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			Preface

			About this book

			The C++20 STL Cookbook provides recipes to help you get the most out of the C++ STL (Standard Template Library), including new features introduced with C++20. 

			C++ is a rich and powerful language. Built upon C, with syntactic extensions for type safety, generic programming, and object-oriented programming, C++ is essentially a low-level language. The STL provides a broad set of higher-level classes, functions, and algorithms to make your programming job easier, more effective, and less prone to error. 

			I've often said that C++ is five languages cobbled into one. The formal specification includes 1) the entire C language, 2) C's cryptic-yet-powerful macro preprocessor, 3) a feature-rich class/object model, 4) a generic programming model called templates, and finally, built upon C++ classes and templates, 5) the STL.

			Prerequisite knowledge

			This book presumes that you have a basic understanding of C++, including syntax, structure, data types, classes and objects, templates, and the STL.

			The recipes and examples in this book presume that you understand the need to #include certain headers to use library functions. The recipes don't usually list all the necessary headers, preferring to focus on the techniques at hand. You're encouraged to download the example code, which has all the necessary #include directives and other front matter.

			You may download the example code from GitHub: https://github.com/PacktPublishing/CPP-20-STL-Cookbook.

			These assumptions mean that when you see a piece of code like this:

			cout << "hello, world\n";

			You should already know that you'll need to put this code in a main() function, you'll need to #include the <iostream> header, and cout is an object in the std:: namespace:

			#include <iostream>

			int main() {

			    std::cout << "hello, world\n";

			}

			The STL's power is derived from templates (a brief primer)

			Templates are how C++ does generic programming, code that's independent of type while retaining type safety. C++ templates allow you to use tokens as placeholders for types and classes, like this: 

			template<typename T>

			T add_em_up(T& lhs, T& rhs) {

			    return lhs + rhs;

			}

			A template may be used for classes and/or functions. In this template function, the T represents a generic type, which allows this code to be used in the context of any compatible class or type:

			int a{ 72 };  // see braced initialization below

			int b{ 47 };

			cout << add_em_up<int>(a, b) << "\n";

			This invokes the template function with an int type. This same code can be used with any type or class that supports the + operator.

			When the compiler sees a template invocation, like add_em_up<int>(a, b), it creates a specialization. This is what makes the code type safe. When you invoke add_em_up() with an int type, the specialization will look something like this: 

			int add_em_up(int& lhs, int& rhs) {

			    return lhs + rhs;

			}

			The specialization takes the template and replaces all instances of the T placeholder with the type from the invocation, in this case, int. The compiler creates a separate specialization of the template each time it's invoked with a different type. 

			STL containers, like vector, stack, or map, along with their iterators and other supporting functions and algorithms, are built with templates so they can be used generically while maintaining type safety. This is what makes the STL so flexible. Templates are the T in the STL. 

			This book uses the C++20 standard

			The C++ language is standardized by the International Organization for Standardization (ISO) on a roughly three-year cycle. The current standard is called C++20 (which was preceded by C++17, C++14, and C++11 before that). C++20 was approved in September 2020. 

			C++20 adds many important features to the language and the STL. New features like format, modules, ranges, and more will have significant impact on the way we use the STL.

			There are also convenience changes. For example, if you want to remove every matching element of a vector, you may have been using the erase-remove idiom like this:

			auto it = std::remove(vec1.begin(), vec1.end(), value);

			vec1.erase(it, vec1.end());

			Starting with C++20 you can use the new std::erase function and do all of that in one simple, optimized function call: 

			std::erase(vec1, value);

			C++20 has many improvements, both subtle and substantial. In this book, we will cover much of it, especially what's relevant to the STL. 

			Braced initialization

			You may notice that the recipes in this book often use braced initialization in place of the more familiar copy initialization. 

			std::string name{ "Jimi Hendrix" };  // braced initialization

			std::string name = "Jimi Hendrix";   // copy initialization

			The = operator pulls double-duty as both an assignment and a copy operator. It's common, familiar, and it works, so we've all been using it forever. 

			The downside of the = operator is that it's also a copy constructor, which often means implicit narrowing conversion. This is both inefficient and can lead to unintended type conversions, which can be difficult to debug. 

			Braced initialization uses the list initialization operator {} (introduced in C++11) to avoid those side effects. It's a good habit to get into and you'll see it a lot in this book.

			It's also worth noting that the special case of T{} is guaranteed to be zero-initialized. 

			int x;      // uninitialized            bad  :(

			int x = 0;  // zero (copy constructed)  good :)

			int x{};    // zero (zero-initialized)  best :D

			The empty brace zero initialization offers a useful shortcut for initializing new variables.

			Hiding the std:: namespace

			In most instances, the exercises in this book will hide the std:: namespace. This is mostly for page space and readability considerations. We all know that most STL identifiers are in the std:: namespace. I will normally use some form of the using declaration to avoid cluttering the examples with repetitive prefixes. For example, when using cout you can presume I've included a using declaration like this:

			using std::cout;    // cout is now sans prefix

			cout << "Hello, Jimi!\n"; 

			I usually will not show the using declaration in the recipe listings. This allows us to focus on the purpose of the example.

			It is poor practice to import the entire std:: namespace in your code. You should avoid a using namespace declaration like this: 

			using namespace std;    // bad. don't do that. 

			cout << "Hello, Jimi!\n"; 

			The std:: namespace includes thousands of identifiers and there's no good reason to clutter your namespace with them. The potential for collisions is not trivial, and can be hard to track down. When you want to use a name without the std:: prefix, the preferred method is to import a single name at a time, as above. 

			To further avoid namespace collisions, I often use a separate namespace for classes that will be re-used. I tend to use namespace bw for my personal namespace. You may use something else that works for you.

			Type aliases with using

			This book uses the using directive for type aliases instead of typedef. 

			STL classes and types can be verbose at times. A templated iterator class, for example, may look like this:

			std::vector<std::pair<int,std::string>>::iterator

			Long type names are not just hard to type, they are prone to error. 

			One common technique is to abbreviate long type names with typedef:

			typedef std::vector<std::pair<int,std::string>>::iterator vecit_t

			This declares an alias for our unwieldy iterator type. typedef is inherited from C and its syntax reflects that. 

			Beginning with C+11, the using keyword may be used to create a type alias:

			using vecit_t = std::vector<std::pair<int,std::string>>::iterator;

			In most circumstances, a using alias is equivalent to typedef. The most significant difference is that a using alias may be templated: 

			template<typename T>

			using v = std::vector<T>;

			v<int> x{};

			For these reasons, and for the sake of clarity, this book prefers the using directive for type aliases.

			Abbreviated function templates

			Beginning with C++20, an abbreviated function template may be specified without the template header. For example:

			void printc(const auto& c) {

			    for (auto i : c) {

			        std::cout << i << '\n';

			    }

			}

			The auto type in a parameter list works like an anonymous template typename. It is equivalent to:

			template<typename C>

			void printc(const C& c) {

			    for (auto i : c) {

			        std::cout << i << '\n';

			    }

			}

			Though new in C++20, abbreviated function templates have been supported by the major compilers for some time already. This book will use abbreviated function templates in many of the examples.

			The C++20 format() function

			Until C++20 we've had a choice of using legacy printf() or the STL cout for formatting text. Both have serious flaws but we've used them because they work. Beginning with C++20, the format() function provides text formatting inspired by Python 3's formatter. 

			This course uses the new STL format() function liberally. Please see Chaper 1, New C++20 Features, for a more comprehensive description. 

			Use the STL to solve real-world problems

			The recipes in this book use the STL to provide real-world solutions to real-world problems. They have been designed to rely exclusively on the STL and C++ standard libraries, with no external libraries. This should make it easy for you to experiment and learn without the distractions of installing and configuring third-party code. 

			Now, let's go have some fun with the STL. Happy learning! 

			Who this book is for

			This book is for intermediate to advanced C++ programmers who want to get more out of the C++20 Standard Template Library. Basic knowledge of coding and C++ concepts are necessary to get the most out of this book.

			What this book covers

			Chaper 1, New C++20 Features, introduces the new STL features in C++20. It aims to familiarize you with the new language features so you may use them with the STL.

			Chapter 2, General STL Features, discusses modern STL features added in recent C++ versions.

			Chapter 3, STL Containers, covers the STL's comprehensive library of containers.

			Chapter 4, Compatible Iterators, shows how to use and create STL-compatible iterators.

			Chapter 5, Lambda Expressions, covers the use of lambdas with STL functions and algorithms.

			Chapter 6, STL Algorithms, provides recipes for using and creating STL-compatible algorithms.

			Chapter 7, Strings, Stream, and Formatting, describes the STL string and formatter classes.

			Chapter 8, Utility Classes, covers STL utilities for date-and-time, smart pointers, optionals, and more.

			Chapter 9, Concurrency and Parallelism, describes support for concurrency, including threads, async, atomic types, and more.

			Chapter 10, Using the File System, covers the std::filesystem classes and how to put them to use with the latest advancements that came out with C++20.

			Chapter 11, A Few More Ideas, provides a few more solutions, including a trie class, string split, and more. This provides advanced examples on how to put the STL to use for real-world problems.

			The recipes in this book use the GCC compiler

			Unless otherwise noted, most of the recipes in this book have been developed and tested using the GCC compiler, version 11.2, the latest stable version as of this writing. 

			As I write this, C++20 is still new and is not fully implemented on any available compiler. Of the three major compilers, GCC (GNU), MSVC (Microsoft), and Clang (Apple), the MSVC compiler is furthest along in implementing the new standard. Occasionally, we may run into a feature that is implemented on MSVC or another compiler, but not on GCC, in which case I will note which compiler I used. If a feature is not yet implemented on any available compiler, I will explain that I was unable to test it.

			[image: ]

			I strongly recommend that you install GCC to follow along with the recipes in this book. GCC is freely available under the GNU General Public License (GPL). The easiest way to get the latest version of GCC is to install Debian Linux (also GPL) and use apt with the testing repository.

			If you are using the digital version of this book, we suggest you type the code yourself or download the code from the GitHub repository (link in the next section). This will avoid errors due to copying and pasting formatted code from the e-book.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/CPP-20-STL-Cookbook. In the event of updates and errata, code will be updated on the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, file names, file extensions, path names, dummy URLs, user input, and Twitter handles. Here is an example: "The insert() method takes an initializer_list and calls the private function _insert():"

			A block of code is set as follows:

			int main() {

			    Frac f{ 5, 3 };

			    cout << format("Frac: {}\n", f);

			}

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			for(uint64_t i{ 2 }; i < n / 2; ++i) {

			    if(n % i == 0) return false;

			}

			Any command-line input or output is written as follows:

			$ ./producer-consumer

			Got 0 from the queue

			Got 1 from the queue

			Got 2 from the queue

			finished!

			Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Select System info from the Administration panel."

			Tips or important notes

			Appear like this.

			Sections

			In this book, you will find several headings that appear frequently (How to do it..., How it works..., There's more..., and See also…).

			To give clear instructions on how to complete a recipe, use these sections as follows:

			How to do it…

			This section contains the steps required to follow the recipe.

			How it works…

			This section usually consists of a detailed explanation of what happened in the previous section.

			There's more…

			This section consists of additional information about the recipe in order to make you more knowledgeable about the recipe.

			See also…

			This section provides helpful links to other useful information for the recipe.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

			Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you've read C++20 STL Cookbook, we'd love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.
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			Chaper 1: New C++20 Features

			This chapter concentrates on some of the more compelling features that C++20 adds to the STL. You can use some of these right away. Others may need to wait for implementation in your favorite compiler. But in the long run, I expect you'll want to know about most of these features.

			There are a lot of new additions to the C++20 standard, far more than we could cover here. These are a few that I think will have long-term impact.

			In this chapter we will cover the following recipes: 

			
					Format text with the new format library

					Use compile-time vectors and strings with constexpr

					Safely compare integers of different types

					Use the "spaceship" operator <=> for three-way comparisons

					Easily find feature test macros with the <version> header

					Create safer templates with concepts and constraints

					Avoid re-compiling template libraries with modules

					Create views into containers with ranges

			

			This chapter aims to familiarize you with these new features in C++20, so you may use them in your own projects and understand them when you encounter them. 

			Technical requirements

			The code files for this chapter can be found on GitHub at https://github.com/PacktPublishing/CPP-20-STL-Cookbook/tree/main/chap01.

			Format text with the new format library

			Until now, if you wanted to format text, you could use either the legacy printf functions or the STL iostream library. Both have their strengths and flaws. 

			The printf-based functions are inherited from C and have proven efficient, flexible, and convenient for over 50 years. The formatting syntax can look a bit cryptic, but it's simple enough once you get used to it.

			printf("Hello, %s\n", c_string);

			The main weakness in printf is its lack of type safety. The common printf() function (and its relatives) use C's variadic arguments model to pass parameters to a formatter. This works great when it works, but it can cause serious problems when a parameter type doesn't match its corresponding format specifier. Modern compilers do as much type-checking as they can, but the model is inherently flawed and the protection can only go so far.

			The STL iostream library brings type safety at the expense of readability and run-time performance. The iostream syntax is unusual, yet familiar. It overloads the bitwise left-shift operator (<<) to allow a chain of objects, operands, and formatting manipulators, which produce the formatted output.

			cout << "Hello, " << str << endl;

			The weakness of iostream is its complexity, in both syntax and implementation. Building a formatted string can be verbose and obscure. Many of the formatting manipulators must be reset after use, or they create cascading formatting errors that can be difficult to debug. The library itself is vast and complex, resulting in code significantly larger and slower than its printf equivalent.

			This dismal situation has left C++ programmers with little option but to choose between two flawed systems, until now.

			How to do it…

			The new format library is in the <format> header. As of this writing, format is implemented only in the MSVC (Microsoft) compiler. By the time you read this, it should be available on more systems. Otherwise, you may use its reference implementation as a third-party library from fmt.dev (j.bw.org/fmt).

			The format library is modeled on the str.format() method from Python 3. Format strings are substantially the same as those in Python and, for most purposes, they should be interchangeable. Let's examine some simple examples: 

			
					In its simplest form, the format() function takes a string_view format string and a variadic parameter pack of arguments. It returns a string. Its function signature looks like this:template<typename... Args>
string format(string_view fmt, const Args&... args);


					The format() function returns a string representation of virtually any type or value. For example:string who{ "everyone" };
int ival{ 42 };
double pi{ std::numbers::pi };
format("Hello, {}!\n ", who);   // Hello, everyone!
format("Integer: {}\n ", ival); // Integer: 42
format("π: {}\n", pi);          // π: 3.141592653589793


			

			The format string uses braces {} as a placeholder. With no format specifiers, the braces are effectively a type-safe placeholder which will convert a value of any compatible type to a reasonable string representation. 

			
					You can include multiple placeholders in your format string, like this:format("Hello {} {}", ival, who);  // Hello 42 
                                   // everyone


					You can specify the order of the replacement values. This could be useful for internationalization:format("Hello {1} {0}", ival, who); // Hello everyone 42
format("Hola {0} {1}", ival, who);  // Hola 42 everyone


					You can align values, left (<), right (>), or center (^), with or without a fill character:format("{:.<10}", ival);  // 42........
format("{:.>10}", ival);  // ........42
format("{:.^10}", ival);  // ....42....


					You can set the decimal precision of values:format("π: {:.5}", pi);  // π: 3.1416


					And much, much more.

			

			It's a rich and complete formatting specification that provides the type-safety of iostream with the performance and simplicity of printf, for the best of both worlds.

			How it works…

			The format library does not yet include a print() function, which is planned for C++23. The format() function itself returns a string object. So, if you want to print the string, you'll need to use either iostream or cstdio. (Sad face.)

			You can print the string using iostream:

			cout << format("Hello, {}", who) << "\n";

			Or you may use cstdio:

			puts(format("Hello, {}", who).c_str());

			Neither is ideal, but it's not very hard to write a simple print() function. And we can use this process to understand a bit of the format library's inner workings.

			Here's a simple implementation of a print() function using the format library:

			#include <format>

			#include <string_view>

			#include <cstdio>

			template<typename... Args>

			void print(const string_view fmt_str, Args&&... args) {

			    auto fmt_args{ make_format_args(args...) };

			    string outstr{ vformat(fmt_str, fmt_args) };

			    fputs(outstr.c_str(), stdout);

			} 

			This uses the same arguments as the format() function. The first argument is a string_view object for the format string. This is followed by a variadic parameter pack for the arguments.

			The make_format_args() function takes the parameter pack and returns an object that contains type-erased values suitable for formatting. This object is then passed to vformat(), which returns a string suitable for printing. We use fputs() to print the value to the console because it's far more efficient than cout. 

			We can now use this print() function in place of the cout << format() combination:

			print("Hello, {}!\n", who);

			print("π: {}\n", pi);

			print("Hello {1} {0}\n", ival, who);

			print("{:.^10}\n", ival);

			print("{:.5}\n", pi);

			Output:

			Hello, everyone!

			π: 3.141592653589793

			Hello everyone 42

			....42....

			3.1416

			When you eventually get a C++23 complier with print() support, you should be able to simply replace the above print() template function definition with using std::print; and all the print() calls should continue to work.

			There's more…

			It's nice to have the ability to format strings and primitives, but for the format library to be fully functional, it needs customization to work with your own classes.

			For example, here's a simple struct with two members: a numerator and denominator. We would like this to print as a fraction:

			struct Frac {

			    long n;

			    long d;

			};

			int main() {

			    Frac f{ 5, 3 };

			    print("Frac: {}\n", f);    

			}

			When I compile this, it leads to a cascade of errors to the effect of, "No user-defined conversion operator…". Cool. So, let's fix it!

			When the format system encounters an object for conversion, it looks for a specialization of a formatter object with the corresponding type. Standard specializations are included for common objects such as strings and numbers and such.

			It's quite simple to create a specialization for our Frac type:

			template<>

			struct std::formatter<Frac>

			{

			    template<typename ParseContext>

			    constexpr auto parse(ParseContext& ctx) {

			        return ctx.begin();

			    }

			    template<typename FormatContext>

			    auto format(const Frac& f, FormatContext& ctx) {

			        return format_to(ctx.out(), "{0:d}/{1:d}", 

			            f.n, f.d);

			    }

			};

			This formatter specialization is a class with two short template functions:

			
					The parse() function parses the format string from after the colon (or, if there is no colon, after the opening brace) up to but not including the closing brace. (In other words, the part that specifies the type of the object.) It takes a ParseContext object and returns an iterator. For our purposes, we can just return the begin() iterator because we don't need any new syntax for our type. You will rarely need to put anything else here.

					The format() function takes a Frac object and a FormatContext object. It returns an end iterator. The format_to() function makes this easy. It takes an iterator, a format string, and a parameter pack. In this case, the parameter pack is the two properties of our Frac class, the numerator and denominator.

			

			All we need to do here is provide a simple format string "{0}/{1}" and the numerator and denominator values. (The 0 and 1 indicate the position of the parameters. They're not strictly necessary but they could come in handy later.)

			Now that we have a specialization for Frac, we can pass our object to print() to get a readable result:

			int main() {

			    Frac f{ 5, 3 };

			    print("Frac: {}\n", f);    

			}

			Output:

			Frac: 5/3

			The C++20 format library solves a long-standing problem by providing a type-safe text formatting library that is both efficient and convenient.

			Use compile-time vectors and strings with constexpr

			C++20 allows the use of constexpr in several new contexts. This provides improved efficiency, in that these things may be evaluated at compile time, instead of run time.

			How to do it…

			The specification includes the ability to use string and vector objects in constexpr context. It's important to note that these objects may not themselves be declared constexpr, but they may be used in a compile-time context:

			constexpr auto use_string() {

			    string str{"string"};

			    return str.size();

			}

			You can also use algorithms in constexpr context:

			constexpr auto use_vector() {

			    vector<int> vec{ 1, 2, 3, 4, 5};

			    return accumulate(begin(vec), end(vec), 0);

			}

			The result of the accumulate algorithm is available at compile time and in constexpr context.

			How it works…

			The constexpr specifier declares a variable or function that may be evaluated at compile time. Before C++20, this was limited to objects initialized with a literal value, or a function within limited constraints. C++17 allowed a somewhat expanded use and C++20 expands it further.

			As of C++20, the STL string and vector classes now have constexpr-qualified constructors and destructors, which allow them to be invoked at compile time. This also means that the memory allocated for the string or vector object must be freed at compile time.

			For example, this constexpr function, which returns a vector, will compile without error:

			constexpr auto use_vector() {

			    vector<int> vec{ 1, 2, 3, 4, 5};

			    return vec;

			}

			But if you try to use the result in a run-time context, you will get an error about memory that was allocated during constant evaluation:

			int main() {

			    constexpr auto vec = use_vector();

			    return vec[0];

			}

			This is because the vector object was allocated and freed during compilation. So, the object is no longer available at run time.

			On the other hand, you can use some constexpr-qualified methods from the vector object, such as size(), at run time:

			int main() {

			    constexpr auto value = use_vector().size();

			    return value;

			}

			Because the size() method is constexpr-qualified, the expression can be evaluated at compile time.

			Safely compare integers of different types

			Comparing different types of integers may not always produce the expected results. For example:

			int x{ -3 };

			unsigned y{ 7 };

			if(x < y) puts("true");

			else puts("false");

			You may expect this code to print true, and that's understandable. -3 is usually less than 7. But it will print false.

			The problem is that x is signed and y is unsigned. The standardized behavior is to convert the signed type to unsigned for the comparison. That seems counterintuitive, doesn't it? Indeed, you cannot reliably convert an unsigned value to a signed value of the same size, because a signed integer uses two's complement representation (which uses the most significant bit as a sign). Given the same sized integer, the maximum signed value is half that of an unsigned value. Using this example, if your integers are 32-bits, -3 (signed) becomes FFFF FFFD (hexadecimal), or 4,294,967,293 (unsigned decimal), which is not less than 7.

			Some compilers may issue a warning when you try to compare signed with unsigned integer values, but most do not.

			The C++20 standard includes a set of integer-safe comparison functions in the <utility> header. 

			How to do it…

			The new integer comparison functions are found in the <utility> header. They each take two arguments, which correspond with the left- and right-hand sides of the operator.

			#include <utility>

			int main() {

			    int x{ -3 };

			    unsigned y{ 7 };

			    if(cmp_less(x, y)) puts("true");

			    else puts("false");

			}

			The cmp_less() function gives us the result we expect. -3 is less than 7 and the program now prints true.

			The <utility> header provides a full complement of integer comparison functions. Assuming our values for x and y, we get these comparisons:

			cmp_equal(x, y)          // x == y is false

			cmp_not_equal(x, y)      // x != y is true

			cmp_less(x, y)           // x < y is true

			cmp_less_equal(x, y)     // x <= y is true

			cmp_greater(x, y)        // x > y is false

			cmp_greater_equal(x, y)  // x >= y is false

			How it works…

			Here's the sample implementation of the cmp_less() function from the C++20 standard, to give you a more complete picture of how it works:

			template< class T, class U >

			constexpr bool cmp_less( T t, U u ) noexcept

			{

			    using UT = make_unsigned_t<T>;

			    using UU = make_unsigned_t<U>;

			    if constexpr (is_signed_v<T> == is_signed_v<U>)

			        return t < u;

			    else if constexpr (is_signed_v<T>)

			        return t < 0 ? true : UT(t) < u;

			    else

			        return u < 0 ? false : t < UU(u);

			}

			The UT and UU aliases are declared as make_unsigned_t, a useful helper type introduced with C++17. This allows safe conversions of signed to unsigned types.

			The function first tests if both arguments are either signed or unsigned. If so, it returns a simple comparison.

			It then tests if either side is signed. If that signed value is less than zero, it can return true or false without performing a comparison. Otherwise, it converts the signed value to unsigned and returns the comparison.

			Similar logic is applied to each of the other comparison functions.

			Use the "spaceship" operator <=> for three-way comparisons

			The three-way comparison operator (<=>), commonly called the spaceship operator because it looks like a flying saucer in profile, is new in C++20. You may wonder, what's wrong with the existing six comparison operators? Nothing at all, and you will continue using them. The purpose of the spaceship is to provide a unified comparison operator for objects.

			The common two-way comparison operators return one of two states, true or false, according to the result of the comparison. For example:

			const int a = 7;

			const int b = 42;

			static_assert(a < b);

			The a < b expression uses the less-than comparison operator (<) to test if a is less than b. The comparison operator returns true if the condition is satisfied, or false if not. In this case it returns true because 7 is less than 42.

			The three-way comparison works differently. It returns one of three states. The spaceship operator will return a value equal to 0 if the operands are equal, negative if the left-hand operand is less than the right-hand operand, or positive if the left-hand operand is greater than the right-hand operator.

			const int a = 7;

			const int b = 42;

			static_assert((a <=> b) < 0);

			The returned value is not an integer. It's an object from the <compare> header that compares with 0.

			If the operands have an integral type, the operator returns a strong_ordering object from the <compare> library.

			strong_ordering::equal    // operands are equal

			strong_ordering::less     // lhs is less than rhs

			strong_ordering::greater  // lhs is greater than rhs

			If the operands have a floating-point type, the operator returns a partial_ordering object:

			partial_ordering::equivalent  // operands are equivelant

			partial_ordering::less        // lhs is less than rhs

			partial_ordering::greater     // lhs is greater than rhs

			partial_ordering::unordered   // if an operand is unordered

			These objects are designed to compare against a literal zero (0) with conventional comparison operators (for example, (a <=> b) < 0). This allows the results of the three-way comparison to be more precise than conventional comparisons.

			If all of that seems a bit complicated, that's okay. For most applications you will never use the spaceship operator directly. Its real power is in its application as a unified comparison operator for objects. Let's dig a bit deeper.

			How to do it…

			Let's look at a simple class that encapsulates an integer and provides comparison operators:

			struct Num {

			    int a;

			    constexpr bool operator==(const Num& rhs) const 

			        { return a == rhs.a; }

			    constexpr bool operator!=(const Num& rhs) const

			        { return !(a == rhs.a); }

			    constexpr bool operator<(const Num& rhs) const

			        { return a < rhs.a; }

			    constexpr bool operator>(const Num& rhs) const

			        { return rhs.a < a; }

			    constexpr bool operator<=(const Num& rhs) const

			        { return !(rhs.a < a); }

			    constexpr bool operator>=(const Num& rhs) const

			        { return !(a < rhs.a); }

			};

			It's not uncommon to see a list of comparison operator overloads like this. In fact, it should be even more complicated with non-member friends that work with objects on either side of the operator.

			With the new spaceship operator, all of this can be accomplished with one overload:

			#include <compare>

			struct Num {

			    int a;

			    constexpr Num(int a) : a{a} {}

			    auto operator<=>(const Num&) const = default;

			};

			Notice that we need to include the <compare> header for the three-way operator return types. Now we can declare some variables and test them with comparisons:

			constexpr Num a{ 7 };

			constexpr Num b{ 7 };

			constexpr Num c{ 42 };

			int main() {

			    static_assert(a < c);

			    static_assert(c > a);

			    static_assert(a == b);

			    static_assert(a <= b);

			    static_assert(a <= c);

			    static_assert(c >= a);

			    static_assert(a != c);

			    puts("done.");

			}

			The compiler will automatically favor the <=> operator for each of the comparisons.

			Because the default <=> operator is already constexpr safe, we don't need to declare it as such in our member function.

			How it works…

			The operator<=> overload takes advantage of a new C++20 concept, rewritten expressions. During overload resolution, the compiler rewrites the expression according to a set of rules. For example, if we write a < b, the compiler will rewrite it to (a <=> b < 0) so that it works with our member operator. The compiler will rewrite every relevant comparison expression for the <=> operator, where we haven't included a more specific operator.

			In fact, we no longer need a non-member function to handle comparisons with a compatible type on the left-hand side. The compiler will synthesize an expression that works with the member operator. For example, if we write 42 > a, the compiler will synthesize an expression with the operators reversed (a <=> 42 < 0) so that it works with our member operator.

			Note

			The <=> operator has higher precedence than the other comparison operators so it will always evaluate first. All comparison operators evaluate left-to-right.

			There's more…

			The default operator will work just fine with a wide variety of classes, including classes with multiple numeric members of different types:

			struct Nums {

			  int i;

			  char c;

			  float f;

			  double d;

			  auto operator<=>(const Nums&) const = default;

			};

			But what if you have a more complex type? Here's an example of a simple fraction class:

			struct Frac {

			    long n;

			    long d;

			    constexpr Frac(int a, int b) : n{a}, d{b} {}

			    constexpr double dbl() const {

			        return static_cast<double>(n) / 

			          static_cast<double>(d);

			    }

			    constexpr auto operator<=>(const Frac& rhs) const {

			        return dbl() <=> rhs.dbl();

			    };

			    constexpr auto operator==(const Frac& rhs) const {

			        return dbl() <=> rhs.dbl() == 0;

			    };

			};

			In this case we need to define the operator<=> overload because our data members are not stand-alone scalar values. It's still quite simple and it works just as well.

			Notice that we also needed an operator== overload. This is because the expression rewrite rules will not rewrite == and != with a custom operator<=> overload. You only need to define operator==. The compiler will rewrite the != expression as needed.

			Now we can define some objects:

			constexpr Frac a(10,15);  // compares equal with 2/3

			constexpr Frac b(2,3);

			constexpr Frac c(5,3);

			And we can test them with normal comparison operators, as expected:

			int main() {

			    static_assert(a < c);

			    static_assert(c > a);

			    static_assert(a == b);

			    static_assert(a <= b);

			    static_assert(a <= c);

			    static_assert(c >= a);

			    static_assert(a != c);

			}

			The power of the spaceship operator is in its ability to streamline comparison overloads in your classes. It improves both simplicity and efficiency when compared to overloading each operator independently.

			Easily find feature test macros with the <version> header

			C++ has provided some form of feature test macros for as long as new features have been added. Beginning with C++20, the process is standardized, and all library feature test macros have been added to the <version> header. This will make it much easier to test for a new feature in your code.

			This is a useful feature and it's very simple to use.

			How to do it…

			All feature test macros begin with the prefix __cpp_. Library features begin with __cpp_lib_. Language feature test macros are typically defined by the compiler. Library feature test macros are defined in the new <version> header. Use them as you would any other preprocessor macro:

			#include <version>

			#ifdef __cpp_lib_three_way_comparison

			#   include <compare>

			#else

			#   error Spaceship has not yet landed

			#endif

			In some cases, you can use the __has_include preprocessor operator (introduced in C++17) to test for the existence of an include file.

			#if __has_include(<compare>)

			#   include <compare>

			#else

			#   error Spaceship has not yet landed

			#endif

			You can use __has_include to test for the existence of any header file. Because it's a preprocessor directive, it doesn't require a header of its own to work.

			How it works…

			Generally, you can use the feature test macros by testing for a non-zero value using #ifdef or #if defined. Each of the feature test macros has a non-zero value that corresponds to the year and month it was accepted by the standards committee. For example, the __cpp_lib_three_way_comparison macro has a value of 201907. This means that it was accepted in July 2019.

			#include <version>

			#ifdef __cpp_lib_three_way_comparison

			    cout << "value is " << __cpp_lib_three_way_comparison 

			        << "\n"

			#endif

			Output:

			$ ./working

			value is 201907

			The value of the macro may be useful in some obscure cases where a feature has changed and you're dependent upon the changes. For most purposes, you can safely ignore the value and just test for non-zero with #ifdef.

			Several websites maintain a complete list of feature test macros. I tend to use cppreference (https://j.bw.org/cppfeature) but there are others.

			Create safer templates with concepts and constraints

			Templates are great for writing code that works with different types. For example, this function will work with any numeric type:

			template <typename T>

			T arg42(const T & arg) {

			    return arg + 42;

			}

			But what happens when you try to call it with a non-numeric type?

			const char * n = "7";

			cout << "result is " << arg42(n) << "\n";

			Output:

			Result is ion

			This compiles and runs without error, but the result is unpredictable. In fact, the call is dangerous and it could easily crash or become a vulnerability. I would much prefer the compiler generate an error message so I can fix the code.

			Now, with concepts, I can write it like this:

			template <typename T>

			requires Numeric<T>

			T arg42(const T & arg) {

			    return arg + 42;

			}

			The requires keyword is new for C++20. It applies constraints to a template. Numeric is the name of a concept that only accepts integer and floating-point types. Now, when I compile this code with a non-numeric parameter, I get a reasonable compiler error:

			error: 'arg42': no matching overloaded function found

			error: 'arg42': the associated constraints are not satisfied

			Error messages like this are far more useful than most compiler errors.

			Let's take a closer look at how to use concepts and constraints in your code.

			How to do it…

			A concept is simply a named constraint. The Numeric concept from above looks like this:

			#include <concepts>

			template <typename T>

			concept Numeric = integral<T> || floating_point<T>;

			This concept requires a type T, which satisfies either the std::integral or std::floating_point predefined concepts. These concepts are included in the <concepts> header.

			Concepts and constraints may be used in class templates, function templates, or variable templates. We've seen a constrained function template, now here's a simple constrained class template example:

			template<typename T>

			requires Numeric<T>

			struct Num {

			    T n;

			    Num(T n) : n{n} {}

			};

			And here's a simple variable template example:

			template<typename T>

			requires floating_point<T>

			T pi{3.1415926535897932385L};

			You can use concepts and constraints on any template. Let's consider some further examples. We'll be using function templates in these examples for simplicity.

			
					A constraint may use concepts or type traits to evaluate the characteristics of a type. You may use any of the type traits found in the <type_traits> header, so long as it returns a bool.

			

			For example:

			template<typename T>

			requires is_integral<T>::value  // value is bool

			constexpr double avg(vector<T> const& vec) {

			    double sum{ accumulate(vec.begin(), vec.end(), 

			      0.0)

			    };

			    return sum / vec.size();

			}

			
					The requires keyword is new in C++20. It introduces a constraint for the template arguments. In this example, the constraint expression tests the template argument against the type trait is_integral. 

					You can use one of the pre-defined traits found in the <type_traits> header, or you can define your own, just as you would a template variable. For use in constraints, the variable must return constexpr bool. For example:template<typename T>
constexpr bool is_gt_byte{ sizeof(T) > 1 };


			

			This defines a type trait called is_gt_byte. This trait uses the sizeof operator to test if the type T is larger than 1 byte.

			
					A concept is simply a named set of constraints. For example:template<typename T>
concept Numeric = is_gt_byte<T> &&
    (integral<T> || floating_point<T>);


			

			This defines a concept named Numeric. It uses our is_gt_byte constraint, along with the floating_point and integral concepts from the <concepts> header. We can use it to constrain a template to only accept numeric types that are greater than 1 byte in size.

			template<Numeric T>

			T arg42(const T & arg) {

			    return arg + 42;

			}

			You'll notice that I've applied the constraint in the template declaration, rather than on a separate line in a requires expression. There are a few ways to apply a concept. Let's look at how this works.

			How it works…

			There are several different ways you can apply a concept or constraint:

			
					You can apply a concept or constraint with the requires keyword: template<typename T>
requires Numeric<T>
T arg42(const T & arg) {
    return arg + 42;
}


					You can apply a concept in the template declaration:template<Numeric T>
T arg42(const T & arg) {
    return arg + 42;
}


					You can use the requires keyword in a function signature:template<typename T>
T arg42(const T & arg) requires Numeric<T> {
    return arg + 42;
}


					Or you can use a concept in a parameter list for an abbreviated function template:auto arg42(Numeric auto & arg) {
    return arg + 42;
}


			

			For many purposes, choosing one of these strategies may be a matter of style. And there are circumstances where one may be a better option than another.

			There's more…

			The standard uses the terms conjunction, disjunction, and atomic, to describe types of expressions that can be used to construct a constraint. Let's define these terms.

			You can combine concepts and constraints using the && and || operators. These combinations are called conjunctions and disjunctions, respectively. You can think of them as logical AND and OR.

			A constraint conjunction is formed by using the && operator with two constraints:

			Template <typename T>

			concept Integral_s = Integral<T> && is_signed<T>::value;

			A conjunction is satisfied only if both sides of the && operator are satisfied. It is evaluated left-to-right. The operands of a conjunction are short-circuited, that is, if the left side constraint is not satisfied the right side will not be evaluated.

			A constraint disjunction is formed by using the || operator with two constraints:

			Template <typename T>

			concept Numeric = integral<T> || floating_point<T>;

			A disjunction is satisfied if either side of the || operator is satisfied. It is evaluated left-to-right. The operands of a conjunction are short-circuited, that is, if the left side constraint is satisfied the right side will not be evaluated.

			An atomic constraint is an expression that returns a bool type, which cannot be further decomposed. In other words, it is not a conjunction or a disjunction.

			template<typename T>

			concept is_gt_byte = sizeof(T) > 1;

			You can also use the logical! (NOT) operator in an atomic constraint:

			template<typename T>

			concept is_byte = !is_gt_byte<T>;

			As expected, the ! operator inverts the value of the bool expression to the right of the !.

			Of course, we can combine all these expression types into a larger expression. We see examples of each of these constraint expressions in the following example:

			template<typename T>

			concept Numeric = is_gt_byte<T> && 

			    (integral<T> || floating_point<T>);

			Let's break this down. The sub-expression, (integral<T> || floating_point<T>) is a disjunction. The sub-expression, is_gt_byte<T> && (…) is a conjunction. And each of the sub-expressions integral<T>, floating_point<T>, and is_gt_byte<T>, are atomic.

			These distinctions are mostly for descriptive purposes. While it's good to understand the details, as you write your code, it's safe to think of them as simple logical ||, &&, and ! operators.

			Concepts and constraints are a welcome addition to the C++ standard and I'm looking forward to using them in my future projects.

			Avoid re-compiling template libraries with modules

			Header files have been around since the very beginning of the C language. Originally, they were mainly used for text substitution macros and linking external symbols between translation units. With the introduction of templates, C++ leveraged header files to carry actual code. Because templates need to be recompiled for changes in specializations, we've been carrying them around in header files for many years. As the STL continues to grow over the years, these header files have grown as well. The situation has become unwieldy and is no longer scalable for the future.

			Header files typically contain a lot more than templates. They often contain configuration macros and other symbols that are required for system purposes, but not useful for the application. As the number of headers grows, the number of opportunities for symbol collisions grows as well. This is even more problematic when you consider the abundance of macros, which are not subject to namespace restrictions nor any form of type safety.

			C++20 addresses this problem with modules. 

			How to do it…

			You may be used to creating header files like this:

			#ifndef BW_MATH

			#define BW_MATH

			namespace bw {

			    template<typename T>

			    T add(T lhs, T rhs) {

			        return lhs + rhs;

			    }

			}

			#endif // BW_MATH

			This minimalist example illustrates several of the problems that modules address. The BW_MATH symbol is used as an include guard. Its only purpose is to prevent the header file from being included more than once, yet its symbol is carried throughout the translation unit. When you include this header in your source file, it may look like this:

			#include "bw-math.h"

			#include <format>

			#include <string>

			#include <iostream>

			Now that BW_MATH symbol is available to every other header you've included, and every header included by the other headers, and on and on. That's a lot of opportunities for collision. And keep in mind, the compiler cannot check for these collisions. They're macros. That means they're translated by the preprocessor before the compiler ever has a chance to see them.

			Now we get to the actual point of the header, the template function:

			template<typename T>

			T add(T lhs, T rhs) {

			    return lhs + rhs;

			}

			Because it's a template, every time you use the add() function the compiler must create a separate specialization. This means that the template function must be parsed and specialized each time it's invoked. That's why templates go in header files; the source must be available at compile time. As the STL grows and evolves, with its many large template classes and functions, this becomes a significant scalability problem.

			Modules solve these problems and more.

			As a module, bw-math.h becomes bw-math.ixx (in the MSVC naming convention) and it looks like this:

			export module bw_math;

			export template<typename T>

			T add(T lhs, T rhs) {

			    return lhs + rhs;

			}

			Notice that the only symbols exported are the name of the module, bw_math, and the name of the function, add(). This keeps the namespace clean.

			The usage is cleaner as well. When we use it in module-test.cpp, it looks like this:

			import bw_math;

			import std.core;

			int main() {

			    double f = add(1.23, 4.56);

			    int i = add(7, 42);

			    string s = add<string>("one ", "two");

			    cout << 

			        "double: " << f << "\n" <<

			        "int: " << i << "\n" <<

			        "string: " << s << "\n";

			}

			The import declarations are used where we might otherwise use #include preprocessor directives. These import the symbol tables from the modules for linkage.

			The output of our example looks like this:

			$ ./module-test

			double: 5.79

			int: 49

			string: one two

			The module version works exactly as it did in a header file, only cleaner and more efficiently.

			Note

			The compiled module includes a separate metadata file (module-name.ifc in the MSVC naming convention), which describes the module interface. This allows the module to support templates. The metadata includes sufficient information for the compiler to create template specializations.

			How it works…

			The import and export declarations are at the core of the Modules implementation. Let's take another look at the bw-math.ixx module:

			export module bw_math;

			export template<typename T>

			T add(T lhs, T rhs) {

			    return lhs + rhs;

			}

			Notice the two export declarations. The first exports the module itself with export module bw_math. This declares the translation unit as a module. There must be a module declaration at the top of every module file, and before any other statements. The second export makes the function name add() available to the module consumer. 

			If your module requires #include directives, or other global fragments, you will need to first declare your module with a simple module declaration like this:

			module;

			#define SOME_MACRO 42

			#include <stdlib.h>

			export module bw_math;

			...

			The module; declaration, on a line by itself at the top of the file, introduces a global module fragment. Only preprocessor directives may appear in the global module fragment. This must be immediately followed by a standard module declaration (export module bw_math;) and the rest of the module content. Let's look closer at how this works:

			
					An export declaration makes a symbol visible to the module consumer, that is, the code that imports the module. Symbols default to private.export int a{7};  // visible to consumer
int b{42};        // not visible


					You can export a block, like this:export {
    int a() { return 7; };     // visible 
    int b() { return 42; };    // also visible
}


					You can export a namespace:export namespace bw {  // all of the bw namespace is visible
    template<typename T>
    T add(T lhs, T rhs) {  // visible as bw::add()
        return lhs + rhs;
    }
}


					Or, you can export individual symbols from a namespace:namespace bw {  // all of the bw namespace is visible
    export template<typename T>
    T add(T lhs, T rhs) {  // visible as bw::add()
        return lhs + rhs;
    }
}


					An import declaration imports a module in the consumer:import bw_math;
int main() {
    double f = bw::add(1.23, 4.56);
    int i = bw::add(7, 42);
    string s = bw::add<string>("one ", "two");
}


					You can even import a module and export it to the consumer to pass it along:export module bw_math;
export import std.core;


			

			The export keyword must precede the import keyword.

			The std.core module is now available for the consumer:

			import bw_math;

			using std::cout, std::string, std::format;

			int main() {

			    double f = bw::add(1.23, 4.56);

			    int i = bw::add(7, 42);

			    string s = bw::add<string>("one ", "two");

			    cout << 

			        format("double {} \n", f) <<

			        format("int {} \n", i) <<

			        format("string {} \n", s);

			}

			As you can see, modules are a simple, straightforward alternative to header files. I know a lot of us are looking forward to the broad availability of modules. I can see this greatly reducing our dependency on header files.

			Note

			At the time of writing, the only complete implementation of modules is in a preview release of MSVC. The module filename extension (.ixx) may be different for other compilers. Also, the amalgamated std.core module is part of how MSVC implements the STL as modules in this release. Other compilers may not use this convention. Some details may change when fully compliant implementations are released.

			In the example files, I've included a module version of my format-based print() function. This works on the current preview release of MSVC. It may require some small modifications to make it work on other systems, once they support enough of the modules specification.

			Create views into containers with ranges

			The new ranges library is one of the more significant additions to C++20. It provides a new paradigm for filtering and processing containers. Ranges provide clean and intuitive building blocks for more effective and readable code.

			Let's start by defining a few terms:

			
					A Range is a collection of objects which can be iterated. In other words, any structure that supports the begin() and end() iterators is a range. This includes most STL containers.

					A View is a range that transforms another underlying range. Views are lazy, meaning they only operate as the range iterates. A view returns data from the underlying range and does not own any data itself. Views operate in O(1) constant time.

					A View Adapter is an object that takes a range and returns a view object. A view adapter may be chained with other view adapters using the | operator.Note
The <ranges> library uses the std::ranges and the std::ranges::view namespaces. Recognizing that this is cumbersome, the standard includes an alias for std::ranges::view as the simply, std::view. I still find that cumbersome. For this recipe I will use the following aliases, to save space and because I find it more elegant: 
namespace ranges = std::ranges;  // save the fingers!
namespace views = std::ranges::views;  
This applies to all the code in this recipe.


			

			How to do it…

			The ranges and views classes are in the <ranges> header. Let's look at how you can use them:

			
					A View is applied to a Range, like this:const vector<int> nums{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
auto result = ranges::take_view(nums, 5);
for (auto v: result) cout << v << " ";


			

			Output:

			1 2 3 4 5 

			ranges::take_view(range, n) is a view that returns the first n elements.

			You may also use the view adapter version of take_view():

			auto result = nums | views::take(5);

			for (auto v: result) cout << v << " ";

			Output:

			1 2 3 4 5 

			View adapters are in the std::ranges::views namespace. A view adapter takes the range operand from the left-hand side of the | operator, much like the iostreams usage of the << operator. The | operands are evaluated left-to-right.

			
					Because a view adapter is iterable, it also qualifies as a range. This allows them to be applied serially, like this:const vector<int> nums{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
auto result = nums | views::take(5) | 
   views::reverse;


			

			Output:

			5 4 3 2 1

			
					The filter() view uses a predicate function:auto result = nums | 
    views::filter([](int i){ return 0 == i % 2; });


			

			Output:

			2 4 6 8 10

			
					The transform() view uses a transformation function:auto result = nums | 
    views::transform([](int i){ return i * i; });


			

			Output:

			1 4 9 16 25 36 49 64 81 100

			
					Of course, these views and adapters work on ranges of any type:cosnt vector<string>
words{ "one", "two", "three", "four", "five" };
auto result = words | views::reverse;


			

			Output:

			five four three two one

			
					The ranges library also includes a few range factories. The iota factory will generate an incrementing series of values:auto rnums = views::iota(1, 10);


			

			Output:

			1 2 3 4 5 6 7 8 9

			The iota(value, bound) function generates a sequence starting with value and ending before bound. If bound is omitted, the sequence is infinite:

			auto rnums = views::iota(1) | views::take(200);

			Output:

			1 2 3 4 5 6 7 8 9 10 11 12 […] 196 197 198 199 200

			Ranges, Views, and View Adapters are incredibly flexible and useful. Let's take a deeper look for a better understanding.

			How it works…

			To satisfy the basic requirements for a Range, an object must have at least two iterators, begin() and end(), where the end() iterator is a sentinel, used to determine the end point of a range. Most STL containers qualify as ranges, including string, vector, array, map, and others, with the notable exception of container-adapters, like stack and queue, which don't have begin and end iterators.

			A View is an object which operates on a range and returns a modified range. A view operates lazily, and contains no data of its own. Instead of keeping a copy of the underlying data, it simply returns iterators to underlying elements as needed. Let's examine this code snippet:

			vector<int> vi { 0, 1, 2, 3, 4, 5 };

			ranges::take_view tv{vi, 2};

			for(int i : tv) {

			    cout << i << " ";

			}

			cout << "\n";

			Output:

			0 1

			In this example, the take_view object takes two parameters, a range (in this case, a vector<int> object), and a count. The result is a view with the first count objects from the vector. At evaluation time, during the iteration of the for loop, the take_view object simply returns iterators that point to elements of the vector object, as needed. The vector object is not modified in this process.

			Many of the views in the ranges namespace have corresponding range adapters in the views namespace. These adapters may be used with the bitwise or (|) operator, as a pipe, like this:

			vector<int> vi { 0, 1, 2, 3, 4, 5 };

			auto tview = vi | views::take(2);

			for(int i : tview) {

			    cout << i << " ";

			}

			cout << "\n";

			Output:

			0 1

			As expected, the | operator evaluates left to right. And because the result of the range adapter is another range, these adapter expressions may be chained:

			vector<int> vi { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

			auto tview = vi | views::reverse | views::take(5);

			for(int i : tview) {

			    cout << i << " ";

			}

			cout << "\n";

			Output:

			9 8 7 6 5

			The library includes a filter view that is used with a predicate, for defining simple filters:

			vector<int> vi { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

			auto even = [](long i) { return 0 == i % 2; };

			auto tview = vi | views::filter(even);

			Output:

			0 2 4 6 8

			Also included, is a transform view that is used with a transform function for transforming results:

			vector<int> vi { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

			auto even = [](int i) { return 0 == i % 2; };

			auto x2 = [](auto i) { return i * 2; };

			auto tview = vi | views::filter(even) | views::transform(x2);

			Output:

			0 4 8 12 16

			There are quite a few useful views and view adapters in the library. Please check your favorite reference site, or (https://j.bw.org/ranges) for a complete list.

			There's more…

			Beginning with C++20, most of the algorithms in the <algorithm> header include versions for use with ranges. These versions are still in the <algorithm> header, but in the std::ranges namespace. This distinguishes them from the legacy algorithms.

			This means that, instead of calling an algorithm with two iterators:

			sort(v.begin(), v.end());

			You can now call it with just a range, like this:

			ranges::sort(v);

			That's certainly more convenient, but how does it really help?

			Consider the case where you want to sort part of a vector, you could do that the old way, like this:

			sort(v.begin() + 5, v.end());

			This would sort the elements of the vector after the first 5. With the ranges version, you can use a view to skip the first 5 elements:

			ranges::sort(views::drop(v, 5));

			You can even combine views:

			ranges::sort(views::drop(views::reverse(v), 5));

			In fact, you can even use range adapters as the argument to ranges::sort:

			ranges::sort(v | views::reverse | views::drop(5));

			In contrast, if you wanted to do this with the traditional sort algorithm and vector iterators, it would look something like this:

			sort(v.rbegin() + 5, v.rend());

			While that's certainly shorter, and not impossible to understand, I find the range adapters version far more intuitive. 

			You can find a complete list of algorithms that have been constrained to work with ranges on the cppreference site (https://j.bw.org/algoranges).

			In this recipe, we've only scratched the surface of Ranges and Views. This feature is the culmination of over a decade of work by many different teams, and I expect it to fundamentally change the way we use containers in the STL.

		

	
		
			Chapter 2: General STL Features

			This chapter is a general potpourri of STL features and techniques. These are mostly new features introduced over the past few years, which may not yet be widely used. These are useful techniques that will improve the simplicity and readability of your code.

			In this chapter we will cover the following recipes:

			
					Use the new span class to make your C-arrays safer

					Use structured binding to return multiple values

					Initialize variables within if and switch statements

					Use template argument deduction for simplicity and clarity

					Use if constexpr to simplify compile-time decisions

			

			Technical requirements

			You can find the code for this chapter on GitHub at https://github.com/PacktPublishing/CPP-20-STL-Cookbook/tree/main/chap02.

			Use the new span class to make your C-arrays safer

			New for C++20, the std::span class is a simple wrapper that creates a view over a contiguous sequence of objects. The span doesn't own any of its own data, it refers to the data in the underlying structure. Think of it as string_view for C-arrays. The underlying structure may be a C-array, a vector, or an STL array.

			How to do it…

			You can create a span from any compatible contiguous-storage structure. The most common use case will involve a C-array. For example, if you try to pass a C-array directly to a function, the array is demoted to a pointer and the function has no easy way to know the size of the array:

			void parray(int * a);  // loses size information

			If you define your function with a span parameter, you can pass it a C-array and it will be promoted to span. Here's a template function that takes a span and prints out the size in elements and in bytes:

			template<typename T>

			void pspan(span<T> s) {

			    cout << format("number of elements: {}\n", s.size());

			    cout << format("size of span: {}\n", s.size_bytes());

			    for(auto e : s) cout << format("{} ", e);

			    cout << "\n";

			}

			You can pass a C-array to this function and it's automatically promoted to span:

			int main() {

			    int carray[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

			    pspan<int>(carray);

			}

			Output:

			number of elements: 10

			number of bytes: 40

			1 2 3 4 5 6 7 8 9 10 

			The purpose of span is to encapsulate the raw data to provide a measure of safety and utility, with a minimum of overhead.

			How it works…

			The span class itself doesn't own any data. The data belongs to the underlying data structure. The span is essentially a view over the underlying data. It also provides some useful member functions.

			Defined in the <span> header, the span class looks something like:

			template<typename T, size_t Extent = std::dynamic_extent>

			class span {

			    T * data;

			    size_t count;

			public:

			    ... 

			};

			The Extent parameter is a constant of type constexpr size_t, which is computed at compile time. It's either the number of elements in the underlying data or the std:: dynamic_extent constant, which indicates that the size is variable. This allows span to use an underlying structure like a vector, which may not always be the same size.

			All member functions are constexpr and const qualified. Member functions include:

			
				
					[image: ]
				

			

			Important Note

			The span class is but a simple wrapper that performs no bounds checking. So, if you try to access element n+1 in a span of n elements, the result is undefined, which is tech for, "Bad. Don't do that."

			Use structured binding to return multiple values

			Structured binding makes it easy to unpack the values of a structure into separate variables, improving the readability of your code.

			With structured binding you can directly assign the member values to variables like this:

			things_pair<int,int> { 47, 9 };

			auto [this, that] = things_pair;

			cout << format("{} {}\n", this, that);

			Output:

			47 9

			How to do it…

			
					Structured binding works with pair, tuple, array, and struct. Beginning with C++20, this includes bit-fields. This example uses a C-array: int nums[] { 1, 2, 3, 4, 5 };
auto [ a, b, c, d, e ] = nums;
cout << format("{} {} {} {} {}\n", a, b, c, d, e);


			

			Output:

			1 2 3 4 5

			Because the structured binding uses automatic type deduction, its type must be auto. The names of the individual variables are within the square brackets, [ a, b, c, d, e ]. 

			In this example the int C-array nums holds five values. These five values are assigned to the variables (a, b, c, d, and e) using structured binding.

			
					This also works with an STL array object:array<int,5> nums { 1, 2, 3, 4, 5 };
auto [ a, b, c, d, e ] = nums;
cout << format("{} {} {} {} {}\n", a, b, c, d, e);


			

			Output:

			1 2 3 4 5

			
					Or you can use it with a tuple:tuple<int, double, string> nums{ 1, 2.7, "three" };
auto [ a, b, c ] = nums;
cout << format("{} {} {}\n", a, b, c);


			

			Output:

			1 2.7 three

			
					When you use it with a struct it will take the variables in the order they're defined:struct Things { int i{}; double d{}; string s{}; };
Things nums{ 1, 2.7, "three" };
auto [ a, b, c ] = nums;
cout << format("{} {} {}\n", a, b, c);


			

			Output:

			1 2.7 three

			
					You can use a reference with a structured binding, which allows you to modify the values in the bound container, while avoiding duplication of the data:array<int,5> nums { 1, 2, 3, 4, 5 };
auto& [ a, b, c, d, e ] = nums;
cout << format("{} {}\n", nums[2], c);
c = 47;
cout << format("{} {}\n", nums[2], c);


			

			Output:

			3 3

			47 47

			Because the variables are bound as a reference, you can assign a value to c and it will change the value in the array as well (nums[2]).

			
					You can declare the array const to prevent values from being changed:const array<int,5> nums { 1, 2, 3, 4, 5 };
auto& [ a, b, c, d, e ] = nums;
c = 47;    // this is now an error 


			

			Or you can declare the binding const for the same effect, while allowing the array to be changed elsewhere and still avoid copying data:

			array<int,5> nums { 1, 2, 3, 4, 5 };

			const auto& [ a, b, c, d, e ] = nums;

			c = 47;    // this is also an error 

			How it works…

			Structured binding uses automatic type deduction to unpack the structure into your variables. It determines the type of each value independently, and assigns a corresponding type to each variable.

			
					Because structured binding uses automatic type deduction, you cannot specify a type for the binding. You must use auto. You should get a reasonable error message if you try to use a type for the binding:array<int,5> nums { 1, 2, 3, 4, 5 };
int [ a, b, c, d, e ] = nums;


			

			Output:

			error: structured binding declaration cannot have type 'int'

			note: type must be cv-qualified 'auto' or reference to cv-qualified 'auto'

			Above is the error from GCC when I try to use int with the structured binding declaration.

			
					It's common to use structured binding for a return type from a function:struct div_result {
    long quo;
    long rem;
};
div_result int_div(const long & num, const long & denom) {
    struct div_result r{};
    r.quo = num / denom;
    r.rem = num % denom;
    return r;
}
int main() {
    auto [quo, rem] = int_div(47, 5);
    cout << format("quotient: {}, remainder {}\n",
      quo, rem);
}


			

			Output:

			quotient: 9, remainder 2

			
					Because the map container classes return a pair for each element, it can be convenient to use structured binding to retrieve key/value pairs:map<string, uint64_t> inhabitants {
    { "humans",   7000000000 },
    { "pokemon", 17863376 },
    { "klingons",   24246291 },
    { "cats",    1086881528 }
};
// I like commas
string make_commas(const uint64_t num) {
    string s{ std::to_string(num) };
    for(int l = s.length() - 3; l > 0; l -= 3) {
        s.insert(l, ",");
    }
    return s;
}
int main() {
    for(const auto & [creature, pop] : inhabitants) {
        cout << format("there are {} {}\n", 
            make_commas(pop), creature);
    }
}


			

			Output:

			there are 1,086,881,528 cats

			there are 7,000,000,000 humans

			there are 24,246,291 klingons

			there are 17,863,376 pokemon

			Using structured binding to unpack structures should make your code clearer and easier to maintain.

