


Hands-On Design Patterns and
Best Practices with Julia

Proven solutions to common problems in software design for
Julia 1.x

Tom Kwong, CFA

BIRMINGHAM - MUMBAI



Hands-On Design Patterns and Best
Practices with Julia
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Karan Gupta
Content Development Editor: Tiksha Sarang
Senior Editor: Afshaan Khan
Technical Editor: Ketan Kamble
Copy Editor: Safis Editing
Project Coordinator: Francy Puthiry
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Nilesh Mohite

First published: January 2020

Production reference: 1170120

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83864-881-7

www.packt.com

http://www.packt.com


 

 

 

 

 

 

 

 
 
 
 
 
 

To my lovely family, Mei, Keith, and Karen.



 

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks. 

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com


Foreword
Design patterns are the negative space of a programming language. They are the techniques
that programmers come up with to effectively leverage a language's strengths and
compensate for its weaknesses. We all use them whether we mean to or not. The classic
Gang of Four Design Patterns book took existing patterns that were already being used in the
wild and catalogued and classified them. Perhaps even more importantly, it gave them
names so that programmers could refer to common patterns easily and immediately
understand each other. It gave programmers a lingua franca for the tools of their trade.

Whereas classic design pattern books have focused almost exclusively on patterns
themselves, assuming language proficiency as a given, Hands-on Design Patterns and Best
Practices with Julia weaves together both the positive and negative space images of Julia. It
introduces the language features that patterns depend on as they are used, making the book
accessible even for readers who are not already fluent Julia programmers. This approach
provides a comprehensive introduction of the language, while also covering advanced
subjects as the book progresses. The later chapters delve into the kinds of sophisticated
design patterns used by Julia wizards, so by the time you get to the end, you will truly have
mastered the language. Be forewarned, however, as with most of the best programming
books, it may require more than one read through before you've fully digested the content.

One of the more interesting aspects of creating a widely used programming language is
seeing the remarkable and surprising things that people do with it. This includes incredible
and sometimes world-changing applications that people have built in Julia—from
specifying the FAA's next generation air collision avoidance system, to mapping all the
visible universe's celestial bodies, to modeling climate change with unprecedented accuracy
and resolution. But it also includes the clever programming tricks that people come up with
to make it do their bidding. One of my favorites is the (Tim) Holy Trait Trick, discussed in
Chapter 5, Reusability Patterns, which leverages the fact that Julia can efficiently dispatch on
as many arguments as we want, to work around the language's lack of multiple inheritance.
Not only does this technique get the job done, it goes well beyond: traits can depend on
computed properties of types, allowing them to express relationships that multiple
inheritance cannot. It turns out that the language already had the expressive power that
was needed, it just took a clever design pattern to unlock it.



Tom's background gives him an expertly nuanced and balanced perspective on
programming languages and their design patterns. He started programming in BASIC. But
since those early days, he's used a broad variety of languages in professional settings,
including: C++, Java, Python, TypeScript, Scheme and—of course—Julia. The set of
technological sectors he's applied these languages in are equally diverse: finance, search
engine, e-commerce, content management, and currently asset management. Perhaps not
coincidentally, Julia is gaining significant traction in many of these sectors, especially those
which are computationally demanding. Our backgrounds shape how we see the world and
sometimes you find a new tool that feels like it was made for you. Sometimes you
encounter a new programming language and think This is how I've always wanted to write
programs! Julia has been that language for Tom and for many others. Hopefully it will be for
you as well. Whether you are just trying Julia for the first time, or have used it for years and
want to level up with more advanced techniques, you will find what you're looking for in
this book. Enjoy and happy coding!

Stefan Karpinski

Co-creator of the Julia programming language

Co-founder of Julia Computing, Inc.



Contributors

About the author
Tom Kwong, CFA, is an experienced software engineer with over 25 years of industry
programming experience. He has spent the majority of his career in the financial services
industry. His expertise includes software architecture, design, and the development of
trading/risk systems. Since 2017, he has uncovered the Julia language and has worked on
several open source packages, including SASLib.jl. He currently works at Western Asset
Management Company, a prestige asset management company that specializes in fixed
income investment services. He holds an MS degree in computer science from the
University of California, Santa Barbara (from 1993), and he holds the Chartered Financial
Analyst® designation since 2009.

I would like to thank my colleagues at Western Asset, especially Team Nebula, the
DevOps Team, and some of the risk managers, for their encouragement and support in my
enthusiasm for the Julia language. This includes Sal Kadam, Chandra Subramani, Rony
Chen, Kevin Yen, Khairil Iqbal, Michael Li, Anila Kothapally, Porntawee
Nantamanasikarn, Ramesh Pandey, Louie Liu, Patrick Colony, John Quan, and many
others. I also want to thank Jacqueline Farrington for teaching me valuable life lessons,
such as having a growth mindset and keeping myself challenged.

I would like to thank the community members from the JuliaLang Slack and Discourse
forum for being so kind in teaching me and enlightening me about various programming
techniques in Julia. There are too many to mention here, but the first ones who come to
mind are Tamas Papp, David Anthoff, Scott P. Jones, David P. Sanders, Mohamed Terek,
Chris Elrod, Lyndon White (oxinabox), Cédric St. Jean, Twan Koolen, Milan Bouchet-
Valat, Chris Rackauckas, Stefan Karpinski, Kristoffer Carlsson, Fredrik Ekre, and Yichao
Yu.



About the reviewer
Zhuo Qingliang (also known as KDR 2 online) is presently working at paodingai.com,
which is a start up FinTech company in China that is dedicated to improving the financial
industry by using artificial intelligence technologies. He has over 10 years of experience in
Linux, C, C++, Python, Perl, and Java development. He is interested in programming, doing
consulting work, and participating in, and contributing to, the open source community
(including the Julia community, of course).

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com


Table of Contents
Preface 1

Section 1: Getting Started with Design Patterns
Chapter 1: Design Patterns and Related Principles 10

The history of design patterns 10
The rise of design patterns 11
More thoughts about GoF patterns 12
How do we describe patterns in this book? 13

Software design principles 14
SOLID 14

Single Responsibility Principle 14
Open/Closed Principle 15
Liskov Substitution Principle 15
Interface Segregation Principle 15
Dependency Inversion Principle 15

DRY 16
KISS 16
POLA 17
YAGNI 17
POLP 18

Software quality objectives 19
Reusability 19

Characteristics of reusable components 20
Performance 21

Characteristics of high-performance code 21
Maintainability 22

Characteristics of maintainable code 22
Safety 23

Characteristics of safe applications 23
Summary 24
Questions 25

Section 2: Julia Fundamentals
Chapter 2: Modules, Packages, and Data Type Concepts 27

Technical requirements 28
The growing pains of developing applications 28

Data science projects 28
Enterprise applications 29
Adapting to growth 29



Table of Contents

[ ii ]

Working with namespaces, modules, and packages 30
Understanding namespaces 31
Creating modules and packages 32

Defining functional behavior 36
Exporting functions 36
Resolving conflicts 38

Creating submodules 40
Organizing files in a module 41

Managing package dependencies 42
Understanding the semantic versioning scheme 42
Specifying dependencies for Julia packages 44
Avoiding circular dependencies 47

What's the problem? 48
How do we fix this? 48

Designing abstract and concrete types 49
Designing abstract types 50

A personal asset type hierarchy example 51
Navigating the type hierarchy 52
Defining functions for abstract types 53

Descriptive functions 53
Functional behavior 54
Interaction between objects 55

Designing concrete types 55
Designing composite types 56
Immutability 57
Mutability 58
Mutable or immutable? 59
Supporting multiple types using Union types 59

Working with type operators 61
The isa operator 62
The <: operator 62

Differences between abstract and concrete types 64
Working with parametric types 64

Working with parametric composite types 65
Working with parametric abstract types 68

Conversion between data types 70
Performing simple data type conversion 70
Beware of lossy conversions 70
Understanding numeric type conversions 71
Reviewing the rules for automatic conversion 72

Case 1: Assigning a value to an array 73
Case 2: Assigning a value to a field of an object 73
Case 3: Constructing an object with the new function 74
Case 4: Assigning to a variable that has a declared type 74
Case 5: Function has a declared return type 74
Case 6: Passing a value to ccall 75

Understanding the rules for function dispatches 75



Table of Contents

[ iii ]

Summary 77
Questions 77

Chapter 3: Designing Functions and Interfaces 78
Technical requirements 79
Designing functions 79

Our use case – a space war game 79
Defining functions 80
Annotating function arguments 81

Untyped arguments 82
Typed arguments 82

Working with optional arguments 85
Utilizing keyword arguments 87
Accepting variable numbers of arguments 89
Splatting arguments 90
Understanding first-class functions 92
Developing anonymous functions 93
Using do-syntax 94

Understanding Multiple Dispatch 96
What is a dispatch? 97
Matching to the narrowest types 97
Dispatching with multiple arguments 99
Possible ambiguities during dispatch 101
Detecting ambiguities 103
Understanding dynamic dispatch 105

Leveraging parametric methods 107
Using type parameters 107
Replacing abstract types with type parameters 109
Enforcing type consistency in using parameters 110
Extracting type information from the method signature 112

Working with interfaces 113
Designing and developing interfaces 113

Defining the Vehicle interface 113
Implementing FighterJet 116

Handling soft contracts 118
Using interface traits 119

Summary 120
Questions 121

Chapter 4: Macros and Metaprogramming Techniques 122
Technical requirements 123
Understanding the need for metaprogramming 123

Measuring performance with the @time macro 124
Unrolling loops 125

Working with expressions 127
Experimenting with the parser 128



Table of Contents

[ iv ]

Single-variable expressions 129
Function calls with keyword arguments 129
Nested functions 130

Constructing expression objects manually 131
Playing with more complex expressions 133

Assignment 133
Code blocks 134
Conditional 135
Loop 136
Function definition 137

Evaluating expressions 138
Interpolating variables in expressions 139
Using QuoteNode for symbols 140
Interpolating in nested expressions 142

Developing macros 144
What are macros? 144
Writing our first macro 145
Passing literal arguments 146
Passing expression arguments 147
Understanding the macro expansion process 148

Timing of macro expansion 149
Manipulating expressions 151

Example 1 – Making a new expression 151
Example 2 - Tweaking the abstract syntax tree 153

Understanding macro hygiene 154
Developing nonstandard string literals 156

Using generated functions 159
Defining generated functions 160
Examining generated function arguments 161

Summary 163
Questions 163

Section 3: Implementing Design Patterns
Chapter 5: Reusability Patterns 166

Technical requirements 166
The delegation pattern 166

Applying the delegation pattern to a banking use case 167
Composing a new type that contains an existing type 169
Reducing boilerplate code for forwarding methods 170

Reviewing some real-life examples 172
Example 1 – the OffsetArrays.jl package 173
Example 2 – the ScikitLearn.jl package 173

Considerations 174
The holy traits pattern 175

Revisiting the personal asset management use case 175
Implementing the holy traits pattern 178



Table of Contents

[ v ]

Defining the trait type 179
Identifying traits 179
Implementing trait behavior 180
Using traits with a different type of hierarchy 183

Reviewing some common usages 183
Example 1 – Base.IteratorSize 183
Example 2 – AbstractPlotting.jl ConversionTrait 185

Using the SimpleTraits.jl package 186
The parametric type pattern 188

Utilizing remove text parametric type for the stock trading app 190
Designing parametric types 191
Designing parametric methods 192
Using multiple parametric type arguments 193

Real-life examples 194
Example 1 – the ColorTypes.jl package 195
Example 2 – the NamedDims.jl package 196

Summary 199
Questions 200

Chapter 6: Performance Patterns 201
Technical requirements 202
The global constant pattern 202

Benchmarking performance with global variables 202
Enjoying the speed of global constants 205
Annotating variables with type information 205
Understanding why constants help performance 206
Passing global variables as function arguments 207
Hiding a variable inside a global constant 208
Turning to some real-life examples 210

Example 1 – SASLib.jl package 210
Example 2 – PyCall.jl package 210

Considerations 211
The struct of arrays pattern 212

Working with a business domain model 212
Improving performance using a different data layout 215

Constructing a struct of arrays 216
Using the StructArrays package 217
Understanding the space versus time trade-off 219
Handling nested object structures 220

Considerations 222
The shared array pattern 223

Introducing a risk management use case 223
Preparing data for the example 225
Overview of a high-performance solution 226
Populating data in the shared array 227
Analyzing data directly on a shared array 230
Understanding the overhead of parallel processing 232



Table of Contents

[ vi ]

Configuring system settings for shared memory usage 234
Adjusting system kernel parameters 234
Configuring a shared memory device 235
Debugging the shared memory size issue 236

Ensuring worker processes have access to code and data 238
Avoiding race conditions among parallel processes 238
Working with the constraints of shared arrays 239

The memoization pattern 240
Introducing the Fibonacci function 241
Improving the performance of the Fibonacci function 242
Automating the construction of a memoization cache 244
Understanding the constraint with generic functions 246
Supporting functions that take multiple arguments 247
Handling mutable data types in the arguments 248
Memoizing generic functions with macros 252
Turning to real-life examples 253

Symata.jl 253
Omega.jl 253

Considerations 254
Utilizing the Caching.jl package 254

The barrier function pattern 257
Identifying type-unstable functions 258
Understanding performance impact 259
Developing barrier functions 261
Dealing with a type-unstable output variable 262
Using the @inferred macro 266

Summary 267
Questions 267

Chapter 7: Maintainability Patterns 268
Technical requirements 268
Sub-module pattern 269

Understanding when sub-module is needed 269
Understanding afferent and efferent coupling 270
Organizing sub-modules 272
Referencing symbols and functions between modules and sub-modules 273

Referencing symbols defined in sub-modules 274
Referencing symbols from the parent module 275

Removing bidirectional coupling 276
Passing data as function arguments 276
Factoring common code as another sub-module 276

Considering splitting into top-level modules 277
Understanding the counterarguments of using sub-modules 278

Keyword definition pattern 279
Revisiting struct definitions and constructors 279
Using keyword arguments in constructors 280



Table of Contents

[ vii ]

Simplifying code with the @kwdef macro 281
Code generation pattern 283

Introducing the file logger use case 283
Code generation for function definitions 286
Debugging code generation 288
Considering options other than code generation 290

Domain-specific language pattern 292
Introducing the L-System 293
Designing DSL for L-System 295
Reviewing the L-System core logic 295

Developing the LModel object 296
Developing the state object 297

Implementing a DSL for L-System 299
Using the @capture macro 299
Matching axiom and rule statements 300
Using the postwalk function 301
Developing the macro for a DSL 302

Summary 305
Questions 306

Chapter 8: Robustness Patterns 307
Technical requirements 308
Accessor patterns 308

Recognizing the implicit interface of an object 308
Implementing getter functions 310
Implementing setter functions 311
Discouraging direct field access 312

Property patterns 313
Introducing the lazy file loader 313
Understanding the dot notation for field access 315
Implementing read access and lazy loading 317
Controlling write access to object fields 321
Reporting accessible fields 322

Let block patterns 323
Introducing the web crawler use case 324
Using closure to hide private variables and functions away 326
Limiting the variable scope for long scripts or functions 328

Exception handling patterns 330
Catching and handling exceptions 330
Dealing with various types of exceptions 330
Handling exceptions at the top level 333
Walking along the stack frames 334
Understanding the performance impact of exception handling 337
Retrying operations 339
Choosing nothing over exceptions 341

Summary 343



Table of Contents

[ viii ]

 Questions 344

Chapter 9: Miscellaneous Patterns 345
Technical requirements 345
Singleton type dispatch pattern 346

Developing a command processor 346
Understanding singleton types 347
Using the Val parametric data type 348
Using singleton types with dynamic dispatch 349
Understanding the performance benefits of dispatch 351

Stubbing/Mocking pattern 354
What are testing doubles? 355
Introducing the credit approval use case 356
Performing state verification using stubs 358
Implementing stubs with the Mocking package 360
Applying multiple stubs to the same function 362
Performing behavior verification using mocks 364

Functional pipes pattern 366
Introducing the Hacker News analysis use case 367

Fetching top story IDs on Hacker News 367
Fetching details about a story 369
Calculating the average score for the top N stories 371

Understanding functional pipes 372
Designing composable functions 373
Developing a functional pipe for the average score function 375
Implementing conditional logic in functional pipes 378
Broadcasting along functional pipes 380
Considerations about using functional pipes 382

Summary 383
Questions 384

Chapter 10: Anti-Patterns 385
Technical requirements 385
Piracy anti-pattern 386

Type I – Redefining a function 387
Type II piracy – Extending without your own types 388

Conflicting with another pirate 389
Future-proofing your code 390
Avoiding type piracy 390

Type III piracy – Extending with your own type, but for a different purpose 391
Narrow argument types anti-pattern 393

Considering various options for argument types 394
Option 1 – Vectors of Float64 values 395
Option 2 – Vectors of instances of Number 396
Option 3 – Vectors of type T where T is a subtype of Number 397
Option 4 – Vectors of type S and T where S and T are subtypes of Number 397
Option 5 – Arrays of type S and type T where S and T are subtypes of Number 398



Table of Contents

[ ix ]

Option 6 – Abstract arrays 399
Option 7 – Duck typing 400
Summarizing all options 400

Evaluating performance 401
Nonconcrete field types anti-pattern 402

Understanding the memory layout of composite data types 403
Designing composite types with concrete types in mind 405
Comparing performance between concrete versus nonconcrete field types 406

Summary 407
Questions 408

Chapter 11: Traditional Object-Oriented Patterns 409
Technical requirements 410
Creational patterns 410

The factory method pattern 410
The abstract factory pattern 412
The singleton pattern 414
The builder pattern 417
The prototype pattern 418

Behavioral patterns 420
The chain-of-responsibility pattern 420
The mediator pattern 422
The memento pattern 425
The observer pattern 427
The state pattern 429
The strategy pattern 431
The template method pattern 433
Command, interpreter, iterator, and visitor patterns 435

Structural patterns 436
The adapter pattern 437
The composite pattern 440
The flyweight pattern 442
Bridge, decorator, and facade patterns 444

Summary 445
Questions 446

Section 4: Advanced Topics
Chapter 12: Inheritance and Variance 448

Technical requirements 449
Implementing inheritance and behavior subtyping 449

Understanding implementation inheritance 450
Understanding behavior subtyping 452
The square-rectangle problem 454
The fragile base class problem 455
Revisiting duck typing 458



Table of Contents

[ x ]

Covariance, invariance, and contravariance 459
Understanding different kinds of variance 459
Parametric types are invariant 460
Method arguments are covariant 462
Dissecting function types 463
Determining the variance of the function type 466
Implementing our own function type dispatch 468

Parametric methods revisited 470
Specifying type variables 470
Matching type variables 471
Understanding the diagonal rule 472
An exception to the diagonal rule 473
The availability of type variables 474

Summary 475
Questions 476

Appendix A: Assessments 477
Chapter 1 477
Chapter 2 478
Chapter 3 479
Chapter 4 480
Chapter 5 481
Chapter 6 482
Chapter 7 483
Chapter 8 484
Chapter 9 486
Chapter 10 487
Chapter 11 488
Chapter 12 489

Other Books You May Enjoy 491

Index 494



Preface
Julia is a powerful programming language that is designed to enable high-performance
applications with developer productivity in mind. Its dynamic nature allows you to quickly
perform small-scale experiments and then migrate to larger applications. Its introspection
tools allow us to optimize performance by analyzing how high-level code is translated into
lower-level instructions and machine code. Its metaprogramming facility helps more
advanced programmers to build custom syntax for their specific domain usage. Its multiple
dispatch and generic function features make it easy to build new capabilities by extending
existing functions. For these and many more reasons, Julia is an excellent tool for
developing applications across a wide spectrum of industries.

This book fulfills several demands from Julia developers. A desire to write better code. A desire
to improve system performance. A desire to design software that is easy to maintain. From the time
that the Julia language was born to its magnificent milestone of version 1.0 in August 2018,
many design patterns have already emerged from the brightest minds, ranging from the
core developers of the language to heavy users of the language. At times, these patterns
were presented in blog posts and conferences. Sometimes, they showed up in random
discussion threads on the Julia Discourse forum. At other times, they come up in casual
talks between community members on various Julia Slack channels. This book is a
collection of patterns, documenting the best approaches to designing high-quality Julia
applications.

The primary objective of this book is to organize these well-proven patterns into a format
that is easily consumable by the Julia developer community. There are several benefits to
organizing and naming these patterns:

It allows developers to communicate with each other more easily.
It allows developers to better understand code that uses these patterns.
It allows developers to articulate when a pattern should be applied.

The goal of this book is simple but powerful – after reading this book, you should be more
knowledgeable about how to design and develop software in Julia. In addition, the material
presented in this book can serve as a reference for any future discussions regarding design
patterns in Julia. As we know from history, new design patterns will continue to emerge
alongside the continuous evolution of the Julia language.

I hope you enjoy this book. Happy reading!



Preface

[ 2 ]

Who this book is for
This book is for beginner-to-intermediate Julia developers who want to get better at
writing idiomatic Julia code for larger applications. It is not an introductory book, so you are
expected to have some basic programming knowledge. If you are familiar with the object-
oriented programming paradigm, then you may find this book helpful where it shows how
the same problem can be solved differently, and often in a better way, in Julia.

Many of the patterns described in this book are applicable to any industry domain and use
cases. Whether you are a data scientist, researcher, system programmer, or enterprise
application developer, you should be able to benefit from using these patterns in your
projects.

What this book covers
Chapter 1, Design Patterns and Related Principles, introduces the history of design patterns
and how they are useful for developing applications. It covers several industry-standard
software design principles that are applicable across any programming language and
paradigm.

Chapter 2, Modules, Packages, and Data Type Concepts, discusses how larger programs can be
organized and how dependencies can be managed. Then, it explains how to develop new
data types and express their relationship in a custom type hierarchy.

Chapter 3, Designing Functions and Interfaces, explains how functions are defined and how
multiple dispatch come into play. It also discusses parametric method and interfaces, for
which different functions can work with each other properly based on a pre-determined
contract.

Chapter 4, Macros and Metaprogramming Techniques, introduces macro programming facility
and how it can be used to transform source code into a different form. It describes several
techniques for developing and debugging macros more effectively.

Chapter 5, Reusability Patterns, covers design patterns that relate to code reuse. This
includes the Delegation pattern for reusing code via composition, the Holy Traits pattern
for a more formal interface contract, and the Parametric Type pattern for creating new
types from a parameterized data structure.



Preface

[ 3 ]

Chapter 6, Performance Patterns, covers design patterns that relate to improving system
performance. This includes the Global Constant pattern for better type stability, the
Memoization pattern for caching prior computation results, the Struct of Arrays pattern for
rearranging data for a more optimal layout, the Shared Array pattern for optimizing
memory usage with parallel computing, and the Barrier Function pattern for improving
performance via function specialization.

Chapter 7, Maintainability Patterns, covers design patterns about code maintainability. This
includes the Sub Module pattern for better organization of larger code bases, the Keyword
Definition pattern for creating data types that can be constructed more easily, the Code
Generation pattern for defining many similar functions with less code, and the Domain-
Specific Language pattern for creating a new syntax for a specific domain.

Chapter 8, Robustness Patterns, covers design patterns that help you write safer code. This
include the Accessor pattern for providing standard access to fields, the Property pattern
for controlling access to fields, the Let-Block pattern for limiting the variable scope, and the
Exception Handling pattern for handling errors.

Chapter 9, Miscellaneous Patterns, covers several design patterns that do not fit into the
preceding categories. It includes the Singleton Type pattern for use with dynamic dispatch,
the Mocking pattern for building isolated tests, and the Functional Pipe pattern for building
linear data processing pipelines.

Chapter 10, Anti-Patterns, covers patterns that should be avoided. The main anti-pattern is
Piracy, which involves defining or extending functions for data types that you do not own.
Then, it covers the Narrow Arguments and Non-Concrete Type Fields patterns, which
hinder system performance.

Chapter 11, Traditional Object-Oriented Patterns, covers the traditional object-oriented
patterns described in the Design Patterns book by Gang-of-Four. It discusses how those
patterns can be simplified or implemented differently in Julia.

Chapter 12, Inheritance and Variance, discusses how Julia supports inheritance and why it is
designed as such since its approach is quite different from mainstream object-oriented
programming languages. Then, it covers the topic of type variance, an important concept in
terms of subtyping relationships between data types used by multiple dispatch.



Preface

[ 4 ]

To get the most out of this book
You should download the latest version of Julia from the Julia Language website (https:/ /
julialang.org/).

The code samples are available on GitHub, as described in the Technical requirements section
of each chapter. At the time of writing, the code has been tested with Julia version 1.3.0. To
download the code samples, clone the project from GitHub as follows:

You are encouraged to run and experiment with the code samples accompanying this book.
The code samples are typically stored in one of the following formats:

Code snippets in a Julia source file. These snippets can be copied and pasted into
the REPL.
Code residing in a package directory. The package can be instantiated as follows:

For example, in Chapter 5, Reusability Patterns, the content is listed as follows:

https://julialang.org/
https://julialang.org/
https://julialang.org/
https://julialang.org/
https://julialang.org/
https://julialang.org/
https://julialang.org/


Preface

[ 5 ]

To use the code for DelegationPattern, just start a Julia REPL in that folder with the --
project=. command-line argument:

Then, go to the package mode and instantiate the package by entering the ] instantiate
command:

After that, you can use the package as usual:

If there is a test directory, then you can read and run the test scripts provided.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com


Preface

[ 6 ]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Hands- on- Design- Patterns- and- Best- Practices- with- Julia. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Code in Action
Visit the following link for the Code in Action videos:

http://bit.ly/36Z4oXs

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text such as variable names, function names, data
types, etc. For example, "The format function takes a formatter and a numeric value, x,
and returns a formatted string."

A block of code is set as follows:

abstract type Formatter end
struct IntegerFormatter <: Formatter end
struct FloatFormatter <: Formatter end

Any experiment or output from the REPL is presented as screenshots:

https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://bit.ly/36Z4oXs
http://bit.ly/36Z4oXs
http://bit.ly/36Z4oXs
http://bit.ly/36Z4oXs
http://bit.ly/36Z4oXs
http://bit.ly/36Z4oXs
http://bit.ly/36Z4oXs
http://bit.ly/36Z4oXs
http://bit.ly/36Z4oXs


Preface

[ 7 ]

Bold: Indicates an important word or concept. For example, "The Bridge pattern is used to
decouple an abstraction from its implementation so that it can evolve independently."

Italics: Emphasizes a new concept that will be explained later in the text. For example,
"The cases presented in previous chapters include various situations that we can solve by
writing idiomatic Julia code."

Important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/


Preface

[ 8 ]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/


1
Section 1: Getting Started with

Design Patterns
The aim of this section is to introduce you to how design patterns are used in general and
how Julia is different from the object-oriented programming paradigm.

This section contains the following chapter:

Chapter 1, Design Patterns and Related Principles



1
Design Patterns and Related

Principles
Nowadays, learning and applying design patterns is an important aspect of software
engineering. Design patterns are like water – you can't live without them. Don't believe me?
Just ask hiring managers, and you will find that many of them have design patterns in their
job postings as well as related questions in job interviews. It is a common belief that design
patterns are important ingredients for software development and everyone should know
them.

In this chapter, we will provide some context about why design patterns are useful and
how they have served us well in the past few decades. By understanding the motivation
behind design patterns, we will be able to set forth a set of guiding principles for
developing software. The following topics will be discussed in this chapter:

The history of design patterns 
Software design principles
Software quality objectives 

Let's get started!

The history of design patterns
Design patterns is not a new concept to computer programmers. Since personal computers
became more affordable and popular in the 1980s, the programming profession flourished
and a lot of code was written for a variety of applications.



Design Patterns and Related Principles Chapter 1

[ 11 ]

I remember that, when I was 14 years old, learning the GOTO statement for a BASIC
program was one of the coolest things. It literally allowed me to take a control flow to a
different part of the code at any time. Perhaps not too surprisingly, when I learned about
structured programming and the Pascal language in college, I started to realize how GOTO
statements produce messy spaghetti code. Using GOTO for branching purposes is a
pattern. It's just a bad one because it makes code difficult to understand, follow, and debug.
In today's lingua franca, we call them anti-patterns. When it comes to structured
programming techniques, organizing code in small functions is a pattern as well, one that
has been taught as a mainstream subject in programming courses. 

When I graduated from college, I started my programming career and spent plenty of time
hacking away. I had the opportunity to do various kinds of research and find out how
systems are designed. For example, I realized that the Unix operating system has a
beautiful design. That is because it consists of many small programs, which individually do
not have a ton of functionality, but you can compose them in any number of ways to solve
more complex problems. I was also fond of the Scheme programming language, which
came out of MIT's AI Lab. The simplicity and versatility of the language still amazes me
today. Scheme's heritage can be traced to Lisp, which had some influence on how the Julia
language was designed.

The rise of design patterns
In 1994, while I was diving deep into C++ and distributed computing for a financial
application, four software professionals, also known as the Gang of Four or GoF, came
together and published a book about design patterns, and it took the object-oriented
programming community by storm. The group collected and classified 23 design patterns
that were commonly utilized when developing large-scale systems. They also chose to 
explain the concepts using Unified Modeling Language (UML) and C++ and Smalltalk.

For the first time, a set of design patterns had been collected, organized, explained, and
widely distributed to software developers. Perhaps one of the most significant decisions by
the group was to organize these patterns in a highly structured and easily consumable
format. Since then, programmers have been able to communicate with each other easily
about how they design their software. In addition, they can visually present software
design with a universal notation. When one person talks about the Singleton pattern,
another person can immediately understand and even visualize in his/her mind how that
component works. Isn't that convenient?



Design Patterns and Related Principles Chapter 1

[ 12 ]

Even more surprisingly, design patterns suddenly became the gospel when it come to
building good software. In some ways, using them was even perceived as the only way to
write good software. GoF patterns were so widely preached across the development
community that many people abused them and used them everywhere without good
reason. The problem is – When all you have is a hammer, everything looks like a nail! Not
everything can be solved or should be solved by the same patterns. When design patterns
are overused or misused, the code becomes more abstract, more complicated, and more
difficult to manage.

So, what have we learned from the past? We recognize that every abstraction comes with a
cost. Every design pattern comes with its own pros and cons. One of the main objectives of
this book is to discuss not just the how but also the why and why not, and under what
circumstances a pattern should be used or not used. We, as software professionals, will
then be equipped with the information we need to make good judgment calls about when
to apply these patterns.

More thoughts about GoF patterns
GoF design patterns are classified into three main categories:

Creational patterns: These cover how to construct objects in various ways. Since
object-oriented programming brings together data and behavior, and a class may
inherit the structure and behavior of an ancestor class, there are some
complexities involved when building a large application. Creational patterns
help standardize object creation methods in various situations.
Structural patterns: These cover how objects can be extended or composed to
make bigger thing. The purpose of these patterns is to allow software
components to be reused or replaced more easily.
Behavioral patterns: This cover how objects can be designed to perform separate
tasks and communicate with each other. A large application can be decomposed
into independent components and the code becomes easier to maintain. The
object-oriented programming paradigm requires solid interaction between
objects. The purpose of these patterns is to make software components more
flexible and more convenient for collaboration with each other. 

One school of thought is that design patterns are created to address limitations in their
respective programming language. Two years after the GoF book was published, Peter
Norvig published research showing that 16 of the 23 design patterns are either unnecessary
or can be simplified in a dynamic programming language such as Lisp.



Design Patterns and Related Principles Chapter 1

[ 13 ]

This is not an unimportant observation. In the context of object-oriented programming,
additional abstraction from a class hierarchy requires the software designer to think about
how objects are instantiated and interact with each other. In a strong, statically typed
language such as Java, it is even more necessary to reason about the behavior and
interaction of objects. In Chapter 11, Traditional Object-Oriented Patterns, we will circle back
to this topic and discuss how Julia works differently compared to object-oriented
programming.

For now, we will start with the basics and review some software design principles. These
principles are like the North star, guiding us as we build applications.

How do we describe patterns in this book?
If you are new to Julia programming, this book will help you understand how to write
more idiomatic Julia code. We will also focus on describing some of the most useful
patterns that are already used in the existing open source Julia ecosystem. That includes
Julia's own Base and stdlib packages as the Julia runtime is largely written in Julia itself.
We will also reference other packages that are used for numerical computing and web
programming. 

For ease of reference, we will organize our patterns by name. For example, the Holy Traits
pattern refers to a specific method for implementing traits. The Domain-Specific Language
pattern talks about how to build new syntax to represent specific domain concepts. The sole
purpose of having a name is just ease of reference.

When we discuss these design patterns in this book, we will try to understand the
motivation behind them. What specific problem are we trying to solve? What would be a
real-world situation where such a pattern would be useful? Then, we will get into the
details of how to solve these problems. Sometimes, there may be several ways to solve the
same problem, in which case we will look into each possible solution and discuss the pros
and cons.

Having said that, it is important for us to understand the ultimate goal of using design
patterns. Why do we want to use design patterns in the first place? To answer this question,
it would be useful for us to first understand some key software design principles.



Design Patterns and Related Principles Chapter 1

[ 14 ]

Software design principles
While this book does not cover object-oriented programming, some object-oriented design
principles are universal and could be applied to any programming language and paradigm.
Here, we will take a look at some of the most well-known design principles. In particular,
we will cover the following:

SOLID: Single Responsibility, Open/Closed, Liskov Substitution, Interface
Segregation, Dependency Inversion
DRY: Don't Repeat Yourself
KISS: Keep It Simple, Stupid!
POLA: Principle of Least Astonishment
YAGNI: You Aren't Gonna Need It
POLP: Principle of Least Privilege

Let's start with SOLID.

SOLID
The SOLID principle consists of the following:

S: Single Responsibility Principle
O: Open/Closed Principle
L: Liskov Substitution Principle
I: Interface Segregation Principle
D: Dependency Inversion Principle

Let's understand each concept in detail.

Single Responsibility Principle
The Single Responsibility Principle states that every module, class, and function should be
responsible for a single functional objective. There should be only one reason to make any
changes.

The benefits of this principle are listed here: 

The programmer can focus on a single context during development.
The size of each component is smaller.



Design Patterns and Related Principles Chapter 1

[ 15 ]

The code is easier to understand.
The code can be tested more easily.

Open/Closed Principle
The Open/Closed Principle states that every module should be open for extension but
closed for modification. It is necessary to distinguish between enhancement and
extension—enhancement refers to a core improvement of the existing module, while an
extension is considered an add-on that provides additional functionality.

