print_leaf(pw)

			    local s := parser.yyname[tok.cat]

			    print_branch(pw)

			    write(pw,"N",id,

			          " [shape=box style=dotted label=\" ",s," \\n ")

			    write(pw,"text = ",escape(tok.text)," \\l lineno = ",             tok.lineno," \\l\"];\n")

			  end

			The integer code for the token's terminal symbol is used as a subscript in an array of strings in the parser named yyname. This is generated by iyacc. The Java implementation of print_leaf() is similar to the Unicon version, as illustrated in the following code snippet:

			  void print_leaf(PrintWriter pw) {

			    String s = parser.yyname[tok.cat];

			    print_branch(pw);

			    pw.printf("N%d [shape=box style=dotted label=\" %s \\n",      id, s);

			    pw.printf("text = %s \\l lineno = %d \\l\"];\n",              escape(tok.text), tok.lineno);

			  }

			The print_branch() method prints a solid box for internal nodes, including the name of the non-terminal represented by that node. The Unicon implementation of print_branch() is shown here:

			  method print_branch(pw)

			    write(pw, "N",id," [shape=box label=\"",

			          pretty_print_name(),"\"];\n");

			  end

			The Java implementation of print_branch() is similar to its Unicon counterpart, as illustrated in the following code snippet:

			  void print_branch(PrintWriter pw) {

			    pw.printf("N%d [shape=box label=\"%s\"];\n",              id, pretty_print_name());

			  }

			The escape() method adds escape characters when needed before double quotes so that dot will print the double quote marks. The Unicon implementation of escape() consists of the following code:

			  method escape(s)

			    if s[1] == "\"" then

			      return "\\" || s[1:-1] || "\\\""

			    else return s

			  end

			The Java implementation of escape() is shown here:

			  public String escape(String s) {

			    if (s.charAt(0) == '\"')

			      return "\\"+s.substring(0, s.length()-1)+"\\\"";

			    else return s;

			  }

			The pretty_print_name() method prints out the best human-readable name for a given node. For an internal node, that is its string label, along with a serial number to distinguish multiple occurrences of the same label. For a terminal symbol, it includes the lexeme that was matched. The code is illustrated in the following snippet:

			  method pretty_print_name() {

			    if /tok then return sym || "#" || (rule%10)

			    else return escape(tok.text) || ":" || tok.cat

			  end

			The Java implementation of pretty_print_name() looks similar to the preceding code, as we can see here:

			  public String pretty_print_name() {

			    if (tok == null) return sym +"#"+(rule%10);

			    else return escape(tok.text)+":"+tok.cat;

			  }

			Run this program on the sample hello.java input file with the following command:

			j0 hello.java                  java ch5.j0 hello.java

			The j0 program writes out a hello.java.dot file that is valid input for the dot program. Run the dot program with the following command to generate a PNG image:

			dot -Tpng hello.java.dot >hello.png

			The following diagram shows a syntax tree for hello.java, as written to hello.png:
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			Figure 5.11 – A diagram of the syntax tree for hello.java

			If you do not write your tree construction code correctly, the program will crash when you run it, or the tree will be obviously bogus when you inspect the image. In order to test your programming language code, you should run it on a wide variety of input programs and examine the resulting trees carefully.

			In this section, you saw that only a few lines of code were needed to generate textual and graphical depictions of your syntax trees using tree traversals. The graphical rendering was provided by an external tool called dot. Tree traversals are a simple but powerful programming technique that will dominate the next several chapters of this book.

			Summary

			In this chapter, you learned the crucial technical skills and tools used to build a syntax tree while the input program is being parsed. A syntax tree is the main data structure used to represent source code internally to a compiler or interpreter.

			You learned how to develop code that identifies which production rule was used to build each internal node so that we can tell what we are looking at later on. You learned how to add tree node constructors for each rule in the scanner. You learned how to connect tree leaves from the scanner into the tree built in the parser. You learned how to check your trees and debug common tree construction problems.

			You are done synthesizing the input source code to a data structure that you can use. Now, it is time to start analyzing the meaning of the program source code so that you can determine which computations it specifies. This is done by walking through the parse tree using tree traversals to perform semantic analysis.

			The next chapter will start us off on that journey by walking the tree to build symbol tables that will enable you to track all the variables in the program and figure out where they were declared.

			Questions

			
					Where do the leaves of the syntax tree come from?

					How are the internal nodes of a syntax tree created?

					Where are leaves and internal nodes stored while a tree is being constructed?

					Why are values wrapped and unwrapped when they are pushed and popped on the value stack?

			

		

	
		
			Section 2: Syntax Tree Traversals

			The heart of a compiler is the tree traversals. Upon completion of this section, you will have a compiler that performs semantic analysis and code generation.

			This section comprises the following chapters:

			
					Chapter 6, Symbol Tables

					Chapter 7, Checking Base Types

					Chapter 8, Checking Types on Arrays, Method Calls, and Structure Accesses

					Chapter 9, Intermediate Code Generation

					Chapter 10, Syntax Coloring in an IDE

			

		

	
		
			Chapter 6: Symbol Tables

			To understand the uses of names in program source code, your compiler must look up each use of a name and determine what that name refers to. You can look up symbols at each location they are used by using table data structures that are auxiliary to the syntax tree. These are called symbol tables. Performing operations to construct and then use symbol tables is the first step of semantic analysis. Semantic analysis is where you study the meaning of input source code.

			Context-free grammar in the syntax chapters of this book have terminal symbols and non-terminal symbols, and those are represented in tree nodes and token structures. When talking about a program's source code, the word symbol is used differently. In this and later chapters, a symbol refers to the name of a variable, function, class, or package, for example. In this book, the words symbol, name, variable, and identifier are used interchangeably.

			This chapter will show you how to construct symbol tables, insert symbols into them, and use symbol tables to identify two kinds of semantic errors: undeclared and illegally redeclared variables. In later chapters, you will use symbol tables to check the types and generate code for the input program.

			The examples in this chapter demonstrate how to use symbol tables by building them for the Jzero subset of Java. Symbol tables are important to be able to check types and generate code for your programming language. In this and the next few chapters, the main skill you will be learning is the art of recursion by writing many selective and specialized tree traversal functions.

			This chapter covers the following main topics: 

			
					Establishing the groundwork for symbol tables

					Creating and populating symbol tables for each scope

					Checking for undeclared variables

					Finding redeclared variables

					Handling class scopes – a Unicon example

			

			It is time to learn about symbol tables and how to build them. First, however, you need to learn about some conceptual foundations you will use to do this work.

			Technical requirements

			The code for this chapter is available on GitHub: https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch6

			The Code in Action video for the chapter can be found here: https://bit.ly/3ccYTZv

			Establishing the groundwork for symbol tables

			In software engineering, you must go through requirements analysis and design before you start coding. Similarly, to build symbol tables, you need to understand what they are for, and how to go about writing the syntax tree traversals that do the work. For starters, you should review what kinds of information your compiler must store and recall different kinds of variables. The information will be stored in symbol tables from declarations in the program code, so let's take a look at those.

			Declarations and scopes

			The meaning of a computer program boils down to the meaning of the information being computed, and the actual computations to be performed. Symbol tables are all about the first part: defining what information the program is manipulating. We will begin by identifying what names are being used, what they are referring to, and how they are being used.

			Consider a simple assignment statement such as the following:

			x = y + 5;

			In most languages, names such as x or y must be declared before they are used. A declaration specifies a name that will be used in the program and usually includes type information. An example declaration for x might look like this:

			int x;

			Each variable declaration has a scope that describes the region in the program where that variable is visible. In Jzero the user-defined scopes are the class scope and the local (method) scope. Jzero also must support scopes associated with a few predefined system packages, which is a small subset of the package scope functionality required of a full Java compiler. Other languages have additional and different kinds of scopes to deal with.

			The example program shown in Figure 6.1, which can be found in the xy5.java file in https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch6, expands the preceding example to illustrate scopes. The light gray class scope surrounds the darker gray local scope:

			
				
					[image: Figure 6.1 – A local scope nested inside a class scope

]
				

			

			Figure 6.1 – A local scope nested inside a class scope

			For any symbol, such as x or y, the same symbol may be declared in both scopes. A name that's declared in an inner scope overrides and hides the same name declared in an outer scope. Such nested scoping requires that a programming language must create multiple symbol tables. A common newbie mistake is to try and do your whole language with only a single symbol table because a symbol table sounds big and scary, and compiler books often talk about the symbol table instead of symbol tables. You must avoid this mistake, plan on supporting multiple symbol tables, and search for symbols starting from the innermost applicable symbol table and work outward to enclosing tables. Now, let's think about the two basic ways that symbols are used in programs to interact with a computer's memory: assignment and dereferencing.

			Assigning and dereferencing variables

			Variables are names for memory locations, and memory can be read or written. Writing a value to a memory location is called assignment. Reading a value from a memory location is called dereferencing. Most programmers have a rock-solid understanding of assignment. Assignment is one of the first things they learn about in programming; for example, the x=0 statement is an assignment to x. A lot of programmers are a bit fuzzy about dereferencing. Programmers write code that does dereferencing all the time, but they may not have heard of the term before. For example, the y=x+1 statement dereferences x to obtain its value before it performs the addition. Similarly, passing a parameter in a call such as System.out.println(x) deferences x.

			Both assignment and dereferencing are acts that use a memory address. They come into play in semantic analysis and code generation. But under what circumstances do assignment and dereferencing affect whether the use of a variable is legal in a given situation? Assignments are not legal for things that were declared to be const, including names of methods. Are there any symbols that cannot be dereferenced? Undeclared variables, of course; they cannot be assigned, either. Anything else? Before we can generate code for an assignment or a dereference, we must be able to understand what memory location is used, and whether the requested operation is legal and defined in the language we are implementing.

			So far, we have reviewed the concepts of assignment and dereferencing. Checking whether each assignment or dereference is legal requires storing and retrieving information about the names used in a program, and that is what symbol tables are for. There is one more bit of conceptual groundwork you need, and then you will be ready to build your symbol tables. You will be doing a lot of syntax tree traversal functions in this and the next few chapters. Let's consider some of the varieties of tree traversal at your disposal.

			Choosing the right tree traversal for the job

			In the previous chapter, you printed out syntax trees using tree traversals where work at the current node was done, followed by recursively calling the traversal function on each child. This is called a pre-order traversal. The pseudocode template for this is as follows:

			method preorder()

			   do_work_at_this_node()

			   every child := !kids do child.preorder()

			end

			Some examples in this chapter will visit the children and have them do their work first, and then use what they calculate to do the work at the current node. This is called post-order traversal. The pseudocode template for post-order traversal looks like this:

			method postorder()

			   every child := !kids do child.postorder()

			   do_work_at_this_node()

			end

			Other traversals exist where the method does some work for the current node in between each child call – this is known as in-order traversal. Lastly, it is common to write a tree traversal consisting of several methods that work together and call each other as needed, possibly as many as one method for each kind of tree node. Although we will try to keep our tree traversals as simple as possible, the examples in this book will use the best tool for the job.

			In this section, you learned about several important concepts that will be used in the code examples in this and the following chapters. These included nested scopes, assignment and dereferencing, and different kinds of tree traversals. Now, it's time to use these concepts to create symbol tables. After that, you can consider how to populate your symbol tables by inserting symbols into them.

			Creating and populating symbol tables for each scope

			A symbol table contains a record of all the names that are declared for a scope. There is one symbol table for each scope. A symbol table provides a means of looking up symbols by their name to obtain information about them. If a variable was declared, the symbol table lookup returns a record with all the information known about that symbol: where it was declared, what its data type is, whether it is public or private, and so on. All this information can be found in the syntax tree. If we also place it in a table, the goal is to access the information directly, from anywhere else that information is needed.

			The traditional implementation of a symbol table is a hash table, which provides a very fast information lookup. Your compiler could use any data structure that allows you to store or retrieve information associated with a symbol, even a linked list. But hash tables are the best for this, and they are standard in Unicon and Java, so we will use hash tables in this chapter.

			Unicon provides hash tables with a built-in data type called a table. See Appendix, Unicon Essentials for a description. Insertion and lookup in the table can be performed by subscripting; for example, accessing elements in an array. For example, symtable[sym] looks up information associated with a symbol named sym, while symtable[sym] := x associates information about x with sym.

			Java provides hash tables in standard library classes. We will use the Java library class known as HashMap for this. Information is retrieved from a HashMap with a method call such as symtable.get(sym) and stored in a HashMap via symtable.put(sym, x).

			Both Unicon tables and Java HashMap map elements from a domain to an associated range. In the case of a symbol table, the domain will contain the string names of the symbols in the program source code. For each symbol in the domain, the range will contain a corresponding instance of the symtab_entry class, a symbol table entry. In the Jzero implementations we will be presenting, the hash tables themselves will be wrapped in a class so that symbol tables can contain additional information about the entire scope, in addition to the symbols and symbol table entries.

			Two major issues are when are symbol tables created for each scope, and how exactly is information inserted into them? The answer to both questions is: during a syntax tree traversal. But before we get to that, you need to learn about semantic attributes.

			Adding semantic attributes to syntax trees

			The tree type in the previous chapter was clean and simple. It contained a label for printing, a production rule, and some children. In real life, a programming language needs to compute and store a lot of additional information in various nodes of the tree. This information is stored in extra fields in tree nodes, commonly called semantic attributes. The values of these fields can sometimes be computed during parsing when we construct the tree nodes. More often, it is easier to compute the values of semantic attributes once the entire tree has been constructed. In that case, the attributes are constructed using a tree traversal.

			There are two kinds of semantic attributes:

			
					Synthesized attributes are attributes whose values for each node can be constructed from the semantic attributes of their children. 

					Inherited attributes are computed using information that does not come from the node's children.

			

			The only possible path for information from elsewhere in the tree is through the parent, which is why the attribute is said to be inherited. In practice, inherited attributes may come from siblings or from far away in the syntax tree.

			This chapter will add two attributes to the tree.icn and tree.java files from the previous chapter. The first attribute, the isConst Boolean, is a synthesized attribute that reports whether a given tree node contains only constant values known at compile time. The following diagram depicts an expression called x+1. isConst of a parent node (an addition) is computed from its children's isConst values:
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			Figure 6.2 – A synthesized attribute computes a node's value from its children

			The preceding diagram shows a good example of a synthesized attribute being calculated from its children. In this example, the leaves for x and 1 already have isConst values, and those values must come from somewhere. It is easy to guess where the isConst value for the 1 token comes from: a language's literal constant values should be marked as isConst=true.

			For a name like x, it is not so obvious where the isConst value comes from. As presented in the previous chapters, the Jzero language does not have Java's final keyword, which would designate a given symbol as being immutable. Your options are to either set isConst=false for every IDENTIFIER or extend Jzero to allow the final keyword, at least for variables. If you choose the latter, whether x is a constant or not should be found by looking up the symbol table information of x. The symbol table entry for x will only know whether x is a constant if we place that information there.

			The second attribute, stab, is an inherited attribute containing a reference to the symbol table for the nearest enclosing scope that contains a given tree node. For most nodes, the stab value is simply copied from its parent; the nodes where this is not the case are those in which a parent defines a new scope. The following diagram shows the stab attribute being copied from parents into children:
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			Figure 6.3 – An inherited attribute computes a node's value from parent information

			How will we get attributes pushed up to parents from children? Tree traversals. How will we get attributes pushed down to children from parents? Tree traversals. But first, we must make room in the tree nodes to store these attributes. This chapter's tree class header in Unicon has been revised to include these attributes, as follows:

			class tree (id,sym,rule,nkids,tok,kids,isConst,stab)

			This code doesn't do anything; the point is to add two fields for semantic attributes at the end. In Java, these class tree additions result in the following code:

			class tree {

			  int id, rule, nkids;

			  String sym;

			  token tok;

			  tree kids[];

			  Boolean isConst;

			  symtab stab;

			}

			The tree class will have many methods added to it in this and coming chapters since most aspects of semantic analysis and code generation for your language will be presented as tree traversals. Now, let's look at the class types you need to render symbol tables and the symbol table entry class that contains the information that's held in symbol tables.

			Defining classes for symbol tables and symbol table entries

			Instances of the symtab class manage the symbols for one scope. For each symbol table, you will need to know what scope it is associated with, as well as what the enclosing scope is. The Unicon code for the symtab class, which can be found in the symtab.icn file, is as follows:

			class symtab(scope, parent, t)

			   method lookup(s)

			      return \ (t[s])

			   end

			initially

			   t := table()

			end

			The symtab class is almost just a wrapper around Unicon's built-in table data type. Within this class, the scope field is a string beginning with "class" or "local" for user-declared scopes in Jzero. An important method in this class, insert(), issues a semantic error if the symbol is already in the table. Otherwise, insert() allocates a symbol table entry and inserts it. The insert() method will be shown in the Finding redeclared variables section, later in this chapter. The corresponding Java class consists of the following code in symtab.java:

			package ch6;

			import java.util.HashMap;

			public class symtab {

			   String scope;

			   symtab parent;

			   HashMap<String,symtab_entry> t;

			   symtab(String sc, symtab p) {

			      scope = sc; parent = p;

			      t = new HashMap<String,symtab_entry>();

			   }

			   symtab_entry lookup(String s) {

			      return t.get(s);

			   }

			}

			Each symbol table associates a name with an instance of the symtab_entry class. The symtab_entry class will hold all the information that we know about a given variable. The Unicon implementation of symtab_entry can be found in symtab_entry.icn:

			class symtab_entry(sym,parent_st,st,isConst)

			end

			For now, the symtab_entry class contains no code; it just holds several data fields. The sym field is a string that holds the symbol that the entry denotes. The parent_st field is a reference to the enclosing symbol table. The st field is a reference to the new symbol table associated with this symbol's subscope, used only for symbols that have subscopes, such as classes and methods. In future chapters, the symtab_entry class will gain additional fields, both for semantic analysis and code generation purposes. The Java implementation of symtab_entry in symtab_entry.java looks as follows:

			package ch6;

			public class symtab_entry {

			   String sym;

			   symtab parent_st, st;

			   boolean isConst;

			   symtab_entry(String s, symtab p, boolean iC) {

			     sym = s; parent_st = p, isConst = iC; }

			   symtab_entry(String s, symtab p, boolean iC, symtab t) {

			     sym = s; parent_st = p; isConst = iC; st = t; }

			}

			The preceding class contains no code other than two constructors. One is for regular variables, while the other is for classes and methods. Classes and method symbol table entries take a child symbol table as a parameter since they have a subscope. Having defined the class types for symbol tables and symbol table entries, it is time to look at how to create the symbol tables for the input program.

			Creating symbol tables

			You can create a symbol table for every class and every method by writing a tree traversal. Every node in the syntax tree needs to know what symbol table it belongs to. The brute-force approach presented here consists of populating the stab field of every tree node. Usually, the field is inherited from the parent, but nodes that introduce new scopes go ahead and allocate a new symbol table during the traversal. The following Unicon mkSymTables() method constructs symbol tables. It is added to the tree class in the tree.icn file:

			method mkSymTables(curr)

			  stab := curr

			  case sym of {

			    "ClassDecl": { curr := symtab("class",curr) }

			    "MethodDecl": { curr := symtab("method",curr) }

			  }

			  every (!\kids).mkSymTables(curr)

			end

			The mkSymTables() method takes an enclosing symbol table named curr as a parameter. The corresponding Java method, mkSymTables(), in tree.java looks as follows:

			void mkSymTables(symtab curr) {

			   stab = curr;

			   switch (sym) {

			   case "ClassDecl": curr = new symtab("class", curr); 

			      break;

			   case "MethodDecl": curr = new symtab("method", curr);

			      break;

			   }

			   for (int i=0; i<nkids; i++) kid[i].mkSymTables(curr);

			}

			The root of the entire parse tree starts with a global symbol table with predefined symbols such as System and java. That begs the question: when and where is mkSymTables() called? The answer is after the root of the syntax tree has been constructed. Where the previous chapter was calling j0.print($$), it should now call j0.semantic($$) and all semantic analysis will be performed in that method of the j0 class. Therefore, the semantic action for the first production in j0gram.y becomes the following:

			ClassDecl: PUBLIC CLASS IDENTIFIER ClassBody {

			  $$=j0.node("ClassDecl",1000,$3,$4);

			  j0.semantic($$);

			 } ;

			The semantic() method in j0.icn looks as follows:

			method semantic(root)

			local out_st, System_st

			   global_st := symtab("global")

			   out_st := symtab("class")

			   System_st := symtab("class")

			   out_st.insert("println", false)

			   System_st.insert("out", false, out_st)

			   global_st.insert("System", false, System_st)

			   root.mkSymTables(global_st)

			   root.populateSymTables()

			   root.checkSymTables()

			   global_st.print()

			end

			This code creates a global symbol table and then predefines a symbol for the System class. System has a subscope in which a name, out, is declared to have a subscope in which println is defined. The corresponding Java code to initialize predefined symbols looks like this:

			void semantic(tree root) {

			symtab out_st, System_st;

			   global_st = symtab("global");

			   out_st = symtab("class");

			   System_st = symtab("class");

			   out_st.insert("println", false);

			   System_st.insert("out", false, out_st);

			   global_st.insert("System", false, System_st);

			   root.mkSymTables(global_st);

			   root.populateSymTables();

			   root.checkSymTables();

			   global_st.print();

			}

			Creating symbol tables was one thing; making use of them is another. Let's look at how symbols get put into the symbol tables. Then, we can start talking about how those symbol tables are used.

			Populating symbol tables

			Populating (inserting symbols into) symbol tables can be done during the same tree traversal in which those symbol tables are created. However, the code is simpler in a separate traversal. Every node knows what symbol table it lives within. The challenge is to identify which nodes introduce symbols.

			For a class, the second child of FieldDecl has a list of symbols to be inserted. The first child of MethodDeclarator is a symbol to be inserted. For a method, the second child of FormalParm introduces a symbol. The second child of LocalVarDecl has a list of symbols to be inserted. These actions are shown in the following code:

			method populateSymTables()

			  case sym of {

			    "ClassDecl": {

			       stab.insert(kids[1].tok.text, , kids[1].stab)

			       }

			    "FieldDecl" | "LocalVarDecl" : {

			       k := kids[2]

			       while \k & k.label=="VarDecls" do {

			         insert_vardeclarator(k.kids[2])

			         k := k.kids[1]

			         }

			       insert_vardeclarator(k); return

			       }

			    "MethodDecl": {

			      stab.insert(kids[1].kids[2].kids[1].tok.text, ,

			                  kids[1].stab) }

			    "FormalParm": { insert_vardeclarator(kids[2]); return }

			   }

			    every k := !\kids do k.populateSymTables()

			end

			The corresponding Java code is as follows:

			void populateSymTables() {

			    switch(sym) {

			    case "ClassDecl": {

			       stab.insert(kids[0].tok.text, false, kids[0].stab);

			       break;

			    }

			    case "FieldDecl": case "LocalVarDecl": {

			       tree k = kids[1];

			       while ((k != null) && k.sym.equals("VarDecls")) {

			         insert_vardeclarator(k.kids[1]);

			         k = k.kids[0];

			         }

			       insert_vardeclarator(k); return;

			       }

			    case "MethodDecl": {

			       stab.insert(kids[0].kids[1].kids[0].tok.text, false,

			                   kids[0].stab); }

			    case "FormalParm": {

			      insert_vardeclarator(kids[1]); return; }

			    }

			   for(int i = 0; i < nkids; i++) {

			      tree k = kids[i];

			      k.populateSymTables();

			   }

			}

			The insert_vardeclarator(n) method can be passed one of two possibilities: either an IDENTIFIER containing the symbol to be inserted or a VarDeclarator tree node that indicates an array is being declared. The Unicon implementation looks like this:

			method insert_vardeclarator(vd)

			   if \vd.tok then stab.insert(vd.tok.text)

			   else insert_vardeclarator(vd.kids[1])

			end

			The Java implementation of the code looks as follows:

			void insert_vardeclarator(tree vd) {

			   if (vd.tok != null) stab.insert(vd.tok.text, false);

			   else insert_vardeclarator(vd.kids[0]);

			}

			Populating symbol tables is necessary for later aspects of your programming language implementation, such as type checking and code generation. They will not be free to just skip down the subtree until they find the IDENTIFIER. Even in this first formulation, it is already good for checking certain common semantic errors such as undeclared variables. Now, let's look at how to compute a synthesized attribute, a skill you can use both when populating symbol tables with information and in later parts of semantic analysis and code generation. 

			Synthesizing the isConst attribute

			isConst is a classic example of a synthesized attribute. Its calculation rules depend on whether a node is a leaf (following the base case) or an internal node (using the recursion step):

			
					Base case: For tokens, literals are isConst=true and everything else is isConst=false.

					Recursion step: For internal nodes, isConst is computed from children, but only through the expression grammar, where expressions have values.

			

			If you are wondering which production rules are referred to by the expression grammar, it is pretty much those production rules derivable from the non-terminal named Expr. The Unicon implementation of this method is another traversal in tree.icn, as shown here:

			method calc_isConst()

			   case sym of {

			      "INTLIT" | "DOUBLELIT" | "STRINGLIT" |

			      "BOOLFALSE" | "BOOLTRUE": isConst := "true"

			      "UnaryExpr": isConst := \kid[2].isConst

			      "RelExpr": isConst := \kid[1].isConst & 

			        \kid[3].isConst

			      "CondOrExpr" | "CondAndExpr" | "EqExpr" |

			      "MULEXPR"|

			      "ADDEXPR": isConst := \kid[1].isConst & 

			        \kid[2].isConst

			      default: isConst := &null

			   }

			   every(!\kids).calc_isConst()

			end

			There are a couple of special cases in the preceding code. Whether binary relational operators such as the less than operator (<) are constant depends on the first and third children. Most other binary operators do not place the operator in the tree as a middle leaf; they are calculated from the isConst values of the first and second child. The Java implementation of the calc_isConst() method looks like this:

			void calc_isConst() {

			   switch(sym) {

			   case "INTLIT": case "DOUBLELIT": case "STRINGLIT":

			   case "BOOLFALSE": case "BOOLTRUE": isConst = true; 

			      break;

			   case "UnaryExpr": isConst = kid[1].isConst; break;

			   case "RelExpr":

			      isConst = kid[0].isConst && kid[2].isConst; break;

			   case "CondOrExpr": case "CondAndExpr":

			   case "EqExpr": case "MULEXPR": case "ADDEXPR":

			      isConst = kid[0].isConst && kid[1].isConst; break;

			   default: isConst = false;

			   }

			   for(int i=0; i <nkids; i++)

			      kids[i].calc_isConst();

			}

			The whole method is a switch to handle the base case and set isConst, followed by a traversal of zero or more children. Java is arguably every bit as good as Unicon, or a bit better, at calculating the isConst synthesized attribute.

			This concludes this section on creating and populating symbol tables. The main skill we practiced was the art of writing tree traversals, which are recursive functions. A regular tree traversal visits all the children and treats them identically. A programming language may traverse a tree selectively. It may ignore some children or do different things with different children. Now, let's look at an example of how symbol tables can be used to detect undeclared variables.

			Checking for undeclared variables

			To find undeclared variables, check the symbol table on each variable that's used for assignment or dereferencing. These reads and writes of memory occur in the executable statements and the expressions whose values are computed within those statements. Given a syntax tree, how do you find them? The answer is to use tree traversals that look for IDENTIFIER tokens but only when they are in executable statements within blocks of code. To go about this, start from the top with a tree traversal that just finds the blocks of code. In Jzero, this is a traversal that finds the bodies of methods.

			Identifying the bodies of methods

			The check_codeblocks() method traverses the tree from the top to find all the method bodies, which is where the executable code is in Jzero. For every method declaration it finds, it calls another method called check_block() on that method's body:

			method check_codeblocks()

			   if sym == "MethodDecl" then { kids[2].check_block() }

			   else every k := !\kids do

			         if k.nkids>0 then k.check_codeblocks()

			end

			The corresponding Java implementation of check_codeblocks() goes in the tree.java file:

			void check_codeblocks() {

			tree k;

			   if (sym.equals("MethodDecl")) { kids[1].check_block(); }

			   else {

			      for(int i = 0; i<=nkids; i++){

			         k := kids[i];

			         if (k.nkids>0) k.check_codeblocks();

			      }

			   }

			}

			The preceding method demonstrates the pattern of searching through the syntax tree while looking for one specific type of tree node. It does not call itself recursively on MethodDecl. Instead, it calls the more specialized check_block() method, which implements the work to be done when a method body has been found. This method knows it is in a method body, where the identifiers that it finds are uses of variables.

			Spotting uses of variables within method bodies

			Within a method body, any IDENTIFIER that is found is known to be inside a block of executable code statements. One exception is that new variables introduced by local variable declarations cannot possibly be undeclared variables:

			method check_block()

			   case sym of {

			   "IDENTIFIER": {

			     if not (stab.lookup(tok.text)) then

			        j0.semerror("undeclared variable "||tok.text)

			     }

			   "FieldAccess" | "QualifiedName": kids[1].check_block()

			   "MethodCall": {

			      kids[1].check_block()

			      if rule = 1290 then

			         kids[2].check_block()

			      else kids[3].check_block()

			     }

			   "LocalVarDecl": { } # skip

			   default:  {

			      every k := !kids do {

			            k.check_block()

			         }

			      }

			   }

			end

			The preceding check_block() method is handling several special-case tree shapes. Refer to the j0gram.y grammar file to examine the uses of IDENTIFIER that are not looked up in the local symbol table due to their syntactic context. In the case of FieldAccess or QualifiedName, the second child is an IDENTIFIER that is a field name, not a variable name. It can be checked once type information is added over the next few chapters. Likewise, rule 1291, the second production rule of MethodCall, skips its second child. The corresponding Java method is as follows:

			void check_block() {

			   switch (sym) {

			   case "IDENTIFIER": {

			     if (stab.lookup(tok.text) == null)

			        j0.semerror("undeclared variable " + tok.text);

			     break;

			     }

			   case "FieldAccess": case "QualifiedName":

			     kids[0].check_block();

			     break;

			  case "MethodCall": {

			      kids[0].check_block()

			      if (rule == 1290)

			         kids[1].check_block();

			      else kids[2].check_block();

			      break;

			     }

			   case "LocalVarDecl": break;

			   default:

			      for(i=0;i<nkids;i++)

			            kids[i].check_block();

			   }

			}

			Despite the break statements, the Java implementation is equivalent to the Unicon version described earlier. The main idea you learned in this section was how to split up an overall tree traversal task into a general traversal that looks for a node of interest, and then a specialized traversal that does work at nodes found by the general traversal. Now, let's look at detecting a variable redeclaration semantic error, which occurs when symbols are being inserted into the symbol tables.

			Finding redeclared variables

			When a variable has been declared, most languages report an error if the same variable is declared again in the same scope. The reason for this is that within a given scope, the name must have a single, well-defined meaning. Trying to declare a new variable would entail allocating some new memory and from then on, mentioning that name would be ambiguous. If the x variable is defined twice, it is unclear which x any given use refers to. You can identify such redeclared variable errors when you insert symbols into the symbol table.

			Inserting symbols into the symbol table

			The insert() method in the symbol table class calls the language's underlying hash table API. The method takes a symbol, a Boolean isConst flag, and an optional nested symbol table, for symbols that introduce a new (sub)scope. The Unicon implementation of the symbol table's insert() method is shown here. If you go to https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch6, this can be found in symtab.icn, along with the other class symtab methods:

			   method insert(s, isConst, sub)

			      if \ (t[s]) then j0.semerror("redeclaration of "||s)

			      else t[s] := symtab_entry(s, self, sub, isConst)

			   end

			A symbol table lookup is performed before insertion. If the symbol is already present, a redeclaration error is reported. The corresponding Java implementation of the symbol table's insert() methods looks as follows:

			   void insert(String s, Boolean iC, symtab sub) {

			      if (t.containsKey(s)) {

			         j0.semerror("redeclaration of " + s);

			      } else {

			         sub.parent = this;

			         t.put(s, new symtab_entry(s, this, iC, sub));

			      }

			   }

			   void insert(String s, Boolean iC) {

			      if (t.containsKey(s)) {

			         j0.semerror("redeclaration of " + s);

			      } else {

			         t.put(s, new symtab_entry(s, this, iC));

			      }

			   }

			This code is crude but effective. The use of the underlying hash table Java API is long-winded but readable. Now, let's look at the semerror() method.

			Reporting semantic errors

			The semerror() method in the j0 class must report the error to the user, as well as making a note that an error has occurred so that the compiler will not attempt code generation. The code for reporting semantic errors is similar to reporting lexical or syntax errors, although sometimes, it is harder to pinpoint what line in what file is to blame. For now, it is OK to treat these errors as fatal and stop compilation when one occurs. In later chapters, you will make this error non-fatal and report additional semantic errors after one is found. The Unicon code for the j0 class's semerror() method is as follows:

			method semerror(s)

			   stop("semantic error: ", s)

			end

			The Java code for the j0 class's semerror() method is shown here:

			void semerror(String s) {

			   System.out.println("semantic error: " + s);

			   System.exit(1);

			}

			Identifying redeclaration errors occurs most naturally while the symbol table is being populated; that is, when an attempt is being made to insert a declaration. Unlike an undeclared symbol error, where all nested symbol tables must be checked before an error can be reported, a redeclaration error is reported immediately, but only if the symbol has already been declared in the current inner-most scope. Now, let's look at how a real programming language deals with other symbol table issues that did not come up in this discussion.

			Handling package and class scopes in Unicon 

			Creating symbol tables for Jzero considers two scopes: class and local. Since Jzero does not do instances, Jzero's class scope is static and lexical. A larger, real-world language has to do more work to handle scopes. Java, for example, has to distinguish when a symbol declared in the class scope is a reference to a variable shared across all instances of the class, and when the symbol is a normal member variable that's been allocated separately for each instance of the class. In the case of Jzero, an isMember Boolean can be added to the symbol table entries to distinguish member variables from class variables, similar to the isConst flag.

			Unicon's implementation is a lot different than Jzero's. A summary of its symbol tables and class scopes allows for a fruitful comparison. Whatever it does similarly to Jzero might also be how other languages handle things. What Unicon does differently than Jzero, each language might do in its own unique way. How Unicon handles these topics is being presented here for its quirky real-world insights, not because it is somehow exemplary or ideal.

			One basic difference between Unicon and the Jzero example in this chapter is that Unicon's syntax tree is a heterogeneous mixture of different types of tree node objects. In addition to a generic tree node type, there are separate tree node types to represent classes, methods, and a few other semantically significant language constructs. The generic tree node type lives in a file named tree.icn, while the other classes live in a file named idol.icn that is descended from Unicon's predecessor, a language called Idol. Now, let's look at another difference between Unicon and Jzero that comes up in Unicon's implementation of packages. This is known as name mangling.

			Mangling names

			Scope checks may state that a symbol has been found in a package. A lot of programming languages – and historic C++ is a prime example – use name mangling in generated code. In Unicon, some scoping rules are resolved via name mangling. A name such as foo, if it is found to be in package scope for a package bar, is written out in the generated code as bar__foo.

			The mangle_sym(sym) method from the Unicon implementation has been presented in its partial form here and has been abstracted a bit for readability. This method takes a symbol (a string) and mangles it according to which imported package it belongs to, including the declared package of the current file, which takes precedence over any imports:

			procedure mangle_sym(sym)

			…

			   if member(package_level_syms, sym) then

			      return package_mangled_symbol(sym)

			   if member(imported, sym) then {

			      L := imported[sym]

			      if *L > 1 then

			         yyerror(sym || " is imported from multiple 

			             packages")

			      else return L[1] || "__" || sym

			   }

			   return sym

			end

			In the mangle_sym() method, a Unicon table named package_level_syms stores entries for symbols declared in the package associated with the current file. Another table, called imported, tracks all the symbols defined in other packages. This table returns a list of the other packages in which a symbol is found. The size of that list is given by *L. If a symbol is defined in two or more imported packages, using that symbol in this file is ambiguous and generates an error. The use of packages is a relatively simple compile-time mechanism for making separate namespaces for different scopes. More difficult scoping rules must be handled at runtime. For example, accessing class members in Unicon requires the compiler to generate code that uses a reference to a current object named self.

			Inserting self for member variable references

			Scoping rules can come back with the answer that a symbol is a class member variable. In Unicon, all methods are non-static and method calls always have an implicit first parameter named self, which is a reference to the object that the method has been invoked on. A class scope is implemented by prefixing the name with a dot operator to reference the variable within the self object. This code, extracted from a method named scopeck_expr() in Unicon's idol.icn semantic analysis file, illustrates how self. can be prefixed onto member variable references:

			      "token": {

			         if node.tok = IDENT then {

			            if not member(\local_vars, node.s) then {

			               if classfield_member(\self_vars, node.s)then

			                  node.s := "self." || node.s

			               else

			                  node.s := mangle_sym(node.s)

			            }

			         }

			      }

			This code modifies the contents of the existing syntax tree field in place. The use of the self. string prefix is possible because the code is written out in a source code-like form and further compiled to C or virtual machine bytecode by a subsequent code generator. The use of self as a reference to the current object is needed not only to access the member variables within the object but also to access calls to the object's methods. On the flip side of that, let's look at how Unicon provides the self variable when methods are called.

			Inserting self as the first parameter in method calls

			When an identifier appears in front of parentheses, the syntax indicates that it is the name of a function or method being called. In this case, additional special handling is required. The insertion prefix for a method must look up the method name in an auxiliary structure called the methods vector. The methods vector is referenced via self.__m. For example, for a method named meth, instead of becoming self.meth, the reference to the method becomes self.__m.meth.

			In addition to using the methods vector, __m, a method call requires self to be inserted as a first parameter into the call. In Unicon's predecessor, this was explicit in the generated code. A call such as meth(x) would become self.__m.meth(self, x). In the Unicon implementation, this insertion of the object into the parameter list of the call is built into the implementation of the dot operator in the runtime system. When the dot operator is asked to perform self.meth, it looks up meth to see whether it is a regular member variable. If it finds that it is not, it checks whether self.__m.meth exists, and if it does, the dot operator both looks up that function and pushes self onto the stack as its first parameter.

			To summarize: the Unicon virtual machine was modified to make code generation for method calls simpler. Consider the call to o.m() in the following example. The semantics of the o.m(3,4) call are equivalent to o.__m.m(o,3,4) but the compiler just generates the instructions for o.m(3,4) and the Unicon dot operator does all the work:

			class C(…)

			   method m(c,d); … end

			end

			procedure main()

			   o := C(1,2)

			   o.m(3,4)

			end

			One of the nice parts about building a programming language is that you can make the runtime system that runs your generated code do anything you want. Now, let's consider how to test and debug your symbol tables to tell whether they are correct and working.

			Testing and debugging symbol tables

			You can test your symbol tables by writing many test cases and verifying whether they obtain the expected undeclared or redeclared variable error messages. But nothing says confidence like an actual visual depiction of your symbol tables. If you have built your symbol tables correctly by following the guidance in this chapter, then there should be a tree of symbol tables. You can print out your symbol tables using the same tree printing techniques that were used to verify your syntax trees in the previous chapter, using either a textual representation or a graphical one.

			Symbol tables are slightly more work to traverse than syntax trees. To output the symbol table, you need to output information for the table and then visit all the children, not just look one up by name. Also, there are two classes involved: symtab and symtab_entry. Suppose you start at the root symbol table. In Unicon, to iterate through all the symbol tables, use the following method in symtab.icn:

			method print(level:0)

			  writes(repl(" ",level))

			  write(scope, " - ", *t, " symbols")

			  every (!t).print(level+1);

			end

			Notice that although the children are being invoked with a method of the same name, the print() method in symtab_entry is a different method than the one on symtab. The Java code for the symbol table's print() method looks like this:

			void print() { print(0); }

			void print(int level) {

			   for(int i=0;i<level;i++) System.out.print(" ");

			   System.out.print(scope + " - " + t.size()+" symbols");

			   for (symtab_entry : t.values()) se.print(level+1);

			}

			For the print() method of symtab_entry, an actual symbol is printed out. If that symbol table entry has a subscope, it is then printed and indented more deeply to show the nesting of the scopes:

			method print(level:0)

			  writes(repl(" ",level), sym)

			  if \isConst then writes(" (const)")

			  write()

			  (\st).print(level+1);

			end

			The mutually recursive call to print the nested symbol table is skipped if it is null. In Java, the code is longer but more explicit:

			void print(level:0) {

			   for(int i=0;i<level;i++) System.out.print(" ");

			   System.out.print(sym);

			   if (isConst) System.out.print(" (const)");

			   System.out.println("");

			   if (st != null) st.print(level+1);

			}

			Printing out symbol tables doesn't take many lines of code. You may find that it's worth adding additional lexical information, such as filenames and line numbers where variables were declared. In future chapters, it will be logical to also extend these methods with type information.

			To run the Jzero compiler with the symbol table output shown in this chapter, download the code from this book's GitHub repository, go into the ch6/ subdirectory, and build it with the make program. By default, make will build both the Unicon and Java versions. When you run the j0 command with the symbol table output in place, it produces the following output. In this case, the Java implementation is being shown:
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			Figure 6.4 – Symbol table output from the Jzero compiler

			You must read the hello.java input file pretty carefully to ascertain whether this symbol table output is correct and complete. The more complicated your language's scoping and visibility rules, the more complicated your symbol table's output will be. For example, this output does not print anything for a variable's public and private status, but for a full Java compiler, we would want that. When you are satisfied that the symbols are all present and accounted for in the correct scopes, you can move on to the next phase of semantic analysis.

			Summary

			In this chapter, you learned about the crucial technical skills and tools used to build symbol tables that track all the variables in all the scopes in the input program. You create a symbol table for every scope in the program and insert entries into the correct symbol table for each variable. All of this is accomplished via traversals of the syntax tree.

			You learned how to write tree traversals that create symbol tables for each scope, as well as how to create an inherited attribute for the symbol table associated with the current scope for each node in your syntax tree. You then learned how to insert symbol information into the symbol tables associated with your syntax tree and detect when the same symbol is redeclared illegally. You learned how to write tree traversals that look up information in symbol tables and identify any undeclared variable errors. These skills enabled you to take your first steps in enforcing the semantic rules associated with your programming language. In the rest of your compiler, both semantic analysis and code generation relied on and added to the symbol tables that you established in this chapter.

			Now that you have built symbol tables by walking through the parse tree using tree traversals, it is time to start considering how to check the program's use of data types. The next chapter will start us off on that journey by showing you how to check basic types such as integers and real numbers.

			Questions

			
					What is the relationship between the various symbol tables that are created within the compiler and the syntax tree that was created in the previous chapter?

					What is the difference between synthesized semantic attributes and those that are inherited? How are they computed and where are they stored?

					How many symbol tables do we need in the Jzero language? How are symbol tables organized?

					Suppose our Jzero language allowed multiple classes, compiled separately in separate source files. How would that impact our implementation of symbol tables in this chapter?

			

		

	
		
			Chapter 7: Checking Base Types

			This is the first of two chapters about type checking. In most mainstream programming languages, type checking is a key aspect of semantic analysis that must be performed before you can generate code.

			This chapter will show you how to do simple type checks for the base types included in the Jzero subset of Java. A byproduct of checking the types is to add type information to the syntax tree. Knowing the types of operands in the syntax tree enables you to generate correct instructions for various operations.

			This chapter covers the following main topics: 

			
					Type representation in the compiler

					Assigning type information to declared variables

					Determining the type at each syntax tree node

					Runtime type checks and type inference – a Unicon example

			

			It is time to learn about type checking, starting with base types. Some of you may be wondering, why do type checking at all? If your compiler does not do type checking, it has to generate code that works, no matter what types of operands are used. Lisp, BASIC, and Unicon are examples of languages with this design approach. Often, this makes a language user-friendly, but it runs slower. For this reason, we will cover type checking. We will begin by looking at how to represent the type information that you extract from the source code.

			Technical requirements

			The code for this chapter is available on GitHub: https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch7

			The Code in Action video for the chapter can be found here: https://bit.ly/3cgvkWT

			Type representation in the compiler

			Frequently, our compiler will need to do things such as compare the types of two variables to see whether they are compatible. Program source code represents types with string data, which is incorporated in our syntax tree. In some languages, it might be possible to use little syntax subtrees to represent the types that are used in type checking, but in general, type information does not exactly correspond to a subtree within our syntax tree. This is because part of the type information is pulled in from elsewhere, such as another type. For this reason, we need a new data type just to represent the type information associated with any given value that is declared or computed in the program.

			It would be nice if we could just represent types with a single atomic value such as an integer code or a string type name. For example, we could use 1 for an integer, 2 for a real number, or 3 for a string. If a language had only a small, fixed set of built-in types, an atomic value would suffice. However, real language types are more complicated than that. The type representation of compound types such as an array, a class, or a method is more involved. You can start with a base class capable of representing atomic types.

			Defining a base class for representing types

			The type information associated with any name or value in your language can be represented within a new class named typeinfo. The typeinfo class is not called type because some programming languages use that as a reserved word or built-in name. In Unicon, it is the name of a built-in function, so declaring a class by that name would be bad.

			The typeinfo class has a basetype member for storing what kind of data type is represented. Complex types have additional information as needed. For example, a type whose basetype indicates that it is an array has an additional element_type. With this extra information, we will be able to distinguish an array of integers from an array of strings or an array of some class type. In some languages, array types also have an explicit size or starting and ending indices.

			There are many ways that you could handle this variation in the information needed for different types. A classic object-oriented representation of these differences is to use subclasses. For Jzero, we will add arraytype, methodtype, and classtype as subclasses of typeinfo. First, there is the superclass itself, which can be found in the typeinfo.icn file, as shown in the following code:

			class typeinfo(basetype)

			   method str()

			      return string(basetype)|"unknown"

			   end

			end

			In addition to the basetype member, the typeinfo class has methods to facilitate debugging. Types need to be able to print themselves in a human-readable format. The Java version, in the typeinfo.java file, looks like this:

			public class typeinfo {

			   String basetype;

			   public typeinfo() { basetype = "unknown"; }

			   public typeinfo(String s) { basetype = s; }

			   public String str() { return basetype; }

			}

			An extra constructor taking no arguments is required for the subclasses to compile properly in Java. Having a class, and not just an integer, to encode the type information allows us to represent more complex types by subclassing the base class.

			Subclassing the base class for complex types

			The Unicon code for the subclasses of typeinfo are also stored in typeinfo.icn since they are short and closely related. In Jzero, the arraytype class only has an element_type; in other languages, an array type might require additional fields to hold the array size or the type and range of valid indices. The Unicon representation of the array type in Jzero is as follows:

			class arraytype : typeinfo(element_type)

			initially

			   basetype := "array"

			end

			The arraytype.java file contains the corresponding Java implementation of the arraytype class:

			public class arraytype extends typeinfo {

			   typeinfo element_type;

			   public arraytype(typeinfo t) {

			      basetype = "array"; element_type = t; }

			}

			The representation for methods, also called class member functions, includes a signature consisting of their parameters and return type. For now, all it does is allow methods to be identified as such. The Unicon implementation of the methodtype class is as follows:

			class methodtype : typeinfo(parameters,return_type)

			initially

			   basetype := "method"

			end

			Method types contain a list of zero or more parameters and a return type; these will be used in the next chapter to check the types when methods (functions) are called. The Java representation of methods look as follows and can be found in the methodtype.java file:

			public class methodtype extends typeinfo {

			   parameter [] parameters;

			   typeinfo return_type;

			   methodtype(parameter [] p, typeinfo rt){

			      parameters = p; return_type = rt;

			   }

			}

			parameters could be an array of typeinfo. A separate class is defined for parameters here to allow languages to include parameter names along with their types to represent methods. The Unicon implementation is as follows:

			class parameter(name, param_type)

			end

			Some of these classes seem pretty empty. They are placeholders that will include more code in subsequent chapters or require more substantial treatments in other languages. The corresponding Java implementation of the parameter class in the parameter.java file is shown here:

			public class parameter {

			   String name;

			   typeinfo param_type;

			   parameter(String s, typeinfo t) { name=s; param_type=t; }

			}

			The class for representing classes includes a class name, its associated symbol table, and lists of zero or more fields, methods, and constructors. In some languages, this might be more complex than Jzero, including superclasses, for example. The Unicon implementation is shown here:

			class classtype : typeinfo(name, st, fields, methods, 

			      constrs)

			   method str()

			      return name

			   end

			initially

			   basetype := "class"

			end

			You might be wondering about the st field, which holds a symbol table. In Chapter 6, Symbol Tables, symbol tables were constructed and stored in syntax tree nodes, where they formed a logical tree corresponding to the program's declared scopes. References to those same symbol tables need to be placed in the types so that we can compute the type resulting from the use of the dot operator, which references a scope that is not associated with the syntax tree. The classtype.java file contains the Java implementation of the classtype class. The following code shows an example of this:

			public class classtype extends typeinfo {

			   String name;

			   symtab st;

			   parameter [] methods;

			   parameter [] fields;

			   typeinfo [] constrs;

			}

			Given a typeinfo class, it is appropriate to add a member field of this type to both the tree class and the symtab_entry class so that type information can be represented for expressions and variables. We will call it typ in both classes:

			class tree (id,sym,rule,nkids,tok,kids,isConst,stab,typ)

			class symtab_entry(sym,parent_st,st,isConst,typ)

			We are not repeating the classes here in their entirety; the code for this can be found in the ch7/ subdirectory at https://github.com/PacktPublishing/Build-Your-Own-Programming-Language. In Java, the respective classes are amended as follows:

			class tree { . . .

			   typeinfo typ; . . . }

			class symtab_entry { . . .

			   typeinfo typ; . . . }

			Given a typ field, it is possible to write the mini tree traversals needed to place type information in the symbol tables with the variables as they are declared. Let's look at assigning this type information to declared variables.

			Assigning type information to declared variables

			Type information is constructed during a tree traversal and then stored with its associated variables in the symbol table. This would usually be part of the traversal that populates the symbol table, as presented in the previous chapter. In this section, we will be traversing the syntax tree looking for variable declarations, as we did previously, but this time, we need to propagate type information by using synthesized and/or inherited attributes.

			For type information to be available at the time that we are inserting variables into the symbol table, the type information must be computed at some prior point in time. This type information is computed either by a preceding tree traversal or during parsing when the syntax tree is constructed. Consider the following grammar rule and semantic action from Chapter 5, Building Syntax Trees: 

			FieldDecl: Type VarDecls ';' {

			  $$=j0.node("FieldDecl",1030,$1,$2); };

			The semantic action builds a tree node connecting a Type with a VarDecls under a new node called FieldDecl. Your compiler must synthesize type information from Type and inherit it into VarDecls. The information flowing up from the left subtree and going down into the right subtree can be seen in the following diagram:
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			Figure 7.1 – The flow of type information in variable declarations

			We can embed this into the syntax tree construction process via mini traversals of the subtrees. The following code adds a call to a method named calctype(), which is where this semantic analysis will be conducted within j0gram.y, as shown in the previous example:

			FieldDecl: Type VarDecls ';' {

			  $$=j0.node("FieldDecl",1030,$1,$2);

			  j0.calctype($$);

			};

			From examining the grammar, you may note that a similar call to calctype() is needed for non-terminal FormalParm, and that there are a few additional places in the grammar where a type is associated with an identifier or list of identifiers. The j0 class's calctype() method turns around and calls two tree traversals on the two children of FieldDecl. The Unicon version of this method in j0.icn looks as follows:

			method calctype(t)

			   t.kids[1].calctype()

			   t.kids[2].assigntype(t.kids[1].typ)

			end

			The j0 class's calctype() method calls the class tree's calctype() method, which calculates the synthesized typ attribute in the left child. The type is then passed down as an inherited attribute into the right child. The Java version of this method in j0.java looks like this:

			void calctype(parserVal pv){

			   tree t = (tree)pv.obj;

			   t.kids[0].calctype();

			   t.kids[1].assigntype(t.kids[0].typ);

			}

			Compared to tree traversals, which we looked at in the previous chapters, class tree methods, including calctype() and assigntype(), are special cases whose tree shape and kinds of possible nodes are limited. The traversal code might be specialized to take advantage of this. We can start by considering the calctype() method.