			Initialize variables within if and switch statements

			Beginning with C++17, if and switch now have initialization syntax, much like the for loop has had since C99. This allows you to limit the scope of variables used within the condition.

			How to do it…

			You may be accustomed to code like this:

			const string artist{ "Jimi Hendrix" };

			size_t pos{ artist.find("Jimi") };

			if(pos != string::npos) {

			    cout << "found\n";

			} else {

			    cout << "not found\n";

			}

			This leaves the variable pos exposed outside the scope of the conditional statement, where it needs to be managed, or it can collide with other attempts to use the same symbol.

			Now you can put the initialization expression inside the if condition:

			if(size_t pos{ artist.find("Jimi") }; pos != string::npos) {

			    cout << "found\n";

			} else {

			    cout << "not found\n";

			}

			Now the scope of the pos variable is confined to the scope of the conditional. This keeps your namespace clean and manageable.

			How it works…

			The initializer expression can be used in either if or switch statements. Here are some examples of each.

			
					Use an initializer expression with an if statement:if(auto var{ init_value }; condition) {
    // var is visible 
} else {
    // var is visible 
} 
// var is NOT visible 


			

			The variable defined in the initializer expression is visible within the scope of the entire if statement, including the else clause. Once control flows out of the if statement scope, the variable will no longer be visible, and any relevant destructors will be called.

			
					Use an initializer expression with a switch statement:switch(auto var{ init_value }; var) {
case 1: ...
case 2: ...
case 3: ...
...
Default: ...
}
// var is NOT visible 


			

			The variable defined in the initializer expression is visible within the scope of the entire switch statement, including all the case clauses and the default clause, if included. Once control flows out of the switch statement scope, the variable will no longer be visible, and any relevant destructors will be called.

			There's more…

			One interesting use case is to limit the scope of a lock_guard that's locking a mutex. This becomes simple with an initializer expression:

			if (lock_guard<mutex> lg{ my_mutex }; condition) { 

			    // interesting things happen here 

			}

			The lock_guard locks the mutex in its constructor and unlocks it in its destructor. Now the lock_guard will be automatically destroyed when it runs out of the scope of the if statement. In the past you would have had to delete it or enclose the whole if statement in an extra block of braces.

			Another use case could be using a legacy interface that uses output parameters, like this one from SQLite:

			if(

			    sqlite3_stmt** stmt, 

			    auto rc = sqlite3_prepare_v2(db, sql, -1, &_stmt,

			        nullptr);

			    !rc) {

			          // do SQL things

			} else {  // handle the error 

			    // use the error code 

			    return 0;

			}

			Here I can keep the statement handle and the error code localized to the scope of the if statement. Otherwise, I would need to manage those objects globally.

			Using initializer expressions will help keep your code tight and uncluttered, more compact, and easier to read. Refactoring and managing your code will also become easier.

			Use template argument deduction for simplicity and clarity

			Template argument deduction occurs when the types of the arguments to a template function, or class template constructor (beginning with C++17), are clear enough to be understood by the compiler without the use of template arguments. There are certain rules to this feature, but it's mostly intuitive.

			How to do it…

			In general, template argument deduction happens automatically when you use a template with clearly compatible arguments. Let's consider some examples.

			
					In a function template, argument deduction usually looks something like this:template<typename T>
const char * f(const T a) {
    return typeid(T).name();
}
int main() {
    cout << format("T is {}\n", f(47));
    cout << format("T is {}\n", f(47L));
    cout << format("T is {}\n", f(47.0));
    cout << format("T is {}\n", f("47"));
    cout << format("T is {}\n", f("47"s));
}


			

			Output:

			T is int

			T is long

			T is double

			T is char const *

			T is class std::basic_string<char...

			Because the types are easily discernable there is no reason to specify a template parameter like f<int>(47) in the function call. The compiler can deduce the <int> type from the argument.

			Note

			The above output shows meaningful type names where most compilers will use shorthand, like i for int and PKc for const char *, and so on.

			
					This works just as well for multiple template parameters:template<typename T1, typename T2>
string f(const T1 a, const T2 b) {
    return format("{} {}", typeid(T1).name(), 
        typeid(T2).name());
}
int main() {
    cout << format("T1 T2: {}\n", f(47, 47L));
    cout << format("T1 T2: {}\n", f(47L, 47.0));
    cout << format("T1 T2: {}\n", f(47.0, "47"));
}


			

			Output:

			T1 T2: int long

			T1 T2: long double

			T1 T2: double char const *

			Here the compiler is deducing types for both T1 and T2.

			
					Notice that the types must be compatible with the template. For example, you cannot take a reference from a literal:template<typename T>
const char * f(const T& a) {
    return typeid(T).name();
}
int main() {
    int x{47};
    f(47);  // this will not compile 
    f(x);   // but this will 
}


					Beginning with C++17 you can also use template parameter deduction with classes. So now this will work:pair p(47, 47.0);     // deduces to pair<int, double>
tuple t(9, 17, 2.5);  // deduces to tuple<int, int, double>


			

			This eliminates the need for std::make_pair() and std::make_tuple() as you can now initialize these classes directly without the explicit template parameters. The std::make_* helper functions will remain available for backward compatibility.

			How it works…

			Let's define a class so we can see how this works:

			template<typename T1, typename T2, typename T3>

			class Thing {

			    T1 v1{};

			    T2 v2{};

			    T3 v3{};

			public:

			    explicit Thing(T1 p1, T2 p2, T3 p3)

			    : v1{p1}, v2{p2}, v3{p3} {}

			    string print() {

			        return format("{}, {}, {}\n",

			            typeid(v1).name(),

			            typeid(v2).name(),

			            typeid(v3).name()

			        );

			    }

			};

			This is a template class with three types and three corresponding data members. It has a print() function, which returns a formatted string with the three type names.

			Without template parameter deduction, I would have to instantiate an object of this type like this:

			Things<int, double, string> thing1{1, 47.0, "three" }

			Now I can do it like this:

			Things thing1{1, 47.0, "three" }

			This is both simpler and less error prone.

			When I call the print() function on the thing1 object, I get this result:

			cout << thing1.print();

			Output:

			int, double, char const *

			Of course, your compiler may report something effectively similar.

			Before C++17, template parameter deduction didn't apply to classes, so you needed a helper function, which may have looked like this:

			template<typename T1, typename T2, typename T3>

			Things<T1, T2, T3> make_things(T1 p1, T2 p2, T3 p3) {

			    return Things<T1, T2, T3>(p1, p2, p3);

			}

			...

			auto thing1(make_things(1, 47.0, "three"));

			cout << thing1.print();

			Output:

			int, double, char const *

			The STL includes a few of these helper functions, like make_pair() and make_tuple(), etc. These are now obsolescent, but will be maintained for compatibility with older code.

			There's more…

			Consider the case of a constructor with a parameter pack:

			template <typename T>

			class Sum {

			    T v{};

			public:

			    template <typename... Ts>

			    Sum(Ts&& ... values) : v{ (values + ...) } {}

			    const T& value() const { return v; }

			};

			Notice the fold expression in the constructor (values + ...). This is a C++17 feature that applies an operator to all the members of a parameter pack. In this case, it initializes v to the sum of the parameter pack. 

			The constructor for this class accepts an arbitrary number of parameters, where each parameter may be a different class. For example, I could call it like this:

			Sum s1 { 1u, 2.0, 3, 4.0f };  // unsigned, double, int, 

			                              // float

			Sum s2 { "abc"s, "def" };     // std::sring, c-string

			This, of course, doesn't compile. The template argument deduction fails to find a common type for all those different parameters. We get an error message to the effect of:

			cannot deduce template arguments for 'Sum'

			We can fix this with a template deduction guide. A deduction guide is a helper pattern to assist the compiler with a complex deduction. Here's a guide for our constructor:

			template <typename... Ts>

			Sum(Ts&& ... ts) -> Sum<std::common_type_t<Ts...>>;

			This tells the compiler to use the std::common_type_t trait, which attempts to find a common type for all the parameters in the pack. Now our argument deduction works and we can see what types it settled on:

			Sum s1 { 1u, 2.0, 3, 4.0f };  // unsigned, double, int, 

			                              // float

			Sum s2 { "abc"s, "def" };     // std::sring, c-string

			auto v1 = s1.value();

			auto v2 = s2.value();

			cout << format("s1 is {} {}, s2 is {} {}",

			        typeid(v1).name(), v1, typeid(v2).name(), v2);

			Output:

			s1 is double 10, s2 is class std::string abcdef

			Use if constexpr to simplify compile-time decisions

			An if constexpr(condition) statement is used where code needs to be executed based on a compile-time condition. The condition may be any constexpr expression of type bool.

			How to do it…

			Consider the case where you have a template function that needs to operate differently depending upon the type of the template parameter.

			template<typename T>

			auto value_of(const T v) {

			    if constexpr (std::is_pointer_v<T>) {

			        return *v;  // dereference the pointer

			    } else {

			        return v;   // return the value

			    }

			}

			int main() {

			    int x{47};

			    int* y{&x};

			    cout << format("value is {}\n", value_of(x));  // value

			    cout << format("value is {}\n", value_of(y));  

			                                                // pointer

			    return 0;

			}

			Output:

			value is 47

			value is 47

			The type of the template parameter T is available at compile time. The constexpr if statement allows the code to easily distinguish between a pointer and a value.

			How it works…

			The constexpr if statement works like a normal if statement except it's evaluated at compile time. The runtime code will not contain any branch statements from a constexpr if statement. Consider our branch statement from above:

			if constexpr (std::is_pointer_v<T>) {

			    return *v;  // dereference the pointer

			} else {

			        return v;   // return the value

			    }

			The condition is_pointer_v<T> tests a template parameter, which is not available at runtime. The constexpr keyword tells the compiler that this if statement needs to evaluate at compile time, while the template parameter <T> is available.

			This should make a lot of meta programming situations much easier. The if constexpr statement is available in C++17 and later.

		

	
		
			Chapter 3: STL Containers

			In this chapter, we will focus on the container classes in the STL. In short, a container is an object that contains a collection of other objects, or elements. The STL provides a complete suite of container types that form the foundation of the STL itself.

			A quick overview of the STL container types

			The STL provides a comprehensive set of container types, including sequential containers, associative containers, and container adapters. Here's a brief overview: 

			Sequential containers

			The sequential containers provide an interface where the elements are arranged in sequence. While you may use the elements sequentially, some of these containers use contiguous storage, and others do not. The STL includes these sequential containers:

			
					The array is a fixed-size sequence that holds a specific number of elements in contiguous storage. Once allocated, it cannot change size. This is the simplest and fastest contiguous storage container.

					The vector is like an array that can shrink and grow. Its elements are stored contiguously, so changing size may involve the expense of allocating memory and moving data. A vector may keep extra space in reserve to mitigate that cost. Inserting and deleting elements from anywhere other than the back of a vector will trigger realignment of the elements to maintain contiguous storage.

					The list is a doubly-linked list structure that allows elements to be inserted and deleted in constant (O(1)) time. Traversing the list happens in linear O(n) time. A single-linked variant is available as forward_list, which only iterates forward. A forward_list uses less space and is somewhat more efficient than a doubly-linked list, but lacks some capability.

					The deque (commonly pronounced, deck) is a double-ended queue. It's a sequential container that can be expanded or contracted on both ends. A deque allows random access to its elements, much like a vector, but does not guarantee contiguous storage.

			

			Associative containers

			An associative container associates a key with each element. Elements are referenced by their key, rather than their position in the container. STL associative containers include these containers:

			
					The set is an associative container where each element is also its own key. Elements are ordered, usually by some sort of binary tree. Elements in a set are immutable and cannot be modified, but they can be inserted and removed. Elements in a set are unique, duplicates are not allowed. A set iterates in order according to its sorting operators.

					The multiset is like a set with non-unique keys, where duplicates are allowed.

					The unordered_set is like a set that does not iterate in order. Elements are not sorted in any specific order, but are organized according to their hash values for fast access.

					The unordered_multiset is like an unordered_set with non-unique keys, where duplicates are allowed.

					The map is an associative container for key-value pairs, where each key is mapped to a specific value (or payload). The types of the key and value may be different. Keys are unique but values are not. A map iterates in order of its keys, according to its sorting operators.

					The multimap is like a map with non-unique keys, where duplicate keys are allowed.

					The unordered_map is like a map that does not iterate in order.

					The unordered_multimap is like an unordered_map with non-unique keys, where duplicates are allowed.

			

			Container adapters

			A container adapter is a class which encapsulates an underlying container. The container class provides a specific set of member functions to access the underlying container elements. The STL provides these container adapters:

			
					The stack provides a LIFO (last-in, first-out) interface where elements may be added and extracted from only one end of the container. The underlying container may be one of vector, deque, or list. If no underlying container is specified, the default is deque.

					The queue provides a FIFO (first-in, first-out) interface where elements may be added at one end of the container and extracted from the other end. The underlying container may be one of deque or list. If no underlying container is specified, the default is deque.

					The priority_queue keeps the greatest value element at the top, according to a strict weak ordering. It provides a constant time lookup of the greatest value element, at the expense of logarithmic time insertion and extraction. The underlying container may be one of vector or deque. If no underlying container is specified, the default is vector.

			

			In this chapter we will cover the following recipes:

			
					Use uniform erasure functions to delete items from a container

					Delete items from an unsorted vector in constant time

					Access vector elements directly and safely

					Keep vector elements sorted

					Efficiently insert elements into a map

					Efficiently modify the keys of map items

					Use unordered_map with custom keys

					Use set to sort and filter user input

					A simple RPN calculator with deque

					A word frequency counter with map

					Find long sentences with a vector of vectors

					A ToDo list using multimap

			

			Technical requirements

			You can find the code for this chapter on GitHub at https://github.com/PacktPublishing/CPP-20-STL-Cookbook/tree/main/chap03.

			Use uniform erasure functions to delete items from a container

			Before C++20, the erase-remove idiom was commonly used to efficiently delete elements from an STL container. This was a little cumbersome, but not a great burden. It was common to use a function like this for the task:

			template<typename Tc, typename Tv>

			void remove_value(Tc & c, const Tv v) {

			    auto remove_it = std::remove(c.begin(), c.end(), v);

			    c.erase(remove_it, c.end());

			}

			The std::remove() function is from the <algorithms> header. std::remove() searches for the specified value and removes it by shifting elements forward from the end of the container. It does not change the size of the container. It returns an iterator past the end of the shifted range. We then call the container's erase() function to delete the remaining elements.

			This two-step process is now reduced to one step with the new uniform erasure function:

			std::erase(c, 5);   // same as remove_value() function

			This one function call does the same thing as the remove_value() function we wrote above.

			There's also a version that uses a predicate function. For example, to remove all even numbered values from a numeric container:

			std::erase_if(c, [](auto x) { return x % 2 == 0; });

			Let's look at the uniform erasure functions in a bit more detail.

			How to do it…

			There are two forms of the uniform erasure functions. The first form, called erase(), takes two parameters, a container and a value:

			erase(container, value); 

			The container may be any of the sequential containers (vector, list, forward_list, deque), except array, which cannot change size.

			The second form, called erase_if(), takes a container and a predicate function:

			erase_if(container, predicate); 

			This form works with any of the containers that work with erase(), plus the associative containers, set, map, and their multi-key and unordered variants.

			The functions erase() and erase_if() are defined, as non-member functions, in the header for the corresponding container. There is no need to include another header.

			Let's look at some examples:

			
					First, let's define a simple function to print the size and elements of a sequential container:void printc(auto & r) {
    cout << format("size({}) ", r.size());
    for( auto & e : r ) cout << format("{} ", e);
    cout << "\n";
}


			

			The printc() function uses the C++20 format() function to format a string for cout.

			
					Here's a vector with 10 integer elements, printed with our printc() function:vector v{ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
printc(v);


			

			Output:

			size: 10: 0 1 2 3 4 5 6 7 8 9

			We see that the vector has 10 elements. Now we can use erase() to remove all elements with the value 5:

			erase(v, 5);

			printc(v);

			Output:

			size: 9: 0 1 2 3 4 6 7 8 9

			The vector version of the std::erase() function is defined in the <vector> header. After the erase() call, the element with the value 5 has been removed and the vector has 9 elements.

			
					This works just as well with a list container:list l{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
printc(l);
erase(l, 5);
printc(l);


			

			Output:

			size: 10: 0 1 2 3 4 5 6 7 8 9

			size: 9: 0 1 2 3 4 6 7 8 9

			The list version of the std::erase() function is defined in the <list> header. After the erase() call, the element with the value 5 has been removed and the list has 9 elements.

			
					We can use erase_if() to remove all the even numbered elements with a simple predicate function:vector v{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
printc(v);
erase_if(v, [](auto x) { return x % 2 == 0; });
printc(v);


			

			Output:

			size: 10: 0 1 2 3 4 5 6 7 8 9

			size: 5: 1 3 5 7 9

			
					The erase_if() function also works with associative containers, like map:void print_assoc(auto& r) {
    cout << format("size: {}: ", r.size());
    for( auto& [k, v] : r ) cout << format("{}:{} ",
        k, v);
    cout << "\n";
}
int main() {
    map<int, string> m{ {1, "uno"}, {2, "dos"},
        {3, "tres"}, {4, "quatro"}, {5, "cinco"} };
    print_assoc(m);
    erase_if(m, 
        [](auto& p) { auto& [k, v] = p;
        return k % 2 == 0; }
    );
    print_assoc(m);
}


			

			Output:

			size: 5: 1:uno 2:dos 3:tres 4:quatro 5:cinco

			size: 3: 1:uno 3:tres 5:cinco

			Because each element of a map is returned as a pair, we need a different function to print them. The print_assoc() function unpacks the pair elements with a structured binding in the for loop. We also use a structured binding in the predicate function of erase_if() to isolate the key for filtering the even numbered elements.

			How it works…

			The erase() and erase_if() functions are simply wrappers that perform the erase-remove idiom in one step. They perform the same operations as a function, like this:

			template<typename Tc, typename Tv>

			void remove_value(Tc & c, const Tv v) {

			    auto remove_it = std::remove(c.begin(), c.end(), v);

			    c.erase(remove_it, c.end());

			}

			If we consider a simple vector of int, called vec, with the following values:

			vector vec{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

			We can visualize vec as a one-row table of int values:
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			Figure 3.1 – begin() and end() iterators

			The begin() iterator points at the first element, and the end() iterator points past the last element. This configuration is standard for all STL sequential containers.

			When we call remove(c.begin(), c.end(), 5), the algorithm searches for matching elements, starting at the begin() iterator. For each matching element that it finds, it shifts the next element into its place. It continues searching and shifting until it reaches the end() iterator. The result is a container where all the remaining elements are at the beginning, without the deleted elements, and in their original order. The end() iterator is unchanged and the remaining elements are undefined. We can visualize the operation like this:
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			Figure 3.2 – Removing an element

			The remove() function returns an iterator (remove_it) that points to the first element past the elements that were shifted. The end() iterator remains as it was before the remove() operation. To further illustrate, if we were to remove all even-numbered elements using remove_if(), our result would look like this:
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			Figure 3.3 – After removing even-numbered elements

			In this case, all that remains is the five odd-numbered elements followed by five elements of undefined value.

			The container's erase() function is then called to erase the remaining elements:

			c.erase(remove_it, c.end());

			The container's erase() function is called with the remove_it and end() iterators to delete all the undefined elements.

			The erase() and erase_if() functions call both the remove() function and the container's erase() function, in order to perform the erase-remove idiom in one step.

			Delete items from an unsorted vector in constant time

			Using the uniform erasure functions (or the erase-remove idiom) to delete items from the middle of a vector takes O(n) (linear) time. This is because elements must be shifted from the end of the vector to close the gap of the deleted items. If the order of items in the vector is not important, we can optimize this process to take O(1) (constant) time. Here's how.

			How to do it…

			This recipe takes advantage of the fact that removing an element from the end of a vector is quick and easy.

			
					Let's start by defining a function to print out a vector:void printc(auto & r) {
    cout << format("size({}) ", r.size());
    for( auto & e : r ) cout << format("{} ", e);
    cout << '\n';
}


					In our main() function we define a vector of int and print it using printc():int main() {
    vector v{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
    printc(v);
}


			

			Output:

			size(10) 0 1 2 3 4 5 6 7 8 9

			
					Now we'll write the function that will delete an element from the vector:template<typename T>
void quick_delete(T& v, size_t idx) {
    if (idx < v.size()) {
        v[idx] = move(v.back());
        v.pop_back();
    }
}


			

			The quick_delete() function takes two arguments, a vector v and an index idx. We first check to make sure our index is within boundaries. Then we call the move() function from the <algorithms> header to move the last element of the vector to the position of our index. Finally, the v.pop_back() function is called to shorten the vector from the back.

			
					Let's also include a version of quick_delete() for use with an iterator instead of an index.template<typename T>
void quick_delete(T& v, typename T::iterator it) {
    if (it < v.end()) {
        *it = move(v.back());
        v.pop_back();
    }
}


			

			This version of quick_delete() operates from an iterator instead of an index. Otherwise, it works the same as the indexed version.

			
					Now we can call it from our main() function:int main() {
    vector v{ 12, 196, 47, 38, 19 };
    printc(v);
    auto it = std::ranges::find(v, 47);
    quick_delete(v, it);
    printc(v);
    quick_delete(v, 1);
    printc(v);
}


			

			And the output will look like this:

			size(5) 12 196 47 38 19

			size(4) 12 196 19 38

			size(3) 12 38 19

			The first call to quick_delete() uses an iterator from the std::ranges::find() algorithm. This deletes the value 47 from the vector. Notice the value from the back of the vector (19) takes its place. The second call to quick_delete() uses an index (1) to delete the second element from the vector (196). Again, the value from the back of the vector takes its place.

			How it works…

			The quick_delete() function uses a simple trick to delete elements from a vector quickly and efficiently. The element at the back of the vector is moved (not copied) into the position of the element to be deleted. The deleted element is discarded in the process. Then, the pop_back() function shortens the vector by one element from the end.

			This takes advantage of the fact that deleting the element at the back of the vector is especially cheap. The pop_back() function operates at constant complexity, as it only needs to change the end() iterator.

			This diagram shows the state of the vector before and after the quick_delete() operation:
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			Figure 3.4 – Before and after quick_delete()

			The quick_remove() operation simply moves the element from the back of the vector into the position of the iterator (it), then shortens the vector by one element. It's important to use std::move() instead of an assignment to move the element. The move operation is much faster than a copy-assignment, especially for large objects.

			If you don't require ordered elements, this is an extremely efficient technique. It happens in constant (O(1)) time and without touching any other elements.

			Access vector elements directly and safely

			The vector is one of the most widely used containers in the STL, and for good reason. It's just as convenient as an array but far more powerful and flexible. It's common practice to use the [] operator to access elements in a vector like this:

			vector v{ 19, 71, 47, 192, 4004 };

			auto & i = v[2];

			The vector class also provides a member function for the same purpose:

			auto & i = v.at(2);

			The result is the same but there is an important difference. The at() function does bounds checking and the [] operator does not. This is intentional, as it allows the [] operator to maintain compatibility with the original C-array. Let's examine this in a bit more detail.

			How to do it…

			There are two ways to access an element with an index in a vector. The at() member function does bounds checking, and the [] operator does not.

			
					Here's a simple main() function that initializes a vector and accesses an element:int main() {
    vector v{ 19, 71, 47, 192, 4004 };
    auto & i = v[2];
    cout << format("element is {}\n", i);
}


			

			Output:

			element is 47

			Here, I used the [] operator to directly access the third element in the vector. As with most sequential objects in C++, the index starts at 0 so the third element is number 2.

			
					The vector has five elements, numbered 0 through 4. If I were to try to access element number 5 that would be beyond the boundary of the vector:vector v{ 19, 71, 47, 192, 4004 };
auto & i = v[5];
cout << format("element is {}\n", i);
element is 0


			

			This result is extremely deceiving. It's a common error, since humans tend to count from 1, not 0. But there is no guarantee that an element past the end of the vector has any particular value.

			
					Even worse, the [] operator will silently allow you to write to a position beyond the end of the vector:vector v{ 19, 71, 47, 192, 4004 };
v[5] = 2001;
auto & i = v[5];
cout << format("element is {}\n", i);
element is 2001


			

			I have now written to memory that is not under my control and the compiler has silently allowed it, with no error messages or crashes. But do not be fooled—this is extremely dangerous code, and it will cause problems at some point in the future. Out of bounds memory access is one of the primary causes of security breaches.

			
					The solution is to use the at() member function wherever possible, instead of the [] operator:vector v{ 19, 71, 47, 192, 4004 };
auto & i = v.at(5);
cout << format("element is {}\n", i);


			

			Now we get a run-time exception:

			terminate called after throwing an instance of 'std::out_of_range'

			  what():  vector::_M_range_check: __n (which is 5) >= this->size() (which is 5)

			Aborted

			The code compiles without error, but the at() function checks the boundaries of the container and throws a run-time exception when you try to access memory outside of those boundaries. This is the exception message from code compiled with the GCC compiler. The message will be different in different environments.

			How it works…

			The [] operator and the at() member function do the same job; they provide direct access to container elements based on their indexed position. The [] operator does it without any bounds checking, so it may be a tiny bit faster in some intensely iterative applications.

			That said, the at() function should be your default choice. While the bounds checking may take a few CPU cycles, it's cheap insurance. For most applications the benefit is well worth the cost.

			While the vector class is commonly used as a direct-access container, the array and deque containers also support both the [] operator and the at() member function. These caveats apply there as well.

			There's more…

			In some applications you may not want your application to just crash when an out-of-bounds condition is encountered. In this case, you can catch the exception, like this:

			int main() {

			    vector v{ 19, 71, 47, 192, 4004 };

			    try {

			        v.at(5) = 2001;

			    } catch (const std::out_of_range & e) {

			        std::cout <<

			            format("Ouch!\n{}\n", e.what());

			    }

			    cout << format("end element is {}\n", v.back());

			}

			Output:

			Ouch!

			vector::_M_range_check: __n (which is 5) >= this->size() (which is 5)

			end element is 4004

			The try block catches the exception specified in the catch clause, in this case the exception is std::out_of_range. The e.what() function returns a C-string with the error message from the STL library. Each library will have different messages.

			Keep in mind that this also applies to array and deque containers.

			Keep vector elements sorted

			The vector is a sequential container that keeps elements in the order in which they were inserted. It does not sort elements, nor change their order in any way. Other containers, such as set and map, keep elements sorted, but those containers are not random-access and may not have the features you need. You can, however, keep your vector sorted. It just requires a little bit of management.

			How to do it…

			The idea with this recipe is to create a simple function, insert_sorted(), that inserts an element into the correct position in a vector to keep the vector sorted.

			
					For convenience, we'll start with a type alias for a vector of strings:using Vstr = std::vector<std::string>;


			

			I like a type alias here because the exact details of the vector are not so important as its application.

			
					Then we can define a couple of support functions:// print a vector
void printv(const auto& v) {
    for(const auto& e : v) {
        cout << format("{} ", e);
    }
    cout << "\n";
}
// is it sorted? 
void psorted(const Vstr& v) {
    if(std::ranges::is_sorted(v)) cout<< "sorted: ";
    else cout << "unsorted: ";
    printv(v);
}


			

			The printv() function is simple enough; it prints the elements of the vector on one line.

			The psorted() function uses the ranges version of the is_sorted() algorithm to tell us if the vector is sorted. Then it calls printv() to print the vector.

			
					Now we can initialize a Vstr vector in our main() function:int main() {
    Vstr v{ 
        "Miles",
        "Hendrix",
        "Beatles",
        "Zappa",
        "Shostakovich"
    };
    psorted(v);
}


			

			Output: 

			unsorted: Miles Hendrix Beatles Zappa Shostakovich

			At this point we have a Vstr vector with the names of some interesting musicians, in no particular order.

			
					Let's sort our vector using the ranges version of the sort() algorithm.std::ranges::sort(v);
psorted(v);


			

			Output: 

			sorted: Beatles Hendrix Miles Shostakovich Zappa

			
					At this point, we want to be able to insert items into the vector so that they're already in sorted order. The insert_sorted() function does this for us:void insert_sorted(Vstr& v, const string& s) {
    const auto pos{ std::ranges::lower_bound(v, s) };
    v.insert(pos, s);
}


			

			The insert_sorted() function uses the ranges version of the lower_bound() algorithm to get an iterator for the insert() function that keeps the vector sorted.

			
					Now we can use the insert_sorted() function to insert more musicians into the vector:insert_sorted(v, "Ella");
insert_sorted(v, "Stones");


			

			Output: 

			sorted: Beatles Ella Hendrix Miles Shostakovich Stones Zappa

			How it works…

			The insert_sorted() function is used to insert elements into a sorted vector while maintaining its order:

			void insert_sorted(Vstr& v, const string& s) {

			    const auto pos{ std::ranges::lower_bound(v, s) };

			    v.insert(pos, s);

			}

			The lower_bound() algorithm finds the first element not less than the argument. We then use the iterator returned by lower_bound() to insert an element at the correct position.

			In this case we're using the ranges version of lower_bound(), but either version will work.

			There's more…

			The insert_sorted() function can be made more generic by using a template. This version will work with other container types, such as set, deque, and list.

			template<typename C, typename E>

			void insert_sorted(C& c, const E& e) {

			    const auto pos{ std::ranges::lower_bound(c, e) };

			    c.insert(pos, e);

			}

			Keep in mind that the std::sort() algorithm (and its derivatives) requires a container that supports random access. Not all STL containers fulfill this requirement. Notably, std::list does not.

			Efficiently insert elements into a map

			The map class is an associative container that holds key-value pairs, where keys must be unique within the container.

			There are a number of ways to populate a map container. Consider a map defined like this:

			map<string, string> m;

			You can add an element with the [] operator:

			m["Miles"] = "Trumpet"

			You can use the insert() member function:

			m.insert(pair<string,string>("Hendrix", "Guitar"));

			Or, you can use the emplace() member function:

			m.emplace("Krupa", "Drums");

			I tend to gravitate toward the emplace() function. Introduced with C++11, emplace() uses perfect forwarding to emplace (create in place) the new element for the container. The parameters are forwarded directly to the element constructors. This is quick, efficient, and easy to code.

			Though it's certainly an improvement over the other options, the problem with emplace() is that it constructs an object even when it's not needed. This involves calling the constructors, allocating memory, and moving data around, and then discarding that temporary object.

			To solve this problem, C++17 provides the new try_emplace() function which only constructs the value object if it's needed. This is especially important with large objects or many emplacements.

			Note

			Each element of a map is a key-value pair. Within the pair structure, the elements are named, first and second, but their purpose in the map is key and value. I tend to think of the value object as the payload, as this is usually the point of the map. To search for an existing key, the try_emplace() function must construct the key object; this cannot be avoided. But it need not construct the payload object unless and until it's needed for insertion into the map.

			How to do it…

			The new try_emplace() function avoids the overhead of constructing the payload object unless and until it is needed. This creates a valuable efficiency in the case of key collisions, especially with large payloads. Let's take a look:

			
					First, we create a payload class. For demonstration purposes, this class has a simple std::string payload and displays a message when constructed:struct BigThing {
    string v_;
    BigThing(const char * v) : v_(v) {
        cout << format("BigThing constructed {}\n", v_);
    }
};
using Mymap = map<string, BigThing>;


			

			This BigThing class has only one member function, a constructor that displays a message when the object is constructed. We'll use this to keep track of how often a BigThing object is constructed. In practice, of course, this class would be bigger, and use more resources.

			Each map element will consist of a pair of objects, a std::string for the key and a BigThing object for the payload. Mymap is just a convenience alias. This allows us to focus on function rather than form.

			
					We'll also create a printm() function to print the contents of the map:void printm(Mymap& m) {
    for(auto& [k, v] : m) {
        cout << format("[{}:{}] ", k, v.v_);
    }
    cout << "\n";
}


			

			This uses the C++20 format() function to print out the map, so we can keep track of the elements as we insert them.

			
					In our main() function we create the map object and insert some elements:int main() {
    Mymap m;
    m.emplace("Miles", "Trumpet");
    m.emplace("Hendrix", "Guitar");
    m.emplace("Krupa", "Drums");
    m.emplace("Zappa", "Guitar");
    m.emplace("Liszt", "Piano");
    printm(m);
} 


			

			Output:

			BigThing constructed Trumpet

			BigThing constructed Guitar

			BigThing constructed Drums

			BigThing constructed Guitar

			BigThing constructed Piano

			[Hendrix:Guitar] [Krupa:Drums] [Liszt:Piano] [Miles:Trumpet] [Zappa:Guitar]

			Our output shows the construction of each of the payload objects, and then the output from the printm() function call.

			
					I used the emplace() function to add the elements to the map, and each payload element was constructed just once. We can use the try_emplace() function and the result will be the same:Mymap m;
m.try_emplace("Miles", "Trumpet");
m.try_emplace("Hendrix", "Guitar");
m.try_emplace("Krupa", "Drums");
m.try_emplace("Zappa", "Guitar");
m.try_emplace("Liszt", "Piano");
printm(m);


			

			Output: 

			BigThing constructed Trumpet

			BigThing constructed Guitar

			BigThing constructed Drums

			BigThing constructed Guitar

			BigThing constructed Piano

			[Hendrix:Guitar] [Krupa:Drums] [Liszt:Piano] [Miles:Trumpet] [Zappa:Guitar]

			
					The difference between emplace() and try_emplace() shows up when we try to insert new elements with duplicate keys:cout << "emplace(Hendrix)\n";
m.emplace("Hendrix", "Singer");
cout << "try_emplace(Zappa)\n";
m.try_emplace("Zappa", "Composer"); 
printm(m); 


			

			Output: 

			emplace(Hendrix)

			BigThing constructed Singer

			try_emplace(Zappa)

			[Hendrix:Guitar] [Krupa:Drums] [Liszt:Piano] [Miles:Trumpet] [Zappa:Guitar] 

			The emplace() function tried to add an element with a duplicate key ("Hendrix"). It failed but still constructed the payload object ("Singer"). The try_emplace() function also tried to add an element with a duplicate key ("Zappa"). It failed and did not construct the payload object.

			This example demonstrates the distinction between emplace() and try_emplace().

			How it works…

			The try_emplace() function signature is similar to that of emplace(), so it should be easy to retrofit legacy code. Here's the try_emplace() function signature:

			pair<iterator, bool> try_emplace( const Key& k, Args&&... args );

			At first glance, this looks different from the emplace() signature:

			pair<iterator,bool> emplace( Args&&... args );

			The distinction is that try_emplace() uses a separate parameter for the key argument, which allows it to be isolated for construction. Functionally, if you're using template argument deduction, try_emplace() can be a drop-in replacement:

			m.emplace("Miles", "Trumpet");

			m.try_emplace("Miles", "Trumpet");

			The return value of try_emplace() is the same as that of emplace(), a pair representing an iterator and a bool:

			const char * key{"Zappa"};

			const char * payload{"Composer"};

			if(auto [it, success] = m.try_emplace(key, payload);

			        !success) {

			    cout << "update\n";

			    it->second = payload;

			}

			printm(m);

			Output: 

			update

			BigThing constructed Composer

			[Hendrix:Guitar] [Krupa:Drums] [Liszt:Piano] [Miles:Trumpet] [Zappa:Composer]

			Here I used structured binding (auto [it, success] =) with an if initializer statement to test the return value and conditionally update the payload. Notice that it still just constructs the payload object once.

			It's worth noting that the try_emplace() function also works with unordered_map. We change our alias and everything works the same except unordered:

			using Mymap = unordered_map<string, BigThing>; 

			The advantage of try_emplace() is that it only constructs the payload object if and when it's ready to store it in the map. In practice, this should save significant resources at run-time. You should always favor try_emplace() over emplace().

			Efficiently modify the keys of map items

			A map is an associative container that stores key-value pairs. The container is ordered by the keys. The keys must be unique and they are const-qualified, so they cannot be changed.

			For example, if I populate a map and attempt to change the key, I'll get an error at compilation time:

			map<int, string> mymap {

			    {1, "foo"}, {2, "bar"}, {3, "baz"}

			};

			auto it = mymap.begin(); 

			it->first = 47;

			Output:

			error: assignment of read-only member ...

			    5 |     it->first = 47;

			      |     ~~~~~~~~~~^~~~

			If you need to re-order a map container, you may do so by swapping keys using the extract() method.

			New with C++17, extract() is a member function in the map class and its derivatives. It allows elements of a map to be extracted from the sequence without touching the payload. Once extracted, the key is no longer const-qualified and may be modified.

			Let's look at an example.

			How to do it…

			In this example we'll define a map that represents contestants in a race. At some point during the race, the order changes and we need to modify the keys of the map.

			
					We'll start by defining an alias for the map type:using Racermap = map<unsigned int, string>;


			

			This allows us to use the type consistently throughout our code.

			
					We'll write a function for printing out the map:void printm(const Racermap &m)
{
    cout << "Rank:\n";
    for (const auto& [rank, racer] : m) {
        cout << format("{}:{}\n", rank, racer);
    }
}


			

			We can pass the map to this function at any time to print out the current rankings of our contestants.

			
					In our main() function we define a map with the initial state of our racers:int main() {
    Racermap racers {
        {1, "Mario"}, {2, "Luigi"}, {3, "Bowser"},
        {4, "Peach"}, {5, "Donkey Kong Jr"}
    };
    printm(racers);
    node_swap(racers, 3, 5);
    printm(racers);
}


			

			The key is an int indicating the rank of the racer. The value is a string with the name of the racer.

			We then call printm() to print the current rank. The call to node_swap() will swap the keys of two racers, then we print gain.

			
					At some point, one of the racers falls behind and another racer takes the opportunity to move up in the rankings. The node_swap() function will swap the ranking of two racers:template<typename M, typename K>
bool node_swap(M & m, K k1, K k2) {
    auto node1{ m.extract(k1) };
    auto node2{ m.extract(k2) };
    if(node1.empty() || node2.empty()) {
        return false;
    }
    swap(node1.key(), node2.key());
    m.insert(move(node1));
    m.insert(move(node2));
    return true;
}


			

			This function uses the map.extract() method to extract the specified elements from the map. These extracted elements are called nodes.

			A node is a new concept beginning with C++17. This allows an element to be extracted from a map-type structure without touching the element itself. The node is unlinked, and a node handle is returned. Once extracted, the node handle provides writable access to the key via the node's key() function. We can then swap the keys and insert them back into the map, without ever having to copy or manipulate the payload.

			
					When we run this code we get a printout of the map, before and after the node swap:

			

			Output: 

			Rank:

			1:Mario

			2:Luigi

			3:Bowser

			4:Peach

			5:Donkey Kong Jr

			Rank:

			1:Mario

			2:Luigi

			3:Donkey Kong Jr

			4:Peach

			5:Bowser

			This is all made possible by the extract() method and the new node_handle class. Let's take a closer look at how this works.

			How it works…

			This technique uses the new extract() function, which returns a node_handle object. As the name suggests, a node_handle is a handle to a node, which consists of an associative element and its related structures. The extract function disassociates the node while leaving it in place, and returns a node_handle object. This has the effect of removing the node from the associative container without touching the data itself. The node_handle allows you to access the disassociated node.

			The node_handle has a member function, key(), which returns a writable reference to the node key. This allows you to change the key, while it's disassociated from the container.

			There's more…

			There are a few things to keep in mind when using extract() and a node_handle:

			
					If the key is not found, the extract() function returns an empty node handle. You can test if a node handle is empty with the empty() function:auto node{ mapthing.extract(key) };
if(node.empty()) {
    // node handle is empty
}


					There are two overloads of the exract() function:node_type extract(const key_type& x);
node_type extract(const_iterator position);


			

			We used the first form, by passing a key. You may also use an iterator, which should not require a lookup.

			
					Keep in mind that you cannot make a reference from a literal, so a call like extract(1) will usually crash with a segmentation fault.

					Keys must remain unique when inserted into a map.

			

			For example, if I try to change a key to a value already in the map:

			auto node_x{ racers.extract(racers.begin()) };

			node_x.key() = 5;  // 5 is Donkey Kong Jr

			auto status = racers.insert(move(node_x));

			if(!status.inserted) {

			    cout << format("insert failed, dup key: {}",

			        status.position->second);

			    exit(1);

			}

			The insert fails and we get our error message:

			insert failed, dup key: Donkey Kong Jr

			In this example I've passed the begin() iterator to extract(). I then assigned the key a value that's already in use (5, Donkey Kong Jr). The insert failed and the resulting status.inserted is false. status.position is an iterator to the found key. In the if() block, I used format() to print the value the found key.

			Use unordered_map with custom keys

			With an ordered map, the type of the key must be sortable, which means it must at least support the less-than < comparison operator. Suppose you want to use an associative container with a custom type that is not sortable. For example, a vector where (0, 1) is not smaller or larger than (1, 0), it simply points in a different direction. In such cases, you may still use the unordered_map type. Let's look at how to do this.

			How to do it…

			For this recipe we'll create an unordered_map object that uses x/y coordinates for the key. We will need a few support functions for this.

			
					First, we'll define a structure for the coordinates:struct Coord {
    int x{};
    int y{};
};


			

			This is a simple structure with two members, x and y, for the coordinates.

			
					Our map will use the Coord structure for the key, and an int for the value:using Coordmap = unordered_map<Coord, int>;


			

			We use a using alias to make it convenient to use our map.

			
					To use the Coord struct as a key, we need a couple of overloads. These are required for use with an unordered_map. First, we'll define an equality comparison operator:bool operator==(const Coord& lhs, const Coord& rhs) {
    return lhs.x == rhs.x && lhs.y == rhs.y;
}


			

			It's a simple function that compares the x members with each other, and the y members with each other.

			
					We also need a std::hash class specialization. This makes it possible to retrieve map elements with the key:namespace std {
    template<>
    struct hash<Coord> {
        size_t operator()(const Coord& c) const {
            return static_cast<size_t>(c.x)
                 + static_cast<size_t>(c.y);
        }
    };
}


			

			This provides a specialization for the default hash class used by the std::unordered_map class. It must be in the std namespace.

			
					We'll also write a print function to print a Coordmap object:void print_Coordmap(const Coordmap& m) {
    for (const auto& [key, value] : m) {
        cout << format("{{ ({}, {}): {} }} ",
            key.x, key.y, value);
    }
    cout << '\n';
}


			

			This uses the C++20 format() function to print the x/y key and the value. Notice the use of the double braces, {{ and }}, to print single braces.

			
					Now that we have all our support functions, we can write the main() function.int main() {
    Coordmap m {
        { {0, 0}, 1 },
        { {0, 1}, 2 },
        { {2, 1}, 3 } 
    };
    print_Coordmap(m);
}


			

			Output:

			{ (2, 1): 3 } { (0, 1): 2 } { (0, 0): 1 }

			At this point, we've defined a Coordmap object that accepts Coord objects for the keys and maps them to arbitrary values.

			
					We can also access individual members based on the Coord keys:Coord k{ 0, 1 };
cout << format("{{ ({}, {}): {} }}\n", k.x, k.y, m.at(k));


			

			Output: 

			{ (0, 1): 2 }

			Here we define a Coord object named k, and we use that with the at() function to retrieve a value from the unordered_map.

			How it works…

			The unordered_map class relies on a hash class to lookup elements from the key. We normally instantiate an object like this:

			std::unordered_map<key_type, value_type> my_map;

			What's not obvious here is that, because we haven't one, it's using a default hash class. The full template type definition of the unordered_map class looks like this:

			template<

			    class Key,

			    class T,

			    class Hash = std::hash<Key>,

			    class KeyEqual = std::equal_to<Key>,

			    class Allocator = std::allocator< std::pair<const Key, 

			      T> >

			> class unordered_map;

			The template provides default values for Hash, KeyEqual, and Allocator, so we don't normally include them in our definitions. In our example, we've provided a specialization for the default std::hash class.

			The STL contains specializations of std::hash for most of the standard types, like string, int, and so on. For it to work with our class, it needs a specialization.

			We could have passed a function to the template parameter, like this:

			std::unordered_map<coord, value_type, my_hash_type> my_map;

			That certainly would work. In my view, the specialization is more general.

			Use set to sort and filter user input

			The set container is an associative container where each element is a single value, which is used as the key. Elements in a set are maintained in sorted order and duplicate keys are not allowed.

			The set container is often misunderstood, and it does have fewer and more specific uses than more general containers such as vector and map. One common use for a set is to filter duplicates from a set of values.

			How to do it…

			In this recipe we will read words from the standard input and filter out the duplicates.

			
					We'll start by defining an alias for an istream iterator. We'll use this to get input from the command line.using input_it = istream_iterator<string>;


					In the main() function, we'll define a set for our words:int main() {
    set<string> words;


			

			The set is defined as a set of string elements.

			
					We define a pair of iterators for use with the inserter() function:input_it it{ cin };
input_it end{};


			

			The end iterator is initialized with its default constructor. This is known as the end-of-stream iterator. When our input ends, this iterator will compare equal with the cin iterator.

			
					The inserter() function is used to insert elements into the set container:copy(it, end, inserter(words, words.end()));


			

			We use std::copy() to conveniently copy words from the input stream.

			
					Now we can print out our set to see the results:for(const string & w : words) {
    cout << format("{} ", w);
}
cout << '\n';


					We can run the program by piping a bunch of words to its input:$ echo "a a a b c this that this foo foo foo" | ./set-words
a b c foo that this


			

			The set has eliminated the duplicates and retained a sorted list of the words that were inserted.

			How it works…

			The set container is the heart of this recipe. It only holds unique elements. When you insert a duplicate, that insert will fail. So, you end up with a sorted list of each unique element.

			But that's not the only interesting part of this recipe.

			The istream_iterator is an input iterator that reads objects from a stream. We instantiated the input iterator like this:

			istream_iterator<string> it{ cin };

			Now we have an input iterator of type string from the cin stream. Every time we dereference this iterator, it will return one word from the input stream.

			We also instantiated another istream_iterator:

			istream_iterator<string> end{};

			This calls the default constructor, which gives us a special end-of-stream iterator. When the input iterator reaches the end of the stream, it will become equal to the end-of-stream iterator. This is convenient for ending loops, such as the one created by the copy() algorithm.

			The copy() algorithm takes three iterators, the beginning and end of the range to copy, and a destination iterator:

			copy(it, end, inserter(words, words.end()));

			The inserter() function takes a container and an iterator for the insertion point, and returns an insert_iterator of the appropriate type for the container and its elements.

			This combination of copy() and inserter() makes it easy to copy elements from a stream into the set container.

			A simple RPN calculator with deque

			An RPN (Reverse Polish Notation) calculator is a stack-based calculator that uses postfix notation, where the operator follows the operands. It's commonly used in printing calculators and, notably, the HP 12C, the most popular electronic calculator of all time.

			After becoming familiar with its operational modality, many people prefer an RPN calculator. (I've been using the HP 12C and 16C since they were first introduced in the early 1980s.) For example, using conventional algebraic notation, to add 1 and 2 you would type 1 + 2. Using RPN, you would type 1 2 +. The operator comes after the operands.

			Using an algebraic calculator, you would need to press an = key to indicate that you want a result. With an RPN calculator this is unnecessary because the operator processes immediately, serving a double purpose. On the other hand, an RPN calculator often requires an Enter keypress to push an operand onto the stack.

			We can easily implement an RPN calculator using a stack-based data structure. For example, consider an RPN calculator with a four-position stack:
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			Figure 3.5 – RPN addition operation

			Each operand is pushed onto the stack as they are entered. When the operator is entered, the operands are popped off, operated upon, and the result is pushed back onto the stack. The result may then be used in the next operation. For example, consider the case of (3+2)×3:
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			Figure 3.6 – RPN stack operations

			One advantage of RPN is that you can leave operands on the stack for future calculations, reducing the need for separate memory registers. Consider the case of (9×6)+(2×3):

			
				
					[image: Figure 3.7 – RPN multiple stack operations

]
				

			

			Figure 3.7 – RPN multiple stack operations

			Notice that we first perform the operations within the parentheses, then the final operation on the intermediate results. This may seem more complex at first, but it makes a lot of sense once you get used to it.

			Now, let's build a simple RPN calculator using the STL deque container.

			How to do it…

			For this implementation, we'll use a deque container for our stack. Why not use a stack container? The stack class is a container-adapter, which uses another container (usually a deque) for its storage. For our purposes, stack doesn't provide any tangible advantage over deque. And deque allows us to iterate over and display the RPN stack, like a paper tape calculator.

			
					We'll encapsulate our RPN calculator in a class. There are a few advantages to using a class here. Encapsulation provides safety, reusability, extensibility, and a clean interface. We'll call our class RPN:class RPN {
    deque<double> deq_{};
    constexpr static double zero_{0.0};
    constexpr static double inf_ 
        { std::numeric_limits<double>::infinity() };
...  // public and private members go here
};


			

			The deque data store, named deq_, is in the private area of the class to protect it. This is where we store the RPN stack.

			The zero_ constant is used throughout the class, both as a return value and as a comparison operand. The inf_ constant is used for a divide-by-zero error. These constants are declared constexpr static so they don't take up space in every instance.

			I like to name private data members with a trailing underscore to remind me that they're private.

			
					We don't need an explicit constructor or destructor because the deque class manages its own resources. So, our public interface consists of just three functions:public:
    // process an operand/operator
    double op(const string & s) {
        if(is_numeric(s)) {
            double v{stod(s, nullptr)};
            deq_.push_front(v);
            return v;
        }
        else return optor(s);
    }
    // empty the stack
    void clear() {
        deq_.clear();
    }
    // print the stack
    string get_stack_string() const {
        string s{};
        for(auto v : deq_) {
            s += format("{} ", v);
        }
        return s;
    }


			

			The double op() function is the main entry point for the RPN class. It takes a string, with either a number or an operator. If it's a number, it's converted into a double and pushed onto the stack. If it's an operator, we call optor() to perform the operation. This is the main logic of the class.

			The void clear() function simply calls clear() on the deque to empty the stack.

			And finally, the string get_stack_string() function returns the contents of the stack in a string.

			
					In the private section, we have the supporting utilities that make the interface work. The pop_get2() function pops two operands from the stack and returns them as a pair. We use this as operands for the operators:    pair<double, double> pop_get2() {
        if(deq_.size() < 2) return {zero_, zero_};
        double v1{deq_.front()};
        deq_.pop_front();
        double v2{deq_.front()};
        deq_.pop_front();
        return {v2, v1};
    }


					The is_numeric() function checks to see if the string is entirely numeric. We also allow the decimal . character.    bool is_numeric(const string& s) {
        for(const char c : s) {
            if(c != '.' && !std::isdigit(c)) return 
              false;
        }
        return true;
    }


					The optor() function performs the operators. We use a map container to map an operator to a corresponding lambda function.double optor(const string& op) {
    map<string, double (*)(double, double)> opmap {
        {"+", [](double l, double r){ return l + r; }},
        {"-", [](double l, double r){ return l - r; }},
        {"*", [](double l, double r){ return l * r; }},
        {"/", [](double l, double r){ return l / r; }},
        {"^", [](double l, double r)
            { return pow(l, r); }},
        {"%", [](double l, double r)
            { return fmod(l, r); }}
    };
    if(opmap.find(op) == m.end()) return zero_;
    auto [l, r] = pop_get2();
    // don’t divide by zero
    if(op == "/" && r == zero_) deq_.push_front(inf_);
    else deq_.push_front(opmap.at(op)(l, r));
    return deq_.front();
}


			

			The map container with lambda functions makes a quick and easy jump table.

			We use the find() function in map to test if we have a valid operator.

			After a test for divide-by-zero, the map is dereferenced, and the operator is called.

			The result of the operation is pushed onto the stack and returned.

			
					Those are all the function members of the RPN class. Now we can use it in our main() function:int main() {
    RPN rpn;
    for(string o{}; cin >> o; ) {
        rpn.op(o);
        auto stack_str{rpn.get_stack_string()};
        cout << format("{}: {}\n", o, stack_str);
    }
}


			

			We'll test this is by piping a string into the program from the command line. We use a for loop to fetch each word from the cin stream and pass it to rpn.op(). I like the for loop here, as it's easy to contain the scope of the o variable. We then print the stack using the get_stack_string() function after each command line item.

			
					We can run the program by piping in an expression like this:$ echo "9 6 * 2 3 * +" | ./rpn
9: 9
6: 6 9
*: 54
2: 2 54
3: 3 2 54
*: 6 54
+: 60


			

			This looks like a lot of coding but it's actually quite simple. With the comments, the RPN class is less than 70 lines of code. The full rpn.cpp source code is in the GitHub repository.

			How it works…

			The RPN class operates by first determining the nature of each chunk of input. If it's a number, we push it onto the stack. If it's an operator, we pop two operands off the top of the stack, apply the operation, and push the result back on the stack. If we don't recognize the input, we just ignore it.

			The deque class is a double-ended queue. To use it as a stack, we pick an end and both push and pop from that same end. I chose the front end of the deque, but it would work just as well from the back. We just need to do everything from the same end.

			If we determine that an input is numeric, we convert it to a double and push it onto the front of the deque using push_front().

			    if(is_numeric(s)) {

			        double v{stod(s, nullptr)};

			        deq_.push_front(v);

			        return v;

			    }

			When we need to use values from the stack, we pop them off the front of the deque. We use front() to get the value, and then pop_front() to pop it off the stack.

			    pair<double, double> pop_get2() {

			        if(deq_.size() < 2) return {zero_, zero_};

			        double v1{deq_.front()};

			        deq_.pop_front();

			        double v2{deq_.front()};

			        deq_.pop_front();

			        return {v2, v1};

			    }

			Using a map for our operators makes it easy to both check if an operator is valid, and to execute the operation.

			    map<string, double (*)(double, double)> opmap {

			        {"+", [](double l, double r){ return l + r; }},

			        {"-", [](double l, double r){ return l - r; }},

			        {"*", [](double l, double r){ return l * r; }},

			        {"/", [](double l, double r){ return l / r; }},

			        {"^", [](double l, double r){ return pow(l, r); }},

			        {"%", [](double l, double r){ return fmod(l, r); }}

			    };

			We can test for the validity of an operator by using the find() function:

			    if(opmap.find(op) == opmap.end()) return zero_;

			And we can call the operator by dereferencing the map with the at() function:

			    opmap.at(op)(l, r)

			We both call the operator lambda and push the result onto the deque in one statement:

			    deq_.push_front(opmap.at(op)(l, r));

			There's more…

			In this recipe, we use the cin stream to feed operations to the RPN calculator. It would be just as easy to do this with an STL container.

			int main() {

			    RPN rpn;

			    vector<string> opv{ "9", "6", "*", "2", "3", "*", "+" 

			      };

			    for(auto o : opv) {

			        rpn.op(o);

			        auto stack_str{rpn.get_stack_string()};

			        cout << format("{}: {}\n", o, stack_str);

			    }

			}

			Output:

			9: 9

			6: 6 9

			*: 54

			2: 2 54

			3: 3 2 54

			*: 6 54

			+: 60

			By putting the RPN calculator in a class with a clean interface, we've created a flexible tool that can be used in many different contexts.

			A word frequency counter with map

			This recipe uses the unique key property of the map container to count duplicate words from a stream of text.

			The STL map container is an associative container. It consists of elements organized in key-value pairs. The keys are used for lookup and must be unique.

			In this recipe, we will leverage the unique key requirement of the STL map container to count the number of occurrences of each word in a text file.

			How to do it…

			There are a few parts to this task that we can solve separately:

			
					We need to get the text from a file. We'll use the cin stream for this.

					We need to separate words from punctuation and other non-word content. We'll use the regex (Regular Expression) library for this.

					We need to count the frequency of each word. This is the main objective of the recipe. We'll use the STL map container for this.

					Finally, we need to sort the results, first by frequency and then alphabetically by word within frequency. For this we'll use a the STL sort algorithm with a vector container.

			

			Even with all those tasks, the resulting code is relatively short, just about 70 lines with headers and all. Let's dive in:

			
					We'll start with some aliases for convenience:namespace ranges = std::ranges;
namespace regex_constants = std::regex_constants;


			

			For namespaces within the std:: space, I like to make aliases that are shorter, but still let me know that I'm using a token in a particular namespace. Especially with the ranges namespace, which often re-uses the names of existing algorithms.

			
					We store the regular expression in a constant. I don't like to clutter up the global namespace because that can lead to collisions. I tend to use a namespace based on my initials for things like this:namespace bw {
    constexpr const char * re{"(\\w+)"};
}


			

			It's easy enough to get it later using bw::re, and that tells me exactly what it is.

			
					At the top of main(), we define our data structures:int main() {
    map<string, int> wordmap{};    
    vector<pair<string, int>> wordvec{};
    regex word_re(bw::re);
    size_t total_words{};


			

			Our main map is called wordmap. We have a vector named wordvec that we'll use as a sorting container. And finally, our regex class, word_re.