The following are the benefits of this principle: 

Existing components can be easily reused to derive new functionalities.
Components are loosely coupled so it is easier to replace them without affecting
the existing functionality.

Liskov Substitution Principle
The Liskov Substitution Principle states that a program that accepts type T can also accept
type S (which is a subtype of T), without any change in behavior or intended outcome.

The following are the benefits of this principle: 

A function can be reused for any subtype passed in the arguments.

Interface Segregation Principle
The Interface Segregation Principle states that a client should not be forced to implement
interfaces that it does not need to use.

The following are the benefits of this principle: 

Software components are more modular and reusable.
New implementations can be created more easily.

Dependency Inversion Principle
The Dependency Inversion Principle states that high-level classes should not depend on
low-level classes; instead, high-level classes should depend on an abstraction that low-level
classes implement.



Design Patterns and Related Principles Chapter 1

[ 16 ]

The following are the benefits of this principle: 

Components are more decoupled.
The system becomes more flexible and can adapt to changes more easily. Low-
level components can be replaced without affecting high-level components.

DRY
We'll now cover the DRY principle:

D: Don't
R: Repeat
Y: Yourself

This acronym is a good way of reminding programmers that duplicate code is bad. It is
obvious that duplicate code can be difficult to maintain—whenever logic is changed,
multiple places in the code are affected.

What do we do when duplicate code is found? Eliminate it and create a common function
that is reusable from multiple source files. 

In addition, sometimes code is not 100% duplicated but instead is 90% similar. That is not
an uncommon scenario. In that case, consider redesigning the relevant components,
possibly refactoring code to a common interface.

KISS
Let's talk about the KISS principle:

K: Keep
I: It
S: Simple
S: Stupid!

Often, when we design software, we like to think ahead and try to deal with all kinds of
future scenarios. The trouble with building such future-proof software is that it takes
exponentially more effort to design and code properly. Practically speaking, it's a
conundrum—there is no 100% future-proof solution because technology changes, business
changes, and people change. Also, over-engineering could lead to excessive abstraction and
indirection, making a system more difficult to test and maintain.



Design Patterns and Related Principles Chapter 1

[ 17 ]

In addition, when using Agile software development methods, we value faster and high-
quality delivery over perfection or excess engineering. Keeping the design and code simple
is a virtue that every programmer should keep in mind.

POLA
Let's look at the POLA principle:

P: Principle
O: Of
L: Least
A: Astonishment

POLA states that a software component should be easy to understand and its behavior
should never be a surprise (or, more accurately, astonishing) to the client. How do we do
that?

The following are some things to keep in mind:

Make sure that the names of the module, function, or function arguments are
clear and unambiguous.
Ensure that modules are right-sized and well maintained.
Ensure that interfaces are small and easy to understand.
Ensure that functions have few positional arguments. 

YAGNI
Let's move on to the YAGNI principle:

Y: You
A: Aren't
G: Gonna
N: Need
I: It



Design Patterns and Related Principles Chapter 1

[ 18 ]

YAGNI says you should only develop software that is needed today. This principle came
from Extreme Programming (XP). See what Ron Jeffries, co-founder of XP, wrote in his
blog:

"Always implement things when you actually need them, never when you just foresee that
you need them."

Software engineers are sometimes tempted to develop functionality that they feel the
customer will need in the future. It's been proven time and time again that this is not the
most effective way to develop software. Consider the following scenarios:

The functionality is never needed by the customer and so the code is never used.
The business environment changes and the system has to be redesigned or
replaced.
The technology changes and the system has to be upgraded to use a new library,
a new framework, or a new language. 

The cheapest software is the one that you didn't write. You aren't gonna need it!

POLP
Now, for POLP:

P: Principle
O: Of
L: Least 
P: Privilege

POLP states that a client must be given access only to the information or functions that they
need. POLP is one of the most important pillars for building secure applications, and it is
widely adopted by cloud infrastructure vendors such as Amazon, Microsoft, and Google.

There are quite a few benefits when POLP is applied:

Sensitive data is protected and not exposed to non-privileged users.
The system can be tested more easily since the number of use cases is limited.
The system becomes less prone to misuse because only limited access is given
and the interface is simpler.



Design Patterns and Related Principles Chapter 1

[ 19 ]

The software design principles that we have learned about so far are great tools. Although
SOLID, DRY, KISS, POLA, YAGNI, and POLP seem to be just a bunch of acronyms, they
are useful in designing better software. While SOLID principles came from the object-
oriented programming paradigm, SOLID's concepts can still be applied to other languages
and environments. As we work through the rest of the chapters in this book, I would
encourage you to keep them in mind.

In the next section, we will go over several software quality objectives when designing
software.

Software quality objectives
Everyone likes beautiful design. I do, too. But, the use of design patterns is not just to make
something look good. Everything we do should have a purpose.

The GoF classified object-oriented design patterns as creational, structural, and behavioral.
For Julia, let's take a different perspective and classify our patterns by their respective
software quality objectives as follows:

Reusability
Performance
Maintenance
Safety

Let's understand each of these in the following sections.

Reusability
People often talk about top-down and bottom-up approaches when designing software.

The top-down approach starts with a large problem and breaks it down into a set of
smaller problems. Then, if the problems are not small enough, as discussed when we
looked at the Single Responsibility Principle, we further break down the problem into even
smaller ones. The process repeats and eventually the problem is small enough to design
and code.



Design Patterns and Related Principles Chapter 1

[ 20 ]

The bottom-up approach works in the opposite direction. Given domain knowledge, you
can start creating building blocks, and then create more complex ones by composing from
these building blocks.

Regardless of how it is done, eventually there will be a set of components that work with
each other, thereby forming the basis of the application. 

I like the metaphor. Even a 5-year old child can build a variety of structures using just
several kinds of Lego block. Imagination is the limit. Do you ever wonder why it is so
powerful? Well, if you recall, every Lego block has a standard set of connectors: one, two,
four, six, eight, or more. Using these connectors, each block can plug into another block
easily. When you create a new structure, you can combine it with other structures to create
even larger, more complex structures.

When building applications, the key design principle is to create pluggable interfaces so
every component can be reused easily.

Characteristics of reusable components
The following are important characteristics of reusable components:

Each component serves a single purpose (the S in SOLID).
Each component is well defined and ready for reuse (the O in SOLID).
An abstract type hierarchy is designed for parent-child relationships (the L in
SOLID).
Interfaces are defined as a small set of functions (the I in SOLID).
Interfaces are used to bridge between components (the D in SOLID).
Modules and functions are designed with simplicity in mind (KISS).

Reusability is important because it means we can avoid duplicated code and wasted effort.
The less code we write, the less work we need to do to maintain software. That includes not
just the development effort but also the time testing, packaging, and upgrading. Reusability
is also one of the reasons why open source software is so successful. In particular, the Julia
ecosystem contains many open source packages and they tend to borrow functionalities
from each other.

Next, we will discuss another software quality objective—performance.



Design Patterns and Related Principles Chapter 1

[ 21 ]

Performance
The Julia language is designed for high-performance computing. It does not come for free,
however. When it comes to performance, it takes practice to write code that is more
compiler-friendly, thus making it more likely to translate the program into optimized
machine code.

For the past few decades, computers have seemed to become faster and faster every year.
What used to be performance bottlenecks are more easily solved using today's hardware.
At the same time, we are also facing more challenges due to the explosion of data. A good
example is the field of big data and data science. As the amount of data grows, we need
even more computing power to handle these new use cases.

Unfortunately, the speed of computers has not grown as rapidly as it did in the past.
Moore's Law states that the number of transistors on a microchip doubles roughly every 18
months, and since 1960 it has been correlated with the growth in CPU speed. However, it is
well known that Moore's Law will no longer be applicable soon due to a physical
limitation: the number of transistors that can be fitted to a chip and the precision of the
fabrication process.

In order to address today's computational needs, especially in the world of artificial
intelligence, machine learning, and data science, practitioners have been gearing toward a
scale-out strategy that utilizes multiple CPU cores across many servers, and looking at
exploiting the efficiency of GPUs and TPUs.

Characteristics of high-performance code
The following are characteristics of high-performance code:

Functions are small and can be optimized easily (S in SOLID).
Functions contains simple logic rather than complex logic (KISS).
Numeric data is laid out in contiguous memory space so the compiler can fully
utilize CPU hardware.
Memory allocation should be kept to a minimum to avoid excessive garbage
collection.

Performance is an important aspect of any software project. It is particularly important for
data science, machine learning, and scientific computing use cases. A small design change
can make a big difference—depending on the situation, it could possibly turn a 24-hour
process into a 30-minute process. It could also give users real-time experience when using a
web application rather than a please wait... dialog.



Design Patterns and Related Principles Chapter 1

[ 22 ]

Next, we will discuss software maintainability as another software quality objective.

Maintainability
Software can be maintained more easily when it is designed properly. Generally speaking,
if you are able to effectively use the design principles listed previously (SOLID, KISS, DRY,
POLA, YAGNI, and POLP), then your application is more likely to be well architected and
designed for long-term maintenance.

Maintainability is an important ingredient for large-scale applications. A research project
from graduate school may not last long. On the contrary, an enterprise application may last
for decades. Recently, I heard from a colleague that COBOL is still in use and COBOL
programmers are still making a good living.

We often hear about technical debt. Similar to monetary debt in real life, technical debt is
something that you must pay for whenever code is changed. And the longer the technical
debt stays in place, the more effort you have to spend. 

To understand why, consider a module that is bloated with duplicate code or unnecessary
dependencies. Whenever a new functionality is added, you have to update multiple parts
of the source code, and you have to perform regression testing for a larger area of the
system. So, you end up paying (in terms of programming time and effort) for the debt
every time the code is changed until the debt is fully repaid (that is, until the code is fully
refactored).

Characteristics of maintainable code
The following are characteristics of maintainable code:

No unused code (YAGNI).
No duplicate code (DRY).
Code is concise and short (KISS).
Code is clear and easy to understand (KISS).
Every function has a single purpose (the S in SOLID).
Every module contains functions that relate to and work with each other (the S in
SOLID).



Design Patterns and Related Principles Chapter 1

[ 23 ]

Maintainability is an important aspect of any application. When designed properly, even
large applications can be changed frequently and easily without fear. Applications can also
last a long time, reducing the cost of the software.

Next, we will discuss software safety as another quality objective.

Safety
"Safety—the condition of being safe from undergoing or causing hurt, injury, or loss."

– Merriam-Webster Dictionary

Applications are expected to function correctly. When an application malfunctions, there
could be undesired consequences and some of those could be fatal. Consider a mission-
critical rocket-launch subsystem used by NASA. A single defect could cause the launch to
be delayed; or, in the worst-case scenario, it could cause the rocket to explode in mid-air.

Programming languages are designed to allow flexibility but at the same time provide
safety features so software engineers can make fewer mistakes. For example, the compiler's
static type checking ensures that the correct types are passed to functions that expect those
types. In addition, most computer programs operate on data, and as we know, data is not
always clean or available. Hence, the ability to handle bad or missing data is an important
software quality. 

Characteristics of safe applications
Some characteristics of safe applications follow:

Each module exposes a minimum set of types, functions, and variables.
Each function is called with arguments such that the respective types implement
the expected behavior of the function (the L in SOLID; POLA).
The return value of a function is clear and documented (POLA).
Missing data is handled properly (POLA).
Variables are limited to the smallest scope.
Exceptions are caught and handled accordingly.



Design Patterns and Related Principles Chapter 1

[ 24 ]

Safety is one of the most important objectives here. An erroneous application can cause
major disasters. It can even cost a company millions of dollars. In 2010, Toyota recalled over
400,000 of its Prius hybrid cars due to a software defect with the Anti-lock Braking System
(ABS). In 1996, the Ariane 5 rocket launched by the European Space Agency exploded just
40 seconds after launch. Of course, these are only a few more extreme examples. By
utilizing best practices, we can avoid getting into these kinds of embarrassing and costly
incidents.

Now, we understand the importance of software design principles and software quality
objectives.

Summary
In this chapter, we started by going back in time and reviewing the history of design
patterns. We discussed why design patterns can be useful for software professionals and
how we would like to organize design patterns in this book given what we have learned in
the past. 

We went over several key software design principles that can be applied universally in any
programming language, as it is important that we keep them in mind when developing
code and applying design patterns in Julia. We covered SOLID, DRY, KISS, POLA, YAGNI,
and POLP. These design principles are well known and well received by the object-oriented
programming community.

Finally, we discussed some software quality objectives that we want to achieve by using
design patterns. In this book, we have decided to focus on reusability, maintainability,
performance, and safety objectives. We also appreciated the benefits of these objectives and
reviewed some general guidelines for achieving these objectives.

The next chapter is going to be exciting! We will get our hands dirty and look into how
Julia programs are organized and how to use Julia's type system, along with some basics
about Julia.



Design Patterns and Related Principles Chapter 1

[ 25 ]

Questions
Review the following questions to reinforce your understanding of the subjects in this
chapter. Answers are provided at the back of the book:

What are the benefits of using design patterns?1.
Name some key design principles.2.
What problem does the Open/Closed Principle solve?3.
Why is interface segregation important for software reusability?4.
What are the simplest ways to keep an application maintainable?5.
What is a good practice for avoiding over-engineered and bloated software?6.
How does memory usage affect system performance?7.



2
Section 2: Julia Fundamentals

The aim of this section is to quickly bring you up to speed regarding the fundamental
concepts and features of the Julia programming language. A clear understanding of Julia
Fundamentals is essential for you to be able to fully appreciate the beauty of the design
patterns that we will look at in upcoming chapters.

This section contains the following chapters:

Chapter 2, Modules, Packages, and Data Type Concepts
Chapter 3, Designing Functions and Interfaces
Chapter 4, Macros and Metaprogramming Techniques



2
Modules, Packages, and Data

Type Concepts
This chapter discusses several organizational techniques for developing large-scale
applications. Believe it or not, this is often something that is easily overlooked. When
developing applications, we typically focus on building data types, functions, control flows,
and so on. It is equally important, however, to organize the code properly so that it is clean
and maintainable.

In the later part of this chapter, we will introduce Julia's type system. Data types are the
most fundamental building blocks of any application. Julia's type system is one of its
strongest features when compared to other programming languages. A solid
understanding of the type system will enable us to achieve better designs.

The following topics will be covered in this chapter:

The growing pains of developing applications
Working with namespaces, modules, and packages
Managing package dependencies
Designing abstract types and concrete types
Understanding parametric types
Converting between data types

By the end of the chapter, you should know how to create your own packages, divide code
into separate modules, and start creating new data types for your application.

Let's go!



Modules, Packages, and Data Type Concepts Chapter 2

[ 28 ]

Technical requirements
The sample source code from this chapter is located at https:/ / github. com/
PacktPublishing/Hands- on- Design- Patterns- and- Best- Practices- with- Julia/ tree/
master/Chapter02.

The code is tested in a Julia 1.3.0 environment.

The growing pains of developing
applications

"Start where you are. Use what you have. Do what you can. "

- Arthur Ashe

Everyone's journey is different. Julia is a versatile, dynamic programming language that
can be used in many interesting use cases. More specifically, you can use it to easily code
and solve a problem without thinking too much about system architecture and design. This
is often sufficient for small research projects; however, when a project becomes more critical
to the business, or when you have to harden a proof of concept into a production
environment, it requires better organization, architecture, and design so that the project or
application can live longer and be more maintainable.

What kinds of project do we typically deal with? Let's explore some examples.

Data science projects
A typical data science project starts with the idea of learning from a set of data and making
a prediction. A lot of the upfront work goes into data collection, data cleaning, data
analysis, and visualization. Then, data is further digested into features as inputs a machine
learning model. The process up until this point is called data engineering. The data scientist
then chooses one or more machine learning models and keeps on refining and tuning the
model to arrive at a good level of accuracy for the predictive model. This process is called
model development. When the model is ready for production, it is deployed and sometimes a
frontend is created for the end user. The final process is referred to as model deployment.

https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter02


Modules, Packages, and Data Type Concepts Chapter 2

[ 29 ]

The data engineering and model development processes can be interactive at the beginning,
but they usually end up getting automated. That's because the process needs to be
repeatable and the results have to be consistent. Data scientists may use a variety of tools
during development, ranging from a number of Jupyter notebooks to a suite of related
libraries and programs.

When a predictive model becomes production-ready, it can be deployed as a web service so
that it can be used to make real-time predictions. At this point, the model needs to have a
life cycle and be maintained, just like any other production software.

Enterprise applications
People developing enterprise applications have a different mindset. Unlike data science
projects, software engineers typically know upfront what they need to build the system.
They also know whether they have to live with certain assumptions and policies. For
example, the technology stack may already be known when the project starts. Other factors
that may already be familiar include the system architecture that will be used, which cloud
vendor will be utilized, what database the application must integrate with, and so on.

Enterprise applications typically require a rich business domain object model. Data objects
are created, manipulated, and transferred to different layers of the application. The system
architecture may include a user interface, a middle tier, and a database backend.

Enterprise applications also tend to require a high level of integration with other systems.
For example, a trading system used by an investment firm is typically hooked up to an
accounting system, a trade-settlement system, a reporting system, and so on. As such, these
applications are often designed to handle both data at rest (for example, data stored in a
database) or data in motion (for example, data being streamed to another system).
Furthermore, data movement may happen in real-time or as an overnight batch process.

Adapting to growth
No matter what kind of application you develop, it should not be hard to recognize
growing pains. 



Modules, Packages, and Data Type Concepts Chapter 2

[ 30 ]

For a data science project, the following signs typically indicate a growth-related problem:

"My notebook is getting too long. I often have to scroll up and down to understand what
I have done before and what I'm doing now. There are too many variables created in
between and I'm losing track of what they mean and how they are used."
"The data structure is too complex. I was working on a data frame and have transformed
it in ten different ways. I have now lost track of which transformed version represents
what, and why they were needed in the first place."
"I have saved a bunch of machine learning models on disk, and I'm losing track of how
each one was trained and what assumptions were made for each of those models."
"I have too much code scattered across many notebooks. Some code is duplicated or
tweaked for a slightly different purpose. I am unable to achieve consistent results."

As for an enterprise application, similar symptoms may surface:

"The application logic is too complicated, and there is a huge component performing too
many functions."
"It's becoming difficult to add new features without breaking existing functions."
"It takes a lot of time for a new person to comprehend the code in this module and it
seems that the same person has to relearn it again every now and then." 

It's not fun to handle unorganized code and data. If you find yourself uttering some of the
preceding phrases, it may be a good time to rethink your strategy and start organizing your
program properly.

Now, let's start our learning journey by organizing code better with Julia. As we are
working at a high level, we will introduce the concept of namespaces, and we will go over
how to create modules and packages.

Working with namespaces, modules, and
packages
The Julia ecosystem lives on a namespace; in fact, this is the only way we can keep things in
order. Why do I say that? The reason is that namespaces are used to logically separate
fragments of source code so that they can be developed independently without affecting
each other. If I define a function in one namespace, I will still be able to define another
function in a different namespace even though both functions have the same name. 



Modules, Packages, and Data Type Concepts Chapter 2

[ 31 ]

In Julia, namespaces are created using modules and submodules. In order to manage
distribution and dependencies, modules are generally organized as packages. There is a
standard directory structure for Julia packages. Although the top level directory structure is
well defined, the programmer still has a lot of freedom in organizing source files.

In this section, we will explore the following topics:

Understanding and using namespaces 
How to create modules and packages
How to create submodules
How to organize files in a module

Let's learn about each in detail in the following sections.

Understanding namespaces
What is a namespace? Let's try a real-life example.

Every language has its own set of words as defined in its dictionary. When people from
different cultures talk to each other, they often end up in amusing situations. Consider
these examples:

Conversation 1:

American: Your pants look dirty. You should change them.
British: Do you mean my trousers? My underpants are... quite clean and well!

Conversation 2:

American: These biscuits are yummy!
British: Where? Where are the cookies...?

Conversation 3:

American: I want to get back in shape and have tried many trainers but none of them are
good.
British: Have you tried the new running ones from Nike? I found them comfortable
enough for my daily jogging routines.



Modules, Packages, and Data Type Concepts Chapter 2

[ 32 ]

In fact, you don't even need to be from a different culture to experience this problem.
Sometimes the same word already has different meanings depending on the context. For
example:

Pool - swimming pool or a group of things?
Squash - the vegetable or the sport?
Current - electrical current or a flow of water?

There is no way that we can enforce a single vocabulary across all domains because of
ambiguities such as these. Fortunately, computer scientists are smart and long ago solved
the problem as it pertains to their field: to distinguish two different meanings for a single
word, we can just prefix the word with the respective context. Using the examples from the
preceding list, we can qualify each word as follows:

Facility.Pool and Grouping.Pool
Vegetable.Squash and Sport.Squash
Electricity.Current and Liquid.Current

The prefix is known as a namespace. Now that the words are qualified with their respective
namespaces, they are no longer ambiguous and have a clear meaning.

In Julia, namespaces are created using modules, which we will learn about in the following
section.

Creating modules and packages
Modules are used to create new namespaces. In Julia, creating a module is as simple as
wrapping your code around a module block, like so:

module X
 # your code
end

In general, modules are created for the purpose of sharing and reuse, and the best way to
achieve this is to organize code in Julia packages. A Julia package is a directory and file
structure for maintaining module definitions, test scripts, documentation, and related data.



Modules, Packages, and Data Type Concepts Chapter 2

[ 33 ]

There is a standard directory structure and convention for Julia packages; however, it
would be a hassle to manually configure a new program in the same structure every single
time. Fortunately, there are some open source tools that automatically create the structure
for a new package. Without officially endorsing any specific tool, I have chosen the
PkgTemplates package for demonstration, as follows. 

If you have not installed the PkgTemplates package before, it can be installed as follows:

Once it is installed, we can use it to create our sample module. The first step is to create a
Template object, as follows:



Modules, Packages, and Data Type Concepts Chapter 2

[ 34 ]

Basically, the template object contains some default values that will be used to create new
packages. Then, creating a new package is easy as calling the generate function.

By default, the package generator creates the new directory in the
~/.julia/dev folder, but it is customizable with the dir keyword
argument of the Template object.



Modules, Packages, and Data Type Concepts Chapter 2

[ 35 ]

The generate command is used to create a new package called Calculator. It
automatically creates a directory with the following package structure:

At this time, you can start editing the Calculator.jl file and replace the file contents
with your own source code.

If you are new to Julia, make sure that you check out the Revise package,
which allows you to edit source code and have your working
environment updated automatically. Your productivity using Julia will be
increased by a factor of 10, guaranteed. 

Let's work on the Calculator module by implementing some financial calculations. Over
the course of this example, we will learn how to manage the accessibility of variables and
functions from external clients. Our initial code is set up as follows:

# Calculator.jl
module Calculator

export interest, rate

"""
 interest(amount, rate)

Calculate interest from an `amount` and interest rate of `rate`.
"""
function interest(amount, rate)
 return amount * (1 + rate)
end

"""
 rate(amount, interest)



Modules, Packages, and Data Type Concepts Chapter 2

[ 36 ]

Calculate interest rate based on an `amount` and `interest`.
"""
function rate(amount, interest)
 return interest / amount
end

end # module

This code should be saved to the Calculator.jl file.

Defining functional behavior
Our Calculator module defines two functions:

The interest function is used to calculate the interest for a deposit amount,
amount, with the specified interest rate, rate, for a full investment period.
The rate function is used to calculate the interest rate for which you can invest
the deposit amount, amount, and receive the interest amount, interest.

Remember that interest and rate may mean completely different things outside the context
of Calculator.

Exporting functions
Functions defined inside a module are not exposed to the outside world. To expose them,
the interest and rate functions can be exported using the export statement, so that
users of this module can easily bring them into their own namespace:

export interest, rate

Once the functions are exported, they will be available in the client's scope where the
module is loaded with the using keyword. Let's try to reference these functions from the
Julia REPL before loading the module:



Modules, Packages, and Data Type Concepts Chapter 2

[ 37 ]

Because we have not loaded the Calculator package yet, neither interest nor rate is
defined. Let's bring them in now:

When the using statement is executed, all symbols exported from the module are brought
into the current namespace. From the Julia REPL, the current module is called Main, as
shown in the following diagram:

It is possible for us to bring in a subset of the names by qualifying the using statement with
specific names. Let's restart the Julia REPL and try again:

In this case, only the interest function was brought into the Main module:



Modules, Packages, and Data Type Concepts Chapter 2

[ 38 ]

There are actually several ways to import names from another module into the current
namespace. For the sake of simplicity, we can summarize them as follows:

As you can see, there are four ways (namely, 1, 2, 4, and 5 in the preceding table) to bring
the interest function into the current namespace. There are some subtleties in choosing
between using and import statements. A good rule of thumb is to use the using
statement when you are using the functionality, but choose the import statement when
you need to extend the functionality from the module. Extending functions from another
package is a key language feature of Julia, and you will learn more about that from various
examples in this book.

Resolving conflicts
The picture, however, is not always rosy. Let's imagine that the main program needs to use
another module called Rater, which provides rating services for online books. In this
scenario, the main program may try to take functions from both modules, as shown in the
following:



Modules, Packages, and Data Type Concepts Chapter 2

[ 39 ]

But, Houston, we have a problem! The rate function was brought in from the Calculator
module, but it happens to be in conflict with the other one from the Rater module. Julia
automatically detects this conflict on first use, prints a warning, and, from then on, requires
the programmer to use their fully qualified names to access either function:

If you are not happy with this, especially the ugly-looking warning, then there is an
alternative. First, you can ask yourself whether both rate functions are actually needed in
the main program. If only one rate function is needed, then just bring one into scope so
that there is no more conflict:

using Calculator: interest
using Rater: rate

# Here, the rate function refers to the one defined in Rater module.

From my experience, bringing specific names into the current namespace is indeed the best
choice for most use cases. The reason for this is that it will be immediately obvious which
functions you depend on. Such dependency is also self-documented in the code.



Modules, Packages, and Data Type Concepts Chapter 2

[ 40 ]

Occasionally, you may need to use both rate functions. In such cases, you can solve the
problem by using the regular import statement:

import Calculator
import Rater

interest_rate = Calculator.rate(100.00, 3.5)
rating = Rater.rate("Hands-On Design Patterns with Julia")

This way, it only loads the packages and does not bring any name into the current
namespace. You can now refer to both rate functions with their fully qualified
names—that is, Calculator.rate and Rater.rate. After creating these modules, let's
move on to see how to create submodules.

Creating submodules
When a module becomes too large, it may make sense to split it into smaller parts so that
it's easier to develop and maintain. One way to solve this problem is to create submodules.

Creating submodules is convenient as they are just defined within the scope of the parent
module. Let's say we organize the Calculator module with two submodules—Mortgage

and Banking. These submodules can be defined in separate files and can be included
directly into the parent module. Consider the following code:

# Calculator.jl
module Calculator

include("Mortgage.jl")
include("Banking.jl")

end # module

Submodules, just like regular modules, are also defined using module blocks. The source
code for Mortgage looks just like a regular module definition:

# Mortgage.jl
module Mortgage

# mortgage related source code

end # module



Modules, Packages, and Data Type Concepts Chapter 2

[ 41 ]

Because the source code from Mortgage is included inside the Calculator module
block, it forms a nested structure. The usage of submodules is the same as that of any
regular module, except that you have to reference them via the parent module. In this case,
you'd use Calculator.Mortgage or Calculator.Banking.

Using submodules is an effective way to separate code for larger codebases. Next, we will
go over how to organize source code in a module.

Organizing files in a module
The source code for modules is typically organized as multiple source files. Although there
is no hard and fast rule about how source files are organized, the following are useful
guidelines:

Coupling: Highly coupled functions should be placed in the same file. Doing so
allows less context switching when editing source files. For example, when you
change the signature of a function, all callers of that function may need to be
updated. Ideally, you would want to minimize the blast radius and not have to
change many files.
File size: Having more than a few hundred lines of code in a single file could be
a warning sign. If the code inside the file is all tightly coupled, then it may be
better to redesign the system to reduce coupling.
Ordering: Julia loads the source files in the order in which you include them. As
data types and utility functions are usually shared, it is better to save them in a
types.jl and utils.jl file respectively and include them at the beginning of
the module.

Similarly, the same considerations apply when organizing test scripts.

By now, we have learned how to create new namespaces using modules and submodules.
More conveniently, a module is organized in a package so that it can be reused from an
application. Once we have created multiple packages, it is unavoidable that they may have
to depend on each other. It is important that we know how to handle these dependencies
properly; this will be our primary topic in the next section.



Modules, Packages, and Data Type Concepts Chapter 2

[ 42 ]

Managing package dependencies
The Julia ecosystem has a rich set of open source packages. When packages are designed
with a single objective, they can be reused more easily; however, working with a large
codebase is not an easy task because it is more likely to depend on third-party packages. It
takes a considerable amount of time and effort for a developer to maintain and manage
these dependencies in order to avoid dependency hell.

It is important to understand that dependencies exist not just between packages, but also
between specific versions of packages. Luckily, the Julia language has strong support for
semantic versioning, which can help solve a lot of problems.

In this section, we will cover the following topics:

Understanding the semantic versioning scheme
Specifying dependencies for Julia packages
Avoiding circular dependencies

Now, let's take a quick look at the semantic versioning scheme.

Understanding the semantic versioning scheme
Semantic versioning (https:/ /semver. org/ ) is a scheme developed by Tom Preston-
Werner, most famously known as the co-founder and CTO of GitHub. Semantic versioning
serves a very specific purpose, which is to provide the meaning—that is, the semantics—of
version number changes.

When we use a third-party package and it is upgraded, how do we know whether our
application needs to be updated? What kind of risk are we taking if we just upgrade the
dependent package without doing any testing with our own application? 

Before semantic versioning, it was almost always a guess. A more diligent and risk-averse
developer, however, would at least examine the release notes of the dependent package, try
to figure out whether there are any breaking changes, then take proper actions.

Here, we will quickly summarize how semantic versioning works. First of all, a version
number is constructed using the following components:

<major>.<minor>.<patch>

https://semver.org/
https://semver.org/
https://semver.org/
https://semver.org/
https://semver.org/
https://semver.org/
https://semver.org/
https://semver.org/


Modules, Packages, and Data Type Concepts Chapter 2

[ 43 ]

If we wish, the version number can be followed by a release tag and a build number at the
end:

<major>.<minor>.<patch>-<pre-release>+<build>

Every part of the version number reveals a meaning:

The major release number, when changed, means that a major change has been
introduced in this release that is incompatible with the previous release. It is
highly risky for applications to incorporate the new release as existing functions
will likely break.
The minor release number, when changed, means that there are nonbreaking
enhancements in this release. It is moderately risky for applications to
incorporate the new release because previous functions should, at least in theory,
continue to work as they are.
The patch release number, when changed, means that there are nonbreaking
bug fixes in this release. The risk is low for applications to incorporate the new
release.
The pre-release tag, when present, indicates a pre-release candidate, such as
alpha, beta, or release candidates (RCs). The release is considered unstable and
applications should never use it in a production environment.
The build tag is considered to be meta information and can be ignored.

Note that semantic versioning is only useful when all packages use it properly. Semantic
versioning is like a common language that package developers can use to easily indicate the
impact of their changes when making new releases.

The Julia package ecosystem encourages semantic versioning. Next, we will take a look at
how the Julia package manager, Pkg, handles dependencies using semantic versioning.

While Julia encourages semantic versioning, many open source packages
still have a pre-1.0 version number, even though they can be quite stable
for production use. A major version number of zero is special—it basically
means that every new release is breaking.

As the Julia language matures, more package authors will mark their
packages as 1.0, and the situation regarding package compatibility will get
better over time.



Modules, Packages, and Data Type Concepts Chapter 2

[ 44 ]

Specifying dependencies for Julia packages
We can tell when a package depends on another by examining the using or import
keywords in the source files; however, the Julia runtime environment is designed to be
more explicit by tracking the dependencies. Such information is stored in the
Project.toml file in the package directory. In addition, a Manifest.toml file in the same
directory contains more information about the complete dependency tree. These files are
written in the TOML file format. Although it is easy enough to edit these files by hand, the
Pkg package manager's command-line interface (CLI) could be used to manage
dependencies more easily.

To add a new dependent package, you just need to carry out the following steps:

Start the Julia REPL.1.
Enter Pkg mode by pressing the ] key.2.
Activate the project environment using the activate command.3.
Add the dependent package using the add command.4.

For example, let's add the SaferIntegers package to our Calculator package as follows:



Modules, Packages, and Data Type Concepts Chapter 2

[ 45 ]

Let's first examine the contents of the Project.toml file, as shown in the following
screenshot. The funny-looking hash code 88634af6-177f-5301-88b8-7819386cfa38
represents the universal unique identifier (UUID) of the SaferIntegers package. Note
that there is no version number specified for the SaferIntegers package, even though we
know version 2.5.0 was installed from the preceding output:

The Manifest.toml file contains the complete dependency tree of the package. First, we
find the following section regarding our SaferIntegers dependency:



Modules, Packages, and Data Type Concepts Chapter 2

[ 46 ]

Note that the SaferIntegers package now has a specific version. 2.5.0, in the manifest
file. Why? It's because the manifest is designed to capture the exact version information for
all directly dependent and indirectly dependent packages. A second observation is that
officially bundled packages, such as Serialization, Sockets, and Test, do not carry
version numbers:

These packages do not have version numbers because they are always released with the
Julia binary. Their actual versions are pretty much determined by the specific Julia version.

It is important to realize that neither Project.toml and Manifest.toml contains any
versioning compatibility information, even though we know version 2.5.0 of
SaferInteger was installed. To specify compatibility constraints, we can manually edit
the Project.toml file using the semantic versioning scheme. For example, if we know that
Calculator is compatible with SaferIntegers version 1.1.1 and later, then we can add
this requirement to the [compat] section of the Project.toml file, as follows:

[compat]
SaferIntegers = "1.1.1"

This compatibility setting provides the necessary information for the Julia package manager
to ensure that at least SaferIntegers version 1.1.1 is installed in order to use the
Calculator package. Since the package manager is sensitive to semantic versioning, the
preceding setting means that Calculator can work with all versions of SaferIntegers
from 1.1.1 to the latest 1.x.y version, right up to 2.0. In mathematical notation, the range of
compatible versions is [1.1.1, 2.0.0), where 2.0.0 is excluded.

Now, what if SaferIntegers is improved and the package owner decides to release 2.0.0?
Well, because the major version number has advanced from 1 to 2, we have to expect
breaking changes. If we don't do anything, the latest version, 2.0.0, will never be installed in
the Calculator environment because we specifically implemented an exclusive upper
bound of 2.0.0.