			Synthesizing types from reserved words

			The calctype() method calculates the synthesized typ attribute. The recursive work of calculating the value for the children is done first, followed by the calculation for the current node. This form of traversal is called a post-order traversal and it is common in compilers. In Unicon, the calctype() method in the class tree in tree.icn looks like this:

			method calctype()

			  every (!\kids).calctype()

			  case sym of {

			    "FieldDecl": typ := kids[1].typ

			    "token": {

			      case tok.cat of {

			        parser.IDENTIFIER:{return typ := 

			            classtype(tok.text) }

			        parser.INT:{ return typ := typeinfo(tok.text) }

			        default:

			          stop("can't grok the type of ", image(tok.text))

			        }

			      }

			    default:

			      stop("can't grok the type of ", image(sym))  }

			end

			This code constructs the current tree node's typ value using information from its children; in this case, by directly accessing a child's public typ field. Alternatively, information obtained from a child could be obtained by calling a method that returns the child type as its return value, such as the return value of calctype(). In this code, the number of case branches is small because the Jzero grammar for non-terminal Type is minimal. In other languages, it would be richer. The corresponding Java code is shown in the following example's calctype() method in tree.java:

			typeinfo calctype() {

			  for(int i=0; i<nkids; i++) kids[i].calctype()

			  switch (sym) {

			    case "FieldDecl": return typ = kids[0].typ;

			    case "token": {

			      switch (tok.cat) {

			       case parser.IDENTIFIER:{

			          return typ=new classtype(tok.text); }

			       case parser.INT: { return typ=new 

			           typeinfo(tok.text); }

			       default:

			          j0.semerror("can't grok the type of " + 

			              tok.text);

			      }

			   }

			    default:

			      j0.semerror("don't know how to calctype " + sym);}

			}

			Having synthesized the type from the left child of FieldDecl, let's look at how to inherit that type into the variable nodes in the right child subtree of FieldDecl.

			Inheriting types into a list of variables

			Passing type information into a subtree is performed in the assigntype(t) method. Inherited attributes are generally coded via a pre-order traversal, in which the current node does its work and then calls the children with information they are inheriting. The Unicon implementation of the assigntype(t) method is as follows:

			method assigntype(t)

			  typ := t

			  case sym of {

			  "VarDeclarator": {

			    kids[1].assigntype(arraytype(t))

			    return

			    }

			  "token": {

			    case tok.cat of {

			      parser.IDENTIFIER:{

			        return

			        }

			      default: stop("eh? ", image(tok.cat))

			      }

			    }

			  default:

			     stop("don't know how to assign the type of ", image(sym))

			    }

			  every (!\kids).assigntype(t)

			end

			Since the information is coming down from a parent into children, it is natural to pass this information as a parameter to the child, who then assigns it as their type via typ := t. It would also be possible to copy it down via an explicit assignment into a child's public field. The corresponding Java implementation of the assigntype(t) method is shown here:

			void assigntype(typeinfo t) {

			    typ = t;

			    switch (sym) {

			    case "VarDeclarator": {

			      kids[0].assigntype(new arraytype(t));

			      return;

			    }

			    case "token": {

			      switch (tok.cat) {

			        case parser.IDENTIFIER:{ return; }

			        default: j0.semerror("eh? " + tok.cat);

			      }

			   }

			    default:

			        j0.semerror("don't know how to assigntype " + sym);

			    }

			    for(tree k : kids) k.assigntype(t);

			  }

			Attaching type information to variable names where they are declared is important, and it is not too difficult, especially for a simple language such as Jzero. Now, it is time to look at the main task of this chapter: how to calculate and check type information in the expressions that comprise the executable code in the bodies of functions and methods.

			Determining the type at each syntax tree node

			Within the syntax tree, the nodes associated with actual code expressions in the method bodies have a type associated with the value that the expression computes. For example, if a tree node corresponds to the sum of adding two numbers, the tree node's type is determined by the types of the operands and the rules of the language for the addition operator. Our goal for this section is to spell out how this type information can be calculated.

			As you saw in the Type representation in the compiler section, the class for syntax tree nodes has an attribute to store that node's type, if there is one. The type attribute is calculated bottom-up, during a post-order tree traversal. There is a similarity here to checking for undeclared variables, which we did in the previous chapter, in that type checking expressions only occur in the bodies of functions. The call to invoke this type checking tree traversal, starting at the root of the syntax tree, is added at the end of the semantic() method, within the j0 class. In Unicon, the invocation consists of the following:

			root.checktype()

			There isn't a parameter here, but that is the same thing as passing in a null value or a false. In Java, the following statement is added:

			root.checktype(false); 

			In both cases, the parameter indicates whether a given node is within the body of an executable statement. At the root, the answer is false. It will turn true when the tree traversal reaches the bodies of methods that contain code. To perform the tree traversal, you must consider what to do regarding the leaves of the tree.

			Determining the type at the leaves

			At the leaves, the types of literal constant values are self-evident from their lexical category. To begin, we must add a typ field to the class token. For literals, we must initialize typ in the constructor. In Unicon, the first line and initial section of token.icn becomes the following:

			class token(cat, text, lineno, colno, ival, dval, sval,typ)

			   . . .

			initially

			  case cat of {

			  parser.INTLIT:{ ival := integer(text); 

			    typ:=typeinfo("int")}

			  parser.DOUBLELIT:{dval:=real(text); 

			    typ:=typeinfo("double")}

			  parser.STRINGLIT:{

			    sval:=deEscape(text); typ := typeinfo("String") }

			  parser.BOOLLIT: { typ := typeinfo("boolean") }

			  parser.NULLVAL: { typ :=  typeinfo("null") }

			  ord("="|"+"|"-"): { typ := typeinfo("unknown") }

			  }

			end

			The code here assigns the "unknown" type to operators (the code for calculating the types of expressions using those operators from their operand types will be shown later in the Calculating and checking the types at internal nodes section). In Java, the corresponding change to the class token for literal types looks as follows:

			package ch7;

			public class token {

			  . . .

			  public typeinfo typ;

			  public token(int c, String s, int l) {

			    cat = c; text = s; lineno = l;

			    id = serial.getid();

			    switch (cat) {

			    case parser.INTLIT: typ = new typeinfo("int"); break;

			    case parser.DOUBLELIT:typ = new typeinfo("double"); 

			        break;

			    case parser.STRINGLIT: typ= new typeinfo("String"); 

			        break;

			    case parser.BOOLLIT: typ = new typeinfo("boolean"); 

			        break;

			    case parser.NULLVAL: typ = new typeinfo("null"); break;

			    case '=': case '+': case '-':

			       typ = new typeinfo("unknown"); break;

			    }

			   }

			The types of variables are looked up in the symbol table. This implies that symbol table population must occur before type checking. The symbol table lookup is performed by a type() method and added to a class token in token.icn. It takes the symbol table that the token is scoped within as a parameter:

			method type(stab)

			  if \typ then return typ

			  if cat === parser.IDENTIFIER then

			    if rv := stab.lookup(text) then return typ := rv.typ

			  stop("cannot check the type of ",image(text))

			end

			This first line in this method returns the type for this token immediately if it has been determined previously. If not, the rest of this method just checks whether we have an identifier, and if so, looks it up in the symbol table. The corresponding addition to token.java looks as follows:

			public typeinfo type(symtab stab) {

			  symtab_entry rv;

			  if (typ != null) return typ;

			  if (cat == parser.IDENTIFIER)

			      if ((rv = stab.lookup(text)) != null)          return typ=rv.typ;

			  j0.semerror("cannot check the type of " + text);

			}

			Having shown the code to calculate the type of syntax tree leaves, it is now time to examine how to check the types at the internal nodes. This is the core function of type checking.

			Calculating and checking the types at internal nodes

			The internal nodes are only checked within the executable statements and expressions in the code bodies of the program. This is a pre-order traversal where work at children is done first and then work is done at the parent node. The process of visiting the children, which is delegated to the checkkids() helper function, varies depending on the tree node, and the work that's done at the parent depends on whether it is in a block of code:

			method checktype(in_codeblock)

			  if checkkids(in_codeblock) then return

			  if /in_codeblock then return

			  case sym of {

			    "Assignment": typ := check_types(kids[1].typ, 

			                                     kids[3].typ)

			    "AddExpr": typ := check_types(kids[1].typ, kids[2].typ)

			    "Block" | "BlockStmts": { typ := &null }

			    "MethodCall": { }

			    "QualifiedName": {

			       if type(kids[1].typ) == "classtype__state" then {

			         typ := (kids[1].typ.st.lookup(

			                 kids[2].tok.text)).typ

			         } else stop("illegal . on ",kids[1].typ.str())

			    }

			    "token": typ := tok.type(stab)

			    default: stop("cannot check type of ", image(sym))

			    } 

			end

			In addition to the checkkids() helper method, this code relies on a helper function called check_types(), which determines the result type, given operands. The corresponding Java implementation of checktype() is shown here:

			void checktype(boolean in_codeblock) {

			  if (checkkids(in_codeblock)) return;

			  if (! in_codeblock) return;

			  switch (sym) {

			  case "Assignment":

			    typ = check_types(kids[0].typ, kids[2].typ); break;

			  case "AddExpr":

			    typ = check_types(kids[0].typ, kids[1].typ); break;

			  case "Block": case "BlockStmts": typ = null; break;

			  case "MethodCall": break;

			  case "QualifiedName": {

			    if (kids[0].typ instanceof classtype) {

			      classtype ct = (classtype)(kids[0].typ);

			      typ = (ct.st.lookup(kids[1].tok.text)).typ;

			    } else j0.semerr("illegal . on  " + kids[0].typ.str());

			    break;

			    }

			  case "token": typ = tok.type(stab); break;

			  default: j0.semerror("cannot check type of " + sym);

			  }

			}

			By default, the checkkids() helper function calls checktype() on every child, but in some cases, it does not. On method declaration, for example, the method header has no executable code expressions and is skipped; only the block of code is visited, and in that block, the in_codeblock Boolean parameter is set to true. Similarly, within a block of code where a local variable declaration is encountered, only the list of variables is visited, and within that list, in_codeblock is turned off (only to be turned back on again in initializers). As another example, identifiers on the right-hand side of a period operator are not looked up in the regular symbol table; instead, they are looked up relative to the type of expression on the left-hand side of the period and thus require special handling. The Unicon implementation of checkkids() is shown here:

			method checkkids(in_codeblock)

			  case sym of {

			    "MethodDecl": { kids[2].checktype(1); return }

			    "LocalVarDecl": { kids[2].checktype(); return }

			    "FieldAccess": { kids[1].checktype(in_codeblock); 

			        return }

			    "QualifiedName": {

			      kids[1].checktype(in_codeblock);

			      }

			    default: { every (!\kids).checktype(in_codeblock) }

			    }

			end

			The corresponding Java implementation of this helper function is shown here:

			public boolean checkkids(boolean in_codeblock) {

			  switch (sym) {

			  case "MethodDecl": kids[1].checktype(true); return true;

			  case "LocalVarDecl": kids[1].checktype(false);                        return true;

			  case "FieldAccess": kids[0].checktype(in_codeblock);

			                      return true;

			  case "QualifiedName":

			                      kids[0].checktype(in_codeblock); 

			                      break;

			  default: for (tree k : kids) k.checktype(in_codeblock);

			  }

			  return false;

			}

			The check_types() helper method calculates the type of the current node from the types of up to two operands. Its calculation varies, depending on what operator is being performed, as well as the rules of the language. Its answer might be that the type is the same as one or both operands, or it may be some new type or an error. The Unicon implementation of check_types() in tree.icn is as follows:

			method check_types(op1, op2)

			  operator := get_op()

			  case operator of {

			     "="|"+"|"-" : {

			        if tok := findatoken() then

			           writes("line ", tok.tok.lineno, ": ")

			        if op1.basetype === op2.basetype === "int" then {

			           write("typecheck ",operator," on a ",

			                 op2.str(), " and a ", op1.str(), " -> OK")

			           return op1

			           }

			        else stop("typecheck ",operator," on a ",

			                  op2.str(), " and a ", op1.str(),                   " -> FAIL")

			        }

			     default: stop("cannot check ", image(operator))

			    }

			end

			This method relies on two helper methods. The get_op() method reports which operator is being performed. The findatoken() method seeks out the first token in the source code represented by a given syntax tree node; it is used to report the line number. The corresponding Java implementation of check_types() is shown here:

			   public typeinfo check_types(typeinfo op1, typeinfo op2) {

			     String operator = get_op();

			     switch (operator) {

			     case "=": case "+": case"-": {

			       tree tk;

			       if ((tk = findatoken())!=null)

			         System.out.print("line " + tk.tok.lineno + ": ");

			       if ((op1.basetype.equals(op2.basetype)) &&

			           (op1.basetype.equals("int"))) {

			         System.out.println("typecheck "+operator+" on a "+

			                  op2.str() + " and a "+ op1.str()+                   " -> OK");

			       return op1;

			    }

			       else j0.semerror("typecheck "+operator+" on a "+

			                op2.str()+ " and a "+ op1.str()+                 " -> FAIL");

			       }

			     default: j0.semerror("cannot check " + operator);

			     }

			   return null;

			   }

			The operator that the current syntax node represents can usually be ascertained from the node's corresponding non-terminal symbol. In some cases, the actual production rule must also be used. The Unicon implementation of get_op() is shown here:

			   method get_op()

			      return case sym of {

			          "Assignment" : "="

			          "AddExpr": if rule=1320 then "+" else "-"

			          default: fail

			      }

			   end

			Unicon allows us to return the result that's produced by a case expression. Additive expressions designated by "AddExpr" include both addition and subtraction. The production rule is used to disambiguate. The corresponding Java implementation of get_op() is similar, as given here:

			   public String get_op() {

			     switch (sym) {

			     case "Assignment" : return "=";

			     case "AddExpr": if (rule==1320) return "+";

			                     else return "-";

			     }

			     return sym;

			   }

			The findatoken() method is used from an internal node in the syntax tree to chase down one of its leaves. It recursively dives into the children until it finds a token. The Unicon implementation of findatoken() is as follows:

			method findatoken()

			if sym==="token" then return self

			return (!kids).findatoken()

			end

			The corresponding Java implementation of findatoken() is shown here:

			   public tree findatoken() {

			     tree rv;

			     if (sym.equals("token")) return this;

			     for (tree t : kids)

			        if ((rv=t.findatoken()) != null) return rv;

			     return null;

			   }

			Even the basics of type checking, all of which have been shown in this section, have required you to learn a lot of new ways to traverse trees. The fact is, building a programming language or writing a compiler is a big, complex job, and if we showed a complete one for a mainstream language, this book would be thicker than our page limit allows.

			This chapter presented how to add roughly half of a type checker to Jzero. Running j0 with these additions is not very glamorous; it just lets you see simple type errors get detected and reported. If you want to see that, download the code from this book's GitHub site, go into the Chapter07/ subdirectory, and build code with the make program. By default, make will build both the Unicon and Java versions. When you run the j0 command with preliminary type checking in place, it produces an output similar to the following. In this case, the Unicon implementation is shown:
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			Figure 7.2 – The output from the type checker produces OK or FAIL on various operators

			Of course, if the program has no type errors, you will see nothing but lines ending with OK. Now, let's consider an aspect of type checking that's encountered when implementing some programming languages, including Unicon: runtime type checks.

			Runtime type checks and type inference in Unicon

			The Unicon language handles types a lot differently than the Jzero type system described in this chapter. In Unicon, types are not associated with declarations but with actual values. The Unicon virtual machine code generator does not place type information in symbol tables or do compile-time type checking. Instead, types are represented explicitly at runtime and checked everywhere before a value is used. Explicitly representing type information at runtime is common in interpreted and object-oriented languages, and optional in some semi-object-oriented languages such as C++.

			Consider the write() Unicon function. Every argument to write() that isn't a file specifying where to write to must be a string, or be able to be converted into a string. In the Unicon virtual machine, the type information is created and checked at runtime as needed. The pseudocode for the Unicon write() function looks like this:

			for (n = 0; n < nargs; n++) {

			   if (is:file(x[n])) {

			       set the current output file

			   } else if (cnv:string(x[n])) {

			       output the string to the output file

			   } else runtime_error("string or file expected")

			}

			For every argument to write(), the preceding code says to either set the current file, convert the argument into a string and write it, or stop with a runtime error. Checking types of things at runtime provides extra flexibility but slows down execution. Keeping type information around at runtime also consumes memory – potentially a lot of memory. To perform a runtime type check, every value in the Unicon language is stored in a descriptor. A descriptor is a struct that contains a value plus an extra word of memory that encodes its type, called the d-word. A Boolean expression such as is:file(x) on some Unicon value, x, boils down to performing a check to see whether the d-word says the value is of the file type.

			Unicon also has an optimizing compiler that generates C code. The optimizing compiler performs type inference, which determines a unique type more than 90% of the time, eliminating the need for most runtime type checks. Consider the following trivial Unicon program:

			procedure main()

			   s := "hello" || read()

			   write(s)

			end

			The optimizing compiler knows that "hello" is a string, and read() only returns strings. It can infer that the s variable holds only string values, so this particular call to write() is passed a value that is already a string and does not need to be checked or converted. Type inference is beyond the scope of this book, but it is valuable to know that it exists and that for some languages, it is an important bridge that allows flexible higher-level languages to run at speeds comparable to those of lower-level compiled languages.

			Summary

			In this chapter, you learned how to represent base types and check the type safety of common operations, such as preventing adding an integer to a function. All of this can be accomplished by traversing the syntax tree.

			You learned how to represent types in a data structure and add an attribute to the syntax tree nodes to store that information. You also learned how to write tree traversals that extract type information about variables and store that information in their symbol table entries. You then learned how to calculate the correct type at each tree node, checking whether the types are used correctly in the process. Finally, you learned how to report type errors that you found.

			The process of type checking may seem like a thankless job that just results in a lot of error messages, but really, the type information that you compute at each of the operators and function calls in the syntax tree will be instrumental in determining what machine instructions to generate for those tree nodes. Now that you have built a type representation and implemented simple type checks, it is time to consider some more complex operations necessary to check compound types, such as function calls and classes. You will do this in the next chapter.

			Questions

			
					What purpose does type checking serve, besides just to frustrate tired programmers?

					Why is a structure type (in our case, a class) needed to represent type information? Why can't we just use an integer to represent each type?

					The code in this chapter outputs lines that report every successful type check with OK. This is very reassuring. Why don't other compilers report successful type checks like this?

					Java is pickier about types than its ancestor, the C programming language. What are the advantages of being pickier about types, instead of automatically converting them on demand?

			

		

	
		
			Chapter 8: Checking Types on Arrays, Method Calls, and Structure Accesses

			This is the second of two chapters regarding type checking. The previous chapter introduced type checking for built-in atomic types. In comparison, this chapter will cover more complex type checking operations.

			This chapter will show you how to perform type checks for the arrays, parameters, and return types of method calls in the Jzero subset of Java. Additionally, it includes the type checking of composite types such as classes.

			In this chapter, we will cover the following main topics:

			
					Type checking arrays

					Checking method calls

					Checking structured type accesses

			

			By the end of the chapter, you will be able to write more sophisticated tree traversals to check types that themselves contain one or more other types. Being able to support such composite types in your programming language is necessary for you to go beyond toy programming languages and into the realm of languages that are useful in the real world. It is time to learn more about type checking. We will begin with the simplest composite type: arrays.

			Technical requirements

			The code for this chapter is available on GitHub: https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch8

			The Code in Action video for the chapter can be found here: https://bit.ly/30w1V8I

			Checking operations on array types

			An array is a sequence of elements that are all of the same type. Up to this point, the Jzero language hasn't really supported array types, other than to allow enough syntax for main() to declare its array of the String parameter. Now, it is time to add support for the remainder of the Jzero array operations, which are a small subset of what Java arrays can do. Jzero arrays are limited to single-dimension arrays created without initializers. In order to check array operations properly, we will modify the code from the previous chapters so that we can recognize array variables when they are declared, and then check all uses on these arrays to only allow legal operations. Let's begin with array variable declarations.

			Handling array variable declarations

			The idea that a variable will hold a reference to an array is attached to the variable's type in the recursive grammar rule, in j0gram.y, for the non-terminal VarDeclarator. The rule in question is the second production rule, which appears after the vertical bar, as follows:

			VarDeclarator: IDENTIFIER | VarDeclarator '[' ']' {

			  $$=j0.node("VarDeclarator",1060,$1); };

			For this rule, the corresponding code in the class tree's assigntype() method adds an arraytype() on top of the type that is being inherited, as assigntype() recurses into the VarDeclarator child node. The Unicon code for this, in the tree.icn file, appears as follows:

			  method assigntype(t)

			   . . .

			    "VarDeclarator": {

			      kids[1].assigntype(arraytype(t))

			      return

			    }

			The t type being inherited is not discarded. It becomes the element type of the array type that is constructed here. The corresponding Java code in tree.java is almost identical:

			  void assigntype(typeinfo t) {

			    . . .

			    case "VarDeclarator": {

			      kids[0].assigntype(new arraytype(t));

			      return;

			    }

			Because it is recursive, this code works for multiple-dimension arrays represented by a chain of VarDeclarator nodes in the syntax tree; although for the sake of brevity, the rest of Jzero will not. Even for single-dimension arrays, things get interesting when you consider how type information is checked when arrays are used in executable code. The first point within the code where you will need to check array types is when an array is created.

			Checking types during array creation

			Arrays in Java are created with the new expression; this is something that, up to this point, was omitted from Jzero. This entails a new token added to javalex.l for the reserved new word, as shown in the following code:

			"new"    { return j0.scan(parser.NEW); }

			Additionally, it entails a new kind of primary expression, called an ArrayCreation expression. This is added in the grammar within j0gram.y, as shown in the following code:

			Primary:  Literal | FieldAccess | MethodCall |         '(' Expr ')' { $$=$2;} | ArrayCreation ;

			ArrayCreation: NEW Type '[' Expression ']' {

			  $$=j0.node("ArrayCreation", 1260, $2, $4); };

			Having added the new reserved word and defined a tree node for it, it is time to consider how a type is assigned for that expression. Let's consider the creation of an array in the new int [3] Java expression. The int token is being used in an executable expression for the first time, and initially, the code that creates the int token inside token.icn should allocate its type as follows:

			class token(cat, text, lineno, colno, ival, dval, sval, 

			  typ)

			   . . .

			initially

			  case cat of {

			     parser.INT:     typ := typeinfo("int")

			     parser.DOUBLE:  typ := typeinfo("double")

			     parser.BOOLEAN: typ := typeinfo("boolean")

			     parser.VOID:    typ := typeinfo("void")

			As you can see, the same additions are needed for the other atomic scalar types. The corresponding Java code in the constructor in token.java is shown here:

			    case parser.INT: typ = new typeinfo("int"); break;

			    case parser.DOUBLE: typ = new typeinfo("double"); 

			        break;

			    case parser.BOOLEAN: typ = new typeinfo("boolean"); 

			        break;

			    case parser.VOID: typ = new typeinfo("void"); break;

			These additions to the class token take care of the leaves that are providing our base types. The ArrayCreation node's type is calculated with an addition to the checktype() method. In tree.icn, the addition to checktype(), which primarily consists of a call to arraytype(), is shown here:

			class tree (id,sym,rule,nkids,tok,kids,isConst,stab,typ)

			   . . .

			   method checktype(in_codeblock)

			   . . .

			    "ArrayCreation": typ := arraytype(kids[1].typ)

			The Java code that corresponds to this in the tree.java file is as follows:

			    case "ArrayCreation":

			       typ = new arraytype(kids[0].typ); break;

			So, when a newly created array is used, usually, in an assignment, its array type must match the type that is allowed by the surrounding expression. For example, in the following two lines, the assignment operator on the second line must allow arrays when its type is being checked:

			      int x[];

			      x = new int[3];

			The code to allow the assignment of an array variable from an array value is added to the check_types() method in the tree.icn file, as shown here:

			   method check_types(op1, op2)

			      . . .

			      else if (op1.basetype===op2.basetype==="array") &

			               operator==="=" &

			               check_types(op1.element_type,

			                           op2.element_type) then {

			               return op1

			               }

			The code checks that both op1 and op2 are arrays, that we are doing an assignment, and that the element types are OK. Here, a write() statement in the then part might be useful for the purposes of testing this chapter's code. However, in a compiler, only type errors will be shown. The corresponding Java addition to the check_types() method in the tree.java file is as follows:

			       else if (op1.basetype.equals("array") &&

			                op2.basetype.equals("array") &&

			                operator.equals("=") &&

			                (check_types(((arraytype)op1).element_type,

			                    ((arraytype)op2).element_type) != 

			                        null)) {

			                return op1;

			               }

			From the examples in this section, it might appear as though type checking is just a bunch of nitpicky attention to detail. The recursive call to check_types() on the arrays' element types prevents a program from accidentally assigning an array of string to a variable of type array of int, for example. Now, it is time to consider type checking for array element accesses.

			Checking types during array accesses

			Array accesses consist of read and write operations on an array's elements using the subscript operator. Here, we need to add syntax support for these operations and build syntax tree nodes before we can perform any type checking on them. Adding array accesses to the grammar consists of adding a non-terminal ArrayAccess and then adding two production rules that use this non-terminal symbol: 

			
					One for assignments that store a value in an array element 

					One for expressions that fetch the value from an array element

			

			 The changes to the j0gram.y file will appear as follows. They have been reordered in the grammar for clarity:

			ArrayAccess: Name '[' Expr ']' {

			  $$=j0.node("ArrayAccess",1390,$1,$3); };

			LeftHandSide: Name | FieldAccess | ArrayAccess ;

			Primary:  Literal | FieldAccess | MethodCall | ArrayAccess

			    |'(' Expr ')' { $$=$2;} | ArrayCreation ;

			The square bracket operator that is used to access array elements must check the types of its operands and use them to calculate the result type. The result of an array subscript removes one level of array from the type of the left operand, thereby producing its element type. The addition to the checktype() method in the tree.icn file looks like this:

			  method checktype(in_codeblock)

			   . . .

			    "ArrayAccess": {

			       if match("array ", kids[1].typ.str()) then {

			          if kids[2].typ.str()=="int" then

			             typ := kids[1].typ.element_type

			          else stop("subscripting array with ",

			                    kids[2].typ.str())

			          }

			       else stop("illegal subscript on type ",

			                 kids[1].typ.str())

			       }

			The preceding code checks that the type of kids[1] is an array type and the type of kids[2] is an integer type. If those are good, the value assigned to this node's typ is the array's element_type. The corresponding Java addition to the checktype() method in the tree.java file is shown here:

			    case "ArrayAccess":

			    if (kids[0].typ.str().startsWith("array ")) {

			        if (kids[1].typ.str().equals("int"))

			        typ = ((arraytype)(kids[0].typ)).element_type;

			        else j0.semerror("subscripting array with " + 

			                          kids[1].typ.str());

			        }

			    else j0.semerror("illegal subscript on type " +

			                       kids[0].typ.str());

			    break;

			In this section, we have demonstrated how to type check arrays. Fortunately, non-terminal symbols in the grammar, and hence in the syntax tree, make it easy to find the spots where this form of type checking is needed. Now, it is time to look at perhaps the most challenging part of type checking. We will learn how to check the parameters and return types of method calls next.

			Checking method calls

			The function call is the fundamental building block of both imperative and functional programming paradigms. In object-oriented languages, functions are called methods, but they can play all of the same roles that functions can. In addition to this, a set of methods provides an object's public interface. To type check a method call, both the number and the type of the parameters must be verified along with the return type.

			Calculating the parameters and return type information

			The type representation introduced in the previous Chapter 7, Checking Base Type, included a methodtype class that had fields for the parameters and the return type; however, we haven't yet presented the code to extract that information from the syntax tree and place it into the type. The parameters and return type of a method are called its signature. The grammar rule where a method signature is declared is the one that builds a  MethodHeader node. To calculate the return type, we need to synthesize it from the MethodReturnVal node. To calculate the parameters, we need to walk to the FormalParmList subtree within MethodDeclarator. You can do this by adding a call to j0.calctype() to the grammar rule for MethodHeader; this is similar to the ones we added earlier for variable declarations:

			MethodHeader: PUBLIC STATIC MethodReturnVal 

			    MethodDeclarator {

			  $$=j0.node("MethodHeader",1070,$3,$4);

			  j0.calctype($$);

			  };

			The calctype() method in the j0 class has not been modified, but the methods it calls over in tree.icn have been extended to add more type information, as needed, to handle method signatures. The calctype() method in the tree class gets a small upgrade to synthesize a leaf's type from its contained token type, if present. In Unicon, it is the following line added to tree.icn that assigns typ from tok.typ:

			  method calctype()

			      . . .

			      "token": {

			         if typ := \ (tok.typ) then return

			The corresponding Java addition to calctype() in tree.java is shown here:

			          if ((typ = tok.typ) != null) return;

			The modifications to the assigntype() method for constructing method signatures are more substantial. For variable declarations, you are simply passing the type as an inherited attribute down a list to the individual variables' leaf identifiers. For a method, the type to be associated with the identifier is constructed from the inherited attribute, which is the return type, plus the remainder of the method's signature obtained from the subtree associated with the parameter list:

			  method assigntype(t)

			    case sym of {

			    . . .

			    "MethodDeclarator": {

			       parmList := (\ (kids[2]).mksig()) | []

			       kids[1].typ := typ := methodtype(parmList , t)

			      return

			    }

			In this code, the parmList parameter list is constructed as a list of types. If the parameter list is not empty, it is constructed by calling the mksignature() method on that non-empty tree node. If the parameter list is empty, parmList is initialized to the empty list, []. The parameter list and the return type of t are passed in to construct the method type that is assigned to the MethodDeclarator node and its first child, that is, the identifier method name that will be inserted into the class symbol table. The corresponding Java addition to the assigntype() method in tree.java is shown here:

			   Case "MethodDeclarator":

			   typeinfo parmList[];

			    if (kids[1] != null) parmList = kids[1].mksig();

			    else parmList = new typeinfo [0];

			    kids[0].typ = typ = new methodtype(parmList , t);

			    return;

			The mksig() method constructs a list of the types of parameters of a method. The mksig() method is an example of a very specialized tree method. It is a subtree traversal that only traverses a very narrow subset of all tree nodes. It is only ever called on a formal parameter list and only needs to consider the FormalParmList and FormalParm nodes as it walks down the parameter list, picking up the types of each parameter. The Unicon code for mksig() in tree.icn is as follows:

			  method mksig()

			     case sym of {

			        "FormalParm": return [ kids[1].typ ]

			        "FormalParmList":

			           return kids[1].mksig() ||| kids[2].mksig()

			        }

			  end

			The FormalParm case returns a list of size 1. The FormalParmList case returns the concatenation of two recursive calls on its children. The corresponding Java code in tree.java is shown here:

			  typeinfo [] mksig() {

			    switch (sym) {

			    case "FormalParm": return new typeinfo[]{kids[0].typ};

			    case "FormalParmList":

			      typeinfo ta1[] = kids[0].mksig();

			      typeinfo ta2[] = kids[1].mksig();

			      typeinfo ta[] = new typeinfo[ta1.length + 

			            ta2.length];

			      for(int i=0; i<ta1.length; i++) ta[i]=ta1[i];

			      for(int j=0; j<ta2.length; j++)

			        ta[ta1.length+j]=ta2[j];

			      return ta;

			    }

			    return null;

			  }

			The Java implementation uses arrays. The majority of the preceding code concatenates the two arrays returned from the calls to mksig() on the children. This concatenation could be performed by importing java.util.Arrays and using utility methods there, but the Arrays code is not much shorter or clearer. There is one last tweak to the code that is required to connect all of this method type information and make it usable. When the method is inserted into the symbol table in the populateSymTables() method, its type information needs to be stored there. In Unicon, the change in tree.icn is shown here:

			  method populateSymTables()

			    case sym of {

			    . . .

			   "MethodDecl": {

			      stab.insert(kids[1].kids[2].kids[1].tok.text, ,

			                  kids[1].stab, kids[1].kids[2].typ)

			Compared to previous chapters, the addition of type information is just one extra parameter being passed into the symbol table's insert() method. The corresponding Java code in tree.java is shown here:

			stab.insert(s, false, kids[0].stab, kids[0].kids[1].typ);

			We have constructed the type information for methods when they are declared and made that type information available in the symbol table. Now, let's take a look at how to use type information from various methods to check the types of the actual parameters when they are called.

			Checking the types at each method call site

			The method call sites can be found in the syntax tree by looking for the two production rules that build a non-terminal MethodCall. The rule where a MethodCall is a Name followed by a parenthesized list of zero or more parameters is shown here. It includes the classic function syntax, which is primarily used to call methods within the same class, as well as qualified names with the object.function syntax to invoke a method within another class. This section focuses on type checking for the classic function syntax. The object.function syntax is covered in the Checking structured type accesses section. The code given here has been amended in that section.

			The code to check the types of method calls is added to the checktype() method. The Unicon additions to tree.icn appear as follows:

			Method checktype(in_codeblock)

			  . . .

			  "MethodCall": {

			    if rule = 1290 then {

			      if kids[1].sym ~== "token" then

			        stop("can't check type of Name ", kids[1].sym)

			      if kids[1].tok.cat == parser.IDENTIFIER then {

			        if (\(rv:=stab.lookup(kids[1].tok.text))) then {

			          rv := rv.typ

			          if not match("method ", rv.str()) then

			            stop("method expected, got ", rv.str())

			            cksig(rv)

			          }

			        }

			      else stop("can't typecheck token ", kids[1].tok.cat)

			    }

			    else stop("Jzero does not handle complex calls")

			  }

			  . . .

			In the preceding code, the method is looked up in the symbol table and its type is retrieved. If there are no parameters, the type is checked to ensure that its parameter list is empty. If there are actual parameters in the call, they are checked against the formal parameters via a call to the cksig() method. If that check succeeds, the typ field for this node is assigned from the return_type, which was specified for the method that was called. The corresponding Java code in tree.java is shown here:

			  case "MethodCall":

			    if (rule == 1290) {

			      symtab_entry rve;

			      methodtype rv;

			      if (!kids[0].sym.equals("token"))

			        j0.semerror("can't check type of " + kids[0].sym);

			      if (kids[0].tok.cat == parser.IDENTIFIER) {

			        if ((rve = stab.lookup(kids[0].tok.text)) != null){

			          if (! (rve.typ instanceof methodtype))

			            j0.semerror("method expected, got " + 

			                        rv.str());

			          rv = (methodtype)rve.typ;

			          cksig(rv);

			        }

			      }

			    else j0.semerror("can't typecheck " + kids[0].tok.cat);

			    }

			  else j0.semerror("Jzero does not handle complex calls");

			  break;

			The method that is used to check a function's signature and apply its return type is the cksig() method. The Unicon implementation of cksig() in tree.icn is shown here:

			   method cksig(sig)

			   local i:=*sig.parameters, nactual := 1, t := kids[2]

			     if /t then {

			       if i ~= 0 then stop("0 parameters, expected ", i)

			       }

			     else {

			       while t.sym == "ArgList" do {

			         nactual +:= 1; t:=t.kids[1] }

			       if nactual ~= i then

			         stop(nactual " parameters, expected ", i)

			       t := kids[2]

			       while t.sym == "ArgList" do {

			         check_types(t.kids[-1].typ, sig.parameters[i])

			         t := t.kids[1]; i-:=1

			         }

			       check_types(t.typ, sig.parameters[1])

			     }

			     typ := sig.return_type

			   end

			This method first handles zero parameters as a special case; however, aside from that, it checks one parameter at a time in a while loop. For each parameter, it calls ckarg() to check the formal and actual types. Because of the way the syntax tree is constructed, parameters are encountered in reverse order during the tree traversal here. The first parameter is found when you hit a tree node that is not an ArgList. After processing the arguments, cksig() sets the MethodCall node's type to the type returned by the method. The corresponding Java code in tree.java appears as follows:

			  void cksig(methodtype sig) {

			    int i = sig.parameters.length, nactual = 1;

			    tree t = kids[1];

			    if (t == null) {

			      if (i != 0) j0.semerror("0 params, expected ",i);

			    }

			    else {

			      while (t.sym.equals("ArgList")){nactual++; 

			      t=t.kids[0];}

			      if (nactual != i)

			        j0.semerror(nactual + " parameters, expected "+ i);

			      t = kids[1];

			      i--;

			      while (t.sym.equals("ArgList")) {

			        check_types(t.kids[1].typ, sig.parameters[i--]);

			        t = t.kids[0];

			      }

			    check_types(t.typ, sig.parameters[0]);

			  }

			    typ = sig.return_type;

			  }

			The check_types() method and its get_op() helper method need to be tweaked in order to handle parameter type checking. The Unicon implementation of these changes appears as follows:

			   method get_op()

			     return case sym of { …

			      "MethodCall" : "param"

			   . . .

			   method check_types(op1, op2)

			      operator := get_op()

			      case operator of {

			         "param"|"return"|"="|"+"|"-" : {

			          . . .

			The corresponding Java changes to get_op() and check_types() in tree.java are as follows:

			  public String get_op() {

			    switch (sym) {

			    case "MethodCall" : return "param";

			    . . .

			  public typeinfo check_types(typeinfo op1, typeinfo op2) {

			    String operator = get_op();

			    switch (operator) {

			    case "param": case "return": case "=": case "+":     case"-":

			So, you have learned how to check the types of parameters passed into method calls, which is one of the most challenging aspects of type checking. Now it is time to check the return types that come out of the function call via its return statements.

			Checking the type at return statements

			The type of the expressions in the method's return statements must match the type's declared return type. These two locations are quite some distance apart in the syntax tree. There are lots of different ways in which you might connect them. For example, you could add a return_type attribute to all of the tree nodes and inherit the type from the MethodHeader into the Block and down through the code into the return statements. However, that approach is a waste of time for a relatively sparsely used piece of information. The symbol table is the most convenient way to connect remote locations. We can insert a dummy symbol into the symbol table that can hold a function's return type. This dummy symbol can be looked up and checked against the type at every return statement. The dummy symbol named return is ideal. It is easy to remember and is a reserved word that will never conflict with a real symbol in user code. The code to insert the return type into the method's symbol table is an addition to the populateSymTables() method. The Unicon implementation in tree.icn is as follows:

			  method populateSymTables()

			  case sym of {

			  . . .

			    "MethodDecl": {

			      stab.insert(kids[1].kids[2].kids[1].tok.text, ,

			                  kids[1].stab, kids[1].kids[2].typ)

			      kids[1].stab.insert("return", , , 

			            kids[1].kids[1].typ)

			      }

			In this code, kids[1] is the MethodHeader node. Its stab field is the local symbol table being inserted as a subscope inside the enclosing class scope. The kids[1].kids[1] expression is the MethodReturnVal node, which is usually just the token denoting the return type. The pair of blank spaces separated by commas between "return" and the type are null values. They are being passed into the second and third parameters of the insert() symbol table. The corresponding Java code that is added to the populateSymTables() method in tree.java is as follows:

			    Kids[0].stab.insert("return", false, null,

			                         kids[0].kids[0].typ);

			The type checking code that makes use of this return type information within the return statements is added to the checktype() method, which is also in the tree class. The Unicon implementation in tree.icn appears as follows:

			  Method checktype(in_codeblock)

			  . . .

			    case sym of {

			    "ReturnStmt": {

			      if not (rt := ( \ ( \ stab).lookup("return")).typ) 

			            then

			         stop("stab did not find a returntype")

			      if \ (kids[1].typ) then

			          typ := check_types(rt, kids[1].typ)

			      else {

			        if rt.str() ~== "void" then

			          stop("void return from non-void method")

			        typ = rt;

			       }

			    }

			The corresponding Java code is presented here:

			    Case "ReturnStmt":

			      symtab_entry ste;

			      if ((ste=stab.lookup("return")) == null)

			         j0.semerror("stab did not find a returntype");

			      typeinfo rt = ste.typ;

			      if (kids[0].typ != null)

			        typ = check_types(rt, kids[0].typ);

			      else {

			        if (!rt.str().equals("void"))

			          j0.semerror("void return from non-void method");

			      typ = rt;

			       }

			     break;

			So, you have learned how to check return statements. Now, it is time to learn how to check the accesses to the fields and methods of a class instance.

			Checking structured type accesses

			In this book, the phrase structured type will denote composite objects that can hold a mixture of types whose elements are accessed by name. This contrasts with arrays, whose elements are accessed by their position and whose elements are of the same type. In some languages, there are struct or record types for this kind of data. In Jzero and most object-oriented languages, classes are used as the principal structured type.

			This section discusses aspects of how to check the types for operations on classes and, more specifically, class instances. This organization mirrors the presentation of array types at the beginning of this chapter, starting with what is needed to process declarations of class variables.

			The original intent of Jzero was to support a tiny Java subset that was somewhat comparable to Wirth's PL/0 language. Such a language does not require class instances or object-orientation, and space limitations prevent us from covering many of the bells and whistles needed for a feature-rich object-oriented language such as Java or C++. However, we will present some of the highlights. The first thing to consider is how to declare instance variables for class types.

			Handling instance variable declarations

			Variables of class types are declared by giving a class name and then a comma-separated list of one or more identifiers. For example, our compiler needs to handle declarations that are similar to the following declaration of three strings:

			String a, b, c;

			Jzero had to handle such declarations from the beginning since the main() procedure takes an array of strings. Although our Jzero compiler already supports class variable declarations, a few additional considerations are in order.

			In many object-oriented languages, variable declarations will have accompanying visibility rules such as public and private. In Jzero, all methods are public and all variables are private, but you could go ahead and implement an isPublic attribute anyway. A similar consideration applies to static variables. Jzero has no static variables, but you could implement an isStatic attribute if you decide you want them. Extending our example to include these two considerations will look like the following:

			private static String a, b, c;

			To support these Java attributes, you can add them to tokens, tree nodes, and the symbol table entry type. You can propagate them from the reserved word over to where the variables are declared, just as we did for type information.

			Checking types at instance creation

			Objects, also called class instances, are created using the new reserved word, as was the case for arrays, which we discussed in the Checking operations on array types section. The additions to the grammar in j0gram.y are shown here:

			Primary:  Literal | FieldAccess | MethodCall | ArrayAccess

			   |'(' Expr ')' { $$=$2;} | ArrayCreation | 

			      InstanceCreation;

			InstanceCreation: NEW Name '(' ArgListOpt ')' {

			  $$=j0.node("InstanceCreation", 1261, $2, $4); };

			This added syntax enables instance creation. In order to calculate the type of the expression so that it can be checked, we need to look up the type of the class in the symbol table. For that to work, at an earlier point in time, we must construct the corresponding classtype object and associate it with the class name in the enclosing symbol table.

			Instead of embedding code to construct the class type with subtree traversals during parsing, as we did in the preceding sections to construct the signature for a method, for a class, it is easier to wait until after parsing and populating the symbol table, that is, just before type checking. That way, all the information for constructing the class type is ready for us in the class symbol table. A call to a new mkcls() method is added to the semantic() method in j0.icn, after the symbol table processing and before type checking, as follows:

			   method semantic(root)

			   . . .

			     root.checkSymTables()

			     root.mkcls()

			     root.checktype()

			The corresponding Java addition to j0.java is shown here:

			   root.mkcls();

			The mkcls() method stands for make class. When it sees a class declaration, it looks up the class name and goes through the class symbol table, putting entries into the correct category. There is one list for fields, one for methods, and one for constructors. The Unicon implementation of mkcls() from tree.icn is shown here:

			  method mkcls()

			    if sym == "ClassDecl" then {

			        rv := stab.lookup(kids[1].tok.text)

			        flds := []; methds := []; constrs := []

			        every k := key(rv.st.t) do

			           if match("method ", rv.st.t[k].typ.str()) then

			             put(methds, [k, rv.st.t[k].typ])

			           else put(flds, [k, rv.st.t[k].typ])

			       /(rv.typ) := classtype(kids[1].tok.text, rv.st,

			                              flds, methds, constrs)

			    }

			    else every k := !kids do

			      if k.nkids>0 then k.mkcls()

			  end

			When this traversal hits a class declaration, it looks up the class name and fetches the symbol table for that class. Every symbol is checked, and if it is a method, it goes on the list of methods named methds; otherwise, it goes on the list of fields, named flds. The class type in the class's symbol table entry is assigned an instance of a classtype that holds all of this information. You might notice that constructors are not identified and placed on the constructor list. It is OK for Jzero to not support constructors, but a larger subset of Java would support at least one constructor for each class. In any case, the corresponding Java version is shown as follows:

			  void mkcls() {

			    symtab_entry rv;

			    if (sym.equals("ClassDecl")) {

			      int ms=0, fs=0;

			      rv = stab.lookup(kids[0].tok.text);

			      for(String k : rv.st.t.keySet()) {

			        symtab_entry ste = rv.st.t.get(k);

			        if ((ste.typ.str()).startsWith("method ")) ms++;

			        else fs++;

			      }

			      parameter flds[] = new parameter[fs];

			      parameter methds[] = new parameter[ms];

			      fs=0; ms=0;

			      for(String k : rv.st.t.keySet()) {

			      symtab_entry ste = rv.st.t.get(k);

			      if ((ste.typ.str()).startsWith("method "))

			         methds[ms++] = new parameter(k, ste.typ);

			      else flds[fs++] = new parameter(k, ste.typ);

			      }

			      rv.typ = new classtype(kids[0].tok.text,

			                     rv.st, flds, methds, new typeinfo[0]);

			    }

			    else for(int i = 0; i<nkids; i++)

			      if (kids[i].nkids>0) kids[i].mkcls();

			  }

			There is one more piece of code that is needed to complete the handling of instance creation. The type field has to be set for the InstanceCreation nodes in the checktype() method. After all the work of placing the type of information for the class in the symbol table, this is a simple lookup. The Unicon implementation in tree.icn looks like this:

			  method checktype(in_codeblock)

			   . . .

			    "InstanceCreation": {

			      if not (rv := stab.lookup(kids[1].tok.text)) then

			        stop("unknown type ",kids[1].tok.text)

			      if not (typ := \ (rv.typ)) then

			        stop(kids[1].tok.text, " has unknown type")

			    }

			The preceding code is just a symbol table lookup that includes the fetching of the type from the symbol table entry, plus lots of error checking. The corresponding Java additions in tree.java appear as follows:

			    case "InstanceCreation":

			      symtab_entry rv;

			      if ((rv = stab.lookup(kids[0].tok.text))==null)

			        j0.semerror("unknown type " + kids[0].tok.text);

			      if ((typ = rv.typ) == null)

			        j0.semerror(kids[0].tok.text + " has unknown 

			                type");

			      break;

			So, you have learned how to construct type information for classes and use it to produce the correct type at instance creation. Now, let's explore what it will take to support accesses to names defined within the instance.

			Checking types at instance accesses

			Instance accesses refer to references to the fields and methods of an object. There are implicit accesses, where a field or method of the current object is referenced directly by name, and explicit accesses, where the dot operator is used to access an object through its public interface. Implicit accesses are handled by regular symbol table lookups in the current scope, which will automatically try to enclose scopes, including the class scope where the current object's class methods and variables can be found. This section is about explicit accesses using the dot operator. In the j0gram.y grammar, these are called QualifiedName nodes. Adding support for qualified names begins by modifying the MethodCall code in the class tree's checktype() method. The code presented earlier in this chapter for method signature checking on simple names is put into an else clause. The Unicon implementation in tree.icn adds the following lines:

			  method checktype(in_codeblock)

			   . . .

			    "MethodCall": {

			      if rule = 1290 then {

			        if kids[1].sym == "QualifiedName" then {

			          rv := kids[1].dequalify()

			          cksig(rv)

			          }

			        else {

			           if kids[1].sym ~== "token" then

			             …

			           else stop("can't check type of ", 

			                      kids[1].tok.cat)

			        }

			The code in checktype() recognizes qualified names when used as the name of the method being called, and it calls a dequalify() method to obtain the type of the dotted name. It then uses the signature checking method, cksig(), as presented earlier, to check the types at the call. The corresponding Java code in tree.java is as follows:

			        if (kids[0].sym.equals("QualifiedName")) {

			          rv = (methodtype)(kids[0].dequalify());

			          cksig(rv);

			          }

			kids[0] is a tree node with two children. The type of the left child contains the symbol table within which we lookup the right child to find its method type. The dequalify() method does this dirty work. The Unicon implementation in tree.icn looks like this:

			  method dequalify()

			  local rv, ste

			    if kids[1].sym == "QualifiedName" then

			      rv := kids[1].dequalify()

			    else if kids[1].sym=="token" &

			            kids[1].tok.cat=parser.IDENTIFIER then {

			      if not \ (rv := stab.lookup(kids[1].tok.text)) then

			         stop("unknown symbol ", kids[1].tok.text)

			      rv := rv.typ

			    }

			    else stop("can't dequalify ", sym)

			    if rv.basetype ~== "class" then

			      stop("can't dequality ", rv.basetype)

			    if \ (ste := rv.st.lookup(kids[2].tok.text)) then

			      return ste.typ

			    else stop(kids[2].tok.text, " is not in ", rv.str())

			end

			This method first calculates the type for the left-hand side operand. This requires a recursion if the left operand is another qualified name. Otherwise, the left operand must be an identifier that can be looked up in the symbol table. Either way, the left operand's type is checked to make sure it is a class, and if so, the identifier on the right-hand side of the dot is looked up in that class and its type is returned. The corresponding Java implementation is shown here:

			  public typeinfo dequalify() {

			      typeinfo rv = null;

			      symtab_entry ste;

			      if (kids[0].sym.equals("QualifiedName"))

			        rv = kids[0].dequalify();

			      else if (kids[0].sym.equals("token") &

			           (kids[0].tok.cat==parser.IDENTIFIER)) {

			      if ((ste = stab.lookup(kids[0].tok.text)) != null)

			        j0.semerror("unknown symbol " + kids[0].tok.text);

			      rv = ste.typ;

			      }

			      else j0.semerror("can't dequalify " + sym);

			      if (!rv.basetype.equals("class"))

			        j0.semerror("can't dequalify " + rv.basetype);

			      ste = ((classtype)rv).st.lookup(kids[1].tok.text);

			      if (ste != null) return ste.typ;

			      j0.semerror("couldn't lookup " + kids[1].tok.text +

			          " in " + rv.str());

			      return null;

			  }

			In this section, you learned how to handle structure accesses. We included a type checking consideration where variables of a class type are declared and instantiated. Then, you learned how to calculate the types of qualified names within objects.

			After all of this type checking, the output is, once again, a bit anticlimactic. You can download the code from the book's Github site, navigate to the Chapter08/ subdirectory, and build with the make program. This will build both the Unicon and the Java versions. As a reminder, you will have to configure installed software and/or set your classpath to the directory where you unpacked the book examples, as discussed from Chapter 2, Programming Language Design, to Chapter 5, Syntax Trees. When you run the j0 command with type checking in place, it produces an output that is similar to the following:
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			Figure 8.1 – Type checking on parameters and return types

			If the program has no type errors, all the lines will end with OK. In later chapters, Jzero will not bother to output when successful type checks occur, so this will be the last you see of these OK lines.

			Summary

			This chapter was the second of two chapters covering various aspects of type checking. You learned how to represent compound types. For example, you learned how to build method signatures and use them to check method calls. All of this is accomplished via traversals of the syntax tree, and much of it involves adding minor extensions to the functions presented in the previous chapter.

			This chapter also showed you how to recognize array declarations and build the appropriate type representations for them. You learned how to check whether correct types are being used for array creation and access and to build type signatures for method declarations. You also learned how to check that correct types are being used for method calls and returns.

			While writing fancier tree traversal functions is a valuable skill in its own right, representing type information and propagating it around the syntax tree to where it is needed also makes an excellent practice of the skills you will need for the next steps in your compiler. Now that you have implemented type checking, you are ready to move on to code generation. This denotes the midpoint in your programming language implementation. So far, you have been gathering information about the program. The next chapter begins working toward the translated output of the input program, starting with intermediate code generation.

			Questions

			
					What are the main differences between checking the types of array accesses and checking the types of struct or class member accesses?

					How do a function's return statements know what type they are returning? They are often quite far away in the tree from the location where the function's return type is declared.