			
					The for loop is where most of the work happens. We read text from the cin stream, apply the regex, and store words in the map:for(string s{}; cin >> s; ) {
    auto words_begin{
        sregex_iterator(s.begin(), s.end(), word_re) };
    auto words_end{ sregex_iterator() };
    for(auto r_it{words_begin}; r_it != words_end; 
      ++r_it) {
        smatch match{ *r_it };
        auto word_str{match.str()};
        ranges::transform(word_str, word_str.begin(),
            [](unsigned char c){ return tolower(c); });
        auto [map_it, result] =
            wordmap.try_emplace(word_str, 0);
        auto & [w, count] = *map_it;
        ++total_words;
        ++count;
    }
}


			

			I like a for loop for this because it allows me to contain the scope of the s variable.

			We start by defining iterators for the regex results. This allows us to distinguish multiple words even when surrounded only by punctuation. The for(r_it...) loop returns individual words from the cin string.

			The smatch type is a specialization of a regex string match class. It gives us the next word from our regex.

			We then use the transform algorithm to make the words lowercase – so we can count words regardless of case. (For example, "The" is the same word as "the".)

			Next, we use try_emplace() to add the word to the map. If it's already there, it will not be replaced.

			Finally, we increment the count for the word in the map with ++count.

			
					Now we have the words and their frequency counts in our map. But they're in alphabetical order and we want them in descending order of frequency. For this, we put them in a vector and sort them:    auto unique_words = wordmap.size();
    wordvec.reserve(unique_words);
    ranges::move(wordmap, back_inserter(wordvec));
    ranges::sort(wordvec, [](const auto& a, const 
      auto& b) { 
        if(a.second != b.second)
            return (a.second > b.second);
        return (a.first < b.first);
    });
    cout << format("unique word count: {}\n", 
      total_words);
    cout << format("unique word count: {}\n", 
      unique_words);


			

			wordvec is a vector of pairs, with the word and the frequency count. We use the ranges::move() algorithm to populate the vector, then the ranges::sort() algorithm to sort the vector. Notice that the predicate lambda function sorts first by the count (descending) and then by the word (ascending).

			
					Finally, we print the results:    for(int limit{20}; auto& [w, count] : wordvec) {
        cout << format("{}: {}\n", count, w);
        if(--limit == 0) break;
    }
}


			

			I set a limit to print only the first 20 entries. You can comment out the if(--limit == 0) break; line to print the whole list.

			
					In the example files, I've included a text file with a copy of The Raven, by Edgar Allen Poe. The poem is in the public domain. We can use this to test the program:$ ./word-count < the-raven.txt
total word count: 1098
unique word count: 439
56: the
38: and
32: i
24: my
21: of
17: that
17: this
15: a
14: door
11: chamber
11: is
11: nevermore
10: bird
10: on
10: raven
9: me
8: at
8: from
8: in
8: lenore


			

			The poem has 1,098 words total, and 439 of them are unique.

			How it works…

			The core of the recipe is the use of a map object to count duplicate words. But there are other parts that merit consideration.

			We use the cin stream to read text from the standard input. By default, cin will skip whitespace when reading into a string object. By putting a string object on the right-hand side of the >> operator (cin >> s) we get chunks of text separated by whitespace. This is a good enough definition of a word-at-a-time for many purposes, but we need linguistic words. And for that we will use a regular expression.

			The regex class provides a choice of regular expression grammars and it defaults to ECMA grammar. In the ECMA grammar, the regular expression "(\w+)" is a shortcut for "([A-Za-z0-9_]+)". This will select words that include these characters.

			Regular expressions are a language unto themselves. To learn more about regular expressions, I recommend the book Mastering Regular Expressions by Jeffrey Friedl.

			As we get each word from the regex engine, we use the map object's try_emplace() method to conditionally add the word to our wordmap. If the word is not in the map, we add it with a count of 0. If the word is already in the map, the count is untouched. We increment the count later in the loop, so it's always correct.

			After the map is populated with all the unique words from the file, we transfer it to a vector using the ranges::move() algorithm. The move() algorithm makes this transfer quick and efficient. Then we can sort it in the vector using ranges::sort(). The predicate lambda function for sorting includes comparisons for both sides of the pair, so we end up with a result that's sorted by both word count (descending) and the word.

			Find long sentences with a vector of vectors

			It can be useful for a writer to make sure they are using variety of sentence lengths, or to ensure none of their sentences are too long. Let's build a tool that evaluates a text file for sentence length.

			Choosing the appropriate container is key when using the STL. If you need something ordered, it's often best to use an associative container, such as map or multimap. In this case, however, since we need a custom sort, it's easier to sort a vector.

			The vector is generally the most flexible of the STL containers. Whenever another container type seems appropriate, but is missing one important capability, the vector is often an effective solution. In this case, where we need a custom sort, the vector works great.

			This recipe uses a vector of vectors. The inner vector stores the words of a sentence, and the outer vector stores the inner vectors. As you'll see, this affords a lot of flexibility while retaining all the relevant data.

			How to do it…

			This program needs to read in words, find the ends of sentences, store and sort the sentences, then print out the results.

			
					We'll start by writing a little function to tell us when we've hit the end of a sentence:bool is_eos(const string_view & str) {
    constexpr const char * end_punct{ ".!?" };
    for(auto c : str) {
        if(strchr(end_punct, c) != nullptr) return 
          true;
    }
    return false;
}


			

			The is_eos() function uses string_view because it's efficient and we don't need anything more. Then we use the strchr() library function to check if a word contains one of the end-of-sentence punctuation characters (".!?"). These are the three possible characters to end a sentence in the English language.

			
					In the main() function, we start by defining the vector of vectors:vector<vector<string>> vv_sentences{vector<string>{}};


			

			This defines a vector of elements typed vector<string> named vv_sentences. The vv_sentences object is initialized with one empty vector for the first sentence.

			This creates a vector that contains other vectors. The inner vectors will each hold a sentence of words.

			
					Now we can process the stream of words:for(string s{}; cin >> s; ) {
    vv_sentences.back().emplace_back(s);
    if(is_eos(s)) {
      vv_sentences.emplace_back(vector<string>{});
    }
}


			

			The for loop returns one word at a time from the input stream. The back() method on the vv_sentences object is used to access the current vector of words, and the current word is added using emplace_back(). Then we call is_eos() to see if this was the end of a sentence. If so, we add a new empty vector to vv_sentences to start the next sentence.

			
					Because we always add a new empty vector to the end of vv_sentences after each end-of-sentence character, we will usually end up with an empty sentence vector at the end. Here we check for this, and delete it if necessary:    // delete back if empty
    if(vv_sentences.back().empty()) 
        vv_sentences.pop_back();


					Now we can sort the vv_sentences vector by the size of the sentences:    sort(vv_sentences, [](const auto& l, 
        const auto& r) {
            return l.size() > r.size();
        });


			

			This is why the vector is so convenient for this project. It's quick and easy to sort using the ranges::sort() algorithm with a simple predicate for sorting by size in descending order.

			
					Now we can print our result:     constexpr int WLIMIT{10};
    for(auto& v : vv_sentences) {
        size_t size = v.size();
        size_t limit{WLIMIT};
        cout << format("{}: ", size);
        for(auto& s : v) {
            cout << format("{} ", s);
            if(--limit == 0) {
                if(size > WLIMIT) cout << "...";
                break;
            }
        }
        cout << '\n';
    }
    cout << '\n';
}


			

			The outer loop and the inner loop correspond to the outer and inner vectors. We simply loop through the vectors and print out the size of the inner vector with format("{}: ", size) and then each word with format("{} ", s). We don't want to print the very long sentences in their entirety, so we define a limit of 10 words and print an ellipsis if there's more.

			
					The output looks like this, using the first few paragraphs of this recipe for input:$ ./sentences < sentences.txt
27: It can be useful for a writer to make sure ...
19: Whenever another container type seems appropriate, but is missing one ...
18: If you need something ordered, it's often best to use ...
17: The inner vector stores the words of a sentence, and ...
16: In this case, however, since we need a descending sort, ...
16: In this case, where we need our output sorted in ...
15: As you'll see, this affords a lot of flexibility while ...
12: Let's build a tool that evaluates a text file for ...
11: The vector is generally the most flexible of the STL ...
9: Choosing the appropriate container key when using the STL.
7: This recipe uses a vector of vectors.


			

			How it works…

			Finding punctuation is simple using the strchr() function from the C Standard Library. Remember, all of C and its Standard Library are included in the definition of the C++ language. There's no reason not to use it where appropriate.

			bool is_eos(const string_view & str) {

			    constexpr const char * end_punct{ ".!?" };

			    for(auto c : str) {

			        if(strchr(end_punct, c) != nullptr) return true;

			    }

			    return false;

			}

			This function will fail to properly separate sentences if there's punctuation in the middle of words. That may happen in some forms of poetry or in a badly formatted text file. I've seen this done with std::string iterators, and with regular expressions, but for our purposes this is quick and easy.

			We read the text file one word at a time using cin:

			for(string s{}; cin >> s; ) {

			    ...

			}

			This avoids the overhead of reading a large file into memory all at once. The vector will already be large, containing all the words of the file. It's not necessary to also hold the entire text file in memory. In the rare case that a file is too large, it would be necessary to find another strategy, or use a database.

			The vector of vectors may look complex at first glance, but it's no more complicated than using two separate vectors.

			vector<vector<string>> vv_sentences{vector<string>{}};

			This declares an outer vector, with inner elements of type vector<string>. The outer vector is named vv_sentences. The inner vectors are anonymous; they require no name. This definition initializes the vv_sentences object with one element, an empty vector<string> object.

			The current inner vector will always be available as vv_senteces.back():

			vv_sentences.back().emplace_back(s);

			When we've completed one inner vector, we simply create a new one with:

			vv_sentences.emplace_back(vector<string>{});

			This creates a new anonymous vector<string> object and emplaces it at the back of the vv_sentences object.

			A ToDo list using multimap

			An ordered task list (or a ToDo list) is a common computing application. Formally stated, it's a list of tasks associated with a priority, sorted in reverse numerical order.

			You may be tempted to use a priority_queue for this, because as the name implies, it's already sorted in priority (reverse numerical) order. The disadvantage of a priority_queue is that it has no iterators, so it's difficult to operate on it without pushing and popping items to and from the queue.

			For this recipe, we'll use a multimap for the ordered list. The multimap associative container keeps items in order, and it can be accessed using reverse iterators for the proper sort order.

			How to do it…

			This is a short and simple recipe that initializes a multimap and prints it in reverse order.

			
					We start with a type alias for our multimap:using todomap = multimap<int, string>;


			

			Our todomap is a multimap with an int key and a string payload.

			
					We have a small utility function for printing the todomap in reverse order:void rprint(todomap& todo) {
    for(auto it = todo.rbegin(); it != todo.rend(); 
      ++it) {
        cout << format("{}: {}\n", it->first, 
          it->second);
    }
    cout << '\n';
}


			

			This uses reverse iterators to print the todomap.

			
					The main() function is short and sweet:int main()
{
    todomap todo {
        {1, "wash dishes"},
        {0, "watch teevee"},
        {2, "do homework"},
        {0, "read comics"}
    };
    rprint(todo);
}


			

			We initialize the todomap with tasks. Notice that the tasks are not in any particular order, but they do have priorities in the keys. The rprint() function will print them in priority order.

			
					The output looks like this:$ ./todo
2: do homework
1: wash dishes
0: read comics
0: watch teevee


			

			The ToDo list prints out in priority order, just as we need it.

			How it works…

			It's a short and simple recipe. It uses the multimap container to hold items for a prioritized list.

			The only trick is in the rprint() function:

			void rprint(todomap& todo) {

			    for(auto it = todo.rbegin(); it != todo.rend(); ++it) {

			        cout << format("{}: {}\n", it->first, it->second);

			    }

			    cout << '\n';

			}

			Notice the reverse iterators, rbegin() and rend(). It's not possible to change the sort order of a multimap, but it does provide reverse iterators. This makes the multimap behave exactly as we need it for our prioritized list.

		

	
		
			Chapter 4: Compatible Iterators

			Iterators are a fundamental concept in the STL. Iterators are implemented with the semantics of C pointers, using the same increment, decrement, and dereference operators. The pointer idiom is familiar to most C/C++ programmers, and it allows algorithms such as std::sort and std::transform to work on primitive memory buffers as well as STL containers.

			Iterators are fundamental

			The STL uses iterators to navigate the elements of its container classes. Most containers include begin() and end() iterators. These are usually implemented as member functions that return an iterator object. The begin() iterator points to the initial container element, and the end() iterator points past the final element:
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			Figure 4.1 – The begin() and end() iterators

			The end() iterator may function as a sentinel for containers of indeterminate length. We'll see some examples of that in this chapter.

			Most STL containers define their own specific iterator type. For example, for a vector of int:

			std::vector<int> v;

			The iterator type would be defined as:

			std::vector<int>::iterator v_it;

			You can see how this could easily get out of hand. If we had a vector of vector of string:

			std::vector<std::vector<int, std::string>> v;

			Its iterator type would be:

			std::vector<std::vector<int, std::string>>::iterator v_it;

			Fortunately, C++11 gave us automatic type deduction and the auto type. By using auto, we rarely need to use the full iterator type definition. For example, if we need an iterator in a for loop, we can use the auto type:

			for(auto v_it = v.begin(); v_it != v.end(); ++v_it) {

			    cout << *v_it << '\n';

			}

			Notice the use of the dereference operator * to access the elements from the iterator. This is the same syntax you would use to dereference a pointer:

			const int a[]{ 1, 2, 3, 4, 5 };

			size_t count{ sizeof(a) / sizeof(int) };

			for(const int* p = a; count > 0; ++p, --count) {

			    cout << *p << '\n';

			}

			This also means that you can use a range-based for loop with either a primitive array:

			const int a[]{ 1, 2, 3, 4, 5 };

			for(auto e : a) {

			    cout << e << '\n';

			}

			Or with an STL container:

			std::vector<int> v{ 1, 2, 3, 4, 5 };

			for(auto e : v) {

			    cout << e << '\n';

			}

			The range-based for loop is just a shorthand for a for loop with iterators:

			{

			    auto begin_it{ std::begin(container) };

			    auto end_it{ std::end(container) };

			    for ( ; begin_it != end_it; ++begin_it) {

			        auto e{ *begin_it };

			        cout << e << '\n';

			    } 

			}

			Because iterators use the same syntax as a primitive pointer, the range-based for loop works the same with either container.

			Notice that the range-based for loop calls std::begin() and std::end(), instead of directly calling the begin() and end() member functions. The std:: functions call the member functions to get the iterators. So, why not just call the member functions? The std:: non-member functions are designed to also work with primitive arrays. That's why a for loop works with an array:

			const int arr[]{ 1, 2, 3, 4, 5 };

			for(auto e : arr) {

			    cout << format("{} ", e);

			}

			Output:

			1 2 3 4 5

			For most purposes, I tend to favor the member function begin() and end() because they are more explicit. Others favor the std:: non-member functions because they are more general. Six or half-dozen; I suggest you pick a style and stick with it.

			Iterator categories

			Prior to C++20, iterators were divided into categories based on their capabilities:
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			These categories are hierarchical, where the more capable iterators inherit the capabilities of the less capable iterators. In other words, the input iterator can read and increment once. The forward iterator has the capabilities of the Input Iterator plus it can increment multiple times. The bidirectional iterator has those capabilities plus it can decrement. And on down the list.

			The output iterator can write and increment once. If any of the other iterators can also write, it is considered a mutable iterator.

			Iterator concepts

			Concepts and constraints are new with C++20. A concept is simply a named constraint that restricts the types of arguments to a template function or class, and helps the compiler choose appropriate specializations.

			Beginning with C++20, the STL defines iterators in terms of concepts instead of categories. Each of these concepts are in the std:: namespace.
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			You can use these concepts to constrain the arguments of a template:

			template<typename T>

			requires std::random_access_iterator<typename T::iterator>

			void printc(const T & c) {

			        for(auto e : c) {

			        cout << format("{} ", e);

			    }

			    cout << '\n';

			    cout << format("element 0: {}\n", c[0]);

			}

			This function requires a random_access_iterator. If I call it with a list, which is not a random-access container, the compiler will give me an error:

			int main()

			{

			    list<int> c{ 1, 2, 3, 4, 5 };

			    printc(c);       

			}

			The list iterator type does not support the random_access_iterator concept. So, the compiler gives me an error:

			error: no matching function for call to 'printc(std::__cxx11::list<int>&)'

			   27 |     printc(c);

			      |     ~~~~~~^~~

			note: candidate: 'template<class T>  requires  random_access_iterator<typename T::iterator> void printc(const T&)'

			   16 | void printc(const T & c) {

			      |      ^~~~~~

			note:   template argument deduction/substitution failed:

			note: constraints not satisfied

			This is the error output from GCC. Your errors may look different.

			If I call it with a vector, which is a random-access container:

			int main()

			{

			    vector<int> c{ 1, 2, 3, 4, 5 };

			    printc(c);       

			}

			Now it compiles and runs without error:

			$ ./working

			1 2 3 4 5

			element 0: 1

			While there are different types of iterators for different types of capabilities (and concepts), the complexity is there to support of ease of use.

			With this introduction to iterators, let's now proceed with the following recipes in this chapter:

			
					Create an iterable range

					Make your iterators compatible with STL iterator traits

					Use iterator adapters to fill STL containers

					Create a generator as iterators

					Use reverse iterator adapters to iterate backward

					Iterate objects of unknown length with a sentinel

					Build a zip iterator adapter

					Create a random-access iterator

			

			Technical requirements

			You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/CPP-20-STL-Cookbook/tree/main/chap04.

			Create an iterable range

			This recipe describes a simple class that generates an iterable range, suitable for use with the range-based for loop. The idea is to create a sequence generator that iterates from a beginning value to an ending value.

			To accomplish this task, we need an iterator class, along with the object interface class.

			How to do it…

			There's two major parts to this recipe, the main interface, Seq, and the iterator class.

			
					First, we'll define the Seq class. It only needs to implement the begin() and end() member functions:template<typename T>
class Seq {
    T start_{};
    T end_{};
public:
    Seq(T start, T end) : start_{start}, end_{end} {}
    iterator<T> begin() const {
        return iterator{start_};
    }
    iterator<T> end() const { return iterator{end_}; }
};


			

			The constructor sets up the start_ and end_ variables. These are used to construct the begin() and end() iterators, respectively. The member functions begin() and end() return iterator objects.

			
					The iterator class is normally defined inside the public section of the container class. This is called a member class or a nested class. We'll insert it right after the Seq constructor:public:
    Seq(T start, T end) : start_{ start }, end_{ end } {}
    class iterator {
        T value_{};
    public:
        explicit iterator(T position = 0)
            : value_{position} {}
        T operator*() const { return value_; }
        iterator& operator++() {
            ++value_;
            return *this;
        }
        bool operator!=(const iterator& other) const {
            return value_ != other.value_;
        }
    };


			

			It's traditional to name the iterator class iterator. This allows it to be referenced as Seq<type>::iterator.

			The iterator constructor is qualified explicit to avoid implicit conversions.

			The value_ variable is maintained by the iterator. This is used to return a value from the pointer dereference.

			The minimum requirement for supporting the range-based for loop is a dereference operator *, a pre-increment operator ++, and the not-equal comparison operator !=.

			
					Now we can write a main() function to test our sequence generator:int main()
{
    Seq<int> r{ 100, 110 };
    for (auto v : r) {
        cout << format("{} ", v);
    }
    cout << '\n';
}


			

			This constructs a Seq object and prints out its sequence.

			The output looks like this:

			$ ./seq

			100 101 102 103 104 105 106 107 108 109

			How it works…

			The point of this recipe is to make a sequence generator that works with a range-based for loop. Let's first consider the equivalent code for the range-based for loop:

			{

			    auto begin_it{ std::begin(container) };

			    auto end_it{ std::end(container) };

			    for ( ; begin_it != end_it; ++begin_it) {

			        auto v{ *begin_it };

			        cout << v << '\n';

			    } 

			}

			From this equivalent code, we can deduce the requirements for an object to work with the for loop:

			
					begin() and end() iterators

					Iterator support for the not-equal comparison != operator

					Iterator support for the prefix increment ++ operator

					Iterator support for the dereference * operator

			

			Our main Seq class interface only has three public member functions: the constructor, and the begin() and end() iterators:

			Seq(T start, T end) : start_{ start }, end_{ end } {}

			iterator begin() const { return iterator{start_}; }

			iterator end() const { return iterator{end_}; }

			The implementation of the Seq::iterator class carries the actual payload:

			class iterator {

			    T value_{};

			This is the common configuration because the payload is only accessed through iterators.

			We've implemented only the three operators we need:

			    T operator*() const { return value_; }

			    iterator& operator++() {

			        ++value_;

			        return *this;

			    }

			    bool operator!=(const iterator& other) const {

			        return value_ != other.value_;

			    }

			This is all we need to support the range-based for loop:

			Seq<int> r{ 100, 110 };

			for (auto v : r) {

			    cout << format("{} ", v);

			}

			There's more…

			It's traditional, but not required, to define the iterator as a member class of the container. This allows the iterator type to be subordinate to the container type:

			Seq<int>::iterator it = r.begin();

			It's not as important post C++11 because of the auto type, but it's still considered best practice.

			Make your iterators compatible with STL iterator traits

			Many STL algorithms require iterators to conform to certain traits. Unfortunately, these requirements are inconsistent across compilers, systems, and C++ versions.

			For our purposes, we'll use the class from the Create an iterable range recipe to illustrate the issue. You may find this makes more sense if you read that recipe before continuing.

			In main(), if I add a call to the minmax_element() algorithm:

			Seq<int> r{ 100, 110 };

			auto [min_it, max_it] = minmax_element(r.begin(), r.end());

			cout << format("{} - {}\n", *min_it, *max_it);

			It does not compile. The error messages are vague, cryptic, and cascading, but if you look closely, you'll see that our iterator does not meet the requirements to be compatible with this algorithm.

			Okay, let's fix that.

			How to do it…

			We need to make a few simple additions to our iterator to make it compatible with the algorithm. Our iterator needs to meet the minimum requirements for a forward iterator, so let's start there:

			
					We have almost all the operators necessary for a forward iterator. The only one we're missing is the equality comparison operator ==. We can easily add this to our iterator with an operator==() overload:bool operator==(const iterator& other) const {
    return value_ == other.value_;
}


			

			Interestingly, this makes the code compile and run on some systems, but not on Clang, where we get the error message:

			No type named 'value_type' in 'std::iterator_traits<Seq<int>::iterator>'

			This tells me that we need to set up the traits in the iterator.

			
					The iterator_traits class looks for a set of type definitions (implemented as using aliases) in the iterator class:public:
    using iterator_concept  = std::forward_iterator_tag;
    using iterator_category = 
      std::forward_iterator_tag;
    using value_type        = std::remove_cv_t<T>;
    using difference_type   = std::ptrdiff_t;
    using pointer           = const T*;
    using reference         = const T&;


			

			I tend to put these at the top of the public: section of the iterator class, where they'll be easy to see.

			Now we have a fully conforming forward iterator class, and the code runs on all the compilers I have.

			How it works…

			The using statements are traits that may be used to define what capabilities the iterator can perform. Let's look at each of them:

			using iterator_concept  = std::forward_iterator_tag;

			using iterator_category = std::forward_iterator_tag;

			The first two are the category and the concept, and both are set to forward_iterator_tag. This value indicates that the iterator conforms to the forward iterator specification.

			Some code doesn't look at those values, and instead looks for individual settings and capabilities:

			using value_type        = std::remove_cv_t<T>;

			using difference_type   = std::ptrdiff_t;

			using pointer           = const T*;

			using reference         = const T&;

			The value_type alias is set to std::remove_cv_t<T>, which is the type of the value, with any const qualifier removed.

			The difference_type alias is set to std::ptrdiff_t, as special type for pointer differences.

			The pointer and reference aliases are set to const-qualified versions of the pointer and reference, respectively.

			Defining these type aliases is a basic requirement for most iterators.

			There's more…

			It's worth noting that defining these traits allows us to use concept-restricted templates with our iterator. For example:

			template<typename T>

			requires std::forward_iterator<typename T::iterator>

			void printc(const T & c) {

			    for(auto v : c) {

			        cout << format("{} ", v);

			    }

			    cout << '\n';

			}

			This function that prints our sequence is restricted by the forward_iterator concept. If our class did not qualify, it wouldn't compile.

			We can also use the ranges:: versions of the algorithms:

			auto [min_it, max_it] = ranges::minmax_element(r);

			This makes it more convenient to use our iterators.

			We can test for forward_range compatibility with a static assertion:

			static_assert(ranges::forward_range<Seq<int>>);

			Use iterator adapters to fill STL containers

			An iterator is essentially an abstraction. It has a specific interface and is used in specific ways. But beyond that, it's just code and it can be used for other purposes. An iterator adapter is a class that looks like an iterator but does something else.

			The STL comes with an assortment of iterator adapters. Often used with the algorithm library, they are quite useful. The STL iterator adaptors generally fall into three categories:

			
					Insert iterators, or inserters, are used to insert elements into a container.

					Stream iterators read from and write to a stream.

					Reverse iterators reverse the direction of an iterator.

			

			How to do it…

			In this recipe, we'll look at a few examples of STL iterator adapters:

			
					We'll start with a simple function to print the contents of a container:void printc(const auto & v, const string_view s = "") {
    if(s.size()) cout << format("{}: ", s);
    for(auto e : v) cout << format("{} ", e);
    cout << '\n';
}


			

			The printc() function allows us to easily view the results of our algorithms. It includes an optional string_view argument for a description.

			
					In our main() function, we'll define a couple of deque containers. We're using deque containers so we can insert at both ends:int main() {
    deque<int> d1{ 1, 2, 3, 4, 5 };
    deque<int> d2(d1.size());
    copy(d1.begin(), d1.end(), d2.begin());
    printc(d1);
    printc(d2, "d2 after copy"); 
}


			

			Output:

			1 2 3 4 5

			d2 after copy: 1 2 3 4 5

			We defined deque d1 with five int values, and d2 with space for the same number of elements. The copy() algorithm will not allocate space, so d2 must have room for the elements.

			The copy() algorithm takes three iterators: the begin and end iterators indicate the range of elements to copy from, and the begin iterator of the destination range. It does not check the iterators to make sure they're valid. (Try this without allocating space in a vector and you'll get a segmentation fault error.)

			We call printc() on both containers to show the results.

			
					The copy() algorithm is not always convenient for this. Sometimes you want to copy and add elements to the end of a container. It would be nice to have an algorithm that calls push_back() for each element. This is where an iterator adapter is useful. Let's add some code at the end of main():copy(d1.begin(), d1.end(), back_inserter(d2));
printc(d2, "d2 after back_inserter");


			

			Output:

			d2 after back_inserter: 1 2 3 4 5 1 2 3 4 5

			back_inserter() is an insert iterator adapter that calls push_back() for each item assigned to it. You can use it anywhere an output iterator is expected.

			
					There's also a front_inserter() adapter for when you want to insert at the front of a container:deque<int> d3{ 47, 73, 114, 138, 54 };
copy(d3.begin(), d3.end(), front_inserter(d2));
printc(d2, "d2 after front_inserter");


			

			Output:

			d2 after front_inserter: 54 138 114 73 47 1 2 3 4 5 1 2 3 4 5

			The front_inserter() adapter inserts elements at the front using the container's push_front() method. Notice that the elements in the destination are reversed, because each element is inserted before the previous one.

			
					If we want to insert in the middle, we can use the inserter() adapter:auto it2{ d2.begin() + 2};
copy(d1.begin(), d1.end(), inserter(d2, it2));
printc(d2, "d2 after middle insert");


			

			Output:

			d2 after middle insert: 54 138 1 2 3 4 5 114 73 47 ...

			The inserter() adapter takes an iterator for the insertion begin point.

			
					Stream iterators are convenient for reading from and writing to iostream objects, this is ostream_iterator():cout << "ostream_iterator: ";
copy(d1.begin(), d1.end(), ostream_iterator<int>(cout));
cout << '\n';


			

			Output:

			ostream_iterator: 12345

			
					And here is istream_iterator():vector<string> vs{};
copy(istream_iterator<string>(cin), 
    istream_iterator<string>(),
    back_inserter(vs));
printc(vs, "vs2");


			

			Output:

			$ ./working < five-words.txt

			vs2: this is not a haiku

			The istream_iterator() adapter will return an end iterator by default, if no stream is passed.

			
					Reverse adapters are included with most containers, as function members rbegin() and rend():for(auto it = d1.rbegin(); it != d1.rend(); ++it) {
    cout << format("{} ", *it);
}
cout << '\n';


			

			Output:

			5 4 3 2 1

			How it works…

			The iterator adapters work by wrapping around an existing container. When you call an adapter, like back_inserter() with a container object:

			copy(d1.begin(), d1.end(), back_inserter(d2));

			The adapter returns an object that mimics an iterator, in this case a std::back_insert_iterator object, which calls the push_back() method on the container object each time a value is assigned to the iterator. This allows the adapter to be used in place of an iterator, while performing its useful task.

			The istream_adapter() also requires a sentinel. A sentinel signals the end of an iterator of indeterminate length. When you read from a stream, you don't know how many objects are in the stream until you hit the end. When the stream hits the end, the sentinel will compare equal with the iterator, signaling the end of the stream. The istream_adapter() will create a sentinel when it's called without a parameter:

			auto it = istream_adapter<string>(cin);

			auto it_end = istream_adapter<string>();  // creates sentinel

			This allows you to test for the end of a stream, as you would with any container:

			for(auto it = istream_iterator<string>(cin);

			        it != istream_iterator<string>();

			        ++it) {

			    cout << format("{} ", *it);

			}

			cout << '\n';

			Output:

			$ ./working < five-words.txt

			this is not a haiku

			Create a generator as iterators

			A generator is an iterator that generates its own sequence of values. It does not use a container. It creates values on the fly, returning one at a time as needed. A C++ generator stands on its own; it does not need to wrap around another object.

			In this recipe, we'll build a generator for a Fibonacci sequence. This is a sequence where each number is the sum of the previous two numbers in the sequence, starting with 0 and 1:
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			Figure 4.2 – Definition of a Fibonacci sequence

			The first ten values of the Fibonacci sequence, not counting zero, are: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55. This is a close approximation of the golden ratio found in nature.

			How to do it…

			A Fibonacci sequence is often created with a recursive loop. Recursion in a generator can be difficult and resource-intensive, so instead we'll just save the previous two values in the sequence and add them together. This is more efficient.

			
					First let's define a function to print the sequence:void printc(const auto & v, const string_view s = "") {
    if(s.size()) cout << format("{}: ", s);
    for(auto e : v) cout << format("{} ", e);
    cout << '\n';
}


			

			We've used this printc() function before. It prints an iterable range, along with a description string, if provided.

			
					Our class begins with a type alias, and a few object variables, all in the private section.class fib_generator {
    using fib_t = unsigned long;
    fib_t stop_{};
    fib_t count_ { 0 };
    fib_t a_ { 0 };
    fib_t b_ { 1 };


			

			The stop_ variable will be used later as a sentinel. It's set to the number of values to generate. count_ is used to keep track of how many values we've generated. a_ and b_ are the previous two sequence values, used for calculating the next value.

			
					Still in the private section, we have a simple function for calculating the next value in the Fibonacci sequence.    constexpr void do_fib() {
        const fib_t old_b = b_;
        b_ += a_;
        a_  = old_b;
    }


					Now in the public section, we have a simple constructor with a default value:public:
    explicit fib_generator(fib_t stop = 0) : stop_{ stop } {}


			

			This constructor is used without an argument to create a sentinel. The stop argument initializes the stop_ variable to represent how many values to generate.

			
					The rest of the public functions are the operator overloads expected of a forward iterator:    fib_t operator*() const { return b_; }
    constexpr fib_generator& operator++() {
        do_fib();
        ++count_;
        return *this;
    }
    fib_generator operator++(int) {
        auto temp{ *this };
        ++*this;
        return temp; 
    }
    bool operator!=(const fib_generator &o) const {
        return count_ != o.count_; 
    }
    bool operator==(const fib_generator&o) const { 
        return count_ == o.count_; 
    }
    const fib_generator& begin() const { return *this; }
    const fib_generator end() const { 
        auto sentinel = fib_generator();
        sentinel.count_ = stop_;
        return sentinel;
    }
    fib_t size() { return stop_; }
};


			

			There's also a simple size() function which can be useful if you need to initialize a target container for a copy operation.

			
					Now we can use the generator in our main function with a simple call to printc():int main() {
    printc(fib_generator(10));
}


			

			This creates an anonymous fib_generator object to pass to the printc() function.

			
					We get this output with the first 10 Fibonacci numbers, not including zero:1 1 2 3 5 8 13 21 34 55


			

			How it works…

			The fib_generator class operates as a forward iterator, simply because it provides all the necessary interface functions:

			fib_generator {

			public:

			    fib_t operator*() const;

			    constexpr fib_generator& operator++();

			    fib_generator operator++(int);

			    bool operator!=(const fib_generator &o) const;

			    bool operator==(const fib_generator&o) const;

			    const fib_generator& begin() const;

			    const fib_generator end() const;

			};

			As far as the range-based for loop is concerned, this is an iterator because it looks like an iterator.

			The value is calculated in the do_fib() function:

			constexpr void do_fib() {

			    const fib_t old_b = b_;

			    b_ += a_;

			    a_  = old_b;

			}

			This simply adds b_ += a_, stores the result in b_ and the old b_ in a_, setting it up for the next iteration.

			The dereference operator * returns the value from b_, which is the next value in the sequence:

			fib_t operator*() const { return b_; }

			The end() function creates an object where the count_ variable is equal to the stop_ variable, creating a sentinel:

			const fib_generator end() const { 

			    auto sentinel = fib_generator();

			    sentinel.count_ = stop_;

			    return sentinel;

			}

			Now the equality comparison operator can easily detect the end of the sequence:

			bool operator==(const fib_generator&o) const { 

			    return count_ == o.count_; 

			}

			There's more…

			If we want to make our generator work with the algorithm library, we need to provide the traits aliases. These go at the top of the public section:

			public:

			    using iterator_concept  = std::forward_iterator_tag;

			    using iterator_category = std::forward_iterator_tag;

			    using value_type        = std::remove_cv_t<fib_t>;

			    using difference_type   = std::ptrdiff_t;

			    using pointer           = const fib_t*;

			    using reference         = const fib_t&;

			Now we can use our generator with algorithms:

			fib_generator fib(10);

			auto x = ranges::views::transform(fib, 

			    [](unsigned long x){ return x * x; });

			printc(x, "squared:");

			This uses the ranges::views version of the transform() algorithm to square every value. The resulting object can be used wherever you can use an iterator. We get this output from the printc() call:

			squared:: 1 1 4 9 25 64 169 441 1156 3025

			Use reverse iterator adapters to iterate backward

			A reverse iterator adapter is an abstraction that reverses the direction of an iterator class. It requires a bidirectional iterator.

			How to do it…

			Most bidirectional containers in the STL include a reverse iterator adapter. Other containers, such as the primitive C-array, do not. Let's look at some examples:

			
					Let's start with the printc() function we've used throughout this chapter:void printc(const auto & c, const string_view s = "") {
    if(s.size()) cout << format("{}: ", s);
    for(auto e : c) cout << format("{} ", e);
    cout << '\n';
}


			

			This uses a range-based for loop to print the elements of a container.

			
					The range-based for loop works even with primitive C-arrays, which have no iterator class. So, our printc() function already works with a C-array:int main() {
    int array[]{ 1, 2, 3, 4, 5 };
    printc(array, "c-array");
}


			

			We get this output:

			c-array: 1 2 3 4 5

			
					We can use the begin() and end() iterator adapters to create normal forward iterators for the C-array:auto it = std::begin(array);
auto end_it = std::end(array);
while (it != end_it) {
    cout << format("{} ", *it++);
}


			

			Output from the for loop:

			1 2 3 4 5

			
					Or we can use the rbegin() and rend() reverse iterator adapters to create reverse iterators for the C-array:auto it = std::rbegin(array);
auto end_it = std::rend(array);
while (it != end_it) {
    cout << format("{} ", *it++);
}


			

			Now our output is reversed:

			5 4 3 2 1

			
					We can even create a modified version of printc() that prints in reverse:void printr(const auto & c, const string_view s = "") {
    if(s.size()) cout << format("{}: ", s);
    auto rbegin = std::rbegin(c);
    auto rend = std::rend(c);
    for(auto it = rbegin; it != rend; ++it) {
        cout << format("{} ", *it);
    }
    cout << '\n';
}


			

			When we call it with the C-array:

			printr(array, "rev c-array");

			We get this output:

			rev c-array: 5 4 3 2 1

			
					Of course, this works just as well with any bidirectional STL container:vector<int> v{ 1, 2, 3, 4, 5 };
printc(v, "vector");
printr(v, "rev vector");


			

			Output:

			vector: 1 2 3 4 5

			rev vector: 5 4 3 2 1

			How it works…

			A normal iterator class has a begin() iterator that points to the first element, and an end() iterator that points past the last element:
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			Figure 4.3 – Forward iterator

			You iterate the container by incrementing the begin() iterator with the ++ operator, until it reaches the value of the end() iterator.

			A reverse iterator adapter intercepts the iterator interface and turns it around so the begin() iterator points at to the last element, and end() iterator points before the first element. The ++ and -- operators are also inverted:
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			Figure 4.4 – Reverse iterator adapter

			In the reversed iterator, the ++ operator decrements and the -- operator increments.

			It's worth noting that most bidirectional STL containers already include a reverse iterator adapter, accessible by member functions rbegin() and rend():

			vector<int> v;

			it = v.rbegin();

			it_end = v.rend();

			These iterators will operate in reverse and are suitable for many purposes.

			Iterate objects of unknown length with a sentinel

			Some objects don't have a specific length. To know their length, you need to iterate through all their elements. For example, elsewhere in this chapter we've seen a generator that doesn't have a specific length. A more common example would be a C-string.

			A C-string is a primitive C-array of characters, terminated with a null '\0' value.
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			Figure 4.5 – A C-string with its null terminator

			We use C-strings all the time, even if we don't realize it. Any literal string in C/C++ is a C-string:

			std::string s = "string";

			Here, the STL string s is initialized with a literal string. The literal string is a C-string. If we look at the individual characters in hexadecimal, we'll see the null terminator:

			for (char c : "string") {

			    std::cout << format("{:02x} ", c);

			}

			The word "string" has six letters. The output from our loop shows seven elements in the array:

			73 74 72 69 6e 67 00

			The seventh element is the null terminator.

			The loop sees the primitive C-array of characters, with seven values. The fact that it's a string is an abstraction invisible to the loop. If we want the loop to treat it like a string, we'll need an iterator and a sentinel.

			A sentinel is an object that signals the end of an iterator of indeterminate length. When the iterator hits the end of the data, the sentinel will compare equal with the iterator.

			To see how this works, let's build an iterator for C-strings!

			How to do it…

			To use a sentinel with a C-string, we need to build a custom iterator. It doesn't need to be complicated, just the essentials for use with a range-based for loop.

			
					We'll start with a couple of convenience definitions:using sentinel_t = const char;
constexpr sentinel_t nullchar = '\0';


			

			The using alias for sentinel_t is const char. We'll use this for the sentinel in our class.

			We also define the constant nullchar for the null character terminator.

			
					Now we can define our iterator type:class cstr_it {
    const char *s{};
public:
    explicit cstr_it(const char *str) : s{str} {}
    char operator*() const { return *s; }
    cstr_it& operator++() {
        ++s;
        return *this;
    }
    bool operator!=(sentinel_t) const {
        return s != nullptr && *s != nullchar;
    }
    cstr_it begin() const { return *this; }
    sentinel_t end() const { return nullchar; }
};


			

			This is short and simple. It's the minimum necessary for a range-based for loop. Notice the end() function returns a nullchar and the operator!=() overload compares against the nullchar. That's all we need for the sentinel.

			
					Now we can define a function for printing our C-string using the sentinel:void print_cstr(const char * s) {
    cout << format("{}: ", s);
    for (char c : cstr_it(s)) {
        std::cout << format("{:02x} ", c);
    }
    std::cout << '\n';
}


			

			In this function we first print the string. Then we use the format() function to print each individual character as a hexadecimal value.

			
					Now we can call print_cstr() from our main() function:int main() {
    const char carray[]{"array"};
    print_cstr(carray);
    const char * cstr{"c-string"};
    print_cstr(cstr);
}


			

			The output looks like this:

			array: 61 72 72 61 79

			c-string: 63 2d 73 74 72 69 6e 67

			Notice that there are no extraneous characters and no null terminators. This is because our sentinel tells the for loop to stop when it sees the nullchar.

			How it works…

			The sentinel part of the iterator class is very simple. We can easily use the null terminator as the sentinel value by returning it in the end() function:

			sentinel_t end() const { return nullchar; }

			Then the not-equal comparison operator can test for it:

			bool operator!=(sentinel_t) const {

			    return s != nullptr && *s != nullchar;

			}

			Notice that the parameter is just a type (sentinel_t). A parameter type is necessary for the function signature, but we don't need the value. All that's necessary is to compare the current iterator with the sentinel.

			This technique should be useful whenever you have a type or class that doesn't have a predetermined end point for comparison.

			Build a zip iterator adapter

			Many scripting languages include a function for zipping two sequences together. A typical zip operation will take two input sequences and return a pair of values for each position in both inputs:

			Consider the case of two sequences – they can be containers, iterators, or initialization lists:
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			Figure 4.6 – Containers to be zipped

			We want to zip them together to make a new sequence with pairs of elements from the first two sequences:

			
				
					[image: Figure 4.7 – Zip operation
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			Figure 4.7 – Zip operation

			In this recipe we will accomplish this task with an iterator adapter.

			How to do it…

			In this recipe we'll build a zip iterator adapter that takes two containers of the same type and zips the values into std::pair objects:

			
					In our main() function we want to call our adapter with two vectors:int main()
{
    vector<std::string> vec_a {"Bob", "John", "Joni"};
    vector<std::string> vec_b {"Dylan", "Williams", 
        "Mitchell"};
    cout << "zipped: ";
    for(auto [a, b] : zip_iterator(vec_a, vec_b)) {
        cout << format("[{}, {}] ", a, b);
    }
    cout << '\n';
}


			

			This allows us to use the zip_iterator in place of the individual vector iterators.

			And we expect an output like this:

			zipped: [Bob, Dylan] [John, Williams] [Joni, Mitchell]

			
					Our iterator adapter is in a class called zip_iterator. We'll start with some type aliases for convenience:template<typename T>
class zip_iterator {
    using val_t = typename T::value_type;
    using ret_t = std::pair<val_t, val_t>;
    using it_t = typename T::iterator;


			

			These allow us to conveniently define objects and functions.

			
					We don't store any data in our iterator. We only store copies of the target containers' begin() and end() iterators:it_t ita_{};
it_t itb_{};
// for begin() and end() objects
it_t ita_begin_{};
it_t itb_begin_{};
it_t ita_end_{};
it_t itb_end_{};


			

			ita_ and itb_ are iterators from the target containers. The other four iterators are used to generate the begin() and end() iterators for the zip_iterator adapter.

			
					We also have a private constructor:// private constructor for begin() and end() objects
zip_iterator(it_t ita, it_t itb) : ita_{ita}, itb_{itb} {}


			

			This is used later to construct adapter objects specifically for begin() and end() iterators.

			
					In the public section, we start with the iterator traits type definitions:public:
    using iterator_concept  = 
      std::forward_iterator_tag;
    using iterator_category = 
      std::forward_iterator_tag;
    using value_type        = std::pair<val_t, val_t>;
    using difference_type   = long int;
    using pointer           = const val_t*;
    using reference         = const val_t&;


					The constructor sets up all the private iterator variables:zip_iterator(T& a, T& b) : 
    ita_{a.begin()},
    itb_{b.begin()},
    ita_begin_{ita_},
    itb_begin_{itb_},
    ita_end_{a.end()},
    itb_end_{b.end()}
{}


					We define the minimum operator overloads to work with a forward iterator:zip_iterator& operator++() {
    ++ita_;
    ++itb_;
    return *this;
}
bool operator==(const zip_iterator& o) const {
    return ita_ == o.ita_ || itb_ == o.itb_;
}
bool operator!=(const zip_iterator& o) const {
    return !operator==(o);
}
ret_t operator*() const {
    return { *ita_, *itb_ };
}


					And finally, the begin() and end() functions return the respective iterators:zip_iterator begin() const
    { return zip_iterator(ita_begin_, itb_begin_); }
zip_iterator end() const
    { return zip_iterator(ita_end_, itb_end_); }


			

			These are made simple by the stored iterators and the private constructor.

			
					Now let's expand our main() function for testing:int main()
{
    vector<std::string> vec_a {"Bob", "John", "Joni"};
    vector<std::string> vec_b {"Dylan", "Williams", 
        "Mitchell"};
    cout << "vec_a: ";
    for(auto e : vec_a) cout << format("{} ", e);
    cout << '\n';
    cout << "vec_b: ";
    for(auto e : vec_b) cout << format("{} ", e);
    cout << '\n';
    cout << "zipped: ";
    for(auto [a, b] : zip_iterator(vec_a, vec_b)) {
        cout << format("[{}, {}] ", a, b);
    }
    cout << '\n';
}


					This gives us the output we're looking for:vec_a: Bob John Joni
vec_b: Dylan Williams Mitchell
zipped: [Bob, Dylan] [John, Williams] [Joni, Mitchell]


			

			How it works…

			The zipped iterator adapter is an example of how flexible the iterator abstraction can be. We can take the iterators of two containers and use them in one aggregated iterator. Let's see how this works.

			The main constructor for the zip_iterator class takes two container objects. For the purposes of this discussion, we'll refer to these objects as the target objects.

			zip_iterator(T& a, T& b) : 

			    ita_{a.begin()},

			    itb_{b.begin()},

			    ita_begin_{ita_},

			    itb_begin_{itb_},

			    ita_end_{a.end()},

			    itb_end_{b.end()}

			{}

			The constructor initializes the ita_ and itb_ variables from the target begin() iterators. These will be used to navigate the target objects. The target begin() and end() iterators are also saved for later use.

			These variables are defined in the private section:

			it_t ita_{};

			it_t itb_{};

			// for begin() and end() objects

			it_t ita_begin_{};

			it_t itb_begin_{};

			it_t ita_end_{};

			it_t itb_end_{};

			The it_t type is defined as the type of the target iterator class:

			using val_t = typename T::value_type;

			using ret_t = std::pair<val_t, val_t>;

			using it_t = typename T::iterator;

			The other aliased types are val_t for the type of the target value, and ret_t for the return pair. These type definitions are used for convenience throughout the class.

			The begin() and end() functions use a private constructor that only initializes the ita_ and itb_ values:

			zip_iterator begin() const

			  { return zip_iterator(ita_begin_, itb_begin_); }

			zip_iterator end() const

			  { return zip_iterator(ita_end_, itb_end_); }

			The private constructor looks like this:

			// private constructor for begin() and end() objects

			zip_iterator(it_t ita, it_t itb) : ita_{ita}, itb_{itb} {}

			This is a constructor that takes it_t iterators for parameters. It only initializes ita_and itb_ so they can be used in the comparison operator overloads.

			The rest of the class just acts like a normal iterator, but it's operating on iterators from the target class:

			zip_iterator& operator++() {

			    ++ita_;

			    ++itb_;

			    return *this;

			}

			bool operator==(const zip_iterator& o) const {

			    return ita_ == o.ita_ || itb_ == o.itb_;

			}

			bool operator!=(const zip_iterator& o) const {

			    return !operator==(o);

			}

			The dereference operator returns a std::pair object (ret_t is an alias for std::pair<val_t, val_t>). This is the interface for retrieving a value from the iterator.

			ret_t operator*() const {

			    return { *ita_, *itb_ };

			}

			There's more…

			The zip_iterator adapter can be used to easily zip objects into a map:

			map<string, string> name_map{};

			for(auto [a, b] : zip_iterator(vec_a, vec_b)) {

			    name_map.try_emplace(a, b);

			}

			cout << "name_map: ";

			for(auto [a, b] : name_map) {

			    cout << format("[{}, {}] ", a, b);

			}

			cout << '\n';

			If we add this code to main(), we get this output:

			name_map: [Bob, Dylan] [John, Williams] [Joni, Mitchell]

			Create a random-access iterator

			This recipe is an example of a full-featured contiguous/random-access iterator. This is the most complete type of iterator for a container. A random-access iterator includes all the features of all the other types of container iterators, along with its random-access capabilities.

			While I felt it important to include a complete iterator in this chapter, with over 700 lines of code this example is somewhat larger than the other examples in this book. I'll cover the essential components of the code here. Please see the full source at https://github.com/PacktPublishing/CPP-20-STL-Cookbook/blob/main/chap04/container-iterator.cpp.

			How to do it…

			We need a container for our iterator. We'll use a simple array for this, and we'll call it Container. The iterator class is nested within the Container class.

			All of this is designed to be consistent with the STL container interfaces.

			
					Container is defined as a template class. Its private section has only two elements:template<typename T>
class Container {
    std::unique_ptr<T[]> c_{};
    size_t n_elements_{};


			

			We use a unique_pointer for the data. We let the smart pointer manage its own memory. This mitigates the need for a ~Container() destructor. The n_elements_ variable keeps the size of our container.

			
					In the public section, we have our constructors:Container(initializer_list<T> l) : n_elements_{l.size()} {
    c_ = std::make_unique<T[]>(n_elements_);
    size_t index{0};
    for(T e : l) {
        c_[index++] = e;
    }
}


			

			The first constructor uses an initializer_list to pass elements for the container. We call make_unique to allocate space and populate the container with a range-based for loop.

			
					We also have a constructor that allocates space without populating the elements:Container(size_t sz) : n_elements_{sz} {
    c_ = std::make_unique<T[]>(n_elements_);
}


			

			The make_unique() function constructs empty objects for element.

			
					The size() function returns the number of elements:size_t size() const {
    return n_elements_;
}


					The operator[]() function returns an indexed element:const T& operator[](const size_t index) const {
    return c_[index];
}


					The at() function returns an indexed element with bounds checking:T& at(const size_t index) const {
    if(index > n_elements_ - 1) {
        throw std::out_of_range(
            "Container::at(): index out of range"
        );
    }
    return c_[index];
}


			

			This is consistent with STL usage. The at() function is the preferred method.

			
					The begin() and end() functions call the iterator constructor with the address of the container data.iterator begin() const { return iterator(c_.get()); }
iterator end() const { 
    return iterator(c_.get() + n_elements_); 
}


			

			The unique_ptr::get() function returns the address from the smart pointer.

			
					The iterator class is nested within the Container class as a public member.class iterator {
    T* ptr_;


			

			The iterator class has one private member, a pointer that's initialized in the begin() and end() methods of the Container class.

			
					The iterator constructor takes a pointer to the container data.iterator(T* ptr = nullptr) : ptr_{ptr} {}


			

			We provide a default value because the standard requires a default constructor.

			Operator overloads

			This iterator provides operator overloads for the following operators: ++, postfix ++, --, postfix --, [], default comparison <=> (C++20), ==, *, ->, +, non-member +, numeric -, object -, +=, and -=. We'll cover a few notable overloads here. See the source code for all of them.

			
					The C++20 default comparison operator <=> provides the functionality of the full suite of comparison operators, except the equality == operator:const auto operator<=>(const iterator& o) const {
    return ptr_ <=> o.ptr_;
}


			

			This is a C++20 feature, so it requires a compliant compiler and library.

			
					There are two + operator overloads. These support it + n and n + it operations.iterator operator+(const size_t n) const {
    return iterator(ptr_ + n);
}
// non-member operator (n + it)
friend const iterator operator+(
        const size_t n, const iterator& o) {
    return iterator(o.ptr_ + n);
}


			

			The friend declaration is a special case. When used in a template class member function, it's the equivalent of a non-member function. This allows a non-member function to be defined in the class context.

			
					The - operator also has two overloads. We need to support both a numeric operand and an iterator operand.const iterator operator-(const size_t n) {
    return iterator(ptr_ - n);
}
const size_t operator-(const iterator& o) {
    return ptr_ - o.ptr_;
}


			

			This allows both it – n and it – it operations. There's no need for a non-member function, as n – it is not a valid operation.

			Validation code

			The C++20 specification §23.3.4.13 requires a specific set of operations and results for a valid random-access iterator. I've included a unit_tests() function in the source code to validate those requirements.

			The main() function creates a Container object and performs some simple validation functions.

			
					First, we create a Container<string> object x with ten values.Container<string> x{"one", "two", "three", "four", "five", 
    "six", "seven", "eight", "nine", "ten" };
cout << format("Container x size: {}\n", x.size());


			

			The output gives the number of elements:

			Container x size: 10

			
					We display the elements of the container with a range-based for loop:puts("Container x:");
for(auto e : x) {
    cout << format("{} ", e);
}
cout << '\n';


			

			Output:

			Container x:

			one two three four five six seven eight nine ten

			
					Next, we test several direct access methods:puts("direct access elements:");
cout << format("element at(5): {}\n", x.at(5));
cout << format("element [5]: {}\n", x[5]);
cout << format("element begin + 5: {}\n",
    *(x.begin() + 5));
cout << format("element 5 + begin: {}\n",
    *(5 + x.begin()));
cout << format("element begin += 5: {}\n",
    *(x.begin() += 5));


			

			Output:

			direct access elements:

			element at(5): six

			element [5]: six

			element begin + 5: six

			element 5 + begin: six

			element begin += 5: six

			
					We test the container with a ranges::views pipe and views::reverse:puts("views pipe reverse:");
auto result = x | views::reverse;
for(auto v : result) cout << format("{} ", v);
cout << '\n';


			

			Output:

			views pipe reverse:

			ten nine eight seven six five four three two one

			
					Finally, we create a Container object y with 10 uninitialized elements:Container<string> y(x.size());
cout << format("Container y size: {}\n", y.size());
for(auto e : y) {
    cout << format("[{}] ", e);
}
cout << '\n';


			

			Output:

			Container y size: 10

			[] [] [] [] [] [] [] [] [] []

			How it works…

			Although it's a lot of code, this iterator is no more complicated than a smaller iterator. Most of the code is in the operator overloads, which are mostly one or two lines of code each.

			The container itself is managed by a smart pointer. This is simplified by the fact that it's a flat array and doesn't require expansion or compression.

			Of course, the STL provides a flat std::array class, as well as other more complex data structures. Still, you may find it valuable to demystify the workings of a complete iterator class.

		

	
		
			Chapter 5: Lambda Expressions

			The C++11 standard introduced the lambda expression (sometimes called the lambda function, or just lambda). This feature allows an anonymous function to be used in the context of an expression. Lambdas may be used in function calls, containers, variables, and other expression contexts. It may sound innocuous, but it's remarkably useful.

			Let's start with a brief review of lambda expressions.

			Lambda expressions

			A lambda is essentially an anonymous function as a literal expression:

			auto la = []{ return "Hello\n"; };

			The variable la may now be used as if it were a function:

			cout << la();

			It can be passed to another function:

			f(la);

			It can be passed to another lambda:

			const auto la = []{ return "Hello\n"; };

			const auto lb = [](auto a){ return a(); };

			cout << lb(la);

			Output:

			Hello

			Or it can be passed anonymously (as a literal):

			const auto lb = [](auto a){ return a(); };

			cout << lb([]{ return "Hello\n"; });

			Closures

			The term closure is often applied to any anonymous function. Strictly speaking, a closure is a function that allows the use of symbols outside its own lexical scope.

			You may have noticed the square brackets in the definition of a lambda:

			auto la = []{ return "Hello\n"; };

			The square brackets are used to specify a list of captures. Captures are outside variables that are accessible from within the scope of the lambda body. If I try to use an outside variable without listing it as a capture, I'll get a compilation error:

			const char * greeting{ "Hello\n" };

			const auto la = []{ return greeting; };

			cout << la();

			When I try to compile this with GCC, I get the following error:

			In lambda function:

			error: 'greeting' is not captured

			This is because the body of the lambda has its own lexical scope and the greeting variable is outside of that scope.

			I can specify the greeting variable in a capture. This allows the variable into the scope of the lambda:

			const char * greeting{ "Hello\n" };

			const auto la = [greeting]{ return greeting; };

			cout << la();

			Now it compiles and runs as expected:

			$ ./working

			Hello

			This ability to capture variables outside its own scope is what makes a lambda a closure. People use the term in different ways, and that's fine, so long as we can understand each other. Still, it's good to know what the term means.

			Lambda expressions allow us to write good, clean generic code. They allow the use of functional programming patterns, where we can use lambdas as functional parameters to algorithms and even other lambdas.

			In this chapter, we will cover the use of lambdas with the STL, in the following recipes:

			
					Use lambdas for scoped reusable code

					Use lambdas as predicates with the algorithm library

					Use std::function as a polymorphic wrapper

					Concatenate lambdas with recursion

					Combine predicates with logical conjunction

					Call multiple lambdas with the same input

					Use mapped lambdas for a jump table

			

			Technical requirements

			You can find the code for this chapter on GitHub at https://github.com/PacktPublishing/CPP-20-STL-Cookbook/tree/main/chap05.