Modules, Packages, and Data Type Concepts Chapter 2

[ 47 ]

Let's say that, after thorough examination and testing, we conclude that Calculator is not
affected by any breaking changes from SaferIntegers 2.0.0. In that case, we can just
make a small change to our Project.toml file, as follows:

[compat]
SaferIntegers = "1.1.1, 2"

This line specifies the union of these two compatible version ranges:

The 1.1.1 specification indicates that the package is compatible with
SaferIntegers versions [1.1.1, 2.0.0]
The 2.0 specification indicates that the package is compatible
with SaferIntegers versions [2.0.0, 3.0.0]

Such information is important. If the Calculator package is used by someone who has an
environment pinned to SaferIntegers version 1.1.1, then we know that Calculator is
still compatible in that environment and can be loaded in it.

The package manager is actually very flexible, and it implements a few more version-
specifier formats. You can refer to of Pkg reference manual for more information (https:/ /
julialang.github. io/ Pkg. jl/ v1/ compatibility/ #Version- specifier- format- 1).

It is important to specify compatibility between packages. By using the Pkg interface and
editing the Project.toml file manually, we can manage dependencies properly, and the
package manager will help us maintain the working environment in working order.

However, sometimes, we may run into tricky dependency issues—for example, circular
dependencies. We will look at how to handle such situations next.

Avoiding circular dependencies
Circular dependencies are problematic. To understand why, consider the following
example.

Let's say we have five packages (A, B, C, D, and E) with the following dependencies:

A depends on B and C
C depends on D and E
E depends on A

https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1
https://julialang.github.io/Pkg.jl/v1/compatibility/#Version-specifier-format-1


Modules, Packages, and Data Type Concepts Chapter 2

[ 48 ]

To illustrate these graphically, we can create a diagram where we can use an arrow
notation to indicate dependencies between components. The direction of the arrow
indicates the direction of the dependency.

What's the problem?
Clearly there is a cycle, as A depends on C, C depends on E, and E depends on A. What is
the problem with a cycle like this? Say that you have to make a change in package C that is
supposed to be backward-compatible. To properly test the system with this change, we
must make sure that C continues to have proper functionality given its dependencies. Now,
if we trace this down the dependency chain, we must test C with D and E, and as E
depends on A, we must include A as well. Now that A is included, we must include B and
C. Because of the cycle, we now have to test all of the packages!

How do we fix this?
The acyclic dependency principle states that dependencies between packages must be a
directed acyclic graph (DAG)—that is, the dependency graph must have no cycle. If we do
see a cycle in the graph, then it is a sign of a design problem. 

When we encounter such a problem, we must refactor the code so that the specific
dependent function is moved to a separate package. In this example, suppose that there's
some code in package A that is used by the package internally and also used by package E.
This dependency is basically E -> A.



Modules, Packages, and Data Type Concepts Chapter 2

[ 49 ]

We can then take this code and move it to a new package F. After this change, packages A
and E would both depend on package F, effectively removing the cyclic dependency:

After this refactoring, when we make changes to C, we can just test the package with its
dependencies, which would be D, E, and F only. Packages A and B can both be excluded.

In this section, we learned how to leverage semantic versioning to clearly communicate the
impact of new versions of a package. We can use the Project.toml file to specify the
compatibility of the current package with its dependent packages. We also reviewed a
technique for resolving circular dependencies.

Now we know this, we will look into how to design and develop data types in Julia.

Designing abstract and concrete types
Julia's type system is the foundation of many of its language features, such as multiple
dispatches. In this section, we will learn about both abstract types and concrete types, how
to design and use them, and how they are different from other mainstream object-oriented
programming languages.

In this section, we will cover the following topics:

Designing abstract types
Designing concrete types
Understanding isa and <: operators
Understanding the difference between abstract and concrete types

Let's first take a look at abstract types.



Modules, Packages, and Data Type Concepts Chapter 2

[ 50 ]

Designing abstract types
Similar to many other objected-oriented programming languages, Julia supports a
hierarchy of abstract types. Abstract types are typically used to model real-world data
concepts; for example, an Animal could be an abstract type for a cat or dog, and a Vehicle
can be an abstract type for a car, truck, or bus. Being able to group types together and give
the group a single name allows Julia programmers to apply generic code that is common to
those types.

Abstract types are often conveniently defined in a type hierarchy for a specific domain. We
can describe the relationship between abstract types as parent–child, or more technically,
an is-a-subtype-of relationship. The terminology for the parent type and child type
is supertype and subtype respectively.

A unique feature of Julia's design, unlike the majority of other languages, is that abstract
types are defined without any fields. For this reason, abstract types do not specify how data
is actually stored in the memory. It may seem somewhat restrictive at first glance, but as we
learn more about Julia, it will seem more natural when used in this design. As a result,
abstract types are used solely to model behaviors for a set of objects rather than to specify
how data is stored.

The Rectangle and Square object model is a classic example of how things
can break down when an abstract type is allowed to define data fields.
Suppose that we were able to define a Rectangle with width and
height fields. A Square is a kind of Rectangle, so intuitively, we should
be able to model Square as a subtype of Rectangle. But we soon get into
trouble because a square does not need two fields to store the length of its
sides; we should rather use a single side length field instead. Therefore,
inheriting fields from supertypes makes no sense in this case. We will
discuss this case with more details in Chapter 12, Inheritance and Variance.

In the following sections, we will work through an example of building an abstract type
hierarchy.



Modules, Packages, and Data Type Concepts Chapter 2

[ 51 ]

A personal asset type hierarchy example
Let's say we are building a financial application that keeps track of a user's wealth, which
may include various types of asset. The following diagram shows a hierarchy of abstract
types and their parent–child relationship. In this design, an Asset may be a Property, an
Investment, or just Cash types. A Property can be a House or an Apartment. An Investment
could be FixedIncome or Equity. As a convention, in order to indicate that they are abstract
types rather than concrete types, we have chosen to italicize their names in the boxes:

To create an abstract type hierarchy, we can use the following code:

abstract type Asset end

abstract type Property <: Asset end
abstract type Investment <: Asset end
abstract type Cash <: Asset end

abstract type House <: Property end
abstract type Apartment <: Property end

abstract type FixedIncome <: Investment end
abstract type Equity <: Investment end

The <: symbol represents an is-a-subtype-of relationship. So, the Property type is a subtype
of Asset, the Equity type is a subtype of Investment, and so on.

While the Asset abstract type seems to be at the top level of the hierarchy in reality, it also
has a supertype called Any, which is implicit when no supertype is specified and an
abstract type is defined. The Any code phrase is the top-level supertype in Julia.



Modules, Packages, and Data Type Concepts Chapter 2

[ 52 ]

Navigating the type hierarchy
Julia provides some convenient functions to navigate the type hierarchy. To find the
subtypes of an existing type, we can use the subtypes function:

Similarly, to find the supertype of an existing type, we can use the supertype function.

Sometimes, it's convenient to see the complete hierarchy in a tree format. Julia comes with
no standard function that we can use to achieve this, but we can easily create one ourselves
using a recursion technique, as follows: 

# Display the entire type hierarchy starting from the specified `roottype`
function subtypetree(roottype, level = 1, indent = 4)
    level == 1 && println(roottype)
    for s in subtypes(roottype)
       println(join(fill(" ", level * indent)) * string(s))
       subtypetree(s, level + 1, indent)
    end
end

This function can be quite convenient for new Julia users. In fact, I have the code saved in
my startup.jl file so that it is loaded into the REPL automatically.

The startup.jl file is a user-customized script that is located in the
$HOME/.julia/config directory. It can be used to store any code or
functions that the user wants to run every time the REPL is started. 

We can now display the personal asset type hierarchy easily, as follows:



Modules, Packages, and Data Type Concepts Chapter 2

[ 53 ]

Note that this function can only display a hierarchy of types that have already been loaded
into memory. Now that we have defined abstract types, we should be able to associate
functions with them. Let's do that next.

Defining functions for abstract types
So far, all we have done is create a hierarchy of related concepts. With that limited
knowledge, we can still define some functions to model behaviors. But how is this useful
when we have no concrete data elements? When dealing with abstract types, we could just
focus on specific behavior and the possible interaction between them. Let's continue with
the example and see what kinds of function we can add.

Descriptive functions
Although it does not sound very interesting, we can define functions that are solely based
on the type itself:

# simple functions on abstract types
describe(a::Asset) = "Something valuable"
describe(e::Investment) = "Financial investment"
describe(e::Property) = "Physical property"

Now, if we ever call describe with a data element that has a supertype of Property, then
the description method for Property will be invoked accordingly. As we did not define
any description function with the Cash type, when describe is called with a Cash data
element it will return the description from the higher-level type, Asset.

Because we have not defined any concrete types yet, we cannot prove the
claim here that the describe function for a Cash object will resort to the
describe(a::Asset) method. As it is a simple thing to do, I encourage
the reader to do this as an exercise after reading this chapter. 



Modules, Packages, and Data Type Concepts Chapter 2

[ 54 ]

Functional behavior
The reason to have a hierarchy is to create an abstraction about common behaviors for
types. For example, the Apartment and House types have the same supertype, Property.
This is intentional because they both represent some kind of physical dwelling at a certain
location. So, we can define a function for any Property as follows:

"""
 location(p::Property)

Returns the location of the property as a tuple of (latitude, longitude).
"""
location(p::Property) = error("Location is not defined in the concrete
type")

You may ask, What have we done? We have just implemented a function that does nothing
but return an error! Well, believe it or not, defining this function actually serves several
purposes:

It makes it clear that any concrete subtype of Property must implement
the location function.
At runtime, if the location function is not defined for the respective concrete
type, then this particular function will be called and a reasonable error will be
thrown so that the programmer can correct the bug.
The document string right above the function definition contains a useful
description that concrete subtypes of Property should implement.

Alternatively, we can define an empty function instead:

"""
 location(p::Property)

Returns the location of the property as a tuple of (latitude, longitude).
"""
function location(p::Property) end

What is the difference between an empty function and one that throws an error? For this
empty function, there will be no runtime error if the concrete type does not implement this
function.



Modules, Packages, and Data Type Concepts Chapter 2

[ 55 ]

Interaction between objects
It is also useful to define interactions between abstract types. Now that we know that every
Property should have a location, we can define a function that calculates the walking
distance between any two properties, as follows:

function walking_disance(p1::Property, p2::Property)
    loc1 = location(p1)
    loc2 = location(p2)
    return abs(loc1.x - loc2.x) + abs(loc1.y - loc2.y)
end

The logic completely lives in the abstract types! We have not even defined any concrete
types, and yet we are able to develop generic code that works for any concrete subtypes of
Property going forward.

The power of the Julia language allows us to define these behaviors at this level
of abstraction. For a moment, let's imagine what we would have to do if we were not
allowed to define functions at this level and could only implement logic with specific
concrete types. In this case, we would have to define a separate walking_distance
function for every combination of different types of properties. It would be too mundane
and boring for programmers!

Now that we understand how abstract types work, let's continue our journey and take a
look at how to create concrete types in Julia.

Designing concrete types
A concrete type is used to define how data is organized. In Julia, there are two kinds of
concrete type:

Primitive type
Composite type

Primitive types carry pure bits. Julia's Base package comes with a variety of primitive
types—signed/unsigned integers that are 8-, 16-, 32-, 64-, or 128-bits wide. Currently, Julia
only supports primitive types with numbers of bits that are multiples of 8. For example, it is
possible to define a 256-bit integer type (32 bytes) if we have a use case that requires very
large integers. How to do this is outside the scope of this book. If you feel that this is an
interesting project, you can consult Julia's source code on GitHub and see how existing
primitive types are implemented. The Julia language is indeed largely written in Julia itself!



Modules, Packages, and Data Type Concepts Chapter 2

[ 56 ]

Composite types are defined by a set of named fields. Grouping fields into a single type
allows easier reasoning, sharing, and manipulation. Composite types may be designated a
specific supertype or defaulted to Any. Fields can also be annotated with their own types, if
you wish, and types can be either abstract or concrete. When type information is absent for
fields, they default to Any, which means that the field can hold objects of any type.

We will focus on composite types in this section.

Designing composite types
Composite types are defined with the struct keyword. Let's carry on the example from
the preceding abstract type section and continue building our personal asset type hierarchy.
We will now create a concrete type called Stock as a subtype of Equity. To keep things
simple, we will just represent a stock as a trading symbol and the name of the company:

struct Stock <: Equity
    symbol::String
    name::String
end

We can instantiate a composite type using the standard constructor, which just takes all the
fields as an argument:

Now, since Stock is a subtype of Equity, which is a subtype of Investment, which in
turn is a subtype of Asset, we should obey the contract that we set forth earlier by defining
the describe function:

function describe(s::Stock)
    return s.symbol * "(" * s.name * ")"
end

The describe function just returns a string representation of the stock with both the
trading symbol and company name.



Modules, Packages, and Data Type Concepts Chapter 2

[ 57 ]

Immutability
Composite types are by default immutable. This means that their fields are not changeable
after the object is created. Immutability is a good thing as it eliminates surprises when
system behavior changes unexpectedly because of data modification. We can easily prove
that the concrete Stock type that we created in the last section is immutable:

That's great! Now, the immutability guarantee actually stops at the field level. If the type
contains a field and the field's own type is mutable, then changing the underlying data is
allowed. Let's try a different example by creating a new composite type called
BasketOfStocks, which is used to hold a vector (that is, a one-dimensional array) of
stocks and the reason that we are holding them:

struct BasketOfStocks
    stocks::Vector{Stock}
    reason::String
end

Let's just create an object for testing:

As we already know, BasketOfStocks is an immutable type, so we cannot change any of
the fields in it; however, let's see if we can take away one of the stocks from the stocks
field:



Modules, Packages, and Data Type Concepts Chapter 2

[ 58 ]

Here, we just call the pop! function directly on the stocks object, and it will happily take
away half of the presents for my wife! Let me repeat—the immutability guarantee does not
have any effect on the underlying fields. 

This behavior is by design. The programmer should be cautious about making any
assumptions about immutability.

Mutability
In some situations, we may actually want an object to be mutable. The immutability
constraint can be removed easily by just adding the mutable keyword in front of the type
definition. To make the Stock type mutable, we do the following:

mutable struct Stock <: Equity
    symbol::String
    name::String
end

Now let's try to update the name field in a hypothetical case where Apple changes its
company name:

The name field has been updated as we wish. Note that, when a type is declared mutable,
all of its fields become mutable. So, in this case, we would be allowed to change the symbol
as well. Depending on the situation, such behavior may or may not be desirable. In Chapter
8, Robustness Patterns, we will go over some design patterns that we can use to build a more
robust solution.



Modules, Packages, and Data Type Concepts Chapter 2

[ 59 ]

Mutable or immutable?
As you can see, mutable objects seem more flexible and give us good performance. But if
that's the case, then why wouldn't we want everything to be mutable by default? There are
a couple of reasons:

Immutable objects are easier to handle. Because the data in the object is fixed and
never changes, a function that operates on these objects will always return
consistent results. That is a very nice property to have because there are no
surprises. And if we build a function that caches calculation results from such
objects, the cache will always be good and return consistent results.
Mutable objects are more difficult to work with in a multi-threaded application.
Let's say that a function is reading from a mutable object, but the content of the
object is modified by another function from a different thread. Then the current
function may produce incorrect results. In order to ensure consistency, the
programmer must use a locking technique to synchronize the read/write
operations to the object. Having to handle such a concurrent situation makes the
code more complex and difficult to test.

On the other hand, mutability could be useful for high-performance use cases because
memory allocation is a relatively expensive operation. We can reduce the system overhead
by reusing allocated memory over and over again.

All things considered, immutable objects are usually the better choice.

Supporting multiple types using Union types
Sometimes, we need to support multiple types in a field. This can be done using a Union
type, which is defined as a type that can accept any specified types. To define a Union type,
we can just enclose the types within curly braces after the Union keyword. For example, the
Union type of Int64 and BigInt can be defined as follows:

Union{Int64,BigInt}



Modules, Packages, and Data Type Concepts Chapter 2

[ 60 ]

These Union types are quite useful when you need to incorporate data types that come
from different data type hierarchies. Let's extend our personal asset example further. For
instance, say that we need to incorporate some exotic items into our data model, which may
include things such as art pieces, antiques, paintings, and so on. These new concepts may
have already been modeled with a different type hierarchy, as follows:

abstract type Art end

struct Painting <: Art
    artist::String
    title::String
end

As it turns out, my wife likes to collect paintings, and so I can just generalize the
BasketOfStock type as BasketOfThings, as follows:

struct BasketOfThings
 things::Vector{Union{Painting,Stock}}
 reason::String
end

The things inside the vector can be Stock or Painting. Remember that Julia is a strongly
typed language, and it is important that the compiler knows what kinds of data type can fit
into an existing field. Let's see how it works:

To create a vector that contains either Painting or Stock, we just specify the element type
of the array in front of the square brackets, as in Union{Painting,Stock}[stock,
monalisa].



Modules, Packages, and Data Type Concepts Chapter 2

[ 61 ]

The syntax for Union types can be very verbose, especially when there are more than two
types, so it is quite common for a constant to be defined with a meaningful name that
represents the Union type: 

const Thing = Union{Painting,Stock}

struct BasketOfThings
    thing::Vector{Thing}
    reason::String
end

As you can see, Thing is much easier to read than Union{Painting,Stock}. Another
benefit is that the Union type may be referenced in many parts of the source code. When
we need to add more types later—for instance, an Antique type—then we only need to
change it in one place, which is the definition of Thing. This means that the code can be
maintained more easily.

In this section, although we have chosen to use concrete types such as Stock and
Painting for our example, there is no reason why we cannot use abstract types such as
Asset and Art for the Union type.

Another common usage of the Union type is to incorporate Nothing as a
valid value for a field. This can be achieved by declaring a field with
the Union{T,Nothing} type, where T is the real data type that we want
to use. In that case, the field can be assigned with a real value or just
Nothing.

Next, we will continue to learn how to work with type operators.

Working with type operators
Julia's data types are first-class citizens themselves. This means that you can assign them to
variables, pass them to functions, and manipulate them in various ways. We will take a
look at two commonly used operators in the following sections.



Modules, Packages, and Data Type Concepts Chapter 2

[ 62 ]

The isa operator
The isa operator can be used to determine whether a value is a subtype of a type. For
example, look at the following code:

Let me explain each of these results:

The number 1 is an instance of the Int type, so it returns true.
Because Float64 is a different concrete type, it returns false.
Because Int is a subtype of Signed, which is a subtype of Integer, which is a
subtype of Real, it returns true.

The isa operator could be useful for checking types in a function that accepts generic type
arguments. For example, if the function can only work with Real numbers, then it
may throw an error when a Complex value is passed by accident.

The <: operator
The is-a-subtype-of operator, <:, is used to determine whether a type is a subtype of another
type. Taking the third example from the preceding section, we can check whether Int is
indeed a subtype of Real as follows:



Modules, Packages, and Data Type Concepts Chapter 2

[ 63 ]

Sometimes the developer may be confused about the usage of the isa and <: operators
because they are very similar. We can keep in mind that isa checks a value against a type,
and <: checks a type against another type. The document string for these operators is
actually quite helpful. From the Julia REPL, type a ? character and enter the operator to
find the documentation:

As it turns out, both isa and <: are just functions, but they can also be used as infix
operators. 

These operators are quite useful for type-checking purposes; for example, we can throw an
exception from a constructor function if the arguments being passed do not have the right
types. They can also be used to execute different logic dynamically based upon the types
being passed to a function.

Abstract types and concrete types are the fundamental building blocks for data types in
Julia. It may be worth looking at a quick summary of the differences between them. Next,
we will look at specific details.



Modules, Packages, and Data Type Concepts Chapter 2

[ 64 ]

Differences between abstract and concrete types
Having discussed abstract types and concrete types, you may be wondering how they
differ from each other. We can summarize their differences in the following table:

Property Abstract Type Concrete Type
Has a supertype? Yes Yes
Allows subtypes? Yes No
Contains data fields? No Yes
First class? Yes Yes
Can be part of a Union type? Yes Yes

For abstract types, we can build a hierarchy of types. The top-level type is just Any. Abstract
types cannot contain any data fields as they are used to represent concepts rather than data
storage. Abstract types are first-class, meaning that they can be stored and passed around,
and there are functions that work with them—for example, the isa and <: operators. 

A concrete type is associated with an abstract type as a supertype. If the supertype is not
specified, then it is assumed to be Any. A concrete type does not allow subtypes. This
means that every concrete type must be final, and would be a leaf node in a type hierarchy.
Concrete types are also first class, just like abstract types.

Both abstract types and concrete types can be referred to in a Union type.

What we just mentioned may be surprising to people who come from an object-oriented
programming background. First, you may wonder why concrete types do not allow
subtypes. Second, you may wonder why abstract types can't be defined with fields. This
design is actually intentional and was debated heavily by the core Julia development team.
The debate is related to behavioral inheritance versus structural inheritance, which will be
discussed in Chapter 12, Inheritance and Variance.

Now, let's switch gear and go over the parametric type feature of the Julia language.

Working with parametric types
One of the most powerful features of the Julia language is the ability to parameterize types.
It is actually quite difficult to find any Julia package that does not use this feature.
Parametric types allow the software designer to generalize types, and let the Julia runtime
automatically compile to the concrete version based on the specified parameters.



Modules, Packages, and Data Type Concepts Chapter 2

[ 65 ]

Let's take a look at how this works with composite and abstract types.

Working with parametric composite types
When designing composite types, we should assign each field a type. Oftentimes, we don't
really care exactly what those types are, as long as the type provides the functionality that
we want. 

A classic example would be numeric types. The concept of numbers is simple: basically the
same as we were taught in elementary school. In practice, many numeric types are
implemented in computer systems because of the different physical storage and
representations of data. 

By default, Julia ships with the following numeric types; concrete types are darker:

Do you remember when we designed a composite type to represent a stock in an
investment portfolio earlier in this chapter? Let's revisit that example here:

struct Stock <: Equity
    symbol::String
    name::String
end



Modules, Packages, and Data Type Concepts Chapter 2

[ 66 ]

If I have to hold some stocks in my brokerage account, then I should also keep track of the
number of shares that I own. To do this, I can define a new type called StockHolding, as
follows:

struct StockHolding
    stock::Stock
    quantity::Int
end

The Int data type is by default aliased to either Int64 or Int32, depending on whether
you are using the 64-bit or 32-bit version of Julia. This seems reasonable just to get started,
but what if we need to support fractional shares for a different use case? In that case, we
can just change the type of quantity to Float64:

struct StockHolding
    stock::Stock
    quantity::Float64
end

We basically widen the type of quantity field to a type that supports both integer and
floating-point values. It may be a reasonable approach, but if we need to support both Int
and Float64 types, then we would have to maintain two slightly different types. Sadly, if
we do create two different types, then it becomes a maintenance nightmare.

To make it more flexible, we can redesign the StockHolding type with a parameter:

struct StockHolding{T}
    stock::Stock
    quantity::T
end

The symbol T inside the curly braces is called a type parameter. It serves as a placeholder that
can be used as a type in any of the fields.

Now, we have the best of both worlds. The StockHolding{Int} type refers to the type
that contains a quantity field of the Int type. Likewise, the StockHolding{Float64}
refers to the type that contains a quantity field of the Float64 type. 

In practice, the T type parameter can only be a numeric type, so we could further qualify T
as any subtype of Real:

struct StockHolding{T <: Real}
    stock::Stock
    quantity::T
end



Modules, Packages, and Data Type Concepts Chapter 2

[ 67 ]

Here's how we read this—the StockHolding type contains a stock and a quantity of the T type
that is a subtype of Real. The second part of the sentence is important; it means that we can
create a new StockHolding with the type of quantity as Float16, Float32, Float64,
Int8, Int16, Int32, and so on.

Let's try instantiating the StockHolding object with different kinds of type parameter,
such as Int, Float64, and Rational:

We can see that different StockHolding{T} types are created automatically according to
the argument that was passed to the constructor.

Another use of parametric types is to enforce the consistency of field types. Suppose
that we want to design another kind of stock-holding object to track the price and market
value of the holding. Let's call it StockHolding2 to avoid confusion with the preceding
one. The following is what it looks like:

struct StockHolding2{T <: Real, P <: AbstractFloat}
    stock::Stock
    quantity::T
    price::P
    marketvalue::P
end

Knowing that the type for quantity may not be the same as the type for price and
marketvalue, we have added a new type parameter, P. Now, we can instantiate a
StockHolding2 object that contains an integer quantity while having floating-point values
for price and market value fields:



Modules, Packages, and Data Type Concepts Chapter 2

[ 68 ]

Note that the type is StockHolding2{Int64, Float64}, as shown in the preceding
screenshot. In this case, the type parameter T is Int64 and the parameter P is Float64. 

As we declared that both the price and marketvalue fields must be of the same type, P,
does Julia enforce this rule for us? Let's give it a try:

Yes, it does! We correctly received an error because we passed a Float64 value for price,
but an Int64 for marketvalue. Let's take a closer look at the error message, which
revealed what the system expects. The closest candidate function for StockHolding2 takes
a P type for the third and fourth arguments, where P is any subtype of AbstractFloat.
Because In64 is not a subtype of AbstractFloat, there is no match and so an error was
thrown. 

Parametric types can be abstract as well. We will go over this next.

Working with parametric abstract types
Abstract types can be enhanced in the same way that composite types can be
parameterized. Let's continue with the preceding example. Suppose that we want to build
an abstract type called Holding that keeps track of a P type that is used by its subtypes. We
can code it as follows:

abstract type Holding{P} end

Then, every subtype of Holding{P} must also take a  P type parameter. As an example, we
can create two new types —StockHolding3{T,P} and CashHolding{P}:

struct StockHolding3{T, P} <: Holding{P}

 stock::Stock
 quantity::T
 price::P
 marketvalue::P
end



Modules, Packages, and Data Type Concepts Chapter 2

[ 69 ]

struct CashHolding{P} <: Holding{P}
 currency::String
 amount::P
 marketvalue::P
end

We can examine how these types are related as follows:

Let's create a new StockHolding3 object:

As expected, the certificate_in_the_safe object is a subtype of Holding{Float64}.

Note that, when a type is parameterized, each variation is considered as a separate type
that is unrelated to the others, except that they have a common supertype. As an example,
Holding{Int} is a different type from Holding{Float64}, but they are both subtypes of
Holding. Let's quickly prove this to ourselves:

In summary, Julia comes with a very rich type system that a programmer can use to reason
how each type relates to other types. Abstract types allow us to define behaviors in a
hierarchy of relationships, and concrete types are used to define how data is stored.
Parametric types are used to extend existing types to variations of field types. All of these
language constructs allow the programmer to model data and behavior effectively.

Next, we will look into data type conversions and how they apply to functions.



Modules, Packages, and Data Type Concepts Chapter 2

[ 70 ]

Conversion between data types
We often need to convert data from one type to another in order to leverage existing library
functions. A great working example would be the standard numerical data types. It is a
common use case to convert a piece of date from an integer to a floating-point number in
most mathematical functions.

In this section, we will learn about how data type conversion is performed in Julia. As it
turns out, data type conversions are expected to be implemented explicitly; however, a set
of rules has been implemented so that some conversions are automatically invoked.

Performing simple data type conversion
There are two ways to convert a value from one data type to another. The obvious choice is
to construct a new object from an existing value. For example, we can construct a Float64
object from a rational number as follows:

Another way is to use the convert function:

Either way works fine. There is an advantage from using the convert function when
considering performance optimization, as we will explain later in this section.

Beware of lossy conversions
When it comes to conversion, it is important to consider whether the conversion is lossless
or lossy. In general, it is expected that data type conversion is lossless, which means that,
when you convert from one type to another and back, you get the same value.

Because of the numerical representation of floating-point numbers, such perfect conversion
is not always possible. For example, let's try to convert 1//3 to Float64 and then convert it
back to Rational:



Modules, Packages, and Data Type Concepts Chapter 2

[ 71 ]

Because of a rounding error, it is not possible to reconstruct 1//3 after it was converted to
a Float64 type. The problem is not restricted to the Rational type. We can easily break
this again by converting the value from an Int64 to a Float64 and back, as follows:

We can see that there is a loss of precision here. While we may not be very satisfied with
these results, there is really not much that we can do here as long as we use the Float64
type. The Float64 type is implemented according to the IEEE 754 floating-point
specification, and it is expected to carry precision errors. If you need more precision, you
can use BigFloat instead, which solves this particular problem:

When handling floating-point values, we should be cautious about precision issues.

Understanding numeric type conversions
Julia does not automatically perform conversion on data types for safety reasons. Every
conversion must be explicitly defined by the programmer. 

To make it easier for everyone, Julia already contains conversion functions for numeric
types by default. For instance, you can find this interesting piece of code from the Base
package:

convert(::Type{T}, x::T) where {T<:Number} = x
convert(::Type{T}, x::Number) where {T<:Number} = T(x)



Modules, Packages, and Data Type Concepts Chapter 2

[ 72 ]

Both functions take the first argument of the Type{T} type, where T is a subtype of
Number. Valid values include all standard numeric types, such as Int64, Int32, Float64,
Float32, and so on.

Let's try to understand these two functions further:

The first function says that it's as easy as returning the argument x itself when we
want to convert x from the T type and to the T type (the same type) as long as T is
a subtype of Number. This can be considered a performance optimization because
there is really no need to do any conversion when the target type is the same as
the input.
The second function is a little more interesting. In order to convert x, which is a
subtype of Number, to type T, which is also a subtype of Number, it just calls the
constructor of the T type with x. In other words, this function can handle the
conversion of any Number type to another type that is a subtype of Number.

You may wonder why we don't just use the constructor in the first place. This is because the
convert function is designed to be invoked automatically for various common use cases.
As you can see from what we looked at previously, this extra indirection also allows us to
bypass the constructor when conversion is unnecessary.

When does convert get called? The answer is that Julia does not automatically do that,
except for a few scenarios. We will explore these scenarios in the next section.

Reviewing the rules for automatic conversion
As data type conversion is a fairly standard operation, Julia is designed to automatically
call the convert function in the following scenarios:

Assigning a value to an array converts the value to the array's element type.1.
Assigning a value to a field of an object converts the value to the declared type of2.
the field.
Constructing an object with new converts the value to the object's declared field3.
type.
Assigning a value to a variable with a declared type converts the value to that4.
type
A function with a declared return type converts its return value to that type.5.
Passing a value to ccall converts the value to the corresponding argument type.6.

Let's confirm that these are indeed working as advertised.



Modules, Packages, and Data Type Concepts Chapter 2

[ 73 ]

Case 1: Assigning a value to an array
In the following example, assigning the 1 value to a Float64 array would convert the
former into a floating-point value, 1.0:

Case 2: Assigning a value to a field of an object
In the following example, the Foo struct accepts a Float64 field. When the field is assigned
a value of 2, it is converted to 2.0:



Modules, Packages, and Data Type Concepts Chapter 2

[ 74 ]

Case 3: Constructing an object with the new function 
In the following example, the Foo constructor automatically converts 1 to 1.0 when
creating the Foo object:

Case 4: Assigning to a variable that has a declared type
In the following example, the local variable x is declared as a Float64 type. When it is
assigned the 1 value, it is converted to 1.0:

Case 5: Function has a declared return type
In the following example, the foo function is declared to return a Float64 value. Even 
though the return statement says 1, it is converted to 1.0 before it is returned:



Modules, Packages, and Data Type Concepts Chapter 2

[ 75 ]

Case 6: Passing a value to ccall
In the following example, the exp function from the C library is used to calculate the
exponent of a number. It expects a Float64 value as an argument, so when the value of 2 is
passed to ccall, it is converted to 2.0 before being passed to the C function:

All that is good, but something seems to be missing. What about the most common use
case: passing an argument to a function? Wouldn't it be called if Julia auto-converts the
arguments as well? The answer may be a little surprising. Let's look at this in more detail in
the following sections.

Understanding the rules for function dispatches
Julia is a strongly typed language, which means that the programmer has to be very clear
about the types being passed around. A function can only be called (also known as
dispatched) when the types of its arguments are matched properly. A proper match can be
defined as one that matches exactly (same type) or when the argument being passed is a
subtype of what is expected in the function's signature.

To illustrate this, let's create a function that doubles the value of its argument of the
AbstractFloat type. We will use our subtypetree utility function to quickly find out
its subtypes:



Modules, Packages, and Data Type Concepts Chapter 2

[ 76 ]

What happens if we pass an integer to the function? Well, it doesn't work too well:

Naively, we may think that the system should auto-convert the argument to Float64 and
then double the value. Well, it does not. It is not a conversion issue. To get that effect, we
could obviously write another function that takes an Int argument, then converts it to
Float64, and calls the original function. But the code would look exactly the same, and it's
a duplication of effort. This problem can be solved by just writing the function more
generically:

If we feel that the argument has to be a Number, then we can restrict it again as such:

What we choose to do here depends on how flexible we want the function to be. The benefit
of specifying an abstract type, such as Number, is that we feel sure the function will work
well for any type that implements the behavior set down by Number. On the other hand, if
we leave it as untyped in the function definition, then we open up the possibility for other
objects to be passed to the function as long as the * operator is defined.

In this section, we have learned about how data type conversion can be performed in Julia.
In certain scenarios, Julia can also automatically convert numeric types.



Modules, Packages, and Data Type Concepts Chapter 2

[ 77 ]

Summary
In this chapter, we started discussing the importance of organizing source code for larger
applications. We explored in detail how to establish namespaces and how to implement
them using modules and submodules. To manage package dependencies, we introduced
the concept of semantic versioning and learned how to use it properly with Julia's package
manager.

Then, we went over the details of how to design an abstract type hierarchy and define
functions for abstract types. We also discussed concrete types and the concepts of
immutability and mutability. We demonstrated how to use union types when working with
data types from different abstract type hierarchies. We looked at two common operators
(isa and is-a-subtype-of) for data types. To further reuse data types, we introduced
parametric types and looked at how they apply to both concrete types and abstract types.

Finally, we looked at the convert function in Julia and how it is invoked automatically
under certain circumstances. We learned how Julia’s function dispatch works and how to
make a function more flexible by accepting broader abstract types in its arguments.

At this point, you should have a good understanding about how to organize code and
designing your own data types.

In the next chapter, we will look at how to define application behavior using functions and
Julia's multiple-dispatch facility.