					How are types checked during a function call?  How does this compare with type checking at operators such as plus and minus?

					Besides accesses via the [ ] and . operators, what other forms of type checking are necessary for arrays, structures, or class types?

			

		

	
		
			Chapter 9: Intermediate Code Generation

			After the semantic analysis is complete, you can contemplate how to execute the program. For compilers, the next step is to produce a sequence of machine-independent instructions called intermediate code. This is usually followed by an optimization phase and final code generation for a target machine. This chapter will show you how to generate intermediate code by looking at examples for the Jzero language. After several chapters where you learned how to write tree traversals that analyze and add information to the syntax tree constructed from the input, the exciting thing about this chapter is that the tree traversals in it begin the process of constructing the compiler's output.

			This chapter covers the following main topics: 

			
					Preparing to generate code

					Defining an intermediate code instruction set

					Generating code for expressions

					Generating code for control flow

			

			It is time to start by gaining some perspective on why intermediate code is so useful. You can think of intermediate code generation as the process of preparing for final code generation.

			Technical requirements

			The code for this chapter is available on GitHub: https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch9

			The Code in Action video for the chapter can be found here: https://bit.ly/30t3gNQ

			Preparing to generate code

			Generating intermediate code produces enough information to enable the task of generating the final code that can be run. Like many things in life, a daunting task becomes possible when you prepare well. Eager developers might want to skip this phase and jump straight to final code generation, so let's consider why intermediate code generation is so advantageous. Generating final machine code is a complex task and most compilers use intermediate code to break the work up into stages to complete it successfully. This section will show you the details of what and why, starting with some specific technical motivations to generate intermediate code.

			Why generate intermediate code?

			The goal of this phase of your compiler is to produce a list of machine-independent instructions for each method in the program. Generating preliminary machine-neutral code as an intermediate representation of a program's instructions has the following benefits:

			
					It allows you to identify the memory regions and byte offsets at which variables will be stored before worrying about machine-specific details such as registers and addressing modes.

					It allows you to work out most of the details of control flow, such as identifying where labels and go-to instructions will be needed.

					Including intermediate code in a compiler reduces the size and scope of the CPU-specific code, improving the portability of your compiler to new architectures.

					It allows you to check your work up to this point and provides output in a human-readable format before we get bogged down in low-level machine code.

					Generating intermediate code allows for a wide range of optimizations to be applied before machine-specific final code generation. Optimizations that are made to intermediate code benefit all final code generators that you target after this point.

			

			Now, let's look at some data structure additions that will help generate intermediate code.

			Learning about the memory regions in the generated program

			In an interpreter, an address in the user's program refers to memory within the interpreter's address space and can be manipulated directly. A compiler has the more difficult challenge of reasoning about addresses that are abstractions of memory locations in future executions of the generated program. At compile time, the user program's address space does not exist yet, but when it does, it will be organized in a similar way to the following:
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			Figure 9.1 – Runtime memory regions

			Some addresses will be in static memory, some on the stack, some in the heap, and some in the code. In the final code, the way these regions are accessed differs, but for intermediate code addresses, we just need a way to tell what region each address lives in. We could use integer codes to represent these different memory regions, but in Unicon and Java, a string name is a direct human-readable way to designate them. So be it. The regions we will use and their interpretations are shown here:

			
					"loc": In the local region, the offset is relative to the top of the stack. For example, it will probably be accessed relative to a stack frame pointer register.

					"glob": The global region holds statically allocated variables. The offset is relative to the start of some data region that is fixed at load time. Depending on your final code, it may be resolved to an absolute address.

					"const": The constant region holds statically allocated read-only values. Aside from being read-only, its properties are like those of the global region. It typically holds strings and other constant structured data; small constants belong in the "imm" pseudo region.

					"lab": A unique integer label is used to abstract an offset relative to the start of the code region, which is usually a read-only static region. Labels are resolved to an absolute address in the final code, but we let the assembler do the work of calculating the byte offsets. In intermediate code, as in assembler code, labels are just names for machine instructions.

					"obj": The offset is relative to the start of some object allocated from the heap, meaning it will be accessed relative to another address. For example, an object-oriented language might address instance variables as offsets relative to a self or this pointer.

					"imm": The pseudo-region for immediate values denotes that the offset is the actual value, not an address.

			

			Regions are not very difficult once you are used to them. Now, let's look at how they are used in the data structure that the compiler uses to represent addresses in the generated code.

			Introducing data types for intermediate code

			The most common form of intermediate code used in compilers is three-address code. Each instruction will contain an opcode and from zero to three operands, which are the values that are used by that instruction, usually an address. For the Jzero compiler, we will define a class called address that represents an address as a region and an offset. The Unicon implementation of the address class begins in the address.icn file, as shown here:

			class address(region, offset)

			end

			The corresponding Java version requires us to decide what types to use for the region and offset. We are using strings to represent regions, while an offset is typically a distance in bytes from the start of a region, so it can be represented by an integer. The Java implementation of the address class in address.java is as follows:

			public class address {

			   public String region;

			   public int offset;

			   address(String s, int x) { region = s; offset = x; }

			}

			We will add methods to this class as needed later. Given this representation of addresses, we can define our three-address code in a class called tac, which consists of an opcode and up to three addresses. Not all opcodes will use all three addresses. The Unicon implementation of the tac class in tac.icn is shown here:

			class tac(op, op1, op2, op3)

			end

			One interesting question that comes to mind at this point is whether to use Unicon's built-in list type and Java's ArrayList class or implement an explicitly linked list representation. An explicitly linked list representation would keep the Unicon and Java code closer in sync and facilitate some sharing of sublists. Plus, to be honest, I am a little bit ashamed at the thought of using Java's ArrayList get() and set(), length versus length() versus size(), and so forth.

			On the other hand, if we roll our own linked lists, we will be wasting space and time on relatively low-level code for basic operations that the implementation language should provide. So, we will use the built-in list type in Unicon and ArrayList in Java and see how well they perform. The corresponding Java implementation in tac.java is as follows:

			public class tac {

			  String op;

			  address op1, op2, op3;

			   tac(String s) { op = s; }

			   tac(String s, address x) { op = s; op1 = x; }

			   tac(String s, address o1, address o2) {

			      op = s; op1 = o1; op2 = o2; }

			   tac(String s, address o1, address o2, address o3) {

			      op = s; op1 = o1; op2 = o2; op3 = o3; }

			}

			To make it convenient to assemble lists of three-address instructions, we will add a factory method named gen() to the class tree that creates a single three-address instruction and returns a new list of size one that contains it. The Unicon implementation in tree.icn is shown here:

			method gen(o, o1, o2, o3)

			   return [ tac(o, o1, o2, o3) ]

			end

			The Unicon version does not have to do anything to allow arguments to be omitted and initializes op1…op3 to the null value. The corresponding Java implementation in tree.java uses variable argument method syntax. It looks like this:

			ArrayList<tac> gen(String o, address a) {

			  ArrayList<tac> L = new ArrayList<tac>();

			  tac t = null;

			  switch(a.length) {

			    case 3: t = new tac(o, a[0], a[1], a[2]); break;

			    case 2: t = new tac(o, a[0], a[1]); break;

			    case 1: t = new tac(o, a[0]); break;

			    case 0: t = new tac(o); break;

			    default: j0.semerr("gen(): wrong # of arguments");

			  }

			  L.add(t);

			  return L;

			}

			The preceding examples demonstrate two ways that Java awkwardly supports methods with a variable number of arguments. First, there is method overloading: the tac class has four different constructors to accommodate a different number of arguments. On the other hand, the gen() method uses Java's variable argument syntax, which provides a weird array-like thing that is not an array to hold the arguments to the method.

			Three address code instructions are easily mapped down into short sequences of 1-2 native instructions, and computers with complex instruction sets have instructions that have three operands and direct correspondence to three-address code. Now, let's look at how to augment tree nodes to include information needed for intermediate code, including these three-address instructions.

			Adding the intermediate code attributes to the tree

			In the previous two chapters, we added symbol table scope and type information to the syntax tree nodes. Now, it is time to add representations for several pieces of information needed for code generation.

			For every tree node that contains intermediate code, a field named icode will denote the list of code instructions that correspond to executing the code for that subtree.

			For expressions, a second attribute named addr will denote the address where the computed value of the expression can be found after that expression executes.

			For every tree node that contains intermediate code, the first and follow fields will denote labels to use as targets when the control flow should execute at the beginning of that code, or it should execute whatever instruction logically comes immediately after that code.

			Lastly, for every tree node that represents a Boolean expression, the onTrue and onFalse fields will hold labels to use as targets when that Boolean expression is found to be true or false, respectively. These names were chosen to avoid the reserved words true and false in Java.

			In Unicon, adding these attributes to the class tree in tree.icn leaves us with the following:

			class tree (id,sym,rule,nkids,tok,kids,isConst,stab,

			            typ,icode,addr,first,follow,onTrue,onFalse)

			Our tree nodes are getting fatter and fatter. While we may have to allocate thousands of them to compile a program, on a machine with gigabytes of main memory, the memory cost will not matter. The corresponding Java additions to tree.java look like this:

			class tree {

			   . . .

			  typeinfo typ;

			  ArrayList<tac> icode;

			  address addr, first, follow, onTrue, onFalse;

			At this point, you might be wondering how we plan to calculate these new attributes. The answer is mostly that they are synthesized via a post-order tree traversal, which we will look at in the following sections. But there will be a few wrinkles.

			Generating labels and temporary variables

			A couple of helper methods will prove instrumental during intermediate code generation. You can think of them as factory methods if you want; a factory method is a method that constructs an object and returns it. In any case, we need one for labels, to facilitate control flow, and one for temporary variables. Let's call them genlabel() and genlocal().

			The label generator, genlabel(), generates a unique label. A unique integer can be obtained from serial.getid(), so genlabel() can, for example, concatenate an "L" with the result from a call to that method. It is an interesting question of whether genlabel() should return the label as an integer or string, an address, a three-address instruction, or a list containing a three-address instruction. The right answer is probably an address. The Unicon code for genlabel() in tree.icn might look like this:

			method genlabel()

			   return address("lab", serial.getid())

			end

			The corresponding Java method in tree.java is as follows:

			address genlabel() {

			   return new address("lab", serial.getid());

			}

			The temporary variable generator, genlocal(), needs to reserve a chunk of memory in the local region. Logically, this entails memory allocation on the top of the stack in some future address space when the generated program will be run someday. This is heady stuff. In practice, a stack allocation is made in a big chunk whenever a method is called. The compiler calculates how big that chunk needs to be for each method, including all the local variables within the program, as well as the temporary variables that are used to calculate the partial results during the various operators when the expressions in the method are executed.

			Each local variable requires some number of bytes, but for this book, the units allocated are full double-aligned 64-bit words. Offsets are reported in bytes, but if you need a byte, you round up and allocate a word. The symbol table is where Jzero allocates local variables. In the tree class code, methods can invoke genlocal() from the symbol table with the stab.genlocal() expression. To implement genlocal(), symbol table entries are extended to keep track of the address that variable occupies, and the symbol table itself tracks how many bytes have been allocated in total. Whenever a request for a new variable comes in, we allocate the number of words it requires and we increment a counter by that amount.

			As given, genlocal() allocates a single word and produces an address for it. For a language that allocates multi-word entities on the stack, genlocal() can be extended to take a parameter that specifies the number of words to allocate, but since Jzero allocates arrays and class instances from the heap, Jzero's genlocal() can get away with allocating one eight-byte word each call.

			Symbol table entries are extended with an address field named addr. The Unicon addition to symtab_entry.icn is shown here:

			class symtab_entry(sym,parent_st,st,isConst,typ,addr)

			The Java addition to symtab_entry.java looks like this:

			public class symtab_entry {

			   . . .

			   address addr;

			   . . .

			   symtab_entry(String s, symtab p, boolean iC,

			        symtab t, typeinfo ti, address a) {

			      sym = s; parent_st = p; isConst = iC;

			      st = t; typ = ti; addr = a;

			The symbol table class gets a byte counter for how many bytes have been allocated within the region corresponding to the symbol table. Symbol table insertion places an address in the symbol table entry and increments the counter. A call to genlocal() inserts a new variable. The Unicon implementation in symtab.icn is shown here:

			class symtab(scope, parent, t, count)

			   . . .

			  method insert(s, isConst, sub, typ)

			      . . .

			      t[s] := symtab_entry(s, self, sub, isConst, typ,

			                           address(scope,count))

			      count +:= 8

			      . . .

			  end

			  method genlocal()

			  local s := "local$" || count

			    insert(s, false, , typeinfo("int"))

			    return t[s].address

			  end

			initially

			  t := table()

			  count := 0

			end

			The preceding change to the insert() method passes in the address at the top of the region to the symtab_entry constructor whenever a variable is allocated, and then increments the counter to allocate space for it. The addition of the genlocal()method consists of inserting a new variable and returning its address. The temporary variable has a dollar symbol in it, $, so that name cannot appear as a regular variable name in the source code. The Java implementation of this addition to symtab.java consists of the following changes:

			public class symtab {

			  . . .

			  int count;

			  . . .

			  void insert(String s, Boolean iC, symtab sub,               typeinfo typ){

			   . . .

			         t.put(s, new symtab_entry(s, this, iC, sub, typ,

			                      new address(scope,count)));

			    count += 8;

			      }

			   }

			   address genlocal() {

			      String s = "local$" + count;

			      insert(s, false, null, new typeinfo("int"));

			      return t.get(s).addr;

			   }

			With the helper methods for generating labels and temporary variables in place, let's look at an intermediate code instruction set.

			An intermediate code instruction set

			Intermediate code is like machine-independent assembler code for an abstract CPU. The instruction set defines a set of opcodes. Each opcode specifies its semantics, including how many operands it uses and what state changes occur from executing it. Because this is intermediate code, we do not have to worry about registers or addressing modes – we can just define state changes in terms of what modifications must occur in main memory. The intermediate code instruction set includes both regular instructions and pseudo instructions, as is the case for other assembler languages. Let's look at a set of opcodes for the Jzero language. There are two categories of opcodes: instructions and declarations.

			Instructions

			Except for immediate mode, the operands of instructions are addresses and instructions that implicitly dereference values in memory located at those addresses. On typical modern machines, units of words are 64 bits. Offsets are given in bytes:
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			Figure 9.2 – Different opcodes, the C equivalents, and their descriptions

			Next, we will have a look at some of the declarations.

			Declarations

			Declarations and other pseudo-instructions typically associate a name with some amount of memory in one of the memory regions of the program. The following are some declarations and their descriptions:
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			Figure 9.3 – Declarations and their descriptions

			These instructions and declarations are general and able to express a variety of computations. Input/output could be modeled by adding instructions or by making runtime system calls. We will make use of this instruction set substantially later in this chapter, starting in the Generating code for expressions section. But first, we must compute some more attributes in our syntax tree that are needed for control flow.

			Annotating syntax trees with labels for control flow

			The code at some tree nodes will be sources or targets of control flow. To generate code, we need a way to generate the labels at the targets and propagate that information to the instructions that will go to those targets. It makes sense to start with the attribute named first. The first attribute holds a label to which branch instructions can jump to execute a given statement or expression. It can be synthesized by brute force if need be; if you had to, you could just allocate a unique label to each tree node. The result would be replete with redundant and unused labels, but it would work. For most nodes, the first label can be synthesized from one of their children, instead of allocating a new one.

			Consider the additive expression e1 + e2, which builds a non-terminal named AddExpr. If there was any code in e1, it would have a first field and that would be the label to use for the first field of the entire AddExpr. If e1 had no code, e2 might have some code and supply the first field for the parent. If neither subexpression has any code, then we need to generate a new label for whatever code we generate in the AddExpr node that performs the addition. Similar logic applies to other operators. The Unicon implementation of the genfirst() method in tree.icn looks like this:

			method genfirst()

			  every (!\kids).genfirst()

			  case sym of {

			  "UnaryExpr": first := \kids[2].first | genlabel()

			  "AddExpr"|"MulExpr": first := \kids[1|2].first | 

			    genlabel()

			  . . .

			  default: first := (!\kids).first

			  }

			end

			The case branches in the preceding code rely on Unicon's goal-directed evaluation. A non-null test is applied to children's first fields for those children that may have code. If those non-null tests fail, genlabel() is called to assign first if this node will generate an instruction. The default, which is good for a lot of non-terminals higher up in the grammar, is to assign first if a child has one, but not to call genlabel(). The corresponding Java code in tree.java looks like this:

			void genfirst() {

			  if (kids != null) for(tree k:kids) k.genfirst();

			  switch (sym) {

			    case "AddExpr": case "MulExpr": {

			      if (kids[1].first != null) first = kids[1].first;

			      else if (kids[2].first != null)                first = kids[2].first;

			      else first = genlabel();

			      }

			   . . .

			   }

			}

			In addition to the first attribute, we need an attribute named follow that denotes the label to jump to for whatever code immediately comes after a given block. This will help implement statements such as if-then, as well as break statements. The follow attribute propagates information from ancestors and siblings rather than children. The implementation must use an inherited attribute, instead of a synthesized one. Instead of a simple bottom-up post-order traversal, information is copied down in a pre-order traversal, as was seen previously for copying type information into variable declaration lists. The follow attribute uses first attribute values and must be computed after genfirst() has been run.

			Consider the most straightforward grammar rule where you might define a follow attribute. In the Jzero grammar, the basic rule for statements executing in sequence consists of the following:

			BlockStmts : BlockStmts BlockStmt ;

			For an inherited attribute, the parent (BlockStmts, which is to the left of the colon) is responsible for providing the follow attribute for the two children. The left child's follow will be the first instruction in the right child, so the attribute is moved from one sibling to the other. The right child's follow will be whatever follows the parent, so it is copied down. Once these values have been set, the parent must have the children do the same for their children, if any. The Unicon implementation in tree.icn is shown here:

			method genfollow()

			   case sym of {

			   "BlockStmts": {

			      kids[1].follow := kids[2].first

			      kids[2].follow := follow

			      }

			   . . .

			   }

			   every (!\kids).genfollow()

			end

			The corresponding Java code in tree.java looks like this:

			void genfollow() {

			  switch (sym) {

			   case "BlockStmts": {

			      kids[0].follow = kids[1].first;

			      kids[1].follow = follow;

			      break;

			      }

			   . . .

			  }

			  if (kids != null) for(tree k:kids) k.genfollow();

			}

			Computing these attributes enables the generation of instructions for the control flow that goes to these various labels. You may have noticed that a lot of these first and follow labels might never be used. We can either generate them all anyway, or we can devise a mechanism to only emit them when they are an actual target of a branch instruction. Before we get on with code generation for the challenging control flow instructions that use these labels, let's consider the simpler problem of generating code for ordinary arithmetic and similar expressions.

			Generating code for expressions

			The easiest code to generate is straight-line code consisting of statements and expressions that execute in sequence with no control flow. As described earlier in this chapter, there are two attributes to compute for each node: the attribute for where to find an expression's value is called addr, while the intermediate code necessary to compute its value is called icode. The values to be computed for these attributes for a subset of the Jzero expression grammar are shown in the following table. The ||| operator refers to list concatenation:
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			Figure 9.4 – Semantic rules for expressions

			The main intermediate code generation algorithm is a bottom-up post-order traversal of the syntax tree. To present it in small chunks, the traversal is broken into the main method, gencode(), and helper methods for each non-terminal. In Unicon, the gencode() method in tree.icn looks as follows:

			method gencode()

			  every (!\kids).gencode()

			  case sym of {

			    "AddExpr": { genAddExpr() }

			    "MulExpr": { genMulExpr() }

			    . . .

			    "token":   { gentoken() }

			    default: {

			       icode := []

			       every icode |||:= (!\kids).icode

			       }

			   }

			end

			The default case for tree nodes that do not know how to generate code consists of just concatenating the code of the children. The corresponding Java looks like this:

			void gencode() {

			  if (kids != null) for(tree k:kids) k.gencode();

			  switch (sym) {

			  case "AddExpr": { genAddExpr(); break; }

			  case "MulExpr": { genMulExpr(); break; }

			  . . .

			  case "token": { gentoken(); break; }

			  default: {

			    icode = new ArrayList<tac>();

			    if (kids != null) for(tree k:kids) 

			        icode.addAll(k.icode);

			    }

			  }

			}

			The methods that are used to generate code for specific non-terminals must occasionally generate different instructions, depending on the production rule. The Unicon code for genAddExpr() is shown here:

			method genAddExpr()

			      addr := genlocal()

			      icode := kids[1].icode ||| kids[2].icode |||

			              gen(if rule=1320 then "ADD" else "SUB",

			                  addr, kids[1].addr, kids[2].addr)

			end

			After generating a temporary variable to hold the result, the code is constructed by adding the appropriate arithmetic instruction to the end of the children's code. In this method, rule 1320 refers to an addition, while rule 1321 refers to a subtraction. The corresponding Java code looks like this:

			void genAddExpr() {

			    addr = genlocal();

			    icode = new ArrayList<tac>();

			    icode.addAll(kids[0].icode); 

			    icode.addAll(kids[1].icode);

			    icode.addAll(gen(((rule==1320)?"ADD":"SUB"), addr,

			                    kids[0].addr, kids[1].addr));

			}

			The gentoken() method generates code for terminal symbols. The icode attribute is usually empty. In the case of a variable, the addr attribute is a symbol table lookup, while in the case of a literal constant, the addr attribute is a reference to a value in the constant region, or an immediate value. In Unicon, the gentoken() method looks like this:

			method gentoken()

			  icode := []

			  case tok.cat of {

			    parser.IDENTIFIER: { addr := stab.lookup(tok.text).addr }

			    parser.INTLIT: { addr := address("imm", tok.ival) }

			    . . .

			    }

			end

			The i code attribute is an empty list, while the addr attribute is obtained via a symbol table lookup. In Java, gentoken() looks like this:

			void gentoken() {

			  icode = new ArrayList<tac>();

			  switch (tok.cat) {

			    case parser.IDENTIFIER: {

			      addr = stab.lookup(tok.text).addr; break; }

			    case parser.INTLIT: {

			      addr = new address("imm", tok.ival); break; }

			    . . .

			    }

			}

			You may observe from all this that generating intermediate code for expressions in straight-line code is mainly a matter of concatenating the operands' code, followed by adding one or more new instructions per operator. This work is made easier by allocating space in the form of the addresses of temporary variables ahead of time. The code for control flow is a bigger challenge.

			Generating code for control flow

			Generating code for control structures such as conditionals and loops is more challenging than code for arithmetic expressions, as shown in the preceding section. Instead of using synthesized attributes in a single bottom-up pass, code for control flow uses label information that must be moved to where it is needed using inherited attributes. This may involve multiple passes through the syntax tree. We will start with the condition expression logic needed for even the most basic control flow, such as if statements, and then show you how to apply that to loops, followed by considerations needed for method calls.

			Generating label targets for condition expressions

			We have already set up for control flow by assigning the first and follow attributes, as described in the Annotating syntax trees with labels for control flow section. Consider what role the first and follow attributes play, starting with the simplest control flow statement, the if statement. Consider a code fragment such as the following:

			if (x < 0) x = 1;

			y = x;

			The syntax tree for these two statements is shown here:
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			Figure 9.5 – Syntax tree illustrating control flow

			BlockStmts assigned the follow attribute of the IfThenStmt node to the first attribute of the y=x assignment. The code that is generated for RelExpr should go to the first label of the then part, pictured here as Assignment1, if RelExpr is true. It should go to follow the whole IfThenStmt if RelExpr is false. To implement this, label values computed from IfThenStmt can be inherited down into two new attributes of RelExpr. We cannot call them true and false because they are Java reserved words. Let's call the attribute for where to go when an expression is true onTrue and the attribute for where to go when an expression is false onFalse. The semantic rules we want to implement are shown in the following table:
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			Figure 9.6 – Semantic rules for the if-then and if-then-else statements

			As we can see, the condition in IfThenStmt is an Expr that inherits onTrue from Stmt, which is its then part, and inherits onFalse from the parent's follow attribute – whatever code follows the whole IfThenStmt. These attributes must be inherited down into Boolean subexpressions through operators such as logical AND and OR. The semantic rules for the Boolean operators are shown in the following table:
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			Figure 9.7 – Semantic rules for Boolean expressions

			The code to compute the onTrue and onFalse attributes is placed in a method called gentargets(). The Unicon implementation in tree.icn looks like this:

			method gentargets()

			   case sym of {

			   "IfThenStmt": {

			      kids[1].onTrue := kids[2].first

			      kids[1].onFalse := follow

			      }

			   "CondAndExpr": {

			      kids[1].onTrue := kids[2].first

			      kids[1].onFalse := onFalse

			      kids[2].onTrue := onTrue

			      kids[2].onFalse := onFalse

			      }    

			   . . .

			   }

			   every (!\kids).gentargets()

			end

			The corresponding Java method looks like this:

			void gentargets() {

			   switch (sym) {

			   case "IfThenStmt": {

			      kids[0].onTrue = kids[1].first;

			      kids[0].onFalse = follow;

			      }

			   case "CondAndExpr": {

			      kids[0].onTrue = kids[1].first;

			      kids[0].onFalse = onFalse;

			      kids[1].onTrue = onTrue;

			      kids[1].onFalse = onFalse;

			      }    

			   . . .

			   }

			   if (kids!=null) for(tree k:kids) k.gentargets();

			}

			Having seen how the onTrue and onFalse attributes get assigned, perhaps the last piece of the puzzle is the code that's generated for relational operators, such as the x < y test. On these operators, it would be possible to generate code that computes a true (1) or false (0) result and store it in a temporary variable such as an arithmetic operator. However, the point of computing the onTrue and onFalse labels was to generate code that would jump directly to the correct label, depending on whether a test was true or false. This is essential to implement the short-circuit semantics for Boolean operators that Jzero inherits from Java, and before it, from C. Here is the Unicon implementation of the genRelExpr() method, which is called from gencode() to generate intermediate code for relational expressions:

			method genRelExpr()

			  op :=  case kids[2].tok.cat of {

			    ord("<"): "BLT"; ord(">"): "BGT";

			    parser.LESSTHANOREQUAL: "BLE"

			    parser.GREATERTHANOREQUAL: "BGT" }

			  icode := kids[1].icode ||| kids[3].icode |||

			            gen(op, onTrue, kids[1].addr, kids[3].addr) |||

			            gen("GOTO", onFalse)

			end

			This code starts by setting the op variable to the three-address opcode that corresponds to the integer category of the operator, extracted from kids[2].tok.cat. Then, it constructs code by concatenating the left and right operands, followed by a conditional branch if the operator evaluates to true, followed by an unconditional branch if the operator was false. The corresponding Java implementation looks like this:

			void genRelExpr() {

			  String op = "ERROR";

			  switch (kids[1].tok.cat) {

			    case '<': op="BLT"; break; case ';': op="BGT"; break;

			    case parser.LESSTHANOREQUAL: op="BLE"; break;

			    case parser.GREATERTHANOREQUAL: op="BGT";

			    }

			  icode = new ArrayList<tac>();

			  icode.addAll(kids[0].icode); icode.addAll(kids[2].icode);

			  icode.addAll(gen(op, onTrue, kids[0].addr,

			                   kids[2].addr));

			  icode.addAll(gen("GOTO", onFalse));

			}

			Compared to the code that is generated for ordinary arithmetic, the code for control structures such as if statements pass a lot of label information around. Now, let's look at what must be added to the code to support loop control structures.

			Generating code for loops

			This section presents ideas for generating intermediate code for while loops and for loops. The while loop code should be almost identical to an if-then statement, with the sole additions of a label at the top, and a goto at the bottom to jump to that label. A for loop is just a while loop with a couple of additional expressions thrown in. The following table shows the semantic rules for these two control structures:
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			Figure 9.8 – Semantic rules for the intermediate code generation of loops

			The genWhileStmt() method is representative of similar control flow code generation methods such as genIfStmt() and genForStmt(). Most of the work is done while computing the first, follow, onTrue, and onFalse attributes. The Unicon implementation of genWhileStmt() is as follows:

			method genWhileStmt()

			  icode := gen("LAB", kids[1].first) ||| kids[1].icode |||

			           gen("LAB", kids[1].onTrue) |||

			           kids[2].icode ||| gen("GOTO", kids[1].first)

			end

			The Java implementation of genWhileStmt() is shown here:

			void genWhileStmt() {

			  icode = new ArrayList<tac>();

			  icode.addAll(gen("LAB", kids[0].first));

			  icode.addAll(kids[0].icode);

			  icode.addAll(gen("LAB", kids[0].onTrue));

			  icode.addAll(kids[1].icode);

			  icode.addAll(gen("GOTO", kids[0].first));

			}

			There is one remaining aspect of control flow to present. Method (or function) calls are fundamental building blocks in all forms of imperative code and object-oriented code.

			Generating intermediate code for method calls

			The intermediate code instruction set provides three opcodes related to method calls: PARM, CALL, and RET. To invoke a method, the generated code executes several PARM instructions, one for each parameter, followed by a CALL instruction. The called method then executes until it reaches a RET instruction, at which time it returns to the caller. This intermediate code is an abstraction of several different ways that hardware supports method (or function) abstractions.

			On some CPUs, parameters are mostly passed in registers, while on others, they are all passed on the stack. At the intermediate code level, we must worry about whether PARM instructions occur in the order actual parameters appear in the source code or reverse order. In object-oriented languages such as Jzero, we also worry about how a reference to an object is accessible inside a called method. Programming languages have answered these questions in different ways on different CPUs, but for our purposes, we'll use the following calling conventions: parameters are given in reverse order, followed by the object instance (self or this pointer) as an implicit extra parameter, followed by the CALL instruction.

			When gencode() gets to a MethodCall, which is a type of primary expression in our grammar, it will call genMethodCall(). Its Unicon implementation is shown here:

			method genMethodCall()

			  local nparms := 0

			  if k := \ kids[2] then {

			    icode := k.icode

			    while k.sym === "ArgList" do {

			      icode |||:= gen("PARM", k.kids[2].addr)

			      k := k.kids[1]; nparms +:= 1 }

			    icode |||:= gen("PARM", k.addr); nparms +:= 1

			    }

			  else icode := [ ]

			  if kids[1].sym === "QualifiedName" then

			    icode |||:= gen("PARM", kids[1].kids[1].addr)

			  else icode |||:= gen("PARM", "self")

			  icode |||:= gen("CALL", kids[1].addr, nparms)

			end

			The generated code starts with the code to compute the values of the parameters. Then, it issues PARM instructions in reverse order, which comes for free from the way the context-free grammar constructed the syntax tree for argument lists. The trickiest parts of this method have to do with how the intermediate code knows the address to use for the current object. The Java implementation of genMethodCall() is shown here:

			void genMethodCall() {

			  int nparms = 0;

			  icode = new ArrayList<tac>();

			  if (kids[1] != null) {

			    icode.addAll(kids[1].icode);

			    tree k = kids[1];

			    while (k.sym.equals("ArgList")) {

			      icode.addAll(gen("PARM", k.kids[1].addr));

			      k = k.kids[0]; nparms++; }

			    icode.addAll(gen("PARM", k.addr)); nparms++;

			    }

			  if (kids[0].sym.equals("QualifiedName"))

			    icode.addAll(gen("PARM", kids[0].kids[0].addr));

			  else icode.addAll(gen("PARM", "self"));

			  icode.addAll(gen("CALL", kids[0].addr,

			                   new address("imm",nparms)));

			}

			What this section showed has probably convinced you that code generation for the calling side is more challenging than code generation for the return instruction, which you can examine in this chapter's code on GitHub. It is also worth mentioning that every method body's code might have a ret instruction appended, to ensure that code never executes past the end of a method body and into whatever comes after it.

			Reviewing the generated intermediate code

			You cannot run intermediate code, but you should check it carefully. Ensure that the logic looks correct on test cases for every feature that you care about. To check the generated code for a file such as hello.java, run the following command using either the Unicon (left-hand side) or Java implementation (right-hand side). As a reminder for Java, on Windows, you must execute something like set CLASSPATH=".;C:\byopl" first or the equivalent in your Control Panel or Settings. On Linux, it might look like export CLASSPATH=.;..:

			j0 hello.java               java ch9.j0 hello.java

			The output should look similar to the following:

			.string

			L0:

			        string  "hello, jzero!"

			.global

			        global  global:8,hello

			        global  global:0,System

			.code

			proc    main,0,0

			        ASIZE   loc:24,loc:8

			        ASN     loc:16,loc:24

			        ADD     loc:32,loc:16,imm:2

			        ASN     loc:16,loc:32

			L138:

			        BGT     L139,loc:16,imm:3

			        GOTO    L140

			L139:

			        PARM    strings:0

			        PARM    loc:40

			        CALL    PrintStream__println,imm:1

			        SUB     loc:48,loc:16,imm:1

			        ASN     loc:16,loc:48

			        GOTO    L138

			L140:

			        RET

			end

			no errors

			Looking over intermediate code is when you start to realize that you may be able to finish this compiler and translate your source code down into machine code of some kind. If you are not excited, you should be. A lot of errors can be spotted at this point, such as omitted features, or branch statements that go to non-existent labels, so check it out before you rush ahead to generate the final code.

			Summary

			In this chapter, you learned how to generate intermediate code. Generating intermediate code is the first vital step in synthesizing the instructions that will eventually allow a machine to run the user's program. The skills you learned in this chapter build on the skills that are used in semantic analysis, such as how to add semantic attributes to the syntax tree nodes, and how to traverse syntax tree nodes in complex ways as needed.

			One of the important features of this chapter was an example intermediate code instruction set that we used for the Jzero language. Since the code is abstract, you can add new instructions to this instruction set as needed for your language. Building lists of these instructions was easy using Unicon's list data type, and still fairly straightforward using Java's ArrayList type.

			The chapter showed you how to generate code for straight-line expressions such as arithmetic calculations. Far more effort in this chapter went into the instructions for control flow, which often involve goto instructions whose target instructions must have labels. This entailed computing several attributes for labels, including inherited attributes, before building the lists of code instructions.

			Now that you have generated intermediate code, you are ready to move on to the final code generation part. However, first, Chapter 10, Syntax Coloring in an IDE, will take you on a practical diversion consisting of exploring how to use your knowledge to incorporate syntax coloring in an IDE.

		

	
		
			Chapter 10: Syntax Coloring in an IDE

			Creating a useful programming language requires more than just a compiler or interpreter that makes it possible to run programs—it requires an ecosystem of tools for developers. This ecosystem often includes debuggers, online help, or an integrated development environment, commonly called an IDE. An IDE can be broadly defined as any programming environment in which source code editing, compilation, linking steps (if any), and execution may all be performed within the same user interface (UI).

			This chapter addresses some of the challenges of incorporating code from your programming language implementation into an IDE to provide syntax coloring and visual feedback about syntax errors. One reason that you want to learn how to do this is that many programmers will not take your language seriously unless it has an IDE. The code in this chapter will be a Unicon example since there is no IDE that is implemented identically in Unicon and Java.

			This chapter covers the following main topics:

			
					Downloading the example IDEs used in this chapter

					Integrating a compiler into a programmer's editor

					Avoiding reparsing the entire file on every change

					Using lexical information to colorize tokens

					Highlighting errors using parse results

					Adding Java support

			

			The skills to learn in this chapter revolve around software systems communication and coordination. Primarily, by bundling the IDE and compiler into a single executable, high-performance communication is conducted by passing references to shared data, instead of resorting to file input/output (I/O) or inter-process communication (IPC).

			Note

			Writing an IDE is a large project and could be the subject of an entire book. Unlike other chapters of this book where we present the compiler code from scratch, this chapter describes how syntax coloring was added to the Unicon IDE. The Unicon IDE was written by Clinton Jeffery and Nolan Clayton, with contributions from many other people since then. Luis Alvidres did the syntax coloring work as part of his Master's degree project. Luis's project report can be found at http://www.unicon.org/reports/alvidres.pdf.

			The chapter concludes with a description of how the Unicon IDE code was later incorporated into a virtual environment application called Collaborative Virtual Environment (CVE). In CVE, the IDE code was generalized to support other languages, including Java and C++. Hani Bani-Salameh did this work in Unicon as part of his Ph.D. research. The description of adding Java support to the Unicon IDE code is comparable to what we might do to add support for a new language such as Jzero to an existing IDE. The next section describes how to obtain the source code of the programs discussed in this chapter.

			Downloading the example IDEs used in this chapter

			In this chapter, we will be looking at two simple IDEs that illustrate the concepts presented. The first IDE is a program called ui, which stands for Unicon IDE. The ui program is included in the Unicon language distribution, where it can be found in a directory called uni/ide. The program consists of about 10,000 lines of code in 26 files, not counting code in library modules. The following screenshot shows the ui program:
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			Figure 10.1 – The ui IDE

			The second IDE is called CVE. Among other things, CVE is a piece of research software that experimentally extends the ui IDE to support C++ and Java. You can download the source code for CVE from cve.sf.net. The following screenshot shows CVE. If you compare this screenshot with the preceding one, you can see that the CVE program's IDE started from the ui code base: 
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			Figure 10.2 – The CVE IDE

			The source code for CVE is stored in a version control system called Subversion, available from subversion.apache.org. Once you have installed Subversion, run the following command to fetch CVE. The svn checkout command will create a subdirectory named cve/ under whatever directory you are in when you run this command:

			svn checkout https://svn.code.sf.net/p/cve/code/trunk/cve

			Now, let's move on to a brief description of the Unicon IDE and how the Unicon compiler frontend code was integrated into the IDE for the purposes of syntax coloring.

			Integrating a compiler into a programmer's editor

			The front half of the Unicon compiler—loosely corresponding to Chapter 2, Programming Language Design, up to Chapter 5, Syntax Trees, in this book—was integrated into the Unicon IDE, known as ui. The Unicon frontend consists of three major components: a preprocessor, a lexical analyzer, and a parser. In the Unicon translator, these components are called from a main() procedure. The translator opens, reads, and writes files in the filesystem to perform its I/O, and provides feedback to the user by writing text to standard output or standard error on a console or terminal window. In an IDE, the compiler components are called from behind the scenes while the user is editing their code in a graphical UI (GUI). The source code is obtained directly from the memory in the IDE and the compiler's output is obtained from the memory by the IDE and presented to the user. Altogether, seven files from the Unicon translator were modified to become library modules that can be linked in and used from other programs besides unicon. The next section explores how source code in the IDE is fed into the compiler modules. After that, we will consider how the compiler output, including error messages, is fed into the IDE.

			Analyzing source code from within the IDE

			A compiler usually obtains its input by opening and reading from a named file. The lex-compatible interface used by many compilers specifically designates that input comes from an opened file handle stored in a global variable named yyin. This is too slow for an IDE, which performs lexical and syntax analysis frequently and repeatedly as the user is editing. Instead of reading from a file, the Unicon compiler frontend was modified so that it could read source code that was already in the main memory.

			Consider a file named hello.icn that contains a three-line Hello, World program. Within the IDE, the source code is stored as a list of three strings. The list of strings is held in a variable named contents within an editable text list widget. Writing that list of strings out to disk and invoking the compiler to read it each time is too slow. Modifying the compiler to explicitly depend on the list of strings in the IDE slightly complicates the compiler and makes the interface between the two tools a bit fragile. Then again, reading from a list of strings is not exactly rocket science. The list-of-strings format also makes it easy to select part of a file to feed into the parser, instead of the whole thing.

			The Unicon lexical analyzer lives in uni/unicon/unilex.icn in the Unicon distribution. Prior to integration, the Unicon lexical analyzer code used to pre-read the entire source file into a big string, in a variable named buffer. Supporting reading from a list of strings meant placing one line at a time in buffer, and whenever the lexical analyzer reached the end of a line, executing the following code:

			if type(yyin) == "list" then {

			  if buffer := pop(yyin) then {

			    yylineno +:= 1

			    yycolno := 1

			    if tokflags < Newline then tokflags +:= Newline

			    return yylex(ender)

			    }

			  }

			This code uses pop() to remove the next line from a list of strings instead of calling read() to read the next line from a file. Since pop() modifies its source list, lexical analysis is performed on a copy of the list of strings provided by the IDE, rather than on the IDE's own list of strings. Copying a list (or part of a list) of strings does not require the allocation and copying of all the string data containing the code; only the list structure is copied. Now, let's look at how compiler messages are delivered to the GUI of the IDE.

			Sending compiler output to the IDE

			Instead of directly writing error output, the seven library modules in the compiler were modified to construct a list of error diagnostics. The regular compiler could then output these to the console, while the IDE could display messages in a sub-window or depict them graphically. Consider a possible error message, such as the following:

			hello.icn:5: '}' expected

			Prior to integration, the compiler could have written that with the following line of code:

			write(&errout, filename, ":", lineno, ": ", message)

			To integrate such messages into the IDE, the compiler code was modified as follows:

			iwrite( filename, ":", lineno, ": ", message)

			The iwrite() procedure actually stores the diagnostic on a list named parsingErrors, which can be read by the IDE or written to &errout, depending on whether the compiler frontend is linked into the IDE or the Unicon compiler.

			From within the Unicon IDE, these parsing errors are displayed textually from within a ReparseCode() method. The parser is invoked, and then if errors were encountered, the following lines execute:

			  every errorObject := !parsingErrors do {

			    errorObject.lineNumber +:= lineNumberOffset

			    if errorObject.lineNumber <= *contents then {

			      SetErrorLineNumber(errorObject.lineNumber)

			      uidlog.MsgBox.set_contents(

			        [errorObject.lineNumber ||": " ||

			          errorObject.errorMessage])

			      }

			    }

			The error message text is placed in a GUI component named MsgBox with a call to its set_contents() method. MsgBox is drawn below the source code. In addition to displaying the same output text that the compiler would show, in the event of an error, the IDE highlights the line on which the error occurs. This is discussed later in the Highlighting errors using parse results section.

			This section on integrating a compiler into an IDE or programmer's editor discussed the nuts and bolts of how to combine two large, complex, pre-existing pieces of software. The Unicon compiler and IDE are maintained mostly independently. Keeping the connections between them simple reduces the likelihood of a change in one affecting the other. If you are writing a new IDE from scratch to go along with a new compiler, a more extensive integration might enable extra features or better performance, at a cost in complexity, maintainability, and portability. Now, let's look at how to invoke syntax checks without parsing the file constantly while the user is editing the code.

			Avoiding reparsing the entire file on every change

			The lexical and syntax analysis necessary to parse input and detect and report syntax errors presented in this book from Chapter 2, Programming Language Design, to Chapter 8, Checking Types on Arrays, Method Calls, and Structure Accesses, are substantial algorithms. Although the Flex and Yacc tools we've used are high-performance, if given a large input file, scanning and parsing become slow enough that users will not want to reparse the whole file each time a user modifies the file in an IDE text editor. In testing, we found that reparsing the entire file became a problem on files larger than 1,000 lines.

			Sophisticated incremental parsing algorithms that minimize the amount that must be reparsed after changes are the subject of Ph.D. dissertations and research articles. For the Unicon IDE, a simple approach is taken. Whenever the cursor moves away from a line that has been changed, a parsing unit is selected, starting with the changed line and extending above and below to the boundaries of the nearest procedure, method, or another global declaration unit. That unit is reparsed.

			In Unicon, this gives a very good performance. Luis Alvidres found that when an entire declaration unit is reparsed after a line is changed, 98% of the time, the compiler reparses fewer than 100 lines of code. Most of the other 2% of cases—namely, procedures or methods larger than 100 lines—are still not a problem. Only the very largest procedure or method bodies result in slow reparsing. This is often machine-generated code, such as the output of Flex or Yacc, that a user seldom edits by hand. For this, the IDE disables syntax checking to avoid an unacceptable user response time.

			The code to select a slice to reparse when the cursor moves off a line is in a method named GetCode() that can be found in the BuffEditableTextList class, which is a subclass of Unicon's standard GUI editor component named EditableTextList. BuffEditableTextList that lives in uni/ide/buffertextlist.icn. The GetCode() method is implemented as follows. First comes the method header and a set of local variable declarations:

			   method GetCode()

			      local codeSubStringList,

			            originalPositionY, currentPositionY, token,

			            startPositionY := 0, endPositionY := 0,

			            inClass := 0, inMethod := 0

			Within the GetCode() method, these variables play the following roles:

			
					codeSubStringList is a list containing the line number to start error reporting on, followed by the strings to parse for the code that could be affected by changes to the current line.

					originalPositionY is the text line where the text has been changed.

					currentPositionY is a variable used to walk up and down from the current line.

					Token is an integer category returned by yylex(), as seen in Chapter 2, Programming Language Design.

					startPositionY and endPositionY are the lines that identify the beginning and end of the current declaration.

					inClass and inMethod report whether the declaration is in a class or a method.

			

			Initialization in the GetCode() method consists of resetting the parser and starting the position variables from the current cursor row, which indicates on which line the cursor is located. This is illustrated in the following code snippet:

			      reinitialize()

			      originalPositionY := currentPositionY := cursor_y

			A primary loop in this procedure walks backward from the cursor location, using the compiler's yylex lexical analyzer function to look at the first token on each line and find the nearest previous line on which an enclosing declaration begins, as illustrated in the following code snippet:

			      while currentPositionY > 0 do {

			         yyin := contents[currentPositionY]

			         yylex_reinit()

			         if (token := yylex()) ~=== EOFX then {

			            if token = (PROCEDURE | METHOD | CLASS) then {

			               if token=METHOD then inMethod := 1

			               if token=CLASS then inClass := 1

			               startPositionY := currentPositionY

			               }

			            }

			         if startPositionY ~= 0 then break

			         currentPositionY -:= 1

			         }

			You can see that walking backward is achieved by decrementing the current line index held in the currentPositionY variable. The preceding while loop terminates when a line is found that begins with a procedure, method, or class reserved word. When this while loop terminates without finding an enclosing declaration, parsing starts from line 1. This is achieved with the following if statement:

			   if startPositionY = 0 then startPositionY := 1

			The method then searches forward from the cursor to find the enclosing end token. Lexical features such as multiline continued string contents make this trickier than we might expect. The following while loop is long enough that it is split into multiple segments for explanation. The first segment shows that the while loop steps one line at a time through the code to be displayed, advancing currentPositionY on each line and fetching contents from the class member variable list of strings named contents. In Unicon, unterminated string constants can span multiple lines that end in an underscore, which is handled by an inner while loop:

			   currentPositionY := cursor_y

			   while currentPositionY < *contents + 1 do {

			      yyin := contents[ currentPositionY ]

			      yylex_reinit()

			      while countdoublequotes(yyin)%2=1 & yyin[-1]=="_" do {

			         currentPositionY +:= 1

			         if not (yyin ||:= contents[currentPositionY]) then {

			            break break

			            }

			         }

			      yylex_reinit()

			The main task of the while loop given in the preceding code snippet is presented in what is the second half of the loop, shown next. This inner loop uses the compiler's lexical analyzer to identify tokens that would indicate the boundary of a compilable unit. The end token indicates the end of a unit that can be compiled, while class and procedure indicate the beginning of a subsequent unit:

			      while ( token := yylex() ) ~=== EOFX do {

			         case token of {

			         END: {

			            endPositionY := currentPositionY

			            break

			            }

			         CLASS | PROCEDURE: {

			            if currentPositionY ~= startPositionY then {

			               endPositionY := currentPositionY-1

			               break

			               }

			            }

			         default : break

			         }

			      }

			The method finishes by constructing a slice of the source code to reparse and returning it as a list of strings, prefixed by the line number immediately preceding the slice, as illustrated in the following code snippet:

			      if endPositionY = 0 then

			         return codeSubStringList := [ 0 ] ||| contents    

			      if startPositionY = 0 then startPositionY := 1

			      if inMethod = 1 then

			         codeSubStringList := [ startPositionY,

			            "class __Parse()" ] ||| 

			            contents[ startPositionY : endPositionY+1 ]|||

			            ["end"]

			      else if inClass = 1 then

			         codeSubStringList := [ startPositionY ] ||| 

			            contents[ startPositionY : endPositionY+1 ]|||

			            ["end"]

			      else

			         codeSubStringList := [ startPositionY ] ||| 

			            contents[ startPositionY : endPositionY+1 ]

			      return codeSubStringList

			A careful reader might worry about whether the GetCode() function as presented might sometimes miss a declaration boundary and grab too much code—for example, if the word procedure or end is not at the beginning of a line. This is true but non-fatal since it just means that if the source code is written in a very strange manner, the syntax checker might reparse a larger amount of code than necessary. Now, let's look at how the source code can be colorized.

			Using lexical information to colorize tokens

			Programmers need all the help they can get with reading, understanding, and debugging their programs. In Figure 10.1, the source code is presented in many different colors to enhance the readability of the code. This coloring is based on the lexical categories of different elements of the text. Although some people consider colored text as mere eye candy and others are not able to see colors at all, most programmers value it. Many forms of typos and text-editing bugs are spotted more quickly when a given piece of the source code is a different color than the programmer expected. For this reason, almost all modern programmer's editors and IDEs include this feature.

			Extending the EditableTextList component to support color

			EditableTextList is a Unicon GUI component that displays the visible portion of a list of strings using a single font and color selection. EditableTextList does not allow the setting of a font or foreground and background colors for individual letters or words. To support syntax coloring, the Unicon IDE extends a subclass of EditableTextList named BuffEditableTextList to present the user with source code. BuffEditableTextList is not a full rich-text widget. As with EditableTextList, it represents the source code as a list of strings, but BuffEditableTextList knows to apply syntax coloring (and highlighting an error line, if any) on the fly when it draws the source code.

			Coloring individual tokens as they are drawn

			To color each token, BuffEditableTextList calls yylex() to obtain the lexical category for each token when it is drawn. The following code, drawn from the left_string_unicon() method in the BuffEditableTextList class, sets the color using a big case expression from five user-customizable colors specified in a preferences object. Most reserved words are drawn with a special color designated as syntax_text_color in the preferences. Separate colors are used for global declarations, for the boundaries of procedures and methods, and for string and cset literals. This simple set of color designations could be extended by assigning different colors for a few other important lexical categories, such as comments or preprocessor directives:

			   while (token := yylex()) ~=== EOFX do {

			      Fg(win, case token of {

			         ABSTRACT | BREAK | BY | CASE | CREATE | DEFAULT |

			         DO | ELSE | EVERY | FAIL | IF | INITIALLY |

			         iconINITIAL | INVOCABLE | NEXT | NOT | OF |RECORD|

			         REPEAT | RETURN | SUSPEND | THEN | TO | UNTIL |

			            WHILE : prefs.syntax_text_color

			         GLOBAL | LINK | STATIC |

			            IMPORT | PACKAGE | LOCAL : 

			                prefs.glob_text_color

			         PROCEDURE | CLASS |

			            METHOD | END     : prefs.procedure_text_color

			         STRINGLIT | CSETLIT : prefs.quote_text_color

			         default             : prefs.default_text_color

			         })

			      new_s_Position := yytoken["column"] + *yytoken["s"]-1

			      DrawString(win, x, y,

			                 s[ last_s_Position : (new_s_Position+1)])

			      off := TextWidth(win,

			                   s[ last_s_Position : (new_s_Position

			                       +1)])

			      last_s_Position := new_s_Position + 1

			      x +:= off

			      }

			As can be seen from the preceding code, after the foreground color is set from the token, the token itself is rendered by a call to DrawString(), and the pixel offset at which the subsequent text should be drawn is updated using a call to TextWidth(). All of this when combined together allows different lexical categories of source code to be drawn in different colors in the IDE. The term used in the industry is syntax coloring, although the part of our compiler that we brought in was only the lexical analyzer, not the parser function that performs syntax analysis. Now, let's consider how to draw the user's attention to the line, should the parser determine that the edits that were made on a line leave the code with a syntax error.