			Use lambdas for scoped reusable code

			Lambda expressions can be defined and stored for later use. They can be passed as parameters, stored in data structures, and called in different contexts with different parameters. They are as flexible as functions, but with the mobility of data.

			How to do it…

			Let's start with a simple program that we'll use to test various configurations of lambda expressions:

			
					We'll first define a main() function and use it to experiment with lambdas:int main() {
    ... // code goes here
}


					Inside the main() function, we'll declare a couple of lambdas. The basic definition of a lambda requires a pair of square brackets and a block of code in curly brackets:auto one = [](){ return "one"; };
auto two = []{ return "two"; };


			

			Notice that the first example one includes parentheses after the square brackets, and the second example two does not. The empty parameter parentheses are commonly included, but are not always required. The return type is inferred by the compiler.

			
					I can call these functions with cout, or with format, or in any context that will take a C-string:cout << one() << '\n';
cout << format("{}\n", two());


					In many cases, the compiler can determine the return type from automatic type deduction. Otherwise, you can specify the return type with the -> operator:auto one = []() -> const char * { return "one"; };
auto two = []() -> auto { return "two"; };


			

			Lambdas use the trailing return type syntax. This consists of the -> operator followed by the type specification. If the return type is not specified, it is considered auto. If you use a trailing return type, the parameter parentheses are required.

			
					Let's define a lambda to print out the values from our other lambdas:auto p = [](auto v) { cout << v() << '\n'; };


			

			The p() lambda expects a lambda (or function) as its parameter v, and calls it in its function body.

			The auto type parameter makes this lambda an abbreviated template. Before C++20, this was the only way to template a lambda. Beginning with C++20, you may specify template parameters (without the template keyword) after the capture brackets. This is the equivalent with template parameters:

			auto p = []<template T>(T v) { cout << v() << '\n'; };

			The abbreviated auto version is simpler and more common. It works well for most purposes.

			
					Now we can pass an anonymous lambda in the function call:p([]{ return "lambda call lambda"; });


			

			The output is:

			lambda call lambda

			
					If we need to pass parameters to an anonymous lambda, we can put them in parentheses after the lambda expression:<< [](auto l, auto r){ return l + r; }(47, 73)
    << '\n';


			

			The function parameters, 47 and 73, are passed to the anonymous lambda in the parentheses after the function body.

			
					You can access variables from the outside scope of the lambda by including them as captures in the square brackets:int num{1};
p([num]{ return num; });


					Or you can capture them by reference:int num{0};
auto inc = [&num]{ num++; };
for (size_t i{0}; i < 5; ++i) {
    inc();
}
cout << num << '\n';


			

			The output is as follows:

			5

			This allows you to modify a captured variable.

			
					You can also define a local capture variable that maintains its state:auto counter = [n = 0]() mutable { return ++n; };
for (size_t i{0}; i < 5; ++i) {
    cout << format("{}, ", counter());
}
cout << '\n';


			

			Output:

			1, 2, 3, 4, 5,

			The mutable specifier allows the lambda to modify its captures. Lambdas default to const-qualified.

			As with the trailing return type, any specifier requires the parameter parentheses.

			
					The lambda supports two types of default capture:int a = 47;
int b = 73;
auto l1 = []{ return a + b; };


			

			If I try to compile this code, I get an error that includes:

			note: the lambda has no capture-default

			One type of default capture is indicated by an equal sign:

			auto l1 = [=]{ return a + b; };

			This will capture all the symbols in the lambda's scope. The equal sign performs capture by copy. It will capture a copy of the objects as if they were copied with an assignment operator.

			The other default capture uses an ampersand for capture by reference:

			auto l1 = [&]{ return a + b; };

			This is a default capture that captures by reference.

			The default captures only use symbols when they are referenced, so they're not as messy as they may look. That said, I recommend explicit captures where possible as they generally improve readability.

			How it works…

			The syntax of a lambda expression is as follows: 

			
				
					[image: Figure 5.1 – Syntax of the lambda expression

]
				

			

			Figure 5.1 – Syntax of the lambda expression

			The only required parts of a lambda expression are the capture list and the body, which may be empty:

			[]{}

			This is the minimal lambda expression. It captures nothing and does nothing.

			Let's consider each of the parts.

			Capture-list

			The capture-list specifies what we capture, if anything. It cannot be omitted, but it may be empty. We can use [=] to capture all variables by copy or [&] to capture all variables by reference, within the scope of the lambda.

			You may capture individual variables by listing them in the brackets:

			[a, b]{ return a + b; }

			The specified captures default to copy. You may capture by reference with the reference operator:

			[&a, &b]{ return a + b; }

			When you capture by reference, you may modify the referenced variable.

			Note

			You cannot capture object members directly. You may capture this or *this to dereference class members. 

			Parameters

			As with a function, parameters are specified in parentheses:

			[](int a, int b){ return a + b };

			If there are no parameters, specifiers, or trailing return type, the parentheses are optional. A specifier or trailing return type makes the parentheses required:

			[]() -> int { return 47 + 73 };

			The mutable modifier (optional)

			A lambda expression defaults to const-qualified unless you specify the mutable modifier. This allows it to be used in const context, but it also means that it cannot modify any of its captured-by-copy variables. For example:

			[a]{ return ++a; };

			This will fail to compile with an error message like this:

			In lambda function:

			error: increment of read-only variable 'a'

			With the mutable modifier, the lambda is no longer const-qualified and the captured variable may be changed:

			[a]() mutable { return ++a; };

			The constexpr specifier (optional)

			You may use constexpr to explicitly specify that you want your lambda to be considered a constant expression. This means that it may be evaluated at compile time. If the lambda meets the requirements, it may be considered constexpr even without the specifier.

			The exception attribute (optional)

			You can use the noexcept specifier to declare that your lambda does not throw any exceptions.

			The trailing return type (optional)

			By default, the lambda return type is deduced from the return statement, as if it were an auto return type. You may optionally specify a trailing return type with the -> operator:

			[](int a, int b) -> long { return a + b; };

			The parameter parentheses are required if you use any of the optional specifiers or the trailing return type.

			Note

			Some compilers, including GCC, allow empty parameter parentheses to be omitted even when there's a specifier or trailing return type. This is not correct. According to the specification, the parameters, specifiers, and trailing return type are all part of the lambda-declarator and the parentheses are required when any part of it is included. This may change in a future version of C++.

			Use lambdas as predicates with the algorithm library

			Some functions in the algorithm library require the use of a predicate function. A predicate is a function (or functor or lambda) that tests a condition and returns a Boolean true/false response.

			How to do it…

			For this recipe, we will experiment with the count_if() algorithm using different types of predicates:

			
					First, let's create a function for use as a predicate. A predicate takes a certain number of arguments and returns a bool. A predicate for count_if() takes one argument:bool is_div4(int i) {
    return i % 4 == 0;
}


			

			This predicate checks whether an int value is divisible by 4.

			
					In main(), we'll define a vector of int values, and use it to test our predicate function with count_if():int main() {
    const vector<int> v{ 1, 7, 4, 9, 4, 8, 12, 10, 20 };
    int count = count_if(v.begin(), v.end(), is_div4);
    cout << format("numbers divisible by 4: {}\n", 
      count);
}


			

			The output is as follows: 

			numbers divisible by 4: 5

			(The 5 divisible numbers are: 4, 4, 8, 12, and 20.)

			The count_if() algorithm uses the predicate function to determine which elements of the sequence to count. It calls the predicate with each element as a parameter, and only counts the element if the predicate returns true.

			In this case, we used a function as a predicate.

			
					We could also use a functor as a predicate:struct is_div4 {
    bool operator()(int i) {
        return i % 4 == 0;
    }
};


			

			The only change here is that we need to use an instance of the class as the predicate:

			int count = count_if(v.begin(), v.end(), is_div4());

			The advantage of a functor is that it can carry context and access class and instance variables. This was the common way to use predicates before C++11 introduced lambda expressions.

			
					With a lambda expression, we have the best of both worlds: the simplicity of a function and the power of a functor. We can use a lambda as a variable:auto is_div4 = [](int i){ return i % 4 == 0; };
int count = count_if(v.begin(), v.end(), is_div4);


			

			Or we can use an anonymous lambda:

			int count = count_if(v.begin(), v.end(), 

			    [](int i){ return i % 4 == 0; });

			
					We can take advantage of the lambda capture by wrapping the lambda in a function, and using that function context to produce the same lambda with different parameters:auto is_div_by(int divisor) {
    return [divisor](int i){ return i % divisor == 0; };
}


			

			This function returns a predicate lambda with the divisor from the capture context.

			We can then use that predicate with count_if():

			for( int i : { 3, 4, 5 } ) {

			    auto pred = is_div_by(i);

			    int count = count_if(v.begin(), v.end(), pred);

			    cout << format("numbers divisible by {}: {}\n", i,

			      count);

			}

			Each call to is_div_by() returns a predicate with a different divisor from i. Now we get this output:

			numbers divisible by 3: 2

			numbers divisible by 4: 5

			numbers divisible by 5: 2

			How it works…

			The type of a function pointer is represented as a pointer followed by the function call () operator:

			void (*)()

			You can declare a function pointer and initialize it with the name of an existing function:

			void (*fp)() = func;

			Once declared, a function pointer may be dereferenced and used as if it were the function itself:

			func();  // do the func thing

			A lambda expression has the same type as a function pointer:

			void (*fp)() = []{ cout << "foo\n"; };

			This means that wherever you use a function pointer with a certain signature, you may also use a lambda with the same signature. This allows function pointers, functors, and lambdas to work interchangeably:

			bool (*fp)(int) = is_div4;

			bool (*fp)(int) = [](int i){ return i % 4 == 0; };

			Because of this interchangeability, an algorithm such as count_if() accepts a function, functor, or lambda where it expects a predicate with a particular function signature.

			This applies to any algorithm that uses a predicate.

			Use std::function as a polymorphic wrapper

			The class template std::function is a thin polymorphic wrapper for functions. It can store, copy, and invoke any function, lambda expression, or other function objects. It can be useful in places where you would like to store a reference to a function or lambda. Using std::function allows you to store functions and lambdas with different signatures in the same container, and it maintains the context of lambda captures.

			How to do it…

			This recipe uses the std::function class to store different specializations of a lambda in a vector:

			
					This recipe is contained in the main() function, where we start by declaring three containers of different types:int main() {
    deque<int> d;
    list<int> l;
    vector<int> v;


			

			These containers, deque, list, and vector, will be referenced by a template lambda.

			
					We'll declare a simple print_c lambda function for printing out the containers:auto print_c = [](auto& c) {
    for(auto i : c) cout << format("{} ", i);
    cout << '\n';
};


					Now we declare a lambda that returns an anonymous lambda:auto push_c = [](auto& container) {
    return [&container](auto value) {
        container.push_back(value);
    };
};


			

			The push_c lambda takes a reference to a container, which is captured by the anonymous lambda. The anonymous lambda calls the push_back() member on the captured container. The return value from push_c is the anonymous lambda.

			
					Now we declare a vector of std::function elements, and populate it with three instances of push_c():const vector<std::function<void(int)>> 
    consumers { push_c(d), push_c(l), push_c(v) };


			

			Each of the elements in the initializer list is a function call to the push_c lambda. push_c returns an instance of the anonymous lambda, which gets stored in the vector via the function wrapper. The push_c lambda is called with the three containers, d, l, and v. The containers are passed as captures with the anonymous lambda.

			
					Now we loop through the consumers vector, and call each of the lambda elements 10 times, populating the three containers with integers 0–9 in each container:for(auto &consume : consumers) {
    for (int i{0}; i < 10; ++i) {
        consume(i);
    }
}


					Now our three containers, the deque, list, and vector, should all be populated with integers. Let's print them out:print_c(d);
print_c(l);
print_c(v);


			

			Our output should be:

			0 1 2 3 4 5 6 7 8 9

			0 1 2 3 4 5 6 7 8 9

			0 1 2 3 4 5 6 7 8 9

			How it works…

			Lambdas are often used with indirection and this recipe is a good example of such. For example, the push_c lambda returns an anonymous lambda:

			auto push_c = [](auto& container) {

			    return [&container](auto value) {

			        container.push_back(value);

			    };

			};

			This anonymous lambda is the one that's stored in the vector:

			const vector<std::function<void(int)>> 

			    consumers { push_c(d), push_c(l), push_c(v) };

			This is the definition of the consumers container. It is initialized with three elements, where each element is initialized with a call to push_c, which returns an anonymous lambda. It's the anonymous lambda that gets stored in the vector, not the push_c lambda.

			The vector definition uses the std::function class as the type of the elements. The function constructor takes any callable object and stores its reference as the function target:

			template< class F >

			function( F&& f );

			When its function call () operator is invoked, the function object calls the target function with the intended parameters:

			for(auto &c : consumers) {

			    for (int i{0}; i < 10; ++i) {

			        c(i);

			    }

			}

			This calls each anonymous lambda, as stored in the consumers container, 10 times, thus populating the d, l, and v containers.

			There's more…

			The nature of the std::function class makes it useful for many purposes. You can think of it as a polymorphic function container. It can store a standalone function:

			void hello() {

			    cout << "hello\n";

			}

			int main() {

			    function<void(void)> h = hello;

			    h();

			}

			It can store a member function, using std::bind to bind function parameters:

			struct hello {

			    void greeting() const { cout << "Hello Bob\n"; }

			};

			int main() {

			    hello bob{};

			    const function<void(void)> h = 

			        std::bind(&hello::greeting, &bob);

			    h();

			}

			Or it can store any executable object:

			struct hello {

			    void operator()() const { cout << "Hello Bob\n"; }

			};

			int main() {

			    const function<void(void)> h = hello();

			    h();

			}

			The output is as follows:

			Hello Bob

			Concatenate lambdas with recursion

			You can stack lambdas so that the output of one is the input of the next, using a simple recursive function. This creates a simple way to build one function upon another.

			How to do it…

			This is a short and simple recipe that uses one recursive function to do most of the work:

			
					We'll start by defining the concatenation function concat():template <typename T, typename ...Ts>
auto concat(T t, Ts ...ts) {
    if constexpr (sizeof...(ts) > 0) {
        return [&](auto ...parameters) {
            return t(concat(ts...)(parameters...)); 
        };
    } else  {
        return t;
    }
}


			

			This function returns an anonymous lambda, which in turn calls the function again, until the parameter pack is exhausted.

			
					In the main() function, we create a couple of lambdas and call the concat() function with them:int main() {
    auto twice = [](auto i) { return i * 2; };
    auto thrice = [](auto i) { return i * 3; };
    auto combined = concat(thrice, twice, 
      std::plus<int>{});
    std::cout << format("{}\n", combined(2, 3));
}


			

			The concat() function is called with three parameters: two lambdas, and the std::plus() function.

			As the recursion unravels, the functions are called right-to-left, starting with plus(). The plus() function takes two arguments and returns the sum. The return value from plus() is passed to twice(), and its return value is passed to thrice(). The result is then printed to the console with format():

			30

			How it works…

			The concat() function is simple, but may be confusing due to the recursion and the indirection of the returned lambda:

			template <typename T, typename ...Ts>

			auto concat(T t, Ts ...ts) {

			    if constexpr (sizeof...(ts) > 0) {

			        return [&](auto ...parameters) {

			            return t(concat(ts...)(parameters...)); 

			        };

			    } else  {

			        return t;

			    }

			}

			The concat() function is called with a parameter pack. With ellipses, the sizeof... operator returns the number of elements in the parameter pack. This is used to test for the end of the recursion.

			The concat() function returns a lambda. The lambda recursively calls the concat() function. Because the first argument of concat() is not part of the parameter pack, each recursive call peels off the first element of the pack.

			The outer return statement returns the lambda. The inner return is from the lambda. The lambda calls the function that was passed to concat() and returns its value.

			Feel free to take this apart and study it. There's value in this technique.

			Combine predicates with logical conjunction

			This example wraps a lambda in a function to create a custom conjunction for use with an algorithm predicate.

			How to do it…

			The copy_if() algorithm requires a predicate that takes one parameter. In this recipe, we will create a predicate lambda from three other lambdas:

			
					First, we'll write the combine() function. This function returns a lambda for use with the copy_if() algorithm:template <typename F, typename A, typename B>
auto combine(F binary_func, A a, B b) {
    return [=](auto param) {
        return binary_func(a(param), b(param));
    };
}


			

			The combine() function takes three function parameters – a binary conjunction and two predicates – and returns a lambda that calls the conjunction with the two predicates.

			
					In the main() function, we create the lambdas for use with combine():int main() {
    auto begins_with = [](const string &s){
        return s.find("a") == 0;
    };
    auto ends_with = [](const string &s){
        return s.rfind("b") == s.length() - 1;
    };
    auto bool_and = [](const auto& l, const auto& r){
        return l && r;
    };


			

			The begins_with and ends_with lambdas are simple filter predicates to find strings that begin with 'a' and end with 'b', respectively. The bool_and lambda is the conjunction.

			
					Now we can call the copy_if algorithm with combine():std::copy_if(istream_iterator<string>{cin}, {},
             ostream_iterator<string>{cout, " "},
             combine(bool_and, begins_with, 
               ends_with));
cout << '\n';


			

			The combine() function returns a lambda that combines the two predicates with the conjunction.

			The output looks like the following:

			$ echo aabb bbaa foo bar abazb | ./conjunction

			aabb abazb

			How it works…

			The std::copy_if() algorithm requires a predicate function that takes one parameter, but our conjunction requires two parameters, each of which require one parameter. We resolve this with a function that returns a lambda specifically for this context:

			template <typename F, typename A, typename B>

			auto combine(F binary_func, A a, B b) {

			    return [=](auto param) {

			        return binary_func(a(param), b(param));

			    };

			}

			The combine() function creates a lambda from three parameters, each of which is a function. The returned lambda takes the one parameter that's required of the predicate function. Now we can call copy_if() with the combine() function:

			std::copy_if(istream_iterator<string>{cin}, {},

			             ostream_iterator<string>{cout, " "},

			             combine(bool_and, begins_with, ends_with));

			This passes the combined lambda to the algorithm so it can operate within that context.

			Call multiple lambdas with the same input

			You can easily create multiple instances of a lambda with different capture values by wrapping the lambda in a function. This allows you to call different versions of a lambda with the same input.

			How to do it…

			This is a simple example of a lambda that wraps a value in different types of braces:

			
					We'll start by creating the wrapper function braces():auto braces (const char a, const char b) {
    return [a, b](const char v) {
        cout << format("{}{}{} ", a, v, b);
    };
}


			

			The braces() function wraps a lambda that returns a three-value string, where the first and last values are characters passed to the lambda as captures, and the middle value is passed as a parameter.

			
					In the main() function, we use braces() to create four lambdas, using four different sets of braces:auto a = braces('(', ')');
auto b = braces('[', ']');
auto c = braces('{', '}');
auto d = braces('|', '|');


					Now we can call our lambdas from a simple for() loop:for( int i : { 1, 2, 3, 4, 5 } ) {
    for( auto x : { a, b, c, d } ) x(i);
    cout << '\n';
}


			

			This is two nested for() loops. The outer loop simply counts from 1 to 5, passing an integer to the inner loop. The inner loop calls the lambdas with the braces.

			Both loops use an initializer list as the container in a range-based for() loop. This is a convenient technique for looping through a small set of values. 

			
					The output from our program looks like this:(1) [1] {1} |1|
(2) [2] {2} |2|
(3) [3] {3} |3|
(4) [4] {4} |4|
(5) [5] {5} |5|


			

			The output shows each of the integers, in each combination of braces.

			How it works…

			This is a simple example of how to use a wrapper for a lambda. The braces() function constructs a lambda using the braces passed to it:

			auto braces (const char a, const char b) {

			    return [a, b](const auto v) {

			        cout << format("{}{}{} ", a, v, b);

			    };

			}

			By passing the braces() function parameters to the lambda, it can return a lambda with that context. So, each of the assignments in the main function carries those parameters with it:

			auto a = braces('(', ')');

			auto b = braces('[', ']');

			auto c = braces('{', '}');

			auto d = braces('|', '|');

			When these lambdas are called with a digit, they will return a string with that digit in the corresponding braces.

			Use mapped lambdas for a jump table

			A jump table is a useful pattern when you want to select an action from a user or other input. Jump tables are often implemented in if/else or switch structures. In this recipe, we'll build a concise jump table using only an STL map and anonymous lambdas.

			How to do it…

			It's easy to build a simple jump table from a map and lambdas. The map provides simple indexed navigation and the lambda can be stored as payload. Here's how to do it:

			
					First, we'll create a simple prompt() function to get input from the console:const char prompt(const char * p) {
    std::string r;
    cout << format("{} > ", p);
    std::getline(cin, r, '\n');
    if(r.size() < 1) return '\0';
    if(r.size() > 1) {
        cout << "Response too long\n";
        return '\0';
    }
    return toupper(r[0]);
}


			

			The C-string parameter is used as a prompt. std::getline() is called to get input from the user. The response is stored in r, checked for length, then if it's one character in length, it's converted to uppercase and returned.

			
					In the main() function, we declare and initialize a map of lambdas:using jumpfunc = void(*)();
map<const char, jumpfunc> jumpmap {
    { 'A', []{ cout << "func A\n"; } },
    { 'B', []{ cout << "func B\n"; } },
    { 'C', []{ cout << "func C\n"; } },
    { 'D', []{ cout << "func D\n"; } },
    { 'X', []{ cout << "Bye!\n"; } }
};


			

			The map container is loaded with anonymous lambdas for the jump table. These lambdas could easily call other functions or perform simple tasks.

			The using alias is for convenience. We're using the function pointer type void(*)() for the lambda payload. If you prefer, you could use std::function() if you need more flexibility or if you just find it more readable. It has very little overhead:

			using jumpfunc = std::function<void()>;

			
					Now we can prompt for user input and select an action from the map:char select{};
while(select != 'X') {
    if((select = prompt("select A/B/C/D/X"))) {
        auto it = jumpmap.find(select);
        if(it != jumpmap.end()) it->second();
        else cout << "Invalid response\n";
    }
}


			

			This is how we use the map-based jump table. We loop until 'X' is selected for exit. We call prompt() with a prompt string, call find() on the map object, then call the lambda with it->second().

			How it works…

			The map container makes an excellent jump table. It's concise and easy to navigate:

			using jumpfunc = void(*)();

			map<const char, jumpfunc> jumpmap {

			    { 'A', []{ cout << "func A\n"; } },

			    { 'B', []{ cout << "func B\n"; } },

			    { 'C', []{ cout << "func C\n"; } },

			    { 'D', []{ cout << "func D\n"; } },

			    { 'X', []{ cout << "Bye!\n"; } }

			};

			Anonymous lambdas are stored as payload in the map container. The keys are the character responses from the menu of actions.

			You can test the validity of a key and select a lambda in one action:

			auto it = jumpmap.find(select);

			if(it != jumpmap.end()) it->second();

			else cout << "Invalid response\n";

			This is a simple, elegant solution, where we would have otherwise used awkward branching code.

		

	
		
			Chapter 6: STL Algorithms

			Much of the power of the STL is in the standardization of container interfaces. If a container has a particular capability, there's a good chance that the interface for that capability is standardized across container types. This standardization makes possible a library of algorithms that operate seamlessly across containers and sequences sharing a common interface.

			For example, if we want to sum all the elements in a vector of int, we could use a loop:

			vector<int> x { 1, 2, 3, 4, 5 };

			long sum{};

			for( int i : x ) sum += i;                     // sum is 15

			Or we could use an algorithm:

			vector<int> x { 1, 2, 3, 4, 5 };

			auto sum = accumulate(x.begin(), x.end(), 0);  // sum is 15

			This same syntax works with other containers:

			deque<int> x { 1, 2, 3, 4, 5 };

			auto sum = accumulate(x.begin(), x.end(), 0);  // sum is 15

			The algorithm version is not necessarily shorter, but it is easier to read and easier to maintain. And an algorithm is often more efficient than the equivalent loop.

			Beginning with C++20, the ranges library provides a set of alternative algorithms that operate with ranges and views. This book will demonstrate those alternatives where appropriate. For more information on ranges and views, refer to the recipe Create views into containers with ranges in Chaper 1, New C++20 Features, of this book.

			Most of the algorithms are in the algorithm header. Some numeric algorithms, notably accumulate(), are in the numeric header, and some memory-related algorithms are in the memory header.

			We will cover STL algorithms in the following recipes:

			
					Copy from one iterator to another

					Join container elements into a string

					Sort containers with std::sort

					Modify containers with std::transform

					Find items in a container

					Limit the values of a container to a range with std::clamp

					Sample data sets with std::sample

					Generate permutations of data sequences

					Merge sorted containers

			

			Technical requirements

			You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/CPP-20-STL-Cookbook/tree/main/chap06.

			Copy from one iterator to another

			The copy algorithms are generally used to copy from and to containers, but in fact, they work with iterators, which is far more flexible.

			How to do it…

			In this recipe, we will experiment with std::copy and std::copy_n to get a good understanding of how they work:

			
					Let's start with a function to print a container:void printc(auto& c, string_view s = "") {
    if(s.size()) cout << format("{}: ", s);
    for(auto e : c) cout << format("[{}] ", e);
    cout << '\n';
}


					In main(), we define a vector and print it with printc():int main() {
    vector<string> v1
        { "alpha", "beta", "gamma", "delta", 
          "epsilon" };
    printc(v1);
}


			

			We get this output:

			v1: [alpha] [beta] [gamma] [delta] [epsilon]

			
					Now, let's create a second vector with enough space to copy the first vector:vector<string> v2(v1.size());


					We can copy v1 to v2 using the std::copy() algorithm:std::copy(v1.begin(), v1.end(), v2.begin());
printc(v2);


			

			The std::copy() algorithm takes two iterators for the range of the copy source, and one iterator for the destination. In this case, we give it the begin() and end() iterators of v1 to copy the entire vector. The begin() iterator of v2 serves as the destination for the copy.

			Our output is now:

			v1: [alpha] [beta] [gamma] [delta] [epsilon]

			v2: [alpha] [beta] [gamma] [delta] [epsilon]

			
					The copy() algorithm does not allocate space for the destination. So, v2 must already have the space for the copy. Alternately, you can use the back_inserter() iterator adapter to insert the elements at the back of the vector:vector<string> v2{};
std::copy(v1.begin(), v1.end(), back_inserter(v2))


					We can also use the ranges::copy() algorithm to copy an entire range. A container object serves as a range so we can use v1 as the source. We still use an iterator for the destination:vector<string> v2(v1.size());
ranges::copy(v1, v2.begin());


			

			This also works with back_inserter():

			vector<string> v2{};

			ranges::copy(v1, back_inserter(v2));

			Output:

			v2: [alpha] [beta] [gamma] [delta] [epsilon]

			
					You can copy a certain number of elements using copy_n():vector<string> v3{};
std::copy_n(v1.begin(), 3, back_inserter(v3));
printc(v3, "v3");


			

			In the second argument, the copy_n() algorithm is a count for the number of elements to copy. The output is:

			v3: [alpha] [beta] [gamma]

			
					There's also a copy_if() algorithm that uses a Boolean predicate function to determine which elements to copy:vector<string> v4{};
std::copy_if(v1.begin(), v1.end(), back_inserter(v4), 
    [](string& s){ return s.size() > 4; });
printc(v4, "v4");


			

			There's also a ranges version of copy_if():

			vector<string> v4{};

			ranges::copy_if(v1, back_inserter(v4), 

			    [](string& s){ return s.size() > 4; });

			printc(v4, "v4");

			The output includes only strings longer than 4 characters:

			v4: [alpha] [gamma] [delta] [epsilon]

			Notice that the value beta is excluded.

			
					You can use any of these algorithms to copy to or from any sequence, including a stream iterator:ostream_iterator<string> out_it(cout, " ");
ranges::copy(v1, out_it)
cout << '\n';


			

			Output:

			alpha beta gamma delta epsilon

			How it works…

			The std::copy() algorithm is very simple. An equivalent function would look like this:

			template<typename Input_it, typename Output_it>

			Output_it bw_copy(Input_it begin_it, Input_it end_it, 

			                  Output_it dest_it) {

			    while (begin_it != end_it) {

			        *dest_it++ = *begin_it++;

			    }

			    return dest_it;

			}

			The copy() function uses the destination iterator's assignment operator to copy from the input iterator to the output iterator until it reaches the end of the input range.

			There is also a version of this algorithm called std::move(), which moves elements instead of copying them:

			std::move(v1.begin(), v1.end(), v2.begin());

			printc(v1, "after move: v1");

			printc(v2, "after move: v2");

			This performs a move instead of copy assignment. After the move operation, the elements in v1 will be empty, and the elements that were in v1 are now in v2. The output looks like this:

			after move1: v1: [] [] [] [] []

			after move1: v2: [alpha] [beta] [gamma] [delta] [epsilon]

			There is also a ranges version of the move() algorithm that performs the same operation:

			ranges::move(v1, v2.begin());

			The power of these algorithms lies in their simplicity. By letting the iterators manage the data, these simple, elegant functions allow you to seamlessly copy or move between any of the STL containers that support the required iterators.

			Join container elements into a string

			Sometimes, there is no algorithm in the library to accomplish a task at hand. We can use iterators, with the same techniques as the algorithms library, to easily write one.

			For example, we often need to join elements from a container, with separators, into a string. One common solution is to use a simple for() loop:

			for(auto v : c) cout << v << ', ';

			The problem with this otherwise simple solution is that it leaves a trailing separator:

			vector<string> greek{ "alpha", "beta", "gamma", 

			                      "delta", "epsilon" };

			for(auto v : greek) cout << v << ", ";

			cout << '\n';

			Output:

			alpha, beta, gamma, delta, epsilon,

			This may be fine in a testing environment, but in any production system, that trailing comma is unacceptable.

			The ranges::views library has a join() function, but it doesn't provide a separator:

			auto greek_view = views::join(greek);

			The views::join() function returns a ranges::view object. This requires a separate step to display or turn into a string. We can cycle through the view with a for() loop:

			for(const char c : greek_view) cout << c;

			cout << '\n';

			The output looks like this:

			alphabetagammadeltaepsilon

			It's all there, but we need a proper separator between the elements to make it useful for our purposes.

			Since the algorithms library does not have a function that suits our needs, we'll write one.

			How to do it…

			For this recipe, we will take the elements of a container and join them into a string with separators:

			
					In our main() function, we declare a vector of strings:int main() {
    vector<string> greek{ "alpha", "beta", "gamma",
        "delta", "epsilon" };
    ...
}


					Now, let's write a simple join() function that uses an ostream object to join elements with a separator:namespace bw {
    template<typename I>
    ostream& join(I it, I end_it, ostream& o, 
                  string_view sep = "") {
        if(it != end_it) o << *it++;
        while(it != end_it) o << sep << *it++;
        return o;
    }
}


			

			I've put this in my own bw namespace to avoid name collisions.

			We can call it with cout like this:

			bw::join(greek.begin(), greek.end(), cout, ", ") << '\n';

			Because it returns the ostream object, we can follow it with << to add a newline to the stream.

			Output:

			alpha, beta, gamma, delta, epsilon

			
					We'll often want a string, instead of directly writing to cout. We can overload this function for a version that returns a string object:template<typename I>
string join(I it, I end_it, string_view sep = "") {
    ostringstream ostr;
    join(it, end_it, ostr, sep);
    return ostr.str();
}


			

			This also goes in the bw namespace. This function creates an ostringstream object to pass to the ostream version of bw::join(). It returns a string object from the str() method of the ostringstream object.

			We can use it like this:

			string s = bw::join(greek.begin(), greek.end(), ", ");

			cout << s << '\n';

			Output:

			alpha, beta, gamma, delta, epsilon

			
					Let's add one final overload to make this easier to use:string join(const auto& c, string_view sep = "") {
    return join(begin(c), end(c), sep);
}


			

			This version just takes a container and a separator, which should satisfy most use cases nicely:

			string s = bw::join(greek, ", ");

			cout << s << '\n';

			Output:

			alpha, beta, gamma, delta, epsilon

			How it works…

			Most of the work in this recipe is done by the iterators and the ostream object:

			namespace bw {

			    template<typename I>

			    ostream& join(I it, I end_it, ostream& o, 

			                  string_view sep = "") {

			        if(it != end_it) o << *it++;

			        while(it != end_it) o << sep << *it++;

			        return o;

			    }

			}

			The separators go after the first element, between each of the successive elements, and stop before the final element. This means we can either add a separator before each element, skipping the first, or after each element, skipping the last. The logic is simpler if we test for, and skip, the first element. We do that in the line just before the while() loop:

			if(it != end_it) o << *it++;

			Once we have the first element out of the way, we can simply add a separator before each remaining element:

			while(it != end_it) o << sep << *it++;

			We return the ostream object as a convenience. This allows the user to easily add a newline, or other objects, to the stream:

			bw::join(greek.begin(), greek.end(), cout, ", ") << '\n';

			Output:

			alpha, beta, gamma, delta, epsilon

			There's more…

			As with any of the library algorithms, the join() function will work with any container that supports forward iterators. For example, here's a list of double constants from the numbers library:

			namespace num = std::numbers;

			list<double> constants { num::pi, num::e, num::sqrt2 };

			cout << bw::join(constants, ", ") << '\n';

			Output:

			3.14159, 2.71828, 1.41421

			It will even work with a ranges::view object, like the greek_view defined earlier in this recipe:

			cout << bw::join(greek_view, ":") << '\n';

			Output:

			a:l:p:h:a:b:e:t:a:g:a:m:m:a:d:e:l:t:a:e:p:s:i:l:o:n

			Sort containers with std::sort

			The problem of how to efficiently sort comparable elements is essentially solved. For most applications, there's no reason to re-invent this wheel. The STL provides an excellent sorting solution via the std::sort() algorithm. While the standard does not specify a sorting algorithm, it does specify a worst-case complexity of O(n log n), when applied to a range of n elements.

			Just a few decades ago, the quicksort algorithm was considered a good compromise for most uses and was generally faster than other comparable algorithms. Today we have hybrid algorithms that choose between different approaches according to the circumstances, often switching algorithms on the fly. Most current C++ libraries use a hybrid approach with some combination of introsort and an insertion sort. std::sort() provides exceptional performance under most common circumstances.

			How to do it…

			In this recipe, we'll examine the std::sort() algorithm. The sort() algorithm works with any container with random-access iterators. Here, we will use a vector of int:

			
					We'll start with a function to test if a container is sorted:void check_sorted(auto &c) {
    if(!is_sorted(c.begin(), c.end())) cout << "un";
    cout << "sorted: ";
}


			

			This uses the std::is_sorted() algorithm and prints either "sorted:" or "unsorted:" according to the result.

			
					We'll need a function to print our vector:void printc(const auto &c) {
    check_sorted(c);
    for(auto& e : c) cout << e << ' ';
    cout << '\n';
}


			

			This function calls check_sorted() to display the status of the container before the value.

			
					Now we can define and print a vector of int in the main() function:int main() {
    vector<int> v{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
    printc(v);
    …
}


			

			The output looks like this:

			sorted: 1 2 3 4 5 6 7 8 9 10

			
					In order to test the std::sort() algorithm, we need an unsorted vector. Here's a simple function to randomize our container:void randomize(auto& c) {
    static std::random_device rd;
    static std::default_random_engine rng(rd());
    std::shuffle(c.begin(), c.end(), rng);
}


			

			The std::random_device class uses your system's hardware entropy source. Most modern systems have one, otherwise the library will simulate it. The std::default_random_engine() function generates random numbers from the entropy source. This is used by std::shuffle() to randomize the container.

			We can now call randomize() with our container and print the result:

			randomize(v);

			printc(v);

			Output:

			unsorted: 6 3 4 8 10 1 2 5 9 7

			Of course, your output will be different because it's randomized. In fact, I get a different result every time I run it:

			for(int i{3}; i; --i) {

			    randomize(v);

			    printc(v);

			}

			Output:

			unsorted: 3 1 8 5 10 2 7 9 6 4

			unsorted: 7 6 5 1 3 9 10 2 4 8

			unsorted: 4 2 3 10 1 9 5 6 8 7

			
					To sort the vector, we simply call std::sort():std::sort(v.begin(), v.end());
printc(v);


			

			Output:

			sorted: 1 2 3 4 5 6 7 8 9 10

			By default, the sort() algorithm uses the < operator to sort the elements in the range specified by the supplied iterators.

			
					The partial_sort() algorithm will sort part of the container:cout << "partial_sort:\n";
randomize(v);
auto middle{ v.begin() + (v.size() / 2) };
std::partial_sort(v.begin(), middle, v.end());
printc(v);


			

			partial_sort() takes three iterators: beginning, middle, and end. It sorts the container such that the elements before the middle are sorted. The elements after the middle are not guaranteed to be in the original order. Here's the output:

			unsorted: 1 2 3 4 5 10 7 6 8 9

			Notice that the first five elements are sorted, and the rest are not.

			
					The partition() algorithm does not sort anything. It rearranges the container so that certain elements appear at the front of the container:coutrandomize(v);
printc(v);
partition(v.begin(), v.end(), [](int i)
    { return i > 5; });
printc(v);


			

			The third argument is a predicate lambda that determines which elements will be moved to the front.

			Output:

			unsorted: 4 6 8 1 9 5 2 7 3 10

			unsorted: 10 6 8 7 9 5 2 1 3 4

			Notice that the values >5 are moved to the front of the container.

			
					The sort() algorithms support an optional comparison function that may be used for non-standard comparisons. For example, given a class called things:struct things {
    string s_;
    int i_;
    string str() const {
        return format("({}, {})", s_, i_);
    }
};


			

			We can create a vector of things:

			vector<things> vthings{ {"button", 40},

			    {"hamburger", 20}, {"blog", 1000},

			    {"page", 100}, {"science", 60} };

			We'll need a function to print them out:

			void print_things(const auto& c) {

			    for (auto& v : c) cout << v.str() << ' ';

			    cout << '\n';

			}

			
					Now we can sort and print the vector of things:std::sort(vthings.begin(), vthings.end(), 
        [](const things &lhs, const things &rhs) {
    return lhs.i_ < rhs.i_;
});
print_things(vthings);


			

			Output:

			(hamburger, 20) (button, 40) (science, 60) (page, 100) (blog, 1000)

			Notice the comparison function sorts on the i_ member, so the result is sorted by i_. We could instead sort on the s_ member:

			std::sort(vthings.begin(), vthings.end(), 

			        [](const things &lhs, const things &rhs) {

			    return lhs.s_ < rhs.s_;

			});

			print_things(vthings);

			Now we get this output:

			(blog, 1000) (button, 40) (hamburger, 20) (page, 100) (science, 60)

			How it works…

			The sort() functions work by applying a sorting algorithm to a range of elements indicated by two iterators, for the beginning and end of the range.

			By default, these algorithms use the < operator to compare elements. Optionally, they may use a comparison function, often provided as a lambda:

			std::sort(vthings.begin(), vthings.end(), 

			        [](const things& lhs, const things& rhs) {

			    return lhs.i_ < rhs.i_;

			});

			The comparison function takes two arguments and returns a bool. It has a signature equivalent to this:

			bool cmp(const Type1& a, const Type2& b);

			The sort() functions use std::swap() to move elements. This is efficient in both compute cycles and memory usage, as it relieves the need to allocate space for reading and writing the objects being sorted. This is also why the partial_sort() and partition() functions cannot guarantee the order of unsorted elements.

			Modify containers with std::transform

			The std::transform() function is remarkably powerful and flexible. One of the more commonly deployed algorithms in the library, it applies a function or lambda to each element in a container, storing the results in another container while leaving the original in place.

			Given its power, it's deceptively simple to use.

			How to do it…

			In this recipe, we will explore a few applications for the std::transform() function:

			
					We'll start with a simple function that prints the contents of a container:void printc(auto& c, string_view s = "") {
    if(s.size()) cout << format("{}: ", s);
    for(auto e : c) cout << format("{} ", e);
    cout << '\n';
}


			

			We'll use this to view the results of our transformations.

			
					In the main() function, let's declare a couple of vectors:int main() {
    vector<int> v1{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
    vector<int> v2;
    printc(v1, "v1");
    ...
}


			

			This prints out the contents of v1:

			v1: 1 2 3 4 5 6 7 8 9 10

			
					Now we can use the transform() function to insert the square of each value into v2:cout << "squares:\n";
transform(v1.begin(), v1.end(), back_inserter(v2),
    [](int x){ return x * x; });
printc(v2, "v2");


			

			The transform() function takes four arguments. The first two are the begin() and end() iterators for the source range. The third argument is the begin() iterator for the destination range. In this case, we're using the back_inserter() algorithm to insert the results in v2. The fourth argument is the transformation function. In this case, we're using a simple lambda to square the value.

			Output:

			squares:

			v2: 1 4 9 16 25 36 49 64 81 100

			
					Of course, we can use transform() with any type. Here's an example that converts a vector of string objects to lowercase. First, we need a function to return the lowercase value of a string:string str_lower(const string& s) {
    string outstr{};
    for(const char& c : s) {
        outstr += tolower(c);
    }
    return outstr;
}


			

			Now we can use the str_lower() function with transform:

			vector<string> vstr1{ "Mercury", "Venus", "Earth",

			    "Mars", "Jupiter", "Saturn", "Uranus", "Neptune",

			    "Pluto" };

			vector<string> vstr2;

			printc(vstr1, "vstr1");

			cout << "str_lower:\n";

			transform(vstr1.begin(), vstr1.end(),

			    back_inserter(vstr2), 

			    [](string& x){ return str_lower(x); });

			printc(vstr2, "vstr2");

			This calls str_lower() for every element in vstr1 and inserts the results into vstr2. The result is:

			vstr: Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto

			str_lower:

			vstr: mercury venus earth mars jupiter saturn uranus neptune pluto

			(Yes, Pluto will always be a planet to me.)

			
					There's also a ranges version of transform:cout << "ranges squares:\n";
auto view1 = views::transform(v1, [](int x){ 
    return x * x; });
printc(view1, "view1");


			

			The ranges version has a more succinct syntax and returns a view object, rather than populating another container.

			How it works…

			The std::transform() function works very much like std::copy(), with the addition of the user-provided function. Each element in the input range is passed to the function, and the return value from the function is copy-assigned to the destination iterator. This makes transform() a singularly useful and powerful algorithm.

			It's worth noting that transform() does not guarantee the elements will be processed in order. If you need to ensure the order of the transformation, you will want to use a for loop instead:

			v2.clear();    // reset vector v2 to empty state

			for(auto e : v1) v2.push_back(e * e);

			printc(v2, "v2");

			Output:

			v2: 1 4 9 16 25 36 49 64 81 100

			Find items in a container

			The algorithm library contains a set of functions for finding elements in a container. The std::find() function, and its derivatives, search sequentially through a container and return an iterator pointing to the first matching element, or the end() element if there's no match.

			How to do it…

			The find() algorithm works with any container that satisfies the Forward or Input iterator qualifications. For this recipe, we'll use vector containers. The find() algorithm searches sequentially for the first matching element in a container. In this recipe, we'll walk through a few examples:

			
					We'll start by declaring a vector of int in the main() function:int main() {
    const vector<int> v{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
    ...
}


					Now, let's search for the element with the value 7:auto it1 = find(v.begin(), v.end(), 7);
if(it1 != v.end()) cout << format("found: {}\n", *it1);
else cout << "not found\n";


			

			The find() algorithm takes three arguments: the begin() and end() iterators, and the value to search. It returns an iterator to the first element it finds, or the end() iterator if the search failed to find a match.

			Output:

			found: 7

			
					We can also search for something more complex than a scalar. The object needs to support the equality comparison operator, ==. Here's a simple struct with an operator==() overload:struct City {
    string name{};
    unsigned pop{};
    bool operator==(const City& o) const {
        return name == o.name;
    }
    string str() const {
        return format("[{}, {}]", name, pop);
    }
};


			

			Notice that the operator=() overload only compares the name members.

			I've also included an str() function that returns a string representation of a City element.

			
					Now we can declare a vector of City elements:const vector<City> c{
    { "London", 9425622 },
    { "Berlin", 3566791 },
    { "Tokyo",  37435191 },
    { "Cairo",  20485965 }
};


					We can search the vector of City just as we did with the vector of int:auto it2 = find(c.begin(), c.end(), City{"Berlin"});
if(it2 != c.end()) cout << format("found: {}\n", 
    it2->str());
else cout << "not found\n";


			

			Output:

			found: [Berlin, 3566791]

			
					If we want to search on the pop member instead of name, we can use the find_if() function with a predicate:auto it3 = find_if(begin(c), end(c),
    [](const City& item)
        { return item.pop > 20000000; });
if(it3 != c.end()) cout << format("found: {}\n",
    it3->str());
else cout << "not found\n";


			

			The predicate tests the pop member, so we get this output:

			found: [Tokyo, 37435191]

			
					Notice that the result from find_if() returns only the first element that satisfies the predicate, even though there are two elements in the vector with pop values greater than 20,000,000.

			

			The find() and find_if() functions return only one iterator. The ranges library provides ranges::views::filter(), a view adapter that will give us all the matching iterators without disturbing our vector:

			auto vw1 = ranges::views::filter(c, 

			    [](const City& c){ return c.pop > 20000000; });

			for(const City& e : vw1) cout << format("{}\n", e.str());

			This gives us both matching elements in our output:

			[Tokyo, 37435191]

			[Cairo, 20485965]

			How it works…

			The find() and find_if() functions search sequentially through a container, checking each element until it finds a match. If it finds a match, it returns an iterator pointing to that match. If it reaches the end() iterator without finding a match, it returns the end() iterator to indicate no match was found.

			The find() function takes three arguments, the begin() and end() iterators, and a search value. The signature looks like this:

			template<class InputIt, class T>

			constexpr InputIt find(InputIt, InputIt, const T&)

			The find_if() function uses a predicate instead of a value:

			template<class InputIt, class UnaryPredicate>

			constexpr InputIt find_if(InputIt, InputIt, UnaryPredicate)

			There's more…

			Both find() functions search sequentially and return when they find the first match. If you want to find more matching elements, you can use the filter() function from the ranges library:

			template<ranges::viewable_range R, class Pred>

			constexpr ranges::view auto ranges::views::filter(R&&, Pred&&);

			The filter() function returns a view, a non-destructive window into the container with only the filtered elements. We can then use the view as we would any other container:

			auto vw1 = std::ranges::views::filter(c,

			    [](const City& c){ return c.pop > 20000000; });

			for(const City& e : vw1) cout << format("{}\n", e.str());

			Output:

			[Tokyo, 37435191]

			[Cairo, 20485965]

			Limit the values of a container to a range with std::clamp

			Introduced with C++17, the std::clamp() function can be used to limit the range of a numeric scalar to within minimum and maximum values. The function is optimized to use move semantics, where possible, for maximum speed and efficiency.

			How to do it…

			We can use clamp() to constrain the values of a container by using it in a loop, or with the transform() algorithm. Let's look at some examples.

			
					We'll start with a simple function for printing out the values of a container:void printc(auto& c, string_view s = "") {
    if(s.size()) cout << format("{}: ", s);
    for(auto e : c) cout << format("{:>5} ", e);
    cout << '\n';
}


			

			Notice the format string "{:>5} ". This right-aligns each value to 5 spaces, for a tabular view.

			
					In the main() function, we'll define an initializer list for use with our container. This allows us to use the same values more than once:int main() {
    auto il = { 0, -12, 2001, 4, 5, -14, 100, 200, 
      30000 };
    ...
}


			

			That's a nice range of values to work with clamp().

			
					Let's also define some constants for use as our limits:constexpr int ilow{0};
constexpr int ihigh{500};


			

			We'll use these values in our calls to clamp().

			
					Now we can define a container in our main() function. We'll use a vector of int:vector<int> voi{ il };
cout << "vector voi before:\n";
printc(voi);


			

			Using the values from our initializer list, the output is:

			vector voi before:

			    0   -12  2001     4     5   -14   100   200 30000

			
					Now we can use a for loop with clamp() to limit the values to between 0 and 500:cout << "vector voi after:\n";
for(auto& e : voi) e = clamp(e, ilow, ihigh);
printc(voi);


			

			This applies the clamp() function to each value in the container, using 0 and 500 for the low and high limits, respectively. Now, the output is:

			vector voi before:

			    0   -12  2001     4     5   -14   100   200 30000

			vector voi after:

			    0     0   500     4     5     0   100   200   500

			After the clamp() operation, the negative values are 0 and the values greater than 500 are 500.

			
					We can do the same thing with the transform() algorithm, using clamp() in a lambda. This time we'll use a list container:cout << "list loi before:\n";
list<int> loi{ il };
printc(loi);
transform(loi.begin(), loi.end(), loi.begin(), 
    [=](auto e){ return clamp(e, ilow, ihigh); });
cout << "list loi after:\n";
printc(loi);


			

			The output is the same as in the version with a for loop:

			list loi before:

			    0   -12  2001     4     5   -14   100   200 30000

			list loi after:

			    0     0   500     4     5     0   100   200   500

			How it works…

			The clamp() algorithm is a simple function that looks something like this:

			template<class T>

			constexpr const T& clamp( const T& v, const T& lo,

			        const T& hi ) {

			    return less(v, lo) ? lo : less(hi, v) ? hi : v;

			}

			If the value of v is less than lo, it returns lo. If hi is less than v, it returns hi. The function is fast and efficient.

			In our examples, we used a for loop to apply clamp() to a container:

			for(auto& v : voi) v = clamp(v, ilow, ihigh);

			We also used the transform() algorithm with clamp() in a lambda:

			transform(loi.begin(), loi.end(), loi.begin(),

			    [=](auto v){ return clamp(v, ilow, ihigh); });

			In my experiments, both versions gave the same results, and both produced similar code from the GCC compiler. There was a slight difference in compiled size (the version with the for loop was smaller, as expected) and a negligible difference in performance.

			In general, I prefer the for loop, but the transform() version may be more flexible in other applications.

			Sample data sets with std::sample

			The std::sample() algorithm takes a random sample of a sequence of values and populates a destination container with the sample. It is useful for analyzing a larger set of data, where the random sample is taken to be representative of the whole.

			A sample set allows us to approximate the characteristics of a large set of data, without analyzing the full set. This provides efficiency in exchange for accuracy, a fair trade-off in many circumstances.

			How to do it…

			In this recipe, we'll use an array of 200,000 random integers, with standard normal distribution. We'll sample a few hundred values to create a histogram of the frequency of each value.

			
					We'll start with a simple function to return a rounded int from a double. The standard library lacks such a function and we'll need it later:int iround(const double& d) {
    return static_cast<int>(std::round(d));
}


			

			The standard library provides several versions of std::round(), including one that returns a long int. But we need an int, and this is a simple solution that avoids compiler warnings about narrowing conversion while hiding away the unsightly static_cast.

			
					In the main() function, we'll start with some useful constants:int main() {
    constexpr size_t n_data{ 200000 };
    constexpr size_t n_samples{ 500 };
    constexpr int mean{ 0 };
    constexpr size_t dev{ 3 };
    ...
}


			

			We have values for n_data and n_samples, used for the size of the data and sample containers, respectively. We also have values for mean and dev, the mean and standard deviation parameters for the normal distribution of random values.

			
					We now set up our random number generator and distribution objects. These are used to initialize the source data set:std::random_device rd;
std::mt19937 rng(rd());
std::normal_distribution<> dist{ mean, dev };


			

			The random_device object provides access to the hardware random number generator. The mt19937 class is an implementation of the Mersenne Twister random number algorithm, a high-quality algorithm that will perform well on most systems with a data set of the size we're using. The normal_distribution class provides a distribution of random numbers around the mean with the standard deviation provided.

			
					Now we populate an array with an n_data number of random int values:array<int, n_data> v{};
for(auto& e : v) e = iround(dist(rng));


			

			The array container is fixed in size, so the template parameters include a size_t value for the number of elements to allocate. We use a for() loop to populate the array.

			The rng object is the hardware random number generator. This is passed to dist(), our normal_distribution object, and then to iround(), our integer rounding function.

			
					At this point, we have an array with 200,000 data points. That's a lot to analyze, so we'll use the sample() algorithm to take a sample of 500 values:array<int, n_samples> samples{};
sample(data.begin(), data.end(), samples.begin(), 
    n_samples, rng);


			

			We define another array object to hold the samples. This one is n_samples in size. Then we use the sample() algorithm to populate the array with n_samples random data points.

			
					We create a histogram to analyze the samples. A map structure is perfect for this as we can easily map the frequency of each value:std::map<int, size_t> hist{};
for (const int i : samples) ++hist[i];


			

			The for() loop takes each value from the samples container and uses it as a key in the map. The increment expression ++hist[i] counts the number of occurrences of each value in the sample set.

			
					We print out the histogram using the C++20 format() function:constexpr size_t scale{ 3 };
cout << format("{:>3} {:>5} {:<}/{}\n", 
    "n", "count", "graph", scale);
for (const auto& [value, count] : hist) {
    cout << format("{:>3} ({:>3}) {}\n", 
        value, count, string(count / scale, '*'));
}


			

			The format() specifiers that look like {:>3} make space for a certain number of characters. The angle bracket specifies alignment, right or left.

			The string(count, char) constructor creates a string with a character repeated the number of times specified, in this case, n asterisk characters *, where n is count/scale, the frequency of a value in the histogram, divided by the scale constant.

			The output looks like this:

			$ ./sample

			  n count graph/3

			 -9 (  2)

			 -7 (  5) *

			 -6 (  9) ***

			 -5 ( 22) *******

			 -4 ( 24) ********

			 -3 ( 46) ***************

			 -2 ( 54) ******************

			 -1 ( 59) *******************

			  0 ( 73) ************************

			  1 ( 66) **********************

			  2 ( 44) **************

			  3 ( 34) ***********

			  4 ( 26) ********

			  5 ( 18) ******

			  6 (  9) ***

			  7 (  5) *

			  8 (  3) *

			  9 (  1)

			This is a nice graphical representation of the histogram. The first number is the value, the second number is the frequency of the value, and the asterisks are a visual representation of the frequency, where each asterisk represents scale (3) occurrences in the sample set.

			Your output will differ each time you run the code.

			How it works…

			The std::sample() function selects a specific number of elements from random locations in the source container and copies them to the destination container.

			The signature of sample() looks like this:

			OutIter sample(SourceIter, SourceIter, OutIter, 

			    SampleSize, RandNumGen&&);

			The first two arguments are begin() and end() iterators on a container with the full data set. The third argument is an iterator for the destination of the samples. The fourth argument is the sample size, and the final argument is a random number generator function.

			The sample() algorithm uses uniform distribution, so each data point has the same chance of being sampled.

			Generate permutations of data sequences

			There are many use cases for permutations, including testing, statistics, research, and more. The next_permutation() algorithm generates permutations by re-ordering a container to the next lexicographical permutation.

			How to do it…

			For this recipe, we will print out the permutations of a set of three strings:

			
					We'll start by creating a short function for printing the contents of a container:void printc(const auto& c, string_view s = "") {
    if(s.size()) cout << format("{}: ", s);
    for(auto e : c) cout << format("{} ", e);
    cout << '\n';
}


			

			We'll use this simple function to print our data set and permutations.

			
					In the main() function, we declare a vector of string objects and sort it with the sort() algorithm.int main() {
    vector<string> vs{ "dog", "cat", "velociraptor" };
    sort(vs.begin(), vs.end());
    ...
}


			

			The next_permutation() function requires a sorted container.

			
					Now we can list the permutations with next_permutation() in a do loop:do {
    printc(vs);
} while (next_permutation(vs.begin(), vs.end()));


			

			The next_permutation() function modifies the container and returns true if there is another permutation, or false if not.

			The output lists six permutations of our three pets:

			cat dog velociraptor

			cat velociraptor dog

			dog cat velociraptor

			dog velociraptor cat

			velociraptor cat dog

			velociraptor dog cat

			How it works…

			The std::next_permutation() algorithm generates lexicographical permutations of a set of values, that is, permutations based on dictionary ordering. The input must be sorted because the algorithm steps through permutations in lexicographical order. So, if you start with a set like 3, 2, 1, it will terminate immediately as this is the last lexicographical order of those three elements.

			For example:

			vector<string> vs{ "velociraptor", "dog", "cat" };

			do {

			    printc(vs);

			} while (next_permutation(vs.begin(), vs.end()));

			This gives us the following output:

			velociraptor dog cat

			While the term lexicographical implies alphabetical ordering, the implementation uses standard comparison operators, so it works on any sortable values.

			Likewise, if values in the set repeat, they are only counted according to lexicographical order. Here we have a vector of int with two repeating sequences of five values:

			vector<int> vi{ 1, 2, 3, 4, 5, 1, 2, 3, 4, 5 };

			sort(vi.begin(), vi.end());

			printc(vi, "vi sorted");

			long count{};

			do {

			    ++count;

			} while (next_permutation(vi.begin(), vi.end()));

			cout << format("number of permutations: {}\n", count);

			Output:

			Vi sorted: 1 1 2 2 3 3 4 4 5 5

			number of permutations: 113400

			There are 113,400 permutations of these values. Notice that it's not 10! (3,628,800) because some values repeat. Since 3,3 and 3,3 sort the same, they are not different lexicographical permutations.