Questions
Go through the following questions to test your understanding of the subjects in this
chapter.  The answers are provided at the back of the book:

How do we create a new namespace?1.
How do we expose the functions of a module to the outside world?2.
How do we reference the proper function when the same function name is3.
exported from different packages?
When do we separate code into multiple modules?4.
Why is semantic versioning important in managing package dependencies?5.
How is defining functional behavior for abstract types useful?6.
When should we make a type mutable?7.
How are parametric types useful?8.



3
Designing Functions and

Interfaces
This chapter will continue looking at the fundamental concepts of Julia. The topics that we
have chosen here will provide a solid foundation of the key concepts of Julia programming.
In particular, we will discuss the core Julia programming techniques that are related to
functions and interfaces. Functions are the fundamental building blocks of software.
Interfaces are contractual relationships between different components of the software.
Effective use of functions and interfaces is a must for building robust applications.

The following topics will be covered in this chapter:

Functions
Multiple dispatch
Parametric methods
Interfaces

As part of the learning process, we will go over a use case of game design. More
specifically, we will pretend that we are building a space war game that contains a game
board with spaceships and asteroid pieces. We will build functions that move the game
pieces around and equip the spaceships with weapons to blow things up.

By the end of this chapter, you will have the necessary knowledge to design and develop
functions effectively. Through the use of multiple dispatch and parametric methods, your
application will become more extendable. Once you have learned these techniques, you
should also be able to design a system that contains pluggable components based on
interfaces.

I can't wait any longer. Let's get started!



Designing Functions and Interfaces Chapter 3

[ 79 ]

Technical requirements
The sample source code is located at https:/ /github. com/ PacktPublishing/ Hands- on-
Design-Patterns- and- Best- Practices- with- Julia/ tree/ master/ Chapter03.

The code is tested in a Julia 1.3.0 environment.

Designing functions
Function is a core construct in Julia for defining the behaviors of an application. In fact,
Julia works more like a procedural/functional programming language as opposed to an
object-oriented programming language. In object-oriented programming, you focus on
building classes and defining functions for those classes. In Julia, you focus on building
functions that operate on data types or data structures.

In this section, we will demonstrate how functions are defined and the powerful features
that come with functions.

Our use case – a space war game
Throughout this chapter, we will illustrate programming concepts by building parts of a
space war game. The design of the game is very simple and straightforward. It consists of
game pieces such as spaceships and asteroids that are scattered around a two-dimensional
grid. These game pieces are called widgets in our program.

Let's first define our data types as follows:

# Space war game!

mutable struct Position
    x::Int
    y::Int
end

struct Size
    width::Int
    height::Int
end

struct Widget
    name::String
    position::Position

https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter03


Designing Functions and Interfaces Chapter 3

[ 80 ]

    size::Size
end

As data types are central to our design, this warrants a little more explanation:

The Position type is used to store the coordinates of a game piece. It is
represented by two integers: x and y.
The Size type is used to store the size of a game piece. It is represented by two
integers: width and height.
The Widget type is used to hold a single game piece. It is represented by a name,
position, and size.

Note that the Position type is mutable because we expect our game pieces to move
around by just updating their coordinates.

Next, we will go over a number of topics related to how functions are defined.

Defining functions
There are actually two different syntaxes that we can use to define a function:

The first way is a simple one-liner that contains both the signature and body of
the function.
The second way uses the function keyword with the signature, followed by the
code block and the end keyword.

If the function is simple enough—for example, if it just has a single instruction—then it is
usually more preferable to write the function in a single line. This style of function
definition is very common for scientific computing projects, as many functions simply
mimic the corresponding mathematical formulae.

For our game, we can just write four functions for moving the game pieces around the
board by modifying the coordinates of the widget:

# single-line functions
move_up!(widget, v)    = widget.position.y -= v
move_down!(widget, v)  = widget.position.y += v
move_left!(widget, v)  = widget.position.x -= v
move_right!(widget, v) = widget.position.x += v



Designing Functions and Interfaces Chapter 3

[ 81 ]

It is indeed quite idiomatic in Julia to write single-line functions. People coming from a
different background may find it more intuitive to write the following, more verbose, form.
There is nothing wrong with this; both forms work just fine:

# long version
function move_up!(widget, v)
    widget.position.y -= v
end

There are a few things to bear in mind about how these functions are written:

Use of underscore: The preceding function names use an underscore to separate
the words. According to the official Julia manual, the convention is to just smash
the words together without any separators unless it becomes too confusing or
hard to read. My personal opinion is that underscore should always be used for
multi-word function names because it enhances the readability and makes the
code more consistent.
Use of exclamation mark: The preceding function names contain exclamation
mark to indicate that the function mutates the state of the object that is being
passed into the function. This is a good practice because it reminds the developer
that there will be side effects when calling the function.
Duck typing: You may wonder why the function arguments are not annotated
with any type information. In the move_up! function, although we do not have
any type annotation, we expect the widget argument to have the
Widget type and v to have the Int type when the function is used. This is an
interesting topic, and we will discuss it further in the next section.

As you can see, defining functions is a fairly straightforward task, and the way Julia
handles function arguments is quite interesting. We will go over this next.

Annotating function arguments
In a statically typed language without any polymorphism, such as C or Fortran, every
argument must be specified with the exact type. Julia, however, is dynamically typed and
supports duck typing—if it walks like a duck and quacks like a duck, then it is a duck. Type
information is not required in the source code at all. Instead, the compiler looks at runtime
types that you pass into the function and compiles the appropriate method specialized for
those types. The process of deducing types throughout a method body based on the 
argument types is called type inference. 



Designing Functions and Interfaces Chapter 3

[ 82 ]

Therefore, there is no need to annotate function arguments with type information at all.
People sometimes get the impression that putting type annotations all over their Julia code
will improve performance. That is not usually the case. For method signatures, types have
no effect on performance: they are only useful to control dispatch.

So, what would you choose? Annotate arguments with types or not?

Untyped arguments
When function arguments are not annotated with type information, the function is actually
more flexible. Why? That's because it can work with any type that you pass into the
function. Let's say that, in the future, the coordinate system is changed from Int to
Float64. When this happens, the function will not need to be changed: it just works!

In contrast, keeping everything untyped may not be the best idea either because the
function cannot really work with every possible data type that is defined in the world. In
addition, it could often lead to obscure exception messages and make the program more
difficult to debug. For instance, if we were to pass an Int value as the Widget argument to
the move_up! function by mistake, then it will complain about the type not having
a position field:

The error message is quite obscure. Is there anything that we can do to make debugging a
little easier? The answer is that we could provide the type of function arguments. Let's see
how this can be done.

Typed arguments
We know that our implementation of the move functions comes with some implicit design
assumptions:

The value of v should be a numerical value, as implied by the + or - operator.
The widget has to be a Widget object, or at least something that contains a
Position object, as implied by the access of the position field.



Designing Functions and Interfaces Chapter 3

[ 83 ]

For these reasons, it's generally safer to define functions with some type information.
Having said that, the move_up! function can be redefined as follows:

move_up!(widget::Widget, v::Int) = widget.position.y -= v

If we just define all move functions the same way, then debugging becomes easier. Suppose
that we make the same mistake as we did in the preceding code by passing an integer as the
first argument: we will now receive a more sensible error message:

So instead of trying to run the function and failing miserably with an unknown effect, the
Julia compiler will now tell us that the method does not exist for the argument types that
we pass into the function.

Before we move on to the next topic, let's at least play a little bit of the game. In order to
display these objects more nicely in the Julia REPL, we can define some show functions, as
follows:

# Define pretty print functions
Base.show(io::IO, p::Position) = print(io, "(", p.x, ",", p.y, ")")
Base.show(io::IO, s::Size) = print(io, s.width, " x ", s.height)
Base.show(io::IO, w::Widget) = print(io, w.name, " at ", w.position, " size
", w.size)

These Base.show functions provide the implementation that is used when Position,
Size, or Widget objects need to be shown at the specific I/O device, such as the REPL. By
defining these functions, we get a much nicer output. 

Note that the show function for the Widget type prints the name, position, and size of the
widget. The respective show functions for the Position and Size types are going to be
called from the print function. 



Designing Functions and Interfaces Chapter 3

[ 84 ]

The show function comes with another form, show(io, mime, x), so
that the value x can be displayed in different formats for different MIME
types. 

MIME stands for Multipurpose Internet Mail Extensions. It is also called
Media Type. It is a standard that is used to specify the type of a data
stream. For example, text/plain represents a plain text stream and
text/html represents a text stream that has HTML content.

The default MIME type for a show function is text/plain, which is
essentially the type we use in a Julia REPL environment. If we use Julia in
a notebook environment, such as Jupyter, then we can provide a show
function that provides additional formatting in HTML using the MIME
type of text/html.

Finally, let's give it a test drive. We can move around an asteroid game piece by calling
various move functions, as follows:

# let's test these functions
w = Widget("asteroid", Position(0, 0), Size(10, 20))
move_up!(w, 10)
move_down!(w, 10)
move_left!(w, 20)
move_right!(w, 20)

# should be back to position (0,0)
print(w)

The result is as follows. Note that the output of the asteroid widget is formatted exactly as
how we coded it:



Designing Functions and Interfaces Chapter 3

[ 85 ]

Defining functions with typed arguments is generally considered a good practice because
the function can only work with the specific data types of the arguments. Also, from a client
usage perspective, you can clearly see what is required by the function just by looking at
the function definition.

Sometimes it is more beneficial to define a function with untyped
arguments. The standard print function, for instance, has a function
signature that looks like print(io::IO, x). The intention is that the
print function is guaranteed to work with all possible data types. 

Generally speaking, this should be an exception rather than the norm. In
most situations, it makes more sense to use typed arguments.

Next, we will discuss how to provide default values for the arguments. 

Working with optional arguments
Sometimes, we do not want to hardcode any values in a function. The general solution is to
extract the hardcoded values and work them into function arguments. In Julia, we can also
provide default values for the arguments. When we have default values, then the
arguments become optional.

To illustrate this concept, let's write a function that makes a bunch of asteroids:

# Make a bunch of asteroids
function make_asteroids(N::Int, pos_range = 0:200, size_range = 10:30)
    pos_rand() = rand(pos_range)
    sz_rand() = rand(size_range)
    return [Widget("Asteroid #$i",
                Position(pos_rand(), pos_rand()),
                Size(sz_rand(), sz_rand()))
        for i in 1:N]
end

The function takes an argument of N for the number of asteroids. It also accepts a position
range, pos_range, and size_range, for creating randomly sized asteroids that are placed
randomly on our game map. You may notice that we have also defined two single-line
functions, pos_rand and sz_rand, directly inside the body of the make_asteroid
function. These functions only exist within the scope of the function.



Designing Functions and Interfaces Chapter 3

[ 86 ]

Let's try this out without specifying any value for pos_range or size_range:

But the fact that they are optional also allows us to provide custom values. For instance, we
can place the asteroids closer to each other by specifying a much narrower range:

Where does the magic come from? If you hit the Tab key while entering the
make_asteroid function from the REPL, you may notice that the single function definition
ends up with three methods. 

What are functions and methods?

Functions are generic in Julia. This means that we can extend the purpose
of a function by defining various methods that have the same name, but
take different types of argument.

Hence, every function in Julia may be associated to one or more associated
methods.

Internally, Julia automatically creates these three methods, one for each signature:



Designing Functions and Interfaces Chapter 3

[ 87 ]

Another way to find the methods of a function is to just use the methods function that
comes from the Julia Base package:

Of course, we can fully specify all arguments as such:

As you can see, it is quite convenient to provide default values for positional arguments. In
the case that the default values are generally accepted, the calling function becomes simpler
because it does not have to specify all arguments.

Something feels a little weird here, though—the code is becoming more difficult to read:
make_asteroids(5, 100:5:200, 200:10:500). What does 5, 100:5:200, and
200:10:500 mean? These arguments look quite opaque, and the programmer may not
remember what they mean without looking up the source code or the manual. There has to
be a better way! Next, we will check how to solve this problem using keyword arguments.

Utilizing keyword arguments
A drawback of optional arguments is that they must be in the same order in which they are
defined. When there are more arguments, it is not easily readable which values are bound
to which arguments from the call site. In that case, we may use keyword arguments to
improve readability.

Let's redefine the make_asteroid function as follows:

function make_asteroids2(N::Int; pos_range = 0:200, size_range = 10:30)
    pos_rand() = rand(pos_range)
    sz_rand() = rand(size_range)
    return [Widget("Asteroid #$i",



Designing Functions and Interfaces Chapter 3

[ 88 ]

                Position(pos_rand(), pos_rand()),
                Size(sz_rand(), sz_rand()))
        for i in 1:N]
end

The only difference between this function and the one from the previous section is just a
single character. The positional arguments (in this case, N) and keyword arguments
(pos_range and size_range) just need to be separated by a ; character. 

From the caller's perspective, keyword arguments must be passed with the names of the
arguments:

Using keyword arguments has made the code a lot more readable! In fact, the keyword
arguments do not even need to be passed in the same order as they were defined in the
function:

Another cool feature is that keyword arguments do not have to carry any default values.
For example, we could define the same function where the first argument N becomes a
mandatory keyword argument:

function make_asteroids3(; N::Int, pos_range = 0:200, size_range = 10:30)
    pos_rand() = rand(pos_range)
    sz_rand() = rand(size_range)
    return [Widget("Asteroid #$i",
                Position(pos_rand(), pos_rand()),
                Size(sz_rand(), sz_rand()))
        for i in 1:N]
end



Designing Functions and Interfaces Chapter 3

[ 89 ]

At this point, we could just call the function with N specified:

Using keyword arguments is a good way to write self-documenting code. Some open
source packages, such as Plots, make extensive use of keyword arguments. It works very
well when a function needs many arguments.

While we specify default values for keyword arguments in this example,
they are not really required. In the case that there is no default value, the
keyword argument becomes mandatory when the function is called.

Another cool feature is that we can pass a variable number of arguments to a function. We
will look into this next.

Accepting variable numbers of arguments
Sometimes, it is more convenient if the function can just accept any number of arguments.
In this case, we can add three dots ... to a function argument and Julia will automatically
roll up all passed arguments into a single variable. This feature is known as slurping.

Here is an example:

# Shoot any number of targets
function shoot(from::Widget, targets::Widget...)
    println("Type of targets: ", typeof(targets))
    for target in targets
        println(from.name, " --> ", target.name)
    end
end

In the shoot function, we first print the type of the targets variable and then print every
shot that was fired. Let's set up the game pieces first:

spaceship = Widget("Spaceship", Position(0, 0), Size(30,30))
target1 = asteroids[1]
target2 = asteroids[2]
target3 = asteroids[3]



Designing Functions and Interfaces Chapter 3

[ 90 ]

Now we can start shooting! Let's first call the shoot function by passing a single target and
then do that again by passing three targets:

It turns out that the arguments are just combined as a tuple and bound to a
single targets variable. In this case, we just iterate the tuple and perform an action on
each of them.

Slurping is a fantastic way to combine function arguments and handle them all together.
This makes it possible to call the function with any number of arguments.

Next, we will learn about a similar feature called splatting, which essentially performs the
opposite function of slurping.

Splatting arguments 
Slurping is very useful in its own right, but the triple-dot notation actually has a second
usage. At the call site, when a variable is followed by three periods, the variable will be
automatically assigned as multiple function arguments. This feature is known as splatting.
In fact, this mechanism is very similar to slurping, except that it is doing the opposite
action. We will take a look at an example.

Let's say that we have written a function to arrange a couple of spaceships in a specific
formation:

# Special arrangement before attacks
function triangular_formation!(s1::Widget, s2::Widget, s3::Widget)
    x_offset = 30
    y_offset = 50
    s2.position.x = s1.position.x - x_offset
    s3.position.x = s1.position.x + x_offset
    s2.position.y = s3.position.y = s1.position.y - y_offset
    (s1, s2, s3)
end



Designing Functions and Interfaces Chapter 3

[ 91 ]

We have also constructed a couple of spaceships ahead of a space war:

We can now call the triangular_formation! function using the splatting technique,
which involves appending three periods after the function argument:

In this case, the three elements inside the spaceships vector are distributed to the three
arguments as the triangular_formation! function expects. 

Splatting can technically work with any collection type—vector and tuple.
It should work as long as the variable being splatted supports the general
iteration interface. 

In addition, you may wonder what happens when the number of elements
in the variable does not equal the number of arguments as defined in the
function.

You are encouraged to check this behavior out as an exercise.

Splatting is a good way to build up function arguments and then pass them into the
function directly without having to split them up into separate arguments. It is therefore
quite convenient.

Next, we will discuss how functions can be passed around to provide higher-order
programming facilities.



Designing Functions and Interfaces Chapter 3

[ 92 ]

Understanding first-class functions
Functions are said to be first-class when they can be assigned to variables or struct fields,
passed into functions, returned from a function, and so on. They are treated as first-class
citizens just like regular data types. We will now take a look at how functions can be passed
around like regular data values.

Let's design a new function that can propel a spaceship to leap in a random direction for a
random distance. You may recall from the beginning of this chapter that we have already
defined four move functions—move_up!, move_down!, move_left!, and move_right!.
Here's our strategy:

Create a random_move function that returns one of the possible move functions.1.
This provides the basis for choosing a direction.
Create a random_leap! function that moves the spaceship using the specified2.
move function and leap distance.

The code is as follows:

function random_move()
    return rand([move_up!, move_down!, move_left!, move_right!])
end

function random_leap!(w::Widget, move_func::Function, distance::Int)
    move_func(w, distance)
    return w
end

As you can see, the random_move function returns a function that is randomly chosen from
the array of move functions. The random_leap! function accepts a move
function, move_func, as an argument and then it just makes the call with the widget and
distance. Let's test the random_leap! function now:



Designing Functions and Interfaces Chapter 3

[ 93 ]

We have successfully called a randomly chosen move function. All of this can be done easily
because we can store functions as if they are regular variables. The first-class nature makes
it very convenient.

Next, we will learn about anonymous functions. Anonymous functions are commonly used
in Julia programs because they are a quick way to make a function and pass it around to
other functions.

Developing anonymous functions
Sometimes, we just want to create a simple function and pass it around without assigning it
a name. This style of programming is actually fairly common in functional programming
languages. We can illustrate its use with an example.

Suppose that we want to explode all of the asteroids. One way to do this is to define an
explode function and pass it into the foreach function as follows:

function explode(x)
    println(x, " exploded!")
end

function clean_up_galaxy(asteroids)
    foreach(explode, asteroids)
end

The results look good:

We can achieve the same effect if we just pass an anonymous function into foreach:

function clean_up_galaxy(asteroids)
    foreach(x -> println(x, " exploded!"), asteroids)
end



Designing Functions and Interfaces Chapter 3

[ 94 ]

The syntax of the anonymous function contains the argument variables, followed by the
thin arrow -> and the function body. In this case, we only have a single argument. If we
have more arguments, then we can write them as a tuple that is enclosed in parentheses. An
anonymous function can also be assigned to a variable and passed around. Let's say we
want to explode the spaceships as well: 

function clean_up_galaxy(asteroids, spaceships)
    ep = x -> println(x, " exploded!")
    foreach(ep, asteroids)
    foreach(ep, spaceships)
end

We can see that there are some advantages for using anonymous functions:

There is no need to come up with a function name and pollute the namespace of
the module.
The anonymous function logic is available at the call site, so the code is easier to
read.
The code is slightly more compact.

By now, we have gone over most of the pertinent details regarding how to define and use
functions. The next topic, do-syntax, is closely related to anonymous functions. It is a great
way to enhance code readability.

Using do-syntax
When working with anonymous functions, we may end up having a code block that is in
the middle of a function call, making the code more difficult to read. The do-syntax is a
great way to address this problem and produce clear, easy-to-read code.

To illustrate the concept, let's build up a new use case for our battle fleet. In particular, we
will enhance our spaceships with the ability to launch missiles. We also want to support the
requirement that launching a weapon requires that the spaceship is in a healthy state. 

We can define a fire function that takes a launch function and a spaceship. The launch
function is executed only when the spaceship is healthy. Why do we want to take a function
as an argument? Because we want to make it flexible so that, later on, we can use the same
fire function to launch laser beams and other possible weapons:

# Random healthiness function for testing
healthy(spaceship) = rand(Bool)

# make sure that the spaceship is healthy before any operation



Designing Functions and Interfaces Chapter 3

[ 95 ]

function fire(f::Function, spaceship::Widget)
    if healthy(spaceship)
        f(spaceship)
    else
        println("Operation aborted as spaceship is not healthy")
    end
    return nothing
end

Let's try this out using an anonymous function to fire the missile:

So far so good. But what happens if we need a more complex procedure to fire missiles? For
example, say that we would like to move the spaceship up before firing and move it back
down afterward:

fire(s -> begin
        move_up!(s, 100)
        println(s, " launched missile!")
        move_down!(s, 100)
    end, spaceship)

The syntax now looks quite ugly. Fortunately, we can rewrite the code using the do-syntax
and make it more readable:

fire(spaceship) do s
    move_up!(s, 100)
    println(s, " launched missile!")
    move_down!(s, 100)
end

How does it work? Well, the syntax is translated so that the do-block is turned into an
anonymous function and it is then just inserted as the first argument of the function.

An interesting usage of the do-syntax can be found in Julia's open function. Because
reading a file involves opening and closing a file handler, the open function is designed to
accept an anonymous function that takes an IOStream and do something with it, while the
opening/closing housekeeping tasks are handled by the open function itself. 



Designing Functions and Interfaces Chapter 3

[ 96 ]

The idea is quite simple, so let's just replicate it here with our own process_file function:

function process_file(func::Function, filename::AbstractString)
    ios = nothing
    try
        ios = open(filename)
        func(ios)
    finally
        close(ios)
    end
end

Using the do-syntax, we can focus on developing the logic of file processing without having
to worry about the housekeeping chores, such as opening and closing files. Consider the
following code:

As you can see, the do-syntax can be useful in two ways:

It makes the code more readable by rearranging the anonymous function
argument in a block format.
It allows the anonymous functions to be wrapped in a context for which
additional logic can be executed before or after the function.

Next, we will take a look at multiple dispatch, which is a unique feature that is not
commonly found in object-oriented languages.

Understanding Multiple Dispatch
Multiple dispatch is one of the most unique features in the Julia programming language.
They are used extensively in the Julia Base library, stdlib, as well as many open source
packages. In this section, we will explore how multiple dispatch work and how one can
utilize them effectively.



Designing Functions and Interfaces Chapter 3

[ 97 ]

What is a dispatch?
A dispatch is the process by which a function is selected for execution. You may wonder
why there is any controversy in selecting which function to execute. When we develop a
function, we give it a name, some arguments, and a block of code that it should execute. If
we come up with unique names for all functions in a system, then there will be no
ambiguity. However, there are often times when we want to reuse the same function name
and apply it to different data types for similar types of operation.

Examples are abundant in Julia's Base library. For example, the isascii function has three
methods, and each one takes a different argument type:

isascii(c::Char)
isascii(s::AbstractString)
isascii(c::AbstractChar)

Depending on the type of the argument, the proper method is dispatched and
executed. When we call the isascii function with a Char object, the first method is
dispatched. Likewise, when we call it with a String object, which is a subtype of
AbstractString, then the second method is dispatched. Sometimes, the type of the
argument being passed to the method is not known until runtime, and in that case, the
proper method is dispatched right at that moment, depending on the specific value being
passed. This behavior is called dynamic dispatch.

Dispatch is a key concept that will come up over and over again. It is important that we
understand the rules as related to how a function being dispatched. We will go over these
next.

Matching to the narrowest types
As discussed in Chapter 2, Modules, Packages, and Data Type Concepts, we can define
functions that take abstract types as arguments. When it comes to dispatch, Julia will find
the method that matches the narrowest type in the arguments.



Designing Functions and Interfaces Chapter 3

[ 98 ]

To illustrate this concept, let's return to our favorite example in this chapter regarding
spaceships and asteroids! In fact, we will improve our data types as follows:

# A thing is anything that exist in the universe.
# Concrete type of Thing should always have the following fields:
#     1. position
#     2. size
abstract type Thing end

# Functions that are applied for all Thing's
position(t::Thing) = t.position
size(t::Thing) = t.size
shape(t::Thing) = :unknown

Here, we have defined an abstract type, Thing, which can be anything that exists in the
universe. When we design this type, we expect its concrete subtypes will have the standard
position and size fields. Therefore, we just happily define position and size functions
for Thing. By default, we do not want to assume any shape of anything, so the shape
function for Thing only returns an :unknown symbol. 

To make things more interesting, we will equip our spaceships with two types of
weapon—laser and missiles. In Julia, we can conveniently define them as enums:

# Type of weapons
@enum Weapon Laser Missile

Here, the @enum macro defines a new type called Weapon. The only values of the Weapon
type are Laser and Missile. Enums are a good way to define typed constants. Internally,
they define numeric values for each constant, and so it should be quite performant.

Now, we can define the Spaceship and Asteroid concrete types as follows:

# Spaceship
struct Spaceship <: Thing
    position::Position
    size::Size
    weapon::Weapon
end
shape(s::Spaceship) = :saucer

# Asteroid
struct Asteroid <: Thing
    position::Position
    size::Size
end



Designing Functions and Interfaces Chapter 3

[ 99 ]

Note that both Spaceship and Asteroid include position and size fields as part of our
design contract. In addition, we have a weapon field added for the Spaceship type.
Because we have designed our state-of-the-art spaceships like saucers, we have defined the
shape function for the Spaceship type as well. Let's test it out:

We have now created two spaceships and two asteroids. Let's turn our focus to the results
of the preceding shape function calls for a moment. When it was called with a spaceship
object s1, it was dispatched to shape(s::Spaceship) and returned :saucer. When it
was called with an asteroid object, it was dispatched to shape(t::Thing) because there
are no other matches for the Asteroid object.

To recap, Julia's dispatch mechanism always looks for the function with the narrowest type
in the arguments. Judging between shape(s::Spaceship) and shape(t:Thing), it will
choose to execute shape(s::Spaceship) for a Spaceship argument.

Are you familiar with multiple dispatch? If not, don't worry. In the next section, we will
dive deep into how multiple dispatch works in Julia.

Dispatching with multiple arguments
So far, we have only seen dispatch examples for methods that take a single argument. We
can extend the same concept for multiple arguments, and that's simply called multiple
dispatch. 

So how does it work when multiple arguments are involved? Let's say we continue
developing our space war game with the ability to detect collisions between different
objects. To look at this in detail, we'll go through a sample implementation.



Designing Functions and Interfaces Chapter 3

[ 100 ]

First, define functions that can check whether two rectangles overlap each other:

struct Rectangle
    top::Int
    left::Int
    bottom::Int
    right::Int
    # return two upper-left and lower-right points of the rectangle
    Rectangle(p::Position, s::Size) =
        new(p.y+s.height, p.x, p.y, p.x+s.width)
end

# check if the two rectangles (A & B) overlap
function overlap(A::Rectangle, B::Rectangle)
    return A.left < B.right && A.right > B.left &&
        A.top > B.bottom && A.bottom < B.top
end

Then, we can define a function that returns true when two Thing objects collide. This
function can be called for any combination of Spaceship and Asteroid objects:

function collide(A::Thing, B::Thing)
    println("Checking collision of thing vs. thing")
    rectA = Rectangle(position(A), size(A))
    rectB = Rectangle(position(B), size(B))
    return overlap(rectA, rectB)
end

Of course, this is a really naive idea because we know that spaceships and asteroids have
different shapes, possibly nonrectangular ones. Nonetheless, this is not a bad default
implementation.

Let's run a quick test before we go further. Note that I have intentionally suppressed the
output of the return values only because they're unimportant for our discussion here:



Designing Functions and Interfaces Chapter 3

[ 101 ]

Knowing that the collision-detection logic may be different depending on the type of
objects, we can further define these methods:

function collide(A::Spaceship, B::Spaceship)
    println("Checking collision of spaceship vs. spaceship")
    return true   # just a test
end

With this new method, based upon the narrowest-type selection process, we can safely
handle spaceship-spaceship collision detection. Let's prove my claim with the same test as
the preceding code:

It looks good. If we just continue defining the rest of the functions, then everything will be
covered and perfect!

Multiple dispatch is indeed a simple concept. Essentially, all function arguments are
considered when Julia tries to determine which function needs to be dispatched. The same
rule applies—the narrowest type always wins!

Unfortunately, sometimes it is unclear which function needs to be dispatched. Next, we will
look into how this can happen and how the problem can be resolved.

Possible ambiguities during dispatch 
Of course, we can always define all possible methods with concrete type arguments;
however, that may not be the most desirable option when designing software. Why? It's
because the number of combinations in argument types could be overwhelming, and it is
often unnecessary to enumerate them all. In our game example here, we only need to detect
collisions between two types—spaceship and asteroid. So we just need to define 2 x 2 =
4 methods; however, imagine what we would do when we have 10 types of object. We
would then have to define 100 methods!



Designing Functions and Interfaces Chapter 3

[ 102 ]

The idea of abstract types can save us. Let's just imagine that we do have to support 10
concrete data types. If the other eight data types have similar shapes, then we could cut
down the number of methods tremendously by accepting an abstract type as one of the
arguments. How? Let's take a look:

function collide(A::Asteroid, B::Thing)
    println("Checking collision of asteroid vs. thing")
    return true
end

function collide(A::Thing, B::Asteroid)
    println("Checking collision of thing vs. asteroid")
    return false
end

These two functions provide the default implementation for detecting collisions between an
Asteroid and any Thing. The first method can handle the first argument being Asteroid
and the second argument being any subtype of Thing. If we were to have 10 concrete types
in total, this single method can handle 10 scenarios. Likewise, the second method can
handle the other 10 scenarios. Let's just have a quick check:

Great! these two calls are working fine. Let's finish our test:



Designing Functions and Interfaces Chapter 3

[ 103 ]

But wait, what happened when we tried to check the collision between two asteroids? Well,
the Julia runtime has detected an ambiguity here. When we pass two Asteroid arguments,
it is unclear whether we want to execute collide(A::Thing, B::Asteroid) or
collide(A::Asteroid, B::Thing). Both methods seem to be able to take the task, but
neither of their signatures is narrower than the other, and so it just gave up and throws an
error. 

Fortunately, it actually suggested a fix as part of the error message. A possible fix is to
define a new method, collide(::Asteroid, ::Asteroid), as follows:

function collide(A::Asteroid, B::Asteroid)
    println("Checking collision of asteroid vs. asteroid")
    return true # just a test
end

Because it has the narrowest signature, Julia can properly dispatch to this new method
when two asteroids are passed to the collide function. Once this method is defined, there
will be no more ambiguity. Let's try again. The result is as follows:

As you can see, when you encounter ambiguity for multiple dispatch, it can be resolved
easily by creating a function with more specific types in its arguments. The Julia runtime
will not try to guess what you want to do. As a developer, we need to provide clear
instructions to the computer.

However, ambiguities may not be obvious from just looking at the code. In order to reduce
the risk of hitting the problem at runtime, we can proactively detect which part of the code
may introduce such ambiguities. Fortunately, Julia already provides a convenient tool to
identify ambiguities. We will take a look at that in the next section.

Detecting ambiguities
It is often difficult to find ambiguous methods until you happen to hit a specific use case at
runtime. That's not good. I don't know about you, but software engineers like me don't like
surprises in production!



Designing Functions and Interfaces Chapter 3

[ 104 ]

Fortunately, Julia provides a function in the Test package for detecting ambiguities. We
can try this out using a similar test. Consider the following code:

We have created a small module in the REPL that defines three foo methods. It's a classic
example of ambiguous methods—if we pass two integer arguments, then it is unclear
whether the second or the third foo method should be executed. Now, let's use
the detect_ambiguities function and see if it can detect the problem:

The result is telling us that the foo(x::Integer, y) and foo(x, y::Integer)
functions are ambiguous. As we've already learned how to fix that problem, we can do that
and test again:



Designing Functions and Interfaces Chapter 3

[ 105 ]

In fact, the detect_ambiguities function is even more useful when you have functions
that extend functions from other modules. In this case, you can just call
the detect_ambiguities function with the modules that you want to check all together.
Here's how it works when you pass two modules:

In this hypothetical example, the Foo4 module imports the Foo2.foo function and extends
it by adding a new method. The Foo2 module by itself would be ambiguous, but
combining both modules resolves the ambiguity.

So when should we make use of this great detective function? A good way to do this is to
add the detect_ambiguities test in the module's automated test suite so that it is
executed in the continuous integration pipeline for every build.

Now that we know how to use this ambiguity detection tool, we can use multiple dispatch
without fear! In the next section, we will go over another aspect of dispatch called dynamic
dispatch.

Understanding dynamic dispatch
Julia's dispatch mechanism is unique not only because of its multiple dispatch features, but
also the way that it treats function arguments dynamically when deciding where to
dispatch.



Designing Functions and Interfaces Chapter 3

[ 106 ]

 Let's say we want to randomly pick two objects and check whether they collide. We can
define the function as follows:

# randomly pick two things and check
function check_randomly(things)
    for i in 1:5
        two = rand(things, 2)
        collide(two...)
    end
end

Let's run it and see what happens:

We can see that different collide methods are called depending on the types of the
arguments that are passed in the two variable.

This kind of dynamic behavior can be found as polymorphism in object-
oriented programming languages. The main difference is that Julia
supports multiple dispatch, utilizing all arguments for dispatch at
runtime. By contrast, in Java, only the object being invoked is used for
dynamic dispatch. Once the proper class is identified for dispatch, the
method arguments are then used for static dispatch when there are
several overloaded methods with the same name. 

Multiple dispatch is a powerful feature. When combined with custom data types, it allows
the developer to control which methods are called for different scenarios. If you are more
interested in multiple dispatch, you can watch a video on YouTube with the title The
Unreasonable Effectiveness of Multiple Dispatch. It is a presentation by Stefan Karpinski,
recorded at the JuliaCon 2019 conference.

Next, we will look into how function arguments can be parameterized for additional
flexibility and expressiveness.



Designing Functions and Interfaces Chapter 3

[ 107 ]

Leveraging parametric methods
Julia's type system and multiple dispatch feature provide a powerful foundation for writing
extendable code. As it turns out, we can also use parametric types in function arguments.
We can call these parametric methods. Parametric methods provide an interesting way to
express what data types may be matched during dispatch.

In the following sections, we will go over how to utilize parametric methods in our game.