			Highlighting errors using parse results

			In a BuffEditableTextList component, the fire() method is called whenever the content is changed, as well as whenever the cursor moves. When content is changed, it sets a flag named doReparse indicating that the code should be syntax-checked. The check does not occur until the cursor is moved. The code for the fire() method is shown here:

			   method fire(type, param)

			      self$Connectable.fire(type, param)

			      if type === CONTENT_CHANGED_EVENT then

			         doReparse := 1

			      if type === CURSOR_MOVED_EVENT &

			           old_cursor_y ~= cursor_y then

			         ReparseCode()

			   end

			In the preceding code, the ReparseCode() method is occasionally called in the Unicon IDE in response to a cursor move, to see whether editing has resulted in a syntax error. Only cursor moves that change the current line (old_cursor_y ~= cursor_y) trigger the ReparseCode() method, as shown here:

			  method ReparseCode ()

			    local s, rv, x, errorObject, timeElapsed, 

			        lineNumberOffset

			    if doReparse === 1 then {

			      timeElapsed := &time

			      SetErrorLineNumber ( 0 )

			      uni_predefs := predefs()

			      x := 1

			      s := copy(GetCode()) | []

			      lineNumberOffset := pop(s)

			      preproc_err_count := 0

			      yyin := ""

			      every yyin ||:= preprocessor(s, uni_predefs) do

			        yyin ||:= "\n"

			      if preproc_err_count = 0 then {

			        yylex_reinit()

			        /yydebug := 0

			        parsingErrors := []

			        rv := yyparse()

			        }

			      if errors + (\yynerrs|0) + preproc_err_count > 0 then {

			         . . .every loop from Sending compiler output to 

			             the IDE here

			         }

			      else uidlog.MsgBox.set_contents(["(no errors)"])

			    doReparse := 0

			    }

			  end

			The ReparseCode() method does nothing unless the code has changed, indicated by doReparse having the value 1. If the code has changed, ReparseCode() calls GetCode(), reinitializes the lexer and parser, calls yyparse(), and sends any error output to the IDE's message box. The actual line on which the error occurs is also highlighted when the code is redrawn as follows. Within the draw_line() method in the BuffEditableTextList class, if the current line being drawn is the one found in the errorLineNumber variable, the foreground color is set to red:

			      if \errorLineNumber then {

			         if i = errorLineNumber then {

			            Fg(self.cbwin, "red")

			            }

			         }

			You have now seen that setting different colors for different kinds of tokens such as reserved words is fairly easy and requires only the lexical analyzer to be involved, whereas checking for syntax errors in the background was a fair bit of work. Now, let's look at what it would take to generalize this to add support for a new language to the IDE.

			Adding Java support

			The Unicon IDE only supports Unicon. The CVE collaborative virtual environment extends the Unicon IDE to include support for Java and C/C++. This section discusses the issues involved in adding a new language (in our case, Java, standing in for Jzero). In a perfect world, this would involve replacing various bits of hard-wired Unicon-specific code with a data structure that handles the language-specific parts. CVE is not perfect but embodies some of this ideal.

			CVE is larger and more complex than the Unicon IDE. The code for the IDE lives in CVE's src/ide subdirectory, but its GUI is integrated into a larger client application whose code lives in src/client.

			In CVE, a variable named projecttype was added that indicates the language that the user's current program is written in. In some places, the IDE's multi-language support handles language-specific details with if statements, such as the following example:

			if projecttype == "Java" then …

			else if projecttype == "CPP" then …

			else if projecttype == "Unicon" then …

			else 

			Code of this sort is found mainly in src/client/menubar.icn. It is used to select the object used to invoke the build process or run the program. In the case of Java, an object named javaProject has methods such as RunJava(). Manually adding such if statements in many locations across the IDE is not great. As much as possible, the IDE encodes language differences in data structures and uses the projecttype variable as an index to select the correct data out of such structures.

			The IDE uses an object-oriented (OO) approach and encapsulates the language that the user is using within a pair of objects. A Language class contains details such as how to syntax color the various tokens, while a Project class provides a language-specific dialog for setting options such as which compiler is to be used and which options are to be passed when compiling. In our case, the src/ide/jproject.icn file contains most of the Java-specific code. In addition to the dialog for setting Java options, it contains CompileJava(), RunJava(), and saveJProject() methods with Java-specific IDE behavior.

			Multi-language syntax coloring in CVE is handled by extending the Unicon lexical analyzer in src/ide/unilex.icn to know the reserved words for Java (and C/C++). This is handled in the reswords() procedure and consists of simple additions to the reserved words table. Instead of coloring tokens in the subclass of EditableTextList, as described earlier in the Using lexical information to colorize tokens section, in CVE the token colorization is pulled into a poorly named LanguageAbstract class in src/ide/langabstract.icn. Within that class, a token_highlighter() method checks the filename extension of the current file to decide whether to apply Java, C/C++, or Unicon reserved words and coloring rules. The code for these methods looks like this:

			  method token_highlighter(f_name,win,s,

			                           last_s_Position,x,y,off)

			     if find (".java",f_name) then {

			        JTok_highlighting(win,s,last_s_Position,x,y,off)

			        language := "Java"

			        }

			     else if find (".cpp"|".c"|".h",f_name) then {

			        CTok_highlighting(win,s,last_s_Position,x,y,off)

			        language := "C/C++"

			        }

			     else if find (".icn",f_name) then {

			        UTok_highlighting(win,s,last_s_Position,x,y,off)

			        language := "Unicon"

			        }

			     else language := &null

			  end

			This is some pretty naïve brute-force code. The good part is, if the IDE has several files in different languages open at any given time, this code will not get confused; it selects the method to call on the fly every time, based on a parameter that is passed in. It is, however, performing a lot of redundant checks when this is called repeatedly for every token that needs to be drawn for a view of the current file.  The JTok_highlighting() method referenced here is not shown, as it is a very similar Java equivalent of the code presented earlier in the Coloring individual tokens as they are drawn section.

			The CVE support for Java is not as complete as the Unicon IDE's support for Unicon. CVE does not incorporate full compiler frontends for Java (and for C/C++) and therefore does not do on-the-fly code reparsing for reporting syntax errors while the user is editing code. The CVE IDE reports syntax errors for Java and C/C++ when the user presses the Compile or Run buttons and the (external) compiler is invoked.

			This section described approaches by which an IDE can support multiple languages, such as separate treatment for Java, for C/C++, and for Unicon. Programmers can benefit from this feature if it means they can switch between programming languages easily without having to learn a new IDE. If you ever have the occasion to invest time or treasure in the development of an IDE, supporting multiple languages might help maximize the return on such an investment.

			Summary

			In this chapter, you learned how to use lexical and syntax information to provide coloring of text in an IDE. Most of the coloring is based on relatively simple lexical analysis, and much of the work required involved modifying the compiler frontend to provide a memory-based interface, instead of relying on reading and writing files on disk. In this chapter, you picked up several skills. You learned how to color reserved words and other lexical categories in a programmer's editor, communicate information between the compiler code and the programmer's editor, and highlight syntax errors during editing.

			Up to this point, this book has been about analyzing and using the information extracted from source code. The rest of this book is all about generating code and the runtime environments in which programs execute. The topic we will explore in the next chapter is bytecode interpreters.

		

	
		
			Section 3: Code Generation and Runtime Systems

			After this section, you will finally be able to run programs written in their new programming language.

			This section comprises the following chapters:

			
					Chapter 11, Bytecode Interpreters

					Chapter 12, Generating Bytecode

					Chapter 13, Native Code Generation

					Chapter 14, Implementing Operators and Built-in Functions

					Chapter 15, Domain Control Structures

					Chapter 16, Garbage Collection

					Chapter 17, Final Thoughts

			

		

	
		
			Chapter 11: Bytecode Interpreters

			A new programming language may include novel features that are not supported directly by mainstream CPUs. The most practical way to generate code for many programming languages is to generate bytecode for an abstract machine whose instruction set directly supports the language's intended domain. This is important because it sets your language free from the constraints of what current hardware CPUs know how to do. It also allows it to generate code that is tied more closely to the types of problems that you want to solve. If you create your own bytecode instruction set, you can execute programs by writing a virtual machine that knows how to interpret that instruction set. This chapter covers how to design an instruction set and an interpreter that executes bytecode. Because this chapter is tightly connected to Chapter 12, Generating Bytecode, you may want to read them both before you dive into the code.

			This chapter covers the following main topics: 

			
					Understanding what bytecode is

					Comparing bytecode with intermediate code

					Building a bytecode instruction set for Jzero

					Implementing a bytecode interpreter

					Examining iconx, the Unicon bytecode interpreter

			

			Technical requirements

			The code for this chapter is available on GitHub: https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch11

			The Code in Action video for the chapter can be found here: https://bit.ly/327bZWn

			A bytecode interpreter is a piece of software that executes an abstract machine instruction set. We are going to learn about bytecode interpreters by looking at a simple bytecode machine for Jzero and taking a quick peek at the Unicon virtual machine. But first, let's explore what we mean by bytecode.

			Understanding what bytecode is

			Bytecode is a sequence of machine instructions encoded in a binary format and written not for a CPU to execute, but instead for an abstract (or virtual) machine instruction set that embodies the semantics of a given programming language. Although many bytecode instruction sets for languages such as Java use a byte as the smallest instruction size, almost all of them include longer instructions. Such longer instructions have one or more operands. Since many kinds of operands must be aligned at a word boundary with an address that is a multiple of four or eight, a better name for many forms of bytecode might be wordcode. The term bytecode is commonly used for such abstract machines, regardless of the instruction's size.

			The languages that are directly responsible for popularizing bytecode are Pascal and SmallTalk. These languages adopted bytecode for different reasons that remain important considerations for programming languages that are defined in terms of their bytecode. Java took this idea and made it known throughout the computer industry.

			For Pascal, bytecode is used to improve the portability of a language implementation across different hardware and operating systems. It is much easier to port a bytecode interpreter to a new platform than to write a new compiler code generator for that platform. If most of a language is written in that language itself, the bytecode interpreter may be the only part that has to be ported to a new machine.

			SmallTalk popularized bytecode for a different reason: to create a layer of abstraction upon which to implement novel features that were far removed from the hardware at the time. A bytecode interpreter allows a language developer to design new instructions as needed, as well as defining runtime system semantics that are present for all the implementations of that language.

			To explain what bytecode is, consider the bytecode that's generated from the following Unicon code:

			   write("2 + 2 is ", 2+2)

			Bytecode breaks down the execution of this expression into individual machine instructions. The human-readable representation of the bytecode for this expression might look like the following Unicon bytecode, called ucode:

			    mark    L1

			    var    0

			    str    0

			    pnull

			    int    1

			    int    1

			    plus

			    invoke    2

			    unmark

			lab L1

			Going line by line, the mark instruction designates the destination label where the execution should proceed if any instruction fails. In Unicon, control flow is mostly determined by failure, rather than by Boolean conditions and explicit goto instructions. The var instruction pushes a reference to variable #0 (write) onto an evaluation stack. Similarly, the str instruction pushes a reference to string constant #0 (2 + 2 is). The pnull instruction is pushed to provide a space on the evaluation stack where the result of an operator (+) may be placed. The int instruction pushes a reference to the integer constant in constant region location #1, which is the value 2; this is done twice for the two operands of the addition. The plus instruction pops the top two stack elements and adds them, placing the result on the top of the stack. The invoke instruction performs a call with two arguments. When invoke comes back, the arguments will have been popped, and the top of the stack, where the write() function had been pushed, will hold the function's return value.

			From the preceding example, you can see that bytecode somewhat resembles intermediate code, and that is intentional. So, what is the difference?

			Comparing bytecode with intermediate code

			In Chapter 9, Intermediate Code Generation, we generated machine-independent intermediate code using abstract three-address instructions. Bytecode instruction sets are in between the three-address intermediate code and a real hardware instruction set in their complexity. A single three-address instruction may map to multiple bytecode instructions. This refers to both the direct translation of any instance of a three-address instruction, as well as to the fact that there may be several bytecode instruction opcodes that handle various special cases of a given three-address opcode. Bytecode is generally more involved than intermediate code, even if it manages to avoid the complexities of operand addressing modes found on a lot of CPUs. Many or most bytecode instruction sets explicitly or implicitly use registers, although bytecode machines are usually far simpler than CPU hardware in terms of the number of registers and the register allocation that the compiler must perform to generate code.

			Bytecode is generally a binary file format. Binary formats are very difficult for humans to read. When talking about bytecode in this chapter, we will provide examples in an assembler-like format, but the bytecode itself is all ones and zeroes.

			Comparing a hello world program in intermediate code and bytecode might give you some idea of their similarities and differences. We will use the following hello.java program as an example. It just prints a message if you give it command-line arguments, but it contains arithmetic as well as control flow instructions:

			public class hello {

			   public static void main(String argv[]) {

			      int x = argv.length;

			      x = x + 2;

			      if (x > 3) {

			         System.out.println("hello, jzero!");

			      }

			   }

			}

			The Jzero three-address code for this program looks as follows. Its operands include several kinds of memory references, ranging from local variables to code region labels. The main() function consists of 11 instructions and 20 operands, averaging almost two operands per instruction:

			.string

			L0:     string  "\"hello, jzero!\""

			.global

			        global  global:8,hello

			        global  global:0,System

			.code

			proc    main,0,0

			        ASIZE   loc:24,loc:8

			        ASN     loc:16,loc:24

			        ADD     loc:32,loc:16,imm:2

			        ASN     loc:16,loc:32

			L75:    BGT     L76,loc:16,imm:3

			        GOTO    L77

			L76:    PARM    strings:0

			        FIELD   loc:40,global:0,class:0

			        PARM    loc:40

			        CALL    PrintStream__println,1

			L77:    RET

			end

			The Java JVM bytecode for this program, as produced by the javap -c command, is shown here (comments have been removed). The main() function consists of 14 instructions with four operands, which equates to less than a third of an operand per instruction:

			public class hello {

			  public hello();

			    Code:

			       0: aload_0

			       1: invokespecial #1

			       4: return

			  public static void main(java.lang.String[]);

			    Code:

			       0: aload_0

			       1: arraylength

			       2: istore_1

			       3: iload_1

			       4: iconst_2

			       5: iadd

			       6: istore_1

			       7: iload_1

			       8: iconst_3

			       9: if_icmple     20

			      12: getstatic     #2

			      15: ldc           #3

			      17: invokevirtual #4

			      20: return

			}

			The instructions in this main() method illustrate some characteristics of their underlying Java bytecode interpreter virtual machine. It is a stack machine. The load and store families of instructions push and pop a variable between a numbered slot in the main memory region and the top of the stack, where expressions are evaluated. This instruction set is typed, with mnemonic prefixes for each of the built-in scalar atomic types of the Java language (i for integer, f for float, and so on). It has built-in instructions for special purposes such as returning the length of an array. Seven integers from -1 through 5 have opcodes that push those constants. An instruction such as iadd pops two values, adds them, and then pushes the result.

			We will present a simpler bytecode instruction set in this chapter, but it is nice to know what the most brilliant minds in the industry are churning out. Now, let's look at a simpler bytecode instruction set that's suitable for Jzero.

			Building a bytecode instruction set for Jzero

			This section describes a simple file format and instruction set for Jzero code, generated from three-address intermediate code. For the language that you create, you might use a subset of the Java bytecode instruction set instead. Java bytecode is a complicated format; if it wasn't, we wouldn't be going to the trouble of presenting something simpler. The instruction set presented here is slightly more capable than Jzero uses, to allow for common extensions.

			Defining the Jzero bytecode file format

			The Jzero format consists of a header, followed by a data section, followed by a sequence of instructions. Jzero files are interpreted as a sequence of 8-byte words in little-endian format. The header consists of an optional self-execution script, a magic word, a version number, and the word offset of the first instruction, relative to the magic word. A self-execution script is a set of commands written in some platform-dependent language that invokes the interpreter, feeding the Jzero file to it as a command-line argument. If present, the self-execution script must be padded if necessary to comprise a multiple of 8 bytes. The magic word is 8 bytes containing the "Jzero!!\0" string. The version number is another 8 bytes containing a version such as 1.0 padded with zeroes, as in "1.0\0\0\0\0\0". The word offset of the first instruction would, at its smallest, be 3; this number is relative to the magic word. A word offset of 3 indicates an empty constant section of 0 words. After the magic word, the version word, and the word offset, execution starts at the instruction whose offset is given in the third word.

			After the header, there is a static data section, which, in Jzero, has space for static variables as well as constants, including strings. In a more serious production language, there might be several kinds of static data sections. For example, there might be one subsection for read-only data, one for data that starts uninitialized and doesn't need to physically occupy space in the file on disk, and a third for statically initialized (non-zero) data. For Jzero, we will just allow one section on disk for all of that.

			After the data section, the rest of the file consists of instructions. Every instruction in Jzero format is a single 64-bit word containing an opcode (8 bits), an operand region (8 bits), and an operand (48 bits). The operand region and operand are not used in all opcodes.

			The Jzero format defines the following opcodes:
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			Table 11.1 – The Jzero instruction set

			Compare this with the set of instructions defined for intermediate code. That instruction set is higher-level, allowing three operands. This instruction set is lower-level and instructions have zero or one operand.

			The operand region byte is treated as a signed 8-bit value. For non-negative values, the Jzero format defines the following operand regions:

			
					region 0 == no operand (R_NONE).

					region 1 == absolute (R_ABS): The operand is a word offset relative to the magic word.

					region 2 == immediate (R_IMM): The operand is the value.

					region 3 == stack (R_STACK): The operand is a word offset relative to the current stack pointer.

					region 4 == heap (R_HEAP): The operand is a word offset relative to the current heap pointer.

			

			The bytecode interpreter source code needs to be able to refer to these opcodes and operand regions by name. In Unicon, a set of $define symbols could be used, but instead, a set of constants in a singleton class called Op is used to keep the code similar in Unicon and Java. The Op.icn file, which contains the Unicon implementation, is shown here:

			class Op(HALT, NOOP, ADD, SUB, MUL, DIV, MOD, NEG, PUSH,

			  POP,

			  CALL, RETURN, GOTO, BIF, LT, LE, GT, GE, EQ, NEQ, LOCAL,

			  LOAD, STORE, R_NONE, R_ABS, R_IMM, R_STACK, R_HEAP)

			initially

			  HALT := 1;  NOOP := 2; ADD := 3; SUB := 4; MUL := 5

			  DIV := 6; MOD := 7; NEG := 8; PUSH := 9; POP := 10

			  CALL := 11; RETURN := 12; GOTO := 13; BIF := 14; LT := 15

			  LE := 16; GT := 17; GE := 18; EQ := 19; NEQ := 20

			  LOCAL := 21; LOAD := 22; STORE := 23

			  R_NONE := 0; R_ABS := 1; R_IMM := 2

			  R_STACK := 3; R_HEAP := 4

			  Op := self

			end

			The corresponding Java class looks like this:

			public class Op {

			  public final static short HALT=1, NOOP=2, ADD=3, SUB=4,

			    MUL=5, DIV=6, MOD=7, NEG=8, PUSH=9, POP=10, CALL=11,

			    RETURN=12, GOTO=13, BIF=14, LT=15, LE=16, GT=17, GE=18,

			    EQ=19, NEQ=20, LOCAL=21, LOAD=22, STORE=23;

			  public final static short R_NONE=0, R_ABS=1, R_IMM=2,

			    R_STACK=3, R_HEAP=4;

			}

			Having a set of opcodes is all well and good, but the more interesting differences between the three-address code and bytecode lie in the semantics of the instructions. We will discuss this later in the Executing instructions section. Before we get to that, you need to know more about how a stack machine operates, as well as a few other implementation details.

			Understanding the basics of stack machine operation

			Like Unicon and Java, the Jzero bytecode machine uses a stack machine architecture. Most of the instructions implicitly read or write values to or from the stack. For example, consider the ADD instruction. To add two numbers, you push them onto the stack and execute an ADD instruction. The ADD instruction itself takes no operands; it pops two numbers, adds them, and pushes the result.

			Now, consider a function call with n parameters whose syntax looks like this:

			    arg0 (arg1, …, argN)

			On a stack machine, this can be implemented by the sequence of instructions shown here:

			    push reference to function arg0

			    evaluate (compute and push) arg1

			    . . .

			    evaluate (compute and push) argN

			    call n

			The function call will use its operand (n) to locate arg0, the address of the function to be called. When the function call returns, all the arguments will be popped and the function return value will be on the top of the stack, in the location that previously held arg0. Now, let's consider some other aspects of how to implement a bytecode interpreter.

			Implementing a bytecode interpreter

			A bytecode interpreter runs the following algorithm, which implements a fetch-decode-execute loop in software. Most bytecode interpreters use at least two registers almost continuously: an instruction pointer and a stack pointer. The Jzero machine also includes a base pointer register to track function call frames and a heap pointer register that holds a reference to a current object.

			While the instruction pointer is referenced explicitly in the following fetch-decode-execute loop pseudocode, the stack pointer is used almost as frequently, but it's more often used implicitly as a byproduct of the instruction semantics of most opcodes:

			load the bytecode into memory

			initialize interpreter state

			repeat {

			   fetch the next instruction,    advance the instruction pointer

			   decode the instruction 

			   execute the instruction

			}

			Bytecode interpreters are usually implemented in a low-level systems programming language such as C, rather than a high-level applications language such as Java or Unicon. The sample implementations will perhaps feel somewhat iconoclastic to hardened systems programmers for this reason. Everything in Java is object-oriented, so the bytecode interpreter is implemented in a class named bytecode. The most native representation of a raw sequence of bytes in Unicon is a string, while in Java, the most native representation is an array of bytes.

			To implement the bytecode interpreter algorithm, this section presents each of the pieces of the algorithm in separate subsections. First, let's consider how to load bytecode into memory.

			Loading bytecode into memory

			To load bytecode into memory, the bytecode interpreter must obtain the bytecode via an input/output of some kind. Typically, this will be done by opening and reading from a named local file. When executable headers are used, a launched program opens itself and reads itself in as a data file. The Jzero bytecode is defined as a sequence of 64-bit binary integers, but this representation is more native in some languages than in others.

			In Unicon, loading a file might look like this:

			class j0machine(code, ip, stack, sp, bp, hp, op, opr, opnd)

			  method loadbytecode(filename)

			    sz := stat(filename).st_size

			    f := open(filename) | stop("cannot open program.j0")

			    s := reads(f, sz)

			    close(f)

			    s ? {

			      if tab(find("Jzero!!\01.0\0\0\0\0\0")) then {

			        return code := tab(0)

			        }

			      else stop("file ", filename, " is not a Jzero file")

			      }

			  end

			end

			The call to reads() in this example reads the entire bytecode file into a single contiguous sequence of bytes. In Unicon, this is represented as a string. The corresponding Java uses an array of bytes, with a ByteBuffer wrapper to provide easy access to the words within the code. The loadbytecode() method within j0machine.java looks like this:

			import java.io.IOException;

			import java.nio.file.Files;

			import java.nio.file.Paths;

			import java.nio.charset.StandardCharsets;

			import java.nio.ByteBuffer;

			public class j0machine {

			  public static byte[] code, stack;

			  public static ByteBuffer codebuf, stackbuf;

			  . . .

			  public static boolean loadbytecode(String filename)

			    throws IOException {

			      code = Files.readAllBytes(Paths.get(filename));

			      byte[] magstr = "Jzero!!\01.0\0\0\0\0\0".getBytes(

			                          StandardCharsets.US_ASCII);

			      int i = find(magstr, code);

			      if (i>=0) {

			        code = Arrays.copyOfRange(code, i, code.length);

			        codebuf = ByteBuffer.wrap(code);

			        return true;

			      }

			      else return false;

			    }

			}

			The copyOfRange() call copies the bytecode into a new array that omits the optional executable header. This is done to simplify later references to the code and the static region, which are offsets relative to the magic word. Finding the magic string within a Java byte array requires the following helper method:

			public static int find(byte[]needle, byte[]haystack) {

			   for( ; i < haystack.length - needle.length+1; ++i) {

			        boolean found = true;

			        for(int j = 0; j < needle.length; ++j) {

			           if (haystack[i+j] != needle[j]) {

			               found = false;

			               break;

			           }

			        }

			        if (found) return i;

			     }

			   return-1;

			}

			In addition to loading bytecode into memory and before starting execution, the bytecode interpreter must initialize its registers.

			Initializing the interpreter state

			The bytecode interpreter state includes the memory regions, instruction and stack pointers, and a small amount of constant or static data used by the interpreter. The init() method allocates and initializes the code region by calling the loadbytecode() method and allocates a stack region. The init() method sets the instruction register to 0, indicating that execution will start at the first instruction in the code region. The stack is initialized to be empty.

			In Unicon, initialization consists of the following code. For static variables, Unicon must allocate a separate static data region because the string type that's used to load the bytecode is immutable. Both it and the bytecode interpretation stack are implemented as lists of integers; this exploits the fact that Unicon version 13 and higher implements lists of integers in a contiguous block of memory:

			class j0machine(code, ip, stack, sdr)

			  . . .

			  method init(filename)

			    ip := 0

			    if not loadbytecode(filename) then

			      stop("cannot open program.j0")

			    ip := 16

			    ip := finstr := 8*getOpnd()

			    data := Data(code[25:ip+1])

			    stack := list()

			  end

			end

			The corresponding Java code is as follows. The allocation of a 100,000-word stack is somewhat arbitrary:

			public class j0machine {

			  public static byte[] code, stack;

			  public static ByteBuffer codebuf, stackbuf;

			  public static int ip, sp;

			  public static boolean[] hasOpnd = new boolean[22];

			  . . .

			  public static void init(String filename)

			    throws IOexception {

			      ip = sp = 0;

			      if (! loadbytecode(filename)) {

			         System.err.println("cannot open program.j0");

			         System.exit(1);

			         }

			      stack = new byte[800000];

			      stackbuf = ByteBuffer.wrap(stack);

			    }

			}

			Program executions in Jzero start with the execution of a function named main(). This is a function in the Jzero bytecode, not in the Java implementation of the bytecode interpreter.

			When the Jzero main() function runs, it expects to have a normal activation record on the stack, where parameters can be accessed. The easiest way to provide this is to initialize the instruction pointer to a short sequence of bytecode instructions that call main(), and exit after it returns. So, you can initialize the stack to contain the main function's parameters, if any, and initialize the instruction pointer to point at a CALL instruction that calls main, followed by a HALT instruction.

			In the case of Jzero, main() has no parameters and the start sequence will always be as follows:

			    PUSH main

			    CALL    0

			    HALT

			Since the startup sequence is the same for every program, it would be possible to embed this bytecode sequence into the virtual machine interpreter code itself, and some bytecode machines do this. The catch is that the code offset (address) of main() will vary from program to program unless it is hardwired, and the linker is forced to always place main() in the same location. In the case of Jzero, it is sufficient and acceptable for the startup sequence to always begin the code section, at the word offset specified in the header. Now, let's consider how the interpreter fetches the next instruction.

			Fetching instructions and advancing the instruction pointer

			A register ip, called the instruction pointer, holds the location of the current instruction. Bytecode interpreters can represent this as a variable that denotes a pointer into the code, or an integer index, viewing the code as an array. In Jzero, it is a byte offset from the magic word. An instruction fetch in bytecode is an operation that reads the next instruction in the code. This includes the opcode that must be read, as well as any additional bytes or words that have operands for some instructions. In Unicon, this fetch() method is located in class j0machine. It looks as follows:

			class j0machine(code, ip, stack, op, opnd)

			   . . .

			   method fetch()

			      op := ord(code[1+ip])

			      opr := ord(code[2+ip])

			      if opr ~= 0 then opnd := getOpnd()

			      ip +:= 8

			   end

			end

			The corresponding Java version of the fetch() method looks like this:

			public class j0machine {

			  public static byte[] code, stack;

			  public static int ip, sp, op

			  public static long opnd;

			  . . .

			  public static void fetch() {

			      op = code[ip];

			      opr = code[ip+1];

			      if (opr != 0) { opnd = getOpnd(); }

			      ip += 8;

			    }

			}

			The fetch() method depends on the getOpnd() method, which reads the next word from the code. In Unicon, the getOpnd() method might be implemented as follows:

			  method getOpnd()

			    return signed(reverse(code[ip+3+:6]))

			  end

			Now that we've looked at instruction fetching, let's look at how instruction decoding is performed.

			Instruction decoding

			The decoding step is a big deal in hardware CPUs; in a bytecode interpreter, it is no big deal, but it needs to be fast. You do not want a long chain of if-else-if statements in the main loop that is going to execute extremely frequently. You want decoding to take a small constant amount of time, regardless of the number of opcodes in your instruction set, so usually, you should implement it with either a table lookup or a switch or case control structure. A Unicon implementation of instruction decoding can be seen in the case expression in the following interp() method, which implements the fetch-decode-execute loop:

			class j0machine(code, ip, stack)

			  . . .

			  method interp()

			    repeat {

			      fetch()

			      case (op) of {

			         Op.HALT: { stop("Execution complete.") }

			         Op.NOOP: { . . .  }

			         . . .

			         default: { stop("Illegal opcode " + op) }

			         }

			      }

			  end

			end

			The corresponding Java code looks like this:

			public class j0machine {

			  public static byte[] code, stack;

			  public static int ip, sp, op, opnd;

			  . . .

			  public static void interp() {

			    for(;;) {

			      fetch();

			      switch (op) {

			        case Op.HALT: { stop("Execution complete."); break; }

			        case Op.NOOP: { break; }

			        . . .

			        default: { stop("Illegal opcode " + op); }

			        }

			      }

			  }

			}

			The key pieces of the interpreter loop that remain to be shown are the implementation of the various instructions. A couple of examples have been given here that depend on the stop() method to implement the execution of the HALT instruction. In Unicon, stop() is a built-in method, but in Java, it can be implemented as follows:

			  public static void stop(String s) {

			    System.err.println(s);

			    System.exit(1);

			    }

			The next section describes the rest of the execute portion of the fetch-decode-execute cycle.

			Executing instructions

			For each of the Jzero instructions, their execution consists of filling in the body of the corresponding case. In Unicon, the add instruction might look like this case branch:

			Op.ADD: {

			   val1 := pop(stack); val2 := pop(stack)

			   push(stack, val1 + val2)

			}

			The corresponding Java implementation is as follows:

			case Op.ADD: {

			   long val1 = stackbuf.getLong(sp--);

			   long val2 = stackbuf.getLong(sp--);

			   stackbuf.putLong(sp++, val1 + val2);

			   break;

			}

			Similar code applies for SUB, MUL, DIV, MOD, LT, and LE.

			The PUSH instruction takes a memory operand and pushes it onto the stack. The challenging part of this (in Unicon and Java, where pointers are being faked) is the interpretation of the operand to fetch a value from memory. This is performed by a separate dereferencing method. Internal helper functions such as deref() are part of the runtime system and will be covered in the Writing a runtime system for Jzero section. The Unicon implementation of the PUSH instruction is as follows:

			Op.PUSH: {

			   val := deref(opr, opnd)

			   push(stack, val)

			}

			The equivalent Java code looks like this:

			case Op.PUSH: {

			  long val = deref(opr, opnd);

			  push(val);

			   break;

			}

			The POP instruction removes a value from the stack and stores it in a memory location designated by a memory operand. The Unicon implementation of the POP instruction is as follows:

			Op.POP: {

			   val := pop(stack)

			   assign(opnd, val)

			}

			The equivalent Java code looks like this:

			case Op.POP: {

			   long val = pop();

			   assign(opnd, val);

			   break;

			}

			The GOTO instruction sets the instruction pointer register to a new location. In Unicon, this is just as straightforward as you would expect:

			Op.GOTO: {

			   ip := opnd

			}

			The equivalent Java code looks like this:

			case Op.GOTO: {

			   ip = (int)opnd;

			   break;

			}

			The conditional branch instruction, BIF (branch-if), pops the top of the stack. If it is non-zero, then it sets the instruction pointer register to a new location, such as a GOTO instruction. In Unicon, the implementation is as follows:

			Op.BIF: {

			   if pop(stack)~=0 then

			      ip := opnd

			}

			The equivalent Java code looks like this:

			case Op.BIF: {

			   if (pop() != 0)

			       ip = (int)opnd;

			   break;

			}

			The call instruction is also like GOTO. It saves an address indicating where execution should resume after a return instruction. The function to call is given in an address just before the n parameters on the top of the stack. A non-negative address in the function slot is the location where the instruction pointer must be set. If the function is negative, it is a call to runtime system function number -n. This is shown in the following Unicon implementation of the CALL instruction:

			Op.CALL: {

			   f := stack[1+opnd]

			   if f >= 0 then {

			     push(stack, ip)

			             push( stack, bp) # save old ip

			             bp := *stack     # set new bp

			             ip := f

			     }

			   else if f = -1 then do_println()

			}

			The equivalent Java code looks like this:

			case Op.CALL: {

			  long f;

			  f = stackbuf.getLong(

			                     sp-8-(int)(8*opnd));

			  if (f >= 0) {

			      push( ip);

			      push( bp);

			      bp = sp;

			      ip = (int)f;

			      }

			  else if (f == -1) do_println();

			  else { stop("no CALL defined for " + f); }

			   break;

			}

			The return instruction is also a GOTO, except it goes to a location that was previously stored on the stack:

			Op.RETURN: {

			           while *stack > bp do pop(stack)

			           bp := pop(stack)

			           ip := pop( stack )

			}

			The equivalent Java code looks like this:

			case Op.RETURN: {

			           sp = bp;

			           bp = (int)pop();

			           ip = (int)pop();

			   break;

			}

			The Jzero interpreter's execute operation is pretty short and sweet. Some bytecode interpreters would have additional instructions for input/output, but we are delegating those tasks to a small set of functions that can be called from the generated code. We'll cover those runtime functions shortly, but first, we'll look at the main() method, which starts the Jzero interpreter from the command line.

			Starting up the Jzero interpreter

			The main() function that launches the Jzero interpreter lives in a module named j0x. This launcher is short and sweet. The Unicon code looks like this, and it can be found in j0x.icn:

			procedure main(argv)

			  if not (filename := argv[1]) then

			    stop("usage: j0x file[.j0]")

			  if not (filename[-3:0] == ".j0") then argv[1] ||:= ".j0"

			  j0machine := j0machine()

			  j0machine.init(filename)

			  j0machine.interp()

			end

			The corresponding Java code in j0x.java looks like this:

			public class j0x {

			  public static void main(String[] argv) {

			    if (argv.length < 1) {

			      System.err.println("usage: j0x file[.j0]");

			      System.exit(1);

			      }

			    String filename = argv[0];

			    if (! filename.endsWith(".j0"))

			      filename = filename + ".j0";

			    j0machine.init(filename);

			    j0machine.interp();

			  }

			}

			We will see how well this interpreter runs shortly. But first, let's look at how built-in functions are incorporated into the Jzero runtime system.

			Writing a runtime system for Jzero

			In a programming language implementation, the runtime system is the code that is included to provide basic functionalities needed for the generated code to run. Generally, the higher level the language is and the greater its distance from the underlying hardware, the larger the runtime system. The Jzero runtime system is as small as possible; it only supports a few internal helper functions such as deref() and some basic functions for input and output. These functions are written in the implementation language (in our case, Unicon or Java), not the Jzero language. Here is the deref() method in Unicon:

			  method deref(reg, od)

			    case reg of {

			      Op.R_ABS: {

			        if od < finstr then return data.word(od)

			        else return code[od]

			        }

			      Op.R_IMM: { return od }

			      Op.R_STACK: { return stack[bp+od] }

			      default: { stop("deref region ", reg) }

			    }

			  end

			Each region has different dereferencing code that's appropriate to how that region is stored. The corresponding Java implementation of deref() looks like this:

			    public static long deref(int reg, long od) {

			    switch(reg) {

			    case Op.R_ABS: { return codebuf.getLong((int)od); }

			    case Op.R_IMM: { return od; }

			    case Op.R_STACK: { return stackbuf.getLong(bp+(int)od); }

			    default: { stop("deref region " + reg); }

			    }

			    return 0;

			    }

			In the case of built-in functions, we must be able to call them from the generated Jzero code. The implementation of built-in functions such as System.out.println() and how they are called from the bytecode interpreter will be covered in Chapter 14, Implementing Operators and Built-In Functions. Now, it is finally time to look at how to run the Jzero bytecode interpreter.

			Running a Jzero program

			At this point, we need to be able to test our bytecode interpreter, but we haven't presented the code generator that generates this bytecode yet! For this reason, most of the testing for this chapter's bytecode interpreter will have to wait until the next chapter, where we will present the code generator. For now, here is a hello world program. The source code is as follows:

			public class hello {

			   public static main(String argv[]) {

			      System.out.println("hello");

			   }

			}

			The corresponding Jzero bytecode might look something like this. One word is shown per line; the lines in hexadecimal show each byte as two hex digits. The opcode is in the leftmost byte, then the operand region byte, and then the operand in the remaining 6 bytes:

			"Jzero!!\0"

			"1.0\0\0\0\0\0"

			0x0000040000000000

			"hello\0\0\0"

			0x0902380000000000                push main

			0x0B02000000000000                call 0

			0x0100000000000000                halt

			0x0902FFFFFFFFFFFF                push -1 (println)

			0x0902180000000000                push "hello"

			0x0B02010000000000                call 1

			0x0C02000000000000                return 0

			If this is written in binary to a file called hello.j0, then executing the j0x hello command will write out hello, as expected. This tiny but concrete example should whet your appetite for the much more interesting examples that we will generate in the next chapter. In the meantime, compare the simplicity of Jzero with some of the more interesting features that can be found by examining the Unicon bytecode interpreter.

			Examining iconx, the Unicon bytecode interpreter

			The Unicon language and its predecessor, Icon, share a common architecture and implementation in the form of a bytecode interpreter and runtime system program named iconx. Compared to the Jzero bytecode interpreter in the previous section, iconx is large and complex and has the benefit of real-world use over a sustained period. Compared to the Java virtual machine, iconx is small and simple, and it's relatively accessible for studying. A thorough description of iconx can be found in The Implementation of Icon and Unicon: a Compendium. This section can be viewed as a brief introduction to that work.

			Understanding goal-directed bytecode

			Unicon has an unusual bytecode. A brief example was provided earlier in this chapter in the Understanding what bytecode is section. The language is goal-directed. All expressions succeed or fail. Many expressions, called generators, can produce additional results on demand when a surrounding expression fails. Backtracking is built into the bytecode interpreter to save the state of such generator expressions, and resume them later on if needed.

			Under the covers, goal-directed expression evaluation can be implemented in many ways, but Unicon's bytecode instruction set, which it inherits largely from Icon, has very unusual semantics that mirror the goal direction found in the source language. Chunks of instructions are marked with information to tell them where to go if they fail. Within such chunks of instructions, the state of generators is saved on a spaghetti stack, and if an expression fails, the most recently suspended generator is resumed.

			Leaving type information in at runtime

			In Unicon, variables can hold any type of value, and values know what type they are. This contributes to the flexibility of the language and matches polymorphic code, at the cost of slower execution that requires more memory to run. In the C implementation, all variables, including ones stored in structures such as lists or records, are represented in a descriptor, declared to be of the struct descrip type. struct descrip contains two words: a dword or descriptor word for the type information and a vword or value word for the value. The C implementation of this struct is shown here:

			struct descrip {

			   word dword;

			   union {

			      word integr;

			      double realval;

			      char *sptr;

			      union block *bptr;

			      dptr descptr;

			      } vword;

			   };

			Strings are special-cased in dword; for a string, the type information word contains the string length; the sign bit of that word is a flag that indicates whether the value is a non-string, which is to say whether a type information code is present. Numbers are special-cased in vword of a descriptor; for integers and real numbers, the value word contains the value; for all other types, the value word is a pointer to the value. Three different kinds of pointers are used, and the pointer to a union block can point at any of a couple dozen or so different Unicon data types. Which field of the vword union to use is decided in all cases by inspecting the dword.

			Fetching, decoding, and executing instructions

			The Unicon bytecode, the fetch-decode-execute loop lives in a C function named interp(). Consistent with this chapter, this consists of an infinite loop with a switch statement inside it. One difference between Unicon instructions and Jzero, as described in this chapter, is that Unicon opcodes are generally a half-word in size, and if they contain an operand, it is generally a full word following that half-word opcode. Since many instructions have no operand, this may make the code more compact, and since operands are full words, they can contain a native C pointer rather than an offset relative to a base pointer for a given memory region. Unicon bytecode is computed by the compiler and stored in the executable on disk using offsets, and when they first execute, the offsets are converted into pointers and the opcode is modified to indicate that they now contain pointers. This clever self-modifying code poses extra pain for thread safety, but it means bytecode cannot be executed from constant or read-only memory.

			Crafting the rest of the runtime system

			Another difference between Iconx and the Jzero interpreter presented in this chapter is that the Unicon bytecode interpreter has an enormous runtime system consisting of numerous sophisticated capabilities, such as high-level graphics and networking. Where the Jzero bytecode interpreter might be 80% of the code, with 20% left to the runtime system, the interp() function at Unicon's core might be only 5% of the code, with the other 95% being the implementation of the many built-in functions and operators. This runtime system is written in a language called RTL, which is a kind of superset of C with special features to support the Unicon type system, type inferencing, and automatic type conversion rules.

			This section presented a brief introduction to the Unicon bytecode interpreter implementation. You saw that programming language bytecode interpreters are often a lot more interesting and complex than the Jzero interpreter. They may involve novel control structures, high-level and/or domain-specific data types, and more.

			Summary

			This chapter presented the essential elements of bytecode interpreters. Knowing how to implement a bytecode interpreter frees you to generate flexible code, without having to worry about hardware instruction sets, registers, or addressing modes.

			First, you learned that the definition of an instruction set includes the opcodes and rules for processing any operands in those instructions. You also learned how to implement generic stack machine semantics, as well as bytecode instructions that correspond to domain-specific language features. Then, you learned how to read and execute bytecode files, including interchangeably working with sequences of bytes and words in both Unicon and Java.

			Given the existence of a bytecode interpreter, in the next chapter, we will discuss generating bytecode from intermediate code so that we can run programs that are compiled using our compiler!

			Questions

			
					A bytecode interpreter could use an instruction set with up to three addresses (operands) per instruction, such as three-address code. Instead, the Jzero interpreter uses zero or one operands per instruction. What are the pros and cons of using three-address code in the bytecode interpreter, such as in intermediate code?

					On real CPUs and in many C-based bytecode interpreters, bytecode addresses are represented by literal machine addresses. However, the bytecode interpreters that were shown in this chapter implement bytecode addresses as positions or offsets within allocated blocks of memory. Is a programming language that does not have a pointer data type at a fatal disadvantage in implementing a bytecode interpreter, compared to a language that does support pointer data types?

					If code is represented in memory as an immutable string value, what constraints does that impose on the implementation of a bytecode interpreter?

			

		

	
		
			Chapter 12: Generating Bytecode

			In this chapter, we continue with code generation, taking the intermediate code from Chapter 9, Intermediate Code Generation, and generating bytecode from it. When you translate from intermediate code into a format that will run, you are generating final code. Conventionally this happens at compile time, but it could occur later—at link time, load time, or runtime. We will generate bytecode in the usual way at compile time. This chapter and the following chapter on generating native code present you with two forms of final code that you can choose between.

			Translation from intermediate code to bytecode is performed by walking through a list of intermediate instructions, translating each intermediate code instruction into one or more bytecode instructions. A straightforward loop is used to traverse the list, with a different chunk of code for each intermediate code instruction. Although the loop used in this chapter is simple, generating the final code remains very important as the culminating essential skill you must acquire in order to bring your new programming language to life.

			This chapter covers the following main topics: 

			
					Converting intermediate code to Jzero bytecode

					Comparing bytecode assembler with binary formats

					Linking, loading, and including the runtime system

					Unicon example: bytecode generation in icont

			

			With the functionality that we build in this chapter, we will be able to generate code that runs on the bytecode interpreter presented in the previous chapter.

			Technical requirements

			The code for this chapter is available on GitHub: https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch12

			The Code in Action video for the chapter can be found here: https://bit.ly/3oR6zGt

			Converting intermediate code to Jzero bytecode

			The Jzero intermediate code generator from Chapter 9, Intermediate Code Generation, traversed a tree and created a list of intermediate code as a synthesized attribute in each tree node, named icode. The intermediate code for the whole program is the icode attribute in the root node of the syntax tree. In this section, we will use this list to produce our output bytecode. To generate bytecode, the gencode() method in the j0 class calls a new method in this class, named bytecode(), and passes it the intermediate code in root.icode as its input. The Unicon gencode() method that invokes this functionality in j0.icn looks like this. The two highlighted lines at the end of the following code snippet are added for bytecode generation, verified by simple text output:

			   method gencode(root)

			      root.genfirst()

			      root.genfollow()

			      root.gentargets()

			      root.gencode()

			      bcode := bytecode(root.icode)

			      every (! (\bcode)).print()

			   end

			The bytecode() method takes in an icode list, and its return value is a list of byc class objects. In this example, the resulting bytecode is printed out in textual form; in a finished compiler, a binary format is usually output by default, and the Jzero compiler will support both formats. The corresponding Java code for the gencode() method is shown in the following code snippet. Output generation performed in the if statement is a little more convoluted in this case:

			   public static void gencode(root) {

			      root.genfirst();

			      root.genfollow();

			      root.gentargets();

			      root.gencode();

			      ArrayList<byc> bcode = bytecode(root.icode);

			      if (bcode != null) {

			        for (int i = 0; i < bcode.size(); i++)

			          bcode.get(i).print();

			        }

			   }

			Each element of the bcode list represents a bytecode instruction, for which we need a class. Call it byc, short for bytecode. Now, let's examine the code for that class.

			Adding a class for bytecode instructions

			We could represent our bytecode literally, using a 64-bit word in the same format presented in Chapter 11, Bytecode Interpreters. Representing bytecode instructions as objects facilitates output in both human-readable text and binary form. The list of objects' representation also makes analysis for final code optimization more convenient.

			The byc class resembles the tac class, but instead of an operation code (opcode) and fields for up to three operands, it just represents an opcode, an operand region, and—if present—an operand, as described in Chapter 11, Bytecode Interpreters. The class also contains several methods, including ones for printing in text and binary forms. The print() and printb() methods will be presented in the section titled Comparing bytecode assembler versus binary formats. Here is an outline of the byc Unicon class from byc.icn:

			class byc(op, opreg, opnd)

			   method print() … end

			   method printb() … end

			   method addr(a) … end

			initially(o, a)

			   op := o; addr(a)

			end

			The corresponding Java class in byc.java looks like this:

			public class byc {

			   int op, opreg;

			   long opnd;

			   public byc(int o, address a) {

			      op=o; addr(a);

			   }

			   public void print() { … }

			   public void printb() { … }

			   public void addr(address a) { … }

			}

			As a part of this byc class, we need a method named addr() that provides a mapping from three-address code addresses to bytecode addresses. Let's examine this next.

			Mapping intermediate code addresses to bytecode addresses

			Although the instruction sets are quite different, the addresses in the intermediate and final code denote approximately the same thing. Since we design both the intermediate code and bytecode, we can define addresses in bytecode to be a lot closer to intermediate code addresses than will be the case when we are mapping from intermediate code to native code in the next chapter. In any case, the region and offset from the address classfrom Chapter 9, Intermediate Code Generation, must be mapped onto opreg and opnd in the byc class. This is handled by an addr() method in the byc class that takes an instance of the address class as a parameter and sets opreg and opnd. The Unicon code in byc.icn looks like this:

			method addr(a)

			   if /a then opreg := Op.R_NONE

			   else case a.region of {

			   "loc": { opreg := Op.R_STACK; opnd := a.offset }

			   "glob": { opreg := Op.R_ABS; opnd := a.offset }

			   "const": { opreg := Op.R_ABS; opnd := a.offset }

			   "lab": { opreg := Op.R_ABS; opnd := a.offset }

			   "obj": { opreg := Op.R_HEAP; opnd := a.offset }

			   "imm": { opreg := Op.R_IMM; opnd := a.offset }

			   }

			end

			The corresponding Java method in byc.java is shown here:

			public void addr(address a) {

			   if (a == null) opreg = Op.R_NONE;

			   else switch (a.region) {

			   case "loc": { opreg = Op.R_STACK; opnd = a.offset;

			              break; }

			   case "glob": { opreg = Op.R_ABS; opnd = a.offset;

			              break; }

			   case "const": { opreg = Op.R_ABS; opnd = a.offset;

			              break; }

			   case "lab": { opreg = Op.R_ABS; opnd = a.offset; 

			              break; }

			   case "obj": { opreg = Op.R_HEAP; opnd = a.offset;

			              break; }

			   case "imm": { opreg = Op.R_IMM; opnd = a.offset;

			              break; }

			   }

			}

			Given the byc class, one more helper function is needed in order to formulate the bytecode() code generator method. We need a convenient factory method for generating bytecode instructions and attaching them to the bcode list.  We will call this method bgen().

			The method bgen() in the j0 class is similar to gen() from the tree class; it produces a one-element list containing a byc instance. The Unicon code looks like this:

			method bgen(o, a)

			   return [byc(o, a)]

			end

			The corresponding Java implementation looks like this:

			public ArrayList<byc> bgen(int o, address a) {

			   ArrayList<byc> L = new ArrayList<byc>();

			   byc b = new byc(o, a);

			   L.add(b);

			   return L;

			}

			Now, finally, it's time to present the bytecode generator.

			Implementing the bytecode generator method

			The Unicon implementation of the bytecode() method in the j0 class is shown next. The implementation must fill in one case branch for each opcode in the three-address instruction set given in Chapter 9, Intermediate Code Generation. There will be a lot of cases, so we present each one separately, starting with this one:

			method bytecode(icode)

			    rv := []

			    every i := 1 to *\icode do {

			       instr := icode[i]

			       case instr.op of {

			          "ADD": { ... append translation of ADD to return 

			                  val }

			          "SUB": { ... append translation of SUB to return 

			                  val }

			          ...

			         }

			      }

			   return rv

			end

			The Java implementation of bytecode() is shown here:

			  public static ArrayList<byc> bytecode(                ArrayList<tac> icode)

			  {

			    ArrayList<byc> rv = new ArrayList<byc>();

			    for(int i=0; i<icode.size(); i++) {

			      tac instr = icode.get(i);

			      switch(instr.op) {

			      case "ADD": { ... append translation of ADD to rv }

			      case "SUB": { ... append translation of SUB to rv }

			        ...

			        }

			      }

			    return rv;

			   }

			Within the framework of this bytecode() method, we now get to provide translations for each of the three-address instructions. We will start with simple expressions.

			Generating bytecode for simple expressions

			The different cases for each three-address opcode have many elements in common, such as the pushing of values from memory onto the evaluation stack. The case for addition perhaps shows the most common translation pattern. In Unicon, addition is handled like this:

			"ADD": {

			   bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

			     j0.bgen(Op.PUSH, instr.op3) ||| j0.bgen(Op.ADD) |||

			     j0.bgen(Op.POP, instr.op1)

			}

			This code reads operand 2 and operand 3 from memory and pushes them onto the stack. The actual ADD instruction works entirely from the stack. The result is then popped off the stack and placed into operand 3. In Java, implementation of addition consists of the following code:

			case "ADD": {

			   bcode.addAll(j0.bgen(Op.PUSH, instr.op2));

			   bcode.addAll(j0.bgen(Op.PUSH, instr.op3));

			   bcode.addAll(j0.bgen(Op.ADD, null));

			   bcode.addAll(j0.bgen(Op.POP, instr.op1));

			   break;

			}

			The intermediate code instruction set presented in Chapter 9, Intermediate Code Generation, defines 19 three-address instructions that must be translated to final code. The final code generation pattern illustrated by the preceding ADD instruction is used for the other arithmetic instructions. For a unary operator such as NEG, the pattern is slightly simplified, as we can see here:

			"NEG": {

			   bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

			     j0.bgen(Op.NEG) ||| j0.bgen(Op.POP, instr.op1)

			}

			In Java, implementation of negation consists of the following code:

			case "NEG": {

			   bcode.addAll(j0.bgen(Op.PUSH, instr.op2));

			   bcode.addAll(j0.bgen(Op.NEG, null));

			   bcode.addAll(j0.bgen(Op.POP, instr.op1));

			   break;

			}

			An even simpler instruction such as ASN may be worth special-casing when you design the instruction set of your bytecode machine, but for a stack machine you can stick with the same script and simplify the preceding pattern further, as illustrated in the following code snippet:

			"ASN": {

			   bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

			     j0.bgen(Op.POP, instr.op1)

			}

			In Java, implementation of assignment might look like this:

			case "ASN": {

			   bcode.addAll(j0.bgen(Op.PUSH, instr.op2));

			   bcode.addAll(j0.bgen(Op.POP, instr.op1));

			   break;

			}

			Code consisting of arithmetic expressions and assignments are the core of most programming languages. Now, it's time to look at code generation for some other intermediate code instructions, starting with the ones used for manipulating pointers.