			In other words, if I list the permutations of this short set:

			vector<int> vi2{ 1, 3, 1 };

			sort(vi2.begin(), vi2.end());

			do {

			    printc(vi2);

			} while (next_permutation(vi2.begin(), vi2.end()));

			We get only three permutations, not 3! (9), because of the repeating values:

			1 1 3

			1 3 1

			3 1 1

			Merge sorted containers

			The std::merge() algorithm takes two sorted sequences and creates a third merged and sorted sequence. This technique is often used as part of a merge sort, allowing very large amounts of data to be broken down into chunks, sorted separately, and merged into one sorted target.

			How to do it…

			For this recipe, we'll take two sorted vector containers and merge them into a third vector using std::merge().

			
					We'll start with a simple function to print the contents of a container:void printc(const auto& c, string_view s = "") {
    if(s.size()) cout << format("{}: ", s);
    for(auto e : c) cout << format("{} ", e);
    cout << '\n';
}


			

			We'll use this to print the source and destination sequences.

			
					In the main() function, we'll declare our source vectors, along with the destination vector, and print them out:int main() {
    vector<string> vs1{ "dog", "cat", 
      "velociraptor" };
    vector<string> vs2{ "kirk", "sulu", "spock" };
    vector<string> dest{};
    printc(vs1, "vs1");
    printc(vs2, "vs2");
    ...
}


			

			The output is:

			vs1: dog cat velociraptor

			vs2: kirk sulu spock

			
					Now we can sort our vectors and print them again:sort(vs1.begin(), vs1.end());
sort(vs2.begin(), vs2.end());
printc(vs1, "vs1 sorted");
printc(vs2, "vs2 sorted");


			

			Output:

			vs1 sorted: cat dog velociraptor

			vs2 sorted: kirk spock sulu

			
					Now that our source containers are sorted, we can merge them for our final merged result:merge(vs1.begin(), vs1.end(), vs2.begin(), vs2.end(), 
    back_inserter(dest));
printc(dest, "dest");


			

			Output:

			dest: cat dog kirk spock sulu velociraptor

			This output represents the merge of the two sources into one sorted vector.

			How it works…

			The merge() algorithm takes begin() and end() iterators from both the sources and an output iterator for the destination:

			OutputIt merge(InputIt1, InputIt1, InputIt2, InputIt2, OutputIt)

			It takes the two input ranges, performs its merge/sort operation, and sends the resulting sequence to the output iterator.

		

	
		
			Chapter 7: Strings, Streams, and Formatting

			The STL string class is a powerful, full-featured tool for storing, manipulating, and displaying character-based data. It has much of the convenience you would find in a high-level scripting language, yet remains as quick and agile as you would expect from C++.

			The string class is based on basic_string, a contiguous container class that may be instantiated with any character type. Its class signature looks like this:

			template<

			    typename CharT,

			    typename Traits = std::char_traits<CharT>,

			    typename Allocator = std::allocator<CharT>

			> class basic_string;

			The Traits and Allocator template parameters are usually left to their default values.

			The underlying storage of basic_string is a contiguous sequence of CharT, and can be accessed with the data() member function:

			const std::basic_string<char> s{"hello"};

			const char * sdata = s.data();

			for(size_t i{0}; i < s.size(); ++i) {

			    cout << sdata[i] << ' ';

			}

			cout << '\n';

			Output:

			h e l l o

			The data() member function returns a CharT* that points to the underlying array of characters. Since C++11, the array returned by data() is null-terminated, making data() equivalent to c_str().

			The basic_string class includes many of the methods you would find in other contiguous-storage classes, including insert(), erase(), push_back(), pop_back(), and others. These methods operate on the underlying array of CharT.

			std::string is a type alias for std::basic_string<char>:

			using std::string = std::basic_string<char>;

			For most purposes, you'll use std::string.

			String formatting

			String formatting has traditionally been a weak point with the STL. Until recently, we've been left with an imperfect choice between the cumbersome STL iostreams or the archaic legacy printf(). Beginning with C++20 and the format library, STL string formatting has finally grown up. Closely based on Python's str.format() method, the new format library is fast and flexible, providing many of the advantages of both iostreams and printf(), along with good memory management and type safety.

			For more about the format library, see the Format text with the new format library recipe in Chaper 1, New C++20 Features.

			While we no longer need to use iostreams for string formatting, it is still quite useful for other purposes, including file and stream I/O, and some type conversions.

			In this chapter, we will cover these subjects and more in the following recipes:

			
					Use string_view as a lightweight string object

					Concatenate strings

					Transform strings

					Format text with C++20's format library

					Trim whitespace from strings

					Read strings from user input

					Count words in a file

					Initialize complex structures from file input

					Customize a string class with char_traits

					Parse strings with Regular Expressions

			

			Technical requirements

			You can find code files for this chapter on GitHub at https://github.com/PacktPublishing/CPP-20-STL-Cookbook/tree/main/chap07.

			Use string_view as a lightweight string object

			The string_view class provides a lightweight alternative to the string class. Instead of maintaining its own data store, string_view operates on a view of a C-string. This makes string_view smaller and more efficient than std::string. It's useful in cases where you need a string object but don't need the more memory- and computation-intensive features of std::string.

			How to do it…

			The string_view class looks deceptively similar to the STL string class, but it works a bit differently. Let's consider some examples:

			
					Here's an STL string initialized from a C-string (array of char):char text[]{ "hello" };
string greeting{ text };
text[0] = 'J';
cout << text << ' ' << greeting << '\n';


			

			Output:

			Jello hello

			Notice that the string does not change when we modify the array. This is because the string constructor creates its own copy of the underlying data.

			
					When we do the same with a string_view, we get a different result:char text[]{ "hello" };
string_view greeting{ text };
text[0] = 'J';
cout << text << ' ' << greeting << '\n';


			

			Output:

			Jello Jello

			The string_view constructor creates a view of the underlying data. It does not make its own copy. This results in significant efficiencies but also allows for side effects.

			
					Because string_view doesn't copy the underlying data, the source data must remain in scope for the duration of the string_view object. So, this does not work:string_view sv() {
    const char text[]{ "hello" };  // temporary storage
    string_view greeting{ text };
    return greeting;
}
int main() {
    string_view greeting = sv();  // data out of scope
    cout << greeting << '\n';  // output undefined
}


			

			Because the underlying data goes out of scope after the sv() function returns, the greeting object in main() is no longer valid by the time we use it.

			
					The string_view class has constructors that make sense for the underlying data. This includes character arrays (const char*), contiguous ranges (including std::string), and other string_view objects. This example uses the ranges constructor:string str{ "hello" };
string_view greeting{ str };
cout << greeting << '\n';


			

			Output:

			hello

			
					There is also a string_view literal operator sv, defined in the std::literals namespace:using namespace std::literals;
cout << "hello"sv.substr(1, 4) << '\n';


			

			This constructs a constexpr string_view object and calls its method substr() to get the 4 values starting at index 1.

			Output:

			ello

			How it works…

			The string_view class is effectively an iterator adapter on a contiguous sequence of characters. The implementation typically has two members: a const CharT * and a size_t. It works by wrapping a contiguous_iterator around the source data.

			This means that you can use it like std::string for many purposes, with a few important distinctions:

			
					The copy constructor does not copy the data. This means that when you make a copy of a string_view, each copy operates on the same underlying data:char text[]{ "hello" };
string_view sv1{ text };
string_view sv2{ sv1 };
string_view sv3{ sv2 };
string_view sv4{ sv3 };
cout << format("{} {} {} {}\n", sv1, sv2, sv3, sv4);
text[0] = 'J';
cout << format("{} {} {} {}\n", sv1, sv2, sv3, sv4);


			

			Output:

			hello hello hello hello

			Jello Jello Jello Jello

			
					Keep in mind that when you pass a string_view to a function, it uses the copy constructor:void f(string_view sv) {
    if(sv.size()) {
        char* x = (char*)sv.data();  // dangerous
        x[0] = 'J';  // modifies the source
    }
    cout << format("f(sv): {} {}\n", (void*)sv.data(),      sv);
}
int main() {
    char text[]{ "hello" };
    string_view sv1{ text };
    cout << format("sv1: {} {}\n", (void*)sv1.data(),       sv1);
    f(sv1);
    cout << format("sv1: {} {}\n", (void*)sv1.data(),       sv1);
}


			

			Output:

			sv1: 0x7ffd80fa7b2a hello

			f(sv): 0x7ffd80fa7b2a Jello

			sv1: 0x7ffd80fa7b2a Jello

			Notice that the address of the underlying data (returned by the data() member function) is the same for all instances of the string_view. That's because the copy constructor does not make a copy of the underlying data. Even though the string_view member pointer is const-qualified, it's still possible to cast away the const qualifier, though it's not recommended because it could cause unintended side effects. But it is worth noting that the data is never copied.

			
					The string_view class lacks methods that directly operate on the underlying string. Methods such as append(), operator+(), push_back(), pop_back(), replace(), and resize(), which are supported in string, are not supported in string_view.

			

			If you need to concatenate strings with the + operator, you'll need a std::string. For example, this does not work with string_view:

			sv1 = sv2 + sv3 + sv4; // does not work

			You'll need to use string instead:

			string str1{ text };

			string str2{ str1 };

			string str3{ str2 };

			string str4{ str3 };

			str1 = str2 + str3 + str4; // works

			cout << str1 << '\n';

			Output:

			JelloJelloJello

			Concatenate strings

			There are several ways to concatenate strings in C++. In this recipe, we will look at the three most common: the string class operator+(), the string class append() function, and the ostringstream class operator<<(). New in C++20, we also have the format() function. Each of these has its advantages, disadvantages, and use cases.

			How to do it…

			In this recipe, we will examine ways to concatenate strings. We will then perform some benchmarks and consider the different use cases.

			
					We'll start with a couple of std::string objects:string a{ "a" };
string b{ "b" };


			

			The string objects are constructed from literal C-strings.

			The C-string constructor makes a copy of the literal string and uses the local copy as the underlying data for the string object.

			
					Now, let's construct a new empty string object and concatenate a and b with a separator and a newline:string x{};
x += a + ", " + b + "\n";
cout << x;


			

			Here, we used the string object's += and + operators to concatenate the a and b strings, along with literal strings ", " and "\n". The resulting string has the elements concatenated together:

			a, b

			
					We could instead use the string object's append() member function:string x{};
x.append(a);
x.append(", ");
x.append(b);
x.append("\n");
cout << x;


			

			This gives us the same result:

			a, b

			
					Or, we could construct an ostringstream object, which uses the stream interface:ostringstream x{};
x << a << ", " << b << "\n";
cout << x.str();


			

			We get the same result:

			a, b

			
					We could also use the C++20 format() function:string x{};
x = format("{}, {}\n", a, b);
cout << x;


			

			Again, we have the same result:

			a, b

			How it works…

			The string object has two distinct methods for concatenating a string, the + operator and the append() member function.

			The append() member function adds data to the end of the string object's data. It must allocate and manage memory to accomplish this.

			The + operator uses the operator+() overload to construct a new string object with the old and new data, and returns the new object.

			The ostringstream object works like an ostream but stores its output for use as a string.

			The C++20 format() function uses a format string with variadic arguments and returns a newly constructed string object.

			There's more…

			How do you decide which concatenation strategy is right for your code? We can start with some benchmarks.

			Benchmarks

			I performed these tests using GCC 11 on Debian Linux:

			
					First, we'll create a timer function using the <chrono> library:using std::chrono::high_resolution_clock;
using std::chrono::duration;
void timer(string(*f)()) {
    auto t1 = high_resolution_clock::now();
    string s{ f() };
    auto t2 = high_resolution_clock::now();
    duration<double, std::milli> ms = t2 - t1;
    cout << s;
    cout << format("duration: {} ms\n", ms.count());
}


			

			The timer function calls the function passed to it, marking the time before and after the function call. It then displays the duration using cout.

			
					Now, we create a function that concatenates strings, using the append() member function:string append_string() {
    cout << "append_string\n";
    string a{ "a" };
    string b{ "b" };
    long n{0};
    while(++n) {
        string x{};
        x.append(a);
        x.append(", ");
        x.append(b);
        x.append("\n");
        if(n >= 10000000) return x;
    }
    return "error\n";
}


			

			For benchmarking purposes, this function repeats the concatenation 10 million times. We call this function from main() with timer():

			int main() {

			    timer(append_string);

			}

			We get this output:

			append_string

			a, b

			duration: 425.361643 ms

			So, on this system, our concatenation ran 10 million iterations in about 425 milliseconds.

			
					Now, let's create the same function with the + operator overload:string concat_string() {
    cout << "concat_string\n";
    string a{ "a" };
    string b{ "b" };
    long n{0};
    while(++n) {
        string x{};
        x += a + ", " + b + "\n";
        if(n >= 10000000) return x;
    }
    return "error\n";
}


			

			Our benchmark output:

			concat_string

			a, b

			duration: 659.957702 ms

			This version performed 10 million iterations in about 660 milliseconds.

			
					Now, let's try it with ostringstream:string concat_ostringstream() {
    cout << "ostringstream\n";
    string a { "a" };
    string b { "b" };
    long n{0};
    while(++n) {
        ostringstream x{};
        x << a << ", " << b << "\n";
        if(n >= 10000000) return x.str();
    }
    return "error\n";
}


			

			Our benchmark output:

			ostringstream

			a, b

			duration: 3462.020587 ms

			This version ran 10 million iterations in about 3.5 seconds.

			
					Here's the format() version:string concat_format() {
    cout << "append_format\n";
    string a{ "a" };
    string b{ "b" };
    long n{0};
    while(++n) {
        string x{};
        x = format("{}, {}\n", a, b);
        if(n >= 10000000) return x;
    }
    return "error\n";
}


			

			Our benchmark output:

			append_format

			a, b

			duration: 782.800547 ms

			The format() version ran 10 million iterations in about 783 milliseconds.

			
					Summary of the results:

			

			
				
					[image: A comparison of concatenation performance

]
				

			

			A comparison of concatenation performance

			Why the performance discrepancies?

			We can see from these benchmarks that the ostringstream version takes many times longer than the string-based versions.

			The append() method is slightly faster than the + operator. It needs to allocate memory but does not construct new objects. Some optimizations may be possible due to repetition.

			The + operator overload probably calls the append() method. The extra function call could make it incrementally slower than the append() method.

			The format() version creates one new string object but without the overhead of the iostream system.

			The ostringstream operator << overload creates a new ostream object for each operation. Given the complexity of the stream object, along with managing the stream state, this makes it much slower than either of the string-based versions.

			Why would I choose one over another?

			Some measure of personal preference will be involved. The operator overloads (+ or <<) can be convenient. Performance may or may not be an issue for you.

			The ostringstream class has one distinct advantage over the string methods: it specializes the << operator for each different type, so it's able to operate in circumstances where you may have different types calling the same code.

			The format() function offers the same type-safety and customization options and is significantly faster than the ostringstream class.

			The string object's + operator overload is fast, easy to use, and easy to read but is incrementally slower than append().

			The append() version is fastest but requires a separate function call for each item.

			For my purposes, I like the format() function or the string object's + operator for most circumstances. I'll use append() if every bit of speed matters. I'll use ostringstream where I need its unique features and performance is not an issue.

			Transform strings

			The std::string class is a contiguous container, much like a vector or an array. It supports the contiguous_iterator concept and all corresponding algorithms.

			The string class is a specialization of basic_string with a char type. This means that the elements of the container are of type char. Other specializations are available, but string is most common.

			Because it is fundamentally a contiguous container of char elements, string may be used with the transform() algorithm, or any other technique that uses the contiguous_iterator concept.

			How to do it…

			There are several ways to do transformations, depending on the application. This recipe will explore a few of them.

			
					We'll start with a few predicate functions. A predicate function takes a transformation element and returns a related element. For example, here is a simple predicate that returns an upper-case character:char char_upper(const char& c) {
    return static_cast<char>(std::toupper(c));
}


			

			This function is a wrapper around std::toupper(). Because the toupper() function returns an int and string elements are type char, we cannot use the toupper() function directly in a transformation.

			Here is a corresponding char_lower() function:

			char char_lower(const char& c) {

			    return static_cast<char>(std::tolower(c));

			}

			
					The rot13() function is a fun transformation predicate for demonstration purposes. It's a simple substitution cypher, not suitable for encryption but commonly used for obfuscation:char rot13(const char& x) {
    auto rot13a = [](char x, char a)->char { 
        return a + (x - a + 13) % 26; 
    };
    if (x >= 'A' && x <= 'Z') return rot13a(x, 'A');
    if (x >= 'a' && x <= 'z') return rot13a(x, 'a');
    return x;
}


					We can use these predicates with the transform() algorithm:main() {
    string s{ "hello jimi\n" };
    cout << s;
    std::transform(s.begin(), s.end(), s.begin(), 
      char_upper);
    cout << s;
    ...


			

			The transform() function calls char_upper() with each element of s, puts the result back in s and transforms all the characters to uppercase:

			Output:

			hello jimi

			HELLO JIMI

			
					Instead of transform(), we can also use a simple for loop with a predicate function:for(auto& c : s) c = rot13(c);
cout << s;


			

			Starting with our uppercase string object, the result is:

			URYYB WVZV

			
					The fun thing about the rot13 cypher is that it unscrambles itself. Because there are 26 letters in the ASCII alphabet, rotating 13 and then rotating 13 again results in the original string. Let's transform to lowercase and rot13 again to restore our string:for(auto& c : s) c = rot13(char_lower(c));
cout << s;


			

			Output:

			hello jimi

			Because of their uniform interface, the predicate functions may be chained as parameters of each other. We could also use char_lower(rot13(c)) with the same result.

			
					If your requirement is too complex for a simple character-by-character transformation, you may use string iterators as you would with any contiguous container. Here's a simple function that transforms a lowercase string to Title Case by capitalizing the first character and every character that follows a space:string& title_case(string& s) {
    auto begin = s.begin();
    auto end = s.end();
    *begin++ = char_upper(*begin);  // first element
    bool space_flag{ false };
    for(auto it{ begin }; it != end; ++it) {
        if(*it == ' ') {
            space_flag = true;
        } else {
            if(space_flag) *it = char_upper(*it);
            space_flag = false;
        }
    }
    return s;
}


			

			Because it returns a reference to the transformed string, we can call it with cout, like this:

			cout << title_case(s);

			Output:

			Hello Jimi

			How it works…

			The std::basic_string class, and its specializations (including string), are supported by iterators fully compliant with contiguous_iterator. This means that any technique that works with any contiguous container also works with string.

			Note

			These transformations will not work with string_view objects because the underlying data is const-qualified. 

			Format text with C++20's format library

			C++20 introduces the new format() function, which returns a formatted representation of its arguments in a string. format() uses a Python-style formatting string, with concise syntax, type safety, and excellent performance.

			The format() function takes a format string and a template, parameter pack, for its arguments:

			template< class... Args >

			string format(const string_view fmt, Args&&... args );

			The format string uses curly braces {} as a placeholder for the formatted arguments:

			const int a{47};

			format("a is {}\n", a);

			Output:

			a is 47

			It also uses the braces for format specifiers, for example:

			format("Hex: {:x} Octal: {:o} Decimal {:d} \n", a, a, a);

			Output:

			Hex: 2f Octal: 57 Decimal 47

			This recipe will show you how to use the format() function for some common string formatting solutions.

			Note

			This chapter was developed using a preview release of the Microsoft Visual C++ compiler on Windows 10. At the time of writing, this is the only compiler that fully supports the C++20 <format> library. Final implementations may differ in some details.

			How to do it…

			Let's consider some common formatting solutions using the format() function:

			
					We'll start with some variables to format: const int inta{ 47 };
const char * human{ "earthlings" };
const string_view alien{ "vulcans" };
const double df_pi{ pi };


			

			The pi constant is in the <numbers> header and the std::numbers namespace.

			
					We can display the variables using cout:cout << "inta is " << inta << '\n'
    << "hello, " << human << '\n'
    << "All " << alien << " are welcome here\n"
    << "π is " << df_pi << '\n';


			

			We get this output:

			a is 47

			hello, earthlings

			All vulcans are welcome here

			π is 3.14159

			
					Now, let's look at each of these with format(), starting with the C-string, human:cout << format("Hello {}\n", human);


			

			This is the simplest form of the format() function. The format string has one placeholder {} and one corresponding variable, human. The output is:

			Hello earthlings

			
					The format() function returns a string, and we use cout << to display the string.

			

			The original proposal for the format() library included a print() function, using the same parameters as format(). That would allow us to print our formatted strings in one step:

			print("Hello {}\n", cstr);

			Unfortunately, print() didn't make it into the C++20 standard, although it is expected to be included in C++23.

			We can provide the same functionality with a simple function, using vformat():

			template<typename... Args>

			constexpr void print(const string_view str_fmt, 

			                     Args&&... args) {

			    fputs(std::vformat(str_fmt, 

			          std::make_format_args(args...)).c_str(), 

			          stdout);

			}

			This simple one-line function gives us a serviceable print() function. We can use it in place of the cout << format() combination:

			print("Hello {}\n", human);

			Output:

			Hello earthlings

			A more complete version of this function may be found in the include directory of the example files.

			
					The format string also provides positional options:print("Hello {} we are {}\n", human, alien);


			

			Output:

			Hello earthlings we are vulcans

			We can change the order of the arguments by using positional options in the format string:

			print("Hello {1} we are {0}\n", human, alien);

			Now, we get this output:

			Hello vulcans we are earthlings

			Notice that the arguments remain the same. Only the positional values in the braces have changed. The positional indices are zero-based, just like the [] operator.

			This feature can be useful for internationalization, as different languages use different orders for parts of speech in a sentence.

			
					There are many formatting options for numbers:print("π is {}\n", df_pi);


			

			Output:

			π is 3.141592653589793

			We can specify the number of digits of precision:

			print("π is {:.5}\n", df_pi);

			Output:

			π is 3.1416

			The colon character : is used to separate positional indices from formatting arguments:

			print("inta is {1:}, π is {0:.5}\n", df_pi, inta);

			Output:

			inta is 47, π is 3.1416

			
					If we want a value to take up a certain amount of space, we can specify the number of characters like this:print("inta is [{:10}]\n", inta);


			

			Output:

			inta is [        47]

			We can align it left or right:

			print("inta is [{:<10}]\n", inta);

			print("inta is [{:>10}]\n", inta);

			Output:

			inta is [47        ]

			inta is [        47]

			By default, it fills with space characters, but we can change that:

			print("inta is [{:*<10}]\n", inta);

			print("inta is [{:0>10}]\n", inta);

			Output:

			inta is [47********]

			inta is [0000000047]

			We can also center a value:

			print("inta is [{:^10}]\n", inta);

			print("inta is [{:_^10}]\n", inta);

			Output:

			inta is [    47    ]

			inta is [____47____]

			
					We can format integer numbers as hexadecimal, octal, or the default decimal representation:print("{:>8}: [{:04x}]\n", "Hex", inta);
print("{:>8}: [{:4o}]\n", "Octal", inta);
print("{:>8}: [{:4d}]\n", "Decimal", inta);


			

			Output:

			     Hex: [002f]

			   Octal: [  57]

			 Decimal: [  47]

			Notice that I used right alignment to line up the labels.

			Use a capital X for uppercase hexadecimal:

			print("{:>8}: [{:04X}]\n", "Hex", inta);

			Output:

			     Hex: [002F]

			Tip

			By default, Windows uses uncommon character encodings. Recent versions may default to UTF-16 or UTF-8 BOM. Older versions may default to "code page" 1252, a superset of the ISO 8859-1 ASCII standard. No Windows system defaults to the more common UTF-8 (no BOM).

			By default, Windows will not display the standard UTF-8 π character. To make Windows compatible with UTF-8 encoding (and the rest of the world), use the compiler switch /utf-8 and issue the command chcp 65001 on the command line when testing. Now, you can have your π and eat it too.

			How it works…

			The <format> library uses a template parameter pack to pass arguments to the formatter. This allows the arguments to be individually inspected for class and type. The library function, make_format_args() takes a parameter pack and returns a format_args object, which provides a type erased list of arguments to be formatted.

			We can see this in action in our print() function:

			template<typename... Args>

			constexpr void print(const string_view str_fmt, Args&&... args) {

			    fputs(vformat(str_fmt, 

			      make_format_args(args...)).c_str(), 

			          stdout);

			}

			The make_format_args() function takes a parameter pack and returns a format_args object. The vformat() function takes a format string and the format_args object, and returns a std::string. We use the c_str() method to get a C-string for use with fputs().

			There's more…

			It's common practice to overload the ostream << operator for custom classes. For example, given a class Frac that holds the values of a fraction:

			template<typename T>

			struct Frac {

			    T n;

			    T d;

			};

			...

			Frac<long> n{ 3, 5 };

			cout << "Frac: " << n << '\n';

			We want to print the object as a fraction like 3/5. So, we would write a simple operator<< specialization like this:

			template <typename T>

			std::ostream& operator<<(std::ostream& os, const Frac<T>& f) {

			    os << f.n << '/' << f.d;

			    return os;

			}

			Now our output is:

			Frac: 3/5

			To provide format() support for our custom class, we need to create a formatter object specialization, like this:

			template <typename T>

			struct std::formatter<Frac<T>> : std::formatter<unsigned> {

			    template <typename Context>

			    auto format(const Frac<T>& f, Context& ctx) const {

			        return format_to(ctx.out(), "{}/{}", f.n, f.d);

			    }

			};

			The specialization of the std::formatter class overloads its format() method. We inherit from the formatter<unsigned> specialization for simplicity. The format() method is called with a Context object, which provides the output context for the formatted string. For the return value, we use the format_to() function with ctx.out, a normal format string, and parameters.

			Now, we can now use our print() function with the Frac class:

			print("Frac: {}\n", n);

			The formatter now recognizes our class and provides our desired output:

			Frac: 3/5

			Trim whitespace from strings

			It is common for input from users to include extraneous whitespace at one or both ends of a string. This can be problematic, so we often need to remove it. In this recipe, we'll use the string class methods, find_first_not_of() and find_last_not_of(), to trim whitespace from the ends of a string.

			How to do it…

			The string class includes methods for finding elements that are, or are not, included in a list of characters. We'll use these methods to trim string:

			
					We start by defining string with input from a hypothetical ten-thumbed user:int main() {
    string s{" \t  ten-thumbed input   \t   \n \t "};
    cout << format("[{}]\n", s);
    ...


			

			Our input has a few extra tab \t and newline \n characters before and after the content. We print it with surrounding brackets to show the whitespace:

			[       ten-thumbed input

			      ]

			
					Here's a trimstr() function to remove all the whitespace characters from both ends of string:string trimstr(const string& s) {
    constexpr const char * whitespace{ " \t\r\n\v\f" };
    if(s.empty()) return s;
    const auto first{ s.find_first_not_of(whitespace) };
    if(first == string::npos) return {};
    const auto last{ s.find_last_not_of(whitespace) };
    return s.substr(first, (last - first + 1));
}


			

			We defined our set of whitespace characters as space, tab, return, newline, vertical tab, and form feed. Some of these are more common than others, but that's the canonical set.

			This function uses the find_first_not_of() and find_last_not_of() methods of the string class to find the first/last elements that are not a member of the set.

			
					Now, we can call the function to get rid of all that unsolicited whitespace:cout << format("[{}]\n", trimstr(s));


			

			Output:

			[ten-thumbed input]

			How it works…

			The string class's various find...() member functions return a position as a size_t value:

			size_t find_first_not_of( const CharT* s, size_type pos = 0 );

			size_t find_last_not_of( const CharT* s, size_type pos = 0 );

			The return value is the zero-based position of the first matching character (not in the s list of characters) or the special value, string::npos, if not found. npos is a static member constant that represents an invalid position.

			We test for (first == string::npos) and return an empty string {} if there is no match. Otherwise, we use the first and last positions with the s.substr() method to return the string without whitespace.

			Read strings from user input

			The STL provides character-based input from the standard input stream using the std::cin object. The cin object is a global singleton that reads input from the console as an istream input stream.

			By default, cin reads one word at a time until it reaches the end of the stream:

			string word{};

			cout << "Enter words: ";

			while(cin >> word) {

			    cout << format("[{}] ", word);

			}

			cout << '\n';

			Output:

			$ ./working

			Enter words: big light in sky[image: ]

			[big] [light] [in] [sky]

			This is of limited usefulness, and it may lead some to dismiss cin as minimally functional.

			While cin certainly has its quirks, it can be easily wrangled into providing line-oriented input.

			How to do it…

			To get basic line-oriented functionality from cin, there are two significant behaviors that need to be understood. One is the ability to get a line at a time, instead of a word at a time. The other is the ability to reset the stream after an error condition. Let's look at these in some detail:

			
					First, we need to prompt the user for input. Here's a simple prompt function:bool prompt(const string_view s, const string_view s2 = "") {
    if(s2.size()) cout << format("{} ({}): ", s, s2);
    else cout << format("{}: ", s);
    cout.flush();
    return true;
}


			

			The cout.flush() function call ensures that the output is displayed immediately. Sometimes, when the output doesn't include a newline, the output stream may not flush automatically.

			
					The cin class has a getline() method that gets a line of text from the input stream and puts it in a C-string array:constexpr size_t MAXLINE{1024 * 10};
char s[MAXLINE]{};
const char * p1{ "Words here" };
prompt(p1);
cin.getline(s, MAXLINE, '\n');
cout << s << '\n';


			

			Output:

			Words here: big light in sky[image: ]

			big light in sky

			The cin.getline() method takes three arguments:

			getline(char* s, size_t count, char delim );

			The first argument is a C-string array for the destination. The second is the size of the array. The third is the delimiter for the end of the line. 

			The function will not put more than count-1 characters in the array, leaving room for a null terminator.

			The delimiter defaults to the newline '\n' character.

			
					The STL also provides a stand-alone getline() function that works with an STL string object:string line{};
const char * p1a{ "More words here" };
prompt(p1a, "p1a");
getline(cin, line, '\n');
cout << line << '\n';


			

			Output:

			$ ./working

			More words here (p1a): slated to appear in east[image: ]

			slated to appear in east

			The stand-alone std::getline() function takes three arguments:

			getline(basic_istream&& in, string& str, char delim );

			The first argument is the output stream, second is a reference to a string object, and the third is the end-of-line delimiter.

			If not specified, the delimiter defaults to the newline '\n' character.

			I find the standalone getline() more convenient than the cin.getline() method.

			
					We can use cin to get a specific type from the input stream. To do this, we must be able to handle an error condition.

			

			When cin encounters an error, it sets the stream to an error condition and stops accepting input. To retry input after an error, we must reset the state of the stream. Here's a function that resets the input stream after an error:

			void clearistream() {

			    string s{};

			    cin.clear();

			    getline(cin, s);

			}

			The cin.clear() function resets the error flags on the input stream but leaves text in the buffer. We then clear the buffer by reading a line and discarding it.

			
					We can accept numeric input by using cin with numeric type variables:double a{};
double b{};
const char * p2{ "Please enter two numbers" };
for(prompt(p2); !(cin >> a >> b); prompt(p2)) {
    cout << "not numeric\n";
    clearistream();
}
cout << format("You entered {} and {}\n", a, b);


			

			Output:

			$ ./working

			Please enter two numbers: a b[image: ]

			not numeric

			Please enter two numbers: 47 73[image: ]

			You entered 47 and 73

			The cin >> a >> b expression accepts input from the console and attempts to convert the first two words to types compatible with a and b (double). If it fails, we call clearistream() and try again.

			
					We can use the getline() separator parameter to get comma-separated input:line.clear();
prompt(p3);
while(line.empty()) getline(cin, line);
stringstream ss(line);
while(getline(ss, word, ',')) {
    if(word.empty()) continue;
    cout << format("word: [{}]\n", trimstr(word));
}


			

			Output:

			$ ./working

			Comma-separated words: this, that, other

			word: [this]

			word: [that]

			word: [other]

			Because this code runs after the numbers code, and because cin is messy, there may still be a line ending in the buffer. The while(line.empty()) loop will optionally eat any empty lines.

			We use a stringstream object to process the words, so we don't have to do it with cin. This allows us to use getline() to get one line without waiting for the end-of-file state.

			Then, we call getline() on the stringstream object to parse out words separated by commas. This gives us words but with leading whitespace. We use the trimstr() function from the Trim whitespace from strings recipe in this chapter to trim the whitespace.

			How it works…

			The std::cin object is more useful than it may appear, but it can be a challenge to use. It tends to leave line endings on the stream, and in the case of errors, it can end up ignoring input.

			The solution is to use getline() and, when necessary, put the line into a stringstream for convenient parsing.

			Count words in a file

			By default, the basic_istream class reads one word at a time. We can take advantage of this property to use an istream_iterator to count words.

			How to do it…

			This is a simple recipe to count words using an istream_iterator:

			
					We'll start with a simple function to count words using an istream_iterator object:size_t wordcount(auto& is) {
    using it_t = istream_iterator<string>;
    return distance(it_t{is}, it_t{});
}


			

			The distance() function takes two iterators and returns the number of steps between them. The using statement creates an alias it_t for the istream_iterator class with a string specialization. We then call distance() with an iterator, initialized with the input stream it_t{is}, and another with the default constructor, which gives us an end-of-stream sentinel.

			
					We call wordcount() from main():int main() {
    const char * fn{ "the-raven.txt" };
    std::ifstream infile{fn, std::ios_base::in};
    size_t wc{ wordcount(infile) };
    cout << format("There are {} words in the 
      file.\n", wc);
}


			

			This calls wordcount() with our fstream object and prints the number of words in the file. When I call it with the text of Edgar Allan Poe's The Raven, we get this output:

			There are 1068 words in the file.

			How it works…

			Because basic_istream defaults to word-by-word input, the number of steps in a file will be the number of words. The distance() function will measure the number of steps between two iterators, so calling it with the beginning and the sentinel of a compatible object will count the number of words in the file.

			Initialize complex structures from file input

			One strength of the input stream is its ability to parse different types of data from a text file and convert them to their corresponding fundamental types. Here's a simple technique for importing data into a container of structures using an input stream.

			How to do it…

			In this recipe, we'll take a data file and import its disparate fields into a vector of struct objects. The data file represents cities with their populations and map coordinates:

			
					This is cities.txt, the data file we'll read:Las Vegas
661903 36.1699 -115.1398
New York City
8850000 40.7128 -74.0060
Berlin
3571000 52.5200 13.4050
Mexico City
21900000 19.4326 -99.1332
Sydney
5312000 -33.8688 151.2093


			

			The city name is on a line by itself. The second line is population, followed by longitude and latitude. This pattern repeats for each of the five cities.

			
					We'll define our filename in a constant so that we can open it later:constexpr const char * fn{ "cities.txt" };


					Here's a City struct to hold the data:struct City {
    string name;
    unsigned long population;
    double latitude;
    double longitude;
};


					We would like to read the file and populate a vector of City objects:vector<City> cities;


					Here's where the input stream makes this easy. We can simply specialize operator>> for our City class like this:std::istream& operator>>(std::istream& in, City& c) {
    in >> std::ws;
    std::getline(in, c.name);
    in >> c.population >> c.latitude >> c.longitude;
    return in;
}


			

			The std::ws input manipulator discards leading whitespace from the input stream.

			We use getline() to read the city name, as it could be one or more words.

			This leverages the >> operator for the population (unsigned long), and latitude and longitude (both double) elements to populate the correct type.

			
					Now, we can open the file and use the >> operator to read the file directly into the vector of City objects:ifstream infile(fn, std::ios_base::in);
if(!infile.is_open()) {
    cout << format("failed to open file {}\n", fn);
    return 1;
}
for(City c{}; infile >> c;) cities.emplace_back(c);


					We can display the vector using format():for (const auto& [name, pop, lat, lon] : cities) {
    cout << format("{:.<15} pop {:<10} coords {}, {}\n", 
        name, make_commas(pop), lat, lon);
}


			

			Output:

			$ ./initialize_container < cities.txt

			Las Vegas...... pop 661,903    coords 36.1699, -115.1398

			New York City.. pop 8,850,000  coords 40.7128, -74.006

			Berlin......... pop 3,571,000  coords 52.52, 13.405

			Mexico City.... pop 21,900,000 coords 19.4326, -99.1332

			Sydney......... pop 5,312,000  coords -33.8688, 151.2093

			
					The make_commas() function was also used in the Use structured binding to return multiple values recipe in Chapter 2, General STL Features. It takes a numeric value and returns a string object, with commas added for readability:string make_commas(const unsigned long num) {
    string s{ std::to_string(num) };
    for(int l = s.length() - 3; l > 0; l -= 3) {
        s.insert(l, ",");
    }
    return s;
}


			

			How it works…

			The heart of this recipe is the istream class operator>> overload:

			std::istream& operator>>(std::istream& in, City& c) {

			    in >> std::ws;

			    std::getline(in, c.name);

			    in >> c.population >> c.latitude >> c.longitude;

			    return in;

			}

			By specifying our City class in the function header, this function will be called every time a City object appears on the right-hand side of an input stream >> operator:

			City c{};

			infile >> c;

			This allows us to specify exactly how the input stream reads data into a City object.

			There's more…

			When you run this code on a Windows system, you'll notice that the first word of the first line gets corrupted. That's because Windows always includes a Byte Order Mark (BOM) at the head of any UTF-8 file. So, when you read a file on Windows, the BOM will be included in the first object you read. The BOM is anachronistic, but at the time of writing, there is no way to stop Windows from employing it.

			The solution is to call a function that checks the first three bytes of a file for the BOM. The BOM for UTF-8 is EF BB BF. Here's a function that searches for, and skips, a UTF-8 BOM:

			// skip BOM for UTF-8 on Windows

			void skip_bom(auto& fs) {

			    const unsigned char boms[]{ 0xef, 0xbb, 0xbf };

			    bool have_bom{ true };

			    for(const auto& c : boms) {

			        if((unsigned char)fs.get() != c) have_bom = false; 

			    }

			    if(!have_bom) fs.seekg(0);

			    return;

			}

			This reads the first three bytes of the file and checks them for the UTF-8 BOM signature. If any of the three bytes do not match, it resets the input stream to the beginning of the file. If the file has no BOM, there's no harm done.

			You simply call this function before you begin reading from a file:

			int main() {

			    ...

			    ifstream infile(fn, std::ios_base::in);

			    if(!infile.is_open()) {

			        cout << format("failed to open file {}\n", fn);

			        return 1;

			    }

			    skip_bom(infile);

			    for(City c{}; infile >> c;) cities.emplace_back(c);

			    ...

			}

			This will ensure that the BOM is not included in the first string of the file.

			Note

			Because the cin input stream is not seekable, the skip_bom() function will not work on the cin stream. It will only work with a seekable text file.

			Customize a string class with char_traits

			The string class is an alias of the basic_string class, with the signature:

			class basic_string<char, std::char_traits<char>>;

			The first template parameter provides the type of character. The second template parameter provides a character traits class, which provides basic character and string operations for the specified character type. We normally use the default char_traits<char> class.

			We can modify the behavior of a string by providing our own custom character traits class.

			How to do it…

			In this recipe, we will create a character traits class for use with basic_string that will ignore casing for comparison purposes:

			
					First, we'll need a function to convert characters to a common case. We'll use lowercase here, but it's an arbitrary choice. Uppercase would work just as well:constexpr char char_lower(const char& c) {
    if(c >= 'A' && c <= 'Z') return c + ('a' - 'A');
    else return c;
}


			

			This function must be constexpr (for C++20 and later), so the existing std::tolower() function won't work here. Fortunately, it's a simple solution to a simple problem.

			
					Our traits class is called ci_traits (ci stands for case-independent). It inherits from std::char_traits<char>:class ci_traits : public std::char_traits<char> {
public:
    ...
};


			

			The inheritance allows us to override only the functions that we need.

			
					The comparison functions are called lt() for less than and eq() for equal to:static constexpr bool lt(char_type a, char_type b) noexcept {
    return char_lower(a) < char_lower(b);
}
static constexpr bool eq(char_type a, char_type b) noexcept {
    return char_lower(a) == char_lower(b);
}


			

			Notice that we compare the lowercase versions of characters.

			
					There's also a compare() function, which compares two C-strings. It returns +1 for greater than, -1 for less than, and 0 for equal to. We can use the spaceship <=> operator for this:static constexpr int compare(const char_type* s1, 
        const char_type* s2, size_t count) {
    for(size_t i{0}; i < count; ++i) {
        auto diff{ char_lower(s1[i]) <=> 
          char_lower(s2[i]) };
        if(diff > 0) return 1;
        if(diff < 0) return -1;
        }
    return 0;
}


					Finally, we need to implement a find() function. This returns a pointer to the first instance of a found character, or nullptr if not found:static constexpr const char_type* find(const char_type* p, 
        size_t count, const char_type& ch) {
    const char_type find_c{ char_lower(ch) };
    for(size_t i{0}; i < count; ++i) {
        if(find_c == char_lower(p[i])) return p + i;
    }
    return nullptr;
}


					Now that we have a ci_traits class, we can define an alias for our string class:using ci_string = std::basic_string<char, ci_traits>;


					In our main() function, we define a string and a ci_string:int main() {
    string s{"Foo Bar Baz"};
    ci_string ci_s{"Foo Bar Baz"};
    ...


					We want to print them using cout, but this won't work:cout << "string: " << s << '\n';
cout << "ci_string: " << ci_s << '\n';


			

			First, we need an operator overload for the operator<<:

			std::ostream& operator<<(std::ostream& os, 

			        const ci_string& str) {

			    return os << str.c_str();

			}

			Now, we get this output:

			string: Foo Bar Baz

			ci_string: Foo Bar Baz

			
					Let's compare two ci_string objects with different cases:ci_string compare1{"CoMpArE StRiNg"};
ci_string compare2{"compare string"};
if (compare1 == compare2) {
    cout << format("Match! {} == {}\n", compare1, 
      compare2);
} else {
    cout << format("no match {} != {}\n", compare1, 
      compare2);
}


			

			Output:

			Match! CoMpArE StRiNg == compare string

			The comparison works as expected.

			
					Using the find() function on the ci_s object, we search for a lowercase b and find an uppercase B:size_t found = ci_s.find('b');
cout << format("found: pos {} char {}\n", found, ci_s[found]);


			

			Output:

			found: pos 4 char B

			Note

			Notice that the format() function doesn't require a specialization. This was tested with the fmt.dev reference implementation. It did not work with the preview release of MSVC's format(), even with a specialization. Hopefully, this will be fixed in a future release.

			How it works…

			This recipe works by replacing the std::char_traits class in the template specialization of the string class with a ci_traits class of our own. The basic_string class uses the traits class for its fundamental character-specific functions, such as comparisons and searching. When we replace it with our own class, we can change these fundamental behaviors.

			There's more…

			We can also override the assign() and copy() member functions to create a class that stores lowercase characters:

			class lc_traits : public std::char_traits<char> {

			public:

			    static constexpr void assign( char_type& r, const

			      char_type& a )

			            noexcept {

			        r = char_lower(a);

			    }

			    static constexpr char_type* assign( char_type* p,

			            std::size_t count, char_type a ) {

			        for(size_t i{}; i < count; ++i) p[i] = 

			          char_lower(a);

			        return p;

			    }

			    static constexpr char_type* copy(char_type* dest, 

			            const char_type* src, size_t count) {

			        for(size_t i{0}; i < count; ++i) {

			            dest[i] = char_lower(src[i]);

			        }

			        return dest;

			    }

			};

			Now, we can create an lc_string alias, and the object stores lowercase characters:

			using lc_string = std::basic_string<char, lc_traits>;

			...

			lc_string lc_s{"Foo Bar Baz"};

			cout << "lc_string: " << lc_s << '\n';

			Output:

			lc_string: foo bar baz

			Note

			These techniques work as expected on GCC and Clang but not on the preview release of MSVC. I expect that this will be fixed in a future release.

			Parse strings with Regular Expressions

			Regular Expressions (commonly abbreviated as regex) are commonly used for lexical analysis and pattern-matching on streams of text. They are common in Unix text-processing utilities, such as grep, awk, and sed, and are an integral part of the Perl language. There are a few common variations in the syntax. A POSIX standard was approved in 1992, while other common variations include Perl and ECMAScript (JavaScript) dialects. The C++ regex library defaults to the ECMAScript dialect.

			The regex library was first introduced to the STL with C++11. It can be very useful for finding patterns in text files.

			To learn more about Regular Expression syntax and usage, I recommend the book, Mastering Regular Expressions by Jeffrey Friedl.

			How to do it…

			For this recipe, we will extract hyperlinks from an HTML file. A hyperlink is coded in HTML like this:

			<a href="http://example.com/file.html">Text goes here</a>

			We will use a regex object to extract both the link and the text, as two separate strings.

			
					Our example file is called the-end.html. It's taken from my website (https://bw.org/end/), and is included in the GitHub repository:const char * fn{ "the-end.html" };


					Now, we define our regex object with a regular expression string:const std::regex 
    link_re{ "<a href=\"([^\"]*)\"[^<]*>([^<]*)</a>" };


			

			Regular expressions can look intimidating at first, but they're actually rather simple.

			This is parsed as follows:

			
					Match the whole string.

					Find the substring <a href=".

					Store everything up to the next " as sub-match 1.

					Skip past the > character.

					Store everything up to the string </a> as sub-match 2.

			

			
					Now, we read our file entirely into a string:string in{};
std::ifstream infile(fn, std::ios_base::in);
for(string line{}; getline(infile, line);) in += line;


			

			This opens the HTML file, reads it line by line, and appends each line to the string object, in.

			
					To extract the link strings, we set up an sregex_token_iterator object to step through the file and extract each of the matched elements:std::sregex_token_iterator it{ in.begin(), in.end(),
    link_re, {1, 2} };


			

			The 1 and 2 correspond to the sub-matches in the regular expression.

			
					We have a corresponding function to step through the results with the iterator:template<typename It>
void get_links(It it) {
    for(It end_it{}; it != end_it; ) {
        const string link{ *it++ };
        if(it == end_it) break;
        const string desc{ *it++ };
        cout << format("{:.<24} {}\n", desc, link);
    }
}


			

			We call the function with the regex iterator:

			get_links(it);

			And we get this result with our descriptions and links:

			Bill Weinman............ https://bw.org/

			courses................. https://bw.org/courses/

			music................... https://bw.org/music/

			books................... https://packt.com/

			back to the internet.... https://duckduckgo.com/

			How it works…

			The STL regex engine operates as a generator that evaluates and yields one result at a time. We set up the iterator using sregex_iterator or sregex_token_iterator. While sregex_token_iterator supports sub-matches, sregex_iterator does not.

			The parentheses in our regex serve as sub-matches, numbered 1 and 2 respectively:

			const regex link_re{ "<a href=\"([^\"]*)\"[^<]*>([^<]*)</a>" };

			Each part of the regex matches is illustrated here:

			
				
					[image: Figure 7.1 – A Regular Expression with sub-matches

]
				

			

			Figure 7.1 – A Regular Expression with sub-matches

			This allows us to match a string and use parts of that string as our results:

			sregex_token_iterator it{ in.begin(), in.end(), link_re, {1, 2} };

			The sub-matches are numbered, beginning with 1. Sub-match 0 is a special value that represents the entire match.

			Once we have our iterator, we use it as we would any other iterator:

			for(It end_it{}; it != end_it; ) {

			    const string link{ *it++ };

			    if(it == end_it) break;

			    const string desc{ *it++ };

			    cout << format("{:.<24} {}\n", desc, link);

			}

			This simply steps through our results via the regex iterator, giving us the formatted output:

			Bill Weinman............ https://bw.org/

			courses................. https://bw.org/courses/

			music................... https://bw.org/music/

			books................... https://packt.com/

			back to the internet.... https://duckduckgo.com/

		

	
		
			Chapter 8: Utility Classes

			The C++ Standard Library includes an assortment of utility classes designed for specific tasks. Some are common, and you've probably seen many of these classes in other recipes in this book.

			This chapter covers a broad range of utilities, including time measurement, generic types, smart pointers, and more, in the following recipes:

			
					Manage optional values with std::optional

					Use std::any for type safety

					Store different types with std::variant

					Time events with std::chrono

					Use fold expressions for variadic tuples

					Manage allocated memory with std::unique_ptr

					Share objects with std::shared_ptr

					Use weak pointers with shared objects

					Share members of a managed object

					Compare random number engines

					Compare random number distribution generators

			

			Technical requirements

			The code files for this chapter can be found on GitHub at https://github.com/PacktPublishing/CPP-20-STL-Cookbook/tree/main/chap08.

			Manage optional values with std::optional

			Introduced with C++17, the std::optional class holds an optional value.

			Consider the case where you have a function that may or may not return a value – for example, a function that checks if a number is prime but returns the first factor if there is one. This function should return either a value or a bool status. We could create a struct that carries both value and status:

			struct factor_t {

			    bool is_prime;

			    long factor;

			};

			factor_t factor(long n) {

			    factor_t r{};

			    for(long i = 2; i <= n / 2; ++i) {

			        if (n % i == 0) {

			            r.is_prime = false;

			            r.factor = i;

			            return r;

			        }

			    }

			    r.is_prime = true;

			    return r;

			}

			It's a clumsy solution but it works, and it's not uncommon. 

			It could be made a lot simpler with the optional class:

			optional<long> factor(long n) {

			    for (long i = 2; i <= n / 2; ++i) {

			        if (n % i == 0) return {i};

			    }

			    return {};

			}

			With optional, we can return a value or a non-value.

			We can call it, like this:

			long a{ 42 };

			long b{ 73 };

			auto x = factor(a);

			auto y = factor(b);

			if(x) cout << format("lowest factor of {} is {}\n", a, *x);

			else cout << format("{} is prime\n", a);

			if(y) cout << format("lowest factor of {} is {}\n", b, *y);

			else cout << format("{} is prime\n", b);

			Our output is:

			lowest factor of 42 is 2

			73 is prime

			The optional class allows us to easily return the optional value and easily test for a value. 

			How to do it…

			In this recipe, we'll look at some examples of how to use the optional class:

			
					The optional class is quite simple. We construct an optional value using standard template notation: optional<int> a{ 42 };
cout << *a << '\n';


			

			We access the value of the optional with the * pointer dereference operator. 

			Output:

			42

			
					We test if the optional has a value using its bool operator:if(a) cout << *a << '\n';
else cout << "no value\n"; 


			

			If a were constructed without a value:

			optional<int> a{};

			The output would reflect the else condition:

			no value

			
					We can further simplify this by declaring a type alias:using oint = std::optional<int>;
oint a{ 42 };
oint b{ 73 };


					If we want to operate on oint objects, with oint objects as the result, we can provide operator overloads:oint operator+(const oint& a, const oint& b) {
    if(a && b) return *a + *b;
    else return {};
}
oint operator+(const oint& a, const int b) {
    if(a) return *a + b;
    else return {};
}


			

			Now, we can operate on the oint objects directly:

			auto sum{ a + b };

			if(sum) {

			    cout << format("{} + {} = {}\n", *a, *b, *sum);

			} else {

			    cout << "NAN\n";

			}

			Output:

			42 + 73 = 115

			
					Suppose we declare b with the default constructor:oint b{};


			

			Now, we get the else branch output:

			NAN

			How it works…

			The std::optional class is made for simplicity. It provides operator overloads for many common functions. It also includes member functions for further flexibility.

			The optional class provides an operator bool overload for determining if the object has a value:

			optional<int> n{ 42 };

			if(n) ... // has a value

			Or, you may use the has_value() member function:

			if(n.has_value()) ... // has a value

			To access the value, you may use the operator* overload:

			x = *n;  // * retruns the value

			Or, you may use the value() member function:

			x = n.value();  // * retruns the value

			The reset() member function destroys the value and resets the state of the optional object:

			n.reset();      // no longer has a value

			There's more…

			The optional class provides exception support with the value() method:

			b.reset();

			try {

			    cout << b.value() << '\n';

			} catch(const std::bad_optional_access& e) {

			    cout << format("b.value(): {}\n", e.what());

			}

			Output:

			b.value(): bad optional access

			Important Note

			Only the value() method throws an exception. The behavior of the * operator is undefined for an invalid value.

			Use std::any for type safety

			Introduced with C++17, the std::any class provides a type-safe container for a single object of any type. 

			For example, this is a default-constructed any object:

			any x{};

			This object has no value. We can test that with the has_value() method:

			if(x.has_value()) cout << "have value\n";

			else cout << "no value\n";

			Output:

			no value

			We assign a value to the any object with the assignment operator:

			x = 42;

			Now, the any object has a value, and a type:

			if(x.has_value()) {

			    cout << format("x has type: {}\n", x.type().name());

			    cout << format("x has value: {}\n", any_cast<int>(x));

			} else {

			    cout << "no value\n";

			}

			Output:

			x has type: i

			x has value: 42

			The type() method returns a type_info object. The type_info::name() method returns an implementation-defined name for the type in a C-string. In this case, for GCC, the i means int.

			We use the any_cast<type>() non-member function to cast the value for use.

			We can re-assign the any object with different values of different types:

			x = "abc"s;

			cout << format("x is type {} with value {}\n", 

			    x.type().name(), any_cast<string>(x))

			Output:

			x is type NSt7__cxx1112basic_string... with value abc

			I've abbreviated the long type name from GCC but you get the idea. The same any object that once held an int now contains an STL string object.

			The main usefulness of the any class is in creating a polymorphic function. Let's examine how to do that in this recipe:

			How to do it…

			In this recipe, we'll build a polymorphic function using the any class. A polymorphic function is one that can take objects of different types in its parameters:

			
					Our polymorphic function takes an any object and prints its type and value:void p_any(const any& a) {
    if (!a.has_value()) {
        cout << "None.\n";
    } else if (a.type() == typeid(int)) {
        cout << format("int: {}\n", any_cast<int>(a));
    } else if (a.type() == typeid(string)) {
        cout << format("string: \"{}\"\n", 
            any_cast<const string&>(a));
    } else if (a.type() == typeid(list<int>)) {
        cout << "list<int>: ";
        for(auto& i : any_cast<const list<int>&>(a)) 
            cout << format("{} ", i);
        cout << '\n';
    } else {
        cout << format("something else: {}\n", 
            a.type().name());
    }
}


			

			The p_any() function first tests to see if the object has a value. It then tests the type() method against various types and takes appropriate action for each type. 

			Before the any class, we would have had to write four different specializations for this function, and we still wouldn't be able to easily handle the default case.

			
					We call this function from main(), like this:p_any({});
p_any(47);
p_any("abc"s);
p_any(any(list{ 1, 2, 3 }));
p_any(any(vector{ 1, 2, 3 }));


			

			Output:

			None.

			int: 47

			string: "abc"

			list<int>: 1 2 3

			something else: St6vectorIiSaIiEE

			Our polymorphic function handles the various types with a minimum of code.

			How it works…

			The std::any copy constructor and assignment operator use direct initialization to make a non-const copy of the target object as the contained object. The type of the contained object is stored separately as a typeid object. 

			Once initialized, the any object has the following methods:

			
					emplace() replaces the contained object, constructing the new object in place.

					reset() destroys the contained object.

					has_value() returns true if there is a contained object.

					type() returns a typeid object, representing the type of the contained object.

					operator=() replaces the contained object by a copy or move operation.

			

			The any class also supports the following non-member functions:

			
					any_cast<T>(), a template function, provides type-safe access to the contained object.

			

			Keep in mind that the any_cast<T>() function returns a copy of the contained object. You may use any_cast<T&>() to return a reference.

			
					std::swap() specializes the std::swap algorithm. 

			

			If you try to cast an any object with the wrong type, it throws a bad_any_cast exception:

			try {

			    cout << any_cast<int>(x) << '\n';

			} catch(std::bad_any_cast& e) {

			    cout << format("any: {}\n", e.what());

			}

			Output:

			any: bad any_cast

			Store different types with std::variant

			Introduced with C++17, the std::variant class may hold different values, one at a time, where each value must fit in the same allocated memory space. It's useful for holding alternative types for use in a single context. 

			Differences from the primitive union structure

			The variant class is a tagged union. It differs from the primitive union structure in that only one type may be in effect at a time.

			The primitive union type, inherited from C, is a structure where the same datum may be accessed as different types. For example:

			union ipv4 {

			    struct {

			        uint8_t a; uint8_t b; uint8_t c; uint8_t d;

			    } quad;

			    uint32_t int32;

			} addr;

			addr.int32 = 0x2A05A8C0;

			cout << format("ip addr dotted quad: {}.{}.{}.{}\n", 

			    addr.quad.a, addr.quad.b, addr.quad.c, addr.quad.d);

			cout << format("ip addr int32 (LE): {:08X}\n", addr.int32);

			Output:

			ip addr dotted quad: 192.168.5.42

			ip addr int32 (LE): 2A05A8C0

			In this example, the union has two members, types struct and uint32_t, where struct has four uint8_t members. This gives us two different perspectives of the same 32-bit memory space. We can view the same ipv4 address as either a 32-bit unsigned integer (Little Endian or LE) or four 8-bit unsigned integers in the common dotted quad notation. This provides a bitwise polymorphy that can be useful at the systems level.

			variant doesn't work like that. The variant class is a tagged union, where each datum is tagged with its type. If we store a value as uint32_t, we may only access it as uint32_t. This makes variant type safe but not a replacement for union.