Using type parameters
When defining functions, we have an option to annotate each argument with type
information. The type of an argument can be a regular abstract type, concrete type, or a
parametric type. Let's consider this sample function for exploding an array of game pieces:

# explode an array of objects
function explode(things::AbstractVector{Any})
    for t in things
        println("Exploding ", t)
    end
end

The things argument is annotated with AbstractVector{Any}, which means that it can
be any AbstractVector type that contains any object that is a subtype of Any (which is
really just everything). To make the method parametric, we can just rewrite it with a T type
parameter as follows:

# explode an array of objects (parametric version)
function explode(things::AbstractVector{T}) where {T}
    for t in things
        println("Exploding ", t)
    end
end

Here, the explode function can accept any AbstractVector with the parameter T, which
can be any subtype of Any. So, if we just pass a vector of Asteroid objects—that
is, Vector{Asteroid}—it should just work. It also works if we pass a vector of
symbols—that is, Vector{Symbol}. Let's give it a try:



Designing Functions and Interfaces Chapter 3

[ 108 ]

Note that Vector{Asteroid} is actually a subtype of AbstractVector{Asteroid}. In
general, we can say that SomeType{T} is a subtype of
SomeOtherType{T} whenever SomeType is a subtype of SomeOtherType. But, if we are
unsure, it is easy to check:

Perhaps we don't really want the explode function to take a vector of anything. Since this
function is written for our space war game, we could restrict the function to accept a vector
of any type that is a subtype of Thing. It can be easily achieved as follows:

# Same function with a more narrow type
function explode(things::AbstractVector{T}) where {T <: Thing}
    for t in things
        println("Exploding thing => ", t)
    end
end

The where notation is used to further qualify the parameter with superclass information.
Whenever a type parameter is used in the function signature, we must accompany it with a
where clause for the same parameter(s).

Type parameters in function arguments allow us to specify a class of data types that fit
within the constraint indicated inside the where clause. The preceding explode function
can take a vector containing any subtype of Thing. This means that the function is generic
in the sense that it can be dispatched with an unlimited number of types, as long as it
satisfies the constraint.

Next, we will explore the use of abstract types as an alternative way to specify function
arguments. At first glance, it looks fairly similar to using parametric types; however, there
is a slight difference, which we will explain in the next section.



Designing Functions and Interfaces Chapter 3

[ 109 ]

Replacing abstract types with type parameters
In general, we can replace any abstract type with a type parameter in the function
signature. When we do this, we will end up with a parametric method that has the same
semantics as the original one.

This is not an unimportant observation. Let's see if we can demonstrate this behavior with
an example.

Suppose that we are building a tow function so that a spaceship can tow away something in
the universe, as follows:

# specifying abstract/concrete types in method signature
function tow(A::Spaceship, B::Thing)
    "tow 1"
end

The tow function is currently defined with a concrete Spaceship type and an abstract
Thing type argument. If we want to see the methods defined for this function, we can use
the methods function to display what is stored in Julia's method table:

The same method signature comes back perfectly, as expected.

Now, let's define a parametric method where we use a type parameter for the argument B:

# equivalent of parametric type
function tow(A::Spaceship, B::T) where {T <: Thing}
    "tow 2"
end

We have now defined a new method with a different signature syntax. But is it really a
different method? Let's check:



Designing Functions and Interfaces Chapter 3

[ 110 ]

We can see that the methods list still only has one entry, which means that the new method
definition has replaced the original one. It should not be too surprising, however. The new
method signature, while looking different from the one before, does have the same
meaning as the original one. Ultimately, the second argument B still accepts any type that is
a subtype of Thing.

So, why do we even go through all the trouble to do this? Well, there is no reason to turn
this method into a parametric one in this case. But go through the next section, and you will
see why doing this can be useful.

Enforcing type consistency in using parameters 
One of the most useful features with type parameters is that they can be used to enforce
type consistency.

Let's say we want to create a new function that groups two Thing objects together. As we
don't really care about what concrete types are passed, we can just write a single function
that does the work:

function group_anything(A::Thing, B::Thing)
    println("Grouped ", A, " and ", B)
end

We can also run some trivial tests quickly to ensure that all four combinations of spaceships
and asteroids are working:

You may wonder how we get such a nice output regarding the specific
weapons. As we have learned previously, we can extend the show
function from the Base package with our types. You can find our
implementation of the show function in the book's GitHub repository.



Designing Functions and Interfaces Chapter 3

[ 111 ]

Now, all is good, but then we realize that the requirement is slightly different from what
we thought originally. Rather than grouping any kind of object, the function should be able
to group the same kinds of objects only—that is, it's okay to group spaceship with
spaceship and asteroid with asteroid, but not spaceship with asteroid. So what can we do
here? An easy solution is to just throw a type parameter in the method signature:

function group_same_things(A::T, B::T) where {T <: Thing}
    println("Grouped ", A, " and ", B)
end

In this function, we have annotated both arguments with type T, and we specify that T
must be a subtype of Thing. Because both arguments use the same type, we are now
instructing the system to dispatch to this method only if both arguments have the same
type. We can now try the same four test cases as before, as shown in the following code:

Effectively, we can now ensure that the method is only dispatched when the arguments
have the same type. This is one of the few reasons why it is a good idea to use type
parameters for function arguments.

Next, we will talk about another reason to use type parameters—extracting type
information from the method signature.



Designing Functions and Interfaces Chapter 3

[ 112 ]

Extracting type information from the method
signature
Sometimes, we want to find out the parameter type within the method body. This is 
actually very easy to do. As it turns out, all parameters are also bound as a variable that we
can access in the method body itself. The implementation of the standard eltype function
provides a good example for such usage:

eltype(things::AbstractVector{T}) where {T <: Thing} = T

We can see that the type parameter T is referenced in the body. Let's how it works:

In the first call, because all objects in the array have the Spaceship type, the Spaceship
type is returned, and likewise for the second call, where Asteroid is returned. The third
call returns Thing because we have a mixed number of Spaceship and Asteroid objects.
These types can be further examined as follows:

In summary, we can build more flexible functions by using type parameters in function
definitions. From an expressiveness perspective, each type parameter can cover a whole
class of data types. We can also use the same type parameter in multiple arguments to
enforce type consistency. Finally, we can easily extract type information directly from the
method signature. 

Now, let's move on and discuss the last topic of this chapter – interfaces.



Designing Functions and Interfaces Chapter 3

[ 113 ]

Working with interfaces
In this section, we will explore how to design and work with interfaces in Julia. Unlike
other mainstream programming languages, Julia does not have a formal way to define
interfaces. This informality may make some people a little uneasy. Nonetheless, interfaces
do exist and are used extensively in many Julia programs. 

Designing and developing interfaces
Interfaces are behavioral contracts. A behavior is defined by a set of functions that operates
on one or more specific objects). In Julia, the contract is purely conventional and is not
formally specified. To illustrate this concept, let's create a module that contains the logic of
taking an object anywhere from the galaxy.

Defining the Vehicle interface
We shall first create a module called Vehicle. The purpose of this module is to implement
our space-travel logic. As we want to keep this module generic, we will design an interface
that any object can implement in order to participate in our space-travel program.

The structure of the module consists of four sections, as indicated by the following
embedded comments:

module Vehicle
# 1. Export/Imports
# 2. Interface documentation
# 3. Generic definitions for the interface
# 4. Game logic
end # module

Let's see how the code is actually written in the module:

The first section exports a single function called go!:1.

# 1. Export/Imports
export go!

The second code segment is merely documentation:2.

# 2. Interface documentation
# A vehicle (v) must implement the following functions:
#
# power_on!(v) - turn on the vehicle's engine



Designing Functions and Interfaces Chapter 3

[ 114 ]

# power_off!(v) - turn off the vehicle's engine
# turn!(v, direction) - steer the vehicle to the specified
direction
# move!(v, distance) - move the vehicle by the specified distance
# position(v) - returns the (x,y) position of the vehicle

The third code segment contains generic definitions of the functions:3.

# 3. Generic definitions for the interface
function power_on! end
function power_off! end
function turn! end
function move! end
function position end

Finally, the last code segment contains the space-travel logic:4.

# 4. Game logic

# Returns a travel plan from current position to destination
function travel_path(position, destination)
    return round(π/6, digits=2), 1000 # just a test
end

# Space travel logic
function go!(vehicle, destination)
    power_on!(vehicle)
    direction, distance = travel_path(position(vehicle),
destination)
    turn!(vehicle, direction)
    move!(vehicle, distance)
    power_off!(vehicle)
    nothing
end

The travel_path function calculates the direction and distance to travel from the current
position to the final destination. It is expected to return a tuple. For testing purposes, we are
just returning hardcoded values.

The go! function expects that the vehicle object being passed in the first argument is some
kind of space vehicle. Furthermore, the logic also expects the vehicle to exhibit certain
behavior, such as being able to turn on the engine, steer in the right direction, move a
certain distance, and so on. 



Designing Functions and Interfaces Chapter 3

[ 115 ]

If a client program wants to call the go! function, it must pass a type that implements the
expected interface as assumed by this logic. But how does one know what functions to
implement? Well, it is defined as part of the documentation as spelled out in the comment
from the Interface Documentation code segment:

# A vehicle must implement the following functions:

# power_on!(v) - turn on the vehicle's engine
# power_off!(v) - turn off the vehicle's engine
# turn!(v, direction) - steer the vehicle to the specified direction
# move!(v, distance) - move the vehicle by the specified distance
# position(v) - returns the (x,y) position of the vehicle

Another clue is that the required functions are defined in the previous code as empty
generic functions—that is, functions without any signature or body:

function power_on! end
function power_off! end
function turn! end
function move! end
function position end

So far, we have written the interface's contractual requirements as comments in the code. It
is generally better to do this as Julia doc strings so that the requirements can be generated
and published to an online website or printed as hard copy. We could do something like
this for every function specified in the interface:

"""
Power on the vehicle so it is ready to go.
"""
function power_on! end

The Vehicle module is now completed, and as part of the source code, we have set certain
expectations. If any object wants to participate in our space-travel program, it must
implement the five functions—power_on!, power_off!, turn!, move!, and position.

Next, we will design a new fighter jet line for the space-travel program!



Designing Functions and Interfaces Chapter 3

[ 116 ]

Implementing FighterJet 
Now that we understand what to expect from the Vehicle interface, we can develop
something that actually implements the interface. We will create a new FighterJets
module and define the FighterJet data type as follows:

"FighterJet is a very fast vehicle with powerful weapons."
mutable struct FighterJet

    "power status: true = on, false = off"
    power::Bool

    "current direction in radians"
    direction::Float64

    "current position coordinate (x,y)"
    position::Tuple{Float64, Float64}

end

To conform to the Vehicle interface defined previously, we must first import the generic
functions from the Vehicle module and then implement the logic for operating the
FighterJet vehicle. Here is the code for the power_on and power_off functions:

# Import generic functions
import Vehicle: power_on!, power_off!, turn!, move!, position

# Implementation of Vehicle interface
function power_on!(fj::FighterJet)
    fj.power = true
    println("Powered on: ", fj)
    nothing
end

function power_off!(fj::FighterJet)
    fj.power = false
    println("Powered off: ", fj)
    nothing
end



Designing Functions and Interfaces Chapter 3

[ 117 ]

Of course, a real fighter jet may be a bit more involved than just setting a Boolean field to
either true or false. For testing purposes, we also print something to the console so that
we know what is happening. Let's also define the function to steer the direction:

function turn!(fj::FighterJet, direction)
    fj.direction = direction
    println("Changed direction to ", direction, ": ", fj)
    nothing
end

Again, the logic for the turn! function here is as simple as changing the direction field and
printing some text on the console. The move! function is a little more interesting:

function move!(fj::FighterJet, distance)
    x, y = fj.position
    dx = round(distance * cos(fj.direction), digits = 2)
    dy = round(distance * sin(fj.direction), digits = 2)
    fj.position = (x + dx, y + dy)
    println("Moved (", dx, ",", dy, "): ", fj)
    nothing
end

Here, we have used the trigonometric functions sin and cos to calculate the new position
that the fighter jet will be traveling to. Finally, we must implement the position function,
which returns the current position of the fighter jet:

function position(fj::FighterJet)
    fj.position
end

Now that the FighterJet type fully implements the interface, we can utilize the game
logic as expected. Let's give it a spin by creating a new FighterJet object and invoke the
go! function as follows:



Designing Functions and Interfaces Chapter 3

[ 118 ]

In a nutshell, implementing an interface is a fairly simple task. The key is to understand
what functions are required to implement an interface and make sure that the custom data
type can support those functions. As a professional developer, we should clearly document
the interface functions so that there is no confusion about what needs to be implemented.

At this point, we can consider the interface that we just designed as hard contracts. They
are hard in the sense that all of the functions specified in our interface must be
implemented by any object participating in our space-travel program. In the next section,
we will go over soft contracts, which correspond to interface functions that may be
optional.

Handling soft contracts
Sometimes, certain interface contracts are not absolutely required when a default behavior
can be assumed by the interface. The functions that are not mandatory may be referred to
as soft contracts.

Let's say we want to add a new function for landing a vehicle. Most vehicles have wheels,
but some don't, especially high-tech ones! So, as part of the landing procedure, we must
engage the wheels only when necessary.

How do we design a soft contract for an interface? In this case, we can assume that most
future vehicles have no wheels and therefore the default behavior does not require
engaging the wheels. Here, in the Vehicle module, we can add the engage_wheel!
function to document and provide a default implementation, as follows:

# 2. Interface documentation
# A vehicle (v) must implement the following functions:
#
# power_on!(v) - turn on the vehicle's engine
# power_off!(v) - turn off the vehicle's engine
# turn!(v, direction) - steer the vehicle to the specified direction
# move!(v, distance) - move the vehicle by the specified distance
# position(v) - returns the (x,y) position of the vehicle
# engage_wheels!(v) - engage wheels for landing. Optional.

# 3. Generic definitions for the interface
# hard contracts
# ...
# soft contracts
engage_wheels!(args...) = nothing



Designing Functions and Interfaces Chapter 3

[ 119 ]

The documentation clearly states that the engage_wheels! function is optional. Because of
this, rather than providing an empty generic function, we have implemented an actual
engage_wheel! function that does absolutely nothing and just returns a value of nothing.
The landing logic is then written as follows:

# Landing
function land!(vehicle)
    engage_wheels!(vehicle)
    println("Landing vehicle: ", vehicle)
end

Now, if the caller provides a vehicle type that implements the engage_wheels! function,
then it will be used; otherwise, the call to engage_wheels! would invoke the generic
function and do nothing. 

I will leave it to the reader to complete this exercise by creating another vehicle type that
implements the engage_wheel! function. (Sorry: the vehicle you develop is probably not
very high-tech since it has wheels.)

A soft contract is a simple way to provide a default implementation for optional interface
functions. Next, we will look into a slightly more formal method to declare whether a data
type supports certain interface elements. We will call them traits.

Using interface traits
Occasionally, you may encounter a situation where you need to determine whether a data
type implements an interface. The information about whether a data type exhibits certain
behavior is also called a trait.

How do we implement traits for an interface? In the Vehicle module, we can add a new
function, as follows:

# trait
has_wheels(vehicle) = error("Not implemented.")

This default implementation simply raises an error, and that's intentional. This trait
function is expected to be implemented by any vehicle data types. In the interface code, the
landing function can make use of the trait function for a more refined logic:

# Landing (using trait)
function land2!(vehicle)
    has_wheels(vehicle) && engage_wheels!(vehicle)
    println("Landing vehicle: ", vehicle)
end



Designing Functions and Interfaces Chapter 3

[ 120 ]

Generally speaking, trait functions just need to return a binary answer, true or false;
however, it is entirely up to the developer how to design the trait. For example, it is
perfectly reasonable to define the trait function so that it returns the type of landing
gear—:wheels, :slider, or :none.

It is a good idea to define traits as simply as possible. As you may recall, the interface that
we implemented for our fighter jet in the previous section requires five
functions—power_on!, power_off!, move!, turn!, and position. From a design
perspective, we can create different traits:

has_power(): returns true if the vehicle needs to be powered on/off
can_move(): returns true if the vehicle is able to move
can_turn(): returns true if the vehicle can turn in any direction
location_aware(): returns true if the vehicle can keep track of its location

Once we have these small building blocks, we can define more complex traits that are
composed of these simple ones. For example, we can define a trait called smart_vehicle
that supports all of the four traits that we listed. In addition, we can define a
solar_vehicle trait, which is used for vehicles that rely on solar power and is always on.

Using traits is a very powerful technique to model object behaviors. There are some
patterns that are built around how to implement traits in practice. We will discuss these
more extensively in Chapter 5, Reusability Patterns.

At this point, you should feel more comfortable about designing interfaces in Julia. They
are relatively simple to understand and develop. While Julia does not provide any formal
syntax for interface specification, it is not difficult to come up with our own convention.
With the help of traits, we can even implement more dynamic behavior for our objects. 

We have now concluded all topics in this chapter.

Summary
In this chapter, we started our journey by discussing how to define functions and make use
of various types of function arguments, such as positional arguments, keyword arguments,
and variable arguments. We talked about how to use splatting to auto assign the elements
of an array or tuple to function arguments. We explored first-class functions by assigning
them to variables and passing them around in functional calls. We learned how to create
anonymous functions and use the do-syntax to make code more readable.



Designing Functions and Interfaces Chapter 3

[ 121 ]

We then discussed Julia's dispatch mechanism and introduced the concept of multiple
dispatch. We realized that ambiguity may exist and so we reviewed the standard tools
for detecting ambiguities. We have learned how dispatch is dynamic in nature. We looked
at  parametric methods and how they could be useful in several use cases, such as enforcing
type consistency and extracting type information from the type parameters. 

We learned how to design interfaces. We realized that there is no formal language syntax
for defining interfaces in Julia, but we also recognize defining interfaces is straightforward
and easy to do. We came to know that sometimes it is acceptable to have soft contracts so
that the developer does not have to implement all interface functions. Finally, we wrapped
up the discussion with the concept of traits and how they can be useful for querying
whether a data type implements a specific interface.

In the next chapter, we will discuss two more major features in the Julia language—macros
and meta programming. Macros are very useful in creating new syntax that makes the code
clean and easy to maintain. Just take a deep breath and keep going!

Questions
How are positional arguments different from keyword arguments?1.
What is the difference between splatting and slurping?2.
What is the purpose of using the do-syntax?3.
What tool is available for detecting method ambiguities as related to multiple4.
dispatch?
How do you ensure that the same concrete type is passed to a function in a5.
parametric method?
How are interfaces implemented without any formal language syntax?6.
How do you implement traits, and how are traits useful?7.



4
Macros and Metaprogramming

Techniques
This chapter will discuss two of the most powerful facilities in the Julia programming
language: macros and metaprogramming.

In a nutshell, metaprogramming is a technique for writing code that generates code—that's
why it has the prefix meta. It may sound esoteric, but it is a fairly common practice in many
programming languages today. For example, C compiler uses a preprocessor to read source
code and produce new source code, and then the new source code is compiled into a binary
executable. For example, you can define a MAX macro, as in #define MAX(a,b) ((a) >
(b) ? (a) : (b)), and this means that every time we use MAX(a,b), it is replaced
with ((a) > (b) ? (a) : (b)). Note that MAX(a,b) is much easier to read than the
longer form.

The history of metaprogramming is quite long. As far back as the 1970s, it was already
popular among the LISP programming language community. Interestingly, the LISP
language is designed in such a way that the source code is structured like data—for
example, a function call in LISP looks like (sumprod x y z), where the first element is the
name of the function and the rest are arguments. Since it is really just a list of four
symbols—sumprod, x, y, and z—we can take this code and manipulate it in any way—for
example, we can expand it so it calculates both the sum and product of the numbers, so the
generated code becomes (list (+ x y z) (* x y z)). 

You may wonder whether we can just write a function for that. The answer is, yes: in both
of the examples that we just looked at, there is no need to use a metaprogramming
technique. The examples were there only to illustrate how metaprogramming works. In
general, we can say that metaprogramming is not needed 99% of the time; however, there is
still that remaining 1% of cases where metaprogramming would be very useful. The first
section will explore use cases where we would want to use metaprogramming.



Macros and Metaprogramming Techniques Chapter 4

[ 123 ]

In this chapter, we will learn several metaprogramming facilities in Julia. The following
topics will be covered in particular:

Understanding the need for metaprogramming
Working with expressions
Developing macros
Using generated functions

Technical requirements
The sample source code is located at https:/ /github. com/ PacktPublishing/ Hands- on-
Design-Patterns- and- Best- Practices- with- Julia/ tree/ master/ Chapter04.

The code is tested in a Julia 1.3.0 environment.

Understanding the need for
metaprogramming
At the beginning of the chapter, we boldly claimed that metaprogramming is not needed
99% of the time. That is indeed not a made-up number. At the JuliaCon 2019 conference,
Professor Steven Johnson from MIT delivered a keynote speech regarding
metaprogramming. He did some research about the Julia language's own source code.
From his study, Julia version 1.1.0 contains 37,000 methods, 138 macros (0.4%), and 14
generated functions (0.04%). So metaprogramming code comprises less than 1% of Julia's
own implementation. While this is just one example of metaprogramming's role in one
language, it is representative enough that even the smartest software engineers would not
use metaprogramming most of the time.

So the next question is: When do you need to use metaprogramming techniques? Generally
speaking, there are several reasons for using such techniques:

They may allow a solution to be expressed more concisely and in a way that is1.
easier to understand. Writing code without metaprogramming would otherwise
look ugly and be difficult to comprehend.
It may reduce the development time because the source code can be generated2.
rather than written out; boilerplate code, especially, can be eliminated.
It may improve performance because the code is spelled out rather than executed3.
via other higher-level programming constructs, such as looping.

https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter04


Macros and Metaprogramming Techniques Chapter 4

[ 124 ]

We will now look at some examples of how metaprogramming is used in the real world.

Measuring performance with the @time macro
Julia comes with a useful macro called @time, which measures the time required to execute
code. For example, to measure how long it takes to calculate the sum of 10 million random
numbers, we can do the following:

The macro works by inserting code around the code that is being measured. The resulting
code may look something like the following:

begin
    t1 = now()
    result = sum(rand(10_000_000))
    t2 = now()
    elapsed = t2 - t1
    println("It took ", elapsed)
    result
end

The new code uses the now() function to take the current time. Then, it executes the user-
provided code and captures the result. It takes the current time again, calculates the elapsed
time, prints the timing information to the console, and then it returns the result.

Can this be done without metaprogramming? Perhaps we can give that a try. Let's define a
function called timeit as follows:

function timeit(func)
    t1 = now()
    result = func()
    t2 = now()
    elapsed = t2 - t1
    println("It took ", elapsed)
    result
end



Macros and Metaprogramming Techniques Chapter 4

[ 125 ]

To use this timing facility, we need to wrap the expression in a function.

This function works fairly well, but the problem is that we have to wrap the code in a
separate function before we can measure its performance, which is a hugely inconvenient
thing to do. Because of this, we can conclude that having a @time macro is more
appropriate.

Unrolling loops
Another use case of macros is to unroll loops into repeating code fragments. Loop unrolling
is a performance optimization technique. The premise behind it is that there is always some
overhead that is required to execute code in a loop. The reason is that, every time an
iteration is finished, the loop must check for a condition and decide whether it should exit
or continue with the next iteration. Now, if we know exactly how many times the loop
needs to run the code, then we can unroll it by writing out the code in a repeated fashion.

Consider a simple loop as follows:

for i in 1:3
    println("hello: ", i)
end

We can unroll the loop into three lines of code that do the exact same job:

println("hello: ", 1)
println("hello: ", 2)
println("hello: ", 3)

But it would be quite a boring and mundane task to have to unroll loops manually.
Furthermore, the amount of work grows linearly with the number of iterations required in
the loop. With the help of Unroll.jl, we can define a function using the @unroll macro,
as follows:

using Unrolled

@unroll function hello(xs)
    @unroll for i in xs



Macros and Metaprogramming Techniques Chapter 4

[ 126 ]

        println("hello: ", i)
    end
end

The code looks as clean as it should be, and the @unroll macro is inserted in front of the
function as well as the for loop. First, we should check that the code works properly:

Now, we should question whether the @unroll macro actually did anything. A good way
to check whether the loop was unrolled is to use the @code_lowered macro: 



Macros and Metaprogramming Techniques Chapter 4

[ 127 ]

The lowered code clearly contains three println statements rather than a single for loop.

What is lowered code? The Julia compiler must go through a series of
processes before source code is compiled to binaries. The very first step is
to parse the code into an abstract syntax tree (AST) format, which we will
learn about in the next session. After that, it goes through a
lowering process to expand the macros and convert the code into concrete
execution steps.

Now that we have seen some examples and know the power of metaprogramming, we
shall move forward and learn how to create these macros ourselves.

Working with expressions
Julia represents the source code of any runnable program as a tree structure. This is called
an abstract syntax tree (AST). It is referred to as abstract as the tree only captures the
structure of the code rather than the real syntax. 

For example, the expression x + y can be represented with a tree where the parent node
identifies itself as a function call and the child nodes include the operator function + and
the x and y arguments. The following is an implementation of this:

The slightly more complex expression x + 2y + 1 would look like the following diagram.
While it was written with two addition operators, the expression is parsed into a single
function call to the + function, for which it takes three arguments—x, 2y, and 1. Because 2y
is itself an expression, it can be seen as a subtree of the main abstract syntax tree:



Macros and Metaprogramming Techniques Chapter 4

[ 128 ]

The Julia compiler must first parse source code into an abstract syntax tree, and then it can
perform additional transformations and analysis, such as expanding macros, type checking,
type inference, and eventually translating the code into machine code. 

Experimenting with the parser
Because the abstract syntax tree is just a data structure, we can examine it directly within
the Julia REPL environment. Let's just start with a simple expression: x + y:

In Julia, every expression is represented as an Expr object. We can create an Expr object by
just parsing a string with the Meta.parse function.

Here, the expression object is displayed with a syntax that resembles the original source
code so that it is easier to read. We can confirm that the object has the type of Expr as
follows:



Macros and Metaprogramming Techniques Chapter 4

[ 129 ]

In order to view the abstract syntax tree, we can use the dump function to print the
structure:

In Julia, every expression is represented by a head node and an array of arguments.

In this case, the head node contains just a call symbol. The args array contains the +
operator and two variables, x and y. Note that everything here is a symbol—that's OK
because we are examining the source code itself, which is understandably just a tree of
symbols.

Since we have had so much fun here, let's try a few other expressions.

Single-variable expressions
One of the simplest expressions is just a reference to a variable. You can try to parse a
numeric or string literal and see what it returns:

Function calls with keyword arguments
Let's try something a little more complex. We will examine a function call that takes a single
positional argument and two keyword arguments. Here, we use triple quotes around the
code so that we can handle the double quotes inside it properly:



Macros and Metaprogramming Techniques Chapter 4

[ 130 ]

Note that a function call has the call symbol as the head node of the expression. Also, the
keyword arguments are represented as subexpressions, each with a head node of kw and a
two-element array for the name and value of the argument.

Nested functions
We may wonder how Julia parses code when functions are nested. We can pick a simple
example here that takes the sine of x+1 and then takes the cosine of the result. The abstract
syntax tree is shown as follows:



Macros and Metaprogramming Techniques Chapter 4

[ 131 ]

Here, we can clearly see the tree structure. The outermost function, cos, contains a single
argument, which is an expression node with a call to the sin function. This expression in
turn contains a single argument, which is another expression node with a call to the +
operator function with two arguments—the x variable and a value of 1. Now, let's continue
with our work on expressions.

Constructing expression objects manually
As an expression is just a data structure, we can easily construct them programmatically.
Understanding how to do this is essential for metaprogramming, which involves creating
new code structures on the fly.

The Expr constructor has the following signature:

Expr(head::Symbol, args...)

The head node always carries a symbol. The arguments just contain whatever the head
node expects—for example, the simple expression x + y can be created as follows:

Of course, we can always create a nested expression if we want to:

At this point, you may wonder whether there is an easier way to create expressions without
having to construct Expr objects manually.  For sure, it can be done as shown below:



Macros and Metaprogramming Techniques Chapter 4

[ 132 ]

Basically, we can wrap any expression with :( on the left and ) on the right. The code that
sits inside will not be evaluated, but will instead be parsed into an expression object;
however, this way of quoting only works with a single expression—if you try to do this
with multiple expressions, an error will be displayed, as shown in the following code:

It does not work because multiple expressions should be wrapped with begin and end
keywords. So it would be fine if we entered the following code block:

The result is a little interesting. As you can see, the code is now wrapped within a
quote/end block rather than a begin/end block. It actually makes sense because a quoted
expression is being displayed rather than the original source code. Remember, this is the
abstract syntax tree rather than the original code.

It also turns out that quote/end can be used directly to create expressions:



Macros and Metaprogramming Techniques Chapter 4

[ 133 ]

We have now learned how to parse source code into an expression object. Next, we will
look into more complex expressions so that we are more familiar with the basic code
structure of Julia programs.

Playing with more complex expressions
As we said before, any valid Julia program can be represented as an abstract syntax tree.
Now that we have the building blocks to create expression objects, let's examine a few more
constructs and see what expression objects look like for more complex programs.

Assignment
We will see how it works for assignments first. Consider the following code:

From the preceding code, we can see that the variable assignment has a head node of = and
two arguments—the variable to be assigned (x, in this case) and another expression object.



Macros and Metaprogramming Techniques Chapter 4

[ 134 ]

Code blocks
A code block is enclosed by the begin and end keywords. Let's examine what the abstract
syntax tree looks like.

The head node just contains a block symbol. When there are multiple lines in the block, the
abstract syntax tree also includes line number nodes. In this example, there is a
LineNumberNode with line 2 preceding the first call to println. Likewise, there is another
LineNumberNode with line 3 preceding the second call to println. The LineNumberNode
nodes do not do anything, but they are useful for stack traces and debugging.



Macros and Metaprogramming Techniques Chapter 4

[ 135 ]

Conditional
Next up, we'll explore conditional constructs, such as if-else-end. Refer to the following
code:

The head node contains the if symbol. There are three arguments—an expression for the
condition, a block expression when the condition is satisfied, and another block expression
when the condition is not satisfied.



Macros and Metaprogramming Techniques Chapter 4

[ 136 ]

Loop
We will now move on to looping constructs. Consider a simple for loop, as follows:

The head node contains a for symbol. There are two arguments: the first one contains the
expression about the loop and the second one contains a block expression. 



Macros and Metaprogramming Techniques Chapter 4

[ 137 ]

Function definition
Next, we will see the structure for a function definition. Consider the following code:

The head node contains a function symbol. Then, the first argument contains a call
expression with the arguments. The second argument is just a block expression. 

The call expression may seem a little odd because we have seen a similar
expression object when a function is being called. This is normal because
we are currently working at the syntax level. The syntax for function
definition is indeed quite similar to the function call itself.



Macros and Metaprogramming Techniques Chapter 4

[ 138 ]

By now, we have seen enough examples. There are obviously many more code constructs
that we have not explored. You are encouraged to use the same technique to examine other
code structures. Understanding how the abstract syntax tree is structured is essential to
writing good metaprogramming code. Next, we will see how we can evaluate these
expressions.

Evaluating expressions
We have looked at creating expression objects in great detail. But how are they useful?
Remember that an expression object is just an abstract syntax tree representation of a Julia
program. At this point, we can ask the compiler to continue translating the expression into
executable code and then run the program. 

Expression objects can be evaluated by calling the eval function. Essentially, the Julia
compiler will go through the rest of the compilation process and run the program. Now,
let's start a fresh, new REPL and run the following code:

Clearly, it's just a simple assignment. We can see that the x variable is now defined in the
current environment:

Note that the evaluation of the expression actually happens in the global scope. We can
prove this by running eval from within a function:



Macros and Metaprogramming Techniques Chapter 4

[ 139 ]

This is not an unimportant observation! At first glance, we may have expected the
y variable to be assigned inside the foo function; however, the variable assignment
happened in the global scope instead, so the y variable was defined in the current
environment as a side-effect.

More precisely, the expression is evaluated in the current module. Since
we are testing in the REPL, the evaluation was done in the current
module, called Main. The expression is designed as such because eval is
commonly used for code generation, which can be useful in defining
variables or functions within the module.

Next, we will learn how to create expression objects more easily.

Interpolating variables in expressions
It is quite simple to construct expressions from a quote block. But what if we want to
dynamically create expressions? This can be done using interpolation, which allows us to
insert variable values into the expression object with an easy syntax. Interpolation in an
expression is very similar to the way that variables can be interpolated in a string. The
following screenshot shows an example:

As expected, the value of 2 is correctly substituted in the expression. Note that splatting
is also supported, as shown below:



Macros and Metaprogramming Techniques Chapter 4

[ 140 ]

We must make sure that the variable that includes the splatting operator is interpolated
in this case. If we had forgotten to put the parentheses around v..., then we would have
had a very different result:

Here, splatting does not actually occur during interpolation into the expression. Instead, the
splatting operator now becomes part of the expression, so splatting will not occur until the
expression is evaluated. 

The order of precedence in an expression such as $v... is somewhat
unclear. Is the v variable bound to the interpolation operation before or
after the splatting operation? In a situation like this, it is best to use
parentheses around whatever we want to interpolate. As we want the
interpolation to happen fully, the syntax should be $(v...). In situations
where splatting needs to happen at runtime, we could write $(v)...
instead.

Interpolation is an important concept for writing macros. We will see more of its usage later
in this chapter. Next, we will see how to handle construct expressions with symbol values.

Using QuoteNode for symbols
Symbols are quite special when they appear in expressions. They may appear in the head
node of an expression object—for example, the = symbol in a variable assignment
expression. They may also appear in the arguments of an expression object, in which case
they would represent a variable:



Macros and Metaprogramming Techniques Chapter 4

[ 141 ]

Since symbols are already used to represent variables, how would we assign an actual
symbol to a variable? To figure out how this works, we can use the same trick that we have
learned so far—using the dump function to examine the expression object for such a
statement:

As we can see, an actual symbol must be enclosed in a QuoteNode object. Now that we
know what is needed, we should try to interpolate an actual symbol into an expression
object. The way to achieve this is to create a QuoteNode object manually and use the
interpolation technique as usual:

A common mistake is when you forget to create QuoteNode. In this case, the expression
object will misinterpret the symbol and treat it as a variable reference. Obviously, the result
is very different, and it will not work properly:



Macros and Metaprogramming Techniques Chapter 4

[ 142 ]

Not using QuoteNode would generate code that assigns the value of one variable to
another. In this case, the variable x will be assigned with a value from variable hello.