			Generating code for pointer manipulation

			Three of the intermediate code three-address instructions defined in Chapter 9, Intermediate Code Generation, pertain to the use of pointers: ADDR, LCON, and SCON. The ADDR instruction turns an address in memory into a piece of data that can be manipulated to perform operations such as pointer arithmetic. It pushes its operand, an address reference in one of the memory regions, as if it were an immediate mode value, as illustrated in the following code snippet:

			"ADDR": {

			   bcode |||:= j0.bgen(Op.ADDR, instr.op2)

			   bcode |||:= j0.bgen(Op.POP, instr.op1)

			}

			In Java, implementation of the ADDR instruction consists of this code:

			case "ADDR": {

			   bcode.addAll(j0.bgen(Op.ADDR, instr.op2));

			   bcode.addAll(j0.bgen(Op.POP, instr.op1));

			   break;

			}

			The LCON instruction reads from memory pointed at by other memory, as illustrated here:

			"LCON": {

			   bcode |||:= j0.bgen(Op.LOAD, instr.op2)

			   bcode |||:= j0.bgen(Op.POP, instr.op1)

			}

			In Java, implementation of the LCON instruction consists of the following code:

			case "LCON": {

			   bcode.addAll(j0.bgen(Op.LOAD, instr.op2));

			   bcode.addAll(j0.bgen(Op.POP, instr.op1));

			   break;

			}

			The SCON instruction writes to memory pointed at by other memory, as illustrated here:

			"SCON": {

			   bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

			               j0.bgen(Op.STORE, instr.op1)

			}

			In Java, implementation of the SCON instruction consists of the following code:

			case "SCON": {

			   bcode.addAll(j0.bgen(Op.PUSH, instr.op2));

			   bcode.addAll(j0.bgen(Op.STORE, instr.op1));

			   break;

			}

			These instructions are important for supporting structured data types such as arrays. Now, let's consider bytecode code generation for control flow, starting with the GOTO family of instructions.

			Generating bytecode for branches and conditional branches

			Seven of the intermediate code instructions pertain to conditional and unconditional branch instructions. The simplest of these is the unconditional branch or GOTO instruction. The GOTO instruction assigns a new value to the instruction pointer register. It should be no surprise that the GOTO bytecode is the implementation of the three-address GOTO instruction. The Unicon code for translating GOTO intermediate code into GOTO bytecode is shown here:

			"GOTO": {

			   bcode |||:= j0.bgen(Op.GOTO, instr.op1)

			}

			In Java, implementation of the GOTO instruction consists of the following code:

			case "GOTO": {

			   bcode.addAll(j0.bgen(Op.GOTO, instr.op1));

			   break;

			}

			The conditional branch instructions in the three-address code are translated down into simpler final code instructions. For the instruction set bytecode presented in the previous chapter, this means pushing operands onto the stack prior to the conditional branch instruction bytecode. The Unicon implementation of the BLT instruction looks like this:

			"BLT": {

			   bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

			     j0.bgen(Op.PUSH, instr.op3) ||| j0.bgen(Op.LT) |||

			     j0.bgen(Op.BIF, instr.op1)

			}

			In Java, implementation of generating bytecode for the BLT instruction consists of the following code:

			case "BLT": {

			   bcode.addAll(j0.bgen(Op.PUSH, instr.op2));

			   bcode.addAll(j0.bgen(Op.PUSH, instr.op3));

			   bcode.addAll(j0.bgen(Op.LT, null));

			   bcode.addAll(j0.bgen(Op.BIF, instr.op1));

			   break;

			}

			This pattern is employed for several of the three-address instructions, with slightly simpler code used for BIF and BNIF. Now, let's consider the more challenging forms of control flow transfer that relate to method calls and returns.

			Generating code for method calls and returns

			Three of the three-address instructions handle the very important topic of function and method calls and returns. A sequence of zero or more PARM instructions push values onto the stack, the CALL instruction performs a method call, and the RET instruction returns from a method to the caller. But this three-address code calling convention must be mapped down onto the underlying instruction set, which in this chapter is a bytecode stack machine instruction set that requires the address of the procedure to be called to be pushed (in a stack slot where the return value will be found), prior to pushing other parameters. We could go back and modify our three-address code to fit the stack machine better, but then it would not fit so well for x86_64 native code.

			The PARM instruction is a simple push, except when it is the first parameter and the procedure address is needed, as illustrated in the following code snippet:

			"PARM": {

			   if /methodAddrPushed then {

			      every j := i+1 to *icode do

			         if icode[j].op == "CALL" then {

			            bcode |||:= j0.bgen(Op.PUSH, icode[j].op2)

			            break

			         }

			      methodAddrPushed := 1

			      }

			   bcode |||:= j0.bgen(Op.PUSH, instr.op1)

			}

			The every loop looks for the nearest CALL instruction and pushes its method address. In Java, implementation of the PARM instruction is similar, as we can see here:

			case "PARM": {

			   if (methodAddrPushed == false) {

			      for(int j = i+1; j<icode.length; j++) {

			         tac callinstr = icode.get(j);

			         if (callinstr.op.equals("CALL")) {

			            bcode.addAll(j0.bgen(Op.PUSH, callinstr.op2));

			            break;

			         }

			      }

			   }

			   bcode.addAll(j0.bgen(Op.PUSH, instr.op1));

			   break;

			}

			Having pushed the method address ahead of time, the CALL instruction is straightforward. After the call, the op1 destination in the three-address code is popped from the stack, as with other expressions. The op2 source field is the method address that was used prior to the first PARM instruction. The op3 source field gives the number of parameters, which is used as-is as the operand in the CALL: bytecode, as illustrated in the following code snippet:

			"CALL": {

			   bcode |||:= j0.bgen(Op.CALL, instr.op3)

			   bcode |||:= j0.bgen(Op.POP, instr.op1)

			   methodAddrPushed := &null

			}

			In Java, implementation of the CALL instruction consists of the following code:

			case "CALL": {

			   bcode.addAll(j0.bgen(Op.CALL, instr.op3));

			   bcode.addAll(j0.bgen(Op.POP, instr.op1));

			   methodAddrPushed = false;

			   break;

			}

			The Unicon implementation of the RETURN instruction looks like this:

			"RETURN": {

			   bcode |||:= j0.bgen(Op.RETURN, instr.op1)

			}

			In Java, implementation of the RETURN instruction consists of the following code:

			case "RETURN": {

			   bcode.addAll(j0.bgen(Op.RETURN, instr.op1));

			   break;

			}

			Generating code for method calls and returns is not too difficult. Now, let's consider how to handle pseudo-instructions in the three-address code.

			Handling labels and other pseudo-instructions in intermediate code

			Pseudo-instructions do not translate into code, but they are present in the linked list of three-address instructions and require consideration in the final code. The most common and obvious pseudo-instruction is a label. If the final code is being generated in a human-readable assembler format, labels can be generated as-is. Although LAB and Op.LABEL are not instructions, they are elements in the lists of intermediate code and the generated bytecode, respectively. In Unicon, this is expressed in this way:

			"LAB": {

			   bcode |||:= j0.bgen(Op.LABEL, instr.op1)

			}

			This is the corresponding code in Java:

			case "LAB": {

			   bcode.addAll(j0.bgen(Op.LABEL, instr.op1));

			   break;

			}

			For final code generated in a binary format, labels require some additional handling since they must be replaced by corresponding byte offsets or addresses.

			Since a label is really a name or alias for the address of a particular instruction, in a binary bytecode format it is typically replaced by byte offsets in some form. As the final code is generated, a table containing the mapping between labels and offsets is constructed.

			The past several sections produced a data structure containing a representation of the bytecode and then showed how various three-address instructions are translated. Now, let's move on to producing the code in textual and binary formats.

			Comparing bytecode assembler with binary formats

			Bytecode machines tend to use simpler formats than native code, where binary object files are the norm. Some bytecode machines, such as Python, hide their bytecode format entirely or make it optional. Others, such as Unicon, use a human-readable assembler-like text format for compiled modules. In the case of Java, they seem to have gone out of their way to avoid providing an assembler, to make it more difficult for other languages to target their virtual machine (VM).

			In the case of Jzero and its machine, we have strong incentives to keep things as simple as possible. The byc class defines two output methods: print() for text format and printb() for binary format. You can decide for yourself which one you prefer.

			Printing bytecode in assembler format

			The print() method in the byc class is similar to the one used in the tac class. One line of output is produced for each element in the list. The Unicon implementation of the print() method in the byc class is shown here. Parameter f, which defaults to the standard output, specifies the name:

			method print(f:&output)

			   if op === LABEL then write(f, addrof(), ":")

			   else write(f, nameof(), " ", addrof())

			end

			The corresponding Java implementation is shown here. Method overloading is used to make the parameter optional:

			public void print(PrintStream f) {

			   if (op == LABEL) f.println(addrof() + ":");

			   else f.println("\t" + nameof() + " " + addrof());

			}

			public void print() { print(System.out); }

			The text-based print() methods just punt off most of the work to helper methods that produce human-readable representations of the opcode and the operand. The Unicon code for the nameof() method that maps opcode back to strings is shown in the following example:

			method nameof()

			   static opnames

			   initial opnames := table(Op.HALT, "halt", Op.NOOP,

			      "noop",

			      Op.ADD, "add", Op.SUB, "sub", Op.MUL, "mul",

			      Op.DIV, "div", Op.MOD, "mod", Op.NEG, "neg",

			      Op.PUSH, "push", Op.POP, "pop", Op.CALL, "call",

			      Op.RETURN, "return", Op.GOTO, "goto", Op.BIF, "bif",

			      Op.LT, "lt", Op.LE, "le", Op.GT, "gt", Op.GE, "ge",

			      Op.EQ, "eq", Op.NEQ, "neq", Op.LOCAL, "local",

			      Op.LOAD, "load", Op.STORE, "store")

			   return opnames[op]

			end

			The corresponding Java code shown here uses HashMap:

			  static HashMap<Short,String> ops;

			  static { ops = new HashMap<>();

			    ops.put(Op.HALT,"halt"); ops.put(Op.NOOP,"noop");

			    ops.put(Op.ADD,"add"); ops.put(Op.SUB,"sub");

			    ops.put(Op.MUL,"mul"); ops.put(Op.DIV, "div");

			    ops.put(Op.MOD,"mod"); ops.put(Op.NEG, "neg");

			    ops.put(Op.PUSH,"push"); ops.put(Op.POP, "pop");

			    ops.put(Op.CALL, "call"); ops.put(Op.RETURN, "return");

			    ops.put(Op.GOTO, "goto"); ops.put(Op.BIF, "bif");

			    ops.put(Op.LT, "lt"); ops.put(Op.LE, "le");

			    ops.put(Op.GT, "gt"); ops.put(Op.GE, "ge");

			    ops.put(Op.EQ, "eq"); ops.put(Op.NEQ, "neq");

			    ops.put(Op.LOCAL, "local"); ops.put(Op.LOAD, "load");

			    ops.put(Op.STORE, "store");

			}

			public String nameof() {

			   return opnames.get(op);

			}

			Another helper function called from the print() method is the addrof() method, which prints a human-readable representation of an address based on the operand region and operand fields. Its Unicon implementation is shown here:

			method addrof()

			   case opreg of {

			      Op.R_NONE: return ""

			      Op.R_ABS: return "@"+ 

			            java.lang.Long.toHexString(opnd);

			      Op.R_IMM: return string(opnd)

			      Op.R_STACK: return "stack:" + String.valueof(opnd)

			      Op.R_HEAP: return "heap:" + String.valueof(opnd)

			      default: return string(opreg) ":" || opnd

			      }

			end

			The corresponding Java code for addrof() is shown here:

			public String addrof() {

			  switch (opreg) {

			  case Op.R_NONE: return "";

			  case Op.R_ABS: return "@"+ 

			    java.lang.Long.toHexString(opnd);

			  case Op.R_IMM: return String.valueOf(opnd);

			  case Op.R_STACK: return "stack:" + String.valueOf(opnd);

			  case Op.R_HEAP: return "heap:" + String.valueOf(opnd);

			  }

			  return String.valueOf(opreg)+":"+String.valueOf(opnd);

			}

			Now, let's look at the corresponding binary output.

			Printing bytecode in binary format

			The printb() methods are organized similarly, but where print() needs names of things, printb() needs to put all the bits in a row and output a binary word. Its Unicon implementation is shown here:

			method printb(f:&output)

			   writes(f, "\t", char(op), char(opregn))

			   x := opnd

			   every !6 do {

			     writes(f, char(iand(x, 255)))

			     x := ishift(x, -8)

			     }

			end

			The corresponding Java implementation of printb() is shown here:

			public void printb(PrintStream f) {

			   long x = opnd;

			   f.print((byte)op);

			   f.print((byte)opreg);

			   for(int i = 0; i < 6; i++) {

			      f.print((byte)(x & 0xff));

			      x = x>>8;

			      }

			}

			public void printb() { printb(System.out); }

			In this section, we considered how to output our code to external storage. The contrast between text and binary formats was stark, with binary formats being a bit more work, at least from a human perspective. Now, let's look at other issues necessary for program execution beyond the generated code. This includes linking generated code with other code, especially the runtime system.

			Linking, loading, and including the runtime system

			In a separately compiled native code language, the output binary format from the compile step is not executable. Machine code is output in an object file that must be linked together with other modules, and addresses between them resolved, to form an executable. The runtime system is included at this point, by linking in object files that come with the compiler, not just other modules written by the user. In the old days, loading the resulting executable was a trivial operation. In modern systems, it is more complex due to things such as shared object libraries.

			A bytecode implementation often has substantial differences from the traditional model just described. Java performs no link step, or perhaps you can say that it links code in at load time. The Java runtime system might be considered sharply divided between a large amount of functionality that is built into the Java VM (JVM) interpreter and an also-large amount of functionality that must be loaded, both bytecode and native code, to run various parts of the standard Java language. From an outsider's perspective, one of the surprising things in Java is the enormous number of import statements a developer must place at the top of every file that uses anything in Java's standard libraries.

			In the case of Jzero, severe limitations keep all this as simple as possible. There is no separate compilation or linking. Loading is kept extremely simple and was covered in the previous chapter. The runtime system is built into the bytecode interpreter, another dodge to enable the language to avoid linking. Now, let's look at bytecode generation in Unicon, another real-world bytecode implementation that does things far differently than either Java or Jzero.

			Unicon example – bytecode generation in icont

			Unicon's compiled bytecode output format is human-readable text in ucode files. Such ucode files are initially generated, and then linked and converted into binary icode format by a C program named icont that is invoked by the Unicon translator. The icont program plays the role of code generator, assembler, and linker to form a complete bytecode program in binary format. Here are some of the details.

			The gencode() C function in icont reads lines of ucode text and turns them into binary format following the outline illustrated here. There is an interesting similarity between this pseudo-code and the fetch-decode-execute loop used in the bytecode interpreter. Here, we are fetching text bytecode from input, decoding the opcode, and writing binary bytecode with slight differences in format depending on the bytecode:

			void gencode() {

			    while ((op = getopc(&name)) != EOF) {

			      switch(op) {

			      ...

			      case Op_Plus:

			         newline();

			         lemit(op, name);

			         break;

			      ...

			      }

			   }

			}

			The lemit() function and about seven related functions with the lemit*() prefix are used to append bytecode within a contiguous array of bytes in binary format. Labels associated with instructions are turned into byte offsets. Forward references to labels that have not been encountered yet are placed in linked lists and backpatched later when the target label is encountered. The C code for lemitl() emits an instruction with a label, as shown here:

			static void lemitl(int op, int lab, char *name)

			   {

			   misalign();

			   if (lab >= maxlabels)

			      labels  = (word *) trealloc(labels, NULL, &maxlabels, 

			        sizeof(word), lab - maxlabels + 1, "labels");

			   outop(op);

			   if (labels[lab] <= 0) {      /* forward reference */

			      outword(labels[lab]);

			      labels[lab] = WordSize - pc;

			      }

			   else outword(labels[lab] - (pc + WordSize));

			   }

			As you may guess from its name, the misalign() function generates no-op instructions in order to ensure that instructions start on word boundaries. The first if statement grows the array table if needed. The second if statement handles a label that is a forward reference to an instruction that does not exist yet, by inserting it onto the front of a linked list of instructions that will have to be backpatched when the instructions are all present.

			The guts of the binary code layout are done by outop() and outword(), to output an opcode and an operand that are of integer and word length, respectively. These macros may be defined differently on different platforms, but on most machines, they simply call functions named intout() and wordout(). Note in the following code snippet that the binary code is in machine-native format and is different on central processing units (CPUs) with different word sizes or endianness. This gives good performance at the cost of bytecode portability:

			static void intout(int oint)

			   {

			   int i;

			   union {

			      int i;

			      char c[IntBits/ByteBits];

			      } u;

			   CodeCheck(IntBits/ByteBits);

			   u.i = oint;

			   for (i = 0; i < IntBits/ByteBits; i++)

			      codep[i] = u.c[i];

			   codep += IntBits/ByteBits;

			   pc += IntBits/ByteBits;

			   }

			After all this glorious example C code, you will probably be glad to get back to Unicon and Java. But C really does make lower-level binary manipulation somewhat simpler than it is in Unicon or Java. The moral of the story is: learn the right tools for each kind of job.

			Summary

			This chapter showed you how to generate bytecode for software bytecode interpreters. The skills you learned include how to traverse a linked list of intermediate code and, for each intermediate code opcode and pseudo-instruction, how to convert it into instructions in a bytecode instruction set. There were big differences between the semantics of the three-address machine and the bytecode machine. Many intermediate code instructions were converted into three or more bytecode machine instructions. The handling of CALL instructions was a bit hairy, but it is important for you to perform function calls in the manner required by the underlying machine. While learning all this, you also learned how to write out bytecode in text and binary formats.

			The next chapter presents an alternative that is more attractive for some languages: generating native code for a mainstream CPU.

			Questions

			
					Describe how intermediate code instructions with up to three addresses are converted into a sequence of stack machine instructions that contain at most one address.

					If a particular instruction (say it is instruction 15, at byte offset 120) is targeted by five different labels (for example, L2, L3, L5, L8, and L13), how are the labels processed when generating binary bytecode?

					In intermediate code, a method call consists of a sequence of PARM instructions followed by a CALL instruction. Does the described bytecode for doing a method call in bytecode match up well with the intermediate code? What is similar and what is different?

					CALL instructions in object-oriented (OO) languages such as Jzero are always preceded by a reference to the object (self, or this) on which the methods are being invoked… or are they? Explain a situation in which the CALL method instruction may have no object reference, and how the code generator described in this chapter should handle that situation.

					Our code for pushing method addresses at the first PARM instruction assumed that no nested PARM…CALL sequences occur inside a surrounding PARM…CALL sequence. Can we guarantee that to be the case for examples such as f(0, g(1), 2)?

			

		

	
		
			Chapter 13: Native Code Generation

			This chapter shows how to take the intermediate code from Chapter 9, Intermediate Code Generation, and generate native code. The term native refers to whatever instruction set is provided in hardware on a given machine. This chapter presents a simple native code generator for x64, the dominant architecture on laptops and desktops.

			This chapter covers the following main topics:

			
					Deciding whether to generate native code

					Introducing the x64 instruction set

					Using registers

					Converting intermediate code to x64 code

					Generating x64 output

			

			The skills developed here include basic register allocation, instruction selection, writing assembler files, and invoking the assembler and linker to produce a native executable. The functionality built into this chapter generates code that runs natively on typical computers.

			Technical requirements

			The code for this chapter is available on GitHub: https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch13

			The Code in Action video for the chapter can be found here: https://bit.ly/2Zdky0I

			Deciding whether to generate native code

			Generating native code is more work than bytecode but enables faster execution. Native code may also use less memory or electricity. Native code pays for itself if end users save time or money, but targeting a specific central processing unit (CPU) sacrifices portability. You may want to implement bytecode first, and only generate native code if the language becomes popular enough to justify the effort. However, there are other reasons to generate native code. You may be able to write your runtime system using the facilities provided for another compiler. For example, our Jzero x64 runtime system is built using the GNU's Not Unix (GNU) C library. Now, let's look at some of the specifics of the x64 architecture.

			Introducing the x64 instruction set

			This section provides a brief overview of the x64 instruction set, but you are encouraged to consult Advanced Micro Devices (AMD) or Intel's architecture programmer's manuals. Douglas Thain's book Introduction to Compilers and Language Design, available at http://compilerbook.org, has helpful x64 material.

			x64 is a complex instruction set with many backward-compatibility features. This chapter covers the subset of x64 that is used to build a basic Jzero code generator. We are using AT&T assembler syntax so that our generated output can be converted into binary object file format by the GNU assembler. This is for the sake of multiplatform portability.

			x64 has hundreds of instructions with names such as ADD for addition or MOV to copy a value to a new location. When an instruction has two operands, at most one may be a reference to main memory. x64 instructions can have a suffix to indicate how many bytes are being read or written, although the name of a register in the instruction often makes the suffix redundant. Jzero uses two of the x64 instruction suffixes: B for 1-byte operations on strings and Q for 64-bit quadword operations. A 64-bit word is a quad from the point of view of the late-1970's Intel 16-bit instruction set. We use the following instructions in this chapter:
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			Table 13.1 – Instructions for the examples in this chapter

			Now, it's time to define a class to represent these instructions in memory.

			Adding a class for x64 instructions

			The x64 class represents operation code (opcode) and operands as allowed in x64. An operand may be a register or a reference to a value in memory. You can see an illustration of this class in the following code snippet:

			class x64(op, opnd1, opnd2)

			   method print() ... end

			initially(o, o1, o2)

			   op := o; opnd1 := o1; opnd2 := o2

			end

			The corresponding Java class in x64.java looks like this:

			public class x64 {

			   String op;

			   x64loc opnd1, opnd2;

			   public x64(String o, Object src, Object dst) {

			      op=o; opnd1 = loc(src); opnd2 = loc(dest); }

			   public x64(String o, Object opnd) {

			      op=o; opnd1 = loc(opnd); }

			   public x64(String o) { op=o; }

			   public void print() { ... }

			}

			As a part of this x64 class, we map from three-address code addresses to x64 addresses.

			Mapping memory regions to x64 register-based address modes

			To implement the code, global/static, stack, and heap memory regions on x64, we decide how to access memory in each memory region. x64 instructions allow operands to be either a register or a memory address. Jzero adds an offset to a register to compute the address, as illustrated here:
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			Table 13.2 – Memory access modes used in this chapter

			In immediate mode, the value is in the instruction. In indirect mode, main memory is relative to an x64 register. The various memory regions are accessed as offsets relative to different registers. Global and static memory are accessed relative to the instruction pointer, locals are accessed relative to the base pointer, and heap memory is accessed relative to a heap pointer register. Let's look more broadly at how registers are used.

			Using registers

			Main memory access is slow. Performance is heavily impacted by how registers are used. Optimal register allocation is nondeterministic polynomial-complete (NP-complete): very difficult. Optimizing compilers expend great effort on register allocation. That is beyond the scope of this book.

			x64 has 16 general-purpose registers, as illustrated in the following table, but many registers have a special role. Arithmetic is performed on an accumulator register, rax. Registers have 8- to 64-bit versions. Jzero only uses the 64-bit versions of registers, plus whichever 8-bit registers are necessary for strings. In AT&T syntax, register names are preceded by a percentage sign, as in %rax:
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			Table 13.3 – x64 registers

			Many registers are saved as part of a call instruction. The more registers, the slower it is to perform function calls. These issues are determined by the calling conventions of the compiler. Jzero only saves modified registers prior to a given call. Before we get to the actual code generator, let's consider a bit further how native code uses registers.

			Starting from a null strategy

			The minimal register strategy is the null strategy, which maps intermediate code addresses down to x64 addresses. Values are loaded into the rax accumulator register to perform operations on them. Results go immediately back to main memory.

			The rbp base pointer and the rsp stack pointer manage activation records, which are also called frames. The current activation record revolves around the rbp base pointer register. The current local region on the stack lies between the base pointer and the stack pointer. The following screenshot shows an x64 stack layout:
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			Figure 13.1 – x64 stack, managed as a sequence of activation records, growing downward

			x64 tweaks the classical stack layout slightly. Six rdi registers through r9 are used for passing the first six parameters. The null strategy stores parameters to memory when a function call starts. The div instruction uses the rdx register, so besides being used for passing parameter #3, rdx is also required for div instructions. The null strategy is not affected by this design flaw.

			Assigning registers to speed up the local region

			Jzero maps registers rdi-r14 onto the first 88 bytes of the local region. As it walks the three-address instructions, the code generator tracks for each register if a value is loaded and if it was modified from the corresponding main memory location. The code generator uses the value in the register until that register is used for something else.

			Here is a class named RegUse that tracks main memory locations' corresponding register, if any, and whether its value has been modified since it was last loaded in main memory. The Unicon implementation of RegUse in RegUse.icn is shown here:

			class RegUse (reg, offset, loaded, dirty)

			   method load()

			      if \loaded then fail

			      loaded := 1

			      return j0.xgen("movq", offset||"(%rbp)", reg)

			   end

			   method save()

			      if /dirty then fail

			      dirty := &null

			      return j0.xgen("movq", reg, offset||"(%rbp)")

			   end

			end

			The reg field denotes the string register name; offset is the byte offset relative to the base pointer. loaded and dirty Boolean flags track whether the register contains the value and whether it has been modified, respectively. The load() and save() methods do not load and save; they generate instructions to load and save the register and set the loaded and dirty flags accordingly. The corresponding Java code looks like this:

			public class RegUse {

			   public String reg;

			   int offset;

			   public boolean loaded, dirty;

			   public RegUse(String s, int i) {

			     reg = s; offset=i; loaded=dirty=false; }

			   public ArrayList<x64> load() {

			      if (loaded) return null;

			      loaded = true;

			      return j0.xgen("movq", offset+"(%rbp)", reg);

			   }

			   public ArrayList<x64> save() {

			      if (!dirty) return null;

			      dirty = false;

			      return j0.xgen("movq", reg, offset+"(%rbp)");

			   }

			}

			A list of instances of the RegUse class is held in a variable named regs in the j0 class so that for each of the first words in the local region, the corresponding register is used appropriately. The list is constructed in Unicon, as follows:

			off := 0

			regs := [: RegUse("%rdi"|"%rsi"|"%rdx"|"%rcx"|"%r8"|

			         "%r9"|"%r10"|"%r11"|"%r12"|"%r13"|"%r14", off-:=8) :]

			This Unicon code is just showing off. The | alternator produces all the register names for separate calls to RegUse(), triggered and captured by the [: :] list comprehension operator. One x64 tricky bit is that the offsets are all negative integers, because the stack grows downward. In Java, this initialization is performed as shown here:

			RegUse [] regs = new RegUse[]{ new RegUse("%rdi", -8),

			   new RegUse("%rsi", -16), new RegUse("%rdx", -24),

			   new RegUse("%rcx", -32), new RegUse("%r8", -40),

			   new RegUse("%r9",-48), new RegUse("%r10", -56),

			   new RegUse("%r11", -64), new RegUse("%r12", -72),

			   new RegUse("%r13", -80), new RegUse("%r14", -88) };

			The data structure operates on basic block boundaries, storing modified registers in memory and clearing loaded flags whenever a label or a branch instruction occurs. At the top of a called function, the loaded and dirty flags of parameters are set to true, indicating values that must be saved to the local region before that register can be reused. Now, it's time to look at how each intermediate code element is converted into x64 code.

			Converting intermediate code to x64 code

			The intermediate code generator from Chapter 9, Intermediate Code Generation, placed the intermediate code for the whole program in the icode attribute in the root of the syntax tree. A Boolean named isNative says whether to generate bytecode as shown in the previous chapter, or native x64 code. To generate x64 code, the gencode() method in the j0 class calls a new method in this class, named x64code(), and passes it the intermediate code in root.icode as its input. Output x64 code is placed in a j0 list variable named xcode. The Unicon gencode() method that invokes this functionality in j0.icn looks like this:

			   method gencode(root)

			      root.genfirst()

			      root.genfollow()

			      root.gentargets()

			      root.gencode()

			      xcode := []

			      if \isNative then {

			         x64code(root.icode)

			         x64print()

			         }

			      else {

			         bcode := bytecode(root.icode)

			         every (! (\bcode)).print()

			       }

			   end

			The new highlighted code layers the native alternative around the previous generation of bytecode, which is still available from the command-line option. The x64code() method takes in an icode list, and its return value is a list of x64 class objects. In this example, the resulting x64 code is printed out in textual form; we let an assembler do the work for us to produce a binary format. The corresponding Java code for the gencode() method is shown here:

			   public static ArrayList<x64> xcode;

			   public static void gencode(root) {

			      root.genfirst();

			      root.genfollow();

			      root.gentargets();

			      root.gencode();

			      xcode = new ArrayList<x64>();

			      if (isNative && xcode != null) {

			         x64code(root.icode);

			         x64print();

			      } else {

			         ArrayList<byc> bcode = bytecode(root.icode);

			         if (bcode != null)

			           for (int i = 0; i < bcode.size(); i++)

			             bcode.get(i).print();

			      }

			   }

			Now, let's examine how intermediate code addresses become x64 memory references.

			Mapping intermediate code addresses to x64 locations

			Addresses in intermediate code are abstract (region, offset) pairs represented in the address class from Chapter 9, Intermediate Code Generation. The corresponding x64loc class represents x64 locations that include addressing mode information or a register to use. The Unicon implementation in x64loc.icn looks like this:

			class x64loc(reg, offset, mode)

			initially(x,y,z)

			   if \z then { reg := x; offset := y; mode := z }

			   else if \y then {

			      if x === "imm" then { offset := y; mode := 5 }

			      else if x === "lab" then { offset := y; mode := 6 }

			      else {

			         reg := x; offset := y

			         if integer(y) then mode := 3 else mode := 4

			         }

			      }

			   else {

			      if integer(x) then { offset := x; mode := 2 }

			      else if string(x) then { reg := x; mode := 1 }

			      else stop("bad x64loc ", image(x))

			   }

			end

			The reg field is the string register name. The offset field is either an integer offset or a string name from which the offset is calculated. mode is 1 for a register, 2 for an absolute address, and 3 for a register and an integer offset. Mode 4 is for a register and a string offset name, 5 is for an immediate value, and 6 is for a label. The Java implementation in x64loc.java looks like this:

			public class x64loc {

			  public String reg;  Object offset;

			  public int mode;

			  public x64loc(String r) { reg = r; mode = 1; }

			  public x64loc(int i) { offset=(Object)Integer(i); mode=2; }

			  public x64loc(String r, int off) {

			    if (r.equals("imm")) {

			      offset=(Object)Integer(off); mode = 5; }

			    else if (r.equals("lab")) {

			      offset=(Object)Integer(off); mode = 6; }

			    else { reg = r; offset = (Object)Integer(off); 

			      mode = 3; }

			  }

			  public x64loc(String r, String s) {

			    reg = r; offset = (Object)s; mode=4; }

			}

			The Java code has constructors for different memory types. The region and offset of the address class must be mapped onto an instance of the x64loc class that is an operand in the x64 class. This is done by a loc() method in the j0 class that takes an address as a parameter and returns an x64loc instance. The Unicon code for loc() in j0.icn looks like this:

			method loc(a)

			   if /a then return

			   case a.region of {

			   "loc": { if a.offset <= 88 then return loadreg(a)

			            else return x64loc("rbp", -a.offset) }

			   "glob": { return x64loc("rip", a.offset) }

			   "const": { return x64loc("imm", a.offset) }

			   "lab": { return x64loc("lab", a.offset) }

			   "obj": { return x64loc("r15", a.offset) }

			   "imm": { return x64loc("imm", a.offset) }

			   }

			end

			As the code converts an address to an x64loc instance, local region offsets are converted into negative values since the stack grows down. The Java methods in j0.java are shown here:

			public static x64loc loc(String s) { return new x64loc(s);}

			public static x64loc loc(Object o) {

			   if (o instanceof String) return loc((String)o);

			   if (o instanceof address) return loc((address)o);

			   return null;

			}

			public static x64loc loc(address a) {

			   switch (a.region) {

			   case "loc": { if (a.offset <= 88) return loadreg(a);

			                else return x64loc("rbp", -a.offset); }

			   case "glob": { return x64loc("rip", a.offset); }

			   case "const": { return x64loc("imm", a.offset); }

			   case "lab": { return x64loc("lab", a.offset); }

			   case "obj": { return x64loc("r15", a.offset); }

			   case "imm": { return x64loc("imm", a.offset); }

			   default: { semErr("x64loc unknown region"); return null; }

			   }

			}

			A loadreg() helper method is used for local offsets in the first 88 bytes. If the value is not already present in its designated register, a movq instruction is emitted to place it there, as illustrated in the following code snippet:

			method loadreg(a)

			  r := a.offset/8 + 1

			  if / (regs[r].loaded) then {

			    every put(xcode,

			             !xgen("movq",(-

			                a.offset)||"(%rbp)",regs[r].reg))

			    regs[r].loaded := "true"

			    }

			  return x64loc(regs[a.offset/8+1].reg)

			end

			The Java implementation of loadreg() is shown here:

			public static x64loc loadreg(address a) {

			  long r = a.offset/8;

			  if (!regs[r].loaded) {

			    xcode.addAll(xgen("movq",            String.valueOf(-a.offset)+"(%rbp)", regs[r].reg));

			    regs[r].loaded = true;

			    }

			    return x64loc(regs[a.offset/8+1].reg);

			}

			Given the x64 class, one more helper function is needed in order to formulate the x64code() code generator method. We need a convenient factory method for generating x64 instructions and attaching them to the xcode list. This xgen()method converts source and destination operands into x64loc instances, which may add movq instructions to load values into registers. The Unicon code looks like this:

			method xgen(o, src, dst)

			   return [x64(o, loc(src), loc(dst))]

			end

			There are many versions of the corresponding Java implementation shown here, to handle cases where the source or destination are addresses or the string names of registers:

			public static ArrayList<x64> l64(x64 x) {

			   return new ArrayList<x64>(Arrays.asList(x)); }

			public static ArrayList<x64> xgen(String o){

			    return l64(new x64(o)); }

			public static ArrayList<x64> xgen(String o,

			    address src, address dst) {

			    return l64(new x64(o, loc(src), loc(dst))); }

			public static ArrayList<x64> xgen(String o, address opnd) {

			    return l64(new x64(o, loc(opnd))); }

			public static ArrayList<x64> xgen(String o, address src,                                  String dst) {

			    return l64(new x64(o, loc(src), loc(dst))); }

			public static ArrayList<x64> xgen(String o, String src,                                  address dst) {

			    return l64(new x64(o,loc(src),loc(dst))); }

			public static ArrayList<x64> xgen(String o, String src,                                  String dst) {

			    return l64(new x64(o,loc(src),loc(dst))); }

			public static ArrayList<x64> xgen(String o, String opnd) {

			    return l64(new x64(o, loc(opnd))); }

			In the preceding code snippet, the l64() method just creates a single ArrayList element containing an x64 object. The rest are just many implementations of xgen() that take different parameter types. Now, finally, it's time to present the x64 code generator method.

			Implementing the x64 code generator method

			The Unicon implementation of the x64code() method in the j0 class looks like this. The implementation must fill in one case branch for each opcode in the three-address instruction set. There will be a lot of cases, so we present each one separately, with the first one shown here:

			method x64code(icode)

			    every i := 1 to *\icode do {

			       instr := icode[i]

			       case instr.op of {

			          "ADD": { ... append translation of ADD to xcode }

			          "SUB": { ... append translation of SUB to xcode }

			          . . .

			         }

			      }

			end

			The Java implementation of x64code() is shown here:

			 public static void x64code(ArrayList<tac> icode) {

			   int parmCount = -1;

			    for(int i=0; i<icode.size(); i++) {

			      tac instr = icode.get(i);

			      switch(instr.op) {

			      case "ADD": { ... append translation of ADD to xcode}

			      case "SUB": { ... append translation of SUB to xcode}

			        ...

			        }

			      }

			   }

			Within the framework of this x64code() method, we now provide translations for each of the three-address instructions. We will start with simple expressions.

			Generating x64 code for simple expressions

			The cases for three-address opcode have many elements in common. The code for addition shows many common elements. In Unicon, the x64 code for addition is created like this:

			"ADD": { xcode |||:= xgen("movq", instr.op2, "%rax") |||

			                     xgen("addq", instr.op3, "%rax") |||

			                     xgen("movq", "%rax", instr.op1) }

			In this code, operand 2 and operand 3 are read from memory and pushed into the stack. The actual ADD instruction works entirely from the stack. The result is then popped off the stack and placed into operand 3. In Java, implementation of addition consists of the following code:

			case "ADD": { xcode.addAll(xgen("movq", instr.op2, 

			              "%rax"));

			              xcode.addAll(xgen("addq", instr.op3, 

			                  "%rax"));

			              xcode.addAll(xgen("movq", "%rax", 

			                  instr.op1));

			              break; }

			There are 19 or so three-address instructions. The final code generation pattern illustrated by the preceding ADD instruction is used for the other arithmetic instructions. For a unary operator such as NEG, the pattern is slightly simplified, as we can see here:

			"NEG": {  xcode |||:= xgen("movq", instr.op2, "%rax") |||

			              xgen("negq", "%rax") |||

			              xgen("movq", "%rax", instr.op1) }

			In Java, implementation of negation consists of the following code:

			case "NEG": { xcode.addAll(xgen("movq", instr.op2, 

			              "%rax"));

			              xcode.addAll(xgen("negq", "%rax"));

			              xcode.addAll(xgen("movq", "%rax", 

			                  instr.op1));

			              break; }

			An even simpler instruction such as ASN may be worth special-casing since x64 code features direct memory-to-memory move instructions, but one option is to stick with the same script and simplify the preceding pattern further, like this:

			"ASN": { xcode |||:= xgen("movq", instr.op2, "%rax") |||

			                     xgen("movq", "%rax", instr.op1) }

			In Java, implementation of assignment might look like this:

			case "ASN": { xcode.addAll(xgen("movq", instr.op2, 

			    "%rax"));

			              xcode.addAll(xgen("movq", "%rax", 

			                  instr.op1));

			              break; }

			Expressions are the most common elements in code. The next category is pointers.

			Generating code for pointer manipulation

			Three of the three-address instructions pertain to the use of pointers: ADDR, LCON, and SCON. The ADDR instruction turns an address in memory into a piece of data that can be manipulated to perform operations such as pointer arithmetic. It pushes its operand, an address reference in one of the memory regions, as if it were an immediate mode value. The code is illustrated in the following snippet:

			"ADDR": { xcode |||:= xgen("leaq", instr.op2, "%rax")

			          xcode |||:= xgen("%rax", instr.op1) }

			In Java, implementation of the ADDR instruction consists of the following code:

			case "ADDR": { xcode.addAll(xgen("leaq", instr.op2, 

			    "%rax"));

			               xcode.addAll(xgen("%rax", instr.op1));

			               break; }

			The LCON instruction reads from memory pointed at by other memory, as follows:

			"LCON": { xcode |||:= xgen("movq", instr.op2, "%rax") |||

			                      xgen("movq", "(%rax)", "%rax") |||

			                      xgen("movq", "%rax", instr.op1) }

			In Java, implementation of the LCON instruction consists of the following code:

			case "LCON": { xcode.addAll(xgen("movq", instr.op2, 

			    "%rax"));

			               xcode.addAll(xgen("movq", "(%rax)", 

			                   "%rax"));

			               xcode.addAll(xgen("movq", "%rax", 

			                   instr.op1));

			               break; }

			The SCON instruction writes to memory pointed at by other memory, as follows:

			"SCON": { xcode |||:= xgen("movq", instr.op2, "%rbx") |||

			                      xgen("movq", instr.op1, "%rax")

			                      xgen("movq", "%rbx", "(%rax)") }

			In Java, implementation of the SCON instruction consists of the following code:

			case "SCON": { xcode.addAll(xgen("movq", instr.op2, 

			    "%rbx"));

			               xcode.addAll(xgen("movq", instr.op1, 

			    "%rax"));

			               xcode.addAll(xgen("movq", "%rbx", 

			    "(%rax)"));

			               break; }

			These instructions are important for supporting structured data types such as arrays. Now, let's consider bytecode code generation for control flow, starting with the GOTO instruction.

			Generating native code for branches and conditional branches

			Seven intermediate code instructions pertain to branch instructions. The simplest of these is the unconditional branch or GOTO instruction. The GOTO instruction assigns a new value to the instruction pointer register. It should be no surprise that the GOTO bytecode is the implementation of the three-address GOTO instruction, as illustrated in the following code snippet:

			"GOTO": {  xcode |||:= xgen("goto", instr.op1) }

			In Java, implementation of the GOTO instruction consists of the following code:

			case "GOTO": { xcode.addAll(xgen("goto", instr.op1)); 

			               break; }

			The conditional branch instructions in the three-address code are translated down into simpler final code instructions. For the x64 instruction set, this means executing a compare instruction that sets condition codes prior to one of the x64 conditional branch instructions. The Unicon implementation of the BLT instruction looks like this:

			"BLT": { xcode |||:= xgen("movq", instr.op2, "%rax") |||

			                     xgen("cmpq", instr.op3, "%rax") |||

			                     xgen("jle", instr.op1) }

			In Java, implementation of generating bytecode for the BLT instruction consists of the following code:

			case "BLT": { xcode.addAll(xgen("movq", instr.op2, 

			    "%rax"));

			              xcode.addAll(xgen("cmpq", instr.op3, 

			    "%rax"));

			              xcode.addAll(xgen("jle", instr.op1));

			              break; }

			This pattern is employed for several of the three-address instructions. Now, let's consider the more challenging forms of control flow transfer that relate to method calls and returns.

			Generating code for method calls and returns

			Three of the intermediate code instructions handle the very important topic of function and method calls and returns. A sequence of zero or more PARM instructions pushes values onto the stack, after which the CALL instruction performs a method call. From inside the called method, the RET instruction returns from a method to the caller.

			This three-address code calling convention must be mapped down onto the underlying x64 instruction set, preferably with the standard calling conventions on that architecture, which requires the first six parameters to be passed in specific registers.

			To pass parameters into correct registers, the PARM instruction must track which parameter number it is. The Unicon code for the PARM instruction consists of the following:

			"PARM": { if /parmCount then {

			             parmCount := 1

			             every j := i+1 to *icode do

			                if icode[j].op == "CALL" then break

			                parmCount +:= 1

			             }

			          else parmCount -:= 1

			          genParm(parmCount, instr.op1) }

			For the first parameter, the every loop counts the number of parameters before the CALL instruction. The genParm() method is called with the current parameter number and the operand. In Java, implementation of the PARM instruction is similar, as we can see here:

			case "PARM": { if (parmCount == -1) {

			                  for(int j = i+1; j<icode.size(); j++) {

			                     tac callinstr = icode.get(j);

			                     if (callinstr.op.equals("CALL"))

			                      break;

			                     parmCount++;

			                     }

			                  }

			               else parmCount--;

			               genParm(parmCount, instr.op1);

			               break; }

			The preceding cases for parameters depend on a genParm() method that generates code depending on the parameter number. Before loading registers for a new function call, register values that have been modified must be saved to their main memory locations, as follows:

			method genParm(n, addr)

			   every (!regs).save() 

			   if n > 6 then xcode |||:= xgen("pushq", addr)

			   else xcode |||:= xgen("movq", addr, case n of {

			      1: "%rdi"; 2: "%rsi"; 3: "%rdx";

			      4: "%rcx"; 5: "%r8";   6: "%r9"

			   })

			end

			The corresponding Java implementation of genParm() looks like this:

			public static void genParm(int n, address addr) {

			   for (RegUse x : regs) x.save();

			   if (n > 6) xcode.addAll(xgen("pushq", addr));

			   else {

			      String s = "error:" + String.valueOf(n);

			      switch (n) {

			      case 1: s = "%rdi"; break; case 2: s = "%rsi"; break;

			      case 3: s ="%rdx"; break; case 4: s = "%rcx"; break;

			      case 5: s = "%r8"; break; case 6: s = "%r9"; break;

			      }

			      xcode.addAll(xgen("movq", addr, s));

			   }

			}

			The CALL instruction is next. After the call, the op1 destination in the three-address code is saved from the rax register. The op2 source field is the method address that was used prior to the first PARM instruction. The op3 source field gives the number of parameters, which is not used on x64. The code is illustrated in the following snippet:

			"CALL": { xcode |||:= xgen("call", instr.op3)

			          xcode |||:= xgen("movq", "%rax", instr.op1)

			          parmCount := -1 }

			In Java, implementation of the CALL instruction looks like this:

			case "CALL": { xcode.addAll(xgen("call", instr.op3));

			               xcode.addAll(xgen("movq", "%rax",

			                   instr.op1));

			               parmCount = -1;

			               break; }

			The Unicon implementation of the RETURN instruction looks like this:

			"RETURN": { xcode |||:= xgen("movq", instr.op1, "%rax") |||

			                 xgen("leave") ||| xgen("ret", instr.op1) }

			In Java, implementation of the RETURN instruction looks like this:

			case "RETURN":{ xcode.addAll(xgen("movq", instr.op1, 

			    "%rax"));

			                xcode.addAll(xgen("leave"));

			                xcode.addAll(xgen("ret", instr.op1)); 

			break; }

			Generating code for method calls and returns is not too difficult. Now, let's consider how to handle the pseudo-instructions in the three-address code.

			Handling labels and pseudo-instructions

			Pseudo-instructions such as labels do not translate into code, but they are present in the linked list of three-address instructions and require consideration in the final code. The most common and obvious pseudo-instruction is a label. If the final code is being generated in human-readable assembler format, labels can be generated as-is, modulo any format differences necessary to make them legal in the assembler file. If we were generating final code in a binary format, labels would require precise calculation at this point and would be entirely replaced by actual byte offsets in the generated machine code. The code is illustrated here:

			"LAB": { every (!regs).save()

			         xcode |||:= xgen("lab", instr.op1) }

			In Java, the equivalent implementation is shown here:

			case "LAB": { for (RegUse ru : regs) ru.save();

			              xcode.addAll(xgen("lab", instr.op1)); break; }

			As a representative of other types of pseudo-instructions, consider which x64 code to output for the beginnings and ends of methods. At the beginning of a method in intermediate code, all you've got is the proc x,n1,n2 pseudo-instruction. The Unicon code for this pseudo-instruction is shown here:

			"proc": {

			   n := (instr.op1.offset + instr.op2.offset) * 8

			   xcode |||:= xgen(".text") |||

			               xgen(".globl", instr.op1) |||

			               xgen(".type", instr.op1, "@function") |||

			               xgen(instr.op1||":") |||

			               xgen("pushq", "%rbp") |||

			               xgen("movq", "%rsp", "%rbp") |||

			               xgen("subq", "$"||n, "%rsp")

			   every i := !(instr.op2.offset) do

			      regs[i].loaded := regs[i].dirty := "true"

			   every j := i+1 to 11 do

			      regs[i].loaded := regs[i].dirty := "false"

			}

			Line by line in the preceding code, the .text directive tells the assembler to write to the code section. The .globl directive states that the method name should be linkable from other modules. The .type directive indicates that the symbol is a function. The directive below the .type directive declares the (mangled) function name as an assembler label, which is to say that that name can be used as a reference to this function entry point in the code region. The pushq instruction saves the previous base pointer on the stack. The movq instruction establishes the base pointer for the new function at the current stack top.

			The assignment to n calculates the total number of local region bytes, including space for parameters passed in registers but copied into stack memory if the method calls another method. The subq instruction allocates memory by moving the stack pointer further down by that amount in the stack. The two loops mark used parameters while noting that the other registers are clear. In Java, the corresponding code for a method header looks like this:

			case "proc": {

			   xcode.addAll(xgen(".text"));

			   xcode.addAll(xgen(".globl", instr.op1));

			   xcode.addAll(xgen(".type", instr.op1, "@function"));

			   xcode.addAll(xgen(instr.op1 + ":"));

			   xcode.addAll(xgen("pushq", "%rbp"));

			   xcode.addAll(xgen("movq", "%rsp", "%rbp"));

			   int n = (instr.op1.offset + instr.op2.offset) * 8;

			   xcode.addAll(xgen("subq", "$"+n, "%rsp"));

			   int j;

			   for (j = 0; j < instr.op2.offset; j++)

			      regs[j].loaded = regs[j].dirty = true;

			   for (; j < 11; j++)

			      regs[j].loaded = regs[j].dirty = false;

			   break;

			}

			The end pseudo-instruction is somewhat simpler, as we can see here. We do not want to fall off the end of a method, so we emit instructions to restore the old frame pointer and return, along with assembler directives for the end of a function:

			"end": {

			   xcode |||:= xgen("leave") ||| xgen("ret")

			}

			The matching Java implementation of the end pseudo-instruction is shown here:

			case "end": {

			   xcode.addAll(xgen("leave"));

			   xcode.addAll(xgen("ret"));

			   break;

			}

			The past several sections produced a data structure containing a representation of the bytecode and then showed how various three-address instructions are translated. Now, let's move on to producing the output native x64 code from a list of x64 objects.

			Generating x64 output

			As with many traditional compilers, the native code for Jzero will be produced by carrying out the following steps. First, we will write out a linked list of x64 objects in human-readable assembler language with the .s extension. We then invoke the GNU assembler to turn that into binary object file format with the .o extension. An executable is constructed by invoking a linker, which combines a set of .o files specified by the user with a set of .o files containing runtime library code and data referenced from the generated code. This section presents each of these steps, starting with producing the assembler code.

			Writing the x64 code in assembly language format

			This section provides a brief description of the x64 assembler format as supported by the GNU assembler, which uses AT&T syntax. Instructions and pseudo-instructions occur on a line by themselves with a tab (or eight spaces) of indentation at the left. Labels are an exception to this rule as they contain no leading spaces of indentation and consist of an identifier followed by a colon. Pseudo-instructions begin with a period. After the mnemonic for the instruction or pseudo-instruction, there may be a tab or spaces followed by zero, one, or two comma-separated operands depending on the requirements of the instruction.

			As an example of all this, here is a simple x64 assembler file containing a function that does nothing and returns a value of 42. In the assembler, this is how it might look:

			        .text

			        .globl  two

			        .type   two, @function

			two:

			.LFB0:

			        pushq   %rbp

			        movq    %rsp, %rbp

			        movl    $42, -4(%rbp)

			        movl    -4(%rbp), %eax

			        popq    %rbp

			        ret

			.LFE0:

			        .size   two, .-two

			The j0 class has a method named x64print() that outputs a list of x64 objects into a text file in this format. As you can see in its code shown next, it calls the print() method on each of the x64 objects in the xcode list:

			method x64print()

			   every (!xcode).print()

			end

			The Java implementation of x64print() in the j0.java file is shown here:

			public static void x64print() {

			   for(x64 x : xcode) x.print();

			}

			Having shown how the assembler code is written, it's time to look at how to invoke the GNU assembler to produce an object file.

			Going from native assembler to an object file

			Object files are binary files containing actual machine code. An assembler file written out in the preceding section is assembled using the as command, as shown here:

			as --gstabs+ -o two.o two.s

			In this command line, --gstabs+ is a recommended option that includes debugging information. -o two.o is an option that specifies the output filename.

			The resulting two.o binary file is not readily understandable by humans as-is but can be viewed using various tools. Just for fun, the first 102 bytes of ones and zeros from two.o are shown in the following screenshot; each row shows six bytes, with the American Standard Code for Information Interchange (ASCII) interpretation shown on the right. The screenshot shows you the ones and zeros in text form thanks to a tool named xxd that prints the bits out literally in textual form. Of course, a computer usually processes them from 8 to 64 bits at a time without first transliterating them into text form:
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			It is not a coincidence that bytes 2-4 of the file say ELF. Executable and Linkable Format (ELF) is one of the more popular multiplatform object file formats, and the first four bytes identify the file format. Suffice to say, such binary file formats are important to machines but difficult for humans. Now, let's consider how object files are combined to form executable programs.