			How to do it…

			In this recipe, we demonstrate the use of std::variant with a small catalogue of household pets of various species.

			
					We'll start with a simple class to hold an Animal:class Animal {
    string_view _name{};
    string_view _sound{};
    Animal();
public:
    Animal(string_view n, string_view s) 
        : _name{ n }, _sound{ s } {}
    void speak() const {
        cout << format("{} says {}\n", _name, _sound);
    }
    void sound(string_view s) {
        _sound = s;
    }
};


			

			The name of the animal and the sound that the animal makes are passed in the constructor. 

			
					Individual species classes inherit from Animal:class Cat : public Animal {
public:
    Cat(string_view n) : Animal(n, "meow") {}
};
class Dog : public Animal {
public:
    Dog(string_view n) : Animal(n, "arf!") {}
};
class Wookie : public Animal {
public:
    Wookie(string_view n) : Animal(n, "grrraarrgghh!") {}
};


			

			Each of these classes set the sound for their specific species by calling the parent constructor.

			
					Now, we can define our variant type in an alias:using v_animal = std::variant<Cat, Dog, Wookie>;


			

			This variant can hold any of the types, Cat, Dog, or Wookie.

			
					In main(), we create a list using our v_animal alias as the type:int main() {
    list<v_animal> pets{ 
        Cat{"Hobbes"}, Dog{"Fido"}, Cat{"Max"}, 
        Wookie{"Chewie"}
    };
    ...


			

			Each element in the list is of a type included in the variant definition. 

			
					The variant class provides several different ways to access elements. First, we'll look at the visit() function. 

			

			visit() calls a functor with the object currently contained in the variant. First, let's define a functor that accepts any of our pets:

			struct animal_speaks {

			    void operator()(const Dog& d) const { d.speak(); }

			    void operator()(const Cat& c) const { c.speak(); }

			    void operator()(const Wookie& w) const { 

			      w.speak(); }

			};

			This is a simple functor class with overloads for each of the Animal sub-classes. We call it with visit(), with each of our list elements:

			for (const v_animal& a : pets) {

			    visit(animal_speaks{}, a);

			}

			We get this output:

			Hobbes says meow

			Fido says arf!

			Max says meow

			Chewie says grrraarrgghh!

			
					The variant class also provides an index() method:for(const v_animal &a : pets) {
    auto idx{ a.index() };
    if(idx == 0) get<Cat>(a).speak();
    if(idx == 1) get<Dog>(a).speak();
    if(idx == 2) get<Wookie>(a).speak();
}


			

			Output:

			Hobbes says meow

			Fido says arf!

			Max says meow

			Chewie says grrraarrgghh!

			Each variant object is indexed, based on the order in which the types were declared in the template arguments. Our v_animal type was defined with std::variant<Cat, Dog, Wookie>, and these types are indexed as 0 – 2, in that order.

			
					The get_if<T>() function tests a given element against a type:for (const v_animal& a : pets) {
    if(const auto c{ get_if<Cat>(&a) }; c) {
        c->speak();
    } else if(const auto d{ get_if<Dog>(&a) }; d) {
        d->speak();
    } else if(const auto w{ get_if<Wookie>(&a) }; w) {
        w->speak();
    }
}


			

			Output:

			Hobbes says meow

			Fido says arf!

			Max says meow

			Chewie says grrraarrgghh!

			The get_if<T>() function returns a pointer if the type of the element matches T; otherwise, it returns nullptr.

			
					Finally, the holds_alternative<T>() function returns true or false. We can use this to test a type against an element, without returning the element:size_t n_cats{}, n_dogs{}, n_wookies{};
for(const v_animal& a : pets) {
    if(holds_alternative<Cat>(a)) ++n_cats;
    if(holds_alternative<Dog>(a)) ++n_dogs;
    if(holds_alternative<Wookie>(a)) ++n_wookies;
}
cout << format("there are {} cat(s), "
               "{} dog(s), "
               "and {} wookie(s)\n",
               n_cats, n_dogs, n_wookies);


			

			Output:

			there are 2 cat(s), 1 dog(s), and 1 wookie(s)

			How it works…

			The std::variant class is a single-object container. An instance of variant<X, Y, Z> must hold exactly one object of type X, Y, or Z. It holds both the value and the type of its current object.

			The index() method tells us the type of the current object:

			if(v.index() == 0) // if variant is type X

			The holds_alternative<T>() non-member function returns true if T is the type of the current object:

			if(holds_alternative<X>(v))  // if current variant obj is type X

			We can retrieve the current object with the get() non-member function:

			auto o{ get<X>(v) };  // current variant obj must be type X

			We can combine the test for type and retrieval with the get_if() non-member function:

			auto* p{ get_if<X>(v) };  // nullptr if current obj not type X

			The visit() non-member function invokes a callable object with the current variant object as its single parameter:

			visit(f, v);  // calls f(v) with current variant obj

			The visit() function is the only way to retrieve an object without testing its type. In combination with a functor that can handle each type, this can be very flexible:

			struct animal_speaks {

			    void operator()(const Dog& d) const { d.speak(); }

			    void operator()(const Cat& c) const { c.speak(); }

			    void operator()(const Wookie& v) const { v.speak(); }

			};

			main() {

			    for (const v_animal& a : pets) {

			        visit(animal_speaks{}, a);

			    } 

			}

			Output:

			Hobbes says meow

			Fido says arf!

			Max says meow

			Chewie says grrraarrgghh!

			Time events with std::chrono

			The std::chrono library provides tools for measuring and reporting time and intervals. 

			Many of these classes and functions were introduced with C++11. There have been significant changes and updates for C++20, but at the time of writing, many of those updates are not yet implemented on the systems I've tested.

			Using the chrono library, this recipe explores techniques for timing events. 

			How to do it…

			The system_clock class is used for reporting the current date and time. The steady_clock and high_resolution_clock classes are used for timing events. Let's look at the differences between these clocks:

			
					Because these names can be long and unwieldy, we'll use some type aliases throughout this recipe:using std::chrono::system_clock;
using std::chrono::steady_clock;
using std::chrono::high_resolution_clock;
using std::chrono::duration;
using seconds = duration<double>;
using milliseconds = duration<double, std::milli>;
using microseconds = duration<double, std::micro>;
using fps24 = duration<unsigned long, std::ratio<1, 24>>;


			

			The duration class represents an interval between two points in time. These aliases are convenient for using different intervals.

			
					We can get the current time and date by using the system_clock class:auto t = system_clock::now();
cout << format("system_clock::now is {:%F %T}\n", t);


			

			The system_clock::now() function returns a time_point object. The <chrono> library includes a format() specialization for time_point that uses strftime() format specifiers.

			The output is:

			system_clock::now is 2022-02-05 13:52:15

			The <iomanip> header includes put_time(), which works like strftime() for ostream:

			std::time_t now_t = system_clock::to_time_t(t);

			cout << "system_clock::now is " 

			     << std::put_time(std::localtime(&now_t), "%F %T") 

			     << '\n';

			put_time() takes a pointer to a C-style time_t* value. system_clock::to_time_t converts a time_point object to time_t.

			This gives the same output as our format() example:

			system_clock::now is 2022-02-05 13:52:15

			
					We can also use system_clock to time an event. First, we need something to time. Here's a function that counts prime numbers:constexpr uint64_t MAX_PRIME{ 0x1FFFF }
uint64_t count_primes() {
    constexpr auto is_prime = [](const uint64_t n) {
        for(uint64_t i{ 2 }; i < n / 2; ++i) {
            if(n % i == 0) return false;
        }
        return true;
    };
    uint64_t count{ 0 };
    uint64_t start{ 2 };
    uint64_t end{ MAX_PRIME };
    for(uint64_t i{ start }; i <= end ; ++i) {
        if(is_prime(i)) ++count;
   }
   return count;
}


			

			This function counts the prime numbers between 2 and 0x1FFFF (131,071), which should take a few seconds on most modern systems. 

			
					Now, we write a timer function to time our count_primes():seconds timer(uint64_t(*f)()) {
    auto t1{ system_clock::now() };
    uint64_t count{ f() };
    auto t2{ system_clock::now() };
    seconds secs{ t2 - t1 };
    cout << format("there are {} primes in range\n", 
      count);
    return secs;
}


			

			This function takes an function f and returns duration<double>. We use system_clock::now() to mark the time before and after the call to f(). We take the difference between the two times and return it in a duration object.

			
					We can call our timer() from main(), like this:int main() {
    auto secs{ timer(count_primes) };
    cout << format("time elapsed: {:.3f} seconds\n", 
        secs.count());
    ...


			

			This passes the count_primes() function to timer() and stores the duration object in secs.

			Output:

			there are 12252 primes in range

			time elapsed: 3.573 seconds

			The count() method on the duration object returns the duration in the specified units – in this case, double, representing seconds of duration. 

			This was run on a VM running Debian with GCC. The exact time will vary on different systems.

			
					The system_clock class is designed to provide the current wall clock time. While its resolution may support timing purposes, it is not guaranteed to be monotonic. In other words, it may not always provide consistent ticks (timing intervals).

			

			The chrono library provides a more suitable clock in steady_clock. It has the same interface as system_clock but provides more reliable ticks for timing purposes:

			seconds timer(uint64_t(*f)()) {

			    auto t1{ steady_clock::now() };

			    uint64_t count{ f() };

			    auto t2{ steady_clock::now() };

			    seconds secs{ t2 - t1 };

			    cout << format("there are {} primes in range\n", 

			      count);

			    return secs;

			}

			steady_clock is designed to provide reliably consistent monotonic ticks, suitable for timing events. It uses a relative time reference, so it's not useful for wall clock time. While system_clock measures by beginning from a fixed point in time (1 January 1970, 00:00 UTC), steady_clock uses a relative time. 

			Another option is high_resolution_clock, which provides the shortest tick period available on a given system but is not implemented consistently across different implementations. It may be an alias for system_clock or steady_clock, and it may or may not be monotonic. high_resolution_clock is not recommended for general-purpose use.

			
					Our timer() function returns seconds, which is an alias for duration<double>:using seconds = duration<double>;


			

			The duration class takes an optional second template parameter, a std::ratio class:

			template<class Rep, class Period = std::ratio<1>>

			class duration;

			The <chrono> header provides convenience types for many decimal ratios, including milli and micro:

			using milliseconds = duration<double, std::milli>;

			using microseconds = duration<double, std::micro>;

			If we require something else, we may provide our own:

			using fps24 = duration<unsigned long, std::ratio<1, 24>>;

			fps24 represents the number of frames of film shot at the standard 24 frames per second. The ratio is 1/24 of a second.

			This allows us to easily convert between different ranges of duration:

			cout << format("time elapsed: {:.3f} sec\n", secs.count());

			cout << format("time elapsed: {:.3f} ms\n", 

			    milliseconds(secs).count());

			cout << format("time elapsed: {:.3e} μs\n", 

			    microseconds(secs).count());

			cout << format("time elapsed: {} frames at 24 fps\n", 

			    floor<fps24>(secs).count());

			Output:

			time elapsed: 3.573 sec

			time elapsed: 3573.077 ms

			time elapsed: 3.573e+06 μs

			time elapsed: 85 frames at 24 fps

			Because the fps24 alias uses unsigned long instead of double, a type conversion is required. The floor function provides this by discarding the fractional part. round() and ceil() are also available in this context.

			
					For convenience, the chrono library provides format() specializations for the standard duration ratios:cout << format("time elapsed: {:.3}\n", secs);
cout << format("time elapsed: {:.3}\n", milliseconds(secs));
cout << format("time elapsed: {:.3}\n", microseconds(secs));


			

			Output:

			time elapsed: 3.573s

			time elapsed: 3573.077ms

			time elapsed: 3573076.564μs

			These results will vary on different implementations.

			How it works…

			There are two major pieces to the chrono library, the clock classes and the duration class. 

			The clock classes

			The clock classes include:

			
					system_clock – provides wall clock time.

					steady_clock – provides guaranteed monotonic ticks for duration measurements.

					high_resolution_clock – provides the shortest available tick period. It may be an alias of system_clock or steady_clock on some systems.

			

			We use system_clock to display the current time and date. We use steady_clock to measure intervals. 

			Each of the clock classes has a now() method that returns time_point, representing the current value of the clock. now() is a static member function, so it's called on the class without instantiating an object:

			auto t1{ steady_clock::now() };

			The std::duration class

			The duration class is used to hold a time interval – that is, the difference between two time_point objects. It is generally constructed with a time_point object's subtraction (-) operator. 

			duration<double> secs{ t2 - t1 };

			The time_point subtraction operator doubles as a constructor for duration:

			template<class C, class D1, class D2>

			constexpr duration<D1,D2>

			operator-( const time_point<C,D1>& pt_lhs,

			    const time_point<C,D2>& pt_rhs );

			The duration class has template parameters for type representation and a ratio object:

			template<class Rep, class Period = std::ratio<1>>

			class duration;

			The Period template parameter defaults to a ratio of 1:1, which is seconds.

			The library provides ratio aliases (such as micro and milli) for powers-of-10 from atto (1/1,000,000,000,000,000,000) through exa (1,000,000,000,000,000,000/1). This allows us to create standard durations, as we did in our example:

			using milliseconds = duration<double, std::milli>;

			using microseconds = duration<double, std::micro>;

			The count() method gives us the duration in the Rep type:

			constexpr Rep count() const;

			This allows us to easily access the duration for display or other purposes:

			cout << format("duration: {}\n", secs.count());

			Use fold expressions for variadic tuples

			The std::tuple class is essentially a more complex, and less convenient, struct. The interface for tuple is cumbersome, although class template argument deduction and structured binding have made it somewhat easier. 

			I tend to use struct before tuple for most applications, with one significant exception: the one real advantage of tuple is that it can be used with fold expressions in a variadic context.

			Fold expressions

			Designed to make it easier to expand a variadic parameter pack, fold expressions are a new feature with C++17. Prior to fold expressions, expanding a parameter pack required a recursive function:

			template<typename T>

			void f(T final) {

			    cout << final << '\n';

			}

			template<typename T, typename... Args>

			void f(T first, Args... args) {

			    cout << first;

			    f(args...);

			}

			int main() {

			    f("hello", ' ', 47, ' ', "world");

			}

			Output:

			hello 47 world

			Using a fold expression, this is much simpler:

			template<typename... Args>

			void f(Args... args) {

			    (cout << ... << args);

			    cout << '\n';

			}

			Output:

			hello 47 world

			There are four types of fold expressions:

			
					Unary right fold: (args op ...)

					Unary left fold: (... op args)

					Binary right fold: (args op ... op init)

					Binary left fold: (init op ... op args)

			

			The expression in the example above is a binary left fold:

			(cout << ... << args);

			This expands to:

			cout << "hello" << ' ' << 47 << ' ' << "world";

			Fold expressions are a great convenience for many purposes. Let's look at how we can use them with tuples.

			How to do it…

			In this recipe, we'll create a template function that operates on a tuple with varying numbers and types of elements:

			
					The heart of this recipe is a function that takes a tuple of unknown size and type and prints each element with format():template<typename... T>
constexpr void print_t(const tuple<T...>& tup) {
    auto lpt =
        [&tup] <size_t... I> 
          (std::index_sequence<I...>)
            constexpr {
            (..., ( cout <<
                format((I? ", {}" : "{}"), 
                  get<I>(tup))
            ));
            cout << '\n';
        };
    lpt(std::make_index_sequence<sizeof...(T)>());
}


			

			The heart of this function is in the lambda expression. It uses the index_sequence object to generate a parameter pack of index values. We then use a fold expression to call get<I> with each index value. The templated lambda requires C++20.  

			You could use a separate function in place of the lambda, but I like keeping it in a single scope.

			
					We can now call this from main() with a variety of tuples:int main() {
    tuple lables{ "ID", "Name", "Scale" };
    tuple employee{ 123456, "John Doe", 3.7 };
    tuple nums{ 1, 7, "forty-two", 47, 73L, -111.11 };
    
    print_t(lables);
    print_t(employee);
    print_t(nums);
}


			

			Output:

			ID, Name, Scale

			123456, John Doe, 3.7

			1, 7, forty-two, 47, 73, -111.11

			How it works…

			The challenge with tuple is its restrictive interface. You can retrieve elements with std::tie(), with structured bindings, or the std::get<> function. None of these techniques are useful if you don't know the number and type of elements in the tuple. 

			We get around this limitation by using the index_sequence class. index_sequence is a specialization of integer_sequence that provides a parameter pack of the size_t elements, which we can use to index our tuple. We call our lambda function with make_index_sequence to set up a parameter pack in the lambda:

			lpt(std::make_index_sequence<sizeof...(T)>());

			The templated lambda is constructed with a parameter pack of size_t indexes for the get() function: 

			[&tup] <size_t... I> (std::index_sequence<I...>) constexpr {

			   ...

			};

			The get() function takes the index value as a template parameter. We use a unary left fold expression to call get<I>():

			(..., ( cout << format("{} ", std::get<I>(tup))));

			The fold expression takes each element of the function's parameter pack and applies the comma operator. The right-hand side of the comma has a format() function that prints each element of the tuple. 

			This makes it possible to deduce the number of elements in the tuple, which makes it useable in a variadic context. Keep in mind that, as with template functions in general, the compiler will generate a separate specialization of this function for each combination of tuple parameters.

			There's more…

			We can use this technique for other tasks. For example, here's a function that returns the sum of all the int values in a tuple of unknown size:

			template<typename... T>

			constexpr int sum_t(const tuple<T...>& tup) {

			    int accum{};

			    auto lpt =

			        [&tup, &accum] <size_t... I> 

			          (std::index_sequence<I...>) 

			        constexpr {

			            (..., ( 

			                accum += get<I>(tup)

			            ));

			        };

			    lpt(std::make_index_sequence<sizeof...(T)>());

			    return accum;

			}

			We can call this with several tuple objects of varying numbers of int values:

			tuple ti1{ 1, 2, 3, 4, 5 };

			tuple ti2{ 9, 10, 11, 12, 13, 14, 15 };

			tuple ti3{ 47, 73, 42 };

			auto sum1{ sum_t(ti1) };

			auto sum2{ sum_t(ti2) };

			auto sum3{ sum_t(ti3) };

			cout << format("sum of ti1: {}\n", sum1);

			cout << format("sum of ti2: {}\n", sum2);

			cout << format("sum of ti3: {}\n", sum3);

			Output:

			sum of ti1: 15

			sum of ti2: 84

			sum of ti3: 162

			Manage allocated memory with std::unique_ptr

			Smart pointers are an excellent tool for managing allocated heap memory. 

			Heap memory is managed at the lowest level by the C functions, malloc() and free(). malloc() allocates a block of memory from the heap, and free() returns it to the heap. These functions do not perform initialization and do not call constructors or destructors. If you fail to return allocated memory to the heap with a call to free(), the behavior is undefined and often leads to memory leaks and security vulnerabilities.

			C++ provides the new and delete operators to allocate and free heap memory, in place of malloc() and free(). The new and delete operators call object constructors and destructors but still do not manage memory. If you allocate memory with new and fail to free it with delete, you will leak memory.

			Introduced with C++14, smart pointers comply with the Resource Acquisition Is Initialization (RAII) idiom. This means that when memory is allocated for an object, that object's constructor is called. And when the object's destructor is called, the memory is automatically returned to the heap. 

			For example, when we create a new smart pointer with make_unique():

			{   // beginning of scope

			    auto p = make_unique<Thing>(); // memory alloc’d,

			                                   // ctor called

			    process_thing(p);   // p is unique_ptr<Thing>

			}   // end of scope, dtor called, memory freed

			make_unique() allocates memory for a Thing object, calls the Thing default constructor, constructs a unique_ptr<Thing> object, and returns the unique_ptr. When p goes out of scope, the Thing destructor is called, and the memory is automatically returned to the heap.

			Aside from the memory management, a smart pointer works very much like a primitive pointer:

			auto x = *p;  // *p derefs the pointer, returns Thing object

			auto y = p->thname; // p-> derefs the pointer, returns member

			unique_ptr is a smart pointer that allows only one instance of the pointer. It may be moved, but it may not be copied. Let's take a closer look at how to use unique_ptr.

			How to do it…

			In this recipe, we examine std::unique_ptr with a demonstration class that prints when its constructors and destructor are called:

			
					First, we'll create a simple demonstration class:struct Thing {
    string_view thname{ "unk" };
    Thing() {
        cout << format("default ctor: {}\n", thname);
    }
    Thing(const string_view& n) : thname(n) {
        cout << format("param ctor: {}\n", thname);
    }
    ~Thing() {
        cout << format("dtor: {}\n", thname);
    }
};


			

			This class has a default constructor, a parameterized constructor, and a destructor. Each of these has a simple print statement to tell us what was called.

			
					When we just construct a unique_ptr, it does not allocate memory or construct a managed object:int main() {
    unique_ptr<Thing> p1;
    cout << "end of main()\n";
}


			

			Output:

			end of main()

			
					When we use the new operator, it allocates memory and constructs a Thing object:int main() {
    unique_ptr<Thing> p1{ new Thing };
    cout << "end of main()\n";
}


			

			Output:

			default ctor: unk

			end of main()

			dtor: unk

			The new operator constructs a Thing object by calling the default constructor. The unique_ptr<Thing> destructor calls the Thing destructor when the smart pointer reaches the end of its scope.

			The Thing default constructor does not initialize the thname string, leaving its default value, "unk". 

			
					We can use make_unique() to get the same result:int main() {
    auto p1 = make_unique<Thing>();
    cout << "end of main()\n";
}


			

			Output:

			default ctor: unk

			end of main()

			dtor: unk

			The make_unique() helper function takes care of the memory allocation and returns a unique_ptr object. This is the recommended way to construct a unique_ptr. 

			
					Any arguments you pass to make_unique() are used in constructing the target object:int main() {
    auto p1 = make_unique<Thing>("Thing 1") };
    cout << "end of main()\n";
}


			

			Output:

			param ctor: Thing 1

			end of main()

			dtor: Thing 1

			The parameterized constructor assigns a value to thname, so our Thing object is now "Thing 1".

			
					Let's write a function that takes a unique_ptr<Thing> argument:void process_thing(unique_ptr<Thing> p) {
    if(p) cout << format("processing: {}\n", 
      p->thname);
    else cout << "invalid pointer\n";
}


			

			If we try to pass a unique_ptr to this function, we get a compiler error:

			process_thing(p1);

			Compiler error:

			error: use of deleted function...

			This is because the function call tries to make a copy of the unique_ptr object, but the unique_ptr copy constructor is deleted to prevent copying. The solution is to have the function take a const& reference:

			void process_thing(const unique_ptr<Thing>& p) {

			    if(p) cout << format("processing: {}\n", 

			      p->thname);

			    else cout << "invalid pointer\n";

			}

			Output:

			param ctor: Thing 1

			processing: Thing 1

			end of main()

			dtor: Thing 1

			
					We can call process_thing() with a temporary object, which is immediately destroyed at the end of the function scope:int main() {
    auto p1{ make_unique<Thing>("Thing 1") };
    process_thing(p1);
    process_thing(make_unique<Thing>("Thing 2"));
    cout << "end of main()\n";
}


			

			Output:

			param ctor: Thing 1

			processing: Thing 1

			param ctor: Thing 2

			processing: Thing 2

			dtor: Thing 2

			end of main()

			dtor: Thing 1

			How it works…

			A smart pointer is simply an object that presents a pointer interface while owning and managing the resources of another object.

			The unique_ptr class is distinguished by its deleted copy constructor and copy assignment operator, which prevents the smart pointer from being copied.

			You may not copy a unique_ptr:

			auto p2 = p1;

			Compiler error:

			error: use of deleted function...

			But you can move a unique_ptr:

			auto p2 = std::move(p1);

			process_thing(p1);

			process_thing(p2);

			After the move, p1 is invalid and p2 is "Thing 1".

			Output:

			invalid pointer

			processing: Thing 1

			end of main()

			dtor: Thing 1

			The unique_ptr interface has a method to reset a pointer:

			p1.reset();  // pointer is now invalid

			process_thing(p1);

			Output:

			dtor: Thing 1

			invalid pointer

			The reset() method may also be used to replace the managed object with another of the same type:

			p1.reset(new Thing("Thing 3"));

			process_thing(p1);

			Output:

			param ctor: Thing 3

			dtor: Thing 1

			processing: Thing 3

			Share objects with std::shared_ptr

			The std::shared_ptr class is a smart pointer that owns its managed object and maintains a use counter to keep track of copies. This recipe explores the use of shared_ptr to manage memory while sharing copies of the pointer.

			Note

			For more detail about smart pointers, see the introduction to the Manage allocated memory with std::unique_ptr recipe earlier in this chapter.

			How to do it…

			In this recipe, we examine std::shared_ptr with a demonstration class that prints when its constructors and destructor are called:

			
					First, we create a simple demonstration class:struct Thing {
    string_view thname{ "unk" };
    Thing() {
        cout << format("default ctor: {}\n", thname);
    }
    Thing(const string_view& n) : thname(n) {
        cout << format("param ctor: {}\n", thname);
    }
    ~Thing() {
        cout << format("dtor: {}\n", thname);
    }
};


			

			This class has a default constructor, a parameterized constructor, and a destructor. Each of these has a simple print statement to tell us what was called.

			
					The shared_ptr class works very much like other smart pointers, in that it may be constructed with the new operator or with its helper, the make_shared() function:int main() {
    shared_ptr<Thing> p1{ new Thing("Thing 1") };
    auto p2 = make_shared<Thing>("Thing 2");
    cout << "end of main()\n";
}


			

			Output:

			param ctor: Thing 1

			param ctor: Thing 2

			end of main()

			dtor: Thing 2

			dtor: Thing 1

			The make_shared() function is recommended, as it manages the construction process and is less prone to error.

			As with the other smart pointers, the managed object is destroyed, and its memory is returned to the heap when the pointer goes out of scope.

			
					Here's a function to check the use count of a shared_ptr object:void check_thing_ptr(const shared_ptr<Thing>& p) {
    if(p) cout << format("{} use count: {}\n", 
        p->thname, p.use_count());
    else cout << "invalid pointer\n";
}


			

			thname is a member of the Thing class, so we access it through the pointer with the p-> member dereference operator. The use_count() function is a member of the shared_ptr class, so we access it with the p. object member operator. 

			Let's call this with our pointers:

			check_thing_ptr(p1);

			check_thing_ptr(p2);

			Output:

			Thing 1 use count: 1

			Thing 2 use count: 1

			
					When we make copies of our pointers, the use count increases, but no new objects are constructed:cout << "make 4 copies of p1:\n";
auto pa = p1;
auto pb = p1;
auto pc = p1;
auto pd = p1;
check_thing_ptr(p1);


			

			Output:

			make 4 copies of p1:

			Thing 1 use count: 5

			
					When we check any of the other copies, we get the same result:check_thing_ptr(pa);
check_thing_ptr(pb);
check_thing_ptr(pc);
check_thing_ptr(pd);


			

			Output:

			Thing 1 use count: 5

			Thing 1 use count: 5

			Thing 1 use count: 5

			Thing 1 use count: 5

			Each pointer reports the same use count. 

			
					When the copies go out of scope, they are destroyed, and the use count is decremented:{   // new scope
    cout << "make 4 copies of p1:\n";
    auto pa = p1;
    auto pb = p1;
    auto pc = p1;
    auto pd = p1;
    check_thing_ptr(p1);
}   // end of scope
check_thing_ptr(p1);


			

			Output:

			make 4 copies of p1:

			Thing 1 use count: 5

			Thing 1 use count: 1

			
					Destroying a copy reduces the use count but does not destroy the managed object. The object is destroyed when the final copy goes out of scope and the use count reaches zero:{    
    cout << "make 4 copies of p1:\n";
    auto pa = p1;
    auto pb = p1;
    auto pc = p1;
    auto pd = p1;
    check_thing_ptr(p1);
    pb.reset();
    p1.reset();
    check_thing_ptr(pd);
}   // end of scope


			

			Output:

			make 4 copies of p1:

			Thing 1 use count: 5

			Thing 1 use count: 3

			dtor: Thing 1

			Destroying pb (a copy) and p1 (the original) leaves three copies of the pointer (pa, bc, and pd), so the managed object remains.

			The remaining three pointer copies are destroyed at the end of the scope in which they were created. Then the object is destroyed and its memory returned to the heap.

			How it works…

			The shared_ptr class is distinguished by its management of multiple pointers to the same managed object. 

			The shared_ptr object's copy constructor and copy assignment operator increment a use counter. The destructor decrements the use counter until it reaches zero, then destroys the managed object, and returns its memory to the heap.

			The shared_ptr class manages both the managed object and a heap-allocated control block. The control block contains the use counter, along with other housekeeping objects. The control block is managed and shared between copies along with the managed object. This allows the original shared_ptr object to cede control to its copies, so that the last remaining shared_ptr may manage the object and its memory.

			Use weak pointers with shared objects

			Strictly speaking, std::weak_ptr is not a smart pointer. Rather, it's an observer that operates in cooperation with shared_ptr. A weak_ptr object does not hold a pointer on its own.

			There are circumstances where shared_ptr objects may create dangling pointers or race conditions, which could lead to memory leaks or other problems. The solution is to use weak_ptr objects with shared_ptr. 

			How to do it…

			In this recipe, we examine the use of std::weak_ptr with std::shared_ptr, using a demonstration class that prints when its constructors and destructor are called.

			
					We start with the same class we've used to demonstrate shared_ptr and unique_ptr:struct Thing {
    string_view thname{ "unk" };
    Thing() {
        cout << format("default ctor: {}\n", thname);
    }
    Thing(const string_view& n) : thname(n) {
        cout << format("param ctor: {}\n", thname);
    }
    ~Thing() {
        cout << format("dtor: {}\n", thname);
    }
};


			

			This class has a default constructor, a parameterized constructor, and a destructor. Each of these has a simple print statement to tell us what was called.

			
					We also need a function to examine a weak_ptr object:void get_weak_thing(const weak_ptr<Thing>& p) {
    if(auto sp = p.lock()) cout << 
        format("{}: count {}\n", sp->thname, 
          p.use_count());
    else cout << "no shared object\n";
}


			

			A weak_ptr does not operate as a pointer on its own; it requires the use of a shared_ptr. The lock() function returns a shared_ptr object, which can then be used to access the managed object.

			
					Because weak_ptr requires an associated shared_ptr, we'll start main() by creating a shared_ptr<Thing> object. When we create a weak_ptr object without assigning the shared_ptr, the expired flag is initially set:int main() {
    auto thing1 = make_shared<Thing>("Thing 1");
    weak_ptr<Thing> wp1;
    cout << format("expired: {}\n", wp1.expired());
    get_weak_thing(wp1);
}


			

			Output:

			param ctor: Thing 1

			expired: true

			no shared object

			The make_shared() function allocates memory and constructs a Thing object.

			The weak_ptr<Thing> declaration constructs a weak_ptr object without assigning a shared_ptr. So, when we check the expired flag, it's true, indicating that there is no associated shared_ptr.

			The get_weak_thing() function is not able to obtain a lock because there is no shared_ptr available.

			
					When we assign the shared_ptr to the weak_ptr, we can use the weak_ptr to access the managed object:wp1 = thing1;
get_weak_thing(wp1);


			

			Output:

			Thing 1: count 2

			The get_weak_thing() function is now able to obtain a lock and access the managed object. The lock() method returns a shared_ptr, and the use_count() reflects the fact that there is now a second shared_ptr managing the Thing object.

			The new shared_ptr is destroyed at the end of the get_weak_thing() scope. 

			
					The weak_ptr class has a constructor that takes a shared_ptr for one-step construction:weak_ptr<Thing> wp2(thing1);
get_weak_thing(wp2);


			

			Output:

			Thing 1: count 2

			The use_count() is 2 again. Remember that the previous shared_ptr was destroyed when its enclosing get_weak_thing() scope ended.

			
					When we reset shared_ptr, its associated weak_ptr objects are expired:thing1.reset();
get_weak_thing(wp1);
get_weak_thing(wp2);


			

			Output:

			dtor: Thing 1

			no shared object

			no shared object

			After the reset(), the use count reaches zero, and the managed object is destroyed and the memory released.

			How it works…

			A weak_ptr object is an observer that holds a non-owning reference to a shared_ptr object. The weak_ptr observes the shared_ptr so that it knows when the managed object is, and is not, available. This allows use of a shared_ptr in circumstances where you may not always know if the managed object is active. 

			The weak_ptr class has a use_count() function that returns the use count of shared_ptr, or 0 if the managed object has been deleted:

			long use_count() const noexcept;

			weak_ptr also has an expired() function that reports if the managed object has been deleted:

			bool expired() const noexcept;

			The lock() function is the preferred way to access the shared pointer. It checks expired() to see if the managed object is available. If so, it returns a new shared_ptr that shares ownership with the managed object. Otherwise, it returns an empty shared_ptr. It does all that as one atomic operation:

			std::shared_ptr<T> lock() const noexcept;

			There's more…

			One important use case for weak_ptr is when there's a possibility of circular references to shared_ptr objects. For example, consider the case of two classes that link to each other (perhaps in a hierarchy):

			struct circB;

			struct circA {

			    shared_ptr<circB> p;

			    ~circA() { cout << "dtor A\n"; }

			};

			struct circB {

			    shared_ptr<circA> p;

			    ~circB() { cout << "dtor B\n"; }

			};

			We have print statements in the destructors, so we can see when the objects are destroyed. We can now create two objects that point at each other with shared_ptr:

			int main() {

			    auto a{ make_shared<circA>() };

			    auto b{ make_shared<circB>() };

			    a->p = b;

			    b->p = a;

			    cout << "end of main()\n";

			}

			When we run this, notice that the destructors are never called:

			end of main()

			Because the objects maintain shared pointers that refer to each other, the use counts never reach zero, and the managed objects are never destroyed. 

			We can resolve this problem by changing one of the classes to use a weak_ptr:

			struct circB {

			    weak_ptr<circA> p;

			    ~circB() { cout << "dtor B\n"; }

			};

			The code in main() remains the same, and we get this output:

			end of main()

			dtor A

			dtor B

			By changing one shared_ptr to a weak_ptr, we have resolved the circular reference, and the objects are now properly destroyed at the end of their scope. 

			Share members of a managed object

			The std::shared_ptr class provides an aliasing constructor to share a pointer managed by another unrelated pointer:

			shared_ptr( shared_ptr<Y>&& ref, element_type* ptr ) noexcept;

			This returns an aliased shared_ptr object that uses the resources of ref but returns a pointer to ptr. The use_count is shared with ref. The deleter is shared with ref. But get() returns ptr. This allows us to share a member of a managed object without sharing the entire object, and without allowing the entire object to be deleted while we're still using the member.

			How to do it…

			In this recipe, we create a managed object and share members of that object:

			
					We start with a class for the managed object:struct animal {
    string name{};
    string sound{};
    animal(const string& n, const string& a)
            : name{n}, sound{a} {
        cout << format("ctor: {}\n", name);
    }
    ~animal() {
        cout << format("dtor: {}\n", name);
    }
};


			

			This class has two members, string types for name and sound of the animal object. We also have print statements for the constructor and the destructor. 

			
					Now, we need a function to create an animal but only share its name and sound:auto make_animal(const string& n, const string& s) {
    auto ap = make_shared<animal>(n, s);
    auto np = shared_ptr<string>(ap, &ap->name);
    auto sp = shared_ptr<string>(ap, &ap->sound);
    return tuple(np, sp);
}


			

			This function creates shared_ptr with an animal object, constructed with a name and a sound. We then create aliased shared_ptr objects for the name and sound. When we return the name and sound pointers, the animal pointer goes out of scope. It is not deleted because the aliased pointers keep the use count from reaching zero.

			
					In our main() function, we call make_animal() and inspect the results:int main() {
    auto [name, sound] =
        make_animal("Velociraptor", "Grrrr!");
    cout << format("The {} says {}\n", *name, *sound);
    cout << format("Use count: name {}, sound {}\n", 
        name.use_count(), sound.use_count()); 
}


			

			Output:

			ctor: Velociraptor

			The Velociraptor says Grrrr!

			Use count: name 2, sound 2

			dtor: Velociraptor

			We can see that the aliased pointers each show a use_count of 2. When the make_animal() function creates the aliased pointers, they each increase the use count of the animal pointer. When the function ends, the animal pointer goes out of scope, leaving its use count at 2, which is reflected in the aliased pointers. The aliased pointers go out of scope at the end of main(), which allows the animal pointer to be destroyed. 

			How it works…

			The aliased shared pointer seems a bit abstract, but it's simpler than it appears. 

			A shared pointer uses a control block to manage its resources. One control block is associated with one managed object and is shared among the pointers that share that object. The control block generally contains:

			
					A pointer to the managed object

					The deleter

					The allocator

					The number of shared_ptr objects that own the managed object (this is the use count)

					The number of weak_ptr objects that refer to the managed object

			

			In the case of an aliased shared pointer, the control block includes the pointer to the aliased object. Everything else remains the same.

			Aliased shared pointers participate in the use count, just like non-aliased shared pointers, preventing the managed object from being destroyed until the use count reaches zero. The deleter is not changed, so it destroys the managed object.

			Important Note

			It is possible to use any pointer to construct an aliased shared pointer. Usually, the pointer refers to a member within the aliased object. If the aliased pointer does not refer to an element of the managed object, you will need to manage its construction and destruction separately.

			Compare random number engines

			The random library provides a selection of random number generators, each with different strategies and properties. In this recipe, we examine a function to compare the different options by creating a histogram of their output.

			How to do it…

			In this recipe, we compare the different random number generators provided by the C++ random library:

			
					We start with some constants to provide uniform parameters for the random number generators:constexpr size_t n_samples{ 1000 };
constexpr size_t n_partitions{ 10 };
constexpr size_t n_max{ 50 };


			

			n_samples is the number of samples to examine, n_partitions is the number of partitions in which to display the samples, and n_max is the maximum size of a bar in the histogram (this will vary some due to rounding). 

			These numbers provide a reasonable display of the differences between the engines. Increasing the ratio of samples versus partitions tends to smooth out the curves and obscure the differences between the engines.

			
					This is the function that collects random number samples and displays a histogram:template <typename RNG>
void histogram(const string_view& rng_name) {
    auto p_ratio = (double)RNG::max() / n_partitions;
    RNG rng{};  // construct the engine object
    // collect the samples
    vector<size_t> v(n_partitions);
    for(size_t i{}; i < n_samples; ++i) {
        ++v[rng() / p_ratio];
    }
    // display the histogram
    auto max_el = std::max_element(v.begin(), 
      v.end());
    auto v_ratio = *max_el / n_max;
    if(v_ratio < 1) v_ratio = 1;
    cout << format("engine: {}\n", rng_name);
    for(size_t i{}; i < n_partitions; ++i) {
        cout << format("{:02}:{:*<{}}\n",
            i + 1, ' ', v[i] / v_ratio);
    }
    cout << '\n';
}


			

			In a nutshell, this function stores a histogram of collected samples in a vector. It then displays the histogram as a series of asterisks on the console.

			
					We call histogram() from main(), like this:int main() {
    histogram<std::random_device>("random_device");
    histogram<std::default_random_engine>
        ("default_random_engine");
    histogram<std::minstd_rand0>("minstd_rand0");
    histogram<std::minstd_rand>("minstd_rand");
    histogram<std::mt19937>("mt19937");
    histogram<std::mt19937_64>("mt19937_64");
    histogram<std::ranlux24_base>("ranlux24_base");
    histogram<std::ranlux48_base>("ranlux48_base");
    histogram<std::ranlux24>("ranlux24");
    histogram<std::ranlux48>("ranlux48");
    histogram<std::knuth_b>("knuth_b");
}


			

			Output:
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			Figure 8.1 – A screenshot of output from the first two random number engines

			This screenshot shows histograms of the first two random number engines. Your output will vary. 

			If we raise the value of n_samples to 100,000, you'll see that the variance between engines becomes more difficult to discern:
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			Figure 8.2 – A screenshot of output with 100,000 samples

			How it works…

			Each of the random number engines has a functor interface that returns the next random number in the sequence: 

			result_type operator()();

			The functor returns a random value, evenly distributed between the min() and max() values. All the random number engines have this interface in common. 

			The histogram() function takes advantage of this uniformity by using the class of the random number engine in a template:

			template <typename RNG>

			(RNG is a common abbreviation for Random Number Generator. The library documentation refers to these classes as engines, which is synonymous with RNG for our purposes.)

			We instantiate an object with the RNG class and create a histogram in a vector:

			RNG rng{};

			vector<size_t> v(n_partitions);

			for(size_t i{}; i < n_samples; ++i) {

			    ++v[rng() / p_ratio];

			}

			This allows us to easily compare the results of the various random number engines with this technique. 

			There's more…

			Each of the random number engines in the library have different methodologies and characteristics. When you run the histogram multiple times, you'll notice that most of the engines have the same distribution each time they're run. That's because they are deterministic – that is, they generate the same sequence of numbers each time. std::random_device is non-deterministic on most systems. You can use it to seed one of the other engines if you need more variation. It is also common to seed an RNG with the current date and time.

			The std::default_random_engine is a suitable choice for most purposes. 

			Compare random number distribution generators

			The C++ Standard Library provides a selection of random number distribution generators, each with its own properties. In this recipe, we examine a function to compare the different options by creating a histogram of their output.

			How to do it…

			Like the random number engines, the distribution generators have some common interface elements. Unlike the random number engines, the distribution generators have a variety of properties to set. We can create a template function to print a histogram of the various distributions, but the initializations of the various distribution generators vary significantly:

			
					We start with some constants:constexpr size_t n_samples{ 10 * 1000 };
constexpr size_t n_max{ 50 };


			

			The n_samples constant is the number of samples to generate for each histogram – in this case, 10,000. 

			The n_max constant is used as a divisor while generating our histograms.

			
					Our histogram function takes a distribution generator as an argument and prints a histogram for that distribution algorithm:void dist_histogram(auto distro,
        const string_view& dist_name) {
    std::default_random_engine rng{};
    map<long, size_t> m;
    // create the histogram map
    for(size_t i{}; i < n_samples; ++i) 
        ++m[(long)distro(rng)];
    // print the histogram
    auto max_elm_it = max_element(m.begin(), m.end(),
        [](const auto& a, const auto& b)
        { return a.second < b.second; }
        );
    size_t max_elm = max_elm_it->second;
    size_t max_div = std::max(max_elm / n_max,
        size_t(1));
    cout << format("{}:\n", dist_name);
    for (const auto [randval, count] : m) {
        if (count < max_elm / n_max) continue;
        cout << format("{:3}:{:*<{}}\n",
            randval, ' ', count / max_div);
    }
}


			

			The dist_histogram() function uses a map to store the histogram. It then displays the histogram as a series of asterisks on the console.

			
					We call dist_histogram() from main(), like this:int main() {
    dist_histogram(std::uniform_int_distribution<int>
        {0, 9}, uniform_int_distribution");
    dist_histogram(std::normal_distribution<double>
        {0.0, 2.0}, "normal_distribution");
...


			

			Calling the dist_histogram() function is more complex than it was for the random number generators. Each random distribution class has a different set of parameters, according to its algorithm. 

			For the full list, refer to the distribution.cpp file in the GitHub archive.

			Output:
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]
				

			

			Figure 8.3 – A screenshot of random distribution histograms

			Each of the distribution algorithms produces very different output. You will want to experiment with the different options for each random distribution generator.

			How it works…

			Each of the distribution generators has a functor that returns the next value in the random distribution:

			result_type operator()( Generator& g );

			The functor takes a random number generator (RNG) object as an argument:

			std::default_random_engine rng{};

			map<long, size_t> m;

			for (size_t i{}; i < n_samples; ++i) ++m[(long)distro(rng)];

			For our purposes, we're using the std::default_random_engine for our RNG. 

			As with the RNG histogram, this is a useful tool to visualize the various random distribution algorithms available in the random library. You will want to experiment with the various parameters available for each algorithm.

		

	
		
			Chapter 9: Concurrency and Parallelism

			Concurrency and parallelism refer to the ability to run code in separate threads of execution.

			More specifically, concurrency is the ability to run threads in the background, and parallelism is the ability to run threads simultaneously in separate cores of a processor. The run-time library, along with the host operating system, will choose between concurrent and parallel execution models for a given thread on a given hardware environment.

			In a modern multi-tasking operating system, the main() function already represents a thread of execution. When a new thread is started, it's said to be spawned by an existing thread. A group of threads may be called a swarm.

			In the C++ standard library, the std::thread class provides the basic unit of threaded execution. Other classes build upon thread to provide locks, mutexes, and other concurrency patterns. Depending on system architecture, execution threads may run concurrently on one processor, or in parallel on separate cores.

			In this chapter, we will cover these tools and more in the following recipes:

			
					Sleep for a specific amount of time

					Use std::thread for concurrency

					Use std::async for concurrency

					Run STL algorithms in parallel with execution policies

					Share data safely with mutex and locks

					Share flags and values with std::atomic

					Initialize threads with std::call_once

					Use std::condition_variable to resolve the producer-consumer problem

					Implement multiple producers and consumers

			

			Technical requirements

			You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/CPP-20-STL-Cookbook/tree/main/chap09.

			Sleep for a specific amount of time

			The <thread> header provides two functions for putting a thread to sleep, sleep_for() and sleep_until(). Both functions are in the std::this_thread namespace.

			This recipe explores the use of these functions, as we will be using them later in this chapter.

			How to do it…

			Let's look at how to use the sleep_for() and sleep_until() functions:

			
					The sleep-related functions are in the std::this_thread namespace. Because it has just a few symbols, we'll go ahead and issue using directives for std::this_thread and std::chrono_literals:using namespace std::this_thread;
using namespace std::chrono_literals;


			

			The chrono_literals namespace has symbols for representing durations, such as 1s for one second, or 100ms for 100 milliseconds.

			
					In main(), we'll mark a point in time with steady_clock::now(), so we can time our test:int main() {
    auto t1 = steady_clock::now();
    cout << "sleep for 1.3 seconds\n";
    sleep_for(1s + 300ms);
    cout << "sleep for 2 seconds\n";
    sleep_until(steady_clock::now() + 2s);
    duration<double> dur1 = steady_clock::now() - t1;
    cout << format("total duration: {:.5}s\n", 
      dur1.count());
}


			

			The sleep_for() function takes a duration object to specify the amount of time to sleep. The argument (1s + 300ms) uses chrono_literal operators to return a duration object representing 1.3 seconds.

			The sleep_until() function takes a time_point object to specify a specific time to resume from sleep. In this case, the chrono_literal operators are used to modify the time_point object returned from steady_clock::now().

			This is our output:

			sleep for 1.3 seconds

			sleep for 2 seconds

			total duration: 3.3005s

			How it works…

			The sleep_for(duration) and sleep_until(time_point) functions suspend execution of the current thread for the specified duration, or until the time_point is reached.

			The sleep_for() function will use the steady_clock implementation, if supported. Otherwise, the duration may be subject to time adjustments. Both functions may block for longer due to scheduling or resource delays.

			There's more…

			Some systems support a POSIX function, sleep(), which suspends execution for the number of seconds specified:

			unsigned int sleep(unsigned int seconds);

			The sleep() function is part of the POSIX standard and is not part of the C++ standard.

			Use std::thread for concurrency

			A thread is a unit of concurrency. The main() function may be thought of as the main thread of execution. Within the context of the operating system, the main thread runs concurrently with other threads owned by other processes.

			The std::thread class is the root of concurrency in the STL. All other concurrency features are built on the foundation of the thread class.

			In this recipe, we will examine the basics of std::thread and how join() and detach() determine its execution context.

			How to do it…

			In this recipe, we create some std::thread objects and experiment with their execution options.

			
					We start with a convenience function for sleeping a thread, in milliseconds:void sleepms(const unsigned ms) {
    using std::chrono::milliseconds;
    std::this_thread::sleep_for(milliseconds(ms));
}


			

			The sleep_for() function takes a duration object and blocks execution of the current thread for the specified duration. This sleepms() function serves as a convenience wrapper that takes an unsigned value for the number of milliseconds to sleep.

			
					Now, we need a function for our thread. This function sleeps for a variable number of milliseconds, based on an integer parameter:void fthread(const int n) {
    cout << format("This is t{}\n", n);
    
    for(size_t i{}; i < 5; ++i) {
        sleepms(100 * n);
        cout << format("t{}: {}\n", n, i + 1);
    }
    cout << format("Finishing t{}\n", n);
}


			

			fthread() calls sleepms() five times, sleeping each time for 100 * n milliseconds.

			
					We can run this in a separate thread with std::thread from main():int main() {
    thread t1(fthread, 1);
    cout << "end of main()\n";
}


			

			It compiles but we get this error when we run it:

			terminate called without an active exception

			Aborted

			(Your error message will vary. This is the error message on Debian with GCC.)

			The problem is that the operating system doesn't know what to do with the thread object when it goes out of scope. We must specify if the caller waits for the thread, or if it's detached and runs independently.

			
					We use the join() method to indicate that the caller will wait for the thread to finish:int main() {
    thread t1(fthread, 1);
    t1.join();
    cout << "end of main()\n";
}


			

			Output:

			This is t1

			t1: 1

			t1: 2

			t1: 3

			t1: 4

			t1: 5

			Finishing t1

			end of main()

			Now, main() waits for the thread to finish.

			
					If we call detach() instead of join(), then main() doesn't wait, and the program ends before the thread can run:thread t1(fthread, 1);
t1.detach();


			

			Output:

			end of main()

			
					When the thread is detached, we need to give it time to run:thread t1(fthread, 1);
t1.detach();
cout << "main() sleep 2 sec\n";
sleepms(2000);


			

			Output:

			main() sleep 2 sec

			This is t1

			t1: 1

			t1: 2

			t1: 3

			t1: 4

			t1: 5

			Finishing t1

			end of main()

			
					Let's start and detach a second thread and see what happens:int main() {
    thread t1(fthread, 1);
    thread t2(fthread, 2);
    t1.detach();
    t2.detach();
    cout << "main() sleep 2 sec\n";
    sleepms(2000);
    cout << "end of main()\n";
}


			

			Output:

			main() sleep 2 sec

			This is t1

			This is t2

			t1: 1

			t2: 1

			t1: 2

			t1: 3

			t2: 2

			t1: 4

			t1: 5

			Finishing t1

			t2: 3

			t2: 4

			t2: 5

			Finishing t2

			end of main()

			Because our fthread() function uses its parameter as a multiplier for sleepms(), the second thread runs a bit slower than the first. We can see the timers interlaced in the output.

			
					If we do this with join() instead of detatch(), we get a similar result:int main() {
    thread t1(fthread, 1);
    thread t2(fthread, 2);
    t1.join();
    t2.join();
    cout << "end of main()\n";
}


			

			Output:

			This is t1

			This is t2

			t1: 1

			t2: 1

			t1: 2

			t1: 3

			t2: 2

			t1: 4

			t1: 5

			Finishing t1

			t2: 3

			t2: 4

			t2: 5

			Finishing t2

			end of main()

			Because join() waits for the thread to finish, we no longer need the 2-second sleepms() in main() to wait for the threads to finish.

			How it works…

			A std::thread object represents a thread of execution. There is a one-to-one relationship between object and thread. One thread object represents one thread, and one thread is represented by one thread object. A thread object cannot be copied or assigned, but it can be moved.

			The thread constructor looks like this:

			explicit thread( Function&& f, Args&&… args );

			A thread is constructed with a function pointer and zero or more arguments. The function is called immediately with the arguments provided:

			thread t1(fthread, 1);

			This creates the object t1 and immediately calls the function fthread(int) with the literal value 1 as the argument.

			After creating the thread, we must use either join() or detach() on the thread:

			t1.join();

			The join() method blocks execution of the calling thread until the t1 thread has completed:

			t1.detach();

			The detach() method allows the calling thread to continue independently of the t1 thread.

			There's more…

			C++20 provides std::jthread, which automatically joins the caller at the end of its scope:

			int main() {

			    std::jthread t1(fthread, 1);

			    cout "< "end of main("\n";

			}

			Output:

			end of main()

			This is t1

			t1: 1

			t1: 2

			t1: 3

			t1: 4

			t1: 5

			Finishing t1

			This allows the t1 thread to execute independently and then automatically join the main() thread at the end of its scope.

			Use std::async for concurrency

			std::async() runs a target function asynchronously and returns a std::future object to carry the target function's return value. In this way, async() operates much like std::thread but allows return values.

			Let's consider the use of std::async() with a few examples.

			How to do it…

			In its simplest forms, the std::async() function performs much the same task as std::thread, without the need to call join() or detach() and while also allowing return values via a std::future object. 

			In this recipe, we'll use a function that counts the number of primes in a range. We'll use chrono::steady_clock to time the execution of each thread.

			
					We'll start with a couple of convenience aliases:using launch = std::launch;
using secs = std::chrono::duration<double>;


			

			std::launch has launch policy constants, for use with the async() call. The secs alias is a duration class, for timing our prime number calculations.

			
					Our target function counts prime numbers in a range. This is essentially a way to understand the execution policies by eating some clock cycles:struct prime_time {
    secs dur{};
    uint64_t count{};
};
prime_time count_primes(const uint64_t& max) {
    prime_time ret{};
    constexpr auto isprime = [](const uint64_t& n) {
        for(uint64_t i{ 2 }; i < n / 2; ++i) {
            if(n % i == 0) return false;
        }
        return true;
    };
    uint64_t start{ 2 };
    uint64_t end{ max };
    auto t1 = steady_clock::now();
    for(uint64_t i{ start }; i <= end ; ++i) {
        if(isprime(i)) ++ret.count;
    }
    ret.dur = steady_clock::now() - t1;
    return ret;
}


			

			The prime_time structure is for the return value, with elements for duration and count. This allows us to time the loop itself. The isprime lambda returns true if a value is prime. We use steady_clock to calculate the duration of the loop that counts primes.

			
					In main(), we call our function and report its timing:int main() {
    constexpr uint64_t MAX_PRIME{ 0x1FFFF };
    auto pt = count_primes(MAX_PRIME);
    cout << format("primes: {} {:.3}\n", pt.count, 
      pt.dur);
}


			

			Output:

			primes: 12252 1.88008s

			
					Now, we can run count_primes() asynchronously with std::async():int main() {
    constexpr uint64_t MAX_PRIME{ 0x1FFFF };
    auto primes1 = async(count_primes, MAX_PRIME);
    auto pt = primes1.get();
    cout << format("primes: {} {:.3}\n", pt.count, 
      pt.dur);
}


			

			Here, we call async() with our count_primes function and the MAX_PRIME parameter. This runs count_primes() in the background.

			async() returns a std::future object, which carries the return value of an asynchronous operation. The future object's get() method blocks until the asynchronous function has completed and then returns the return object from the function.

			This runs with almost the same timing as we got without async():

			primes: 12252 1.97245s

			
					The async() function optionally takes execution policy flags as its first parameter:auto primes1 = async(launch::async, count_primes, MAX_PRIME);


			

			The choices are async or deferred. These flags are in the std::launch namespace.

			The async flag enables asynchronous operation, and the deferred flag enables lazy evaluation. These flags are bitmapped and may be combined with the bitwise or | operator.

			The default is for both bits to be set, as if async | deferred was specified.

			
					We can run several instances of our function simultaneously with async():int main() {
    constexpr uint64_t MAX_PRIME{ 0x1FFFF };
    list<std::future<prime_time>> swarm;
    cout << "start parallel primes\n";
    auto t1{ steady_clock::now() };
    for(size_t i{}; i < 15; ++i) {
        swarm.emplace_back(
            async(launch::async, count_primes, 
              MAX_PRIME)
        );
    }
    for(auto& f : swarm) {
        static size_t i{};
        auto pt = f.get();
        cout << format("primes({:02}): {} {:.5}\n",
            ++i, pt.count, pt.dur);
    }
    secs dur_total{ steady_clock::now() - t1 };
    cout << format("total duration: {:.5}s\n", 
        dur_total.count());
}


			

			We know that async returns a future object. So, we can run 15 threads by storing the future objects in a container. Here's our output on a 6-core i7 running Windows:

			start parallel primes

			primes(01): 12252 4.1696s

			primes(02): 12252 3.7754s

			primes(03): 12252 3.78089s

			primes(04): 12252 3.72149s

			primes(05): 12252 3.72006s

			primes(06): 12252 4.1306s

			primes(07): 12252 4.26015s

			primes(08): 12252 3.77283s

			primes(09): 12252 3.77176s

			primes(10): 12252 3.72038s

			primes(11): 12252 3.72416s

			primes(12): 12252 4.18738s

			primes(13): 12252 4.07128s

			primes(14): 12252 2.1967s

			primes(15): 12252 2.22414s

			total duration: 5.9461s

			Even though the 6-core i7 is not able to run all the processes in separate cores, it still completes 15 instances in under 6 seconds.

			It looks like it finishes the first 13 threads in about 4 seconds, and then takes another 2 seconds to finish the last 2 threads. It appears to take advantage of Intel's Hyper-Threading technology that allows 2 threads to run in one core under some circumstances.