Understanding how QuoteNode works is essential creating expressions on the fly. It is
common for programmers to interpolate symbols into an existing expression. So next, we
will look at how to work with nested expressions.

Interpolating in nested expressions
It is possible to have a quoted expression that contains another quoted expression. This is
not a very common practice, unless the programmer needs to write meta-metaprograms.
Nonetheless, we should still learn about how to interpolate in such a situation.

First, let's recap what a single-level expression looks like:

We can wrap the quoted expression with another quote block in order to see what the
structure of a nested expression looks like:



Macros and Metaprogramming Techniques Chapter 4

[ 143 ]

Now, let's try to interpolate in such an expression:

As we can see, the 2 value did not get into the expression. The expression structure is also
entirely different from what we had expected. The solution is to just interpolate the variable
twice instead by using two $ signs: 

In general, it is probably not much fun to interpolate more than one-level deep as the logic
becomes difficult to work out. It can be useful, however, if you need to generate code for
macros. I would definitely not suggest that you go more than two-levels deep and write
meta-meta-metaprograms!

By now, you should be more familiar with, and comfortable working with, expressions.
From the Julia REPL, it is quite easy to see how an expression is structured as represented
as an Expr object. You should be able to construct new expressions and interpolate values
inside; these are essential skills that will be required for metaprogramming.

In the next section, we will look into a powerful metaprogramming feature in
Julia—macros.



Macros and Metaprogramming Techniques Chapter 4

[ 144 ]

Developing macros
Now that we understand how source code is represented as abstract syntax trees, we can
start doing more interesting things by writing macros. In this section, we will learn what
macros are and how to work with them.

What are macros?
Macros are functions that accept expressions, manipulate them, and return a new
expression. This is best understood with a diagram:

As we know, expressions are just abstract syntax tree representations of source code. So the
macro facility in Julia allows you to take any source code and generate new source code.
The resulting expression is then executed as if the source code was written directly in place.

At this point, you may wonder why we cannot use regular functions to achieve the same
thing. Why could we not write a function that takes expressions, generates a new
expression, and then executes the resulting expression?



Macros and Metaprogramming Techniques Chapter 4

[ 145 ]

There are two main reasons:

Macro expansion happens during compilation. This means that the macro is only
executed once from where it is used—for example, when a macro is called from a
function, the macro is executed at the time that the function is defined so that the
function can be compiled.
The resulting expression from a macro can be executed within the current scope.
At runtime, there is no other way to execute any dynamic code within the
function itself because the function, by definition, is already compiled. So, the
only way to evaluate any expression is to do so in the global scope.

By the end of this chapter, you should have a better understanding of how macros work
and how they differ from functions.

As we now understand what macros are, we will now continue our journey by writing our
first macro.

Writing our first macro
Macros are defined in a similar way to how functions are defined, except that the macro
keyword is used instead of the function keyword.

We should also keep in mind that a macro must return expressions. Let's create our first
macro. This macro returns an expression object that contains a for loop, as follows:

macro hello()
    return :(
    for i in 1:3
        println("hello world")
    end
    )
end

Invoking the macro is as easy as calling it with the @ prefix. Refer to the following code:



Macros and Metaprogramming Techniques Chapter 4

[ 146 ]

Unlike functions, macros may be called without using parentheses. So we can just do the
following:

Fantastic! We have now written our first macro. While it does not look very exciting,
because the code being generated is just a static piece of code, we have learned how to
define macros and run them.

Next, we will learn how to pass arguments to macros.

Passing literal arguments
Just like functions, macros can also take arguments. In fact, taking an argument is the most
common occurrence for a macro. The simplest type of argument is literals, such as
numbers, symbols, and strings.

In order to utilize these arguments in the returned expression, we can use the interpolation
technique that we learned in the last section. Consider the following code:

macro hello(n)
    return :(
    for i in 1:$n
        println("hello world")
    end
    )
end

The hello macro takes a single argument, n, which is interpolated into the expression
when the macro is run. As before, we can just invoke the macro as follows:



Macros and Metaprogramming Techniques Chapter 4

[ 147 ]

As we learned earlier, parentheses are not required, so we can also call the macro as
follows:

You can try a similar exercise with string or symbol arguments. Passing literals is easy to
understand because it works in the same way as functions. But there is indeed a subtle
difference between macros and functions, which we will discuss in detail in the following
section.

Passing expression arguments
It is important to emphasize that macro arguments are passed as expressions rather than
values. It may look confusing for beginners because macros are invoked similarly to
functions, but the behavior is completely different. 

Let's make sure that we fully understand what this means. When calling a function with a
variable, the value of the variable is passed into the function. Consider the following
sample code for a showme function:



Macros and Metaprogramming Techniques Chapter 4

[ 148 ]

Now, let's create a @showme macro that does nothing but display the argument in the
console. We can then compare the results with the preceding code:

As we can see, the results from running a macro are totally different than those we get from
calling a function. The function argument x really only sees an expression from where the
macro was called. From the diagram at the beginning of this section, we can see that macros
are supposed to take in expressions and return a single expression as a result. They do not
know the value of the arguments as they work at the syntax level. 

As we will see in the next section, expressions can even be manipulated when the macro is
run. Let's go!

Understanding the macro expansion process
By convention, every macro must return an expression. The process of taking one or more
expressions and returning a new one is called macro expansion. Sometimes, it helps to see
the expression being returned without actually running the code. We can use the
@macroexpand macro for that purpose. Let's try to use it for the @hello macro that we
defined earlier in this section:



Macros and Metaprogramming Techniques Chapter 4

[ 149 ]

There are several things to note from this output:

The i variable was renamed rather oddly: #67#i. This is done by the Julia
compiler to ensure hygiene, which we will discuss later in this chapter. Macro
hygiene is an important characteristic to keep in mind so that the code being
generated does not conflict with other code.
A comment was inserted into the loop that contains source file and line number
information. This is a useful part of the expression when a debugger is used.
The function call to println is bound to the one in the current environment,
Main. This make sense because println is part of the Core package and is
automatically brought into scope for every Julia program.

So when does macro expansion happen? Let's go over that next.

Timing of macro expansion
In the REPL, any macro is expanded as soon as we invoke it. Interestingly, when a function
containing the macro is defined, the macro is expanded as part of the function definition
process.

We can see this in action by developing a simple @identity macro that returns whatever
expression is passed into it. Right before the expression is returned, we just dump the object
to the screen. The code for the @identity macro is as follows:

macro identity(ex)
    dump(ex)
    return ex
end

Since this macro returns the same expression that was passed, it should end up executing
the original source code that follows the macro. 



Macros and Metaprogramming Techniques Chapter 4

[ 150 ]

Now, let's define a function that uses the @identity macro:

Clearly, the compiler has figured out that the macro is being used in the definition of the
foo function and, in order to compile the foo function, it must understand what the
@identity macro does. So it expanded the macro and baked that into the function
definition. During the macro expansion process, the expression was displayed.

If we use the @code_lowered macro against the foo function, we can see that the 
expanded code is now in the body of the foo function:

During development, the programmer may change the definitions of
functions, macros, and so on frequently. Because macros are expanded
when functions are defined, it is important to redefine the function again
if any of the macros being used have been changed; otherwise, the
function may continue to use the code generated from the prior macro
definition.

The @macroexpand utility is an indispensable tool for developing macros, and in
particular, is most useful for debugging purposes. 

Next, we will try to be a little more creative by manipulating expressions in macros.



Macros and Metaprogramming Techniques Chapter 4

[ 151 ]

Manipulating expressions
Macros are powerful because they allow expressions to be manipulated during the macro
expansion process. This is a tremendously useful technique, especially for code generation
and designing domain-specific languages. Let's go over some examples to get a taste of
what is possible.

Example 1 – Making a new expression
Let's start with a simple one. Suppose that we want to create a macro called @squared that
takes an expression and just squares it. In other words, if we run @squared(x), then it
should be translated into x * x:

macro squared(ex)
    return :($(ex) * $(ex))
end

At first glance, it seems to work fine when we run it from the REPL:

But this macro has a problem with the execution context. The best way to illustrate the
problem is by defining a function that uses the macro. So let's define a foo function, as
follows:

function foo()
    x = 2
    return @squared x
end

Now, when we call the function, we get the following error:



Macros and Metaprogramming Techniques Chapter 4

[ 152 ]

Why is that? It is because, during the macro expansion, the x symbol refers to the variable
in the module rather than the local variable in the foo function. We can confirm this by
using the @code_lowered macro:

Obviously, our intention was to square the local x variable rather than Main.x. The easy fix
to this problem is to use the esc function during interpolation in order to place the
expression directly in the syntax tree without letting the compiler resolve it. The following
is how it can be done:

macro squared(ex)
    return :($(esc(ex)) * $(esc(ex)))
end

Since the macro was expanded earlier, before foo was defined, we need to define the foo
function once again, as follows, for this updated macro to take effect. Alternatively, you can
start a new REPL and define the @squared macro and foo function again. Here we go:

The foo function works correctly now. 

From this example, we have learned how to create a new expression using the interpolation
technique. We have also learned that the interpolated variable needs to be escaped using
the esc function to avoid it being resolved by the compiler to the global scope.



Macros and Metaprogramming Techniques Chapter 4

[ 153 ]

Example 2 - Tweaking the abstract syntax tree
Let's say we want to design a macro called @compose_twice that takes a simple function
call expression and calls the same function again with the result—for example, if we
run @compose_twice sin(x), then it should be translated to sin(sin(x)).

Before we write the macro, let's first get familiar with the abstract syntax tree of the
expression:

How does it look for sin(sin(x))? Refer to the following:

No surprise here. The second argument of the top-level call is just another expression that
looks like what we saw previously.

We can write the macro as follows:

macro compose_twice(ex)
    @assert ex.head == :call
    @assert length(ex.args) == 2
    me = copy(ex)
    ex.args[2] = me
    return ex
end



Macros and Metaprogramming Techniques Chapter 4

[ 154 ]

The first two @assert statements are used to ensure that the expression represents a
function call that takes a single argument. As we want to replace the argument with a
similar expression, we just make a copy of the current expression object and assign it to
ex.args[2]. The macro then returns the resulting expression for evaluation.

We can verify that the macro is working correctly:

As you can see, we can translate the source code by manipulating the abstract syntax tree
directly rather than interpolating variables into a nice-looking expression.

By now, you can probably appreciate the power of metaprogramming. Compared to using
interpolation, manipulating an expression directly is not as easy to understand because the
resulting expression is not represented in the code; however, the ability to manipulate
expressions provides the ultimate flexibility in translating source code.

Next up, we will go over an important feature of metaprogramming—macro hygiene.

Understanding macro hygiene
Macro hygiene refers to the ability to keep macro-generated code clean. It is referred to as
hygiene because the generated code does not get polluted by other parts of the code. 

Note that many other programming languages do not provide such a guarantee. The
following is a C program that contains a macro called SWAP, which is used to exchange the
value of two variables:

#include <stdio.h>

#define SWAP(a,b) temp=a; a=b; b=temp;

int main(int argc, char *argv[])
{
    int a = 1;
    int temp = 2;

    SWAP(a,temp);
    printf("a=%d, temp=%d\n", a, temp);
}



Macros and Metaprogramming Techniques Chapter 4

[ 155 ]

However, running this C program yields an incorrect result:

It did not swap the a and temp variables properly because the temp variable is also used as
a temporary variable in the body of the macro.

Let's go back to Julia. Consider the following macro, which just runs an ex expression and
repeats it n times:

macro ntimes(n, ex)
    quote
        times = $(esc(n))
        for i in 1:times
            $(esc(ex))
        end
    end
end

Since the times variable is used in the returned expression, what would happen if the same
variable name is already used in the call site? Let's try this sample code, which defines a
times variable before the macro call and prints the value of the same variable after the
macro call:

function foo()
    times = 0
    @ntimes 3 println("hello world")
    println("times = ", times)
end

If the macro expander took it literally, then the times variable would be modified to 3 after
the macro call; however, we can see it working properly in the following code:



Macros and Metaprogramming Techniques Chapter 4

[ 156 ]

It works because the macro system is able to maintain hygiene by renaming the times
variable to something different so that there is no conflict. Where is the magic? Well, let's
take a look at the expanded code using @macroexpand:

Here, we can see that the times variable has turned into #44#times. The loop variable i
has also turned into #45#i. These variable names are dynamically generated by the
compiler to ensure that macro-generated code does not conflict with other user-written
code.

Macro hygiene is an essential feature for macros to function correctly. There is nothing that
the programmer needs to do: Julia automatically provides the guarantee.

Next, we will look into a different kind of macro that powers nonstandard string literals. 

Developing nonstandard string literals
There is a special kind of macro for defining nonstandard string literals, which look like a
literal string but instead a macro is called when it is referenced.

A good example would be Julia's regular expression literal—for example, r"^hello". It is
not a standard string literal because of the r prefix in front of the double quote. Let's first
check the data type of such a literal. We can see that a Regex object is created from the
string:

We can also create our own nonstandard string literals. Let's try to work through a fun
example together here.



Macros and Metaprogramming Techniques Chapter 4

[ 157 ]

Suppose that, for development purposes, we want to conveniently create sample data
frames with different types of columns. The syntax for doing so is a little bit tedious:

Imagine that we occasionally need to create tens of columns with different data types. The
code for creating such a data frame would be very long, and as a programmer, I would be
extremely bored typing that all out. So we could design a string literal so that it contains the
specification for constructing such a data frame—let's call it a ndf (numerical data frame)
literal.

The specification on ndf just needs to encode the desired number of rows and column
types. For instance, the literal ndf"100000:f64,i16" can be used to represent the
preceding sample data frame, where 100,000 rows are needed, with two columns labeled as
the Float64 and Int16 columns.

To implement this feature, we just define a macro called @ndf_str. The macro takes a
string literal and creates the desired data frame accordingly. The following is one way to
implement the macro:

macro ndf_str(s)
    nstr, spec = split(s, ":")
    n = parse(Int, nstr) # number of rows
    types = split(spec, ",") # column type specifications
    num_columns = length(types)
    mappings = Dict(
    "f64"=>Float64, "f32"=>Float32,
    "i64"=>Int64, "i32"=>Int32, "i16"=>Int16, "i8"=>Int8)
    column_types = [mappings[t] for t in types]
    column_names = [Symbol("x$i") for i in 1:num_columns]
    DataFrame([column_names[i] => rand(column_types[i], n)
        for i in 1:num_columns]...)
end



Macros and Metaprogramming Techniques Chapter 4

[ 158 ]

The first few lines parse the string and determine the number of rows (n), as well as the
types of the columns (types). Then, a dictionary called mappings is created to map the
shorthand to the corresponding numeric types. The column names and types are generated
from the type and mapping data. Finally, it calls the DataFrame constructor and returns the
result.

Now that we have the macro defined, we can easily create new data frames, as follows:

Nonstandard string literals can be quite useful in certain cases. We can see a string
specification as a mini domain-specific language that is encoded in the string. As long as
the string specification is well defined, it can make the code a lot shorter and more concise.

You may have noticed that the ndf_str macro returns a regular
DataFrame object rather than an expression object, as it would normally
do with macros. This is perfectly fine because the final DataFrame object
will be returned as-is. You may think of an evaluation of a constant as just
the constant itself. We can just return a value rather than an expression
here because the returned value does not involve any variables from the
call site or from the module.

A curious mind might ask - why can't we just create a regular function for this? We can
certainly do that for this dummy example. However, using a string literal could improve
performance in some cases.



Macros and Metaprogramming Techniques Chapter 4

[ 159 ]

For example, when we use the Regex string literal in a function, the Regex object is created
at compile-time and so it is executed only once. If we use the Regex constructor instead,
then the object would be created every single time the function is called.

We have now concluded the topic of macros. We learned how to create macros by taking
expressions and generating a new expression. We used the @macroexpand macro to debug
the macro expansion process. We also learned how to handle macro hygiene. Finally, we
took a look at nonstandard string literals and created our own using a macro.

Next, we will look at another metaprogramming facility called generated functions, which
can be used to solve a different kind of problem than what regular macros can handle.

Using generated functions
So far, we have explained how to create macros that return expression objects. Since macros
work at the syntax level, they can manipulate code only by examining how it looks.
However, Julia is a dynamic system where data types are determined at runtime. For that
reason, Julia provides the ability to create generated functions, which allow you to examine
data types for a function call and return an expression, just like macros. When an
expression is returned, it will be evaluated at the call site.

To understand why generated functions are needed, let's revisit how macros work. Let's
say we have created a macro that doubles the value of its arguments. It would look like the
following:

macro doubled(ex)
    return :( 2 * $(esc(ex)))
end

No matter what expression we pass into this macro, it would just blindly rewrite the code
so it doubles the original expression. Suppose that one day, a super-duper piece of software
is developed that lets us calculate twice the amount of a floating-point number quickly. In
this case, we may want the system to switch to that function for floating-point numbers
only, instead of using the standard multiplication operator.



Macros and Metaprogramming Techniques Chapter 4

[ 160 ]

So our first attempt might be to try something as follows:

# This code does not work. Don't try it.
macro doubled(ex)
    if typeof(ex) isa AbstractFloat
        return :( double_super_duper($(esc(ex))) )
    else
        return :( 2 * $(esc(ex)))
    end
end

But unfortunately, it is impossible for macros to do this. Why? Again, macros only have
access to the abstract syntax tree. This is at the earlier part of the compilation pipeline and
there is no type information available. The ex variable in the preceding code is merely an
expression object. This problem can be solved with generated functions. Keep on reading!

Defining generated functions
Generated functions are functions that are prefixed by @generated at the function
definition. These functions can return expression objects, just like macros. For example, we
can define the doubled function as follows:

@generated function doubled(x)
    return :( 2 * x )
end

Let's quickly run a test and make sure that it works:

The code works beautifully, as expected.

So defining generated functions is quite similar to defining macros. In both cases, we can
create an expression object and return it, and we can expect the expression to be evaluated
properly.

We have not, however, exercised the full power of generated functions yet. Next, we will
look at how data type information can be made available and how it can be used within
generated functions.



Macros and Metaprogramming Techniques Chapter 4

[ 161 ]

Examining generated function arguments
An important point to remember is that arguments of generated functions contain data
types, not actual values. The following is a visual representation of how generated
functions work:

This is in sharp contrast to functions, which accept arguments as values. It is also different
from macros, which accept arguments as expressions. Here, generated functions accept
arguments as data types. It may seem a little strange, but let's do a simple experiment to
confirm that this is indeed the case.

For this experiment, we will define the doubled function again by displaying the argument
on screen before returning the expression.

@generated function doubled(x)
    @show x
    return :( 2 * x )
end

Let's test the function again.



Macros and Metaprogramming Techniques Chapter 4

[ 162 ]

As it is shown, the value of argument x is Int64 rather than 2 during the execution of the
generated function. Furthermore, when the function is called again, it no longer shows the
value of x. This is because the function is now compiled after the first call.

Now, let's see what happens if we run it again with a different type:

The compiler has kicked in again and compiled a new version based upon the type of
Float64. So, technically speaking, we now have two versions of the doubled function for
each type of argument.

You may have realized that the behavior of generated functions is similar
to that of regular functions when it comes to specialization. The difference
is that we have a chance to manipulate the abstract syntax tree right before
the compilation happens.

With this new generated function, we can now take advantage of the hypothetical super-
duper software by switching over to the faster double_super_duper function whenever
the data type of the argument is a subtype of AbstractFloat, as shown in the following
code:

@generated function doubled(x)
    if x <: AbstractFloat
        return :( double_super_duper(x) )
    else
        return :( 2 * x )
    end
 end

Using generated functions, we can specialize the function depending on the type of the
argument. When the type is AbstractFloat, the function will resort to the
double_super_duper(x) rather than the 2 *x expression.

As mentioned in the official Julia language reference manual, care must be
taken when developing generated functions. The exact limitations are
beyond of the scope of this book. You are highly encouraged to refer to
the manual if you need to write generated functions for your software.



Macros and Metaprogramming Techniques Chapter 4

[ 163 ]

Generated functions are a useful tool to deal with cases that macros are unable to handle.
Specifically, during the macro expansion process, there is no information about the types of
the argument. Generated functions allow us to get a little closer to the heart of the
compilation process. With the additional knowledge about argument types, we are more
flexible when it comes to handling different situations.

As a metaprogramming tool, macros are used much more extensively than generated
functions. Nevertheless, it is nice to know that both tools are available.

Summary
In this chapter, we learned how Julia parses expressions into an abstract syntax tree
structure. We learned that expressions can be created and evaluated programmatically. We
also learned how to interpolate variables into quoted expressions.

Then, we jumped into the topic of macros, which are used to dynamically create new code.
We learned that macro arguments are expressions rather than values, and learned how to
create new expressions from macros. We had fun creating macros that manipulate the
abstract syntax tree to deal with some interesting use cases.

Finally, we looked at generated functions, which can be used to generate code based on the
type of the function arguments. We learned how generated functions can be useful for a
hypothetical use case.

We have now concluded the introductory part of the book regarding the Julia
programming language. In the next chapter, we will start looking at design patterns related
to code reusability.

Questions
What are the two ways we can use to quote expressions so that the code can be1.
manipulated later?
In what environment does the eval function execute code?2.
How do you interpolate physical symbols into quoted expressions so that they3.
are not misinterpreted as source code?
What is the naming convention for a macro that defines nonstandard string4.
literals?



Macros and Metaprogramming Techniques Chapter 4

[ 164 ]

When do you use the esc function?5.
How are generated functions different from macros?6.
How do you debug macros?7.



3
Section 3: Implementing Design

Patterns
The aim of this section is to provide you with an inventory of modern Julia-specific design
patterns as well as the more traditional object-oriented patterns. You will learn how to
apply these patterns to various problems.

This section contains the following chapters:

Chapter 5, Reusability Patterns
Chapter 6, Performance Patterns
Chapter 7, Maintainability Patterns
Chapter 8, Robustness Patterns
Chapter 9, Miscellaneous Patterns
Chapter 10, Anti-Patterns
Chapter 11, Traditional Object-Oriented Patterns



5
Reusability Patterns

In this chapter, we will learn about several patterns related to software reusability. As you
may recall from Chapter 1, Design Patterns and Related Principles, reusability is one of the
four software quality objectives that is required for building large-scale applications.
Nobody wants to reinvent the wheel. The ability to reuse an existing software component
saves both time and energy—an overall humanity gain! The patterns in this chapter are
proven techniques that can help us improve application design, reuse existing code, and
reduce overall code size.

In this chapter, we will cover the following topics:

The delegation pattern
The holy traits pattern
The parametric type pattern

Technical requirements
The sample source code for this chapter is located at https:/ / github. com/
PacktPublishing/Hands- on- Design- Patterns- and- Best- Practices- with- Julia/ tree/
master/Chapter05.

The code in this chapter has been tested in a Julia 1.3.0 environment.

The delegation pattern
Delegation is a pattern that is commonly applied in software engineering. The primary
objective is to leverage the capabilities of an existing component by wrapping it via a has-a
relationship.

https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter05


Reusability Patterns Chapter 5

[ 167 ]

The delegation pattern is widely adopted, even in the object-oriented programming
community. In the early days of object-oriented programming, people thought that code
reuse could be achieved beautifully using inheritance. However, people came to realize that
this promise couldn't be completely fulfilled due to a variety of issues related to
inheritance. Since then, many software engineers prefer composition over inheritance. The
concept of composition is to wrap one object within another. In order to reuse existing
functions, we must delegate functions calls to the wrapped object. This section will explain
how delegation can be implemented in Julia.

The concept of composition is to wrap one object within another. In order to reuse existing
functions, we must delegate functions calls to the wrapped object.

One way is to enhance an existing component with new features. This may sound good, but
it could be challenging in practice. Consider the following situations:

The existing component comes from a vendor product and the source code is not
available. Even if the code is available, the vendor's license may not allow us to
make custom changes.
The existing component is developed and used by another team for a mission-
critical system and changes are neither welcome nor applicable for that system. 
The existing component contains a lot of legacy code and new changes may
compromise the component's stability and require a lot of testing effort.

If modifying an existing component's source code is not an option, then we should at least
be able to use the component via its published programming interface. That is the virtue of
the delegation pattern.

Applying the delegation pattern to a banking use
case
The delegation pattern is the idea of creating a new object by wrapping an existing one
called the parent object. In order to reuse the object's features, the functions that have been
defined for the new object can be delegated (also known as forwarded) to the parent.

Suppose that we have access to a banking library that provides some basic account
management functionality. To understand how it works, let's take a look at the source
code. 



Reusability Patterns Chapter 5

[ 168 ]

A bank account has been designed with the following mutable data structure:

mutable struct Account
    account_number::String
    balance::Float64
    date_opened::Date
end

As part of the programming interface, the library also provides the field accessors (see
Chapter 8, Robustness Patterns) and functions for making deposits, withdrawals, and
transfers, as follows:

# Accessors

account_number(a::Account) = a.account_number
balance(a::Account) = a.balance
date_opened(a::Account) = a.date_opened

# Functions

function deposit!(a::Account, amount::Real)
    a.balance += amount
    return a.balance
end

function withdraw!(a::Account, amount::Real)
    a.balance -= amount
    return a.balance
end

function transfer!(from::Account, to::Account, amount::Real)
    withdraw!(from, amount)
    deposit!(to, amount)
    return amount
end

Of course, in practice, such a banking library has to be a lot more complex than what is seen
here. I suspect that when money goes in and out of a bank account, there are many
downstream effects such as logging an audit trail, making the new balance available on a
website, sending emails to the customer, and so on.

Let's move on and learn how we can utilize the delegation pattern. 



Reusability Patterns Chapter 5

[ 169 ]

Composing a new type that contains an existing type
As part of a new initiative, the bank wants us to support a new savings account product,
which provides daily interest for customers. Since the existing account management's
functionality is critical to the bank's business and is maintained by a different team, we
have decided to reuse its functionality without touching any of the existing source code.

First, let's create our own SavingsAccount data type, as follows:

struct SavingsAccount
    acct::Account
    interest_rate::Float64
    SavingsAccount(account_number, balance, date_opened, interest_rate) =
new(
        Account(account_number, balance, date_opened),
        interest_rate
    )
end

The first field, acct, is used to hold an Account object, while the second
field, interest_rate, contains the interest rate per annum for the account. A constructor
is also defined to instantiate the object.

In order to use the underlying Account object, we can use a technique called Delegation,
or Method Forwarding. This is where we implement the same API in SavingsAccount and
forward the call to the underlying Account object whenever we want to reuse the existing
functions from the underlying object. In this case, we can just forward all the field accessor
functions and mutating functions from the Account object, as follows:

# Forward assessors
account_number(sa::SavingsAccount) = account_number(sa.acct)
balance(sa::SavingsAccount) = balance(sa.acct)
date_opened(sa::SavingsAccount) = date_opened(sa.acct)

# Forward methods
deposit!(sa::SavingsAccount, amount::Real) = deposit!(sa.acct, amount)

withdraw!(sa::SavingsAccount, amount::Real) = withdraw!(sa.acct, amount)

transfer!(sa1::SavingsAccount, sa2::SavingsAccount, amount::Real) =
transfer!(
    sa1.acct, sa2.acct, amount)



Reusability Patterns Chapter 5

[ 170 ]

So far, we have successfully reused the Account data type, but let's not forget that we
actually want to build new features in the first place. A savings account should accrue
interest overnight on a daily basis. So, for the SavingsAccount object, we can implement a
new accessor for the interest_rate field and a new mutating function called
accrue_daily_interest!:

# new accessor
interest_rate(sa::SavingsAccount) = sa.interest_rate

# new behavior
function accrue_daily_interest!(sa::SavingsAccount)
    interest = balance(sa.acct) * interest_rate(sa) / 365
    deposit!(sa.acct, interest)
end

At this time, we have created a new SavingsAccount object that works just like the
original Account object, except it has the additional capability of accruing interest!

However, the sheer volume of these forwarding methods makes us feel a little unsatisfied.
It would be nice if we didn't have to write all this code manually. Perhaps there's a better
way...

Reducing boilerplate code for forwarding methods
You may wonder how it would ever be worth the effort to write so much code just to
forward the method calls to the parent object. Indeed, the forwarding methods serve no
purpose other than passing the exact same arguments to the parent. If programmers were
paid by lines of code, then this would be quite an expensive proposition, wouldn't it?

Fortunately, this kind of boilerplate code can be reduced greatly using macros. There are
several open source solutions that can help with this situation. For demonstration purposes,
we can utilize the @forward macro from the Lazy.jl package. Let's replace all the
forwarding methods, as follows:

using Lazy: @forward

# Forward assessors and functions
@forward SavingsAccount.acct account_number, balance, date_opened
@forward SavingsAccount.acct deposit!, withdraw!

transfer!(from::SavingsAccount, to::SavingsAccount, amount::Real) =
transfer!(
    from.acct, to.acct, amount)



Reusability Patterns Chapter 5

[ 171 ]

The usage of @forward is fairly straightforward. It takes two expressions as arguments.
The first argument is the SavingsAccount.acct object that you want to forward to, while
the second argument is just a tuple of function names that you wish to forward to, for
example, account_number, balance, and date_opened. 

Note that we are able to forward mutating functions such as deposit! and withdraw!,
but we cannot do the same for transfer!. This is because transfer! requires that we
forward its first and second arguments. In this case, we just keep the manual forwarding
method. Nevertheless, we were able to forward five out of the six functions using just two
lines of code. It's still a pretty good deal!

It would be possible to make more forwarding macros that take two or
three arguments. In fact, there are other open source packages that
support such scenarios, such as the TypedDelegation.jl package.

So, how does the @forward macro work? We can examine how the code gets expanded
using the @macroexpand macro. The following is the result of the line number nodes being
removed. Basically, for each method that is being forwarded (balance and deposit!), it
creates the corresponding function definition with all the arguments splatted with the
args... notation. It also throws in an @inline node to give the compiler a hint for better
performance:



Reusability Patterns Chapter 5

[ 172 ]

Inlining is a compiler optimization where a function call is inlined as if the
code had been interpolated into the current code. It may improve
performance by reducing the overhead of allocating a call stack when
functions are called repeatedly.

The @forward macro was implemented with only a few lines of code. You
are encouraged to take a look at the source code if you are interested in
metaprogramming.

You might be wondering why there are several funny variable names such as #41#x or
#42#args. We can treat those as if they are normal variables. They are automatically
generated by the compiler, and their special naming convention is chosen to avoid conflicts
with other variables in the current scope.

Finally, it is important to understand that we may not always want to forward all the
function calls to the object. What if we don't want to use 100% of the underlying features?
Believe it or not, there are cases like that. For example, let's imagine that we have to support
another kind of account, such as a certificate of deposits, also known as CDs. A CD is a
short-term investment product that pays a higher interest than a savings account, but the
funds cannot be withdrawn during the term of investment. Generally, the term of a CD
could be 3 months, 6 months, or longer. Going back to our code, if we create a new
CertificateOfDepositAccount object and reuse the Account object again, we wouldn't
want to forward the withdraw! and transfer! methods because they are not features of
CDs.

You might wonder how delegation differs from class inheritance in object-
oriented programming languages. For example, in the Java language, all
the public and protected methods from the parent class are inherited
automatically. This is analogous to auto-forwarding all the methods from
the parent class.

The inability to choose what to inherit is actually one of the reasons why
delegation is preferred over inheritance. For a more in-depth discussion,
see Chapter 12, Inheritance and Variance.

Reviewing some real-life examples
The delegation pattern is used extensively in open source packages. For example, many
packages in the JuliaArrays GitHub organization implement the AbstractArray interface.
The special array types usually contain a regular AbstractArray object.



Reusability Patterns Chapter 5

[ 173 ]

Example 1 – the OffsetArrays.jl package
The OffsetArrays.jl package allows us to define arrays with arbitrary indices rather
than the standard linear or cartesian style indices. A fun example is to use a zero-based
array, just like the ones you may find in other programming languages:

To understand how this works, we need to dig into the source code. Let's keep things
concise and review just a portion of the code:

struct OffsetArray{T,N,AA<:AbstractArray} <: AbstractArray{T,N}
    parent::AA
    offsets::NTuple{N,Int}
end

Base.parent(A::OffsetArray) = A.parent

Base.size(A::OffsetArray) = size(parent(A))
Base.size(A::OffsetArray, d) = size(parent(A), d)

Base.eachindex(::IndexCartesian, A::OffsetArray) =
CartesianIndices(axes(A))
Base.eachindex(::IndexLinear, A::OffsetVector) = axes(A, 1)

The OffsetArray data type is composed of the parent and offsets fields. In order to
satisfy the AbstractArray interface, it implements some of the basic functions, such
as Base.size, Base.eachindex, and so on. Since these functions are simple enough, the
code just forwards the call to the parent object manually.

Example 2 – the ScikitLearn.jl package
Let's also take a look at the ScikitLearn.jl package, which defines a consistent API for
fitting machine learning models and doing prediction. 



Reusability Patterns Chapter 5

[ 174 ]

The following is how the FitBit type is defined:

""" `FitBit(model)` will behave just like `model`, but also supports
`isfit(fb)`, which returns true IFF `fit!(model, ...)` has been called """
mutable struct FitBit
    model
    isfit::Bool
    FitBit(model) = new(model, false)
end

function fit!(fb::FitBit, args...; kwargs...)
    fit!(fb.model, args...; kwargs...)
    fb.isfit = true
    fb
end

isfit(fb::FitBit) = fb.isfit

Here, we can see that the FitBit object contains a model object and that it adds a new
functionality that keeps track of whether a model has been fitted or not:

@forward FitBit.model transform, predict, predict_proba, predict_dist,
get_classes

It uses the @forward macro to delegate all the major functions, that is, transform,
predict, and so on.

Considerations
You should keep in mind that the delegation pattern introduces a new level of indirection,
which can increase code complexity and make the code more difficult to understand. We
should consider some factors when deciding to use the delegation pattern.

First, how much code can you reuse from the existing component? Is it 20%, 50%, or 80%?
This ought to be the very first question you ask before you consider reusing an existing
component. Let's call the amount of reuse the utilization rate. Obviously, the higher the
utilization rate, the better it is from a reuse perspective.

Second, how much development effort can be saved by reusing an existing component? If
the cost of developing the same functionality is low, then it may not be worth the effort to
reuse the component and increase the complexity of extra indirection. 



Reusability Patterns Chapter 5

[ 175 ]

From the opposite angle, we should also review if there is any critical business logic in the
existing component. If we decide to not reuse the component, then we could end up
implementing the same logic again, violating the Don't Repeat Yourself (DRY) principle.
This means it can be a maintenance nightmare to not reuse the component.