			Linking, loading, and including the runtime system

			The task of combining a set of binary files to produce an executable is called linking. This is another section about which an entire book can be written. For Jzero, it is a very good thing that we can let the ld GNU linker program do the work. It takes a -o file option to specify its output filename, and then any number of .o object files. The object files for a working executable include a startup file that will initialize and call main(), often called crt1.o, followed by the application files, followed by zero or more runtime library files. If we build a Jzero runtime library named libjzero.o, the ld command line might look like this:

			ld -o hello /usr/lib64/crt1.o hello.o -ljzero

			If your runtime library calls functions in a real C library, you will have to include them as well. A full ld-based link of a runtime system built on top of the GNU Compiler Collection's (GCC's) glibc looks like this:

			ld -dynamic-linker /lib64/ld-linux-x86-64.so.2 \

			   /usr/lib/x86_64-linux-gnu/crt1.o \

			   /usr/lib/x86_64-linux-gnu/crti.o \

			   /usr/lib/gcc/x86_64-linux-gnu/7/crtbegin.o \

			   hello.o -ljzero \

			   -lc /usr/lib/gcc/x86_64-linux-gnu/7/crtend.o \

			   /usr/lib/x86_64-linux-gnu/crtn.o

			Your users would not often have to type this command line itself since it would be boiled into your compiler's linker invocation code. But it has the fatal flaw of being non-portable and version-dependent. To use an existing GCC C library from within your runtime system, you might prefer to let an existing GCC installation perform your linking for you, like this:

			gcc -o hello hello.o

			The linker must assemble one big binary code from several binary object code inputs. In addition to bringing together all the instructions in the object files, the linker's primary job is to determine the addresses of all the functions and global variables in the executable. The linker must also provide a mechanism for each object file to find the addresses of functions and variables from other object files.

			For functions and variables that are not defined in user code but are instead part of the language runtime system, the linker must have a mechanism for searching the runtime system and incorporating as much of it as is needed. The runtime system includes startup code that will initialize the runtime system and set things up to call main(). It may include one or more object files that are always linked to any executable for that language. Most importantly, the linker provides a way to search and link in only those portions of the runtime system that are explicitly called from the user code.

			In modern systems, things have gotten more complicated over time. It is standard to defer various aspects of linking and loading to runtime, particularly to allow processes to share library code that has already been loaded for use by other processes.

			Summary

			This chapter showed you how to generate native code for x64 processors. Among the skills you learned, the main task was to traverse a linked list of intermediate code and convert it into instructions in the x64 instruction set. In addition, you learned to write out x64 code in GNU assembler format. Lastly, you learned how to invoke the assembler and linker to turn the native code into ELF object and executable file format. The next chapter looks in more detail at the task of implementing new high-level operators and built-in functions in your language's runtime system.

			Questions

			
					What are the main new concepts that become necessary to generate x64 native code, compared with bytecode?

					What are the advantages and disadvantages of supplying the addresses of global variables as offsets relative to the %rip instruction pointer register?

					One of the big issues affecting the performance of modern computers is the speed of performing function calls and returns. Why is function call speed important? In which circumstances is the x64 architecture able to perform fast function calls and returns? Are there aspects of the x64 architecture that seem likely to slow function calling down?

			

		

	
		
			Chapter 14: Implementing Operators and Built-In Functions

			New programming languages are invented because occasionally, new ideas and new computational capabilities are needed to solve problems in new application domains. Libraries of functions or classes are the basic means of extending mainstream languages with additional computational capabilities, but if adding a library was always sufficient, you wouldn't need to build your own language, would you?

			This chapter and the next discuss language extensions that go beyond libraries. This chapter will describe how to support very high-level and domain-specific language features by adding operators and functions that are built into the language. The following chapter will discuss adding control structures.

			Adding operators and built-in functions may shorten and reduce what programmers must write to solve certain problems in your language, improve its performance, or enable language semantics that would otherwise be difficult. This chapter illustrates the ideas within the context of Jzero, emphasizing the String and array types. By way of comparison, the later sections describe how operators and functions are implemented in Unicon.

			This chapter will cover the following main topics:

			
					Implementing operators

					Writing built-in functions

					Integrating built-ins with control structures

					Developing operators and functions for Unicon

			

			Thanks to this chapter, you will learn how to write parts of the runtime system that are too complex to be instructions in the instruction set. You will also learn how to add domain-specific capabilities to your language. Let's start with how to implement high-level operators!

			Implementing operators

			Operators are expressions that compute a value. Simple operators that compute their results via a few instructions on the underlying machine were covered in the preceding chapters. This section describes how to implement an operator that takes many steps. You can call these operators composite operators. In this case, the underlying generated code may perform calls to functions in the underlying machine.

			The functions called from generated code are written in the implementation language rather than the source language. They may be lower level and do things that are impossible in the source language. For example, parameter passing rules might be different in the implementation language than they are in the programming language that you are creating.

			If you are wondering when you should make a new computation into an operator, you can refer to Chapter 2, Programming Language Design. Rather than repeat that material, we will just note that operators are generally constrained to operate on, at most, three operands, and that most operators use two, or one operand.

			If you can leverage analogies regarding arithmetic to reuse appropriate familiar operators for your new computations, great. Otherwise, you are expecting programmers to learn and memorize new patterns, which is asking a lot of them. You can add hundreds of operators to your language, but human brains will not memorize that many. If you try to introduce more operators than we have keyboard keys, for example, your language may get rejected for the excessive cognitive load. Now, let's consider to what extent adding new operators to a language leads to or follows as a consequence of adding new hardware capabilities.

			Asking whether operators imply hardware support and vice versa

			In the same way that you may discover a common computation of yours might deserve to be an operator in your language, hardware designers might realize that computers should support a common computation with native instructions. When language designers realize a computation should be an operator in their language, that makes that computation a candidate for hardware implementation. Similarly, when hardware designers implement a common computation in their hardware, language designers should ask whether that computation should be supported directly with operators or another syntax. Here is an example.

			Before the 80486 in 1994, most PCs did not come with floating-point hardware; on some platforms, a floating-point co-processor was an expensive add-on needed only for scientific computing. If you were implementing a compiler, you implemented a floating-point data type in software as a set of functions. These runtime system functions were called from generated code but were transparent to the programmer. A program that declared two float variables, f1 and f2, and executed the f1 + f2 expression would compute the floating-point sum without noting that the generated code included function calls that might be 10x or 100x slower than adding two integers.

			Here is another example that may be a sore point for you. After a program called Doom created enormous demand for 3D graphics in the 1990s, GPUs were developed. They support computations far beyond their original scope of games and other 3D programs. However, they are not supported directly in most mainstream languages, and the steep learning curve and difficult programming for GPUs have lessened their enormous impact. To summarize: there is a rich juicy gray area in-between operators that should be built into the programming language to make programming simple, as well as operators that should be built into the hardware. Now, let's learn how to add compound operators by adding one to Jzero: concatenation.

			Adding String concatenation to intermediate code generation

			For Jzero, the String type is essential but was not implemented in the preceding chapters on code generation or bytecode interpretation, which focused on integer computation. The String class has a concatenation operator that we must implement. Some computers support concatenation in hardware for some string representations. For Jzero, String is a class and concatenation is comparable to a method – either a factory method or a constructor since it returns a new string rather than modifying its arguments.

			In any case, it is time to implement s1+s2, where s1 and s2 are strings. For intermediate code, we can add a new instruction called SADD. If you don't want to, you can generate code that calls a method for string concatenation, but we are going to run with an intermediate code instruction here. The code generation rule for the plus operator will generate different code, depending on the type. Before we can implement that, we must modify the check_types() method in the tree class so that the s1 string plus the s2 string is legal and computes a string. In the Unicon implementation, change the lines in tree.icn where addition is type-checked to allow the String type, as follows:

			   if op1.str() === op2.str() === ("int"|"double"|"String")

			      then return op1

			In the Java implementation, add the following OR in tree.java:

			   if (op1.str().equals(op2.str()) &&

			       (op1.str().equals("int") ||

			        op1.str().equals("double") ||

			        op1.str().equals("String")))

			      return op1;

			Having modified the type checker to allow string concatenation, the intermediate code generation method, genAddExpr(), is similarly extended. The Unicon modifications in tree.icn are highlighted in the method body shown here:

			method genAddExpr()

			  addr := genlocal()

			  icode := kids[1].icode ||| kids[2].icode

			  if typ.str() == "String" then {

			    if rule ~= 1320 then

			      j0.semErr("subtraction on strings is not defined")

			    icode |||:= gen("SADD", addr,

			        kids[1].addr, kids[2].addr)

			    }

			  else icode |||:= gen(if rule=1320 then "ADD" else "SUB",

			      addr, kids[1].addr, kids[2].addr)

			end

			The check for production rule 1320 is because the String type does not support subtraction. The corresponding Java modifications in tree.java are as follows:

			void genAddExpr() {

			  addr = genlocal();

			  icode = new ArrayList<tac>();

			  icode.addAll(kids[0].icode); icode.addAll(kids[1].icode);

			  if (typ.str().equals("String")) {

			    if (rule != 1320)

			      j0.semErr("subtraction on strings is not defined");

			    icode.addAll(gen("SADD", addr,

			                      kids[0].addr,kids[1].addr);

			    }

			  else icode.addAll(gen(((rule==1320)?"ADD":"SUB"),

			                        addr, kids[0].addr, kids[1].addr));

			end

			At this point, we have added an intermediate code instruction for string concatenation. Now, it is time to implement it in the runtime system. First, we will consider the bytecode interpreter.

			Adding String concatenation to the bytecode interpreter

			Since the bytecode interpreter is software, we can simply add another bytecode instruction for string concatenation, as we did for intermediate code. Opcode #22 for the SADD instruction must be added to Op.icn and Op.java. We must modify the bytecode generator to generate a bytecode SADD instruction for an intermediate code SADD instruction. In the bytecode() method in j0.icn, the Unicon implementation looks as follows:

			  "SADD": {

			    bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

			                j0.bgen(Op.PUSH, instr.op3) |||

			                j0.bgen(Op.SADD) |||

			                j0.bgen(Op.POP, instr.op1)

			    }

			If this looks like the code for the ADD instruction, that is the point. As with the ADD instruction, the final code consists mainly of converting a three-address instruction into a sequence of one-address instructions. The Java implementation in j0.java is shown here:

			  case "SADD": {

			    rv.addAll(j0.bgen(Op.PUSH, instr.op2));

			    rv.addAll(j0.bgen(Op.PUSH, instr.op3));

			    rv.addAll(j0.bgen(Op.SADD, null));

			    rv.addAll(j0.bgen(Op.POP, instr.op1));

			    break;

			    }

			We must also implement that bytecode instruction, which means we must add it to the bytecode interpreter. Since the Unicon and Java implementation languages both have high-level string types with semantics such as Jzero, we can hope that implementation will be simple. If the Jzero representation of a String in the j0x bytecode interpreter is an underlying implementation language string, then the implementation of the SADD instruction will just perform string concatenation. However, in most languages, the source language semantics differ from the implementation language, so it is usually necessary to implement a representation of the source language type that models source language semantics in the underlying implementation language.

			Having issued that warning, let's see if we can implement Jzero strings as plain Unicon and Java strings. In that case, the SADD instruction in the interp() method in j0machine.icn is almost the same as that of the ADD integer:

			Op.SADD: {

			   val1 := pop(stack); val2 := pop(stack)

			   push(stack, val1 || val2)

			}

			This Unicon implementation relies on the fact that the Unicon value stack does not care if you sometimes push integers and if you sometimes push strings. Unicon has an underlying string region where memory for the strings' underlying contents is stored, and the bytecode interpreter uses that implicitly.

			The corresponding Java implementation in j0machine.java is trickier. The stackbuf variable that we implemented was a ByteBuffer that was sized for holding a good number of 64-bit integer values, but now, we must decide how to use it to also hold strings. If we store the actual string contents in stackbuf, we are not implementing a stack anymore – we are implementing a heap and it will be a can of worms. Instead, we will store some integer code in stackbuf that we can use to obtain the string by looking it up in a string pool:

			case Op.SADD: {

			   String val1 = stringpool.get(stackbuf.getLong(sp--));

			   String val1 = stringpool.get(stackbuf.getLong(sp--));

			   long val3 = stringpool.put(val1 + val2);

			   stackbuf.putLong(sp++, val3);

			}

			This code depends on the stringpool class, which uses unique integers to store and retrieve strings. These unique integers are references to the string data that can be conveniently stored on stackbuf, but now, the Java implementation requires the stringpool class, so here it is, in the stringpool.java file. For any string, the way to retrieve its unique integer is to look it up in the pool. Once it's been issued like this, a unique integer can be used to retrieve the string later on demand:

			public class stringpool {

			   static HashMap<String,Long> si;

			   static HashMap<Long,String> is;

			   static long serial;

			   static { si = new HashMap<>(); is = new HashMap<>(); }

			   public static long put(String s) { … }

			   public static String get(long L) { … }

			}

			This class requires the following pair of methods. The put() method inserts strings into the pool. If the string is already in the pool, its existing integer key is returned. If the string is not already in the pool, the serial number is incremented and that number is associated with the string:

			public static long put(String s) {

			   if (si.containsKey(s)) return si.get(s);

			   serial++;

			   si.put(s, serial);

			   is.put(serial, s);

			   return serial;

			}

			The get() method retrieves a String from stringpool:

			public static String get(long L) {

			   return is.get(L);

			}

			Now, it is time to look at how to implement this operator for native code.

			Adding String concatenation to the native runtime system

			The Jzero native code is much lower level than the bytecode interpreter. Implementing the Jzero String class semantics from scratch in C is a big job. Jzero uses an extremely simplified subset of the Java String class, for which we only have room to describe the highlights. Here is an underlying C representation of a String class for use in Jzero:

			struct String {

			   struct Class *cls;

			   long len;

			   char *buf;

			};

			Within this struct, cls is a pointer to an as-yet-undefined structure for class information, len is the length of the string, and buf is a pointer to data. The Jzero string concatenation might be defined as follows:

			struct String *j0concat(struct String *s1,                         struct String *s2){

			   struct string *s3 = alloc(sizeof struct String);

			   s3->buf = allocstring(s1->len + s2->len);

			   strncpy(s3->buf, s1->buf, s1->len);

			   strncpy(s3->buf + s1->len, s2->buf, s2->len);

			   return s3;

			}

			This code raises as many questions as it answers, such as what the difference is between alloc() and allocstring(); we will get to those shortly. But it is a function that we can call from the generated native code via this addition in j0.icn:

			  "SADD": {

			    bcode |||:= xgen("movq", instr.op2, "%rdi") |||

			                xgen("movq", instr.op3, "%rsi") |||

			                xgen("call", "j0concat") |||

			                xgen("movq", "%rax", instr.op1)

			    }

			The corresponding Java implementation in j0.java is shown here:

			  case "SADD": {

			    rv.addAll(xgen("movq", instr.op2, "%rdi"));

			    rv.addAll(xgen("movq", instr.op3, "%rsi"));

			    rv.addAll(xgen("call", "j0concat"));

			    rv.addAll(xgen("movq", "%rax", instr.op1));

			    break;

			    }

			Here, you can see that substituting a function call to implement an immediate code instruction is straightforward. Let's compare this with the code that is generated for built-in functions, which we will present next.

			Writing built-in functions

			Low-level languages such as C have no built-in functions; they have standard libraries that contain functions available to all programs. Linking a function to your program and calling it is conceptually the same action, whether it is a library function or a user-defined function. The higher the language level, the more conspicuous the difference between what is written for its runtime system in a lower-level implementation language, and what is written by end users in the language itself. This section uses the words function and method interchangeably. Let's consider how to implement built-ins in the bytecode interpreter.

			Adding built-in functions to the bytecode interpreter

			Let's implement System.out.println() in the bytecode interpreter. One of our design options is to implement a new bytecode machine instruction for each built-in function, including println(). This doesn't scale well to thousands of built-in functions. We could implement a callnative instruction, providing us with a way to identify which built-in function we want to call. Some languages implement an elaborate interface for calling native code functions and implement println() (or some lower-level building block function) as a wrapper function written in Jzero that uses the native calling interface.

			For Jzero, as described in the Running a Jzero program section of Chapter 11, Bytecode Interpreters, we chose to use the existing call instruction, with special function values to denote built-in functions. The special values we chose were small negative integers where a function entry point address would normally go. So, the function call mechanism must be built to look for small negative integers to distinguish between method types and do the correct thing for user-defined and built-in methods.

			Let's look at the do_println() method, which we suggested in Chapter 11, Bytecode Interpreters. For Jzero, this runtime system method is hardwired to write to standard output, much like puts() in C. The string to be written is on the stack; it's no longer on the top since the call instruction pushed a function return address. In Unicon, do_println() might be implemented as follows:

			method do_println()

			   write(stack[2])

			end

			In Java, the do_println() method would look something like this:

			public static do_println() {

			   String s = stringpool.get(…);

			   System.out.println(s);

			}

			Built-in functions in bytecode are simple. Now, let's look at writing built-in functions for native code.

			Writing built-in functions for use with the native code implementation

			Now, it is time to implement System.out.println() for the native code Jzero implementation. In a Java compiler, it would be a method of the System.out object, but for Jzero, we may do whatever is expedient. We can write a native function named System_out_println() in assembler, or if our generated native code adheres carefully to the calling conventions of a C compiler on the same platform, we can write it in C, put it in our Jzero runtime library, and link it to the generated assembler modules to form our executable. The function takes one string argument, struct String *, as shown in the previous section. Here is an implementation; you can put it in the System_out_println.c file:

			#include <stdio.h>

			void System_out_println(struct String *s) {

			   for(int i = 0; i < s->len; i++) putchar(s->buf[i]);

			   putchar('\n');

			}

			The more interesting part of all this is, how does the generated code get access to this and other built-in native functions? You can compile it via the following command line for gcc:

			gcc -c System_out_println.c

			You can add the System_out_println.o output file to an archive library named libjzero.a with the following command line:

			ar cr libjzero.a System_out_println.o

			The preceding two command lines are not executed within your compiler at each compile or link time; instead, they are run when the Jzero compiler itself is being built, alongside potentially many other bits of the operator or built-in function library code. They create a library archive file called libjzero.a. This archive file can be linked to Jzero's generated code using the ld or gcc commands, as described in Chapter 13, Native Code Generation, in the Linking, loading, and including the runtime system section.

			The -lsomefile command-line option expands to match libsomefile.a so that our runtime is invoked as -ljzero. Now, how does the Jzero compiler, which presumably may be installed anywhere, find the runtime library, which presumably may be installed anywhere? The answer will vary by operating system and some of the convenient options require administrative privileges. If you can copy libjzero.a into the same directory that's used by your linker for other system libraries such as C:\Mingw\lib on Windows or /usr/lib64 on Linux, you may find that everything works great. If that is not an option, you may resort to environment variables or command-line options, either to inform the linker where the library is or to inform the Jzero compiler itself on the Jzero command line where the runtime library can be found. Adding built-in functions like this is important because not every language addition can be made in the form of an operator. Similarly, not every language addition is best formulated as a function. Sometimes, such operators and built-in functions are more effective when they're part of new control structures that support some new problem domain. Let's consider how these operators and functions might profit from being integrated with syntactic additions in the form of control structures.

			Integrating built-ins with control structures

			Control structures are usually bigger things than expressions, such as loops. They are often associated with novel programming language semantics or new scopes that specialized computations can occur in. Control structures provide a context that a statement (often, this is a compound statement consisting of a whole block of code) is executed in. This can be whether (or how many times) it is executed, what associated data the code is to be applied to, or even what semantics the operators should be interpreted with. Sometimes, these control structures are explicitly and solely used for your new operators or built-in functions, but often, the interactions are implicit byproducts of the problem solving that your language enables.

			Whether a given block of code is executed, selecting which of several to execute or executing code repeatedly are the most traditional control structures, such as if statements and loops. The most likely opportunities for operators or functions to interact with these constructs include special iterator syntax, to control loops using your domain values, and special switch syntax, to select block(s) of code to execute.

			The Pascal WITH statement is an old but good example of associating some data with a chunk of code that uses that data. The syntax is WITH r DO statement. A WITH statement attaches some record, r, to a statement – usually, this is a compound statement – within which the record's fields are in scope, and a field named x need not be prefixed by an accessor expression, such as r.x. This is a low-level building block that object-orientation (and associated self or this references) is based on, but Pascal allows such object attachments for individual statements, a finer grain than method calls, and Pascal allows multiple objects to be associated with the same block of code.

			We can illustrate some of the considerations of interacting with control structures by considering the implementation of a for loop, which iterates over strings. Because Java is not perfect, you cannot write the syntax – that is, for(char c:s) statement – to execute statement once for each element of s, but you can write for(char c:s.toCharArray()) statement

			So, Java arrays interact nicely with the for control structure, but the Java String class is not as nice. There is an Iterable interface, but strings do not work with it without jumping through extra hoops. When you design your language, try to make common tasks straightforward. A similar comment would apply to accessing String elements. Nobody wants to write s.charAt(i) when they could be writing s[i]; this is a good argument for operator support. An example of integrating a built-in function with a control structure by providing parameter defaults will be provided in the next section. Now, let's look at how operators and built-in functions are implemented for Unicon.

			Developing operators and functions for Unicon

			Unicon is a very high-level language with many built-in features. For such languages, it will make sense to do some engineering work to simplify creating its runtime system. The purpose of this section is to share a bit about how this was done for Unicon, for comparison purposes. Unicon's operators and built-in functions are implemented using RTL, which stands for Run Time Language. RTL is a superset of C developed by Ken Walker to facilitate garbage collection and type inference in the runtime system. RTL writes out C code, so it is almost a very specialized form of C preprocessor that maintains a database in support of type inferencing.

			Operators and functions in RTL look like C code, with many pieces of special syntax. There is syntax support for associating different pieces of C code, depending on the data type of the operands. To allow for type inferencing, the Unicon result type that's produced by each chunk of C code is declared. The RTL language also has syntax support, which makes it easy to specify when an operand type conversion needs to take place. In addition, each chunk of C code is marked with syntax to specify whether to inline it in the generated code or execute the specified code via a C function call. First, we will describe how to write operators in RTL, along with their special considerations. After that, we will learn how to write Unicon functions in RTL, which are similar to operators but slightly more general in nature.

			Writing operators in Unicon

			After various clever macro expansions and omitting #ifdefs, the addition operator in Unicon looks as follows. The following code shows three different forms of addition for C (long) integers, arbitrary precision integers, and floating-point. In the actual implementation, there is a fourth form of addition for array-at-a-time data-parallel addition:

			   operator{1} + add(x, y)

			      declare { C_integer irslt; }

			      arith_case (x, y) of {

			         C_integer: { abstract { return integer }

			            inline { … }

			            }

			         integer: { abstract { return integer }

			            inline { … }

			            }

			         C_double: { abstract { return real }

			            inline { … }

			            }

			         }

			end

			In the preceding code, the special RTL case statement for arithmetic operators, called arith_case, is performed at compile time by the Unicon optimizing compiler, while in the bytecode interpreter, it is an actual switch statement that's performed at runtime. Hidden within arith_case, a set of language-wide standard automatic type conversion rules is applied; for example, strings are converted into their corresponding numbers if possible.

			The case for regular C integer addition checks the validity of its result and triggers arbitrary precision addition, as per the middle case on integer overflow. The outline of this case body looks like this; some #ifdefs have been omitted for the sake of readability. To summarize, although the RTL syntax inlines this code, the inlined code for a single plus operator on the integer type involves one, possibly two, function calls:

			   irslt = add(x,y, &over_flow);

			   if (over_flow) {

			      MakeInt(x,&lx);

			      MakeInt(y,&ly);

			      if (bigadd(&lx, &ly, &result) == RunError)

			          runerr(0);

			      return result;

			      }

			   else return C_integer irslt;

			The add() function is called to perform regular integer addition. If there is no overflow, the integer result that's returned by add() is valid and is returned. By default, RTL returns from Unicon operators functions using a generic Unicon value that can hold any Unicon type. If a C primitive type is returned instead, it must be specified. In the preceding code, return at the end is annotated in RTL to indicate that a C integer is being returned.

			If the call to add() overflows, the bigadd() function is called to perform arbitrary precision addition. Here is the Unicon runtime's implementation of the add() function, which performs integer addition and checks for overflow. There is no more RTL extended syntax going on here, just references to macros for the 2^63-1 and -2^63 values. Someone was probably fairly careful when they wrote this code:

			word add(word a, word b, int *over_flowp)

			{

			   if ((a ^ b) >= 0 &&

			       (a >= 0 ? b > MaxLong - a : b < MinLong - a)) {

			      *over_flowp = 1;

			      return 0;

			      }

			   else {

			     *over_flowp = 0;

			     return a + b;

			     }

			}

			This is pretty straight C code, except for the (a^b) exclusive or, which is a way of asking if the values are both positive or both negative. In addition to computing the sum, this function writes a boolean value to the address given in its third parameter to report whether an integer overflow has occurred.

			Because it does not have to check for overflow, the floating-point real number addition branch of arith_case, denoted by C_double in RTL, is much simpler. Instead of calling a helper function, the real number is done inline using the regular C + operator:

			return C_double (x + y);

			We have omitted the corresponding implementation of the arbitrary precision addition function, bigadd(), that is called in this operator, which is many pages long. If you want to add arbitrary precision arithmetic to your language, you should read about the GNU Multiple Precision (GMP) library, which lives at https://gmplib.org/. Now, let's consider a few of the issues that come up when writing built-in functions for Unicon.

			Developing Unicon's built-in functions

			Unicon's built-in functions are also written in RTL (and C) and as in the case of operators, the code for each function can be designated to be inlined or called as functions. Built-in functions are longer than operators, on average, but perhaps in most cases, the RTL function syntax exists as an advanced form of wrapper that enables a C function to be called from Unicon, with conversions between the type representations of Unicon values and C values as needed. Unlike operators, many functions have multiple parameters for which designated default values may be specified via special syntax. As an example, here is the code for Unicon's string analysis function, any(), which succeeds if the character at the current position within a string is a member of a set of characters specified in its first parameter. The RTL reserved word, function, declares a Unicon built-in function instead of a regular C function. The {0,1} syntax indicates how many results this function can produce. It may produce as few as zero results (failing) or as many as one; it is not a generator. The if-then statement specifies that the first parameter must be able to be converted into a cset (if not, a runtime error occurs), while the body reserved word specifies that the generated code should call a function here, rather than inline the code:

			function{0,1} any(c,s,i,j)

			   str_anal( s, i, j )

			   if !cnv:tmp_cset(c) then

			      runerr(104,c)

			   body {

			      if (cnv_i == cnv_j)

			         fail;

			      if (!Testb(StrLoc(s)[cnv_i-1], c))

			         fail;

			      return C_integer cnv_i+1;

			      }

			end

			In addition to the bits of RTL syntax, macros play a huge role. str_anal is a macro that sets up a string for analysis, defaulting parameters 2–4 to the current string scanning environment. str_anal also ensures that s is a string and i and j are integers, converting them into those types if necessary, and issuing a runtime error if an incompatible type of value is passed in. String scanning environments are created by the string scanning control structure; the location under study within the string can be moved around by other string scanning functions. Adding domain-specific control structures such as string scanning will be presented in the next chapter. This example serves to motivate them. One reason to use new control structures is to make operators and built-in functions more powerful and concise.

			In this section, we presented a few highlights that show how Unicon's operators and built-in functions are implemented. A lot of the issues in the runtime system of a very high-level language were found to revolve around the big semantic difference between the source language (Unicon) and the implementation language (in Unicon's case, C). Depending on the level of the language you are creating, and the language you write its implementation in, you may find it useful to resort to similar techniques.

			Summary

			This chapter showed you how to write high-level operators and built-in functions for the runtime system of your language. One of the main points that you are to take away is that the implementation of operators and functions can range from completely different, to almost entirely the same, depending on the language you are inventing.

			The examples in this chapter taught you how to write code in your runtime system that will be called from generated code. You also learned how to decide when to make something a runtime function instead of just generating the code for it using instructions. 

			The next chapter will continue the topic of implementing built-in features by exploring domain control structures.

			Questions

			
					It is mathematically provable that every computation that you could implement as an operator or built-in function can be implemented instead as a library method, so why bother implementing high-level operators and built-in functions?

					What factors must you consider if you are deciding between making a new operator or a new built-in function?

					There were probably some good reasons why Java decided to give strings only partial operator and control structure support, despite strings being important and supported better in languages such as Icon and Unicon (and Python, which was influenced by Icon). Can you suggest some of the reasons for this?

			

		

	
		
			Chapter 15: Domain Control Structures

			The code generation that was presented in the previous chapters covered basic conditional and loop control structures, but domain-specific languages often have unique or customized semantics that merit introducing novel control structures. Adding a new control structure is usually substantially more difficult than adding a new function or operator. However, when they are effective, the addition of domain control structures is a large part of what makes domain-specific languages worth developing instead of just writing class libraries.

			This chapter covers the following main topics:

			
					Knowing when you need a new control structure

					Processing text using string scanning

					Rendering graphics regions

			

			The first section will help you learn how to determine when a domain control structure is needed. The second and third sections will present two example domain control structures.

			This chapter will give you a better idea of when and how to implement new control structures as needed in your language design. More importantly, you will learn how to walk the thin line that balances the need to stick with generating familiar code for familiar structures and the need to reduce programmers' effort in new application domains by introducing novel semantics.

			Java and its Jzero subset do not have comparable domain control structures, so the examples in this chapter come from Unicon and its predecessor, Icon. While this chapter outlines their implementation, at times using code examples, you are reading this chapter for the ideas rather than to type the code in and see it run. First, let's re-examine when a new control structure is justified.

			Knowing when you need a new control structure

			You need a new control structure when it addresses one or more major programming pain points. Often, pain points arise when people start writing software in support of a new class of computer hardware, or for a new application domain. Awareness or knowledge of an application domain's pain points may or may not exist at language design time, but more often, the awareness of pain points is generated from early substantial experiences attempting to write software for that domain.

			Pain points are often due to complexity, frequent and pernicious bugs, code duplication, or several other famous bad smells or antipatterns. Some code smells are described in Refactoring: Improving the Design of Existing Code, by Martin Fowler. Antipatterns are described at antipatterns.com and in several books referenced on that site.

			Individual programmers or programming projects may be able to reduce their code smells or avoid antipatterns by performing code refactoring, but when the use of application domain libraries entails that most or all applications in that domain face such problems, an opportunity for one or more domain control structures arises. Now, let's define what control structures are so that we understand what we are talking about.

			Defining what a control structure is

			If you Google the definition of a control structure, it will say something like "control structures determine the order in which one or more chunks of code execute." This definition is fine for traditional mainstream languages. It focuses on control flow, and it addresses two kinds of control structures: choosing which (or whether) to execute and loops that can repeat under some conditions. The if statements and while loops that we implemented for Jzero earlier in this book are good examples.

			Higher-level languages tend to have a more nuanced view of control structures. For example, in a language with built-in backtracking, the order in which chunks of code may execute becomes more complicated. This book will paraphrase Ralph Griswold's definition of a control structure in the Icon programming language: a control structure is an expression containing two or more subexpressions in which one subexpression is used to control the execution of another subexpression. That definition is more general and more powerful than the traditional mainstream definition provided in the previous paragraph.

			The phrase "control the execution" in Griswold's definition can be interpreted as broadly and as loosely as you want. Instead of just whether a chunk of code executes, or which chunk of code, or how many times, a control structure can determine how the code executes. This could mean introducing new scopes where names are interpreted differently, or adding new operators. We will see interesting examples of control structures affecting how code executes later in this chapter. Let's start with a simple one.

			Reducing excessive redundant parameters

			Many general-purpose libraries have an API with the same parameters repeated across tens or even hundreds of related functions. Applications that use these APIs may feature many calls where the same sequence of parameters is provided to the library over and over. The classic Microsoft Windows graphics API is a good example of this. Things such as windows, device contexts, colors, line styles, and brush patterns are provided repeatedly to many drawing calls. You can write any code you want, but when you call GetDC() to acquire a device context, there had better be exactly one corresponding call to ReleaseDC(). A lot of the code in-between those two points will pass that device context as a parameter over and over.

			For the sake of reducing the network traffic involved, Win32's open source counterpart, known as Xlib, the C library for writing applications under the X Window System, placed several common graphic drawing elements into a graphics context object that reduces the parameter's redundancy. Despite this, the Xlib API remains complex and contains a lot of parameter redundancy.

			The designers of libraries are, in some cases, geniuses, but the APIs may be relatively hostile to ordinary developers, with steep learning curves and many bugs. Before the advent of graphical user interface builders that generated this code for us, creating graphical user interfaces disproportionately slowed down development and increased the cost of many applications, and it tempted many coders into poor practices such as block copying and modifying vast swaths of user interface code.

			For a language where a new control structure is not an option, the problem of excessive redundant parameters may be unavoidable. If you build a language, a control structure is a real option for addressing this issue.

			Pain points become a target for a new control structure when they can be solved within the domain that you are supporting, and a by-product of traditional languages and lack of support for that domain. If your application domain has existing libraries and applications written in a mainstream language, you can study that code to look for its pain points and craft control structures that ameliorate them in your programming language. If your application domain is quite new and no mainstream language APIs and application base are available, you might resort to guessing or writing example programs in your new language to look for pain points. Let's look at a novel control structure where these principles were applied successfully: string scanning in the Icon and Unicon languages.

			Scanning strings in Icon and Unicon

			Unicon inherits this domain control structure from its immediate predecessor, Icon. String scanning is invoked by the s ? expr syntax. Within expr, s is the scanning subject and referenced by a global keyword called &subject. Within the subject string, a current analysis position, which is stored in the &pos keyword, denotes the index location in the subject string where it is being examined. The position starts at the beginning of the string and can be moved back and forth, typically working its way toward the end of the string. For example, in the following program, s contains "For example, suppose string s contains":

			procedure main()

			   s := "For example, suppose string s contains"

			   s ? {

			      tab(find("suppose"))

			      write("after tab()")

			   }

			end

			Now, let's say we were to add a scanning control structure:

			s ? { … }

			Here, the &subject and &pos keywords would be in the following state:
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			Figure 15.1 – Subject and position at the start of a scan

			After scanning forward past the comma and the space after the comma, the string's scanning position would be set to 14. The subsequent analysis would commence from the word suppose, as shown in the following screenshot:
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			Figure 15.2 – Subject and position after advancing past the comma and space after it

			This mechanism is very general and allows for a variety of pattern matching algorithms. Now, it is time to dive into the details of how this control structure is utilized through its operations.

			Scanning environments and their primitive operations

			A (subject, position) pair is called a scanning environment. Within the string scanning control structure, there's one operator, two built-in position-moving functions, and six built-in string analysis functions that perform computations that analyze the subject string. The six built-in string analysis functions are summarized in the following table. They are described in more detail in Appendix, Unicon Essentials:
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			Figure 15.3 – Built-in analysis functions of the string scanning control structure

			The two-position moving built-in functions are move() and tab(). The move(n) function slides the position index over by n letters relative to the current position. The tab(n) function is an absolute move, setting the position to an index, n, within the subject. The position-moving built-in functions are commonly used in combination with the string analysis functions. For example, since find("suppose") returns the index at which the "suppose" string may be found, tab(find("suppose")) sets the position to that location. In the example shown in Figure 15.1, executing tab(find("suppose")) would be one of many ways that the scanning environment might be set to the state shown in Figure 15.2. Another way to get there would have been to execute the following code:

			tab(upto(',')) & move(1) & tab(match(" "))

			It is typical to combine the string analysis primitives in such a fashion to form larger and more complex patterns. The language's built-in backtracking process, called goal-directed evaluation, means that earlier partial matches will undo themselves if a latter part of the conjunction fails.

			The tab(match(s)) combination is deemed so useful that a unary prefix operator, =, is defined for it. This is not to be confused with the binary = operator, which performs a numeric comparison. In any case, the =s expression is equivalent to tab(match(s)). This set of primitives was invented for Icon and preserved in Unicon. Unicon adds complementary mechanisms here (a SNOBOL-style pattern type, featuring regular expressions as its literals). You may be wondering whether additional operators for other common combinations of string analysis and position-moving functions would add expressive power to string scanning.

			Icon and Unicon's string scanning control structure contrasts strongly with the monolithic pattern matching operations found in other string processing languages. String scanning is a more general mechanism than regular expressions, in which ordinary code can be mixed into the middle of the pattern match. The following string scanning example extracts proper nouns from the S string and stores them in a list, L:

			S ? { L := []

			   while tab(upto(&ucase)) do

			      put(L, tab(many(&letters)))

			}

			The preceding while loop discards characters until an uppercase letter is found. It treats each such uppercase letter as the start of a proper name and places the name in a list. This is not as concise as I might dream, but it's extremely general and flexible. Let's look at how this control structure reduces the excess redundant parameters for string analysis functions.

			Eliminating excessive parameters via a control structure

			String scanning provides a standard set of default parameter values for the string analysis functions that are built into the language. These functions all end with three parameters: the subject string, the start position, and the end position. These parameters default to the current scanning environment, which consists of the subject string, &subject, the current position, &pos, and the end of the subject string. The control structure's parameter defaulting shortens code and improves readability, addressing one of the pain points described in the previous section. However, parameter simplification is not the entirety of the impact and purpose of string scanning.

			The current string scanning environment is visible within called functions and has a dynamic scope. It is common, and simple, to write helper functions that perform a part of a string analysis task, without having to pass the scanning environment around as parameters.

			Scanning environments may be nested. As part of a scanning expression or helper function, when a substring requires further analysis, this can be performed by introducing another string scanning expression. When a new scanning environment is entered, the enclosing scanning environment must be saved and restored when the nested sub-environment is exited. This nesting behavior is preserved in Icon and Unicon's novel goal-directed expression semantics, in which expressions can be suspended and later be resumed implicitly. The scanning environment is saved and restored on the stack. These operations are finer-grained but also depend on the procedure activity on the stack such as procedure calls, suspends, resumes, returns, and failures.

			For those who want more details, string scanning has been described extensively in other venues, such as Griswold and Griswold's The Icon Programming Language, 3rd edition. The implementation is described in Section 9.6 of The Implementation of Icon and Unicon. To summarize, in addition to saving and restoring scanning environments on the stack, two bytecode machine instructions are used to simplify code generation for this control structure. Now, let's look at another domain control structure that we will introduce into Unicon as part of its 3D graphics facilities: rendering regions.

			Rendering regions in Unicon

			This section describes a control structure called rendering regions, which was added to Unicon while writing this book. Since this feature is new, we will look at it in some detail. The rendering region control structure has been on Unicon's to-do list for a long time but adding a control structure can be a bit difficult, especially if the semantics are non-trivial, so it took writing this chapter to get around to it. First, though, we need to set the scene.

			Rendering 3D graphics from a display list

			Unicon's 3D graphics facilities specify what is to be drawn via a series of calls to a set of built-in functions, and an underlying runtime system renders code written in C and OpenGL that draws the scene as many times per second as possible. The Unicon functions and C render code communicate using a display list. Mainly, the Unicon functions place primitives on the end of the display list, and the rendering code traverses the display list and draws these primitives as quickly as possible.

			In OpenGL's C API, there is a similar-sounding display list mechanism that serves to pre-package and accelerate sets of primitives by placing them on the GPU in advance, reducing the CPU-GPU bottleneck. However, Unicon is a dynamic language that prioritizes flexibility over performance. To manipulate the display list at the Unicon application code level, the Unicon display list is a regular Unicon list rather than a C OpenGL display list.

			When Unicon's 3D facilities were first created, every graphic primitive in the display list was rendered every frame. This worked well for small scenes. For scenes with many primitives, it becomes impractical to reconstruct the display list from scratch on each frame. New capabilities were needed to enable applications to make rapid changes and be selective about which primitives on the display list will be rendered. Those capabilities' final form was nonobvious. Now, let's look at how rendering regions started as a function API.

			Specifying rendering regions using built-in functions

			Selective rendering was introduced in Unicon initially using a function named WSection(). The W character in this function stands for window and is a common prefix for Unicon's built-in functions about graphics and window systems, so this is the (window) section function. Two successive calls to WSection() define the beginning and end of a section, typically called a rendering region. Rendering regions make it easy to turn collections of 3D primitives on the display list on and off between each frame, without having to reconstruct the display list or insert or delete elements.

			The first call to WSection() in a pair introduces a display list record with a skip field that can be turned on and off; the second call to WSection() is an end marker that helps determine how many display list primitives are to be skipped. The following example draws a yellow halo (depicting an available quest) above a character's head as a torus:

			  questR := WSection("Joe's halo")

			      Fg("diffuse translucent yellow")

			      PushMatrix()

			      npchaloT := Translate(0, h.headx+h.headr*3, 0)

			      ROThalo := Rotate(0.0, 0, 1.0, 0)

			      DrawTorus(0, 0, 0, 0.1, h.headr*0.3)

			      PopMatrix()

			  WSection()

			You can't run this example standalone since it has been taken from the middle of a 3D application that is busy rendering a 3D scene. The missing context includes an open 3D window that these functions all operate on, and a current object within which the h class variable denotes the character's head. But hopefully, this example illustrates how WSection() calls are used in pairs that define the beginning and end of a set of 3D operations.

			Most Unicon 3D functions return the display list entry that they have added as their return value. The return value of WSection() is a record on the display list that affects display list behavior for however many primitives comprise that section.

			In the preceding code example, once drawn, the halo remains present on the display list but it can be made visible or invisible by unsetting or setting the skip flag; assigning questR.skip := 1 causes the halo to disappear. Effectively, a rendering region introduces a conditional branch to the display list data structure.

			Rendering regions also support 3D object selection. The parameter of a starting WSection() specifies a string value that is returned when the user touches or mouse clicks on one of the 3D primitives within that section.

			Varying graphical levels of detail using nested rendering regions

			Rendering regions support nesting. In 3D scenes, complex objects may be rendered by traversing a hierarchical data structure where the largest or most important graphical elements are at the root. Nested rendering regions support levels of detail, where secondary and tertiary graphic details can be rendered within subsections and turned on and off, depending on how near or far the object is from the camera. Levels of detail can be important for performance, allowing details to be proportional to the approximate distance between the viewer and the objects being observed. There are fancy data structures that can be used to implement this level of detail, but rendering regions work well for it.

			The code for rendering a chair, for example, might be organized into three levels of detail using three nested sections. The Chair class's lod1, lod2, and lod3 variables would be associated with the three nested sections within the code to fully render the chair:

			method full_render()

			   lod1 := WSection()

			      ... render the big chair primitives

			      lod2 := WSection()

			         ... render smaller chair primitives

			         lod3 := WSection()

			            ... render tiny details in the chair

			         WSection()

			      WSection()

			   WSection()

			end

			After the initial full_render() enters the primitives into the display list, each time the chair render level changes, the render() method in the chair class updates how much should be rendered and how much should be skipped by setting the skip flags. The following code can be read as follows: if the chair hasn't been rendered yet, perform a full_render(). If it has been rendered, set some skip flags to indicate how much detail to render based on the render_level parameter, ranging from 0 (invisible) to 3 (full detail):

			method render(render_level)

			   if /rendered then return full_render()

			   case render_level of {

			      0: lod1.skip := 1

			      1: { lod1.skip := 0; lod2.skip := 1 }

			      2: { lod1.skip := lod2.skip := 0; lod3.skip := 1 }

			      3: { lod1.skip := lod2.skip := lod3.skip := 0 }

			      }

			end

			This mechanism works marvelously, but some painful bug hunts identified a problem. As conceived, the section mechanism was fragile and error-prone. Whenever a WSection() is accidentally placed in the wrong spot or not nested properly, the program misbehaves or visual aberrations ensue. Introducing a control structure simplifies the use of rendering regions and reduces the frequency of errors related to the section boundary markers in the display list.

			Creating a rendering region control structure

			This subsection will describe an implementation of rendering regions in Unicon, to give you an idea of some of the work involved in introducing novel control structures to support application domains. This book does not describe the details of the Unicon implementation; instead, it presents the minimum of what is involved while keeping things readable. For further details on the Unicon implementation, you can consult The Implementation of Icon and Unicon. The source files in the implementation that are being modified here live in the uni/unicon subdirectory within the Unicon language distribution.

			To add a control structure, you must define its requirements, syntax, and semantics. Then, you will have to add any new elements to the lexical analyzer, grammar, trees, and symbol tables. Compile-time semantic checks may be required. The main work of implementing a control structure will then proceed, which consists of adding rules to the code generator to handle whatever new shapes appear in the syntax tree for your control structure.

			The addition should be kept as simple as possible. Rendering regions call for a control structure that will enforce the matching-pairs property of calls to WSection().

			Adding a reserved word for rendering regions

			For the new control structure, we add a new reserved word, wsection, to Unicon's lexical analyzer. You learned how to add reserved words to Jzero in Chapter 3, Scanning Source Code. Adding one to Unicon is similar, in that the lexical analyzer and parser will both have to agree on a new integer code for the new reserved word, which is defined by the parser.

			Unicon was developed before the uflex tool was created, which was presented in Chapter 3, Scanning Source Code. In the future, Unicon may be modified to use uflex, but this section describes how to add a reserved word to Unicon's current, hand-written lexical analyzer, which is called unilex.icn in the Unicon source code. Reserved words are stored in a table that contains, for each reserved word, two integers. One integer contains a pair of Boolean flags for semi-colon insertion rules, stating whether the reserved word is legal at the beginning (a Beginner) and/or the end (an Ender) of an expression. The other integer contains the integer terminal symbol category. The new reserved word, wsection, will be a Beginner of expressions, so semi-colons may be inserted on new lines that immediately precede it. The table entry for wsection in unilex.icn looks like this:

			   t["wsection"] := [Beginner, WSECTION]

			The reason this lexical analyzer addition is so small is that the pattern and code that are needed to recognize wsection is the same as for other reserved words and identifiers. For this lexical analyzer code to work, WSECTION must have been declared in the grammar, as described in the following section, and the ytab_h.icn file containing #define rules for the terminal symbols must be regenerated using the -d option to iyacc.

			Now, it is time to use this new reserved word in a grammar rule.

			Adding a grammar rule

			The addition of the wsection reserved word enables the syntax shown here:

			wsection expr1 do expr2

			This is intended to feel consistent with the rest of the Icon and Unicon syntax. The do reserved word almost makes it sound too much like a loop; a precedent is the Pascal language with the statement, which uses do and is not a loop. The addition of this grammar rule in unigram.y consists of two bits. In the terminal symbol declarations, the following is added:

			%token  WSECTION    /* wsection  */

			In the main grammar section, the grammar rules to add this control structure to unigram.y are as follows:

			expr11 : wsection ;

			wsection : WSECTION expr DO expr {

			         $$ := node("wsection", $2, $4)

			    };

			Many or most control structures will have semantic requirements, such as the fact that the first expression in the preceding rule – the section identifier – must be a string. Since Unicon is a dynamically typed language, the only way that we could enforce such a rule at compile time would be if we restricted section identifiers to string literals. We elect not to do that and instead enforce the string requirement for the first expression in the generated code, but if your language is typed at compile time, you would add that check to the appropriate point in your tree traversals where other type checks are performed. Now, let's consider the other semantic checks that are needed.

			Checking wsection for semantic errors

			The purpose of the wsection control structure is to make rendering regions less prone to errors. In addition to the wsection construct, which makes it impossible to omit a closing call to WSection() or accidentally write two rendering regions that overlap, under what other circumstances might rendering regions get messed up? Statements that transfer the control flow out of the rendering region in an unstructured way are problematic. In Unicon, these include return, fail, suspend, break, and next. However, if the rendering region has loops inside it, a break or next expression inside of such a loop is perfectly reasonable.

			So, the Unicon compiler's task is to decide what to do in the event of an abnormal control flow departure from within a rendering region. For the string scanning control structure, the correct thing to do was implement saving and restoring scanning environments on the stack, but rendering regions are different.

			A rendering region is used at display list construction time to ensure that the display list entries are well-formed. The display list is then used later – repeatedly – in the runtime system whenever the screen is to be redrawn. The original control flow that was used when the display list was constructed has nothing to do with it. For this reason, in a wsection, attempting to exit prematurely without reaching the end of the render region results in an error. If a programmer wants to code a render region in an unstructured manner, they can call WSection() explicitly in pairs at their peril.

			Enforcing these semantic rules requires some logic to be in a (sub)tree traversal whenever a wsection is encountered in the syntax tree. Tree traversals will look a bit different in the Unicon translator than they do in Jzero, but overall, they resemble the Unicon implementation of Jzero. The best place to introduce this check is in the j0 class's semantic() method, right after the root.check_types() method call, which performs type checking. The new check at the end of semantic() method would look like this:

			   root.check_wsections();

			The following check_wsections() method has been added to Unicon's tree.icn:

			method check_wsections()

			    if label == "wsection" then check_wsection()

			    else every n := !children do

			            n.check_wsections()

			end

			The helper method called to check that each wsection construct is called check_wsection(). It is a subtree traversal that looks for tree nodes that could exit a wsection abnormally and reports a semantic error if the code attempts this. However, it would be possible to generate code that performs these checks at runtime, providing lazy enforcement. The check_wsection() method takes an optional parameter, which tracks nested loops contained within the wsection construct, so that any break or next expressions nested within a wsection are allowed, so long as they do not break out of wsection:

			method check_wsection(loops:0)

			      case label of {

			         "return"| "Suspend0"| "Suspend1":

			            yyerror(label || " inside wsection")

			         "While0"|"While1"|"until"|"until1"|

			         "every"|"every1"|"repeat":

			            loops +:= 1

			         "Next"|"Break":

			            if loops = 0 then

			               yyerror(label || " inside wsection")

			            else loops -:= 1

			         "wsection": loops := 0

			         }

			      every n := !children do {

			         if type(n) == "treenode" then

			            n.check_wsection(loops)

			         else if type(n) == "token" then {

			            if n.tok = FAIL then

			               yyerror("fail inside wsection")

			         }

			      }

			end

			The preceding code performs semantic checks so that the wsection control structure can enforce its requirement that every opening WSection(id) has a closing WSection(). Now, let's look at generating the code for wsection.

			Generating code for a wsection control structure

			Code generation for the wsection control structure can be modeled using the equivalent calls to WSection() function. The following example's use of wsection would produce code that matches the halo example shown earlier. The difference is that using this control structure, you cannot forget a closing WSection(), accidentally attempt to overlap them, and so forth:

			         questR := wsection select_id do {

			            Fg("diffuse translucent yellow")

			            PushMatrix()

			            npchaloT := Translate(0, h.headx+h.headr*3, 0)

			            ROThalo := Rotate(0.0, 0, 1.0, 0)

			            DrawTorus(0, 0, 0, 0.1, h.headr*0.3)

			            PopMatrix()

			         }

			To understand the code generation for wsection, we need a semantic rule for the wsection syntax that solves the problem in the general case. The following table shows such a semantic rule. Instead of intermediate code generation instructions, the code is expressed as a source-to-source transformation. A wsection control structure is implemented with some semi-fancy Icon code that executes a matching pair of WSection() calls, producing the result of the opening call to WSection() as the result of the entire expression. Because of this, the display list record can be assigned to a variable by a surrounding expression if desired:

			
				
					[image: Figure 15.4 – Semantic rule for generating code for the wsection control structure

]
				

			

			Figure 15.4 – Semantic rule for generating code for the wsection control structure

			The Icon code in the preceding semantic rule requires some explanation. The {expr2; WSection(); 1} expression executes expr2, followed by a closing WSection(). The 1 character after the second semi-colon ensures that the whole expression succeeds, as evaluated by the surrounding expression. The surrounding expression is 1(WSection(…), {…}), which evaluates the opening WSection(…) section first and then executes the body, but produces the return value of the opening WSection() section as the result of the entire expression.