			When we run the same code on a 12-core Xeon, we get this result:

			start parallel primes

			primes(01): 12252 0.96221s

			primes(02): 12252 0.97346s

			primes(03): 12252 0.92189s

			primes(04): 12252 0.97499s

			primes(05): 12252 0.98135s

			primes(06): 12252 0.93426s

			primes(07): 12252 0.90294s

			primes(08): 12252 0.96307s

			primes(09): 12252 0.95015s

			primes(10): 12252 0.94255s

			primes(11): 12252 0.94971s

			primes(12): 12252 0.95639s

			primes(13): 12252 0.95938s

			primes(14): 12252 0.92115s

			primes(15): 12252 0.94122s

			total duration: 0.98166s

			The 12-core Xeon gets through all 15 processes in under a second.

			How it works…

			The key to understanding std::async is in its use of std::promise and std::future.

			The promise class allows a thread to store an object that may later be retrieved asynchronously by a future object.

			For example, let's say we have a function like this:

			void f() {

			    cout << "this is f()\n";

			}

			We can run it with std::thread, like this:

			int main() {

			    std::thread t1(f);

			    t1.join();

			    cout << "end of main()\n";

			}

			That works fine for a simple function with no return value. When we want to return a value from f(), we can use promise and future.

			We set up the promise and future objects in the main() thread:

			int main() {

			    std::promise<int> value_promise;

			    std::future<int> value_future = 

			      value_promise.get_future();

			    std::thread t1(f, std::move(value_promise));

			    t1.detach();

			    cout << format("value is {}\n", value_future.get());

			    cout << "end of main()\n";

			}

			And we pass the promise object to our function:

			void f(std::promise<int> value) {

			    cout << "this is f()\n";

			    value.set_value(47);

			}

			Note that a promise object cannot be copied, so we need to use std::move to pass it to the function.

			The promise object serves as a bridge to a future object, which allows us to retrieve the value when it becomes available.

			std::async() is just a helper function to simplify the creation of the promise and future objects. With async(), we can do all of that like this:

			int f() {

			    cout << "this is f()\n";

			    return 47;

			}

			int main() {

			    auto value_future = std::async(f);

			    cout << format("value is {}\n", value_future.get());

			    cout << "end of main()\n";

			}

			That's the value of async(). For many purposes, it makes the use of promise and future much easier.

			Run STL algorithms in parallel with execution policies

			Beginning with C++17, many of the standard STL algorithms can run with parallel execution. This feature allows an algorithm to split its work into sub-tasks to run simultaneously on multiple cores. These algorithms accept an execution policy object that specifies the kind of parallelism applied to the algorithm. This feature requires hardware support.

			How to do it…

			Execution policies are defined in the <execution> header and in the std::execution namespace. In this recipe, we will test the available policies using the std::transform() algorithm:

			
					For timing purposes, we'll use the duration object with the std::milli ratio so that we can measure in milliseconds:using dur_t = duration<double, std::milli>;


					For demonstration purposes, we'll start with a vector of int with 10 million random values:int main() {
    std::vector<unsigned> v(10 * 1000 * 1000);
    std::random_device rng;
    for(auto &i : v) i = rng() % 0xFFFF;
    ...


					Now, we apply a simple transformation:auto mul2 = [](int n){ return n * 2; };
auto t1 = steady_clock::now();
std::transform(v.begin(), v.end(), v.begin(), mul2);
dur_t dur1 = steady_clock::now() - t1;
cout << format("no policy: {:.3}ms\n", dur1.count());


			

			The mul2 lambda simply multiplies a value by 2. The transform() algorithm applies mul2 to every member of the vector.

			This transformation does not specify an execution policy.

			Output:

			no policy: 4.71ms

			
					We can specify an execution policy in the first argument of the algorithm:std::transform(execution::seq,
    v.begin(), v.end(), v.begin(), mul2);


			

			The seq policy means that the algorithm shall not be parallelized. This is the same as no execution policy.

			Output:

			execution::seq: 4.91ms

			Notice that the duration is roughly the same as without a policy. It will never be exact because it varies each time it's run.

			
					The execution::par policy allows the algorithm to parallelize its workload:std::transform(execution::par,
    v.begin(), v.end(), v.begin(), mul2);


			

			Output:

			execution::par: 3.22ms

			Notice that the algorithm runs somewhat faster with the parallel execution policy.

			
					The execution::par_unseq policy allows unsequenced parallel execution of the workload:std::transform(execution::par_unseq,
    v.begin(), v.end(), v.begin(), mul2);


			

			Output:

			execution::par_unseq: 2.93ms

			Here, we notice another increase in performance with this policy.

			The execution::par_unseq policy has tighter requirements of the algorithm. The algorithm must not perform operations that require concurrent or sequential operation.

			How it works…

			The execution policies interface doesn't specify how the algorithm workloads are parallelized. It's designed to work with a diverse set of hardware and processors under varying loads and circumstances. It may be implemented entirely in the library or rely on compiler or hardware support.

			Parallelization will show the most improvement on algorithms that do more than O(n) work. For example, sort() shows a dramatic improvement. Here's a sort() with no parallelization:

			auto t0 = steady_clock::now();

			std::sort(v.begin(), v.end());

			dur_t dur0 = steady_clock::now() - t0;

			cout << format("sort: {:.3}ms\n", dur0.count());

			Output:

			sort: 751ms

			With execution::par, we see significant performance gains:

			std::sort(execution::par, v.begin(), v.end());

			Output:

			sort: 163ms

			The improvement with execution::par_unseq is better still:

			std::sort(execution::par_unseq, v.begin(), v.end());

			Output:

			sort: 152ms

			It's a good idea to do a lot of testing when using the parallelized algorithms. If your algorithm or predicates do not lend themselves well to parallelization, you may end up with minimal performance gains or unintended side effects.

			Note

			At the time of writing, execution policies are poorly supported in GCC and not yet supported by LLVM/Clang. This recipe was tested on a 6-core i7 running Windows 10 and a preview release of Visual C++.

			Share data safely with mutex and locks

			The term mutex refers to mutually exclusive access to shared resources. A mutex is commonly used to avoid data corruption and race conditions, due to multiple threads of execution attempting to access the same data. A mutex will typically use locks to restrict access to one thread at a time.

			The STL provides mutex and lock classes in the <mutex> header.

			How to do it…

			In this recipe, we will use a simple Animal class to experiment with locking and unlocking a mutex:

			
					We start by creating a mutex object:std::mutex animal_mutex;


			

			The mutex is declared in the global scope, so it's accessible to all the relevant objects.

			
					Our Animal class has a name and a list of friends:class Animal {
    using friend_t = list<Animal>;
    string_view s_name{ "unk" };
    friend_t l_friends{};
public:
    Animal() = delete;
    Animal(const string_view n) : s_name{n} {}
    ...
}


			

			Adding and deleting friends will be a useful test case for our mutex.

			
					The equality operator is the only operator we'll need:bool operator==(const Animal& o) const {
    return s_name.data() == o.s_name.data();
}


			

			The s_name member is a string_view object, so we can test the address of its data store for equality.

			
					The is_friend() method tests if another Animal is in the l_friends list:bool is_friend(const Animal& o) const {
    for(const auto& a : l_friends) {
        if(a == o) return true;
    }
    return false;
}


					The find_friend() method returns an optional, with an iterator to the Animal if found:optional<friend_t::iterator>
find_friend(const Animal& o) noexcept {
    for(auto it{l_friends.begin()};
            it != l_friends.end(); ++it) {
        if(*it == o) return it;
    }
    return {};
}


					The print() method prints s_name along with names of each of the Animal objects in the l_friends list:void print() const noexcept {
    auto n_animals{ l_friends.size() };
    cout << format("Animal: {}, friends: ", s_name);
    if(!n_animals) cout << "none";
    else {
        for(auto n : l_friends) {
            cout << n.s_name;
            if(--n_animals) cout << ", ";
        }
    }
    cout << '\n';
}


					The add_friend() method adds an Animal object to the l_friends list:bool add_friend(Animal& o) noexcept {
    cout << format("add_friend {} -> {}\n", s_name, 
      o.s_name);
    if(*this == o) return false;
    std::lock_guard<std::mutex> l(animal_mutex);
    if(!is_friend(o)) l_friends.emplace_back(o);
    if(!o.is_friend(*this))
      o.l_friends.emplace_back(*this);
    return true;
}


					The delete_friend() method removes an Animal object from the l_friends list:bool delete_friend(Animal& o) noexcept {
    cout << format("delete_friend {} -> {}\n",
        s_name, o.s_name);
    if(*this == o) return false;
    if(auto it = find_friend(o)) 
      l_friends.erase(it.value());
    if(auto it = o.find_friend(*this))
        o.l_friends.erase(it.value());
    return true;
}


					In the main() function, we create some Animal objects:int main() {
    auto cat1 = std::make_unique<Animal>("Felix");
    auto tiger1 = std::make_unique<Animal>("Hobbes");
    auto dog1 = std::make_unique<Animal>("Astro");
    auto rabbit1 = std::make_unique<Animal>("Bugs");
    ...


					We call add_friends() on our objects with async(), to run them in separate threads:auto a1 = std::async([&]{ cat1->add_friend(*tiger1); });
auto a2 = std::async([&]{ cat1->add_friend(*rabbit1); });
auto a3 = std::async([&]{ rabbit1->add_friend(*dog1); });
auto a4 = std::async([&]{ rabbit1->add_friend(*cat1); });
a1.wait();
a2.wait();
a3.wait();
a4.wait();


			

			We call wait() to allow our threads to complete before continuing.

			
					We call print() to see our Animals and their relationships:auto p1 = std::async([&]{ cat1->print(); });
auto p2 = std::async([&]{ tiger1->print(); });
auto p3 = std::async([&]{ dog1->print(); });
auto p4 = std::async([&]{ rabbit1->print(); });
p1.wait();
p2.wait();
p3.wait();
p4.wait();


					And finally, we call delete_friend() to remove one of our relationships:auto a5 = std::async([&]{ cat1->delete_friend(*rabbit1); });
a5.wait();
auto p5 = std::async([&]{ cat1->print(); });
auto p6 = std::async([&]{ rabbit1->print(); });


					At this point, our output looks like this:add_friend Bugs -> Felix
add_friend Felix -> Hobbes
add_friend Felix -> Bugs
add_friend Bugs -> Astro
Animal: Felix, friends: Bugs, Hobbes
Animal: Hobbes, friends: Animal: Bugs, friends: FelixAnimal: Astro, friends: Felix
, Astro
Bugs
delete_friend Felix -> Bugs
Animal: Felix, friends: Hobbes
Animal: Bugs, friends: Astro


			

			This output is somewhat scrambled. It will be different each time you run it. It may be fine sometimes, but don't let that fool you. We need to add some mutex locks to control access to the data.

			
					One way to use mutex is with its lock() and unlock() methods. Let's add them to the add_friend() function:bool add_friend(Animal& o) noexcept {
    cout << format("add_friend {} -> {}\n", s_name, o.s_name);
    if(*this == o) return false;
    animal_mutex.lock();
    if(!is_friend(o)) l_friends.emplace_back(o);
    if(!o.is_friend(*this)) o.l_friends.emplace_back(*this);
    animal_mutex.unlock();
    return true;
}


			

			The lock() method attempts to acquire a lock on the mutex. If the mutex is already locked, it will wait (block execution) until the mutex is unlocked.

			
					We also need to add a lock to delete_friend():bool delete_friend(Animal& o) noexcept {
    cout << format("delete_friend {} -> {}\n",
        s_name, o.s_name);
    if(*this == o) return false;
    animal_mutex.lock();
    if(auto it = find_friend(o)) 
      l_friends.erase(it.value());
    if(auto it = o.find_friend(*this))
        o.l_friends.erase(it.value());
    animal_mutex.unlock();
    return true;
}


					Now, we need to add a lock to print() so that data is not changed while printing:void print() const noexcept {
    animal_mutex.lock();
    auto n_animals{ l_friends.size() };
    cout << format("Animal: {}, friends: ", s_name);
    if(!n_animals) cout << "none";
    else {
        for(auto n : l_friends) {
            cout << n.s_name;
            if(--n_animals) cout << ", ";
        }
    }
    cout << '\n';
    animal_mutex.unlock();
}


			

			Now, our output is sensible:

			add_friend Bugs -> Felix

			add_friend Bugs -> Astro

			add_friend Felix -> Hobbes

			add_friend Felix -> Bugs

			Animal: Felix, friends: Bugs, Hobbes

			Animal: Hobbes, friends: Felix

			Animal: Astro, friends: Bugs

			Animal: Bugs, friends: Felix, Astro

			delete_friend Felix -> Bugs

			Animal: Felix, friends: Hobbes

			Animal: Bugs, friends: Astro

			Your output may have the lines in a different order due to asynchronous operation.

			
					The lock() and unlock() methods are rarely called directly. The std::lock_guard class manages locks with a proper Resource Acquisition Is Initialization (RAII) pattern that automatically releases the lock upon destruction. Here's the add_friend() method with lock_guard:bool add_friend(Animal& o) noexcept {
    cout << format("add_friend {} -> {}\n", s_name, o.s_name);
    if(*this == o) return false;
    std::lock_guard<std::mutex> l(animal_mutex);
    if(!is_friend(o)) l_friends.emplace_back(o);
    if(!o.is_friend(*this)) 
      o.l_friends.emplace_back(*this);
    return true;
}


			

			The lock_guard object is created and holds a lock until it is destroyed. Like the lock() method, lock_guard also blocks until a lock is available.

			
					Let's apply lock_guard to the delete_friend() and print() methods.

			

			Here is delete_friend():

			bool delete_friend(Animal& o) noexcept {

			    cout << format("delete_friend {} -> {}\n",

			        s_name, o.s_name);

			    if(*this == o) return false;

			    std::lock_guard<std::mutex> l(animal_mutex);

			    if(auto it = find_friend(o)) 

			      l_friends.erase(it.value());

			    if(auto it = o.find_friend(*this))

			        o.l_friends.erase(it.value());

			    return true;

			}

			And here is print():

			void print() const noexcept {

			    std::lock_guard<std::mutex> l(animal_mutex);

			    auto n_animals{ l_friends.size() };

			    cout << format("Animal: {}, friends: ", s_name);

			    if(!n_animals) cout << "none";

			    else {

			        for(auto n : l_friends) {

			            cout << n.s_name;

			            if(--n_animals) cout << ", ";

			        }

			    }

			    cout << '\n';

			}

			Our output remains coherent:

			add_friend Felix -> Hobbes

			add_friend Bugs -> Astro

			add_friend Felix -> Bugs

			add_friend Bugs -> Felix

			Animal: Felix, friends: Bugs, Hobbes

			Animal: Astro, friends: Bugs

			Animal: Hobbes, friends: Felix

			Animal: Bugs, friends: Astro, Felix

			delete_friend Felix -> Bugs

			Animal: Felix, friends: Hobbes

			Animal: Bugs, friends: Astro

			As before, your output may have the lines in a different order due to asynchronous operation.

			How it works…

			It's important to understand that a mutex does not lock data; it blocks execution. As shown in this recipe, when a mutex is applied in object methods, it can be used to enforce mutually exclusive access to data.

			When one thread locks a mutex, with either lock() or lock_guard, that thread is said to own the mutex. Any other thread that tries to lock the same mutex will be blocked until it's unlocked by the owner.

			The mutex object must not be destroyed while it's owned by any thread. Likewise, a thread must not be destroyed while it owns a mutex. An RAII-compliant wrapper, such as lock_guard, will help ensure this doesn't happen.

			There's more…

			While std::mutex provides an exclusive mutex suitable for many purposes, the STL does provide a few other choices:

			
					shared_mutex allows more than one thread to simultaneously own a mutex.

					recursive_mutex allows one thread to stack multiple locks on a single mutex.

					timed_mutex provides a timeout for mutex blocks. Both shared_mutex and recursive_mutex also have timed versions available.

			

			Share flags and values with std::atomic

			The std::atomic class encapsulates a single object and guarantees it to be atomic. Writing to the atomic object is controlled by memory-order policies and reads may occur simultaneously. It's typically used to synchronize access among different threads.

			std::atomic defines an atomic type from its template type. The type must be trivial. A type is trivial if it occupies contiguous memory, has no user-defined constructor, and has no virtual member functions. All primitive types are trivial.

			While it is possible to construct a trivial type, std::atomic is most often used with simple primitive types, such as bool, int, long, float, and double.

			How to do it…

			This recipe uses a simple function that loops over a counter to demonstrate sharing atomic objects. We will spawn a swarm of these loops as threads that share atomic values:

			
					Atomic objects are often placed in a global namespace. They must be accessible to all the threads that need to share its value:std::atomic<bool> ready{};
std::atomic<uint64_t> g_count{};
std::atomic_flag winner{};


			

			The ready object is a bool type that gets set to true when all the threads are ready to start counting.

			The g_count object is a global counter. It is incremented by each of the threads.

			The winner object is a special atomic_flag type. It is used to indicate which thread finishes first.

			
					We use a couple of constants to control the number of threads and the number of loops for each thread:constexpr int max_count{1000 * 1000};
constexpr int max_threads{100};


			

			I've set it to run 100 threads and count 1,000,000 iterations in each thread.

			
					The countem() function is spawned for each thread. It loops max_count times and increments g_count for each iteration of the loop. This is where we use our atomic values:void countem (int id) {
    while(!ready) std::this_thread::yield();
    for(int i{}; i < max_count; ++i) ++g_count;
    if(!winner.test_and_set()) {
        std::cout << format("thread {:02} won!\n", 
          id);
    }
};


			

			The ready atomic value is used to synchronize the threads. Each thread will call yield() until the ready value is set true. The yield() function yields execution to other threads.

			Each iteration of the for loop increments the g_count atomic value. The final value should be equal to max_count * max_threads.

			After the loop is complete, the test_and_set() method of the winner object is used to report the winning thread. test_and_set() is a method of the atomic_flag class. It sets the flag and returns the bool value from before it is set.

			
					We've used the make_commas() function before. It displays a number with thousands of separators:string make_commas(const uint64_t& num) {
    string s{ std::to_string(num) };
    for(long l = s.length() - 3; l > 0; l -= 3) {
        s.insert(l, ",");
    }
    return s;
}


					The main() function spawns the threads and reports the results:int main() {
    vector<std::thread> swarm;
    cout << format("spawn {} threads\n", max_threads);
    for(int i{}; i < max_threads; ++i) {
        swarm.emplace_back(countem, i);
    }
    ready = true;
    for(auto& t : swarm) t.join();
    cout << format("global count: {}\n",
        make_commas(g_count));
    return 0;
}


			

			Here, we create a vector<std::thread> object to hold the threads.

			In the for loop, we use emplace_back() to create each thread in the vector.

			Once the threads have been spawned, we set the ready flag so that the threads may start their loops.

			Output:

			spawn 100 threads

			thread 67 won!

			global count: 100,000,000

			Every time you run it, a different thread will win.

			How it works…

			The std::atomic class encapsulates an object to synchronize access among multiple threads.

			The encapsulated object must be a trivial type, which means it occupies contiguous memory, has no user-defined constructor, and has no virtual member functions. All primitive types are trivial.

			It is possible to use a simple struct with atomic:

			struct Trivial {

			    int a;

			    int b;

			};

			std::atomic<Trivial> triv1;

			While this usage is possible, it's not practical. Anything beyond setting and retrieving compound values loses the benefits of the atomicity and ends up requiring a mutex. The atomic class is best suited for scalar values.

			Specializations

			There are specializations of the atomic class for a few different purposes:

			
					Pointers and smart pointers: The std::atomic<U*> specialization includes support for atomic pointer arithmetic operations, including fetch_add() for addition and fetch_sub() for subtraction.

					Floating-point types: When used with the floating-point types float, double, and long double, std::atomic includes support for atomic floating-point arithmetic operations, including fetch_add() for addition and fetch_sub() for subtraction.

					Integral types: When used with one of the integral types, std::atomic provides support for additional atomic operations, including fetch_add(), fetch_sub(), fetch_and(), fetch_or(), and fetch_xor().

			

			Standard aliases

			The STL provides type aliases for all the standard scalar integral types. This means that instead of these declarations in our code:

			std::atomic<bool> ready{};

			std::atomic<uint64_t> g_count{};

			We could use:

			std::atomic_bool ready{};

			std::atomic_uint64_t g_count{};

			There are 46 standard aliases, one for each of the standard integral types:

			
				
					[image: ]
				

			

			Lock-free variations

			Most modern architectures provide atomic CPU instructions for performing atomic operations. std::atomic should use hardware support for atomic instructions where supported by your hardware. Some atomic types may not be supported on some hardware. std::atomic may use a mutex to ensure thread-safe operations for those specializations, causing threads to block while waiting for other threads to complete operations. Specializations that use hardware support are said to be lock-free because they don't require a mutex.

			The is_lock_free() method checks whether a specialization is lock-free:

			cout << format("is g_count lock-free? {}\n", 

			    g_count.is_lock_free());

			Output:

			is g_count lock-free? true

			This result will be true for most modern architectures.

			There are a few guaranteed lock-free variations of std::atomic available. These specializations guarantee the use of the most efficient hardware atomic operations for each purpose:

			
					std::atomic_signed_lock_free is an alias for the most efficient lock-free specialization of a signed integral type.

					std::atomic_unsigned_lock_free is an alias for the most efficient lock-free specialization of an unsigned integral type.

					The std::atomic_flag class provides a lock-free atomic Boolean type.Important Note
Current Windows systems don't support 64-bit hardware integers, even on 64-bit systems. When testing this code on one of these systems in my lab, replacing std::atomic<uint64_t> with std::atomic_unsigned_lock_free resulted in a 3x performance improvement. Performance was unchanged on 64-bit Linux and Mac systems.


			

			There's more…

			When multiple threads read and write variables simultaneously, one thread may observe the changes in a different order than they were written. std::memory_order specifies how memory accesses are ordered around an atomic operation.

			std::atomic provides methods for accessing and changing its managed value. Unlike the associated operators, these access methods provide arguments for memory_order to be specified. For example:

			g_count.fetch_add(1, std::memory_order_seq_cst);

			In this case, memory_order_seq_cst specifies sequentially consistent ordering. So, this call to fetch_add() will add 1 to the value of g_count with sequentially consistent ordering.

			The possible memory_order constants are:

			
					memory_order_relaxed: This is a relaxed operation. No synchronization or ordering constraints are imposed; only the operation's atomicity is guaranteed.

					memory_order_consume: This is a consume operation. Access in the current thread that is dependent on the value cannot be reordered before this load. This only affects compiler optimization.

					memory_order_acquire: This is an acquire operation. Access cannot be reordered before this load.

					memory_order_release: This is a store operation. Access in the current thread cannot be reordered after this store.

					memory_order_acq_rel: This is both acquire and release. Access in the current thread cannot be reordered before or after this store.

					memory_order_seq_cst: This is sequentially consistent ordering, either acquire or release, depending on the context. A load performs acquire, a store performs release, and a read/write/modify performs both. All threads observe all modifications in the same order.

			

			If no memory_order is specified, memory_order_seq_cst is the default.

			Initialize threads with std::call_once

			You may need to run the same code in many threads but must initialize that code only once.

			One solution would be to call the initialization code before running the threads. This approach can work but has some drawbacks. By separating the initialization, it may be called when unnecessary, or it may be missed when necessary.

			The std::call_once function provides a more robust solution. call_once is in the <mutex> header.

			How to do it…

			In this recipe, we use a print function for the initialization, so we can clearly see when it's called:

			
					We'll use a constant for the number of threads to spawn:constexpr size_t max_threads{ 25 };


			

			We also need a std::once_flag to synchronize the std::call_once function:

			std::once_flag init_flag;

			
					Our initialization function simply prints a string to let us know it's been called:void do_init(size_t id) {
    cout << format("do_init ({}): ", id);
}


					Our worker function, do_print(), uses std::call_once to call the initialization function then prints its own id:void do_print(size_t id) {
    std::call_once(init_flag, do_init, id);
    cout << format("{} ", id);
}


					In main(), we use a list container to manage the thread objects:int main() {
    list<thread> spawn;
    for (size_t id{}; id < max_threads; ++id) {
        spawn.emplace_back(do_print, id);
    }
    for (auto& t : spawn) t.join();
    cout << '\n';
}


			

			Our output shows the initialization happens first, and only once:

			do_init (8): 12 0 2 1 9 6 13 10 11 5 16 3 4 17 7 15 8 14 18 19 20 21 22 23 24 

			Notice that it's not always the first spawned thread (0) that ends up calling the initialization function, but it is always called first. If you run this repeatedly, you'll see thread 0 gets the initialization often, but not every time. You'll see thread 0 in the initialization more often on a system with fewer cores.

			How it works…

			std::call_once is a template function that takes a flag, a callable (function or functor), and a parameter pack of arguments:

			template<class Callable, class... Args>

			void call_once(once_flag& flag, Callable&& f, Args&&... args);

			The callable f is called exactly one time. Even if call_once is called concurrently from several threads, f is still called once and only once.

			This requires a std::once_flag object for coordination. The once_flag constructor sets its state to indicate that the callable has not yet been called.

			When call_once invokes the callable, any other calls on the same once_flag are blocked until the callable returns. After the callable returns, the once_flag is set, and any subsequent calls to call_once return without invoking f.

			Use std::condition_variable to resolve the producer-consumer problem

			The simplest version of the producer-consumer problem is where you have one process that produces data and another that consumes data, using one buffer or container to hold the data. This requires coordination between the producer and consumer to manage the buffer and prevent unwanted side effects.

			How to do it…

			In this recipe, we consider a simple solution to the producer-consumer problem using std::condition_variable to coordinate the processes:

			
					We begin with some namespace and alias declarations for convenience:using namespace std::chrono_literals;
namespace this_thread = std::this_thread;
using guard_t = std::lock_guard<std::mutex>;
using lock_t = std::unique_lock<std::mutex>;


			

			The lock_guard and unique_lock aliases make it easier to use these types without error.

			
					We use a couple of constants:constexpr size_t num_items{ 10 };
constexpr auto delay_time{ 200ms };


			

			Keeping these in one place makes it safer and easier to experiment with different values.

			
					We're using these global variables for coordinating the data store:std::deque<size_t> q{};
std::mutex mtx{};
std::condition_variable cond{};
bool finished{};


			

			We're using deque to hold the data as a First-In-First-Out (FIFO) queue.

			mutex is used with the condition_variable to coordinate the movement of data from producer to consumer.

			The finished flag indicates that there is no more data.

			
					The producer thread will use this function:void producer() {
    for(size_t i{}; i < num_items; ++i) {
        this_thread::sleep_for(delay_time);
        guard_t x{ mtx };
        q.push_back(i);
        cond.notify_all();
    }
    guard_t x{ mtx };
    finished = true;
    cond.notify_all();
}


			

			The producer() function loops num_items iterations and pushes a number onto the deque each time through the loop.

			We include a sleep_for() call to simulate a delay in producing each value.

			The conditional_variable requires a mutex lock to operate. We use lock_guard (via the guard_t alias) to obtain the lock, then push the value onto the deque, and then call notify_all() on the conditional_variable. This tells the consumer thread that there is a new value available.

			When the loop completes, we set the finished flag and notify the consumer thread that the producer is completed.

			
					The consumer thread waits for each value from the producer, displays it on the console, and waits for the finished flag:void consumer() {
    while(!finished) {
        lock_t lck{ mtx };
        cond.wait(lck, [] { return !q.empty() || 
          finished; });
        while(!q.empty()) {
            cout << format("Got {} from the queue\n",
                q.front());
            q.pop_front();
        }
    }
}


			

			The wait() method waits to be notified by the producer. It uses the lambda as a predicate to continue waiting until the deque is not empty or the finished flag is set.

			When we get a value, we display it and then pop it from the deque.

			
					We run this in main() with simple thread objects:int main() {
    thread t1{ producer };
    thread t2{ consumer };
    t1.join();
    t2.join();
    cout << "finished!\n";
}


			

			Output:

			Got 0 from the queue

			Got 1 from the queue

			Got 2 from the queue

			Got 3 from the queue

			Got 4 from the queue

			Got 5 from the queue

			Got 6 from the queue

			Got 7 from the queue

			Got 8 from the queue

			Got 9 from the queue

			finished!

			Notice that there's a 200 ms delay between each line. This tells us that the producer-consumer coordination is working as expected.

			How it works…

			The producer-consumer problem requires coordination between writing and reading a buffer or container. In this example, our container is a deque<size_t>:

			std::deque<size_t> q{};

			The condition_variable class can block a thread, or multiple threads, while a shared variable is modified. It may then notify other threads that the value is available.

			condition_variable requires a mutex to perform the lock:

			std::lock_guard x{ mtx };

			q.push_back(i);

			cond.notify_all();

			The std::lock_guard acquires a lock, so we can push a value onto our deque.

			The wait() method on condition_variable is used to block the current thread until it receives a notification:

			void wait( std::unique_lock<std::mutex>& lock );

			void wait( std::unique_lock<std::mutex>& lock,

			    Pred stop_waiting );

			The predicate form of wait() is equivalent to:

			while (!stop_waiting()) {

			    wait(lock);

			}

			The predicate form is used to prevent spurious waking while waiting for a specific condition. We use it with a lambda in our example:

			cond.wait(lck, []{ return !q.empty() || finished; });

			This prevents our consumer from waking until the deque has data or the finished flag is set.

			The condition_variable class has two notification methods:

			
					notify_one() unblocks one waiting thread

					notify_all() unblocks all waiting threads

			

			We used notify_all() in our example. Because there is only one consumer thread, either notification method would work the same.

			Note

			Note that unique_lock is the only form of lock that supports the wait() method on a condition_variable object.

			Implement multiple producers and consumers

			The producer-consumer problem is really a set of problems. Solutions will differ if the buffer is bounded or unbounded, or if there are multiple producers, multiple consumers, or both.

			Let's consider a case with multiple producers, multiple consumers, and a bounded (limited capacity) buffer. This is a common condition.

			How to do it…

			In this recipe, we'll look at a case with multiple producers and consumers and a bounded buffer, using a variety of techniques we've covered in this chapter:

			
					We'll start with some constants for convenience and reliability:constexpr auto delay_time{ 50ms };
constexpr auto consumer_wait{ 100ms };
constexpr size_t queue_limit{ 5 };
constexpr size_t num_items{ 15 };
constexpr size_t num_producers{ 3 };
constexpr size_t num_consumers{ 5 };
	delay_time is a duration object, used with sleep_for().
	consumer_wait is a duration object, used with the consumer condition variable.
	queue_limt is the buffer limit – the maximum number of items in the deque.
	num_items is the maximum number of items produced per producer.
	num_producers is the number of spawned producers.
	num_producers is the number of spawned consumers.



					Now, we need some objects to control the process:deque<string> qs{};
mutex q_mutex{};
condition_variable cv_producer{};
condition_variable cv_consumer{};
bool production_complete{};
	qs is a deque of string that holds the produced objects.
	q_mutex controls access to deque.
	cv_producer is a condition variable that coordinates producers.
	cv_consumer is a condition variable that coordinates consumers.
	production_complete is set true when all producer threads have finished.



					The producer() threads run this function:void producer(const size_t id) {
    for(size_t i{}; i < num_items; ++i) {
        this_thread::sleep_for(delay_time * id);
        unique_lock<mutex> lock(q_mutex);
        cv_producer.wait(lock,
            [&]{ return qs.size() < queue_limit; });
        qs.push_back(format("pid {}, qs {}, 
          item {:02}\n", id, qs.size(), i + 1));
        cv_consumer.notify_all();
    }
}


			

			The passed value id is a sequential number used to identify the producer.

			The main for loop repeats num_item times. The sleep_for() function is used to simulate some work required to produce an item.

			Then we obtain a unique_lock from q_mutex and invoke wait() on cv_producer, using a lambda that checks the size of the deque against the queue_limit constant. If the deque has reached maximum size, the producer waits for consumer threads to reduce the size of the deque. This represents the bounded buffer limit on the producer.

			Once the condition is satisfied, we push an item onto the deque. The item is a formatted string with the producer's id, the size of qs, and an item number (i + 1) from the loop control variable.

			Finally, we notify the consumers that new data is available, with notify_all() on the cv_consumer condition variable.

			
					The consumer() threads run this function:void consumer(const size_t id) {
    while(!production_complete) {
        unique_lock<mutex> lock(q_mutex);
        cv_consumer.wait_for(lock, consumer_wait,
            [&]{ return !qs.empty(); });
        if(!qs.empty()){
            cout << format("cid {}: {}", id, 
              qs.front());
            qs.pop_front();
        }
        cv_producer.notify_all();
    }
}


			

			The passed id value is a sequential number used to identify the consumer.

			The main while() loop continues until production_complete is set.

			We obtain unique_lock from q_mutex and invoke wait_for() on cv_consumer, with a timeout and a lambda that tests if the deque is empty. We need the timeout because it's possible for the producer threads to finish while some of the consumer threads are still running, leaving the deque empty.

			Once we have a non-empty deque, we can print (consume) an item and pop it off the deque.

			
					In main(), we use async() to spawn the producer and consumer threads. async() conforms to the RAII pattern, so I'll usually prefer it over thread, where possible. async() returns a future object, so we'll keep a list of future<void> objects for process management:int main() {
    list<future<void>> producers;
    list<future<void>> consumers;
    for(size_t i{}; i < num_producers; ++i) {
        producers.emplace_back(async(producer, i));
    }
    for(size_t i{}; i < num_consumers; ++i) {
        consumers.emplace_back(async(consumer, i));
    }
    ...


			

			We use for loops to create producer and consumer threads.

			
					Finally, we use list of future objects to determine when our producer and consumer threads are complete:for(auto& f : producers) f.wait();
production_complete = true;
cout << "producers done.\n";
for(auto& f : consumers) f.wait();
cout << "consumers done.\n";


			

			We loop through our producers container, calling wait() to allow the producer threads to complete. Then, we can set the production_complete flag. We likewise loop through the consumers container, calling wait() to allow the consumer threads to complete. We could perform any final analysis or completion processes here.

			
					The output is a bit long to show in its entirety:cid 0: pid 0, qs  0, item 01
cid 0: pid 0, qs  1, item 02
cid 0: pid 0, qs  2, item 03
cid 0: pid 0, qs  3, item 04
cid 0: pid 0, qs  4, item 05
...
cid 4: pid 2, qs  0, item 12
cid 4: pid 2, qs  0, item 13
cid 3: pid 2, qs  0, item 14
cid 0: pid 2, qs  0, item 15
producers done.
consumers done.


			

			How it works…

			The heart of this recipe is in the use of two condition_variable objects to control the producer and consumer threads asynchronously:

			condition_variable cv_producer{};

			condition_variable cv_consumer{};

			In the producer() function, the cv_producer object obtains a unique_lock, waits for the deque to be available, and notifies the cv_consumer object when an item has been produced:

			void producer(const size_t id) {

			    for(size_t i{}; i < num_items; ++i) {

			        this_thread::sleep_for(delay_time * id);

			        unique_lock<mutex> lock(q_mutex);

			        cv_producer.wait(lock,

			            [&]{ return qs.size() < queue_limit; });

			        qs.push_back(format("pid {}, qs  {}, item {:02}\n",

			            id, qs.size(), i + 1));

			        cv_consumer.notify_all();

			    }

			}

			Conversely, in the consumer() function, the cv_consumer object obtains a unique_lock, waits for the deque to have items, and notifies the cv_producer object when an item has been consumed:

			void consumer(const size_t id) {

			    while(!production_complete) {

			        unique_lock<mutex> lock(q_mutex);

			        cv_consumer.wait_for(lock, consumer_wait,

			            [&]{ return !qs.empty(); });

			        if(!qs.empty()) {

			            cout << format("cid {}: {}", id, qs.front());

			            qs.pop_front();

			        }

			        cv_producer.notify_all();

			    }

			}

			These complementary locks, waits, and notifications constitute the balance of coordination between multiple producers and consumers.

		

	
		
			Chapter 10: Using the File System

			The purpose of the STL filesystem library is to normalize file system operations across platforms. The filesystem library seeks to normalize operations, bridging irregularities between POSIX/Unix, Windows, and other file systems.

			The filesystem library was adopted from the corresponding Boost library and incorporated into the STL with C++17. At the time of writing, there are still gaps in its implementation on some systems, but the recipes in this chapter have been tested on Linux, Windows, and macOS file systems, and compiled with the latest available versions of the GCC, MSVC, and Clang compilers, respectively.

			The library uses the <filesystem> header, and the std::filesystem namespace is commonly aliased as fs:

			namespace fs = std::filesystem;

			The fs::path class is at the core of the filesystem library. It provides normalized filename and directory path representation across disparate environments. A path object may represent a file, a directory, or any object in a , even a non-existent or impossible object.

			In the following recipes, we cover tools for working with files and directories using the filesystem library:

			
					Specialize std::formatter for the path class

					Use manipulation functions with path

					List files in a directory

					Search directories and files with a grep utility

					Rename files with regex and directory_iterator

					Create a disk usage counter

			

			Technical requirements

			You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/CPP-20-STL-Cookbook/tree/main/chap10.

			Specialize std::formatter for the path class

			The path class is used throughout the filesystem library to represent a file or directory path. On POSIX-conformant systems, such as macOS and Linux, the path object uses the char type to represent filenames. On Windows, path uses wchar_t. On Windows, cout and format() will not display primitive strings of wchar_t characters. This means there is no simple out-of-the-box way to write code that uses the filesystem library and is portable across POSIX and Windows.

			We could use preprocessor directives to write specific versions of code for Windows. That may be a reasonable solution for some code bases, but for this book, it's messy and does not serve the purpose of simple, portable, reusable recipes.

			The elegant solution is to write a C++20 formatter specialization for the path class. This allows us to display path objects simply and portably.

			How to do it…

			In this recipe, we write a formatter specialization for use with the fs::path class:

			
					We start with a namespace alias for convenience. All the filesystem names are in the std::filesystem namespace:namespace fs = std::filesystem;


					Our formatter specialization for the path class is simple and succinct:template<>
struct std::formatter<fs::path>: std::formatter<std::string> {
    template<typename FormatContext>
    auto format(const fs::path& p, FormatContext& ctx) {
        return format_to(ctx.out(), "{}", p.string());
    }
};


			

			Here, we're specializing formatter for the fs::path type, using its string() method to get a printable representation. We cannot use the c_str() method because it doesn't work with the wchar_t characters on Windows.

			There's a more complete explanation of formatter specialization in Chaper 1, New C++20 Features, of this book. 

			
					In the main() function, we use the command line to pass a filename or path:int main(const int argc, const char** argv) {
    if(argc != 2) {
        fs::path fn{ argv[0] };
        cout << format("usage: {} <path>\n", 
          fn.filename());
        return 0;
    }
    fs::path dir{ argv[1] };
    if(!fs::exists(dir)) {
        cout << format("path: {} does not exist\n", 
          dir);
        return 1;
    }
    cout << format("path: {}\n", dir);
    cout << format("filename: {}\n", dir.filename());
    cout << format("cannonical: {}\n", 
      fs::canonical(dir));
}


			

			The argc and argv parameters are the standard command-line arguments.

			argv[0] is always the full directory path and filename for the executable itself. If we don't have the correct number of arguments, we display the filename part from argv[0] as part of our usage message.

			We've used some filesystem functions in this example:

			
					The fs::exists() function checks if a directory or file exists.

					dir is a path object. We can now pass it directly to format(), using our specialization to display the string representation of the path.

					The filename() method returns a new path object, which we pass directly to format() using our specialization.

					The fs::cannonical() function takes a path object and returns a new path object with the canonical absolute directory path. We pass this path object directly to format() and it displays the directory path returned from cannonical().

			

			Output:

			$ ./formatter ./formatter.cpp

			path: ./formatter.cpp

			filename: formatter.cpp

			cannonical: /home/billw/working/chap10/formatter.cpp

			How it works…

			The fs::path class is used throughout the filesystem library to represent directory paths and filenames. By providing a formatter specialization, we can easily display path objects consistently across platforms.

			The path class provides some useful methods. We can iterate through a path to see its component parts:

			fs::path p{ "~/include/bwprint.h" };

			cout << format("{}\n", p);

			for(auto& x : p) cout << format("[{}] ", x);

			cout << '\n';

			Output:

			~/include/bwprint.h

			[~] [include] [bwprint.h]

			The iterator returns a path object for each element of the path.

			We can also get different parts of the path:

			fs::path p{ "~/include/bwprint.h" };

			cout << format("{}\n", p);

			cout << format("{}\n", p.stem());

			cout << format("{}\n", p.extension());

			cout << format("{}\n", p.filename());

			cout << format("{}\n", p.parent_path());

			Output:

			~/include/bwprint.h

			bwprint

			.h

			bwprint.h

			~/include

			We will continue to use this formatter specialization for the path class throughout this chapter.

			Use manipulation functions with path

			The filesystem library includes functions for manipulating the contents of path objects. In this recipe, we will consider a few of these tools.

			How to do it…

			In this recipe, we examine some functions that manipulate the contents of path objects:

			
					We start with the namespace directive and our formatter specialization. We do this in every recipe in this chapter:namespace fs = std::filesystem;
template<>
struct std::formatter<fs::path>: std::formatter<std::string> {
    template<typename FormatContext>
    auto format(const fs::path& p, FormatContext& ctx) {
        return format_to(ctx.out(), "{}", p.string());
    }
};


					We can get the current working directory with the current_path() function, which returns a path object:cout << format("current_path: {}\n", fs::current_path());


			

			Output:

			current_path: /home/billw/chap10

			
					The absolute() function returns an absolute path from a relative path:cout << format("absolute(p): {}\n", fs::absolute(p));


			

			Output:

			absolute(p): /home/billw/chap10/testdir/foo.txt

			absolute() will also dereference symbolic links.

			
					The += operator concatenates a string to the end of the path string:cout << format("concatenate: {}\n",
    fs::path{ "testdir" } += "foo.txt");


			

			Output:

			concatenate: testdirfoo.txt

			
					The /= operator appends a string to the end of the path string and returns a new path object:cout << format("append: {}\n",
    fs::path{ "testdir" } /= "foo.txt");


			

			Output:

			append: testdir/foo.txt

			
					The canonical() function returns the full canonical directory path:cout << format("canonical: {}\n",
    fs::canonical(fs::path{ "." } /= "testdir"));


			

			Output:

			canonical: /home/billw/chap10/testdir

			
					The equivalent() function tests if two relative paths resolve to the same file system entity:cout << format("equivalent: {}\n", 
    fs::equivalent("testdir/foo.txt", 
        "testdir/../testdir/foo.txt"));


			

			Output:

			equivalent: true

			
					The filesystem library includes the filesystem_error class for exception handling:try {
    fs::path p{ fp };
    cout << format("p: {}\n", p);
    ...
    cout << format("equivalent: {}\n", 
        fs::equivalent("testdir/foo.txt", 
            "testdir/../testdir/foo.txt"));
} catch (const fs::filesystem_error& e) {
    cout << format("{}\n", e.what());
    cout << format("path1: {}\n", e.path1());
    cout << format("path2: {}\n", e.path2());
}


			

			The filesystem_error class includes methods for displaying the error message and for getting the path(s) involved in the error.

			If we introduce an error into the equivalent() call, we can see the results of the fileystem_error class:

			cout << format("equivalent: {}\n", 

			    fs::equivalent("testdir/foo.txt/x", 

			        "testdir/../testdir/foo.txt/y"));

			Output:

			filesystem error: cannot check file equivalence: No such file or directory [testdir/foo.txt/x] [testdir/../testdir/foo.txt/y]

			path1: testdir/foo.txt/x

			path2: testdir/../testdir/foo.txt/y

			This is the output on Debian with GCC.

			The filesystem_error class provides additional detail through its path1() and path2() methods. These methods return path objects.

			
					You can also use std::error_code with some of the filesystem functions:fs::path p{ fp };
std::error_code e;
cout << format("canonical: {}\n", 
    fs::canonical(p /= "foo", e));
cout << format("error: {}\n", e.message());


			

			Output:

			canonical:

			error: Not a directory

			
					Even though Windows uses a very different file system, this code still works as expected, using Windows file naming conventions:p: testdir/foo.txt
current_path: C:\Users\billw\chap10
absolute(p): C:\Users\billw\chap10\testdir\foo.txt
concatenate: testdirfoo.txt
append: testdir\foo.txt
canonical: C:\Users\billw\chap10\testdir
equivalent: true


			

			How it works…

			Most of these functions take a path object, an optional std::error_code object, and return a path object:

			path absolute(const path& p);

			path absolute(const path& p, std::error_code& ec);

			The equivalent() function takes two path objects and returns a bool:

			bool equivalent( const path& p1, const path& p2 );

			bool equivalent( const path& p1, const path& p2,

			    std::error_code& ec );

			The path class has operators for concatenate and append. Both operators are destructive. They modify the path on the left-hand side of the operator:

			p1 += source; // concatenate

			p1 /= source; // append

			For the right-hand side, these operators take either a path object, a string, a string_view, a C-string, or a pair of iterators.

			The concatenate operator adds the string from the right-hand side of the operator to the end of the p1 path string.

			The append operator adds a separator (e.g., / or \), followed by the string from the right-hand side of the operator to the end of the p1 path string.

			List files in a directory

			The filesystem library provides a directory_entry class with directory-related information about a given path. We can use this to create useful directory listings.

			How to do it…

			In this recipe, we create a directory listing utility using the information in the directory_entry class:

			
					We start with our namespace alias and formatter specialization for displaying path objects:namespace fs = std::filesystem;
template<>
struct std::formatter<fs::path>: std::formatter<std::string> {
    template<typename FormatContext>
    auto format(const fs::path& p, FormatContext& ctx) {
        return format_to(ctx.out(), "{}", p.string());
    }
};


					The directory_iterator class makes it easy to list a directory:int main() {
    constexpr const char* fn{ "." };
    const fs::path fp{fn};
    for(const auto& de : fs::directory_iterator{fp}) {
        cout << format("{} ", de.path().filename());
    }
    cout << '\n';
}


			

			Output:

			chrono Makefile include chrono.cpp working formatter testdir formatter.cpp working.cpp

			
					We can add command-line options to make this work, like Unix ls:int main(const int argc, const char** argv) {
    fs::path fp{ argc > 1 ? argv[1] : "." };
    if(!fs::exists(fp)) {
        const auto cmdname { 
          fs::path{argv[0]}.filename() };
        cout << format("{}: {} does not exist\n",
            cmdname, fp);
        return 1;
    }
    if(is_directory(fp)) {
        for(const auto& de : 
          fs::directory_iterator{fp}) {
            cout << format("{} ", 
              de.path().filename());
        }
    } else {
        cout << format("{} ", fp.filename());
    }
    cout << '\n';
}


			

			If there is a command-line argument, we use it to create a path object. Otherwise, we use "." for the current directory.

			We check if the path exists with if_exists(). If not, we print an error message and exit. The error message includes cmdname from argv[0].

			Next, we check is_directory(). If we have a directory, we loop through a directory_iterator for each entry. directory_iterator iterates over directory_entry objects. de.path().filename() gets the path and filename from each directory_entry object.

			Output:

			$ ./working

			chrono Makefile include chrono.cpp working formatter testdir formatter.cpp working.cpp

			$ ./working working.cpp

			working.cpp

			$ ./working foo.bar

			working: foo.bar does not exist

			
					If we want our output sorted, we can store our directory_entry objects in a sortable container.

			

			Let's create an alias for fs::directory_entry. We'll be using this a lot. This goes at the top of the file:

			using de = fs::directory_entry;

			At the top of main(), we declare a vector of de objects:

			vector<de> entries{};

			Inside the is_directory() block, we load the vector, sort it, and then display it:

			if(is_directory(fp)) {

			    for(const auto& de : fs::directory_iterator{fp}) {

			        entries.emplace_back(de);

			    }

			    std::sort(entries.begin(), entries.end());

			    for(const auto& e : entries) {

			        cout << format("{} ", e.path().filename());

			    }

			} else { ...

			Now our output is sorted:

			Makefile chrono chrono.cpp formatter formatter.cpp include testdir working working.cpp

			Notice that Makefile is sorted first, apparently out of order. This is because capital letters sort before lowercase in ASCII order.

			
					If we want a case-insensitive sort, we need a comparison function that ignores case. First, we need a function to return a lowercase string:string strlower(string s) {
    auto char_lower = [](const char& c) -> char {
        if(c >= 'A' && c <= 'Z') return c + ('a' - 'A');
        else return c;
    };
    std::transform(s.begin(), s.end(), s.begin(),
        char_lower);
    return s;
}


			

			Now we need a function that compares two directory_entry objects, using strlower():

			bool dircmp_lc(const de& lhs, const de& rhs) {

			    const auto lhstr{ lhs.path().string() };

			    const auto rhstr{ rhs.path().string() };

			    return strlower(lhstr) < strlower(rhstr);

			}

			Now we can use dircmp_lc() in our sort:

			std::sort(entries.begin(), entries.end(), dircmp_lc);

			Our output is now sorted ignoring case:

			chrono chrono.cpp formatter formatter.cpp include Makefile testdir working working.cpp

			
					At this point, we have a simple directory listing utility.

			

			There's a lot more information available from the filesystem library. Let's create a print_dir() function to gather more information and format it for display in the style of Unix ls:

			void print_dir(const de& dir) {

			    using fs::perms;

			    const auto fpath{ dir.path() };

			    const auto fstat{ dir.symlink_status() };

			    const auto fperm{ fstat.permissions() };

			    const uintmax_t fsize{ 

			        is_regular_file(fstat) ? file_size(fpath) : 0 };

			    const auto fn{ fpath.filename() };

			    string suffix{};

			    if(is_directory(fstat)) suffix = "/";

			    else if((fperm & perms::owner_exec) != perms::none) {

			        suffix = "*";

			    }

			    cout << format("{}{}\n", fn, suffix);

			}

			The print_dir() function takes a directory_entry argument. We then retrieve some useful objects from the directory_entry object:

			
					dir.path() returns a path object.

					dir.symlink_status() returns a file_status object, without following symbolic links.

					fstat.permissions() returns a perms object.

					fsize is the size of the file and fn is the filename string. We'll look more closely at each of these as we use them.

			

			Unix ls uses trailing characters, after the filename, to indicate a directory or an executable. We test the fstat object with is_directory() to see if the file is a directory and add a trailing / to the filename. Likewise, we can test if a file is executable with the fperm object.

			We call print_dir() from main() in the for loop after sort():

			std::sort(entries.begin(), entries.end(), dircmp_lc);

			for(const auto& e : entries) {

			    print_dir(e);

			}

			Our output now looks like this:

			chrono*

			chrono.cpp

			formatter*

			formatter.cpp

			include*

			Makefile

			testdir/

			working*

			working.cpp

			
					Notice the include* entry. That's actually a symbolic link. Let's notate that properly by following the link to get the target path:string suffix{};
if(is_symlink(fstat)) {
    suffix = " -> ";
    suffix += fs::read_symlink(fpath).string();
}
else if(is_directory(fstat)) suffix = "/";
else if((fperm & perms::owner_exec) != perms::none) suffix = "*";


			

			The read_symlink() function returns a path object. We take the string() representation of the returned path object and add it to the suffix for this output:

			chrono*

			chrono.cpp

			formatter*

			formatter.cpp

			include -> /Users/billw/include

			Makefile

			testdir/

			working*

			working.cpp

			
					The Unix ls command also includes a string of characters to indicate a file's permission bits. It looks something like this: drwxr-xr-x.

			

			The first character indicates the type of the file, for example: d for directory, l for symbolic link, and - for a regular file.

			The type_char() function returns the appropriate character:

			char type_char(const fs::file_status& fstat) {

			         if(is_symlink(fstat))        return 'l';

			    else if(is_directory(fstat))      return 'd';

			    else if(is_character_file(fstat)) return 'c';

			    else if(is_block_file(fstat))     return 'b';

			    else if(is_fifo(fstat))           return 'p';

			    else if(is_socket(fstat))         return 's';

			    else if(is_other(fstat))          return 'o';

			    else if(is_regular_file(fstat))   return '-';

			    return '?';

			}

			The rest of the string is in three triplets. Each triplet includes positions for the read, write, and execute permission bits, in the form rwx. If a bit is not set, its character is replaced by a -. There are three triplets for three sets of permissions: owner, group, and other, respectively.

			string rwx(const fs::perms& p) {

			    using fs::perms;

			    auto bit2char = [&p](perms bit, char c) {

			        return (p & bit) == perms::none ? '-' : c;

			    };

			    return { bit2char(perms::owner_read,   'r'),

			             bit2char(perms::owner_write,  'w'),

			             bit2char(perms::owner_exec,   'x'),

			             bit2char(perms::group_read,   'r'),

			             bit2char(perms::group_write,  'w'),

			             bit2char(perms::group_exec,   'x'),

			             bit2char(perms::others_read,  'r'),

			             bit2char(perms::others_write, 'w'),

			             bit2char(perms::others_exec,  'x') };

			}

			The perms object represents the POSIX permissions bitmap, but it's not necessarily implemented as bits. Each entry must be compared to the perms::none value. Our lambda function fulfills this requirement.

			We add this definition to the top of our print_dir() function:

			const auto permstr{ type_char(fstat) + rwx(fperm) };

			We update our format() string:

			cout << format("{} {}{}\n", permstr, fn, suffix);

			And we get this output:

			-rwxr-xr-x chrono*

			-rw-r--r-- chrono.cpp

			-rwxr-xr-x formatter*

			-rw-r--r-- formatter.cpp

			lrwxr-xr-x include -> /Users/billw/include

			-rw-r--r-- Makefile

			drwxr-xr-x testdir/

			-rwxr-xr-x working*

			-rw-r--r-- working.cpp

			
					Now, let's add a size string. The fsize value is from the file_size() function, which returns a std::uintmax_t type. This represents the maximum size natural integer on the target system. uintmax_t is not always the same as size_t and does not always convert easily. Notably, uintmax_t is 32 bits on Windows, where size_t is 64 bits:string size_string(const uintmax_t fsize) {
    constexpr const uintmax_t kilo{ 1024 };
    constexpr const uintmax_t mega{ kilo * kilo };
    constexpr const uintmax_t giga{ mega * kilo };
    string s;
    if(fsize >= giga ) return
        format("{}{}", (fsize + giga / 2) / giga, 'G');
    else if (fsize >= mega) return
        format("{}{}", (fsize + mega / 2) / mega, 'M');
    else if (fsize >= kilo) return
        format("{}{}", (fsize + kilo / 2) / kilo, 'K');
    else return format("{}B", fsize);
}


			

			I chose to use 1,024 as 1K in this function, as that appears to be the default on both Linux and BSD Unix. In production, this could be a command-line option.

			We update our format() string in main():

			cout << format("{} {:>6} {}{}\n",

			    permstr, size_string(fsize), fn, suffix);

			Now, we get this output:

			-rwxr-xr-x   284K chrono*

			-rw-r--r--     2K chrono.cpp

			-rwxr-xr-x   178K formatter*

			-rw-r--r--   906B formatter.cpp

			lrwxr-xr-x     0B include -> /Users/billw/include

			-rw-r--r--   642B Makefile

			drwxr-xr-x     0B testdir/

			-rwxr-xr-x   197K working*

			-rw-r--r--     5K working.cpp

			Note

			This utility is designed for POSIX systems, such as Linux and macOS. It works on a Windows system, but the Windows permissions system is different from the POSIX system. On Windows, the permissions bits will always appear fully set.

			How it works…

			The filesystem library carries a rich set of information through its directory_entry and related classes. The major classes we used in this recipe include:

			
					The path class represents a file system path, according to the rules of the target system. A path object is constructed from a string or another path. It need not represent an existing path, or even a possible path. The path string is parsed to component parts, including a root name, root directory, and an optional series of filenames and directory separators.

					The directory_entry class carries a path object as a member, and may also store additional attributes, including hard link count, status, symbolic link, file size, and last write time.

					The file_status class carries information about the type and permissions of a file. A perms object may be a member of file_status, representing the permissions structure of a file.

			

			There are two functions for retrieving a perms object from file_status. The status() function and the symlink_status() function both return a perms object. The difference is in how they handle a symbolic link. The status() function will follow a symbolic link and return the perms from the target file. symlink_status() will return the perms from the symbolic link itself.

			There's more…

			I had intended to include the last-write time of each file in the directory listing.

			The directory_entry class has a member function, last_write_time(), which returns a file_time_type object representing the timestamp of the last time the file was written.

			Unfortunately, at the time of writing, the available implementations lack a portable way to convert a file_time_type object to a standard chrono::sys_time, suitable for use with cout or format().

			For now, here's a solution that works with GCC:

			string time_string(const fs::directory_entry& dir) {

			    using std::chrono::file_clock;

			    auto file_time{ dir.last_write_time() };

			    return format("{:%F %T}", 

			        file_clock::to_sys(dir.last_write_time()));

			}

			It's recommended that user code should use std::chrono::clock_cast instead of file::clock::to_sys to convert time points between clocks. Unfortunately, none of the currently available implementations have a working std::chrono::clock_cast specialization for this purpose.