Given these considerations, we should just to make a good judgment about using the
delegation pattern or not. 

Next, we will learn how to implement traits in Julia.

The holy traits pattern
The holy traits pattern has an interesting name. Some people also call it the Tim Holy
Traits Trick (THTT). As you might have guessed the pattern is named after Tim Holy, who
is a long-time contributor to the Julia language and ecosystem.

What are traits? In a nutshell, a trait corresponds to the behavior of an object. For example,
birds and butterflies can fly, so they both have the CanFly trait. Dolphins and turtles can
swim, so they both have the CanSwim trait. A duck can fly and swim, so it has both
the CanFly and CanSwim traits. Traits are typically binary – you either exhibit the trait or
not – although that is not a mandatory requirement.

Why do we want traits? Traits can be used as a formal contract about how a data type can
be used. For example, if an object has the CanFly trait, then we would be quite confident
that the object has some kind of fly method defined. Likewise, if an object has the CanSwim
trait, then we can probably call some kind of swim function.

Let's get back to programming. The Julia language doesn't have any built-in support for
traits. However, the language is versatile enough for developers to use traits with the help
of the multiple dispatch system. In this section, we will look into how this can be done with
the special technique known as holy traits.

Revisiting the personal asset management use
case
When designing reusable software, we often create abstractions as data types and associate
behaviors with them. One way to model behaviors is to leverage a type hierarchy.
Following the Liskov Substitution Principle, we should be able to substitute a type with a
subtype when a function is called.



Reusability Patterns Chapter 5

[ 176 ]

Let's revisit the abstract type hierarchy of managing personal assets from Chapter
2, Modules, Packages, and Type Concepts:

We can define a function called value for determining the value of any asset. Such a
function can be applied to all the types in the Asset hierarchy if we assume that all the
asset types have some kind of monetary value attached to them. Following that line of
thought, we can say that almost every asset exhibits the HasValue trait.

Sometimes, behaviors can only be applied to certain types in the hierarchy. For example,
what if we want to define a trade function that only works with liquid investments? In
that case, we would define trade functions for Investment and Cash but not for House
and Apartments.

A liquid investment refers to a security instrument that can be traded
easily in the open market. The investor can quickly convert a liquid
instrument into cash and vice versa. In general, most investors would like
a portion of their investment to be liquid in the case of an emergency.

Investments that are not liquid are called illiquid.

Programmatically, how do we know which asset types are liquid? One way is to check the
type of the object against a list of types that represent liquid investments. Suppose that we
have an array of assets and need to find out which one can be traded quickly for cash. In
this situation, the code may look something like this:

function show_tradable_assets(assets::Vector{Asset})
    for asset in assets
        if asset isa Investment || asset isa Cash



Reusability Patterns Chapter 5

[ 177 ]

            println("Yes, I can trade ", asset)
        else
            println("Sorry, ", asset, " is not tradable")
        end
    end
end

The if condition in the preceding code is a bit ugly, even in this toy example. If we have
more types in the condition, then it gets worse. Of course, we can create a union type to 
make it a little better:

const LiquidInvestments = Union{Investment, Cash}

function show_tradable_assets(assets::Vector{Asset})
    for asset in assets
        if asset isa LiquidInvestments
            println("Yes, I can trade ", asset)
        else
            println("Sorry, ", asset, " is not tradable")
        end
    end
end

There are a few issues with this approach:

The union type has to be updated whenever we add a new liquid asset type. This
kind of maintenance is bad from a design perspective because the programmer
must remember to update this union type whenever a new type is added to the
system.
This union type is not available for extension. If other developers want to reuse
our trading library, then they may want to add new asset types. However, they
cannot change our definition of the union type because they do not own the
source code. 
The if-then-else logic may be repeated in many places in our source, whenever
we need to do things differently for liquid and illiquid assets.

These problems can be solved using the holy traits pattern.



Reusability Patterns Chapter 5

[ 178 ]

Implementing the holy traits pattern
To illustrate the concept of this pattern, we will implement some functions for the personal
asset data types that we developed in Chapter 2, Modules, Packages, and Data Type
Concepts. As you may recall, the abstract types for the asset type hierarchy are defined as
follows:

abstract type Asset end

abstract type Property <: Asset end
abstract type Investment <: Asset end
abstract type Cash <: Asset end

abstract type House <: Property end
abstract type Apartment <: Property end

abstract type FixedIncome <: Investment end
abstract type Equity <: Investment end

The Asset type is at the top of the hierarchy and has the Property, Investment, and
Cash subtypes. At the next level, House and Apartment are subtypes of Property,
while FixedIncome and Equity are subtypes of Investment.

Now, let's define some concrete types:

struct Residence <: House
    location
end

struct Stock <: Equity
    symbol
    name
end

struct TreasuryBill <: FixedIncome
    cusip
end

struct Money <: Cash
    currency
    amount
end



Reusability Patterns Chapter 5

[ 179 ]

What do we have here? Let's take a look at these concepts in more detail:

A Residence is a house that someone lives in and has a location. 
A Stock is an equity investment, and it is identified by a trading symbol and the
name of the company. 
A TreasuryBill is a short-term government-issued form of security in the
United States, and it is defined with a standard identifier called CUSIP.
Money is just cash, but we want to store the currency and respective amount here.

Note that we have not annotated the types for the fields because they aren't important for
illustrating the trait concept here.

Defining the trait type
When it comes to investments, we can distinguish between ones that can be sold for
cash easily in the open market and ones that take considerably more effort and time to
convert into cash. Things that can easily be converted into cash within several days are
known as being liquid, while the hard-to-sell ones are known as being illiquid. For example,
stocks are liquid while a residence is not.

The first thing we want to do is define the traits themselves:

abstract type LiquidityStyle end
struct IsLiquid <: LiquidityStyle end
struct IsIlliquid <: LiquidityStyle end

Traits are nothing but data types in Julia! The overall concept of the LiquidityStyle trait
is that it's an abstract type. The specific traits here, IsLiquid and IsIlliquid, have been
set up as concrete types without any fields.

There is no standard naming convention for traits, but my research seems
to indicate that package authors tend to use either Style or Trait as the
suffix for trait types.

Identifying traits
The next step is to assign data types to these traits. Conveniently, Julia allows us to bulk-
assign traits to an entire subtype tree using the <: operator in the function signature:

# Default behavior is illiquid
LiquidityStyle(::Type) = IsIlliquid()



Reusability Patterns Chapter 5

[ 180 ]

# Cash is always liquid
LiquidityStyle(::Type{<:Cash}) = IsLiquid()

# Any subtype of Investment is liquid
LiquidityStyle(::Type{<:Investment}) = IsLiquid()

Let's take a look at how we can interpret these three lines of code:

We have chosen to make all the types illiquid by default. Note that we could
have done this the other way around and made everything liquid by default.
This decision is arbitrary and depends on the specific use case.
We have chosen to make all the subtypes of Cash liquid, which includes the
concrete Money type. The notation of ::Type{<:Cash} indicates all the subtypes
of Cash. 
We have chosen to make all the subtypes of Investment liquid. This includes all
the subtypes of FixedIncome and Equity, which covers Stock in this example.

You might be wondering why we don't take ::Type{<: Asset} as an
argument for the default trait function. Doing so makes it more restrictive
as the default value would only be available for types that are defined
under the Asset type hierarchy. This may or may not be desirable,
depending on how the trait is used. Either way should be fine.

Implementing trait behavior
Now that we can tell which types are liquid and which are not, we can define methods that
take objects with those traits. First, let's do something really simple:

# The thing is tradable if it is liquid
tradable(x::T) where {T} = tradable(LiquidityStyle(T), x)
tradable(::IsLiquid, x) = true
tradable(::IsIlliquid, x) = false

In Julia, types are first-class citizens. The tradable(x::T) where {T} signature captures
the type of argument as T. Since we have already defined the LiquidityStyle function,
we can derive whether the passed argument exhibits the IsLiquid or IsIlliquid trait.
So, the first tradable method simply takes the return value of LiquidityStyle(T) and
passes it as the first argument for the other two tradable methods. This simple example
demonstrates the dispatch effect.



Reusability Patterns Chapter 5

[ 181 ]

Now, let's look at a more interesting function that exploits the same trait. Since liquid assets
are easily tradable in the market, we should be able to discover their market price quickly
as well. For stocks, we may call a pricing service from the stock exchange. For cash, the
market price is just the currency amount. Let's see how this is coded:

# The thing has a market price if it is liquid
marketprice(x::T) where {T} = marketprice(LiquidityStyle(T), x)
marketprice(::IsLiquid, x) = error("Please implement pricing function for
", typeof(x))
marketprice(::IsIlliquid, x) = error("Price for illiquid asset $x is not
available.")

The code's structure is the same as the tradable function. One method is used to
determine the trait, while the other two methods implement different behaviors for the 
liquid and illiquid instruments. Here, both marketprice functions just raise an exception
by calling the error function. Of course, that's not what we really want. What we should
really have is a specific pricing function for the Stock and Money types. Okay; let's do just
that:

# Sample pricing functions for Money and Stock
marketprice(x::Money) = x.amount
marketprice(x::Stock) = rand(200:250)

Here, the marketprice method for the Money type just returns the amount. This is quite a
simplification since, in practice, we may calculate the amount in the local currency (for
example, US Dollars) from the currency and amount. As for Stock, we just return a
random number for the purpose of testing. In reality, we would have attached this function
to a stock pricing service.

For illustration purposes, we have developed the following test functions:

function trait_test_cash()
    cash = Money("USD", 100.00)
    @show tradable(cash)
    @show marketprice(cash)
end

function trait_test_stock()
    aapl = Stock("AAPL", "Apple, Inc.")
    @show tradable(aapl)
    @show marketprice(aapl)
end

function trait_test_residence()
    try
        home = Residence("Los Angeles")



Reusability Patterns Chapter 5

[ 182 ]

        @show tradable(home) # returns false
        @show marketprice(home) # exception is raised
    catch ex
        println(ex)
    end
    return true
end

function trait_test_bond()
    try
        bill = TreasuryBill("123456789")
        @show tradable(bill)
        @show marketprice(bill) # exception is raised
    catch ex
        println(ex)
    end
    return true
end

Here's the result from the Julia REPL:

Perfect! The tradable function has correctly identified that cash, stock, and bond are liquid
and that residence is illiquid. For cash and stocks, the marketprice function was able to 
return a value, as expected. Because residence is not liquid, an error was raised. Finally,
while treasury bills are liquid, an error was raised because the marketprice function has
not been defined for the instrument.



Reusability Patterns Chapter 5

[ 183 ]

Using traits with a different type of hierarchy
The best part of the holy trait pattern is that we can use it with any object, even when its
type belongs to a different abstract type hierarchy. Let's explore the case of literature, where
we may define its own type hierarchy as follows:

abstract type Literature end

struct Book <: Literature
    name
end

Now, we can make it obey the LiquidityStyle trait, as follows:

# assign trait
LiquidityStyle(::Type{Book}) = IsLiquid()

# sample pricing function
marketprice(b::Book) = 10.0

Now, we can trade books, just like other tradable assets.

Reviewing some common usages
The holy traits pattern is commonly used in open source packages. Let's take a look at some
examples.

Example 1 – Base.IteratorSize
The Julia Base library uses traits quite extensively. An example of such a trait
is Base.IteratorSize. Its definition can be found using generator.jl:

abstract type IteratorSize end
struct SizeUnknown <: IteratorSize end
struct HasLength <: IteratorSize end
struct HasShape{N} <: IteratorSize end
struct IsInfinite <: IteratorSize end



Reusability Patterns Chapter 5

[ 184 ]

This trait is slightly different from what we have learned about so far because it is not
binary. The IteratorSize trait can be SizeUnknown, HasLength, HasShape{N},
or IsInfinite. The IteratorSize function is defined as follows:

"""
    IteratorSize(itertype::Type) -> IteratorSize
"""
IteratorSize(x) = IteratorSize(typeof(x))
IteratorSize(::Type) = HasLength() # HasLength is the default

IteratorSize(::Type{<:AbstractArray{<:Any,N}}) where {N} = HasShape{N}()
IteratorSize(::Type{Generator{I,F}}) where {I,F} = IteratorSize(I)

IteratorSize(::Type{Any}) = SizeUnknown()

Let's focus on the IsInfinite trait since it looks quite interesting. A few functions have
been defined in Base.Iterators that generate infinite sequences. For example,
the Iterators.repeated function can be used to generate the same value forever, and we
can use the Iterators.take function to pick up the values from the sequence. Let's see
how this works:

If you look at the source code, you'll see that Repeated is the type of the iterator and that it
is assigned the IteratorSize trait with IsInfinite:

IteratorSize(::Type{<:Repeated}) = IsInfinite()

We can quickly test it out like so:



Reusability Patterns Chapter 5

[ 185 ]

Voila! It is infinite, just as we expected! But how is this trait utilized? To find out how, we
can look into the BitArray from the Base library, which is a space-efficient Boolean array
implementation. Its constructor function can take any iterable object, such as an array:

Perhaps it isn't hard to understand that the constructor can't really work with something
that is infinite in nature! Therefore, the implementation of the BitArray constructor has to
take that into account. Because we can dispatch based upon the IteratorSize trait, the
constructor of BitArray happily throws an exception when such an iterator is passed:

BitArray(itr) = gen_bitarray(IteratorSize(itr), itr)

gen_bitarray(::IsInfinite, itr) = throw(ArgumentError("infinite-size
iterable used in BitArray constructor"))

To see it in action, we can call the BitArray constructor with the Repeated iterator, like
so:

Example 2 – AbstractPlotting.jl ConversionTrait
AbstractPlotting.jl is an abstract plotting library that is part of the Makie plotting
system. The source code for this library can be found at https:/ /github. com/ JuliaPlots/
AbstractPlotting.jl.

Let's take a look at a trait that's related to data conversion:

abstract type ConversionTrait end

struct NoConversion <: ConversionTrait end
struct PointBased <: ConversionTrait end
struct SurfaceLike <: ConversionTrait end

# By default, there is no conversion trait for any object

https://github.com/JuliaPlots/AbstractPlotting.jl
https://github.com/JuliaPlots/AbstractPlotting.jl
https://github.com/JuliaPlots/AbstractPlotting.jl
https://github.com/JuliaPlots/AbstractPlotting.jl
https://github.com/JuliaPlots/AbstractPlotting.jl
https://github.com/JuliaPlots/AbstractPlotting.jl
https://github.com/JuliaPlots/AbstractPlotting.jl
https://github.com/JuliaPlots/AbstractPlotting.jl
https://github.com/JuliaPlots/AbstractPlotting.jl
https://github.com/JuliaPlots/AbstractPlotting.jl
https://github.com/JuliaPlots/AbstractPlotting.jl
https://github.com/JuliaPlots/AbstractPlotting.jl


Reusability Patterns Chapter 5

[ 186 ]

conversion_trait(::Type) = NoConversion()
conversion_trait(::Type{<: XYBased}) = PointBased()
conversion_trait(::Type{<: Union{Surface, Heatmap, Image}}) = SurfaceLike()

It defines a ConversionTrait that can be used for the convert_arguments function. As
it stands, the conversion logic can be applied to three different scenarios:

No conversion. This is handled by the default trait type of NoConversion.1.
PointBased conversion.2.
SurfaceLike conversion.3.

By default, the convert_arguments function just returns the arguments untouched when
conversion is not required:

# Do not convert anything if there is no conversion trait
convert_arguments(::NoConversion, args...) = args

Then, various convert_arguments functions are defined. Here is the function for 2D
plotting:

"""
    convert_arguments(P, x, y)::(Vector)

Takes vectors `x` and `y` and turns it into a vector of 2D points of the
values
from `x` and `y`.

`P` is the plot Type (it is optional).
"""
convert_arguments(::PointBased, x::RealVector, y::RealVector) =
(Point2f0.(x, y),)

Using the SimpleTraits.jl package
The SimpleTraits.jl package (https:/ /github. com/ mauro3/ SimpleTraits. jl) may be
used to make programming traits a little easier.

Let's try to redo the LiquidityStyle example using SimpleTraits. First, define a trait
called IsLiquid, as follows:

@traitdef IsLiquid{T}

https://github.com/mauro3/SimpleTraits.jl
https://github.com/mauro3/SimpleTraits.jl
https://github.com/mauro3/SimpleTraits.jl
https://github.com/mauro3/SimpleTraits.jl
https://github.com/mauro3/SimpleTraits.jl
https://github.com/mauro3/SimpleTraits.jl
https://github.com/mauro3/SimpleTraits.jl
https://github.com/mauro3/SimpleTraits.jl
https://github.com/mauro3/SimpleTraits.jl
https://github.com/mauro3/SimpleTraits.jl
https://github.com/mauro3/SimpleTraits.jl
https://github.com/mauro3/SimpleTraits.jl
https://github.com/mauro3/SimpleTraits.jl


Reusability Patterns Chapter 5

[ 187 ]

The syntax may look a little awkward since the T seems to be doing nothing, but it is
actually required because the trait is applicable for a specific type T. The next thing is to
assign types to this trait:

@traitimpl IsLiquid{Cash}
@traitimpl IsLiquid{Investment}

Then, a special syntax with four colons can be used to define functions that take objects
exhibiting the trait:

@traitfn marketprice(x::::IsLiquid) = error("Please implement pricing
function for ", typeof(x))
@traitfn marketprice(x::::(!IsLiquid)) = error("Price for illiquid asset $x
is not available.")

The positive case has the argument annotated with x::::IsLiquid, while the negative
case has the argument annotated with x::::(!IsLiquid). Note that the parentheses is
required so that the code can be parsed correctly. Now, we can test the functions as follows:

As expected, both default implementations throw an error. Now, we can implement the
pricing function for Stock and quickly test again:

Looks great! As we can see, the SimpleTrait.jl package simplifies the process of creating
traits.

Using traits can make your code more extendable. We must keep in mind, however, that it
takes some effort to design proper traits. Documentation is also important so that anyone
who wants to extend the code can understand how to utilize the predefined traits.

Next, we will go over parametric types, which are commonly used to extends data types
easily.



Reusability Patterns Chapter 5

[ 188 ]

The parametric type pattern
Parametric type is a core language feature that's used to materialize data types with
parameters. It is a very powerful technique because the same object structure can be reused
for different data types in its fields. In this section, we will demonstrate how parametric
types can be applied effectively.

When designing applications, we often create composite types to conveniently hold
multiple field elements. In its simplest form, composite types only serve as the containers of
fields. As we create more and more composite types, it may become clear that some of these
types look almost the same. Furthermore, the functions that operate on these types may be
very similar as well. We could end up with a lot of boilerplate code. Wouldn't it be cool to
have a template that allows us to customize a general composite type for a specific use? 

Consider a trading application that supports buying and selling stocks. In the very first
version, we may have the following design:

Please beware that the notation in the preceding diagram may look a lot
like Unified Modeling Language (UML). However, because Julia is not
an object-oriented language, we may make certain exceptions when
illustrating design concepts with these diagrams.

The corresponding code is as follows:

# Abstract type hierarchy for personal assets
abstract type Asset end
abstract type Investment <: Asset end
abstract type Equity <: Investment end

# Equity Instruments Types
struct Stock <: Equity
    symbol::String
    name::String
end



Reusability Patterns Chapter 5

[ 189 ]

# Trading Types
abstract type Trade end

# Types (direction) of the trade
@enum LongShort Long Short

struct StockTrade <: Trade
    type::LongShort
    stock::Stock
    quantity::Int
    price::Float64
end

The data types we defined in the preceding code are fairly straightforward. The
LongShort enum type is used to indicate the direction of trade—buying stock would be
long, while selling stock would be short. The @enum macro is conveniently used to define
the Long and Short constants.

Now, suppose that we were asked to support stock options in our next version of the
software. Naively, we could define more data types, as follows:

The code is updated with additional data types, like so:

# Types of stock options
@enum CallPut Call Put

struct StockOption <: Equity
    symbol::String
    type::CallPut
    strike::Float64
    expiration::Date
end



Reusability Patterns Chapter 5

[ 190 ]

struct StockOptionTrade <: Trade
    type::LongShort
    option::StockOption
    quantity::Int
    price::Float64
end

You might have noticed that the StockTrade and StockOptionTrade types are very
similar. Such repetition is somewhat unsatisfying. It looks even worse when we define
functions for these data types, as follows:

# Regardless of the instrument being traded, the direction of
# trade (long/buy or short/sell) determines the sign of the
# payment amount.
sign(t::StockTrade) = t.type == Long ? 1 : -1
sign(t::StockOptionTrade) = t.type == Long ? 1 : -1

# market value of a trade is simply quantity times price
payment(t::StockTrade) = sign(t) * t.quantity * t.price
payment(t::StockOptionTrade) = sign(t) * t.quantity * t.price

Both the sign and payment methods are strikingly similar for both the StockTrade and
StockOptionTrade types. Perhaps it isn't hard to imagine that this cannot scale very well
when we add more tradable types to the application. There has to be a better way to do
this. This is where the parametric type comes to the rescue!

Utilizing remove text parametric type for the
stock trading app
In the trading application we described previously, we could utilize parametric types to
simplify the code and make it more reusable when adding future trading instruments.

It is quite clear that SingleStockTrade and SingleStockOptionTrade are almost the
same. In fact, even the function definitions of sign and payment are identical. In this very
simple example, we only have two functions for each type. In practice, we could have many
more functions, and it would become quite messy.



Reusability Patterns Chapter 5

[ 191 ]

Designing parametric types
To simplify this design, we can parameterize the type of the thing being traded. What is the
thing? We can leverage the abstract type here. The supertype of Stock is Equity, while the
supertype of Equity is Investment. Since we want to keep the code generic and
buying/selling investment products is similar, we can choose to accept any type that is a
subtype of Investment:

struct SingleTrade{T <: Investment} <: Trade
    type::LongShort
    instrument::T
    quantity::Int
    price::Float64
end

Now, we have defined a new type called SingleTrade, where the underlying instrument
has a type, T, where T can be any subtype of Investment. At this point, we can create
trades with different kinds of instruments:

These objects actually have different types—SingleTrade{Stock}

and SingleTrade{StockOption}. How do they relate to each other? They are also
subtypes of SingleTrade, as shown in the following screenshot:

Since both types are subtypes of SingleTrade, this allows us to define functions that apply
to both types, as we will see in the next section.



Reusability Patterns Chapter 5

[ 192 ]

Designing parametric methods
In order to fully utilize the compiler's specialization feature, we should define parametric
methods that also make use of the parametric type, like so:

# Return + or - sign for the direction of trade
function sign(t::SingleTrade{T}) where {T}
    return t.type == Long ? 1 : -1
end

# Calculate payment amount for the trade
function payment(t::SingleTrade{T}) where {T}
    return sign(t) * t.quantity * t.price
end

Let's test this out:

But hey, we just found a little bug. The option of $3.50 seems too good to be true! When
looking at buying/selling options, each option contract actually represents 100 shares of the
underlying stock. Therefore, the payment amount for stock option trades needs to be
multiplied by 100. To fix this, we can just implement a more specific payment method:

# Calculate payment amount for option trades (100 shares per contract)
function payment(t::SingleTrade{StockOption})
    return sign(t) * t.quantity * 100 * t.price
end

Now, we can test again. Due to this, the new method is only dispatched for option trades:

Voila! Isn't it beautiful? We will look at a more elaborate example in the next section.



Reusability Patterns Chapter 5

[ 193 ]

Using multiple parametric type arguments
So far, we're quite happy with our refactoring. However, our boss just called and said we
have to support pair trading in the next release. This new request is adding yet another twist
to our design!

Pair trading can be used to implement a specific trading strategy, such
as market-neutral trades or option strategies such as covered calls.

Market neutral trading involves buying one stock and short-selling
another one at the same time. The idea is to neutralize the market's effects
so that the investor can focus on picking the stocks that over-perform or
under-perform relative to their peers.

Covered call strategy involves buying a stock but selling a call option that
strikes at a higher price. This allows the investor to earn an additional
premium in exchange for the limited upside potential of the underlying
stock.

This can be handled easily with parametric types. Let's create a new type called
PairTrade:

struct PairTrade{T <: Investment, S <: Investment} <: Trade
    leg1::SingleTrade{T}
    leg2::SingleTrade{S}
end

Note that the two legs from the trade can have different types, T and S, and that they can be
any subtype of Investment. Because we expect every Trade type to support the payment
function, we can implement this easily, as follows:

payment(t::PairTrade) = payment(t.leg1) + payment(t.leg2)



Reusability Patterns Chapter 5

[ 194 ]

We can reuse the stock and option objects from the previous session and create a pair
trade transaction where we buy 100 shares of the stock and sell 1 option contract. The 
expected payment amount is $18,800 - $350 = $18,450:

To appreciate how much parametric types simplified our design, imagine how many
functions you would have to write if you had to create separate concrete types. In this
example, since we have two possible trades in a pair trade transaction and each trade can
be a stock trade or option trade, we have to support 2 x 2 = 4 different scenarios:

payment(PairTradeWithStockAndStock)

payment(PairTradeWithStockAndStockOption)

payment(PairTradeWithStockOptionAndStock)

payment(PairTradeWithStockOptionAndStockOption)

Using parametric types, we only need a single payment function that covers all scenarios.

Real-life examples
You can find the use of parametric types in almost any open source packages. Let's go over
some examples.



Reusability Patterns Chapter 5

[ 195 ]

Example 1 – the ColorTypes.jl package
ColorTypes.jl is a package that defines various data types that represent colors. In
practice, there are many ways in which a color can be defined: Red-Green-Blue
(RGB), Hue-Saturation-Value (HSV), and so on. Most of the time, a color can be defined
using three real numbers. In the case of grayscale, only a single number is required to 
represent the level of darkness. To support transparent colors, an additional value can be
used to store an opacity value. First, let's take a look at the type definitions:

"""
`Colorant{T,N}` is the abstract super-type of all types in ColorTypes,
and refers to both (opaque) colors and colors-with-transparency (alpha
channel) information. `T` is the element type (extractable with
`eltype`) and `N` is the number of *meaningful* entries (extractable
with `length`), that is, the number of arguments you would supply to the
constructor.
"""
abstract type Colorant{T,N} end

# Colors (without transparency)
"""
`Color{T,N}` is the abstract supertype for a color (or
grayscale) with no transparency.
"""
abstract type Color{T, N} <: Colorant{T,N} end

"""
`AbstractRGB{T}` is an abstract supertype for red/green/blue color types
that
can be constructed as `C(r, g, b)` and for which the elements can be
extracted as `red(c)`, `green(c)`, `blue(c)`. You should *not* make
assumptions about internal storage order, the number of fields, or the
representation. One `AbstractRGB` color-type, `RGB24`, is not
parametric and does not have fields named `r`, `g`, `b`.
"""
abstract type AbstractRGB{T}      <: Color{T,3} end

The Colorant{T,N} type can represent all kinds of colors, with or without transparency.
The T parameter represents the type of each individual value in the color definition; for
example, Int, Float64, and so on. The N parameter represents the number of values in the
color definition, which is usually three. 



Reusability Patterns Chapter 5

[ 196 ]

Color{T,N} is a subtype of Colorant{T,N} and represents non-transparent colors.
Finally, AbstractRGB{T} is a subtype of Color{T,N}. Note that the N parameter is no
longer needed as a parameter in AbstractRGB{T} because it is already defined with N=3.
Now, the concrete parametric type, RGB{T}, is defined as follows:

const Fractional = Union{AbstractFloat, FixedPoint}

"""
`RGB` is the standard Red-Green-Blue (sRGB) colorspace. Values of the
individual color channels range from 0 (black) to 1 (saturated). If
you want "Integer" storage types (for example, 255 for full color), use
`N0f8(1)`
instead (see FixedPointNumbers).
"""
struct RGB{T<:Fractional} <: AbstractRGB{T}
    r::T # Red [0,1]
    g::T # Green [0,1]
    b::T # Blue [0,1]
    RGB{T}(r::T, g::T, b::T) where {T} = new{T}(r, g, b)
end

The definition of RGB{T <: Fractional} is fairly straightforward. It contains three
values of type T, which can be a subtype of Fractional. Since the Fractional type is
defined as a union of AbstractFloat and FixedPoint, the r, g, and b fields may be used
as any subtype of AbstractFloat, such as Float64 and Float32, or any of the
FixedPoint number types.

FixedPoint is a type that's defined in the FixedPointNumbers.jl
package. Fixed-point numbers is a different way to represent real
numbers than the floating-point format. More information can be found at
https:/ /github. com/ JuliaMath/ FixedPointNumbers. jl.

If you examine the source code further, you will find that many types are defined in a
similar fashion.

Example 2 – the NamedDims.jl package
The NamedDims.jl package adds names to each dimension of a multi-dimensional array.
The source code can be found at https:/ / github. com/ invenia/ NamedDims. jl.

https://github.com/JuliaMath/FixedPointNumbers.jl
https://github.com/JuliaMath/FixedPointNumbers.jl
https://github.com/JuliaMath/FixedPointNumbers.jl
https://github.com/JuliaMath/FixedPointNumbers.jl
https://github.com/JuliaMath/FixedPointNumbers.jl
https://github.com/JuliaMath/FixedPointNumbers.jl
https://github.com/JuliaMath/FixedPointNumbers.jl
https://github.com/JuliaMath/FixedPointNumbers.jl
https://github.com/JuliaMath/FixedPointNumbers.jl
https://github.com/JuliaMath/FixedPointNumbers.jl
https://github.com/JuliaMath/FixedPointNumbers.jl
https://github.com/JuliaMath/FixedPointNumbers.jl
https://github.com/JuliaMath/FixedPointNumbers.jl
https://github.com/invenia/NamedDims.jl
https://github.com/invenia/NamedDims.jl
https://github.com/invenia/NamedDims.jl
https://github.com/invenia/NamedDims.jl
https://github.com/invenia/NamedDims.jl
https://github.com/invenia/NamedDims.jl
https://github.com/invenia/NamedDims.jl
https://github.com/invenia/NamedDims.jl
https://github.com/invenia/NamedDims.jl
https://github.com/invenia/NamedDims.jl
https://github.com/invenia/NamedDims.jl
https://github.com/invenia/NamedDims.jl
https://github.com/invenia/NamedDims.jl


Reusability Patterns Chapter 5

[ 197 ]

Let's take a look at the definition of NamedDimsArray:

"""
The `NamedDimsArray` constructor takes a list of names as `Symbol`s,
one per dimension, and an array to wrap.
"""
struct NamedDimsArray{L, T, N, A<:AbstractArray{T, N}} <: AbstractArray{T,
N}
    # `L` is for labels, it should be an `NTuple{N, Symbol}`
    data::A
end

Don't be intimidated by the signature. It is actually quite straightforward.

NamedDimsArray is a subtype of the abstract array type AbstractArray{T, N}. It only
contains a single field, data, which keeps track of the underlying data. Because T and N are
already parameters in A, they also need to be specified in the signature of
NamedDimsArray. The L parameter is used to keep track of the names of the dimensions.
Note that L is not used in any of the fields but that it is conveniently stored in the type
signature itself.

The primary constructor is defined as follows:

function NamedDimsArray{L}(orig::AbstractArray{T, N}) where {L, T, N}
    if !(L isa NTuple{N, Symbol})
        throw(ArgumentError(
            "A $N dimensional array, needs a $N-tuple of dimension names.
Got: $L"
        ))
    end
    return NamedDimsArray{L, T, N, typeof(orig)}(orig)
end

The function only needs to take an AbstractArray{T,N} that is an N-dimensional array
with an element type of T. First, it checks if L contains a tuple of N symbols. Because type 
parameters are first-class, they can be examined in the body of the function. Assuming that
L contains the right number of symbols, it just instantiates a NamedDimsArray using the
known parameters L, T, N, as well as the type of the array argument.



Reusability Patterns Chapter 5

[ 198 ]

It may be easier to see how it's used, so let's take a look:

In the output, we can see that the type signature is NamedDimsArray{(:x,
:y),Int64,2,Array{Int64,2}}. Matching this with the signature of the
NamedDimsArray type, we can see that L is just the two-symbol tuple (:x, :y), T is
Int64, N is 2, and the underlying data is of the Array{Int64, 2} type.

Let's take a look at the dimnames function, which is defined as follows:

dimnames(::Type{<:NamedDimsArray{L}}) where L = L

This function returns the dimensions tuple:

Now, things are getting a little more interesting. What is NamedDimsArray{L}? Didn't we
need four parameters in this type? It is worth noting that a type such
as NamedDimsArray{L, T, N, A} is actually a subtype of NamedDimsArray{L}. We can
prove this as follows:



Reusability Patterns Chapter 5

[ 199 ]

If we really want to see what NamedDimsArray{L} is, we can try the following:

What seems to be happening is that NamedDimsArray{(:x, :y)} is just shorthand
for NamedDimsArray{(:x, :y),T,N,A} where A<:AbstractArray{T,N} where N
where T. Because this is a more general type with three unknown parameters, we can see
why NamedDimsArray{(:x, :y),Int64,2,Array{Int64,2}} is a subtype
of NamedDimsArray{(:x, :y)}.

Using parametric types is very good if we wish to reuse functionalities. We can almost view
each type parameter as a "dimension". When a parametric type has two type parameters,
we would have many possible subtypes based upon various combinations of each type
parameter.

Summary
In this chapter, we have explored several patterns related to reusability. These patterns are
highly valuable and can be utilized in many places within an application. In addition,
people coming from an object-oriented background will probably find this chapter
indispensable when it comes to designing Julia applications.

First, we went into great detail about the delegation pattern, which can be used to create
new capabilities and lets us reuse functions from an existing object. The general technique
involves defining a new data type that contains a parent object. Then, forwarding functions
are defined so that we can reuse the functionalities of the parent object. We learned
implementing delegation can be largely simplified by using @forward, which is provided
by the Lazy.jl package.



Reusability Patterns Chapter 5

[ 200 ]

Then, we examined the holy trait pattern, which is a formal way to define the behavior of
objects. The idea is to define traits as native types and utilize Julia's built-in dispatch
mechanism to call the right method implementation. We realize that traits are useful in
making the code more extensible. We also learned that macros from the SimpleTraits.jl
package can make trait coding easier.

Finally, we looked into the parametric types pattern and how it can be utilized to simplify
the design of code. We learned that parametric types can reduce the size of our code. We
also saw that parameters can be used in the bodies of parametric functions.

In the next chapter, we will discuss an important subject that attracts a lot of people to the
Julia programming language – performance patterns!