			To implement the semantic rule shown in the preceding table and make the actual output of the code happen, the Unicon code yyprint() generator procedure must be modified. yyprint(n) generates code for syntax tree node n. yyprint() generates code as string output to a file named yyout. It has a lot of different code branches – pretty much one for each kind of tree node – and these branches call many helper functions as needed. For a wsection, the yyprint() function should utilize the following code, which can be added to the treenode case clause:

			else if node.label == "wsection" then {

			   writes(yyout, "1(WSection("))

			   yyprint(node.children[1])

			   writes(yyout,"),{")

			   yyprint(node.children[2])

			   write(yyout, ";WSection();1})")

			   fail

			}

			The reason this works, where the domain control structure is simply being written out as an artful arrangement of some underlying function calls, is because the main Unicon compiler is a semi-transpiler that writes out an intermediate form that looks almost like source code. Specifically, Unicon's intermediate form is almost Icon source code. A great many languages can be invented very quickly if the underlying representation is another very high-level language such as Icon or Python.

			All this extending of the Unicon language has probably made you excited to try adding your domain control structures. Hopefully, as we head into the summary, you have an idea of how to go about doing that.

			Summary

			This chapter explored the topic of domain control structures. Domain control structures go way beyond libraries, or even built-in functions and operators, in terms of supporting programmers' abilities to solve problems in new application domains. Most of the time, domain control structures simplify code and reduce the occurrence of bugs in programming that would be prevalent when programmers develop their code using generic mainstream language features.

			The next chapter will present the challenging topic of garbage collection. Garbage collection is a major language feature that often distinguishes low-level system programming languages from higher-level application languages and domain-specific languages.

			Questions

			Answer the following questions to test your knowledge of this chapter:

			
					Control structures are just if statements and loops. What's the big deal?

					All application domain-specific control structures let you do is provide some default values for some standard library functions. Why bother using them?

					What additional primitives or semantics would make the string scanning control structure more useful to application domain programmers?

					Would it be a good idea for the wsection control structure to generate code, including a PushMatrix() and a PopMatrix() that surround its code body? This would make the example shorter and higher-level.

			

		

	
		
			Chapter 16: Garbage Collection

			Memory management is one of the most important aspects of modern programming, and almost any language that you invent should provide automatic memory management via garbage collection. This chapter presents a couple of methods with which you can implement garbage collection in your language. The first method, called reference counting, is easy to implement and has the advantage of freeing memory as you go. However, reference counting has a fatal flaw. The second method, called mark-and-sweep collection, is a more robust mechanism that is much more challenging to implement, and it has the downside that execution pauses periodically for however long the garbage collection process takes. These are two of many possible approaches to memory management. Implementing a garbage collector with neither a fatal flaw nor periodic pauses to collect free memory is liable to have other costs associated with it.

			This chapter covers the following main topics:

			
					Appreciating the importance of garbage collection

					Counting references to objects

					Marking live data and sweeping the rest

			

			The goal of this chapter is to explain to you why garbage collection is important and show you how you can do it. The skills you'll learn include the following: making objects track how many references are pointing to them; identifying all the pointers to live data in programs and including pointers located within other objects; freeing memory and making it available for reuse. Let's start with a discussion of why you should bother with all this anyway.

			Appreciating the importance of garbage collection

			In the beginning, programs were small, and the static allocation of memory was decided when a program was designed. The code was not that complicated, and programmers could lay out all the memory that they were going to use during the entire program as a set of global variables. Life was good.

			Then, Moore's Law happened, and computers got bigger. Customers started demanding that programs handle arbitrary-sized data instead of accepting the fixed upper limits inherent in static allocation. Programmers invented structured programming and used function calls to organize larger programs in which most memory allocation was on the stack.

			A stack provides a form of dynamic memory allocation. Stacks are great because you can allocate a big chunk of memory when a function is called and deallocate memory automatically when a function returns. The lifetime of a local memory object is tied strictly to the lifetime of the function call within which it exists.

			Eventually, things got complicated enough that folks noticed software advances could not keep up with hardware advances. We had a software crisis and attempted to wish software engineering into existence to try and address this crisis. There were occasional bugs where pointers to memory that had been freed on the stack were left hanging around, but those were rare and usually just a sign of novice programmers. Life was still relatively good. Then, Moore's Law happened some more.

			Now, even programs running on our wristwatches are too large to understand, and we have a software environment where at runtime, a program may have billions and billions of objects. Customers expect you to be able to create as many objects as they want, and they expect such objects to live for as long as they are needed. The pre-eminent form of allocated memory is dynamic memory, and it is allocated from the memory region called the heap. The correct use of the heap region is a primary concern in programming language design and implementation.

			In the software engineering literature, it has long been common to see claims that 50% to 75% (or more) of total software development time is spent debugging. This translates into a lot of time and money. In my personal experience over several decades of helping student programmers, in languages where programmers manage their own memory, 75% or more of debugging time is spent on memory management errors.

			This is especially true for novices and non-expert programmers, but it happens to beginners and experts alike. C and C++, I am looking at you. Now, pretend the concern is not just how much time or money memory management will take up. As program size and complexity increase, the probability of developers correctly manually managing a software project's memory decreases, resulting in a higher probability that the project will fail outright during development, or fail critically after deployment.

			What kinds of memory management errors, you ask? You can start with these: not allocating enough memory; attempting to use memory beyond the sufficient amount you allocated; forgetting to allocate memory; not understanding when you need to allocate memory; forgetting to deallocate memory so that it can be reused; deallocating deallocated memory; attempting to use memory for a given purpose after it has been deallocated or repurposed. These are just a few examples.

			When programs are only a modest size and the computers involved are terribly expensive, it makes sense to maximize efficiency by throwing programmer time at manual memory management as much as necessary. But as programs grow ever longer and computers become cheaper with larger memory sizes, the practicality of managing memory by hand decreases. Automatic memory management is inevitable, and doing it all on the stack went by the wayside long ago, when structured programming gave way to the object-oriented paradigm.

			Now, we have a world in which (for many programs) most of the interesting memory is allocated out of the heap, where objects live an arbitrary length of time until they are explicitly freed, or unused memory is automatically reclaimed. This is why garbage collectors are of paramount importance and deserve your attention as a language implementer.

			Having said all this, implementing garbage collection can be difficult, and making it perform well is even more difficult. If you are overwhelmed, you might get away with putting this off until the success of your language demands it. Many famous language implementations (such as Sun's Java) have gotten away with a missing or inadequate garbage collector for years. But, if you are serious about your language, you will eventually want a garbage collector for it. Let's start with the simplest approach, which is called reference counting.

			Counting references to objects

			In reference counting, each object keeps a count of how many pointers refer to it. This number starts out as 1 when an object is first allocated and a reference to it is provided to a surrounding expression. The reference count is incremented when the value is stored in a variable, including when the reference is passed as a parameter or stored in a data structure. The count is decremented whenever a reference is overwritten by assigning a variable to refer elsewhere, or when a reference no longer exists (such as when a local variable ceases to exist because a function returns). If the reference count reaches 0, the memory for that object is garbage because nothing points to it. It can be reused for another purpose. This seems pretty reasonable; look at what it would take to add reference counting to our example language in this book, Jzero.

			Adding reference counting to Jzero

			Jzero allocates two kinds of things from the heap that could be garbage collected: strings and arrays. For such heap-allocated memory entities, Jzero's in-memory representation includes the object's size in a word at the beginning. Under reference counting, a second word at the beginning can hold the number of references that point at that object. The representation for a string is shown in Figure 16.1:
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			Figure 16.1 – An in-memory representation of a string

			In the example given, if len and refcount are 8 bytes each and there are 39 bytes of string data, refcount added 8 to a total size of 55 bytes (perhaps rounded to 56), so the addition of refcount is only a 14% overhead. But if the average string length were 3 bytes and you had billions of little strings to manage, adding a reference count represents a significant overhead that might limit the scalability of your language on big data. Given this representation, reference counting comes into play when objects get created in the first place, so let's look at example operations whose generated code involves heap allocation.

			Generating code for heap allocation

			When an object such as String is created, memory must be allocated for it. In some languages, objects can be allocated in static memory, on the stack, or on the heap. However, in Java (and Jzero), all objects are allocated memory out of the heap. For strings, this can be puzzling, since the Java source code can include string constants that would generally be resolved at compile-time to statically allocated addresses, but heap objects are always allocated at runtime. Suppose the code is as follows:

			String s = "hello";

			On one hand, the memory contents of the hello string can be allocated in the static memory region. On the other hand, the Jzero String object that we assign to String s should be a class instance allocated from the heap that contains the length and reference count along with the reference to the character data. The code we generate in this case might resemble the following:

			String s = new String("hello");

			If this code executes a billion times, we don't want to allocate a billion instances of this String, we only want one. In Java, the runtime system uses a string pool for string constants, so that it only needs to allocate one instance. Jzero does not implement the Java String or Stringpool classes, but we will put a static method named pool() in the Jzero String class that returns a reference to a String, allocating the instance if it is not already in the string pool. Given this method, the generated code can look more like the following:

			String s = String.pool("hello");

			This avoidance of allocating redundant string objects is enabled by the fact that String objects are immutable. There are many ways that one might generate this code. One easy option is a tree traversal that replaces string literal leaf nodes with the subtree that invokes the pool() method. In very concrete terms, just look for STRINGLIT nodes and replace them with the constructed set of nodes shown in Figure 16.2:
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			Figure 16.2 – Substituting a STRINGLIT leaf for a call to the pool method

			The code for a poolStrings() method that traverses the syntax tree and performs this substitution is shown below. The Unicon implementation in tree.icn is as follows:

			method poolStrings()

			   every i := 1 to *\kids do

			      if type(\(\kids[i])) == "tree__state" then {

			         if kids[i].nkids>0 then kids[i].poolStrings()

			         else kids[i] := kids[i].internalize()

			      }

			end

			This method walks through the tree, calling a internalize() method to replace all leaves. The Java implementation of poolStrings() in tree.java is shown here:

			public void poolStrings() {

			   if (kids != null)

			   for (int i = 0; i < kids.length; i++)

			      if ((kids[i] != null) && kids[i] instanceof "tree") {

			         if (kids[i].nkids>0) kids[i].poolStrings();

			         else kids[i] = kids[i].internalize();

			      }

			}

			The tree method named internalize() in this traversal constructs and returns a subtree that invokes the String.pool() method if it is invoked on STRINGLIT. Otherwise, it just returns the node. In Unicon, the code looks as follows:

			method internalize()

			  if not (sym === "STRINGLIT") return self

			  t4 := tree("token",parser.IDENTIFIER,    token(parser.IDENTIFIER,"pool", tok.lineno, tok.colno))

			  t3 := tree("token",parser.IDENTIFIER,    token(parser.IDENTIFIER,"String", tok.lineno,

			        tok.colno))

			  t2 := j0.node("QualifiedName", 1040, t3, t4)

			  t1 := j0.node("MethodCall",1290,t2,self)

			  return t1

			end

			The corresponding code in Java looks like this:

			public tree internalize() {

			  if (!sym.equals("STRINGLIT")) return this;

			  t4 = tree("token",parser.IDENTIFIER,    token(parser.IDENTIFIER,"pool", tok.lineno,         tok.colno));

			  t3 = tree("token",parser.IDENTIFIER,    token(parser.IDENTIFIER,"String", tok.lineno,         tok.colno));

			  t2 = j0.node("QualifiedName", 1040, t3, t4);

			  t1 = j0.node("MethodCall",1290,t2,this);

			  return t1;

			}

			This code in the compiler depends upon a runtime system function that implements the String.pool() method, using a hash table to avoid duplicates. Now, let's look at the code generation changes that are needed for the assignment operator.

			Modifying the generated code for the assignment operator

			Reference counting hinges on modifying the behavior of assignment to enable objects to track the references that point at them. In intermediate code for Jzero, there was an instruction named ASN that performed such an assignment. Our new reference counting semantics for the x = y assignment might consist of the following:

			
					If the old destination (x) points to an object, decrement its counter. If the counter is zero, free the old object.

					Perform assignment. Variable x now refers to some new destination.

					If the new destination (x) points to an object, increment its counter

			

			It is an interesting question whether this sequence of operations should be implemented by generating many three-address instructions for an assignment, or whether the semantics of the ASN instruction should be modified to do the bulleted items automatically when an ASN instruction executes. Part of the answer may hinge on how you feel about adding new opcode(s) for ASN when objects are involved, perhaps using OASN for object assignment.

			Considering the drawbacks and limitations of reference counting

			Reference counting has several downsides and a fatal flaw. One downside is that the assignment operator is made slower to decrement counts of objects held prior to assignment and increment counts of objects being assigned. This is a serious drawback, as the assignment is a very frequent operation. Another downside is that the size of objects becomes larger to hold reference counts, which is unfortunate especially for multitudinous otherwise-small objects for which an extra counter is a significant overhead.

			A fatal flaw occurs if a chain of object references can have a cycle. This is a very common practice in data structures. In the case of a cycle, objects that point at each other never reach a reference count of 0, even after they are unreachable from the rest of the program. The diagram in Figure 16.3 illustrates a circular linked list after it has become garbage. No outside pointer can ever reach this structure, but according to reference counting, the memory used by these objects is not reclaimable:
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			Figure 16.3 – A circular linked list cannot be collected under reference counting

			Despite these flaws, reference counting is relatively simple and easy, and it works well enough that it was apparently the only garbage collection method for the first version of Python. Python eventually implemented a real garbage collector in addition to continuing to use reference counting, although once you implement a real garbage collector, reference counting is unnecessary and wasteful of time and space. In any case, due to its fatal flaws, most general-purpose languages will not find reference counting sufficient, so let's look at an example of a more robust garbage collector, namely the real-world mark-and-sweep garbage collector used by the Unicon programming language.

			Marking live data and sweeping the rest

			This section gives an overview of the Unicon garbage collector, which is a mark-and-sweep style of garbage collector that was developed for the Icon language and then extended. It is written in (an extended dialect of) C, like the rest of the Icon and Unicon runtime system. Since Unicon inherited this garbage collector from Icon, much of what you see here is due to that language. Other aspects of this garbage collector are described in the book, The Implementation of Icon and Unicon: a Compendium.

			In almost all garbage collectors other than reference counting, the approach is to find all the live pointers that are reachable from all the variables in the program; everything else in the heap is garbage. In a mark-and-sweep collector, live data is marked when it is found, and then all the live data is moved up to the top of the heap, leaving a big, beautiful pool of newly available memory at the bottom. The collect() C function from Unicon's runtime system is presented in an outline of its form as follows:

			int collect(int region) {

			   grow_C_stack_if_needed();

			   markprogram();

			   markthreads();

			   reclaim();

			}

			Interestingly, the act of garbage collecting the heap begins with making sure we have enough C stack region memory to perform this task. Unicon has two stacks, the VM interpreter stack and the stack used by the C implementation of the VM. The necessity of growing the C stack was discovered the hard way. The reason for this is that the garbage collection algorithm is recursive, especially the operation of traversing live data and marking everything it points at. On some C compilers and operating systems, the C stack might grow automatically as needed, but on others, its size can be explicitly set. The garbage collector code does so by using an operating system function called setrlimit(). The code for growing the C stack looks like the following:

			void grow_C_stack_if_needed() {

			   struct rlimit rl;

			   getrlimit(RLIMIT_STACK , &rl);

			   if (rl.rlim_cur < curblock->size) {

			      rl.rlim_cur = curblock->size;

			      if (setrlimit(RLIMIT_STACK , &rl) == -1) {

			         if (setrlimit_count != 0) {

			            fprintf(stderr,"iconx setrlimit(%lu) failed                 %d\n", (unsigned long)(rl.rlim_cur),errno);

			            fflush(stderr);

			            setrlimit_count--;

			            }

			         }

			      }

			}

			The preceding code checks how big the C stack is, and if the current block region is larger, it requests that the C stack be increased proportionally. This is overkill for most programs but corresponds roughly to the worst-case requirements. Fortunately, memory is cheap.

			The fundamental premise of the Unicon garbage collector is that frequent operations must be fast, even when that is at the expense of infrequent operations. In my presence, the famed computer scientist Ralph Griswold repeatedly observed that most programs never garbage collect; they complete execution before they ever collect. This is true from a certain point of view. It is true in a variety of application domains, such as text processing utilities, and untrue in other application domains, such as servers and any other application that runs for an extended period.

			Under the fast frequent operations doctrine, assignments are extremely frequent and must be kept as fast as possible – reference counting is a very bad idea for this reason. Similarly, memory allocations are quite frequent and must be as fast as possible. Garbage collection is infrequent, and it is OK for its cost to be proportional to the work involved.

			To make matters more interesting, Icon and Unicon are specialty string- and text-processing languages, and the string data type is completely and totally special-cased in the implementation. Optimum efficiency for the string type might make some programs that are string-heavy perform extra well in this language, while other programs do not.

			Organizing heap memory regions

			Due to the important special case of strings, Unicon has two kinds of heaps. A general heap called the block region allows any data type other than strings to be allocated. A separate heap called the string region is maintained for string data.

			Blocks are self-describing for garbage collection purposes; the layout of the block region is a sequence of blocks. Each block starts with a title word that identifies its type. Many block types are of fixed size; block types that are of varying size have a size field in the word after the title word. Figure 16.4 illustrates a block region. The rectangle on the left is a struct region that manages the block region (shown as the rectangle on the right). The block region being managed may be many megabytes in size, containing thousands or millions of blocks:
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			Figure 16.4 – A block region

			Within the block region, allocating is very fast. To allocate a block of size n for a class instance or other structure such as a list or table, just verify that n is less than the remaining free space between the pointers named free and end. In that case, the new block is located at the free pointer, and the region is updated to account for it by adding n to the free pointer.

			In contrast to the block region, the string region is raw unstructured string data. String regions are organized as shown in Figure 16.4, except that the actual string data has no titles, sizes, or other structure – it is raw text. By not allocating strings as blocks like everything else, some common operations on strings, such as slices, are no-ops. Similarly, the string region can be byte-aligned with no wasted space when many small strings are allocated, unlike the block region which is word-aligned. Also, data in the string region never contains any references to other live memory, so separating strings out from the block region reduces the total amount of memory within which references must be found.

			At any given time, there is one current block region and one current string region from which memory may be allocated. Each program, and each thread, has its current block and string regions,which are  the active regions within a bidirectional linked list of all heap regions allocated for that program or thread.

			When the region is full and more memory is requested, a garbage collection of the current heaps is triggered. Older regions on the linked list are tenured regions and are only collected when a garbage collection on the current region fails to free enough memory for a request. When no region on the list can satisfy a request, a new region must be allocated. When garbage collection fails to free enough space to satisfy a memory request, a new current region of the same type is created and added to the linked list, generally twice as large as the previous one.

			Traversing the basis to mark live data

			In the first pass of garbage collection, live data is marked.  All pointers to heap memory in the program must be found. This starts from a basis set of variables, consisting of global and static memory, and includes all local variables on the stack, which must be traversed. The heap objects pointed to by all these global and local variables are marked.

			The task of marking live data in Unicon's runtime system is presented in an outline of its form in the following code example. The first two elements of the basis set consist of variables allocated on a per-program and per-thread basis. In Icon, they were originally global variables, but as the virtual machine evolved, global variables became struct fields, and finding all the basis variables in these categories became a series of data structure traversals to reach them all:

			static void markprogram(struct progstate *pstate) {

			   struct descrip *dp;

			   PostDescrip(pstate->K_main);

			   PostDescrip(pstate->parentdesc);

			   PostDescrip(pstate->eventmask);

			   PostDescrip(pstate->valuemask);

			   PostDescrip(pstate->eventcode);

			   PostDescrip(pstate->eventval);

			   PostDescrip(pstate->eventsource);

			   PostDescrip(pstate->AmperPick);

			   PostDescrip(pstate->LastEventWin);/* last Event() win */

			   PostDescrip(pstate->Kywd_xwin[XKey_Window]);/*&window*/

			   postqual(&(pstate->Kywd_prog));

			   for (dp = pstate->Globals; dp < pstate->Eglobals; dp++)

			      if (Qual(*dp)) postqual(dp);

			      else if (Pointer(*dp)) markblock(dp);

			   for (dp = pstate->Statics; dp < pstate->Estatics; dp++)

			      if (Qual(*dp)) postqual(dp);

			      else if (Pointer(*dp)) markblock(dp);

			   }

			The task of marking all the global variables in a program is straightforward:

			static void markthreads() {

			   struct threadstate *t;

			   markthread(&roottstate);

			   for (t = roottstate.next; t != NULL; t = t->next)

			      if (t->c && (IS_TS_THREAD(t->c->status))) {

			          markthread(t);

			      }

			}

			Each thread is marked by a call to markthread() as follows. Some of the pieces of the thread state contain things that are known not to contain references to heap variables, but those fields that might contain heap pointers must be marked:

			static void markthread(struct threadstate *tcp) {

			   PostDescrip(tcp->Value_tmp);

			   PostDescrip(tcp->Kywd_pos);

			   PostDescrip(tcp->ksub);

			   PostDescrip(tcp->Kywd_ran);

			   PostDescrip(tcp->K_current);

			   PostDescrip(tcp->K_errortext);

			   PostDescrip(tcp->K_errorvalue);

			   PostDescrip(tcp->T_errorvalue);

			   PostDescrip(tcp->Eret_tmp);

			}

			The actual marking process is different for strings and for objects. Since Unicon variables can hold any type of value, a macro named PostDescrip() is used to determine whether a value is a string or another sort of pointer, or neither. References to strings are called qualifiers and they are marked using a function called postqual(). Other types of pointers are marked using the markblock() function:

			#define PostDescrip(d) \

			   if (Qual(d)) postqual(&(d)); \

			   else if (Pointer(d)) markblock(&(d));

			In order to interpret this macro, you need more than the postqual() and markblock() helper functions; you also need to know what the Qual() and Pointer() test macros are doing. A short answer would be that they perform a bitwise AND to check the value of a single bit within the descriptor word of a Unicon value. The value is a string if the descriptor word's topmost (sign) bit called F_Nqual is 0, but if that bit is 1 it is not a string and the other flag bits can be used to check other properties, of which the F_Ptr pointer flag would indicate that the value word contains a pointer, possibly a pointer to a value in the heap:

			#define Qual(d) (!((d).dword & F_Nqual))

			#define Pointer(d) ((d).dword & F_Ptr)

			These tests are fast, but they are performed many times during a garbage collection. If we came up with a faster way than shown in the PostDescrip() macro to identify values for the potential marking of live strings and blocks, it might affect the garbage collection performance significantly.

			Marking the block region

			For blocks, the mark overwrites part of the object with a pointer back to the variable that points at the object. If more than one variable points at the object, a linked list of those live references is constructed as they are found. This linked list is needed so that all those pointers can be updated to point at the new location if the object is moved. The markblock() function is over 200 lines of code. It is presented in a summarized form in the following code example:

			void markblock(dptr dp) {

			   dptr dp;

			   char *block, *endblock;

			   word type;

			   union block **ptr, **lastptr;

			   block = (char *)BlkLoc(*dp);

			   if (InRange(blkbase, block, blkfree)) {

			      type = BlkType(block);

			      if ((uword)type<=MaxType)endblock= 

			            block+BlkSize(block);

			      BlkLoc(*dp) = (union block *)type;

			      BlkType(block) = (uword)&BlkLoc(*dp);

			      if ((uword)type <= MaxType) {

			          ...traverse any pointers in the block

			         }

			   else ... handle other types of blocks that will not move

			}

			Traversing pointers within a block depends on how blocks are organized in the language. Pointers within a block are always a contiguous array. A global table within the garbage collector named firstp tells at what byte offset for each type of block its nested pointers can be found. A second global table named firstd tells at what byte offset for each block type its descriptors (nested values, which can be anything, not just a block pointer) are found. These are traversed by the following code:

			            ptr = (union block **)(block + fdesc);

			            numptr = ptrno[type];

			            if (numptr > 0) lastptr = ptr + numptr;

			            else

			               lastptr = (union block **)endblock;

			            for (; ptr < lastptr; ptr++)

			               if (*ptr != NULL)

			                  markptr(ptr);

			            }

			         if ((fdesc = firstd[type]) > 0)

			            for (dp1 = (dptr)(block + fdesc);

			                 (char *)dp1 < endblock; dp1++) {

			               if (Qual(*dp1)) postqual(dp1);

			               else if (Pointer(*dp1)) markblock(dp1);

			               }

			The nested block pointers are visited by walking through with the ptr variable and calling markptr() on each one. The markptr() is similar to markblock() but may visit other types of pointers besides blocks. The nested descriptors are visited by walking through with the dp1 variable and calling postqual() for strings and markblock() for blocks.

			For strings, an array name of quallist is constructed of all the live string pointers (including their lengths) that point into the current string region. The function named postqual() adds a string to the quallist array: 

			void postqual(dptr dp) {

			   if (InRange(strbase, StrLoc(*dp), strfree)) {

			      if (qualfree >= equallist) {

			         newqual = (char *)realloc((char *)quallist,

			              (msize)(2 * qualsize));

			         if (newqual) {

			            quallist = (dptr *)newqual;

			            qualfree = (dptr *)(newqual + qualsize);

			            qualsize *= 2;

			            equallist = (dptr *)(newqual + qualsize);

			            }

			         else {

			            qualfail = 1;

			            return;

			            }

			         }

			      *qualfree++ = dp;

			   }

			}

			Most of the preceding code consists of expanding the size of the array if needed. The array size is doubled each time additional space is needed.

			Furthermore, if the object contains any other pointers, they must be visited, and what they point at must be marked and traversed, recursively following all pointers to everything that can be reached.

			Reclaiming live memory and placing it into contiguous chunks

			In the second pass of a garbage collection process, the heaps are traversed from top to bottom, and all live data is moved to the top. The overall reclamation strategy is shown in the following code. Note that garbage collection is complicated by concurrent threads – we do not consider concurrency in full detail here:

			static void reclaim()

			   {

			   cofree();

			   if (!qualfail)

			      scollect((word)0);

			   adjust(blkbase,blkbase);

			   compact(blkbase);

			   }

			Reclaiming memory consists of freeing up unreferenced static memory consisting of co-expressions that have become garbage in a cofree() function, then moving all the live string data up in the scollect() function, and then moving the block data up by calling adjust() followed by compact().

			The cofree() function walks through each co-expression block. These blocks cannot be allocated in the block region because they contain variables that cannot be moved. This consists of the following code:

			void cofree() {

			   register struct b_coexpr **ep, *xep;

			   register struct astkblk *abp, *xabp;

			   ep = &stklist;

			   while (*ep != NULL) {

			      if ((BlkType(*ep) == T_Coexpr)) {

			         xep = *ep;

			         *ep = (*ep)->nextstk;

			         for (abp = xep->es_actstk; abp; ) {

			            xabp = abp;

			            abp = abp->astk_nxt;

			            if ( xabp->nactivators == 0 )

			               free((pointer)xabp);

			            }

			         free((pointer)xep);

			         }

			      else {

			         BlkType(*ep) = T_Coexpr;

			         ep = &(*ep)->nextstk;

			         }

			      }

			   }

			The preceding code walks through a linked list of co-expression blocks. When the code visits a co-expression block whose title still says T_Coexpr, that indicates that the block was not marked as live. In that case, the co-expression and its associated bookkeeping memory blocks are freed using the standard free() library function.

			The scollect() function collects the string region using the list of all the live pointers into it. It sorts the quallist array using the standard qsort()library function. Then, it walks through the list and copies live string data up to the top of the region, updating the pointers into the string region as the new locations of the strings are determined. Care is taken for pointers to overlapping strings so that they remain contiguous:

			static void scollect(word extra) {

			   char *source, *dest, *cend;

			   register dptr *qptr;

			   if (qualfree <= quallist) { strfree = strbase; return; }

			   qsort((char *)quallist,

			      (int)(DiffPtrs((char *)qualfree,(char *)quallist)) /

			           sizeof(dptr *), sizeof(dptr), 

			               (QSortFncCast)qlcmp);

			   dest = strbase;

			   source = cend = StrLoc(**quallist);

			   for (qptr = quallist; qptr < qualfree; qptr++) {

			      if (StrLoc(**qptr) > cend) {

			         while (source < cend) *dest++ = *source++;

			         source = cend = StrLoc(**qptr);

			         }

			      if ((StrLoc(**qptr) + StrLen(**qptr)) > cend)

			         cend = StrLoc(**qptr) + StrLen(**qptr);

			      StrLoc(**qptr) = StrLoc(**qptr) +

			                       DiffPtrs(dest,source)+(uword)extra;

			      }

			   while (source < cend) *dest++ = *source++;

			   strfree = dest;

			   }

			The adjust() function is the first part of collecting the block region. It walks through the block region, moving pointers into the block region up to where the blocks will point. During marking, a linked list of all pointers to each block was constructed; this is used to update all those pointers to the block's new location. The source code for adjust() is shown next:

			void adjust(char *source, char *dest) {

			   register union block **nxtptr, **tptr;

			   while (source < blkfree) {

			     if ((uword)(nxtptr = (union block **)BlkType(source))>

			         MaxType) {

			         while ((uword)nxtptr > MaxType) {

			            tptr = nxtptr;

			            nxtptr = (union block **) *nxtptr;

			            *tptr = (union block *)dest;

			            }

			         BlkType(source) = (uword)nxtptr | F_Mark;

			         dest += BlkSize(source);

			         }

			      source += BlkSize(source);

			      }

			   }

			The compact() function is the final step in collecting the block region, as shown in the following code block. It consists of moving the blocks of memory themselves up into their new location. The title words of the live blocks are cleared when the block is moved to its new location:

			void compact(char *source) {

			   register char *dest;

			   register word size;

			   dest = source;

			   while (source < blkfree) {

			      size = BlkSize(source);

			      if (BlkType(source) & F_Mark) {

			         BlkType(source) &= ~F_Mark;

			         if (source != dest)

			            mvc((uword)size,source,dest);

			         dest += size;

			         }

			      source += size;

			      }

			   blkfree = dest;

			   }

			From this section, you should be able to conclude that a mark and sweep garbage collector is a non-trivial and relatively low-level undertaking. If you need encouragement, consider this: the work you do in building a garbage collector is for a good cause – it will save countless efforts from the programmers who use your language, and they will thank you for it. Many language inventors before you have implemented garbage collection successfully, and you can you.

			Summary

			This chapter showed you a lot about garbage collection. You learned what garbage is, how it comes about, and saw two very different ways to deal with it. The easy way, popularized by some early Lisp systems and early versions of Python, is called reference counting. In reference counting, the allocated objects themselves are made responsible for their collection. This usually works.

			The more difficult form of garbage collection involves finding all the live data in the program and usually moving it to avoid memory fragmentation. Finding the live data is generally recursive, requires traversing stacks to find references in parameters and local variables, and is usually an onerous and low-level task. Many variations on this general idea have been implemented. One of the primary observations, which some garbage collectors exploit, is that most allocated objects are used for only a short time and then become garbage almost immediately.

			Any method you employ to save programmers from having to manage their own memory will likely be greatly appreciated.

			In the next chapter, we will conclude the book with some thoughts on what we have learned.

			Questions

			
					Suppose a specific Unicon value, such as the null value, was particularly common when marking live data. Under what circumstances would it make sense to modify the PostDescrip() macro to check for that value to see if the tests in the Qual() and Pointer() macros can be avoided?

					What would be the advantages and disadvantages of creating a separate heap region for each class type?

					The reclaim() operation of Unicon's mark-and-sweep collector moves all the live non-garbage memory up to the top of the region. Would it be beneficial to modify this collector so that live data did not move?

			

		

	
		
			Chapter 17: Final Thoughts

			After learning so much about building a programming language, you may want to reflect on what you have learned and think about areas you might want to study in more depth. This chapter reflects on the main topics presented in the book and gives you some food for thought by covering the following topics:

			
					Reflecting on what was learned from writing this book

					Deciding where to go from here

					Exploring references for further reading

			

			Let's start with what extra bonuses could be learned from this book.

			Reflecting on what was learned from writing this book

			We have learned some useful things from writing this book. Among other things, we concluded that Java is very suitable for writing compilers at this point. Sure, Andrew Appel might have published Modern Compiler Implementation in Java in 1997, and other compiler writing books in Java exist. These might be great, but many compiler writers won't consider using Java if it means giving up lex and YACC. Using a standard lex/YACC toolchain for Java makes it more interoperable with compiler code bases created for other languages.

			I want to express my appreciation to the Byacc/J maintainer Tomas Hurka for accepting and improving my static import patch to make Byacc/J play more nicely with Jflex and similar tools (including my Merr tool, as covered in Chapter 4, Parsing) that generate yylex() or yyerror() in separate files. Supporting yylex() and yyerror() in separate files obviates the need for stupid workarounds, such as writing a stub yylex() method inside the parser class that turns around and calls yylex() generated in another file. Also, various small improvements to Java after its initial release, such as being able to use String values for switch cases, make a difference in terms of the compiler writer's convenience. At this point, Java's conveniences and advantages, compared to C, almost outweigh its disadvantages, which are many. Let's not pretend that Java's rigid package-and-class directory and file structure and lack of #include or #ifdef mechanisms are without cost.

			I didn't write this book to decide whether Java was good for compilers. I wrote this book to make Unicon great for compilers. This book's small miracle was finding a way to use the same lexical and syntax specifications for both Unicon and Java. I ended up really happy that I was able to use both languages in the same way I would traditionally write a compiler in C. After that great bit of lex/YACC specification sharing, Unicon didn't provide as much added advantage as I had expected compared to Java. Unicon skips many of Java's pain points, is somewhat more concise, and has an easier time with heterogeneous structure types. Ultimately, both languages were great for writing the Jzero compiler, and I'll let you be the judge of which code was more readable and maintainable. Now, let's consider where you might go from here.

			Deciding where to go from here

			You may want to study more advanced work in any number of areas. These include programming language design, bytecode implementation, code optimization, monitoring and debugging program executions, programming environments such as IDEs, and GUI builders. In this section, we will explore just a few of these possibilities in more detail. This section reflects many of my personal biases and priorities.

			Studying programming language design

			It is probably more difficult to identify strong works in programming language design than most of the other technical topics mentioned in this section. Harold Abelson and Gerald Sussman once wrote a book called Structure and Interpretation of Computer Programs, which was widely reputed to be useful. Although it is not exactly a programming language design book, its insights delve into that subject.

			Browsing casually, you may find many general programming language books. Rafael Finkel's Advanced Programming Language Design is one, covering a range of advanced topics. For other sources, language design books and papers written by actual language inventors have the potential to be more real and useful than books written by third parties.

			One of the luminaries of language design, Niklaus Wirth, wrote many influential books. Algorithms and Data Structures, as well as Project Oberon, provide valuable insights regarding language design, as well as implementation. As the designer of several successful languages, including Pascal and Modula-2, Niklaus Wirth has great authority in arguing for simplicity with language designs that protect programmers from themselves. He is a giant on whose shoulders you would do well to stand.

			The Prolog programming language has produced rich literature describing many of the design and implementation problems that have been addressed for that language and logic programming in general. Prolog is important because it features extensive implicit backtracking. One of the important works on Prolog is The Art of Prolog, by Leon Sterling and Ehud Shapiro. Another important contribution is the Byrd box model of functions, in which, instead of understanding a function's public interface as a call followed by a return, a function is seen as having a call, producing a result, and being resumed repeatedly, until an eventual failure.

			The next great programming language family that deserves attention is SmallTalk. SmallTalk did not invent the object-oriented paradigm, but it purified it and popularized it. A summary of some of its design principles was published in Byte magazine in an article titled Design Principles Behind Smalltalk, by Dan Ingalls. While considering object-oriented languages, it is also prudent to consider semi-object-oriented languages such as C++, for which the book Design and Evolution of C++ by Bjarne Stroustrup is of value.

			The dramatic rise in popularity of very high-level languages such as Python and Ruby is one of the most important developments in recent decades. It is depressing how poorly represented many extremely popular languages are overall in the programming language design literature. TCL's inventor, John Ousterhout, wrote two important works on topics related to the design of very high-level languages. Scripting: Higher-Level Programming for the 21st Century is a good paper, albeit reflecting its author's biases. Ousterhout also gave an important invited talk, humorously titled Why Threads Are a Bad Idea, arguing for event-driven programming and synchronous coroutines in preference to threads for most parallel workloads.

			The Icon and Unicon languages are two more heavily documented examples of very high-level languages. The design of the Icon language is described in Griswold's History of the Icon Programming Language. Having looked at some fine options for studying language design further, let's consider options for studying their implementation.

			Learning about implementing interpreters and bytecode machines

			Advanced programming language implementation topics should include implementing all types of interpreters and runtime systems for advanced programming languages with novel semantics. The first very high-level language was Lisp. Lisp inventor John McCarthy is credited with inventing a mathematical notation that could be executed on the computer, one of the first interactive interpreters, and arguably the first just-in-time compiler. Other Lisp implementors have written notable books. One of special note is John Allen's Anatomy of Lisp.

			Any description of bytecode machines would be remiss if it omitted the Pascal bytecode machines. Many of the seminal works on Pascal's implementation are collected in PASCAL: The Language and Its Implementation, edited by David Barron. The UCSD Pascal system that popularized bytecode machines was based on the work of Urs Ammann at ETH Zurich, which is well-represented in Barron's book. Another significant work on Pascal is Steven Pemberton and Martin Daniels' Pascal Implementation: Compiler and Interpreter, which has the virtue of being a publicly available resource.

			A collection of books authored by Adele Goldberg and her collaborators document SmallTalk, a very advanced language, is better than almost any other. This includes SmallTalk-80: The Language and its Implementation.

			In the logic programming world, the Warren Abstract Machine (WAM) is one of the premier means of reasoning about the underlying semantics of Prolog and how to implement it. It is described in An Abstract PROLOG Instruction Set.

			The implementation of Unicon is described in The Implementation of Icon and Unicon: a Compendium. This book combines and updates several previous works on the implementation of the Icon language, plus descriptions of the implementation of various subsystems that have been added to Unicon.

			Acquiring expertise in code optimization

			Code optimization is generally a subject of advanced graduate-level textbooks on compilers. The classic Compilers: Principles, Techniques, and Tools contains substantial documentation on various optimizations. Cooper and Torczon's Engineering a Compiler is a more recent treatment.

			Code optimization for higher-level languages often requires more novel techniques. Various works on optimizing compilers for very high-level languages seem to suggest some unknown law that it takes 20 years for people to figure out how to execute such languages efficiently. For hints of this, I refer to examples such as T: a Dialect of Lisp and The Design and Implementation of the SELF Compiler, which came out 20 years after the Lisp and Smalltalk languages. Of course, how long it takes depends on the size and complexity of the language. I am biased, but one of my favorite works for such languages is the dissertation The implementation of an optimizing compiler for Icon, which is included in the Icon and Unicon implementation compendium. It came out only a dozen or so years after Icon was invented, so maybe more optimizing is possible there.

			Monitoring and debugging program executions

			There are lots of books about debugging end user code, but there are few books on how to write program monitors and debuggers. Part of the problem is that the implementation techniques are low-level and highly platform-dependent, so much of what is written about debugger implementation might only be true for one particular operating system and may not remain true in 5 years.

			Regarding the big picture, you may want to think about how to design your debugger and what interface it should provide to the end user. Besides imitating the interface of mainstream debuggers, you should consider the notion of query-based debugging, as described in Raimondas Lencevicius' Advanced Debugging Methods. You should also consider the notions of relative debugging and delta debugging, which were popularized by the works of David Abramson et al. and Andreas Zeller.

			One of the things you may want to read up on if you want to know more about debugger implementation is executable file formats and, in particular, their debugging symbol information. The Microsoft Windows portable executable format is documented on the Microsoft website.

			One of the most prominent corresponding UNIX formats is the executable linking format (ELF), which stores debugging information in a format called Debugging With Arbitrary Record Formats (DWARF).

			The GNU debugger, known as GDB, is prominent enough that it has a GDB Internals manual, and GDB has frequently been used as the basis upon which research debugging capabilities are developed. https://aarzilli.github.io/debugger-bibliography/ lists a few other debugger implementation resources, mainly oriented toward the Go language.

			For a substantial discussion of the classic program execution monitoring literature, you can consult Monitoring Program Execution: A Survey, or the related work chapter in Program Monitoring and Visualization.

			Designing and implementing IDEs and GUI builders

			A major element in the success of programming languages is the extent to which their programming environment supports writing and debugging code. This book only briefly touches on these topics, and you might want to explore more on how IDEs and their user interface builders are implemented.

			There is good news and bad news here. The bad news is that almost no one has written a build your own integrated development environment book. If you were going to build one from scratch, you might start by teaching yourself how to write a text editor, and then add other features. In that case, you might wish to consult The Craft of Text Editing by Craig Finseth. That book was written by a person who studied how the Emacs text editor was implemented for his Bachelor's thesis. There is also a chapter titled GNU Emacs Internals, written as an appendix to the GNU Emacs Manual.

			The good news is that almost no one must write the text editor portion of an integrated development environment anymore. Each of the major graphical computing platforms comes with a user interface library that includes a text editor as one of its widgets. You can assemble the interface of an integrated development environment using a graphical interface builder tool. Unfortunately, graphic user interface libraries are usually non-portable and short-lived, which means that work spent programming on them is almost doomed to be discarded within a decade or two. It takes extraordinary effort to write code that runs on all platforms and lives forever in internet years.

			So, this section should focus on multi-platform portable graphical user interface libraries and how to use them to write integrated development environments and user interface builder tools. Java is one of the most portable languages, and even with a few false starts, it is still likely that some of the best and most multiplatform portable user interface libraries might be Java libraries.

			Exploring references for further reading

			Here is a detailed bibliography of the works we discussed in the previous section. Within each subsection, the works are listed alphabetically by author.

			Studying programming language design

			In the area of programming language design, you may find the following items to be of interest:

			
					Harold Abelson and Gerald Sussman, Structure and Interpretation of Computer Programs, Second edition, MIT Press, 1996.

					Rafael Finkel, Advanced Programming Language Design, Pearson 1995.

					Ralph Griswold, History of the Icon Programming Language, Proceedings of HOPL-II, ACM SIGPLAN Notices 28:3 March 1993, pages 53–68.

					Daniel H.H. Ingalls, Design Principles Behind Smalltalk, Byte Magazine August 1981, pages 286–298.

					John Ousterhout, Scripting: Higher-Level Programming for the 21st Century, IEEE Computer 31:3, March 1998, pages 23–30.

					John Ousterhout, Why Threads Are a Bad Idea (for most purposes), Invited talk, USENIX Technical Conference, September 1995 (available at https://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf).

					Leon Sterling and Ehud Shapiro, The Art of Prolog, MIT Press, 1986.

					Bjarne Stroustrup, The Design and Evolution of C++, Addison-Wesley, 1994.

					Niklaus Wirth, Algorithms and Data Structures, Prentice Hall 1985.

					Niklaus Wirth, Project Oberon: The Design of an Operating System and Compiler, Addison Wesley/ACM Press 1992.

			

			This is a tiny sample of the best works in a rich body of literature, and it must bear many grievous omissions. Now, let's look at a similar list for implementation.

			Learning about implementing interpreters and bytecode machines

			In the area of interpreter and bytecode machine implementation, you may find the following items to be of interest:

			
					John Allen, Anatomy of Lisp, McGraw Hill, 1978.

					Urs Ammann, On Code Generation in a PASCAL Compiler, Software Practice and Experience 7(3), 1977, pages 391–423.

					David W. Barron, ed., PASCAL-The Language and Its Implementation, John Wiley, 1981.

					Adele Goldberg, David Robson, SmallTalk-80: The Language and its Implementation, Addison-Wesley, 1983.

					Clinton Jeffery and Don Ward, eds., The Implementation of Icon and Unicon: a Compendium, Unicon Project, 2020 (available at http://unicon.org/book/ib.pdf).

					A. B. Vijay Kumar, Supercharge Your Applications with GraalVM, Packt, 2021.

					Steven Pemberton and Martin Daniels, Pascal Implementation: The P4 Compiler and Interpreter, Ellis Horwood, 1982 (available at https://homepages.cwi.nl/~steven/pascal/).

					David Warren, An Abstract PROLOG Instruction Set, Technical Note 309, SRI International, 1983 (available at http://www.ai.sri.com/pubs/files/641.pdf).

			

			Now, let's look at a similar list for native code and code optimization.

			Acquiring expertise in native code and code optimization

			Regarding native code and code optimization, you may find the following items to be of interest:

			
					Al Aho, Monica Lam, Ravi Sethi, and Jeffrey Ullman, Compilers: Principles Techniques and Tools, Second edition, Addison Wesley, 2006.

					Craig Chambers, The Design and Implementation of the SELF Compiler, an Optimizing Compiler for Object-Oriented Programming Languages, Stanford dissertation, 1992.

					Keith Cooper and Linda Torczon, Engineering a Compiler, Second edition, Morgan Kaufmann, 2011.

					Chris Lattner and Vikram Adve, LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation, in Proceedings of the 2004 International Symposium on Code Generation and Optimization (CGO'04), Palo Alto, California, March 2004. Available at https://llvm.org/pubs/2004-01-30-CGO-LLVM.html

					Jonathan Rees and Norman Adams, T: a dialect of Lisp, Proceedings of the 1982 ACM symposium on LISP and functional programming, pages 114–122.

					Kenneth Walker, The implementation of an optimizing compiler for Icon, Arizona dissertation, 1991.

			

			After optimization, you might want to look further at the highly specialized area of program execution monitoring and debugging.

			Monitoring and debugging program executions

			In the area of monitoring and debugging, you may find the following items to be of interest:

			
					David Abramson, Ian Foster, John Michalakes, and Roc Sosic, Relative Debugging: A new methodology for debugging scientific applications, Communications of the ACM 39(11), November 1996, pages 69–77.

					DWARF Debugging Information Format Committee, DWARF Debugging Information Format Version 5 (http://www.dwarfstd.org), 2017.

					John Gilmore and Stan Shebs, GDB Internals, Cygnus Solutions, 1999. The most recent copy is in wiki format and available at https://sourceware.org/gdb/wiki/Internals.

					Clinton Jeffery, Program Monitoring and Visualization, Springer, 1999.

					Raimondas Lencevicius, Advanced Debugging Methods, Kluwer Academic Publishers, Boston/Dordrecht/London, 2000.

					Microsoft, PE Format, available at https://docs.microsoft.com/en-us/windows/win32/debug/pe-format.

					Bernd Plattner and J. Nievergelt, Monitoring Program Execution: A Survey. IEEE Computer, Vol. 14. November 1981, pages 76–93.

					Andreas Zeller, Why Programs Fail: A Guide to Systematic Debugging, Second edition, Morgan Kaufmann, 2009.

			

			Along with monitoring and debugging, it would be useful to consider integrated programming tools for your language.

			Designing and implementing IDEs and GUI builders

			In the area of development environments and user interface builders, you may find the following items to be of interest:

			
					Craig Finseth, The Craft of Text Editing: Emacs for the Modern World. Springer, 1990.

					Bill Lewis, Dan LaLiberte, Richard Stallman, the GNU Manual Group, et al., GNU Emacs Internals, Appendix E within the GNU Emacs Lisp Reference Manual, GNU Project, 1990–2021, pages 1,208–1,250.

			

			Honestly, I wish I had more good reading to recommend in the area of IDEs and GUI builders. If you know of good works on this subject, send me your suggestions. Now, let's wrap things up with a summary.

			Summary

			This book showed you a thing or two about building programming languages. We did this by showing you an implementation of a toy language called Jzero. However, Jzero is not what is interesting; what is interesting is the tools and techniques used in its implementation. We even implemented it twice!

			If you thought that maybe programming language design and implementation was a swimming pool to enjoy, your new conclusion might be that it is more like an ocean. If so, the tools that have been placed at your disposal in this book, including versions of flex and YACC for use with Unicon or Java, are a luxury cruise liner capable of sailing you about on that ocean to wherever you want to go.

			The first high-level language compiler is said to have taken 18 years to create. Perhaps now it is a task of a few months, although it is still an open-ended task where you can spend as much time as you can spare making improvements to any compiler or interpreter that you care to write.

			The holy grail of compilers has long been a high-level declarative specification of the code generation problem, to match the declarative specification of lexical and syntax rules. Despite the earnest work of many people far smarter than me, this hoped-for breakthrough has been resistant. In its place, several crutches have proliferated. The very notion of a bytecode machine implemented in a portable system language such as C has made many languages portable to a myriad of processors… once someone ports a C compiler to them. This has become part of the mainstream due to technologies such as the .NET CLR and the JVM and GraalVM Java bytecode machines. Similarly, transpilers that generate code in the form of source code to another high-level language (such as C) have become widespread.

			The third form of increased portability that's available to programming language inventors is the proliferation of intermediate-level target instruction formats such as LLVM. All of these widely used means of making your programming language portable dodge the common bullet of generating code for a brand new CPU. Perhaps the fourth form of increased portability has come from the fact that few new CPU instruction sets are generated at this point, as the industry has collectively invested so much in the small number of hardware instruction sets for which optimizing code generators are available.

			Thanks for reading this book. I hope that despite its many shortcomings, you were able to enjoy my book and you found it useful. I look forward to seeing what new programming languages you invent in the future!

		

	
		
			Section 4: Appendix

			This section will include materials that will help the readers to understand the main text.

			This section comprises the following chapter:

			
					Appendix, Unicon Essentials

			

		

	
		
			Appendix: Unicon Essentials

			This appendix presents enough of the Unicon language to help you understand the Unicon code examples in this book. This appendix is intended for skilled programmers and does not spend time introducing basic programming concepts. Instead, it presents Unicon while focusing on the interesting or unusual features compared to mainstream languages.

			If you know Java, then most of the Unicon code in this book can be understood by looking at the corresponding Java code to see what is going on. You can look up whatever is not self-evident or explained by Java comparison here. This appendix is not a complete Unicon language reference; for that, see Appendix A of Programming with Unicon, which is available in standalone public domain form in Unicon Technical Report #8. Both Programming with Unicon and Unicon Technical Report #8 are hosted at unicon.org.

			Syntactic Shorthand

			The notation in this appendix uses square brackets, [], to denote optional features and asterisks, *, to denote features that can occur zero or more times. When square brackets or asterisks are highlighted, this means they are occurring in the Unicon code rather than as optional or repeated features.

			This appendix covers the following topics:

			
					Running Unicon

					Using Unicon's declarations and data types

					Evaluating expressions

					Debugging and environmental issues

					Function mini-reference

					Selected keywords

			

			To begin, let's provide an expanded discussion of how to run Unicon programs.

			Running Unicon

			Unicon is invoked to compile and run either from the command line or from within an IDE. Unicon source files end in the.icn extension, while Unicon object files end in the.u extension. Here are some example invocations of the Unicon translator:

			
					unicon mainname [ filename(s) ]   Compile and link mainname.icn and other filenames to form an executable named mainname.exe on Windows or just mainname on most other platforms.


					unicon -o exename [ filename(s) ] Compile and link an executable named exename, or on Windows, exename.exe.


					unicon -c filename(s)             Compile .icn files into .u files but do not link them.


					unicon -u filename(s)             Warn about undeclared variables.


					unicon -version                   Print the Unicon version.


					unicon -features                  Print the features of this Unicon build.


					unicon foo -x                     Compile and run foo.icn in one step.


			

			You can read a longer description on how to run Unicon on Windows at http://unicon.org/utr/utr7.html. The full list of command-line options can be seen at http://unicon.org/utr/utr11.html.

			If you don't like working from the command line, you may want to try out the Unicon IDE called ui. The ui program has options to compile and execute programs from inside a graphical interface. The following screenshot shows an example of this:
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			Figure A.1 – A screenshot showing ui, the Unicon IDE

			The creators of Unicon use many different programming environments, and the Unicon IDE is more of a technology demo than a production tool, but you may find it useful, if only for its beloved Help menu. It is written in about 10,000 lines of Unicon, not counting the GUI class libraries. Now, let's consider the kind of declarations that are allowed in Unicon and what data types it supports.

			Using Unicon's declarations and data types

			You can't write a Unicon program without declaring things. Declaring something is the act of associating a name, visible within some scope and lifetime, with some chunk of code or memory capable of holding a value. Next, let's learn how different program components can be declared.

			Declaring different kinds of program components

			Unicon programs consist of one or more procedures beginning with main(). Program structure often also includes classes. Unicon distinguishes user-defined procedures from functions that are built into the language. The following patterns show the syntax structure for the primary declarations of bodies of code in Unicon's procedures and methods.