			Using this time_string() function, we can add to print_dir():

			const string timestr{ time_string(dir) };

			We can then change the format() string:

			cout << format("{} {:>6} {} {}{}\n",

			    permstr, sizestr, timestr, fn, suffix);

			And we get this output:

			-rwxr-xr-x   248K 2022-03-09 09:39:49 chrono*

			-rw-r--r--     2K 2022-03-09 09:33:56 chrono.cpp

			-rwxr-xr-x   178K 2022-03-09 09:39:49 formatter*

			-rw-r--r--   906B 2022-03-09 09:33:56 formatter.cpp

			lrwxrwxrwx     0B 2022-02-04 11:39:53 include -> /home/billw/include

			-rw-r--r--   642B 2022-03-09 14:08:37 Makefile

			drwxr-xr-x     0B 2022-03-09 10:38:39 testdir/

			-rwxr-xr-x   197K 2022-03-12 17:13:46 working*

			-rw-r--r--     5K 2022-03-12 17:13:40 working.cpp

			This works on Debian with GCC-11. Do not expect it to work without modification on any other systems.

			Search directories and files with a grep utility

			To demonstrate traversing and searching directory structures, we create a simple utility that works like Unix grep. This utility uses recursive_directory_iterator to traverse nested directories and searches files for matches with a regular expression.

			How to do it…

			In this recipe, we write a simple grep utility that traverses directories to search files with a regular expression:

			
					We start with some convenience aliases:namespace fs = std::filesystem;
using de = fs::directory_entry;
using rdit = fs::recursive_directory_iterator;
using match_v = vector<std::pair<size_t, std::string>>;


			

			match_v is a vector of regular expression match results.

			
					We continue using our formatter specialization for path objects:template<>
struct std::formatter<fs::path>: std::formatter<std::string> {
    template<typename FormatContext>
    auto format(const fs::path& p, FormatContext& ctx) {
        return format_to(ctx.out(), "{}", p.string());
    }
};


					We have a simple function for getting regular expression matches from a file:match_v matches(const fs::path& fpath, const regex& re) {
    match_v matches{};
    std::ifstream instrm(fpath.string(),
        std::ios_base::in);
    string s;
    for(size_t lineno{1}; getline(instrm, s); ++lineno) {
        if(std::regex_search(s.begin(), s.end(), re)) {
            matches.emplace_back(lineno, move(s));
        }
    }
    return matches;
}


			

			In this function, we open the file with ifstream, read lines from the file with getline(), and match the regular expression with regex_search(). Results are collected in the vector and returned.

			
					We can now call this function from main():int main() {
    constexpr const char * fn{ "working.cpp" };
    constexpr const char * pattern{ "path" };
    fs::path fpath{ fn };
    regex re{ pattern };
    auto regmatches{ matches(fpath, re) };
    for(const auto& [lineno, line] : regmatches) {
        cout << format("{}: {}\n", lineno, line);
    }
    cout << format("found {} matches\n", regmatches.size());
}


			

			In this example, we use constants for the filename and the regular expression pattern. We create path and regex objects, call the matches() function, and print the results.

			Our output has line numbers and strings for the matching lines:

			25: struct std::formatter<fs::path>: std::formatter<std::string> {

			27:     auto format(const fs::path& p, FormatContext& ctx) {

			32: match_v matches(const fs::path& fpath, const regex& re) {

			34:     std::ifstream instrm(fpath.string(), std::ios_base::in);

			62:     constexpr const char * pattern{ "path" };

			64:     fs::path fpath{ fn };

			66:     auto regmatches{ matches(fpath, re) };

			
					Our utility needs to take command-line arguments for the regex pattern and filenames. It should be able to traverse directories or take a list of filenames (which may be the result of command-line wildcard expansion). This requires a bit of logic in the main() function.

			

			First, we need one more helper function:

			size_t pmatches(const regex& re, const fs::path& epath,

			        const fs::path& search_path) {

			    fs::path target{epath};

			    auto regmatches{ matches(epath, re) };

			    auto matchcount{ regmatches.size() };

			    if(!matchcount) return 0;

			    if(!(search_path == epath)) {

			        target = 

			          epath.lexically_relative(search_path);

			    }

			    for (const auto& [lineno, line] : regmatches) {

			        cout << format("{} {}: {}\n", target, lineno, 

			          line);

			    }

			    return regmatches.size();

			}

			This function calls our matches() function and prints the results. It takes a regex object and two path objects. epath is the result of a directory search, and search_path is the search directory itself. We'll set these in main().

			
					In main(), we use the argc and argv command-line arguments and we declare a few variables:int main(const int argc, const char** argv) {
    const char * arg_pat{};
    regex re{};
    fs::path search_path{};
    size_t matchcount{};
    ...


			

			The variables declared here are:

			
					arg_pat is for the regular expression pattern from the command line

					re is the regex object

					search_path is the command-line search path argument

					matchcount is for counting the matched lines

			

			
					Continuing in main(), if we have no arguments, then we print a short usage string:if(argc < 2) {
    auto cmdname{ fs::path(argv[0]).filename() };
    cout << format("usage: {} pattern [path/file]\n", 
        cmdname);
    return 1;
}


			

			argv[1] is always the invoking command from the command line. cmdname uses the filename() method to return a path with just the filename part of the invoking command path.

			
					Next, we parse the regular expression. We use a try-catch block to capture any error from the regex parser:arg_pat = argv[1];
try {
    re = regex(arg_pat, std::regex_constants::icase);
} catch(const std::regex_error& e) {
    cout << format("{}: {}\n", e.what(), arg_pat);
    return 1;
}


			

			We use the icase flag to tell the regex parser to ignore case.

			
					If argc == 2, we have just one argument, which we treat as the regular expression pattern, and we use the current directory for the search path:if(argc == 2) {
    search_path = ".";
        for (const auto& entry : rdit{ search_path }) {
        const auto epath{ entry.path() };
        matchcount += pmatches(re, epath, 
          search_path);
    }
}


			

			rdit is an alias for the recursive_directory_iterator class, which traverses the directory tree from the starting path, returning a directory_entry object for each file it encounters. We then create a path object and call pmatches() to go through the file and print any regular expression matches.

			
					At this point in main(), we know that argc is >=2. Now, we handle cases where we have one or more file paths on the command line:int count{ argc - 2 };
while(count-- > 0) {
    fs::path p{ argv[count + 2] };
    if(!exists(p)) {
        cout << format("not found: {}\n", p);
        continue;
    }
    if(is_directory(p)) {
        for (const auto& entry : rdit{ p }) {
            const auto epath{ entry.path() };
            matchcount += pmatches(re, epath, p);
        }
    } else {
        matchcount += pmatches(re, p, p);
    }
}


			

			The while loop handles one or more arguments past the search pattern on the command line. It checks each filename to ensure it exists. Then, if it's a directory, it uses the rdit alias for the recursive_directory_iterator class to traverse the directory and call pmatches() to print any pattern matches in the files.

			If it's a single file, it calls pmatches() on that file.

			
					We can run our grep clone with one argument as the search pattern:$ ./bwgrep using
dir.cpp 12: using std::format;
dir.cpp 13: using std::cout;
dir.cpp 14: using std::string;
...
formatter.cpp 10: using std::cout;
formatter.cpp 11: using std::string;
formatter.cpp 13: using namespace std::filesystem;
found 33 matches


			

			We can run it with a second argument as a directory to search:

			$ ./bwgrep using ..

			chap04/iterator-adapters.cpp 12: using std::format;

			chap04/iterator-adapters.cpp 13: using std::cout;

			chap04/iterator-adapters.cpp 14: using std::cin;

			...

			chap01/hello-version.cpp 24: using std::print;

			chap01/chrono.cpp 8: using namespace std::chrono_literals;

			chap01/working.cpp 15: using std::cout;

			chap01/working.cpp 34:     using std::vector;

			found 529 matches

			Notice that it traverses the directory tree to find files in sub-directories.

			Or we can run it with a single file argument:

			$ ./bwgrep using bwgrep.cpp

			bwgrep.cpp 13: using std::format;

			bwgrep.cpp 14: using std::cout;

			bwgrep.cpp 15: using std::string;

			...

			bwgrep.cpp 22: using rdit = fs::recursive_directory_iterator;

			bwgrep.cpp 23: using match_v = vector<std::pair<size_t, std::string>>;

			found 9 matches

			How it works…

			While the main task of this utility is the regular expression matching, we're concentrating on the technique of recursively processing directories of files.

			The recursive_directory_iterator object is interchangeable with directory_iterator, except recursive_directory_iterator operates recursively over all the entries of each sub-directory.

			See also…

			For more about regular expressions, see the recipe Parse strings with Regular Expressions in Chapter 7, Strings, Streams, and Formatting.

			Rename files with regex and directory_iterator

			This is a simple utility that renames files using regular expressions. It uses directory_iterator to find the files in a directory and fs::rename() to rename them.

			How to do it…

			In this recipe, we create a file rename utility that uses regular expressions:

			
					We start by defining a few convenience aliases:namespace fs = std::filesystem;
using dit = fs::directory_iterator;
using pat_v = vector<std::pair<regex, string>>;


			

			The pat_v alias is a vector for use with our regular expressions.

			
					We also continue to use the formatter specialization for path objects:template<>
struct std::formatter<fs::path>: std::formatter<std::string> {
    template<typename FormatContext>
    auto format(const fs::path& p, FormatContext& ctx) {
        return format_to(ctx.out(), "{}", p.string());
    }
};


					We have a function for applying the regular expression replacement to filename strings:string replace_str(string s, const pat_v& replacements) {
    for(const auto& [pattern, repl] : replacements) {
        s = regex_replace(s, pattern, repl);
    }
    return s;
}


			

			Notice that we loop through a vector of pattern/replacement pairs, applying the regular expressions successively. This allows us to stack our replacements.

			
					In main(), we first check the command-line arguments:int main(const int argc, const char** argv) {
    pat_v patterns{};
    if(argc < 3 || argc % 2 != 1) {
        fs::path cmdname{ fs::path{argv[0]}.filename() };
        cout << format(
            "usage: {} [regex replacement] ...\n", 
            cmdname);
        return 1;
    }


			

			The command line accepts one or more pairs of strings. Each pair of strings includes a regex (regular expression) followed by a replacement.

			
					Now we populate the vector with regex and string objects:for(int i{ 1 }; i < argc; i += 2) {
    patterns.emplace_back(argv[i], argv[i + 1]);
}


			

			The pair constructor constructs the regex and string objects in place, from the C-strings passed on the command line. These are added to the vector with the emplace_back() method.

			
					We search the current directory using a directory_iterator object:for(const auto& entry : dit{fs::current_path()}) {
    fs::path fpath{ entry.path() };
    string rname{
        replace_str(fpath.filename().string(), 
          patterns) };
    if(fpath.filename().string() != rname) {
        fs::path rpath{ fpath };
        rpath.replace_filename(rname);
        if(exists(rpath)) {
            cout << "Error: cannot rename - destination file exists.\n";
        } else {
            fs::rename(fpath, rpath);
            cout << format(
                "{} -> {}\n", 
                fpath.filename(), 
                rpath.filename());
        }
    }
}


			

			In this for loop, we call replace_str() to get the replacement filename and then check that the new name is not a duplicate of a file in the directory. We use the replace_filename() method on a path object to create a path with the new filename and use fs::rename() to rename the file.

			
					To test the utility, I've created a directory with a few files in it for renaming:$ ls
bwfoo.txt bwgrep.cpp chrono.cpp dir.cpp formatter.cpp path-ops.cpp working.cpp


					We can do something simple, like change .cpp to .Cpp:$ ../rerename .cpp .Cpp
dir.cpp -> dir.Cpp
path-ops.cpp -> path-ops.Cpp
bwgrep.cpp -> bwgrep.Cpp
working.cpp -> working.Cpp
formatter.cpp -> formatter.Cpp


			

			Let's change them back again:

			$ ../rerename .Cpp .cpp

			formatter.Cpp -> formatter.cpp

			bwgrep.Cpp -> bwgrep.cpp

			dir.Cpp -> dir.cpp

			working.Cpp -> working.cpp

			path-ops.Cpp -> path-ops.cpp

			
					Using standard regular expression syntax, I can add "bw" to the beginning of each of the filenames:$ ../rerename '^' bw
bwgrep.cpp -> bwbwgrep.cpp
chrono.cpp -> bwchrono.cpp
formatter.cpp -> bwformatter.cpp
bwfoo.txt -> bwbwfoo.txt
working.cpp -> bwworking.cpp


			

			Notice that it even renamed the files that already had "bw" at the beginning. Let's have it not do that. First, we restore the filenames:

			$ ../rerename '^bw' ''

			bwbwgrep.cpp -> bwgrep.cpp

			bwworking.cpp -> working.cpp

			bwformatter.cpp -> formatter.cpp

			bwchrono.cpp -> chrono.cpp

			bwbwfoo.txt -> bwfoo.txt

			Now we use a regex that checks if the filename already begins with "bw":

			$ ../rerename '^(?!bw)' bw

			chrono.cpp -> bwchrono.cpp

			formatter.cpp -> bwformatter.cpp

			working.cpp -> bwworking.cpp

			Because we use a vector of regex/replacement strings, we can stack several replacements:

			$ ../rerename foo bar '\.cpp$' '.xpp' grep grok

			bwgrep.cpp -> bwgrok.xpp

			bwworking.cpp -> bwworking.xpp

			bwformatter.cpp -> bwformatter.xpp

			bwchrono.cpp -> bwchrono.xpp

			bwfoo.txt -> bwbar.txt

			How it works…

			The filesystem part of this recipe uses directory_iterator to return a directory_entry object for each file in the current directory:

			for(const auto& entry : dit{fs::current_path()}) {

			    fs::path fpath{ entry.path() };

			    ...

			}

			We then construct a path object from the directory_entry object to process the file.

			We use the replace_filename() method on a path object to create the destination for the rename operation:

			fs::path rpath{ fpath };

			rpath.replace_filename(rname);

			Here, we create a duplicate and change its name, giving us both sides for the rename operation:

			fs::rename(fpath, rpath);

			On the regular expression side of the recipe, we use regex_replace(), which uses regular expression syntax to perform substitutions in a string:

			s = regex_replace(s, pattern, repl);

			Regular expression syntax is extremely powerful. It even allows replacements to include sections of the search string:

			$ ../rerename '(bw)(.*\.)(.*)$' '$3$2$1'

			bwgrep.cpp -> cppgrep.bw

			bwfoo.txt -> txtfoo.bw

			By using parentheses in the search pattern, I can easily rearrange parts of a filename.

			See also…

			For more about regular expressions, see the recipe Parse strings with Regular Expressions in Chapter 7, Strings, Streams, and Formatting.

			Create a disk usage counter

			This is a simple utility that totals the size of every file in a directory and its sub-directories. It runs on both POSIX/Unix and Windows file systems.

			How to do it…

			This recipe is a utility to report the size of every file in a directory and its sub-directories, along with a total. We'll re-use some of the functions we've used elsewhere in this chapter:

			
					We start with a few convenience aliases:namespace fs = std::filesystem;
using dit = fs::directory_iterator;
using de = fs::directory_entry;


					We also use our format specialization for fs::path objects:template<>
struct std::formatter<fs::path>: std::formatter<std::string> {
    template<typename FormatContext>
    auto format(const fs::path& p, FormatContext& ctx) {
        return format_to(ctx.out(), "{}", p.string());
    }
};


					For reporting the size of the directory, we'll use this make_commas() function:string make_commas(const uintmax_t& num) {
    string s{ std::to_string(num) };
    for(long l = s.length() - 3; l > 0; l -= 3) {
        s.insert(l, ",");
    }
    return s;
}


			

			We've used this before. It inserts a comma before every third character from the end.

			
					To sort our directory, we'll need a lowercase string function:string strlower(string s) {
    auto char_lower = [](const char& c) -> char {
        if(c >= 'A' && c <= 'Z') return c + ('a' – 
           'A');
        else return c;
    };
    std::transform(s.begin(), s.end(), s.begin(), 
      char_lower);
    return s;
}


					We need a comparison predicate for sorting directory_entry objects by the lowercase of the path name:bool dircmp_lc(const de& lhs, const de& rhs) {
    const auto lhstr{ lhs.path().string() };
    const auto rhstr{ rhs.path().string() };
    return strlower(lhstr) < strlower(rhstr);
}


					size_string() returns abbreviated values for reporting file size in gigabytes, megabytes, kilobytes, or bytes:string size_string(const uintmax_t fsize) {
    constexpr const uintmax_t kilo{ 1024 };
    constexpr const uintmax_t mega{ kilo * kilo };
    constexpr const uintmax_t giga{ mega * kilo };
    if(fsize >= giga ) return format("{}{}",
        (fsize + giga / 2) / giga, 'G');
    else if (fsize >= mega) return format("{}{}",
        (fsize + mega / 2) / mega, 'M');
    else if (fsize >= kilo) return format("{}{}",
        (fsize + kilo / 2) / kilo, 'K');
    else return format("{}B", fsize);
}


					entry_size() returns the size of a file or, if it's a directory, the recursive size of the directory:uintmax_t entry_size(const fs::path& p) {
    if(fs::is_regular_file(p)) return 
       fs::file_size(p);
    uintmax_t accum{};
    if(fs::is_directory(p) && ! fs::is_symlink(p)) {
        for(auto& e : dit{ p }) {
            accum += entry_size(e.path());
        }
    }
    return accum;
}


					In main(), we start with declarations and test if we have a valid directory to search:int main(const int argc, const char** argv) {
    auto dir{ argc > 1 ? 
        fs::path(argv[1]) : fs::current_path() };
    vector<de> entries{};
    uintmax_t accum{};
    if (!exists(dir)) {
        cout << format("path {} does not exist\n", 
          dir);
        return 1;
    }
    if(!is_directory(dir)) {
        cout << format("{} is not a directory\n", 
          dir);
        return 1;
    }
    cout << format("{}:\n", absolute(dir));


			

			For our directory path, dir, we use argv[1] if we have an argument; otherwise, we use current_path() for the current directory. Then we set up an environment for our usage counter:

			
					The vector of directory_entry objects is used for sorting our response.

					accum is used to accumulate values for our final size total.

					We make sure dir exists and is a directory before proceeding to examine the directory.

			

			
					Next, a simple loop to populate the vector. Once populated, we sort entries using our dircmp_lc() function as a comparison predicate:for (const auto& e : dit{ dir }) {
    entries.emplace_back(e.path());
}
std::sort(entries.begin(), entries.end(), dircmp_lc);


					Now that everything is set up, we can accumulate results from the sorted vector of directory_entry objects:for (const auto& e : entries) {
    fs::path p{ e };
    uintmax_t esize{ entry_size(p) };
    string dir_flag{};
    accum += esize;
    if(is_directory(p) && !is_symlink(p)) dir_flag = 
       " [image: ]";
    cout << format("{:>5} {}{}\n",
        size_string(esize), p.filename(), dir_flag);
}
cout << format("{:->25}\n", "");
cout << format("total bytes: {} ({})\n",
    make_commas(accum), size_string(accum));


			

			The call to entry_size() returns the size of the file or directory represented in the directory_entry object.

			If the current entry is a directory (and not a symbolic link), we add a symbol to indicate it's a directory. I chose an inverted triangle. You may use anything here.

			After the loop is complete, we display the accumulated size in both bytes with commas, and the abbreviated notation from size_string().

			Our output:

			/home/billw/working/cpp-stl-wkbk/chap10:

			 327K bwgrep

			   3K bwgrep.cpp

			 199K dir

			   4K dir.cpp

			 176K formatter

			 905B formatter.cpp

			   0B include

			   1K Makefile

			 181K path-ops

			   1K path-ops.cpp

			 327K rerename

			   2K rerename.cpp

			  11K testdir [image: ]

			  11K testdir-backup [image: ]

			 203K working

			   3K working.cpp

			-------------------------

			total bytes: 1,484,398 (1M)

			How it works…

			The fs::file_size() function returns a uintmax_t value that represents the size of the file as the largest natural unsigned integer on a given platform. While this is normally a 64-bit integer on most 64-bit systems, a notable exception is Windows, which uses a 32-bit integer. This means that while size_t may work for this value on some systems, it fails to compile on Windows because it may try to promote a 64-bit value to a 32-bit value.

			The entry_size() function takes a path object and returns a uintmax_t value:

			uintmax_t entry_size(const fs::path& p) {

			    if(fs::is_regular_file(p)) return fs::file_size(p);

			    uintmax_t accum{};

			    if(fs::is_directory(p) && !fs::is_symlink(p)) {

			        for(auto& e : dit{ p }) {

			            accum += entry_size(e.path());

			        }

			    }

			    return accum;

			}

			The function checks for a regular file and returns the size of the file. Otherwise, it checks for a directory that is not also a symbolic link. We just want the size of the files in a directory, so we don't want to follow symbolic links. (Symbolic links may also cause reference loops, leading to a runaway condition.)

			If we find a directory, we loop through it, calling entry_size() for each file we encounter. This is a recursive loop, so we eventually end up with the size of the directory.

		

	
		
			Chapter 11: A Few More Ideas

			We've learned some useful techniques in this book, including optional values, containers, iterators, algorithms, smart pointers, and more. We've seen examples of these concepts in use, and we've had the opportunity to experiment and apply them to some small projects. Let's now apply these techniques to a few more practical ideas.

			In this chapter, we cover the following recipes:

			
					Create a trie class for search suggestions

					Calculate the error sum of two vectors

					Build your own algorithm: split

					Leverage existing algorithms: gather

					Remove consecutive whitespace

					Convert numbers to words

			

			Technical requirement

			You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/CPP-20-STL-Cookbook/tree/main/chap11.

			Create a trie class for search suggestions

			A trie, sometimes called a prefix tree, is a type of search tree, commonly used for predictive text and other search applications. A trie is a recursive structure designed for depth-first searches, where each node is both a key and another trie.

			A common use case is a trie of strings, where each node is a string in a sentence. For example:

			
				
					[image: Figure 11.1 – A trie of strings

]
				

			

			Figure 11.1 – A trie of strings

			We often start a search at the head of a trie, looking for sentences that begin with a specific word. In this example, when I search for all, I get three nodes: you, the, and along. If I search for love, I get me and is.

			A string trie is commonly used for creating search suggestions. Here we will implement a string trie using std::map for the trie structure.

			How to do it…

			In this recipe, we create a recursive trie class that stores nodes in a std::map container. It's a simple solution for a small in-memory trie. This is a rather large class, so we'll only show the important parts here.

			For the full class, please see the source code at https://github.com/PacktPublishing/CPP-20-STL-Cookbook/blob/main/chap11/trie.cpp.

			
					We have one convenience alias:using ilcstr = initializer_list<const char *>;


			

			We use ilcstr in for searching the trie.

			
					We'll put this class in a private namespace to avoid collisions:namespace bw {
    using std::map;
    using std::deque;
    using std::initializer_list;


			

			We have a few using statements in this namespace for convenience.

			
					The class itself is called trie. It has three data members:class trie {
    using get_t = deque<deque<string>>;
    using nodes_t = map<string, trie>;
    using result_t = std::optional<const trie*>;
    nodes_t nodes{};
    mutable get_t result_dq{};
    mutable deque<string> prefix_dq{};


			

			The trie class has a few local type aliases:

			
					get_t is a deque of deque of string, used for string results.

					nodes_t is a map of trie classes with string keys.

					result_t is an optional of a pointer to a trie, for returning search results. An empty trie is a valid result, so we use an optional value.

			

			The nodes object is used for holding a recursive map of nodes, where each node on a trie is another trie.

			
					The public interface often calls utility functions in the private interface. For example, the insert() method takes an initializer_list object and calls the private function _insert():void insert(const ilcstr& il) {
    _insert(il.begin(), il.end());
}


			

			The private _insert() function does the work of inserting elements:

			template <typename It>

			void _insert(It it, It end_it) {

			    if(it == end_it) return;

			    nodes[*it]._insert(++it, end_it);

			}

			This facilitates the recursive function calls necessary to navigate the trie. Note that referencing a key that does not appear in a map creates an empty element with that key. So, the line that calls _insert() on a nodes element creates an empty trie object if the element doesn't already exist.

			
					The get() method returns a get_t object, which is an alias for a deque of deque of string. This allows us to return multiple sets of results:get_t& get() const {
    result_dq.clear();
    deque<string> dq{};
    _get(dq, result_dq);
    return result_dq;
}


			

			The get() method calls the private _get() function, which recursively traverses the trie:

			void _get(deque<string>& dq, get_t& r_dq) const {

			    if(empty()) {

			        r_dq.emplace_back(dq);

			        dq.clear();

			    }

			    for(const auto& p : nodes) {

			        dq.emplace_back(p.first);

			        p.second._get(dq, r_dq);

			    }

			}

			
					The find_prefix() function returns a deque with all matches to a partial string.deque<string>& find_prefix(const char * s) const {
    _find_prefix(s, prefix_dq);
    return prefix_dq;
}


			

			The public interface calls the private function _find_prefix():

			void _find_prefix(const string& s, auto& pre_dq) const {

			    if(empty()) return;

			    for(const auto& [k, v] : nodes) {

			        if(k.starts_with(s)) {

			            pre_dq.emplace_back(k);

			            v._find_prefix(k, pre_dq);

			        }

			    }

			}

			The private _find_prefix() function traverses the trie recursively, comparing the prefix with beginning of each key. The starts_with() method is new with C++20. With an older STL, you could use the find() method and check the return value for 0:

			if(k.find(s) == 0) {

			    ...

			
					The search() function returns an optional<const trie*>, aliased as result_t. It has two overloads:result_t search(const ilcstr& il) const {
    return _search(il.begin(), il.end());
}
result_t search(const string& s) const {
    const ilcstr il{s.c_str()};
    return _search(il.begin(), il.end());
}


			

			These methods pass iterators to the private member function _search(), which does the work of the search:

			template <typename It>

			result_t _search(It it, It end_it) const {

			    if(it == end_it) return {this};

			    auto found_it = nodes.find(*it);

			    if(found_it == nodes.end()) return {};

			    return found_it->second._search(++it, end_it);

			}

			The _search() function searches recursively until it finds a match, then returns a node in the result_t object. If it finds no match, it returns the non-value optional.

			
					We also have two overloads of a print_trie_prefix() function. This function prints the contents of a trie from a prefix, used as a search key. One version uses a string for the prefix, the other uses an initializer_list of C-strings:void print_trie_prefix(const bw::trie& t,
        const string& prefix) {
    auto& trie_strings = t.get();
    cout << format("results for \"{}...\":\n", prefix);
    for(auto& dq : trie_strings) {
        cout << format("{} ", prefix);
        for(const auto& s : dq) cout << format("{} ", s);
        cout << '\n';
    }
}
void print_trie_prefix(const bw::trie& t,
        const ilcstr & prefix) {
    string sprefix{};
    for(const auto& s : prefix) sprefix += 
        format("{} ", s);
    print_trie_prefix(t, sprefix);
}


			

			These functions call the get() member function to retrieve the results from the trie.

			
					Now we can test the trie class in the main() function. First, we declare a trie and insert some sentences:int main() {
    bw::trie ts;
    ts.insert({ "all", "along", "the", "watchtower" });
    ts.insert({ "all", "you", "need", "is", "love" });
    ts.insert({ "all", "shook", "up" });
    ts.insert({ "all", "the", "best" });
    ts.insert({ "all", "the", "gold", "in",
        "california" });
    ts.insert({ "at", "last" });
    ts.insert({ "love", "the", "one", "you're",        "with" });
    ts.insert({ "love", "me", "do" });
    ts.insert({ "love", "is", "the", "answer" });
    ts.insert({ "loving", "you" });
    ts.insert({ "long", "tall", "sally" });
    ...


			

			The insert() calls pass an initializer_list with all the strings of a sentence. Each of the strings of a sentence are inserted into the hierarchy of the trie.

			
					Now we can search the trie. Here's a simple search for the single string "love".const auto prefix = {"love"};
if (auto st = ts.search(prefix); st.have_result) {
    print_trie_prefix(*st.t, prefix);
}
cout << '\n';


			

			This calls ts.search() with an initializer_list of one C-string, called prefix. The result, along with the prefix, is then passed to the print_trie_prefix() function.

			The output is:

			results for "love...":

			love is the answer

			love me do

			love the one you're with

			
					Here's a search for a two-string prefix:const auto prefix = {"all", "the"};
if (auto st = ts.search(prefix); st.have_result) {
    print_trie_prefix(*st.t, prefix);
}
cout << '\n';


			

			Output:

			results for "all the ...":

			all the  best

			all the  gold in california

			
					And here's a search for a partial prefix, using the find_prefix() function:const char * prefix{ "lo" };
auto prefix_dq = ts.find_prefix(prefix);
for(const auto& s : prefix_dq) {
    cout << format("match: {} -> {}\n", prefix, s);
    if (auto st = ts.search(s); st.have_result) {
        print_trie_prefix(*st.t, s);
    }
}
cout << '\n';


			

			Output:

			match: lo -> long

			results for "long...":

			long tall sally

			match: lo -> love

			results for "love...":

			love is the answer

			love me do

			love the one you're with

			match: lo -> loving

			results for "loving...":

			loving you

			The find_prefix() search returned several results, each of which we passed to a search of its own, resulting in several results for each result.

			How it works…

			The data for the trie class is stored in recursive map containers. Each node in the map contains another trie object, which in turn has its own map node.

			using nodes_t = map<string, trie>

			The _insert() function takes begin and end iterators, and uses them to recursively call _insert() on new nodes:

			template <typename It>

			void _insert(It it, It end_it) {

			    if(it == end_it) return;

			    nodes[*it]._insert(++it, end_it);

			}

			Likewise, the _search() function recursively calls _search() on the nodes it finds:

			template <typename It>

			result_t _search(It it, It end_it) const {

			    if(it == end_it) return {this};

			    auto found_it = nodes.find(*it);

			    if(found_it == nodes.end()) return {};

			    return found_it->second._search(++it, end_it);

			}

			This recursive approach using std::map allows us to implement a trie class concisely and efficiently.

			Calculate the error sum of two vectors

			Given two similar vectors that differ only by quantization or resolution, we can use the inner_product() algorithm to calculate an error sum, defined as:

			
				
					[image: Figure 11.2 – Error sum definition

]
				

			

			Figure 11.2 – Error sum definition

			Where e is the error sum, the sum of the square of the difference between a series of points in two vectors.

			We can use the inner_product() algorithm, from the <numeric> header, to calculate the error sum between two vectors.

			How to do it…

			In this recipe we define two vectors, each with a sine wave. One vector has values of type double and the other has type int. This gives us vectors that differ in quantization, because the int type cannot represent fractional values. We then use inner_product() to calculate the error sum between the two vectors:

			
					In our main() function we define our vectors and a handy index variable:int main() {
    constexpr size_t vlen{ 100 };
    vector<double> ds(vlen);
    vector<int> is(vlen);
    size_t index{};
    ...


			

			ds is the vector of double sine waves and is is the vector of int sine waves. Each vector has 100 elements to hold a sine wave. The index variable is used to initialize the vector objects.

			
					We generate the sine wave in the vector of double, using a loop and a lambda:auto sin_gen = [&index]{
  return 5.0 * sin(index++ * 2 * pi / 100);
};
for(auto& v : ds) v = sin_gen();


			

			The lambda captures a reference to the index variable so it can be incremented.

			The pi constant is from the std::numbers library.

			
					We now have a double sine wave and we can use it to derive the int version:index = 0;
for(auto& v : is) {
    v = static_cast<int>(round(ds.at(index++)));
}


			

			This takes each point from ds, rounds it, casts it to an int, and updates it in position in the is container.

			
					We display our sine waves with a simple loop:for(const auto& v : ds) cout << format("{:-5.2f} ", v);
cout << "\n\n";
for(const auto& v : is) cout << format("{:-3d} ", v);
cout << "\n\n";


			

			Our output is the sine waves as data points in the two containers:

			0.00  0.31  0.63  0.94  1.24  1.55  1.84  2.13  2.41

			0.00  0.31  0.63  0.94  1.24  1.55  1.84  2.13  2.41

			2.68  2.94  3.19  3.42  3.64  3.85  4.05  4.22  4.38

			4.52  4.65  4.76  4.84  4.91  4.96  4.99  5.00  4.99

			4.96  4.91  4.84  4.76  4.65  4.52  4.38  4.22  4.05

			3.85  3.64  3.42  3.19  2.94  2.68  2.41  2.13  1.84
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					Now we calculate the error sum using inner_product():double errsum = inner_product(ds.begin(), ds.end(), 
    is.begin(), 0.0, std::plus<double>(),
    [](double a, double b){ return pow(a - b, 2); });
cout << format("error sum: {:.3f}\n\n", errsum);


			

			The lambda expression returns the (ai – bi)2 part of the formula. The std::plus() algorithm performs the sum operation.

			Output:

			error sum: 7.304

			How it works…

			The inner_product() algorithm computes a sum of products on the first input range. Its signature is:

			T inner_product(InputIt1 first1, InputIt1 last1,

			    InputIt2 first2, T init, BinaryOperator1 op1,

			    BinaryOperator2 op2)

			The function takes two binary operator functors, op1 and op2. The first op1 is for the sum and the second op2 is for the product. We use std::plus() as the sum operator, and a lambda as the product operator.

			The init parameter can be used as a starting value or bias. We pass it the literal value, 0.0.

			The return value is the accumulated sum of the products.

			There's more…

			We can calculate an accumulated error sum by putting inner_product() in a loop:

			cout << "accumulated error:\n";

			for (auto it{ds.begin()}; it != ds.end(); ++it) {

			    double accumsum = inner_product(ds.begin(), it, 

			        is.begin(), 0.0, std::plus<double>(),

			        [](double a, double b){ return pow(a - b, 2); });

			    cout << format("{:-5.2f} ", accumsum);

			}

			cout << '\n';

			Output:

			accumulated error:

			0.00  0.00  0.10  0.24  0.24  0.30  0.51  0.53  0.55  0.72  0.82  0.82  0.86  1.04  1.16  1.19  1.19  1.24  1.38  1.61  1.73  1.79  1.82  1.82  1.83  1.83  1.83  1.83  1.83  1.84  1.86  1.92  2.04  2.27  2.42  2.46  2.47  2.49  2.61  2.79  2.83  2.83  2.93  3.10  3.12  3.14  3.35  3.41  3.41  3.55  3.65  3.65  3.75  3.89  3.89  3.95  4.16  4.19  4.20  4.37  4.47  4.48  4.51  4.69  4.82  4.84  4.84  4.89  5.03  5.26  5.38  5.44  5.47  5.48  5.48  5.48  5.48  5.48  5.48  5.49  5.51  5.57  5.70  5.92  6.07  6.12  6.12  6.14  6.27  6.45  6.48  6.48  6.59  6.75  6.77  6.80  7.00  7.06  7.07  7.21

			This may be useful in some statistical applications.

			Build your own algorithm: split

			The STL has a rich algorithm library. Yet, on occasion you may find it missing something you need. One common need is a split function.

			A split function splits a string on a character separator. For example, here's a Unix /etc/passwd file from a standard Debian installation:

			root:x:0:0:root:/root:/bin/bash

			daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

			bin:x:2:2:bin:/bin:/usr/sbin/nologin

			sys:x:3:3:sys:/dev:/usr/sbin/nologin

			sync:x:4:65534:sync:/bin:/bin/sync

			Each field is separated by a colon : character, where the fields are:

			
					Login name

					Optional encrypted password

					User ID

					Group ID

					Username or comment

					Home directory

					Optional command interpreter

			

			This is a standard file in POSIX-based operating systems, and there are others like it. Most scripting languages include a built-in function for splitting a string on a separator. There are simple ways to do this in C++. Still, std::string is just another container in the STL, and a generic algorithm that splits a container on a separator could be a useful addition to the toolbox. So, let's build one.

			How to do it…

			In this recipe, we build a generic algorithm that splits a container on a separator and puts the results in a target container.

			
					Our algorithm is in the bw namespace, to avoid collisions with std:namespace bw {
    template<typename It, typename Oc, typename V,
        typename Pred>
    It split(It it, It end_it, Oc& dest,
            const V& sep, Pred& f) {
        using SliceContainer = typename 
          Oc::value_type;
        while(it != end_it) {
            SliceContainer dest_elm{};
            auto slice{ it };
            while(slice != end_it) {
                if(f(*slice, sep)) break;
                dest_elm.push_back(*slice++);
            }
            dest.push_back(dest_elm);
            if(slice == end_it) return end_it;
            it = ++slice;
        }
        return it;
    }
};


			

			The split() algorithm searches a container for separators and collects the separated slices into a new output container, where each slice is a container within the output container.

			We want the split() algorithm to be as generic as possible, just like those in the algorithm library. This means that all the parameters are templated, and the code will work with a comprehensive variety of parameter types.

			First, let's look at the template parameters:

			
					It is the input iterator type for the source container.

					Oc is the output container type. This is a container of containers.

					V is the separator type.

					Pred is for the predicate functor.

			

			Our output type is a container of containers. It needs to hold containers of slices. It could be vector<string>, where the string values are slices, or vector<vector<int>>, where the inner vector<int> contains the slices. This means we need to derive the type of the inner container from the output container type. We do that with the using declaration in the body of the function.

			using SliceContainer = typename Oc::value_type;

			This is also why we cannot use an output iterator for the output parameter. By definition, an output iterator cannot determine the type of its contents and its value_type is set to void.

			We use SliceContainer to define a temporary container that is added to the output container with the statement:

			dest.push_back(dest_elm);

			
					The predicate is a binary operator that compares an input element with the separator. We include a default equality operator in the bw namespace:constexpr auto eq = [](const auto& el, const auto& sep) {
    return el == sep;
};


					We also include a specialization of split() that uses the eq operator by default:template<typename It, typename Oc, typename V>
It split(It it, const It end_it, Oc& dest, const V& sep) {
    return split(it, end_it, dest, sep, eq);
}


					Because splitting string objects is a common use case for this algorithm, we include a helper function for that specific purpose:template<typename Cin, typename Cout, typename V>
Cout& strsplit(const Cin& str, Cout& dest, const V& sep) {
    split(str.begin(), str.end(), dest, sep, eq);
    return dest;
}


					We test our split algorithm main(), starting with a string object:int main() {
    constexpr char strsep{ ':' };
    const string str
        { "sync:x:4:65534:sync:/bin:/bin/sync" };
    vector<string> dest_vs{};
    bw::split(str.begin(), str.end(), dest_vs, strsep, 
        bw::eq);
    for(const auto& e : dest_vs) cout <<
        format("[{}] ", e);
    cout << '\n';
}


			

			We use a string from the /etc/passwd file to test our algorithm, with this result:

			[sync] [x] [4] [65534] [sync] [/bin] [/bin/sync]

			
					It's even simpler using our strsplit() helper function:vector<string> dest_vs2{};
bw::strsplit(str, dest_vs2, strsep);
for(const auto& e : dest_vs2) cout << format("[{}] ", e);
cout << '\n';


			

			Output:

			[sync] [x] [4] [65534] [sync] [/bin] [/bin/sync]

			This would make it easy to parse the /etc/passwd file.

			
					Of course, we can use the same algorithm with any container:constexpr int intsep{ -1 };
vector<int> vi{ 1, 2, 3, 4, intsep, 5, 6, 7, 8, intsep,
    9, 10, 11, 12 };
vector<vector<int>> dest_vi{};
bw::split(vi.begin(), vi.end(), dest_vi, intsep);
for(const auto& v : dest_vi) {
    string s;
    for(const auto& e : v) s += format("{}", e);
    cout << format("[{}] ", s);
}
cout << '\n';


			

			Output:

			[1234] [5678] [9101112]

			How it works…

			The split algorithm itself is relatively simple. The magic in this recipe is in the use of templates to make it as generic as possible.

			The derived type in the using declaration allows us to create a container for use with the output container:

			using SliceContainer = typename Oc::value_type;

			This gives us a SliceContainer type that we can use to create a container for the slices:

			SliceContainer dest_elm{};

			This is a temporary container that is added to the output container for each slice:

			dest.push_back(dest_elm);

			Leverage existing algorithms: gather

			gather() is an example of an algorithm that leverages existing algorithms.

			The gather() algorithm takes a pair of container iterators and moves the elements that satisfy a predicate toward a pivot position within the sequence, returning a pair of iterators that contains the elements that satisfy the predicate.

			For example, we could use a gather algorithm to sort all the even numbers to the mid-point of a vector:

			vector<int> vint{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

			gather(vint.begin(), vint.end(), mid(vint), is_even);

			for(const auto& el : vint) cout << el;

			Our output is:

			1302468579

			Notice that the even numbers are all in the middle of the output.

			In this recipe, we will implement a gather algorithm using standard STL algorithms.

			How to do it…

			Our gather algorithm uses the std::stable_partition() algorithm to move items before the pivot iterator and again to move items past the pivot.

			
					We put the algorithm in the bw namespace to avoid collisions.namespace bw {
using std::stable_partition;
using std::pair;
using std::not_fn;
template <typename It, typename Pred>
pair<It, It> gather(It first, It last, It pivot,
        Pred pred) {
    return {stable_partition(first, pivot, not_fn(pred)),
            stable_partition(pivot, last, pred)};
}
};


			

			The gather() algorithm returns a pair of iterators, returned from two calls to stable_partition().

			
					We also include some helper lambdas:constexpr auto midit = [](auto& v) {
    return v.begin() + (v.end() - v.begin()) / 2;
};
constexpr auto is_even = [](auto i) {
    return i % 2 == 0;
};
constexpr auto is_even_char = [](auto c) {
    if(c >= '0' && c <= '9') return (c - '0') % 2 == 0;
    else return false;
};


			

			These three lambdas are as follows:

			
					midit returns an iterator at the midpoint of a container, for use as a pivot point.

					is_even returns Boolean true if the value is even, for use as a predicate.

					is_even_char returns Boolean true if the value is a character between '0' and '9' and is even, for use as a predicate.

			

			
					We call gather() from the main() function with a vector of int like this:int main() {
    vector<int> vint{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
    auto gathered_even = bw::gather(vint.begin(),
        vint.end(), bw::midit(vint), bw::is_even);
    for(const auto& el : vint) cout << el;
    cout << '\n';
}


			

			Our output shows that the even numbers have been gathered in the middle:

			1302468579

			The gather() function returns a pair of iterators that contain just the even values:

			auto& [it1, it2] = gathered_even;

			for(auto it{ it1 }; it < it2; ++it) cout << *it;

			cout << '\n';

			Output: 

			02468

			
					We can set the pivot point to the begin() or end() iterators:bw::gather(vint.begin(), vint.end(), vint.begin(), 
    bw::is_even);
for(const auto& el : vint) cout << el;
cout << '\n';
bw::gather(vint.begin(), vint.end(), vint.end(),
    bw::is_even);
for(const auto& el : vint) cout << el;
cout << '\n';


			

			Output:

			0246813579

			1357902468

			
					Because gather() is iterator-based, we can use it with any container. Here's a string of character digits:string jenny{ "867-5309" };
bw::gather(jenny.begin(), jenny.end(), jenny.end(),
    bw::is_even_char);
for(const auto& el : jenny) cout << el;
cout << '\n';


			

			This moves all the even digits to the end of the string:

			Output:

			7-539860

			How it works…

			The gather() function uses the std::stable_partition() algorithm to move the elements that match the predicate to the pivot point.

			gather() has two calls to stable_partition(), one with the predicate, and one with the predicate negated:

			template <typename It, typename Pred>

			pair<It, It> gather(It first, It last, It pivot, Pred pred) {

			    return { stable_partition(first, pivot, not_fn(pred)),

			             stable_partition(pivot, last, pred) };

			}

			The iterators returned from the two stable_partition() calls are returned in the pair.

			Remove consecutive whitespace

			When receiving input from users, it's common to end up with excessive consecutive whitespace characters in your strings. This recipe presents a function for removing consecutive spaces, even when it includes tabs or other whitespace characters.

			How to do it…

			This function leverages the std::unique() algorithm to remove consecutive whitespace characters from a string.

			
					In the bw namespace, we start with a function to detect whitespace:template<typename T>
bool isws(const T& c) {
    constexpr const T whitespace[]{ " \t\r\n\v\f" };
    for(const T& wsc : whitespace) {
        if(c == wsc) return true;
    }    
    return false;
}


			

			This templated isws() function should work with any character type.

			
					The delws() function uses std::unique() to erase consecutive whitespace in a string:string delws(const string& s) {
    string outstr{s};
    auto its = unique(outstr.begin(), outstr.end(),
        [](const auto &a, const auto &b) {
            return isws(a) && isws(b);
        });
    outstr.erase(its, outstr.end());
    outstr.shrink_to_fit();
    return outstr;
}


			

			delws() makes a copy of the input string, removes consecutive whitespace, and returns the new string.

			
					We call it with a string from main():int main() {
    const string s{ "big     bad    \t   wolf" };
    const string s2{ bw::delws(s) };
    cout << format("[{}]\n", s);
    cout << format("[{}]\n", s2);
    return 0;
}


			

			Output:

			[big     bad           wolf]

			[big bad wolf]

			How it works…

			This function uses the std::unique() algorithm with a comparison lambda to find consecutive whitespace in a string object.

			The comparison lambda calls our own isws() function to determine if we have found consecutive whitespace:

			auto its = unique(outstr.begin(), outstr.end(),

			    [](const auto &a, const auto &b) {

			        return isws(a) && isws(b);

			    });

			We could use the isspace() function from the standard library, but it's a standard C function that depends on a narrowing type conversion from int to char. This may issue warnings on some modern C++ compilers and is not guaranteed to work without an explicit cast. Our isws() function uses a templated type and should work on any system, and with any specialization of std::string.

			Convert numbers to words

			Over the course of my career, I've used a lot of programming languages. When learning a new language, I like to have a project to work on that exposes me to the nuances of the language. The numwords class is one of my favorite exercises for this purpose. I have written it in dozens of languages over the years, including several times in C and C++.

			numwords is a class that spells out a number in words. It can be useful for banking and accounting applications. It looks like this in use:

			int main() {

			    bw::numword nw{};

			    uint64_t n;

			    nw = 3; bw::print("n is {}, {}\n", nw.getnum(), nw);

			    nw = 47; bw::print("n is {}, {}\n", nw.getnum(), nw);

			    n = 100073; bw::print("n is {}, {}\n", n, 

			      bw::numword{n});

			    n = 1000000001; bw::print("n is {}, {}\n", n, 

			      bw::numword{n});

			    n = 123000000000; bw::print("n is {}, {}\n", n, 

			      bw::numword{n});

			    n = 1474142398007; bw::print("n is {}, {}\n", n, 

			      nw.words(n));

			    n = 999999999999999999; bw::print("n is {}, {}\n", n, 

			      nw.words(n));

			    n = 1000000000000000000; bw::print("n is {}, {}\n", n, 

			        nw.words(n));

			}

			Output:

			n is 3, three

			n is 47, forty-seven

			n is 100073, one hundred thousand seventy-three

			n is 1000000001, one billion one

			n is 123000000000, one hundred twenty-three billion

			n is 1474142398007, one trillion four hundred seventy-four billion one hundred forty-two million three hundred ninety-eight thousand seven

			n is 999999999999999999, nine hundred ninety-nine quadrillion nine hundred ninety-nine trillion nine hundred ninety-nine billion nine hundred ninety-nine million nine hundred ninety-nine thousand nine hundred ninety-nine

			n is 1000000000000000000, error

			How to do it…

			This recipe originated as an exercise in creating production-ready code. For that reason, it's in three different files:

			
					numword.h is the header/interface file for the numwords class.

					numword.cpp is the implementation file for the numwords class.

					numword-test.cpp is the application file for testing the numword class.

			

			The class itself is about 180 lines of code so we'll just cover the highlights here. You can find the full source code at https://github.com/PacktPublishing/CPP-20-STL-Cookbook/tree/main/chap11/numword.

			
					In the numword.h file, we put the class in the bw namespace and start with some using statements:namespace bw {
    using std::string;
    using std::string_view;
    using numnum = uint64_t; 
    using bufstr = std::unique_ptr<string>;


			

			We use string and string_view objects throughout the code.

			uint64_t is our primary integer type because it will hold very large numbers. Because the class is called numword, I like numnum for the integer type.

			_bufstr is the main output buffer. It's a string wrapped in a unique_ptr, which handles the memory management for automatic RAII compliance.

			
					We also have a few constants for various purposes:constexpr numnum maxnum = 999'999'999'999'999'999;
constexpr int zero_i{ 0 };
constexpr int five_i{ 5 };
constexpr numnum zero{ 0 };
constexpr numnum ten{ 10 };
constexpr numnum twenty{ 20 };
constexpr numnum hundred{ 100 };
constexpr numnum thousand{ 1000 };


			

			The maxnum constant translates to "nine hundred ninety-nine quadrillion nine hundred ninety-nine trillion nine hundred ninety-nine billion nine hundred ninety-nine million nine hundred ninety-nine thousand nine hundred ninety-nine," which should be sufficient for most purposes.

			The rest of the numnum constants are used to avoid literals in the code.

			
					The main data structures are constexpr arrays of string_view objects, representing the words used in the output. The string_view class is perfect for these constants, as it provides encapsulation with minimum overhead:constexpr string_view errnum{ "error" };
constexpr string_view _singles[] {
    "zero", "one", "two", "three", "four", "five", 
    "six", "seven", "eight", "nine"
};
constexpr string_view _teens[] {
    "ten", "eleven", "twelve", "thirteen", "fourteen", 
    "fifteen", "sixteen", "seventeen", "eighteen", 
    "nineteen"
};
constexpr string_view _tens[] {
    errnum, errnum, "twenty", "thirty", "forty", 
    "fifty", "sixty", "seventy", "eighty", "ninety",
};
constexpr string_view _hundred_string = "hundred";
constexpr string_view _powers[] {
    errnum, "thousand", "million", "billion", 
    "trillion", "quadrillion"
};


			

			The words are grouped into sections, useful in translating numbers to words. Many languages use a similar breakdown so this structure should translate easily to those languages.

			
					The numword class has a few private members:class numword {
    bufstr _buf{ std::make_unique<string>(string{}) };
    numnum _num{};
    bool _hyphen_flag{ false };
	_buf is the output string buffer. Its memory is managed by a unique_ptr.
	_num holds the current numeric value.
	_hyphen_flag is used during the translation process to insert a hyphen between words, rather than a space character.



					These private methods are used to manipulate the output buffer.void clearbuf();
size_t bufsize();
void appendbuf(const string& s);
void appendbuf(const string_view& s);
void appendbuf(const char c);
void appendspace();


			

			There is also a pow_i() private method used to calculate xy with numnum types:

			numnum pow_i(const numnum n, const numnum p);

			pow_i() is used to discriminate parts of the numeric value for word output.

			
					The public interface includes constructors and various ways to call the words() method, which does the work of translating a numnum to a string of words:numword(const numnum& num = 0) : _num(num) {}
numword(const numword& nw) : _num(nw.getnum()) {}
const char * version() const { return _version; }
void setnum(const numnum& num) { _num = num; }
numnum getnum() const { return _num; }
numnum operator= (const numnum& num);
const string& words();
const string& words(const numnum& num);
const string& operator() (const numnum& num) {
    return words(num); };


					In the implementation file, numword.cpp, the bulk of the work is handled in the words() member function:const string& numword::words( const numnum& num ) {
    numnum n{ num };
    clearbuf();
    if(n > maxnum) {
        appendbuf(errnum);
        return *_buf;
    }
    if (n == 0) {
        appendbuf(_singles[n]);
        return *_buf;
    }
    // powers of 1000
    if (n >= thousand) {
        for(int i{ five_i }; i > zero_i; --i) {
            numnum power{ pow_i(thousand, i) };
            numnum _n{ ( n - ( n % power ) ) / power };
            if (_n) {
                int index = i;
                numword _nw{ _n };
                appendbuf(_nw.words());
                appendbuf(_powers[index]);
                n -= _n * power;
            }
        }
    }
    // hundreds
    if (n >= hundred && n < thousand) {
        numnum _n{ ( n - ( n % hundred ) ) / hundred };
        numword _nw{ _n };
        appendbuf(_nw.words());
        appendbuf(_hundred_string);
        n -= _n * hundred;
    }
    // tens
    if (n >= twenty && n < hundred) {
        numnum _n{ ( n - ( n % ten ) ) / ten };
        appendbuf(_tens[_n]);
        n -= _n * ten;
        _hyphen_flag = true;
    }
    // teens
    if (n >= ten && n < twenty) {
        appendbuf(_teens[n - ten]);
        n = zero;
    }
    // singles
    if (n > zero && n < ten) {
        appendbuf(_singles[n]);
    }
    return *_buf;
}


			

			Each part of the function peels off part of the number with a modulus of a power of ten, recursively in the case of the thousands, and appends strings from the string_view constant arrays.

			
					There are three overloads of appendbuf(). One appends a string:void numword::appendbuf(const string& s) {
    appendspace();
    _buf->append(s);
}


			

			Another appends a string_view:

			void numword::appendbuf(const string_view& s) {

			    appendspace();

			    _buf->append(s.data());

			}

			And the third appends a single character:

			void numword::appendbuf(const char c) {

			    _buf->append(1, c);

			}

			The appendspace() method appends a space character or a hyphen, depending on the context:

			void numword::appendspace() {

			    if(bufsize()) {

			        appendbuf( _hyphen_flag ? _hyphen : _space);

			        _hyphen_flag = false;

			    }

			}

			
					The numword-test.cpp file is the testing environment for bw::numword. It includes a formatter specialization:template<>
struct std::formatter<bw::numword>: std::formatter<unsigned> {
    template<typename FormatContext>
    auto format(const bw::numword& nw, 
      FormatContext& ctx) {
        bw::numword _nw{nw};
        return format_to(ctx.out(), "{}", 
          _nw.words());
    }
};


			

			This allows us to pass a bw::numword object directly to format().

			
					There's also a print() function that sends formatter output directly to stdout, bypassing cout and the iostream library entirely:namespace bw {
    template<typename... Args> constexpr void print(
            const std::string_view str_fmt, Args&&... 
              args) {
        fputs(std::vformat(str_fmt, 
            std::make_format_args(args...)).c_str(), 
            stdout);
    }
};


			

			This allows us to use print("{}\n", nw) instead of piping format() through cout. A function like this will be included in the C++23 standard. It's simple enough to include it like this for now.

			
					In main(), we declare a bw::numword object and a uint64_t for use in testing:int main() {
    bw::numword nw{};
    uint64_t n{};
    bw::print("n is {}, {}\n", nw.getnum(), nw);
    ...


			

			The numword object is initialized to zero, giving us this output from our print() statement:

			n is 0, zero

			
					We test a variety of ways to call numword:nw = 3; bw::print("n is {}, {}\n", nw.getnum(), nw);
nw = 47; bw::print("n is {}, {}\n", nw.getnum(), nw);
...
n = 100073; bw::print("n is {}, {}\n", n, bw::numword{n});
n = 1000000001; bw::print("n is {}, {}\n", n, bw::numword{n});
...
n = 474142398123; bw::print("n is {}, {}\n", n, nw(n));
n = 1474142398007; bw::print("n is {}, {}\n", n, nw(n));
...
n = 999999999999999999; bw::print("n is {}, {}\n", n, nw(n));
n = 1000000000000000000; bw::print("n is {}, {}\n", n, nw(n));


			

			Output:

			n is 3, three

			n is 47, forty-seven

			...

			n is 100073, one hundred thousand seventy-three

			n is 1000000001, one billion one

			...

			n is 474142398123, four hundred seventy-four billion one hundred forty-two million three hundred ninety-eight thousand one hundred twenty-three

			n is 1474142398007, one trillion four hundred seventy-four billion one hundred forty-two million three hundred ninety-eight thousand seven

			...

			n is 999999999999999999, nine hundred ninety-nine quadrillion nine hundred ninety-nine trillion nine hundred ninety-nine billion nine hundred ninety-nine million nine hundred ninety-nine thousand nine hundred ninety-nine

			n is 1000000000000000000, error

			How it works…

			This class is significantly driven by the data structures. By organizing string_view objects into arrays, we can easily translate scalar values into corresponding words:

			appendbuf(_tens[_n]);  // e.g., _tens[5] = "fifty"

			The rest of it is mostly the math:

			numnum power{ pow_i(thousand, i) };

			numnum _n{ ( n - ( n % power ) ) / power };

			if (_n) {

			    int index = i;

			    numword _nw{ _n };

			    appendbuf(_nw.words());

			    appendbuf(_powers[index]);

			    n -= _n * power;

			}

			There's more…

			I also have a utility that uses the numwords class to tell time in words. Its output looks like this:

			$ ./saytime

			three past five

			In test mode, it gives this output:

			$ ./saytime test

			00:00 midnight

			00:01 one past midnight

			11:00 eleven o'clock

			12:00 noon

			13:00 one o'clock

			12:29 twenty-nine past noon

			12:30 half past noon

			12:31 twenty-nine til one

			12:15 quarter past noon

			12:30 half past noon

			12:45 quarter til one

			11:59 one til noon

			23:15 quarter past eleven

			23:59 one til midnight

			12:59 one til one

			13:59 one til two

			01:60 OOR

			24:00 OOR

			I leave its implementation as an exercise for the reader.
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