			Declare procedure:

			procedure X ( params ) [locals]* [initial] [exprs]* end

			Declare method:

			method X ( params ) [locals]* [initial] [exprs]* end

			A procedure or method has a name, parameters, and a body ending with the word end. The body may optionally start with local and static declarations and an initial section, followed by a sequence of expressions. Methods may only be declared inside classes, within which they have access to an extra set of names of class fields and other methods. In Unicon, there are no static methods, and all methods are public.

			Declare parameters:

			[ var [ : expr ]  [ , var [ : expr] ]* [ , variable [] ] ]

			Declare field names:

			[ var  [ , var  ]* ]

			Parameters have zero or more names, separated by commas. Each parameter may optionally include a colon, followed by a default value or the name of a type coercion function. The final parameter may be followed by square brackets, indicating that a variable number of arguments will be passed in as a list. Parameters are used for procedures and methods, including initially methods. The field names that are declared in the record and class declarations are simpler than a parameter list, consisting of just a comma-separated list of identifiers.

			Declare globals:

			global variable [ , variable ]*                                                               

			Declare locals:

			local variable [ := expr ] [ , variable [ := expr ]]*                                     

			Declare statics:

			static variable [ := expr ] [ , variable [ := expr ]]*                                   

			Variables may be introduced with a comma-separated list of names in one of the three scopes: global, local, or static. Local names can have an assignment to initialize the variable. Global variables live for the entirety of the program's execution. Local variables live for the duration of a single procedure or method call. Static variables live for the entirety of the program's execution, and one copy of each static variable is shared by all the calls to that procedure or method.

			Declare record type:

			record R ( fields )

			Declare class:

			class C [ : super ]* ( fields ) [ methods ]* [ initially ] end

			A record or class is declared by a name, followed by a comma-separated list of field names, surrounded by parentheses. The record or class name declares a global variable that holds a constructor function that creates instances. A class may also have a colon-separated list of superclass names. A class declaration contains zero or more methods and an optional initially section, followed by a reserved word end.

			Declare initially method:

			initially [ ( params) ] [locals]* [initial] [exprs]* 

			An initially section is a special, optional initialization method that's called automatically by the class constructor. If an initially section is present, it must be after all other methods, immediately before the end of the class. It is not preceded by the word method and its parameter list is optional.

			Reference library modules:

			link module [ , module ]*

			Unicon programs may include multiple files on the command line, but modules that are used by a file may also be declared in the source code. Modules may either be string constant filenames or identifiers that are used as filenames.

			Use package:

			import package [ , package ]*

			Unicon's global namespace may be composed of multiple named packages, which can be imported by supplying the package name(s). Now, let's look at Unicon's data types.

			Using atomic data types

			Unicon has a rich set of data types. Atomic types are immutable, while structure types are mutable. They appear directly in the source code as literal constant values or are computed and introduced into the program by operators or functions.

			Numeric

			Integers are signed arbitrary precision whole numbers. Integers are the most common type and work in an obvious way. There are many literal formats in bases 2 through 36, and a set of suffixes such as K and M multiply numbers by thousands or millions. For example, the integer literal 4G indicates a value of four billion. Integers in Unicon mostly just work without us paying much attention. All the usual arithmetic operators are provided, along with a handy exponentiation operator, x^y. The interesting unary operator, ?n, produces a random number between 1 and n. The unary operator, !n, generates integers from 1 to n.

			The real data type provides floating-point approximations of numbers. Real constants must contain either a decimal, an exponent, or both. It is kind of amazing to think how much trouble real values used to cause programmers, and how they are now taken for granted: real values are the same size as 64-bit integers, although the binary format is different. One of the challenges you occasionally face is converting back and forth between integers and reals. Conversion is performed automatically as needed, but it does take time if you do it repeatedly and unnecessarily.

			Textual

			Unicon has multiple built-in types for manipulating text, including strings, character sets (csets), and an amazing pattern type borrowed from SNOBOL4. This book uses strings and csets but uses Flex and Yacc instead of patterns because they are more portable. For this reason, we will not present the pattern type or its regular expression-based literal format.

			Strings are ordered sequences of zero or more characters. A string literal is surrounded by double quotes and may include escape characters. The following table shows these escape sequences:
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			Table A.1 – String and cset escape characters

			Csets are unordered collections of zero or more non-duplicating characters. A cset literal is surrounded by single quotes and may include escape characters. Unicon has many cset keyword constants for the predefined character sets that are found as macros or test functions in other languages. It turns out that having a full set data type for characters is useful at times when you're performing text processing. The cset type supports the usual set operators, such as c1++c2, which computes a union, or c1--c2 for characters in c1 but not in c2. Now, let's move on and look at Unicon's structure types.

			Organizing multiple values using structure types

			Structure types are values that are composed of multiple values. Structure types are mutable, which means that values can be modified or replaced. They are generally created at runtime by an action that allocates memory and initializes it from their component values. Many structure types are containers that allow values to be inserted or deleted. The first structure type to consider is the class, which introduces a user-defined structure type.

			Classes

			If your data is not numeric and not textual, you probably want to write a class for it in Unicon. Each Unicon class is a new data type. Class data types are used for constructing things from the application domain. They are usually used for things that contain several pieces of information, governed by complex behavior.

			Unicon defines multiple inheritance semantics in an interesting way called closure-based inheritance, which allows cycles in the inheritance graph. The fact that Unicon classes are all public and all virtual keeps things simpler and focuses on expressive power rather than on protecting programmers from themselves. Now, let's look at Unicon's other structure types, which are often used to provide the associations between different class types. The first built-in structure type to consider is the list type.

			Lists

			I presented classes before lists just to tease you a bit. Lists are the most common structure type by far. This book only showed a small inkling of what lists can do. Unicon lists are sort of a cross between a linked list and an array that can grow and shrink and be used as a stack, queue, or deque. Internally and invisibly, the list type supports different representations for arrays of integers and arrays of real numbers that optimize their space representation compatibly with C.

			In addition to being used as arrays or stacks and such, lists are commonly used as glue data structures within classes to implement aggregation and multiplicity. One of the few warnings for mainstream programmers about Unicon lists is that their first subscript is 1, not 0. Let's compare the list type with the amazingly useful table data type.

			Tables

			A table, which is sometimes called an associative array, is an extremely flexible structure that maps indexes of arbitrary types onto values of arbitrary types. A table is named after its implementation, which is usually a hash table. A table feels like an array whose subscripts are not constrained to be contiguous integers starting from 1. A table's keys may be non-contiguous, sparse, negative, or they may be strings or any other types.

			Strings and integers are almost the only types that are used as hash keys. Sure, you can use real numbers, but round-off errors make subsequent lookups tricky. And you can use csets as table keys; it is just rare. If you use other structure values as keys in a table, everything works, but you don't compute their hash from their contents, because the contents are mutable.

			Files

			Unicon's file type is what you would expect. Files generally access persistent storage managed by the operating system. There are handy functions for processing lines at a time. Most forms of input and output are extensions of the file type, so file functions are applied to network connections, graphics windows, and so on.

			Other types

			Unicon has a host of other powerful built-in types for things such as windows, network connections, and threads. Unlike some languages, it does not have a global interpreter lock to slow its thread concurrency down. Given values in this rich set of data types, the bodies of Unicon programs are assembled into computations using various expressions.

			Evaluating expressions

			Unicon expressions are goal-directed. When they can, they compute a result, and this is called success. Expressions that have no result are said to fail. Failure will generally prevent a surrounding expression from being performed, and it may trigger backtracking into an earlier part of the expression if there is one that can produce additional results.

			This goal-directed evaluation semantics eliminates the need for a Boolean data type, which is usually found in other languages. It also dramatically increases the expressive power of the language, eliminating a lot of tedious checking for sentinel values or writing explicit loops to search for things that can be found by goal-directed evaluation and backtracking. It takes time to get used to this feature, but once mastered, code is shorter and quicker to write.

			Forming basic expressions using operators

			Many of Unicon's operators will be familiar from other languages, while others are unique. Here is a summary of Unicon's operators. When chained together, the execution order of operators is determined by their precedence, which is generally as found in mainstream languages. Unary operators have higher precedence than binary, multiplication comes before addition, and so forth. When in doubt, force precedence using parentheses.

			Force precedence:

			( exp )

			Parentheses, with no expression in front of them, just force operator precedence and otherwise have no effect.

			Size:

			* x : int

			A unary asterisk is a size operator that returns how many elements are in a string, cset, queue, or structure, x.

			Is-null:

			/ x

			Is-nonnull:

			\ x

			These predicates just produce x if the test is true, but if the test is false, then they fail.

			Negate:

			- num

			Unary plus:

			+ num 

			To negate a number is to flip its sign from positive to negative or vice versa. A unary plus operator coerces the operand into becoming a number but does not change its numeric value.

			Negate evaluation result:

			not exp

			A not converts an expression, exp's, success into a failure and vice versa. When it succeeds, the result that's produced is a null value.

			Tabmat:

			= str

			When the operand is a string, the unary equals is like tab(match(s)).

			Binary arithmetic:

			num1 ^ num2

			num1 % num2 

			num1 * num2    num1 + num2 

			num1 / num2    num1 - num2

			The usual binary numeric operators, including caret for exponentiation, may be followed immediately by a := to perform an augmented assignment; for example, x +:= 1 to add one to x. Almost all binary operators can be used with := to perform augmented assignment.

			Concatenate:

			str1 || str2

			List concatenate:

			lst1 ||| lst2

			To concatenate is to attach the first and second operand, in order, and produce the result.

			Assign a value:

			variable := expr

			In an assignment, the value on the right is stored in the variable on the left-hand side.

			Comparison:

			num1 = num2

			str1 == str2num1 ~= num2

			str1 ~== str2num1 < num2

			str1 << str2num1 <= num2

			str1 <<= str2num1 > num2

			str1 >> str2num1 >= num2

			str1 >>= str2ex1 === ex2

			ex1 ~=== ex2

			The usual numeric comparison operators are provided, along with string versions that generally repeat the operator character. The tilde means NOT. The equivalent operator, ===, and not-equivalent operator, ~===, do not do any type conversion, while the others generally coerce operands to numeric or string types as needed. Comparison operators result in their second operand unless they fail.

			And:

			ex1 & ex2                                                                                                                                          

			A binary ampersand operator tests ex1 and if it succeeds, the result of the whole expression is the result of ex2. If ex1 fails, ex2 is not evaluated. 

			Make an empty list:

			[ ]

			Make an initialized list:

			[ ex [ , ex ]* ]

			Make an expression results list:

			[: ex :]

			Make an initialized table:

			[ ex : ex [ ; ex : ex ]* ]                                                          

			When brackets enclose zero or more elements, lists and tables are created. Initializer elements are separated by commas. Table elements consist of key-value pairs.

			Select subelement:

			ex1 [ ex2 [ , ex]* ]  

			Slice:

			ex1 [ ex2 : ex3 ]      

			Plus slice:

			ex1 [ ex2 +: ex3 ]     

			Minus slice:

			ex1 [ ex2 -: ex3 ]    

			For lists and strings, when brackets have an expression to their left, an element or slice of that expression is taken. The L[1,2] expression is equivalent to L[1][2]. Regular element referencing picks out an element from a value, such as a string or a list. The element may be read and used in a surrounding expression or written into and replaced with an assignment. Subscripts normally start with a 1 for the first element. List and string indexes fail on out-of-range indices. Slicing is defined for both lists and strings. A string slice may be assigned if the original string is a variable. A list slice creates a list that contains a copy of the selected elements of the base list.

			The subscripts for tables are keys and may be of any type. Table indexes result in the table default value when an unknown key is looked up. Records accept both strings and integer subscripts as if they were both tables and lists.

			Access field:

			x . name

			The dot operator picks the name field out of a record or class instance, x. 

			Invoking procedures, functions, and methods

			One of the most fundamental abstractions in all programming is the act of asking another piece of code, somewhere else, to compute a value that is needed in an expression. In Unicon, you can invoke, or call, a user-written procedure, a built-in function, or a class method by following its name or reference with parentheses while enclosing zero or more values.

			Call:

			f ( [expr1 [ , [ [image: ] ] ]* ] ) 

			Method call:

			object . method ( [expr1 [ , [ [image: ] ] ]* ] ) 

			A procedure or function is called by following it with parentheses enclosing zero or more argument expressions, separated by commas. Omitting an argument results in passing a null value in that position. Execution moves to that procedure or function and comes back when a result is produced or no result is possible. A method is called by accessing the method name through an object. 

			Finish call:

			return [ expr ]

			return produces expr as the result of a method or procedure. The call cannot resume. If the result, expr, is not provided, the expression returns null.

			Produce a result:

			suspend [ expr ]

			suspend produces expr as the result of a method or procedure. The call will be resumed to try for another result if the expression where the call was made fails. If the result, expr, is not provided, the expression returns null.

			End call without result:

			fail

			fail terminates a procedure or method call without a result. The call may not be resumed.

			Iterating and selecting what and how to execute

			Several Unicon control structures cover traditional control flow operations. These include sequencing, looping, and selecting pieces of code to execute.

			Execute in sequence:

			{ expr1 ; expr2 }

			Curly brackets denote expressions to be evaluated in sequence. Semi-colons terminate each expression in the sequence. Unicon features automatic semi-colon insertion, so semi-colons are rarely needed except for when two or more expressions are on the same line.

			If-then:

			if ex1 then ex2 [else ex3]

			if executes ex2 when ex1 succeeds; otherwise, it evaluates to ex3.

			Evaluate until it fails:

			while ex1 [ do ex2 ] 

			A while loop iterates until ex1 fails.

			Consume a generator:

			every ex1 [do ex2]

			An every loop just fails no matter what. This forces all the results from ex1. This thing eats generators.

			Loop body:

			do ex

			do is usually optional and provides the body to execute on the iterations of a loop.

			Evaluate forever:

			repeat ex

			The repeat expression is a loop that reevaluates ex over and over. Among other ways, ex may exit the loop using break, return, fail, or by halting program execution.

			Get out of loop:

			break [ ex ]

			break terminates a loop in the current procedure or method – always the nearest one. The ex expression is evaluated after the loop is terminated. You can write break break to get out of two loops, break break break to get out of three loops, and so on.

			Scan string:

			str ? ex

			This control structure executes ex, setting &subject to str. The &pos keyword is started at 1. String scanning can be nested. It has a dynamic scope.

			Execute one branch:

			case ex of { [ ex1 : ex2 ] * ; [default : exN ] }

			case evaluates an expression and compares the result against a sequence of case branches, tested in order. If the expression is equal to the definition of ===, which is to say without type conversions, to one of the expressions to the left of a colon, the expression on the right of that colon is executed and the case is completed.

			Run on first call:

			initial ex

			initial evaluates an expression at the front of a procedure or method, but only the first time that procedure or method is called.

			Generators

			Some expressions in Unicon can produce multiple results. Generators are infectious in that if a generator is resumed for a second result, or subsequent results, a surrounding expression may be re-executed and may end up producing multiple results for its enclosing expression. For example, consider the ord("="|"+"|"-") call. The ord(s) function, which returns the ASCII code for s, is not a generator, but if its parameter expression is a generator, the whole ord() expression is a generator. In this case, "="|"+"|"-" is a generator that can produce three results. If the enclosing expression needs all of them, ord() may get called three times and yield three results to an enclosing expression. As another example of this very good feature, consider the following expression:

			\kids[1|2].first | genlabel()

			This generator can produce the .first field from either kids[1] or kids[2], provided that kids is not null and not empty, but if those did not occur or did not satisfy the surrounding expression, this expression would call genlabel() and produce its result(s) if it has any.

			Alternation:

			ex1 | ex2

			An alternation generates results from ex1 and then ex2.

			Generate components:

			! ex : any*

			A unary exclamation operator produces constituent pieces of a value in some order. Integers are generated by counting from 1 to the number. Strings, csets, lists, records, and objects are generated by producing their values one at a time in order. Tables and sets behave similarly but the order is undefined. Files generate their contents a line at a time.

			Finite numeric sequence:

			ex1 to ex2 [by ex3]

			to generates numbers from ex1 to ex2. The default step is 1, but if by is provided, the sequence steps by that amount each time.

			Debugging and environmental issues

			This section contains information you may find useful when programming in Unicon. This includes a brief introduction to the Unicon debugger, some environment variables that you can set to modify Unicon runtime behavior, and a simple preprocessor that Unicon provides.

			Learning the basics of the UDB debugger

			Unicon's source-level debugger is named udb and is described in UTR 10, which can be read at http://unicon.org/utr/utr10.html. udb's command set is based on that of gdb, which lives at https://www.gnu.org/software/gdb/.

			When you run udb, you provide the program to debug as a command-line argument. Alternatively, from within the debugger, you can run the load command to specify the program to debug. The debugger is normally exited using the quit (or q) command.

			The udb prompt recognizes a lot of commands, often with an abbreviated form available. Perhaps after the quit command, the next most important command is help (or h).

			The next most important command is the run (or r) command. It can be used to restart the program's execution from the beginning.

			To set a breakpoint at a line number or procedure, you can use the break (or b) command, followed by the line number or procedure name. When execution hits that location, you will return to the udb command prompt. At that point, you can use step (or s) to execute one line at a time, next (or n) to run to the next line while skipping over any procedures or methods called, print (or p) to get the values of variables, or cont (or c) to continue execution at full speed.

			Environment variables

			Several environment variables control or modify the behavior of Unicon programs or the Unicon compiler. The most important of these are summarized here. By default, Unicon's block region heap and string region heap are sized proportional to physical memory, but you can set several of the runtime memory sizes explicitly:
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			Table A.2 – Environment variables and their descriptions

			IPATH is also used to look for superclasses and package imports. Now, let's look at Unicon's preprocessor, which is a bit like a simplified C preprocessor.

			Preprocessor

			The Unicon preprocessor performs file includes and replaces symbolic constants with values. The purpose of the preprocessor is to allow chunks of code to be enabled or disabled at compile time. This facilitates, for example, different code for different operating systems.

			Preprocessor commands

			The following preprocessor directives are lines beginning with a dollar sign:

			
					$define sym textThe symbol, sym, is replaced with text. There are no macro parameters in this construct.


					$include filenamThe file named filenam is incorporated into the source code where $include was found.


					$ifdef sym$ifndef sym
$else
$endif
Lines inside $ifdef are passed along to the compiler if sym was introduced by a previous $define. $ifndef passes along source code if a symbol was not defined. These two directives take an optional $else, followed by more code, and are terminated by $endif.


					$line num [ filenam ]The next line should be reported as starting at line num from the filenam file.


					$undef symThe definition, sym, is erased. Subsequent occurrences are not replaced by anything.


			

			Built-in macro definitions

			These symbols identify platforms and features that may be present and affect language capabilities. The built-in macro definitions include the following:
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			Table A.3 – Built-in macros

			These symbols, which you can check at compile time using $ifdef, have corresponding feature strings that can be checked at runtime using &features. For details, you can look at Programming with Unicon. Now, let's look at Unicon's built-in functions.

			Function mini-reference

			This section describes a subset of Unicon's built-in functions deemed most likely to be relevant to programming language implementers. For a full list, see Appendix A of Programming with Unicon. The parameters' required types in this section are given by their names. The names c or cs indicate a character set. The names s or str indicate a string. The names i or j indicate integers. A name such as x or any indicates that the parameter may be of any type. Such names may be suffixed with a number to make them distinct from other parameters of the same type. The colons and types after the parameters indicate return types, along with the number of returned values. Normally, a function will have exactly one return value. A question mark indicates that the function is a predicate that can fail with zero or one return value. An asterisk indicates that the function is a generator with zero or more return values.

			Many functions also have default values for parameters, indicated in the reference using a colon and a value after their name. Functions with parameters ending in s, i, and j are string analysis functions. String analysis functions' last three parameters default to &subject, &pos, and 0. The i and j parameters are swapped if i is greater than j, so it does not matter in what order the indices are supplied, and analysis will always be conducted from left to right:

			
					abs(n) : numabs(n) returns -n if n is negative. Otherwise, it returns n.


					any(cs, s, i, j) : integer?any(cs,s,i,j) produces i+1 when s[i] is a member of cset, cs, and fails otherwise.


					bal(c1:&cset, c2:'(', c3:')', s, i, j) : integer*bal(c1,c2,c3,str,i1,i2) produces indices in str where a member of c1 in str[i:j] is balanced as far as opener characters in c2 and closer characters in c3.


					char(i) : strchar(i) returns the one-letter string encoding of i.


					close(f) : fileclose(f) releases operating system resources associated with f and closes it.


					copy(any) : anycopy(y) produces y. For structures, it returns a physical copy. For nested structures, the copy is one level deep.


					delay(i) : nulldelay(i) waits for at least the specified amount of milliseconds.


					delete(y1, y2, …) : y1delete(y1,y2) removes values at the key location, y2, and subsequent elements from the y1 structure.


					exit(i:0) :exit(i) quits the program run and produces i as an exit status.


					find(str1, str2, i, j) : int*find(str1,str2,i1,i2) produces indices where str1 occurs in str2, considering only indices between i1 and i2.


					getenv(str) : str?getenv(str1) produces a value named str1 from the environment.


					iand(i1, i2) : intiand(i1,i2) returns i1 bitwise-ANDed with i2.


					icom(i) : inticom(i) flips the ones to zeros and the zeros to ones.


					image(x) : strimage(x) produces a string that represents the contents of x.


					insert(x1, x2, x3:&null) : x1insert(x1,x2,x3) places x2 in the x1 structure. If x1 is a list, x2 is a position; otherwise, it is a key. If x1 is a table, the x2 key is associated with the x3 value. insert() produces the structure.


					integer(x) : int?integer(x) coerces x into the integer type. It fails when conversion is not possible.


					ior(i1, i2) : intior(i1,i2) returns i1 bitwise-ORed with i2.


					ishift(i1, i2) : intishift(i1,i2) shifts i2 bit positions over within i1 and returns the result. The shift goes right if i2<0, or left if i2>0. i2 zeroes come in in the opposite direction of the shift.


					ixor(i1, i2) : intixor(i1,i2) returns i1 bitwise-exclusive-ORed with i2.


					kbhit() : ?kbhit() returns whether the keyboard has been pressed or not.


					key(y) : any*key(y) produces keys/indices with which a structure's y elements may be accessed.


					list(i,x) : listlist(i,x) constructs a list with x elements that each contain x. x is not copied for each element of the list, so you may have to allocate them all separately if you want a list of lists, for example.


					many(cs,str,i,j) : int?many(cs,str,i,j) produces the position in str that follows as many contiguous members of cs within str[i:j] as possible.


					map(str1,str2,str3) : strmap(str1,str2,str3) returns str1 transformed so that where str1's characters may be found in str2, they are replaced with the corresponding characters in str3. str2 and str3 must be of the same length.


					match(str, s, i, j) : int?match(str1,s,i,j) returns i+*str1 when str1==s[i+:*str1]. The function fails when there is no match.


					max(num,…) : nummax(…) produces the numeric maximum of its parameters.


					member(y,…) : y?member(y,…) produces y when the other parameters are in y; otherwise, it fails.


					min(num,…) : nummin(…) produces the numeric minimum of its parameters.


					move(i) : strmove(i) increments or decrements &pos by i and returns a substring from the old to the new position within &subject. The position is reset if this function is resumed.


					open(str1, str2, ...) : file?open(str1,str2,…) asks the operating system to open the str1 filename using the str2 mode. Subsequent arguments are attributes that may affect special files. The function recognizes the following modes, which are given in the str2 argument: 
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			Table A.4 – Modes and their descriptions

			
					ord(s) : integerord(s) returns the ordinal (for example, ASCII code) of a one-letter string, s.


					pop(L) : any?pop(L) returns a value from the front of L and removes it from the list.


					pos(i) : int?pos(i) returns whether string scanning is at the location, i.


					proc(any, i:1) : procedure?proc(str,i) produces a procedure that is called s. If i is 0, the built-in function named s is produced if there is one by that name.


					pull(L, i:1) : any?pull(L) returns the last element of L and removes it. It can remove i elements.


					push(L, y, ...) : listpush(L,y1,…,yN) pushes one or more elements onto the list, L, at the front. push() returns its first parameter, with new values added.


					read(f:&input) : str?read(f) inputs the next line of f and returns it without the newline.


					reads(f:&input, i:1) : str?reads(f,i) inputs i bytes from the file, f, failing if no more bytes are there. reads() returns with available input, even if it is less than i bytes. When -1 bytes are requested, reads() returns a string that contains all the remaining bytes in the file.


					ready(f:&input, i:0) : str?ready(f,i) inputs i bytes from the file, f, usually a network connection. It returns without blocking and if that means less than i bytes are available, so be it. It fails when no input has arrived yet.


					real(any) : real?real(x) coerces x into its floating-point equivalent. It fails when no coercion is possible.


					remove(str) : ?remove(str) deletes the file named str from the filesystem.


					rename(str1, str2) : ?rename(str1,str2) changes the str1 file's name to str2.


					repl(y, i) : xrepl(x,i) produces i concatenated instances of x.


					reverse(y) : yreverse(y) produces a list or string that is in the opposite order of y.


					rmdir(str) : ?rmdir(str) deletes the folder with the name str or fails if it cannot be deleted.


					serial(y) : int?serial(y) produces an identifying integer for the structure, y. These numbers are assigned when structures are allocated. Separate counters are used for each structure type. The identifying integer provides the chronological order in which instances of each type were allocated.


					set(y, …) : setset() allocates a set. Parameters are the initial values of the new set, except if they are lists. Here, the parameters' contents are the initial values of the new set.


					sort(y, i:1) : listsort() allocates a list in which elements of y are sorted. When tables are sorted, keys are sorted when i is one or three, and values are sorted when i is two or four. When i is one or two, the return list's elements are two-element key-value sublists; when i is three or four, the return list's elements alternate between keys and values.


					stat(f) : record?stat(f) produces information about f. The argument may be a string filename or an open file. Three portable fields are size in bytes, mode access permissions, and the last modified time, mtime. The mode string resembles the long listing from ls(1). stat(f) fails when there is no filename or path, f.


					stop(s, ...) :stop(args) writes its arguments to &errout, followed by a newline, and then quits the program.


					string(any) : str?string(y) coerces y into a corresponding string. It fails when no conversion is possible.


					system(x, f:&input, f:&output, f:&errout, s) : intsystem(x) runs a program given as a string command line or a list of command-line arguments. The program runs as a separate process. Optional arguments supply the standard I/O files. The process's exit status is returned. If the fifth parameter is "nowait", the function immediately returns with the new process ID instead of waiting for it to complete.


					tab(i:0) : str?tab(i) assigns the location, i, to &pos. It produces a substring between the new and former locations. The &pos keyword is reset to its former position if the function resumes.


					table(k,v, ..., x) : tabletable(x) builds a table whose values default to x. table(k,v,…x) initializes a table from alternating key and value arguments.


					trim(str, cs:' ', i:-1) : strtrim(str,cs,i) produces a substring of str with members of cset, cs, deleted from the front (when i=1), the back (when i=-1), or both (when i=0). By default, it removes trailing spaces from the end.


					type(x) : strtype(x) produces the type of x as a string.


					upto(cs, str, i, j) : int*upto(cs,str, i,j) generates the indices in str where a member of cset, cs, may be found in str[i:j]. It fails otherwise.


					write(s|f, ...) : str|filewrite(…) sends one or more string arguments appended by a newline to a file, defaulting to &output. write() produces the final parameter.


					writes(s|f, ...) : str|filewrites(…) sends one or more string arguments to a file, defaulting to &output. writes() produces the final parameter.


			

			Selected keywords

			Unicon has about 75 keywords. Keywords are global names beginning with an ampersand with a predefined meaning. Many keywords are constant values that are built into the language, while others are associated with built-in domain-specific language facilities such as string scanning or graphics. This section lists the most essential keywords, many of which appear in the examples in this book:

			
					&clock : strThe &clock read-only keyword produces the current time of day.


					&cset : csetThe &cset constant keyword denotes the cset containing everything.


					&date : strThe &date read-only keyword produces the current date.


					&digits : csetThe &digits constant keyword denotes the cset containing 0 through 9.


					&errout : fileThe &errout constant keyword denotes the standard location for error output.


					&fail :The &fail keyword is an expression that fails to produce a result.


					&features : str*The &features read-only keyword produces what this Unicon runtime system can do as strings. For example, if Unicon is built with graphics facilities, they are summarized. 


					&input : fileThe &input constant keyword denotes the standard location for input.


					&lcase : csetThe &lcase constant keyword denotes the cset containing the letters a through z.


					&letters : csetThe &letters constant keyword denotes the cset containing the letters A through Z and a through z.


					&now : intThe &now read-only keyword produces the seconds since 1/1/1970 GMT.


					&null : nullThe &null constant keyword denotes a value that is not any other type. It is the default value in many language constructs, for things that haven't been initialized yet or have been omitted.


					&output : fileThe &output constant keyword denotes the standard location for the regular output.


					&pos := intThe &pos keyword refers to the position within &subject where string analysis is performed. It starts at 1 in each string scanning environment and its value is always a valid index in &subject.


					&subject := strThe &subject keyword refers to the string under analysis in a string scanning control structure.


					&ucase : csetThe &ucase constant keyword denotes the cset containing letters A through Z.


					&version : strThe &version constant keyword reports the Unicon version as a string.


			

		

	
		
			Assessments

			Chapter 1

			
					It is much easier to generate C code than to generate machine code, but the resulting code may be larger or slower than native code, and a transpiler depends on an underlying compiler that may be a bit of a moving target.

					Lexical, syntax, and semantic analysis, followed by intermediate and final code generation.

					Classic pain points include input/output being overly difficult, especially on new kinds of hardware; concurrency; and making a program run across many different operating systems and CPUs. One feature that languages have used to simplify input/output has been to reduce the problem of communicating with new hardware via a set of strings in human-readable formats, for example, to play music or read touch input. Concurrency has been simplified in languages with built-in threads and monitors. Portability has been simplified in languages that provide their own high-level virtual machine implementation.

					This depends on your application domain of interest, but here is one. The language will input programs written in a Java-like syntax stored in files with a .j0 extension, and generate target code in the form of HTML5+JavaScript that runs on websites. The language will support JDBC and socket communications via websockets, and 2D and 3D graphics by means of OpenGL. The language will support an intuitive square-bracket syntax for accessing string elements and HashMap keys. The language will support JSON syntax natively within the source code as a HashMap literal.

			

			Chapter 2

			
					Reserved words contribute both to human readability and ease of parsing for the language implementation, but they also sometimes preclude the most natural names for the variables in a program, and too many reserved words can make it more difficult to learn a programming language.

					Integers in C or Java, for example, can be expressed as signed or unsigned, in decimal, octal, hexadecimal, or maybe even binary format, for small, medium, large, or super-sized words.

					Several languages implement a semicolon insertion mechanism that makes semicolons optional. Often, this involves using the newline character to replace the role of the semicolon as a statement terminator or separator.

					Although most Java programs do not make use of this capability, putting main() in several (or all) classes might be very useful in unit testing and integration testing.

					While it is feasible to provide pre-opened input/output facilities, they can involve substantial resources and initialization costs that programs should not have to pay for unless a given input/output facility is going to be used in a program. If you design a language that specifically targets a domain where one of these forms of input/output is guaranteed, it makes good sense to consider how to make access as simple as possible.

			

			Chapter 3

			
					A first approximation of the regular expression is [0-3][0-9]"/"[01][0-9]"/"[0-9]{4}. While it is possible to write a regular expression that matches only legal dates, such an expression is impractically long, especially considering leap years. In such cases, it makes sense to use the regular expression that provides the simplest close approximation of correctness, and then check correctness in the semantic action or a subsequent semantic analysis phase.

					yylex() returns an integer category for use in syntax analysis, while yytext is a string that contains the symbols matched and yylval holds an object called a token that contains all the lexical attributes of that lexeme.

					When a regular expression does not return a value, the characters that it matched are discarded and the yylex() function continues with a new match, starting with the next character in the input.

					Flex matches the longest string that it can; it breaks ties among multiple regular expressions by selecting whichever one matches the longest string. When two regular expressions match the same length in a given point, Flex selects whichever regular expression occurs first in the lex specification file.

			

			Chapter 4

			
					A terminal symbol is not defined by a production rule in terms of other symbols. This is the opposite of a non-terminal symbol, which can be replaced by or constructed from the sequence of symbols on the right-hand side of a production rule that defines that non-terminal symbol.

					A shift removes the current symbol from the input and pushes it onto the parse stack. A reduce pops zero or more symbols from the top of the parse stack that match the right-hand side of a production rule and pushes the corresponding non-terminal from the left side of the production rule in their place.

					YACC gives you a chance to execute some semantic action code only when a reduce operation takes place.

					The integer categories returned from yylex() in the previous chapter are exactly the sequence of terminal symbols that the parser sees and shifts on during parsing. A successful parse shifts all the available input symbols and gradually reduces them back to the starting non-terminal of the grammar.

			

			Chapter 5

			
					The yylex() lexical analyzer allocates a leaf and stores it in yylval for each terminal symbol that it returns to yyparse().

					When a production rule in the grammar is reduced, the semantic action code in the parser allocates an internal node and initializes its children to refer to the leaves and internal nodes corresponding to symbols on the right-hand side of that production rule.

					yyparse() maintains a value stack that grows and shrinks in lock-step with the parse stack during parsing. Leaves and internal nodes are stored on the value stack until they are inserted as children into a containing internal node.

					A value stack is fully generic and can contain any type of value. In C, this is done using a union type, which is type-unsafe. In Java, it is done using a parserVal class that contains the tree nodes in a generic way. In Unicon and other dynamic languages, no wrapping or unwrapping is needed.

			

			Chapter 6

			
					Symbol tables allow your semantic analysis and code generation phases to quickly look up symbols declared far away in the syntax tree, following the scoping rules of the language.

					Synthesized attributes are computed using the information located immediately at a node or using information obtained from its children. Inherited attributes are computed using information from elsewhere in the tree, such as parent or sibling nodes. Synthesized attributes are typically computed using a bottom-up post-order traversal of the syntax tree, while inherited attributes are typically computed using a pre-order traversal. Both kinds of attributes are stored in syntax tree nodes in variables added to the node's data type.

					The Jzero language calls for a global scope, a class scope, and one local scope for each member function. The symbol tables are typically organized in a tree structure corresponding to the scoping rules of the language, with child symbol tables attached or associated with the corresponding symbol table entries in the enclosing scope.

					If Jzero allowed multiple classes in separate files, the symbol tables would need a mechanism to be aware of said classes. In Java, this may entail reading other source files at compile time while compiling a given file. This implies that classes must be easily found without reference to their filename, hence Java's requirement that classes be placed in files whose base name is the same as the class name.

			

			Chapter 7

			
					Type checking finds many errors that would prevent the program from running correctly. But it also helps determine how much memory will be needed to hold variables, and exactly what instructions will be needed to perform the various operations in the program.

					A structure type is needed to represent arbitrarily deep composite structures, including recursive structures such as linked lists. Any given program only has a finite number of such types, so it would be possible to enumerate them and represent them using integer subscripts by placing them in a type table, but references to structures provide a more direct representation.

					If real compilers reported an OK line for every successful type check, non-toy programs would emit thousands of such checks on every compile, making it difficult to notice the occasional errors.

					Picky type checkers may be a pain for programmers, but they help avoid unintended type conversions that hide logic errors, and they also reduce the tendency of a language to run slow due to silently and automatically converting types over and over again at runtime.

			

			Chapter 8

			
					For any specific array access, the result of a subscript operator will be the array's element type. With a struct or class access, the name of the (member) field within the struct must be used to determine the resulting type, via a symbol table lookup or something equivalent.

					A function's return type can be stored in the function's symbol table and looked up from anywhere within the function's body. One easy way to do this is to store the return type under a symbol that is not a legal variable name, such as return. An alternative would be to propagate the function's return type down into the function body as an inherited attribute. This might be relatively straightforward, but it seems like a waste of space in the parse tree nodes.

					Generally, operators such as plus and minus have a fixed number of operands and a fixed number of types for which they are defined; this lends itself to storing the type checking rules in a table or a switch statement of some kind. Function calls have to perform type checking over an arbitrary number of arguments that can be of an arbitrary type. The function's parameters and return type are stored in its symbol table entry. They are looked up and used to type check each site where that function is called.

					Besides member access, type checking occurs when composite types are created, assigned, passed as parameters, and, in some languages, destroyed.

			

			Chapter 11

			
					Complex instruction sets take more time and logic to decode and might make the implementation of the byte-code interpreter more difficult or less portable. On the other hand, the closer the final code comes to resembling intermediate code, the simpler the final code generation stage becomes.

					Implementing bytecode addresses using hardware addresses provides the best performance that you might hope for, but it may leave an implementation more vulnerable to memory safety and security issues. A bytecode interpreter that implements addresses using offsets within an array of bytes may find it has fewer memory problems; performance may or may not be a problem.

					Some bytecode interpreters may benefit from the ability to modify code at runtime. For example, bytecode that was linked using byte-offset information may be converted into code that uses pointers. Immutable code makes this type of self-modifying behavior more difficult or impossible.

			

			Chapter 12

			
					Operands from multi-operand instructions are pushed onto the stack by push instructions. The actual operation computes a result. The result is stored in memory by a pop instruction.

					A table that maps each of the labels to byte offset 120 is constructed. Uses of labels encountered after their table entry exists are simply replaced by the value 120. Uses of labels encountered before their table entry exists are forward references; the table must contain a linked list of forward references that are backpatched when the label is encountered.

					On the Jzero bytecode stack machine, operands might already be on the stack and PARM instructions might be redundant, allowing for substantial optimization. Also, on the Jzero machine, the function call sequence calls for a reference/address to the method being called to be pushed before the operands; this is a very different calling convention from that used in the three-address intermediate code.

					Static methods do not get invoked on an object instance. In the case of a static method with no parameters, you may need to push the procedure address within the CALL instruction since it is preceded by no PARM instructions.

					If you determine that your three-address code for nested calls does in fact result in nested PARM…CALL sequences, you will need a stack of PARM instructions to manage it and will need to carefully search for the correct CALL instruction, skipping over any nested CALL instructions whose number of PARM instructions were placed on the stack after the PARM instruction for which you are searching. Have fun!

			

			Chapter 13

			
					There are many new concepts in native code. These include many kinds and sizes of registers and main memory access modes. Choosing from many possible underlying instruction sequences is also important.

					Even with the runtime addition required, addresses that are stored as offsets relative to the instruction pointer may be more compact and may take advantage of instruction prefetching in the pipelined architecture, to provide faster access to global variables than specifying them using absolute addresses.

					Function call speed is important because modern software is often organized into many frequently called tiny functions. The x64 architecture performs fast function calls if functions take advantage of passing the first six parameters in registers. Several aspects of x64 architecture seem to have the potential to reduce execution speed, such as a need to save and restore large numbers of registers to memory before and after a call.

			

			Chapter 14

			
					Although libraries are great, they have downsides. Libraries tend to have more version compatibility problems than the features that are built into the language. Libraries are unable to provide a notation that is concise and readable as built-ins. Lastly, libraries do not lend themselves to interactions with novel control structures to support new application domains.

					If your new computation only needs one or two parameters, appears many times in typical applications in your domain, and computes a new value without side effects, it is a good candidate to be made into an operator. An operator is limited to two operands, or at the most, three; otherwise, it will not provide any readability advantage over a function.

					Ultimately, we have to read the books written by the Java language inventors to hear their reasons, but one answer might be that Java designers wanted to use strings as a class and decided classes would not be free to implement operators for the sake of referential transparency.

			

			Chapter 15

			
					Control structures in very high-level and domain-specific languages had better be a lot more powerful than just if statements and loops; otherwise, programmers would be better off just coding in a mainstream language.

					We provided some examples in which control structures provided defaults for 0parameters or ensured an open resource was closed afterward. Domain-specific control structures can certainly provide additional high-level semantics, such as performing domain-specific input/output or accessing specialty hardware in a way that is difficult to accomplish within the context of a mainstream control flow.

					The application domain is string analysis. Maybe some additional operators or built-in functions would improve Unicon's expressive power for string analysis. Can you think of any candidates you could add to the six-string analysis functions or the two position-moving functions? You could easily run some statistics on common Icon and/or Unicon applications and discover which combinations of tab() or move() and the six-string analysis functions occurs most frequently in the code and is a candidate for becoming an operator, besides tab(match()). I doubt that tab(match()) is the most frequent. But beware: if you add too many primitives, it makes the control structure more difficult to learn and master. Also, the ideas from this control structure could be applied to the analysis of other sequential data, such as arrays/lists of numeric or object instance values.

					It is tempting to bundle as much additional semantics into a domain control structure as possible so that you make the code more concise. However, if a good number of wsection constructs are not based on a hierarchical 3D model and would not make use of the built-in functionality of PushMatrix() and PopMatrix(), bundling that into wsection might slow down the construct's execution speed unnecessarily.

			

			Chapter 16

			
					You could modify the PostDescrip() macro to check for a null value before checking whether a value is a qualifier or a pointer. Whether such a check pays for itself depends on how costly the bitwise AND operator is, and the actual frequency of different types of data encountered during these checks, which can be measured, but may well vary depending on the application.

					If each class type had its own heap region, instances would not need to track their size, potentially saving memory costs for classes that have many small instances. The freed garbage instances could be managed on a linked list and compared with a mark-and-sweep collector, and instances might never need to be moved or pointers updated, simplifying garbage collection. On the other hand, some program runs might only use a very few of the various classes, and allocating a dedicated heap region for such classes might be a waste.

					While some time might be saved by not moving data during garbage collection, over time, a substantial amount of memory might be lost to fragmentation. Small chunks of free memory might go unused because later memory allocation requests, were for larger amounts.
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rip Instruction pointer.

rax Accumulator. Also: function return value.

rbx A secondary accumulator.

rbp Frame pointer. Local variables are relative to this pointer.
rsp Stack pointer. Memory between rbp and rsp is the local region.
rdi Destination index. Holds parameter #1.

rsi Source index. Holds parameter #2.

rdx A secondary accumulator. Holds parameter #3.

rcx Holds parameter #4.

r8 Holds parameter #5.

r9 Holds parameter #6.

t10-%15 Open registers usable for any purpose.
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Opcode | Mnemonic | Description

1 HALT Halt

2 NOOP Do nothing

3 ADD Add the top two integers on the stack, push the sum

4 SUB Subtract the top two integers on the stack, push the difference
5 MUL Multiply the top two integers on the stack, push the product
6 DIV Divide the top two integers on the stack, push the quotient

7 MOD Divide the top two integers on the stack, push the remainder
8 NEG Negate the integer at the top of the stack

9 PUSH Push a value from memory to the top of the stack

10 POP Pop a value from the top of the stack and place it in memory
11 CALL Call a function with n parameters on the stack

12 RETURN Return to the caller with a return value of x

13 GOTO Set the instruction pointer to location L

14 BIF Pop the stack; if it is non-zero, set the instruction pointer to L
15 LT Pop two values, compare, push 1 if less than, else 0

16 LE Pop two values, compare, push 1 if less or equal, else 0

17 GT Pop two values, compare, push 1 if greater than, else 0

18 GE Pop two values, compare, push 1 if greater or equal, else 0

19 EQ Pop two values, compare, push 1 if equal, else 0

20 NEQ Pop two values, compare, push 1 if not equal, else 0

21 LOCAL Allocate n words on the stack

22 LOAD Indirect push; reads through a pointer

23 STORE Indirect pop; writes through a pointer
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end
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stop(s, ™ ", yytext)
end
method scan(cat)
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yycolno +:= *yytext
return cat
end
method whitespace()
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end
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end
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Instruction | Description

addg Add a 64-bit into another 64-bit value

call Store a return address to (%rsp), decrement %rsp, goto function
cmpg Compare two values and set condition code bits

goto Jump to a new location in the code

jle Jump if less than or equal

leaq Compute an address

movq Move a 64-bit value from source to destination

negq Negate a 64-bit value

popg Fetch a value from (%rsp) and increment %rsp

pushg Store a value to (%rsp) and decrement %rsp

ret Fetch a value from (%rsp), increment %rsp and goto the address
.global | This symbol should be visible from other modules

-text Place the bytes to follow in the code region

-type This symbol is the following type






OEBPS/image/Figure_16.4_B15963.jpg
word size
pointer base
pointer end
pointer free
region *next
region *free

title
size

title
size

title
size

title

free
space






OEBPS/image/Figure_5.4_B15963.png
leaf

token







OEBPS/image/Figure_8.1_B15963.jpg
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public class funtest {
public static int foo(int x, int y, String z) {

}

return 0;

public static void main(String argv[]) {

}

int x;

= foo(0,1,

X =X+ 1;

"howdy");

System.out.println("hello, jzero!");
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glob x,n

Declare a global variable named x that refers to
offset n in the global region

proc x,n1,n2

Declare a procedure x with n1 words of parameters
and n2 words of locals

loc x,n Declare a local variable named x that refers to offset
nin the local region
lab Ln Declare a label Ln that will be a name for an
instruction in the code region
end Declare the end of the current procedure
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l Production

H Semantic Rules

IfThenStmt :
if '(" Expr ') Stmt

Expr.onTrue = Stmt.first
Expr.onFalse = IfThenStmt.follow
Stmt.follow = IfThenStmt.follow
IfThenStmt.icode = (Expr.icode !=null) ? Expr.icode
: gen(BIF, Expr.onFalse, Expr.addr, con:0)
IfThenStmt.icode |||:= gen(LABEL, Expr.onTrue) ||| Stmt.icode

IfThenElseStmt :
if '(' Expr ')’ Stmt, else Stmt,

Expr.onTrue = Stmt, first
Expr.onFalse = Stmt,.first
Stmt, .follow = IfThenElseStmt.follow;
Stmt,.follow = IfThenElseStmt.follow;

IfThenElseStmt.icode = (Expr.icode != null) ? Expr.icode
: gen(BIF, Expr.onFalse, Expr.addr, con:0)
IfThenElseStmt.icode |||:= gen(LABEL, Expr.onTrue) ||| Stmt,.icode |||
gen(GOTO, IfThenElseStmt.follow) ||| gen(LABEL, Expr.onFalse) ||| Stmt,.icode]
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Production

H Semantic Rules

‘WhileStmt : while '(' Expr ')’ Stmt

Expr.onTrue = newlabel();

Expr.first = newlabel();

Expr.false = WhileStmt.follow;

Stmt.follow = Expr.first;

‘WhileStmt.icode = gen(LABEL, Expr.first) |||
Expr.icode ||| gen(LABEL, Expr.true) |||
Stmt.icode ||| gen(GOTO, Expr.first)

ForStmt : for( ForInit; Expr; ForUpdate )
Stmt

a.k.a.

Forlnit;

while (Expr) {
Stmt
ForUpdate

}

Expr.true = newlabel();
Expr.first = newlabel();
Expr.false = S.follow;
Stmt.follow = ForUpdate.first;
S.icode = ForInit.icode |||
gen(LABEL, Expr.first) ||
Expr.icode ||| gen(LABEL, Expr.true) |||
Stmt.icode |||
ForUpdate.icode |||

gen(GOTO, Expr.first)
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Mode letter(s) Description Mode letter(s) Description

a add/append nl listen on a TCP port

b open for both reading and writing nu connect to a UDP port

ol make a new file m connect to messaging server

d GDBM database o ODBC (SQL) connection

g 2D graphics window p execute a command line and pipe it
gl 3D graphics window e read

n TCP client t translate newlines

na accept TCP connection u use a binary untranslated mode
nau accept UDP datagrams w write
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[Function| Purpose ]
|any(©) s the character at the position a member of a character set ]
|many(c) JJare 1+ characters at the position members of a character set ]
[matcn(s) |do the characters at the position match a search string ]
\
\
]

[Fina(s) |produce position(s) at which characters match a search string
|upto(c) |lproduce position(s) at which the character is a member of a character set
[5a10 Jproduce position(s) where characters are balanced with respect to delimiters]
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Production H Semantic Rules

EqExpr.first = newlabel();
AndExpry.onTrue = EqExpr.first;
AndExpr : AndExpr;.onFalse = AndExpr.onFalse;
AndExpr| && EqEXpr| EqExpr.onTrue = AndExpr.onTrue;
EqExpr.onFalse = AndExpr.onFalse;
AndExpr.icode = AndExpr;.icode ||| gen(LABEL, EqExpr.first) ||| EqExpr.icode;

AndExpr.first = newlabel();
OrExpr;.onTrue = OrExpr.onTrue;
OrExpr : OrExpr;.onFalse = AndExpr.first;
OrExpr || AndExpr AndExpr.onTrue = OrExpr.onTrue;
AndExpr.onFalse = OrExpr.onFalse;
OrExpr.icode = OrExpr,.icode ||| gen(LABEL, AndExpr.first) ||| AndExpr.icode;

UnaryExpr : ! UnaryEXpr) |lunaryExpr, .onFalse = UnaryExpr.onTrue
UnaryExpr.icode = UnaryExprl.icode

UnaryExpr,.onTrue = UnaryExpr.onFalse
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D:\Users\Clinton Jeffery\books\byopl\github\Build-Your-Own-Programming-Language\ch7>type hello.java

public class hello {
public static void main(String argv[]) {
int Xy
X = 03
X = X + "hello";
System.out.println("hello, jzero!");

¥

D:\Users\Clinton Jeffery\books\byopl\github\Build-Your-Own-Programming-Language\ch7>j0 hello.java
line 4: typecheck = on a int and a int -> OK

line 5: typecheck + on a String and a int -> FAIL

D:\Users\Clinton Jeffery\books\byopl\github\Build-Your-Own-Programming-Language\ch7>
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Environment variable

Description

BLKSIZE Bytes in the block heap
IPATH List of directories to search for linking
LPATH List of directories to search for includes
MSTKSIZE Bytes on the main stack
STKSIZE Bytes on co-expression stacks
STRSIZE Bytes in the string heap
TRACE Initial value of &trace
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_CO _EXPRESSIONS synchronous threads _MESSAGING HTTP, SMTP, etc.

_ CONSOLE_WINDOW emulated terminal _MS WINDOWS Microsoft Windows
_DBM DBM _MULTITASKING load(), etc.

_ DYNAMIC LOADING code can be loaded _POSIX POSIX

_EVENT MONITOR code is instrumented _PLEEE unidirectional pipes
_GRAPHICS Graphics _SYSTEM FUNCTION |system()
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Production
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Assignment : IDENT '=' AddExpr

Assignment.addr = IDENT.addr
Assignment.icode = AddExpr.icode |||
gen(ASN, IDENT.addr, AddExpr.addr)

AddExpr : AddExpr, '+' MulExpr

AddExpr.addr = newtemp()
AddExpr.icode = AddExpr;.icode ||| MulExpr.icode |||

gen(ADD,AddExpr.addr,AddExpr; . addr,MulExpr.addr)

AddExpr : AddExpr, '-' MulExpr

AddExpr.addr = newtemp()
AddExpr.icode = AddExpr;.icode ||| MulExpr.icode |||

gen(SUB,AddExpr.addr,AddExpr; . addr,MulExpr.addr)

MulExpr : MulExpr; "*' UnaryExpr

MulExpr.addr = newtemp()
MulExpr.icode = MulExpr,.icode ||| UnaryExpr.icode |||

gen(MUL,MulExpr.addr,MulExpr, .addr,UnaryExpr.addr)

MulExpr : MulExpr; /' UnaryExpr

MulExpr.addr = newtemp()
MulExpr.icode = MulExpr,.icode ||| UnaryExpr.icode |||

gen(DIV,MulExpr.addr,MulExpr;.addr,UnaryExpr.addr)

UnaryExpr : -' UnaryExpr;

UnaryExpr.addr = newtemp()
UnaryExpr.icode = UnaryExpr;.icode |||

gen(NEG, UnaryExpr.addr,UnaryExpr, . addr)

UnaryExpr : '(' AddExpr ')

UnaryExpr.addr = AddExpr.addr
UnaryExpr.icode = AddExpr.icode

UnaryExpr : IDENT

UnaryExpr.addr = IDENT.addr
UnaryExpr.icode = emptylist()