Questions
How does the delegation pattern work?1.
What is the purpose of traits?2.
Are traits always binary?3.
Can traits be used for objects from a different type hierarchy?4.
What are the benefits of parametric types?5.
How do we store the information of a parametric type?6.



6
Performance Patterns

This chapter includes patterns related to improving system performance. High
performance is a major requirement in scientific computing, artificial intelligence, machine
learning, and big data processing. Why is that? 

In the past decade, data has grown almost exponentially thanks to the scalability from the
cloud. Think about the Internet of Things (IoT). Sensors are all around us—home security
systems, personal assistants, and even room temperature controls are collecting tons of data
continuously. Furthermore, the data being collected is stored and analyzed by companies
that want to build smarter products. Use cases such as these demand more computing
power and speed.

I once debated with a colleague about the use of cloud technologies for solving
computationally intensive problems. Computing resources are definitely available in the
cloud, but they are not free. It is therefore quite important that computer programs are
designed to be more efficient and optimized to avoid unnecessary costs in the cloud. 

Fortunately, the Julia programming language allows us to easily utilize CPU resources to
the fullest extent. The way to make things fast is not difficult as long as some rules are
followed. The online Julia reference manual already contains some tips. This chapter
provides further patterns that are used extensively by veteran Julia developers to increase
performance. 

We will go over the following design patterns:

Global constant
Struct of arrays
Shared arrays
Memoization
Barrier function

Let's get started!



Performance Patterns Chapter 6

[ 202 ]

Technical requirements
The sample source code is located at https:/ /github. com/ PacktPublishing/ Hands- on-
Design-Patterns- and- Best- Practices- with- Julia/ tree/ master/ Chapter06.

The code is tested in a Julia 1.3.0 environment.

The global constant pattern
Global variables are generally considered evil. I'm not kidding—they are evil. If you don't
believe me, just google it. There are many reasons why they are bad, but in Julia land, they
can also be a contributor to poor application performance.

Why do we want to use global variables? In the Julia language, variables are either in the
global or local scope. For example, all variable assignments at the top level of a module are
considered global. Variables that appear inside functions are local. Consider an application
that connects to an external system—a handle object is typically created upon connection.
Such handle objects can be kept in a global variable because all functions in the module can
access the variable without having to pass it around as a function argument. That's the
convenience factor. Also, this handler object only needs to be created once, and then it can
be used at any time for subsequent actions.

Unfortunately, global variables also come with a cost. It may not be obvious at first, but it
does hurt performance—indeed, quite badly, in some cases. In this section, we will discuss
how bad global variables hurt performance and how the problem can be remedied by using
global constants.

Benchmarking performance with global variables
Sometimes, it is convenient to use global variables because they are accessible from
anywhere in the code. However, application performance may suffer when using global
variables. Let's figure out together how badly performance is affected. Here is a very simple
function that just adds two numbers together:

variable = 10

function add_using_global_variable(x)
    return x + variable
end

https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter06


Performance Patterns Chapter 6

[ 203 ]

To benchmark this code, we will use the great BenchmarkTools.jl package, which can
repeatedly run the code many times and report back some performance statistics. Let's get
started:

It seems a little slow for just adding two numbers. Let's get rid of the global variable and
just add the numbers using two function arguments. We can define the new function as
follows:

function add_using_function_arg(x, y)
    return x + y
end

Let's benchmark this new function:

That's unbelievable! Taking away the reference to the global variable sped up the function by
almost 900 times. To understand where the performance hit came from, we can use the
built-in introspection tool from Julia to see the generated LLVM code.

Here's the generated code for the faster one. It is clean and contains just a single add
instruction:



Performance Patterns Chapter 6

[ 204 ]

On the other hand, the function that uses global variable generated this ugly code:

Why is that? Shouldn't the compiler be smarter? The answer is that the compiler cannot
really assume that the global variable is always an integer. Because it is a variable, which
means it can be changed at any time, the compiler must generate code that can handle any
data type, to stay on the safe side. Well, such additional flexibility introduces a huge
overhead in this case.



Performance Patterns Chapter 6

[ 205 ]

Enjoying the speed of global constants
To improve performance, let's create a global constant by using the const keyword. Then,
we can define a new function that accesses the constant, as follows:

const constant = 10

function add_using_global_constant(x)
    return constant + x
end

Let's benchmark its performance now:

This is perfect! If we introspect the function again, we get the following clean code:

Next, we will discuss how to use a global variable (not a constant) and still make it slightly
better.

Annotating variables with type information
It is best when we can just use global constants. But what if the variable does need to be
changed during the life cycle of the application? For example, maybe it is a global counter
that keeps track of the number of visitors on a website.



Performance Patterns Chapter 6

[ 206 ]

At first, we may be tempted to do the following, but we quickly realized that Julia does not
support annotating global variables with type information:

Instead, what we can do is to annotate the variable type within the function itself, as
follows:

function add_using_global_variable_typed(x)
    return x + variable::Int
end

Let's see how it performs:

That's quite a speed boost compared to the untyped version of 31 ns! However, it is still far
away from the global constant solution.

Understanding why constants help performance
The compiler has a lot more freedom when dealing with constants because of the following:

The value does not change.
The type of the constant does not change. 

This will become clear after we look into some simple examples.

Let's take a look at the following function:

function constant_folding_example()
    a = 2 * 3
    b = a + 1
    return b > 1 ? 10 : 20
end



Performance Patterns Chapter 6

[ 207 ]

If we just follow the logic, then it is not difficult to see that it always returns a value of 10.
Let's just unroll it quickly here:

The a variable has a value of 6.
The b variable has a value of a + 1, which is 7.
Because the b variable is greater than 1, it returns 10.

From the compiler's perspective, the a variable can be inferred as a constant because it is
assigned but never changed, and likewise for the b variable.

We can take a look at the code generated by Julia for this:

The Julia compiler goes through several stages. In this case, we can use
the @code_typed macro, which shows the code that has been generated where all type
information has been resolved.

Voila! The compiler has figured it all out and just returns a value of 10 for this function. 

We realize that a couple of things have happened here:

When the compiler saw the multiplication of two constant values (2 * 3), it
computed the final value of 6 for a. This process is called constant folding.
When the compiler inferred a as a value of 6, it calculated b as a value of 7. This
process is called constant propagation.
When the compiler inferred b as a value of 7, it pruned away the else-branch
from the if-then-else operation. This process is called dead code elimination.

Julia's compiler optimization is truly state of the art. These are just some of the examples
that we can get a performance boost automatically without having to refactor a lot of code.

Passing global variables as function arguments
There is another way to tackle the problem of global variables. In a performance-sensitive
function, rather than accessing the global variable directly, we can pass the global variable
into the function as an argument. 



Performance Patterns Chapter 6

[ 208 ]

Let's refactor the code earlier in this section by adding a second argument, as follows:

function add_by_passing_global_variable(x, v)
    return x + v
end

Now, we can call the function by passing in the variable. Let's benchmark the code as
follows:

Fantastic! It's as fast as treating it as a constant. Where's the magic? As it turns out, Julia's
compiler automatically generates specialized functions according to the type of its
arguments. In this case, when we pass the variable as an integer value, the function is
compiled to the most optimized version because the types of the arguments are known. It is
fast now for the same reason as using constants.

Of course, you may argue that it defeats the purpose of using global variables. Nonetheless,
the flexibility is there and it can be used when you really need to get to the most optimal
performance.

When using BenchmarkTools.jl macros, we must interpolate global
variables using the dollar-sign prefix. Otherwise, the time that it takes to
reference the global variable is included in the performance test.

Hiding a variable inside a global constant 
Before we conclude this section, there is yet another alternative to keep the flexibility of
global variables while not losing too much performance. We can call it a global variable
placeholder.

As it may have become clear to you by now, Julia can generate highly optimized code
whenever the type of a variable is known at compilation time. Hence, one way to solve the
problem is to create a constant placeholder and store a value inside the placeholder.

Consider this code:

# Initialize a constant Ref object with the value of 10
const semi_constant = Ref(10)

function add_using_global_semi_constant(x)



Performance Patterns Chapter 6

[ 209 ]

    return x + semi_constant[]
end

The global constant is assigned a Ref object. In Julia, a Ref object is nothing but a
placeholder where the type of the enclosed object is known. You can try this in the Julia
REPL:

As we can see, the value inside Ref(10) has a type of Int64 according to the type
signature, Base.RefValue{Int64}. Similarly, the type of the value inside Ref("abc") is
String.

To fetch the value inside a Ref object, we can just use the index operator with no argument.
Hence, in the preceding code, we use semi_constant[].

What would be the performance overhead of this extra indirection? Let's benchmark the
code as usual:

That's not bad. Although it is far from the optimal performance of using global constant, it
is still approximately 15 times faster than using a plain global variable.

Because Ref object is just a placeholder, the underlying value can also be assigned:

In summary, the use of Ref allows us to simulate global variables without sacrificing too
much performance.



Performance Patterns Chapter 6

[ 210 ]

Turning to some real-life examples
Global constants are very common among Julia packages. It is not too surprising because
constants are also used to avoid hardcoding values directly in functions. 

Example 1 – SASLib.jl package
In the SASLib.jl package, most constants are defined in the constants.jl file located
at https://github. com/ tk3369/ SASLib. jl/blob/ master/ src/constants. jl.

Here's a fragment of the code:

# default settings
const default_chunk_size = 0
const default_verbose_level = 1

const magic = [
         b"\x00\x00\x00\x00\x00\x00\x00\x00" ;
         b"\x00\x00\x00\x00\xc2\xea\x81\x60" ;
         b"\xb3\x14\x11\xcf\xbd\x92\x08\x00" ;
         b"\x09\xc7\x31\x8c\x18\x1f\x10\x11" ]

const align_1_checker_value = b"3"
const align_1_offset = 32
const align_1_length = 1
const align_1_value = 4

Using these constants allows the file-reading functions to perform well.

Example 2 – PyCall.jl package
The PyCall.jl package's documentation suggests the user stores a Python object using the
global variable placeholder technique. The following excerpt can be found in
its documentation:

"For a type-stable global constant, initialize the constant to PyNULL() at the top level,
and then use the copy! function in your module's __init__ function to mutate it to its
actual value."

https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl
https://github.com/tk3369/SASLib.jl/blob/master/src/constants.jl


Performance Patterns Chapter 6

[ 211 ]

A type-stable global constant is generally what we want for high-performance code.
Basically, when the module is initialized, this global constant can be initialized with a value
of PyNULL(). This constant is really just a placeholder object that can be mutated with the
actual value later.

This technique is similar to the use of Ref as mentioned in the Hiding a variable inside a global
constant section. 

Considerations
If a global variable can be replaced as a global constant, then it should always be done. The
reason for doing that is more than performance alone. Constants have the nice property of
guaranteeing that their values are unchanged throughout the application life cycle. In
general, the fewer global state changes, the more robust the program. Mutating states is
traditionally a source of hard-to-find bugs.

At times, we may get into a situation that we cannot avoid using global variables. That's too
bad. However, before we feel sad about that, we could also check whether the system
performance is materially affected or not.

In the preceding example of adding two numbers, accessing the global variable carries a
relatively large cost because the actual operation is so simple and efficient. Hence, more
work is done in terms of getting access to the global variable. On the other hand, if we have
a more complex function that takes much longer, say, 500 nanoseconds, then the extra 25
nanosecond overhead becomes much less significant. In that case, we may as well ignore
the issue as the overhead becomes immaterial.

Finally, we should always watch out when too many global variables are used. The
problem multiplies when more global variables are used. How many are too many? It
really depends on your situation, but it does not hurt to think about the application design
and ask yourself whether the application is designed properly.

In the next section, we will discuss a pattern that helps to improve system performance just
by laying out data differently in memory.



Performance Patterns Chapter 6

[ 212 ]

The struct of arrays pattern
In recent years, modern CPU architecture has got fancier to meet today's demands. Due to
various physical constraints, it is a lot more difficult to attain higher processor speed. Many
Intel processors now support a technology called Single Instruction, Multiple
Data (SIMD). By utilizing Streaming SIMD Extension (SSE) and Advanced Vector
Extensions (AVX) registers, several mathematical operations can be executed within a 
single CPU cycle. 

That is nice, but one of the pre-requisites of utilizing these fancy CPU instructions is to
make sure that the data is located in a contiguous memory block in the first place. That
brings us to our topic here. How do we orient our data in a contiguous memory block? You
may find the solution in this section.

Working with a business domain model
When designing an application, we often create an object model that mimics business
domain concepts. The idea is to clearly articulate data in a form that feels most natural to
the programmer.

Let's say we need to retrieve customers' data from a relational database. A customer record
may be stored in a CUSTOMER table, and each customer is stored as a row in the table. When
we fetch customer data from the database, we can construct a Customer object and push
that into an array. Similarly, when we work with NoSQL databases, we may receive data as
JSON documents and put them into an array of objects. In both cases, we can see that data
is represented as an array of objects. Applications are usually designed to work with objects
as defined using the struct statement.

Let's take a look at a use case for analyzing taxi data coming from New York City. The data
is publicly available as several CSV files. For illustration purposes, we have downloaded
the data for December 2018 and truncated it to 100,000 records. 

The full data file can be downloaded from https:/ /data. cityofnewyork.
us/Transportation/ 2018- Yellow- Taxi- Trip- Data/ t29m- gskq. 

For convenience, a smaller file with 100,000 records is available from our
GitHub site at https:/ /github. com/ PacktPublishing/ Hands- On- Design-
Patterns- with- Julia- 1. 0/raw/ master/ Chapter06/
StructOfArraysPattern/ yellow_ tripdata_ 2018- 12_ 100k. csv. 

https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Julia-1.0/raw/master/Chapter06/StructOfArraysPattern/yellow_tripdata_2018-12_100k.csv


Performance Patterns Chapter 6

[ 213 ]

First, we define a type called TripPayment, as follows:

struct TripPayment
    vendor_id::String
    tpep_pickup_datetime::String
    tpep_dropoff_datetime::String
    passenger_count::Int
    trip_distance::Float64
    fare_amount::Float64
    extra::Float64
    mta_tax::Float64
    tip_amount::Float64
    tolls_amount::Float64
    improvement_surcharge::Float64
    total_amount::Float64
end

To read the data into memory, we will take advantage of the CSV.jl package. Let's define a
function to read the file into a vector:

function read_trip_payment_file(file)
    f = CSV.File(file, datarow = 3)
    records = Vector{TripPayment}(undef, length(f))
    for (i, row) in enumerate(f)
        records[i] = TripPayment(row.VendorID,
                                 row.tpep_pickup_datetime,
                                 row.tpep_dropoff_datetime,
                                 row.passenger_count,
                                 row.trip_distance,
                                 row.fare_amount,
                                 row.extra,
                                 row.mta_tax,
                                 row.tip_amount,
                                 row.tolls_amount,
                                 row.improvement_surcharge,
                                 row.total_amount)
    end
    return records
end



Performance Patterns Chapter 6

[ 214 ]

Now, when we fetch the data, we end up with an array. In this example, we have
downloaded 100,000 records, as shown in the following screenshot:

Now, suppose that we need to analyze this dataset. In many data analysis use cases, we
simply calculate various statistics for some of the attributes in the payment records. For
example, we may want to find the average fare amount, as follows:

This should be a fairly fast operation already because it uses a generator syntax and avoids
allocation. 

Some Julia functions accept generator syntax, which can be written just
like an array comprehension without the square brackets. It is very
memory efficient because it avoids allocating memory for the intermediate
object.

The only thing is that it needs to access the fare_amount field for every record. If we
benchmark the function, it shows the following:



Performance Patterns Chapter 6

[ 215 ]

How do we know whether it runs at optimal speed? We don't unless we try to do it
differently. Because all we are doing is calculating the mean of 100,000 floating-point
numbers, we can easily replicate that with a simple array. Let's replicate the data in a
separate array:

fare_amounts = [r.fare_amount for r in records];

Then, we can benchmark the mean function by passing the array as is:

Whoa! What's happening here? It is 24x faster than before. 

In this case, the compiler was able to make use of the more advanced CPU instructions.
Because Julia arrays are dense arrays, that is, data is compactly stored in a contiguous block
of memory, it enables the compiler to fully optimize the operation.

Converting data into an array seems to be a decent solution. However, just imagine that
you have to create these temporary arrays for every single field. It is not much fun anymore
as there is a possibility to miss a field while doing so. Is there a better way to solve this
problem?

Improving performance using a different data
layout
The problem we just saw is caused by the use of an array of structs. What we really want is
a struct of arrays. Notice the difference between arrays of structs and structs of arrays? 

In an array of structs, to access a field for an object, the program must first index into the
object and then find the field via a predetermined offset in memory. For example, the
passenger_count field in the TripPayment object is the fourth field of the struct where
the preceding three fields are Int64, String, and String types. So, the offset to the
fourth field is 24. An array of structs has a row-oriented layout as every row is stored in a
contiguous block of memory.



Performance Patterns Chapter 6

[ 216 ]

We now introduce the concept of struct of arrays. In a struct of arrays, we take a column-
oriented approach. In this case, we only maintain a single object for the entire dataset.
Within the object, each field represents an array of a particular field of the original record.
For example, the fare_amount field would be stored as an array of fare amounts in this
object. The column-oriented format is optimized for high-performance computing because
the data values in the array all have the same type. In addition, they are also more compact
in memory. 

A struct is typically aligned into 8-byte memory blocks in a 64-bit system.
For example, a struct that contains just two fields of Int32 and Int16
types still consumes 8 bytes even though 6 bytes are enough to store the
data. The two extra bytes are used to pad the data structure to an 8-byte
boundary.

In the following sections, we will look into how to implement this pattern and confirm that
performance has improved.

Constructing a struct of arrays
It is easy and straightforward to construct a struct of arrays. After all, we were able to
quickly do that for a single field earlier. For completeness, this is how we can design a new
data type for storing the same trip payment data in a column-oriented format. The
following code shows that this pattern helps to improve performance:

struct TripPaymentColumnarData
    vendor_id::Vector{Int}
    tpep_pickup_datetime::Vector{String}
    tpep_dropoff_datetime::Vector{String}
    passenger_count::Vector{Int}
    trip_distance::Vector{Float64}
    fare_amount::Vector{Float64}
    extra::Vector{Float64}
    mta_tax::Vector{Float64}
    tip_amount::Vector{Float64}
    tolls_amount::Vector{Float64}
    improvement_surcharge::Vector{Float64}
    total_amount::Vector{Float64}
end

Notice that every field has been turned into Vector{T}, where T is the original data type of
the particular field. It looks quite ugly but we are willing to sacrifice ugliness here for
performance reasons.



Performance Patterns Chapter 6

[ 217 ]

The general rule of thumb is that we should just Keep It Simple (KISS).
Under certain circumstances, when we do need higher runtime
performance, we could bend a little.

Now, although we have a data type that is more optimized for performance, we still need
to populate it with data for testing. In this case, it can be achieved quite easily using array
comprehension syntax:

columar_records = TripPaymentColumnarData(
    [r.vendor_id for r in records],
    [r.tpep_pickup_datetime for r in records],
    [r.tpep_dropoff_datetime for r in records],
    [r.passenger_count for r in records],
    [r.trip_distance for r in records],
    [r.fare_amount for r in records],
    [r.extra for r in records],
    [r.mta_tax for r in records],
    [r.tip_amount for r in records],
    [r.tolls_amount for r in records],
    [r.improvement_surcharge for r in records],
    [r.total_amount for r in records]
);

When we're done, we can prove to ourselves that the new object structure is indeed
optimized:

Yes, it now has great performance, as we expected.

Using the StructArrays package
The ugliness of the preceding columnar struct left us in a very unsatisfied state. Not only do
we need to create a new data type with tons of Vector fields, we also have to create a
constructor function to convert our array of structs into the new type.

We can recognize the power of Julia when we get to use powerful packages in its
ecosystem. To fully implement this pattern, we will introduce the StructArrays.jl
package, which automates most of the mundane tasks in turning an array of structs into a
struct of arrays.



Performance Patterns Chapter 6

[ 218 ]

In fact, the usage of StructArrays is embarrassingly simple:

using StructArrays
sa = StructArray(records)

Let's take a quick look at the content. First of all, we can treat sa just like the original
array—for example, we can take the first three elements of the array as before:

If we pick just one record, it comes back with the original TripPayment object:

Just to make sure that there is no mistake, we can also check the type of the first record:

Hence, the new sa object works just like before. Now, the difference comes in when we
need to access all of the data from a single field. For example, we can get the fare_amount
field as follows:



Performance Patterns Chapter 6

[ 219 ]

Because the type is already materialized as a dense array, we can expect superb performance
when doing numerical or statistical analysis on this field, as follows:

What is a DenseArray? It is actually an abstract type for which all
elements in the array are allocated in a contiguous block of memory.
DenseArray is a super-type of array.

Julia supports dynamic arrays by default, which means the size of the
array can grow when we push more data into it. When it allocates more
memory, it copies existing data over to the new memory location. 

To avoid excessive memory reallocation, the current implementation uses
a sophisticated algorithm to increase the size of memory allocation—fast
enough to avoid excessive reallocation but conservative enough to not
over-allocate memory.

Understanding the space versus time trade-off
The StructArrays.jl package provides a convenient mechanism to quickly turn an array
of structs into a struct of arrays. We must recognize that the price we are paying is an
additional copy of the data in memory. Hence, we are once again getting into the classic
space versus time trade-off in computing.

Let's quickly look into our use case again. We can use the Base.summarysize function in
the Julia REPL to see the memory footprint:

The Base.summarysize function returns the size of the object in bytes. We divided the
number 1024 twice to arrive at the mega-byte unit. It is interesting to see that the struct of
arrays, sa, is more memory efficient than the original array of structs, records.
Nevertheless, we have two copies of data in memory.



Performance Patterns Chapter 6

[ 220 ]

Fortunately, we do have some options here if we want to conserve memory. First, we may
just discard the original data in the records variable if we no longer need the data in that
structure. We can even force the garbage collector to run, as follows:

Second, we can discard the sa variable when we are done with the computation.

Handling nested object structures
The preceding sample case works fine for any flat data structure. Nowadays, it is not
uncommon to design types that contain other composite types. Let's drill down a little bit
deeper to see how we can handle such a nested structure.

First, suppose that we want to separate the fields related to the fare in a separate composite
data type:

struct TripPayment
    vendor_id::String
    tpep_pickup_datetime::String
    tpep_dropoff_datetime::String
    passenger_count::Int
    trip_distance::Float64
    fare::Fare
end

struct Fare
    fare_amount::Float64
    extra::Float64
    mta_tax::Float64
    tip_amount::Float64
    tolls_amount::Float64
    improvement_surcharge::Float64
    total_amount::Float64
end

We can adjust the file reader slightly:

function read_trip_payment_file(file)
    f = CSV.File(file, datarow = 3)
    records = Vector{TripPayment}(undef, length(f))
    for (i, row) in enumerate(f)



Performance Patterns Chapter 6

[ 221 ]

        records[i] = TripPayment(row.VendorID,
                                 row.tpep_pickup_datetime,
                                 row.tpep_dropoff_datetime,
                                 row.passenger_count,
                                 row.trip_distance,
                                 Fare(row.fare_amount,
                                      row.extra,
                                      row.mta_tax,
                                      row.tip_amount,
                                      row.tolls_amount,
                                      row.improvement_surcharge,
                                      row.total_amount))
    end
    return records
end

After we read the data, the array of trip payment data would look like the following:

If we just create StructArray as before, we cannot extract the fare_amount field:

To achieve the same result at a level deeper, we can use the unwrap option:

The value of the unwrap keyword argument is basically a function that accepts a data type
for a particular field. If the function returns true, then that particular field will be
constructed with a nested StructArray.



Performance Patterns Chapter 6

[ 222 ]

We can now access the fare_amount field with another level of indirection as follows:

Using the unwrap keyword argument, we can easily walk through the entire data structure
and create a StructArray object that allows us to access any data element in a compact
array structure. From this point on, application performance can be improved.

Considerations
When designing applications, we ought to determine what is the most important thing that
is valued by our users. Similarly, when working on data analysis or data science projects,
we should think about what we care about the most. A customer-first approach is essential
in any decision-making process.

Let's assume that our priority is to achieve better performance. Then, the next question is
which part of the system requires optimization? If the part is slowed down due to the use of
an array of structs, how much do we gain in speed when we employ the struct of arrays
pattern? Is the performance gain noticeable—is it measured in milliseconds, minutes,
hours, or days?

Further, we need to consider system constraints. We like to think that the sky is the limit.
But then coming back to reality, we are limited in system resources all over the
place—the number of CPU cores, available memory, and disk space, as well other limits
imposed by our system administrators, such as, maximum number of opened files and
processes.

While struct of arrays can improve performance, there is an overhead in allocating memory
for the new arrays. If the data size is large, the allocation and data copy operation will take
some time as well. 

In the next section, we will look into another pattern that helps to conserve memory and
allows distributed computing— shared arrays. 



Performance Patterns Chapter 6

[ 223 ]

The shared array pattern
Modern operating systems can handle many concurrent processes and fully utilize all
processor cores. When it comes to distributed computing, a larger task is typically broken
down into smaller ones such that multiple processes can execute the tasks concurrently.
Sometimes, the results of these individual executions may need to be combined or
aggregated for final delivery. This process is called reduction. 

This concept is reincarnated in various forms. For example, in functional programming, it is
common to implement data processes using map-reduce. The mapping process takes a list
and applies a function to each element, and the reduction process combines the results. In
big data processing, Hadoop uses a similar form of map-reduce, except that it runs across
multiple machines in a cluster. The DataFrames package contains functions that perform
the Split-Apply-Combine pattern. These all present pretty much the same concept.

Sometimes, parallel worker processes need to communicate with each other. In general,
processes can talk to each other by passing data via some form of Inter-Process
Communication (IPC). There are many ways to do that—sockets, Unix domain sockets,
pipes, named pipes, message queues, shared memory, and memory maps.

Julia ships with a standard library called SharedArrays, which interfaces with the
operating system's shared memory and memory map interface. This facility allows Julia
processes to communicate with each other by sharing a central data source.

In this section, we will take a look at how SharedArrays can be used for high-performance
computing.

Introducing a risk management use case
In a risk management use case, we want to estimate the volatility of portfolio returns using
a process called Monte Carlo simulation. The concept is pretty simple. First, we develop a
risk model based on historical data. Second, we use the model to predict the future in
10,000 ways. Finally, we look at the distribution of security returns in the portfolio and 
gauge how much the portfolio gains or losses in each of those scenarios.

Portfolios are often measured against benchmarks. For example, a stock portfolio may be
benchmarked against the S&P 500 Index. The reason is that portfolio managers are typically
rewarded for earning alpha, a term for describing the excess return that is over and above
the benchmark's return. In other words, the portfolio manager is rewarded for their skills in
picking the right stocks.



Performance Patterns Chapter 6

[ 224 ]

In the fixed income market, the problem is a little more challenging. Unlike the stock
market, typical fixed income benchmarks are quite large, up to 10,000 bonds. In assessing
portfolio risk, we often want to analyze the sources of return. Did the value of a portfolio go
up because it was riding the wave in a bull market, or did it go down because everyone is
selling? The risk that correlates to market movement is called systematic risk. Another
source of return relates to the individual bond. For example, if the issuer of the bond is
doing well and making good profit, then the bond has a lower risk and the price goes up.
This kind of movement due to the specific individual bond is called idiosyncratic risk. For
a global portfolio, some bonds are exposed to currency risk as well. From a computational
complexity perspective, to estimate the returns of the benchmark index 10,000 ways, we
have to perform 10,000 future scenarios x 10,000 securities x 3 sources of returns = 300 million
pricing calculations.

Coming back to our simulation example, we can generate 10,000 possible future scenarios
of the portfolio, and the results are basically a set of returns across all such scenarios. The
returns data is stored on disk and is now ready for additional analysis. Here comes the
problem—an asset manager has to analyze over 1,000 portfolios, and each portfolio may
require access to returns data varying between 10,000 to 50,000 bonds depending on the
size of the benchmark index. Unfortunately, the production server is limited in memory but
has plenty of CPU resources. How can we fully utilize our hardware to perform the
analysis as quickly as possible?

Let's quickly summarize our problem:

Hardware:
16 vCPU
32 GB RAM

Security returns data:
Stored in 100,000 individual files
Each file contains a 10,000 x 3 matrix (10,000 future states and 3
return sources)
Total memory footprint is ~22 GB

Task:
Calculate statistical measures (standard deviation, skewness, and
kurtosis) for all security returns across the 10,000 future states.
Do that as quickly as possible!

The naive way to just load all of the files sequentially. Needless to say, loading 100,000 files
one by one is not going to be very fast no matter how small the files are. We are going to
use the Julia distributed computing facility to get it done. 



Performance Patterns Chapter 6

[ 225 ]

Preparing data for the example
To follow the subsequent code for this pattern, we can prepare some test data. Before you
run the code here, make sure that you have enough disk space for the test data. You will
need approximately 22 GB of free space.

Rather than putting 100,000 files in a single directory, we can split them into 100 sub-
directories. So, let's just create the directories first. A simple function is created for that
purpose:

function make_data_directories()
    for i in 0:99
        mkdir("$i")
    end
end

We can assume that every security is identified by a numerical index value between 1 and
100,000. Let's define a function that generates the path to find the file:

function locate_file(index)
    id = index - 1
    dir = string(id % 100)
    joinpath(dir, "sec$(id).dat")
end

The function is designed to hash the file into one of the 100 sub-directories. Let's see how it
works:

julia> locate_file.(vcat(1:2, 100:101))
4-element Array{String,1}:
 "0/sec0.dat"
 "1/sec1.dat"
 "99/sec99.dat"
 "0/sec100.dat"

So, the first 100 securities are located in directories called 0, 1, ..., 99. The 101st security
starts wrapping and goes back to directory 0. For consistency reasons, the filename contains
the security index minus 1.

Now we are ready to generate the test data. Let's define a function as follows:

function generate_test_data(nfiles)
    for i in 1:nfiles
        A = rand(10000, 3)
        file = locate_file(i)
        open(file, "w") do io
            write(io, A)



Performance Patterns Chapter 6

[ 226 ]

        end
    end
end

To generate all test files, we just need to call this function by passing nfiles with a value
of 100,000. By the end of this exercise, you should have test files scattered in all 100 sub-
directories. Note that the generate_test_data function will take a few minutes to
generate all the test data. Let's do that now:

When it is done, let's quickly take a look at our data files in a Terminal:

We're now ready to tackle the problem using the shared array pattern. Let's get started.

Overview of a high-performance solution
The beauty of SharedArrays is that the data is maintained as a single copy, and multiple
processes can have both read and write access. It is a perfect solution to our problem.



Performance Patterns Chapter 6

[ 227 ]

In this solution, we will do the following:

The master program creates a shared array.1.
Using a distributed for loop, the master program commands worker processes2.
to read each individual file into a specific segment of the array.
Again, using a distributed for loop, the master program commands worker3.
process to perform statistical analysis.

As we have 16 vCPUs, we can utilize all of them.

In practice, we should probably utilize fewer vCPUs so that we can leave
some room for the operating system itself. Your mileage may vary
depending on what else is running on the same server. The best approach
is to test various configurations and determine the optimal settings.

Populating data in the shared array
The security return files are distributed and stored in 100 different directories. Where it gets
stored is based upon a simple formula: file index modulus 100, where the file index is the
numerical identifier for each security, numbered between 1 to 100,000.

Each data file is in a simple binary format. The upstream process has calculated three
source returns for 10,000 future states, as in a 10,000 x 3 matrix. The layout is column-
oriented, meaning that the first 10,000 numbers are used for the first return source, the next
10,000 numbers are for the second return source, and so on.

Before we start using distributed computing functions, we must spawn worker processes.
Julia comes with a convenient command-line option (-p) that the user can specify the
number of worker processes up front as follows:



Performance Patterns Chapter 6

[ 228 ]

When the REPL comes up, we would already have 16 processes running and ready to
go. The nworkers function confirms that all 16 worker processes are available. 

Let's look into the code now. First, we must load Distributed and SharedArrays
packages:

using Distributed
using SharedArrays

To make sure that the worker processes know where to find the files, we have to change
directory on all of them:

@everywhere cd(joinpath(ENV["HOME"], "julia_book_ch06_data"))

The @everywhere macro executes the statement on all worker processes.

The main program looks like this:

nfiles = 100_000
nstates = 10_000
nattr = 3
valuation = SharedArray{Float64}(nstates, nattr, nfiles)
load_data!(nfiles, valuation)

In this case, we are creating a 3-dimensional shared array. Then, we call the load_data!
function to read all 100,000 files and shovel the data into the valuation matrix. How does
the load_data! function work? Let's take a look:

function load_data!(nfiles, dest)
    @sync @distributed for i in 1:nfiles
        read_val_file!(i, dest)
    end
end

It's a very simple for loop that just calls the read_val_file! function with an index
number. Notice the use of two macros here—@distributed and @sync. First, the
@distributed macro does the magic by sending the body of the for loop to the worker
processes. In general, the master program here does not wait for the worker processes to
return. However, the @sync macro blocks until all jobs are completely finished. 

How does it actually read the binary file? Let's see:

# Read a single data file into a segment of the shared array `dest`
# The segment size is specified as in `dims`.
@everywhere function read_val_file!(index, dest)
    filename = locate_file(index)
    (nstates, nattrs) = size(dest)[1:2]



Performance Patterns Chapter 6

[ 229 ]

    open(filename) do io
        nbytes = nstates * nattrs * 8
        buffer = read(io, nbytes)
        A = reinterpret(Float64, buffer)
        dest[:, :, index] = A
    end
end

Here, the function first locates the path of the data file. Then, it opens the file and reads all
the binary data into a byte array. Since the data is just 64-bit floating pointer numbers, we
use the reinterpret function to parse the data into an array of Float64 values. We do
expect 30,000 Float64 values here in each file, representing 10,000 future states and 3
source returns. When the data is ready, we just save them into the array for the particular
index.

We also use the @everywhere macro to ensure that the function is defined and made
available to all worker processes. The locate_file function is a little less interesting. It is
included here for completeness:

@everywhere function locate_file(index)
    id = index - 1
    dir = string(id % 100)
    return joinpath(dir, "sec$(id).dat")
end

To load the data files in parallel, we can define a load_data! function as follows:

function load_data!(nfiles, dest)
    @sync @distributed for i in 1:nfiles
        read_val_file!(i, dest)
    end
end

Here, we just put the @sync and @distributed macros in front of a for loop. Julia
automatically schedules and distributes the call among all work processes. Now that
everything is set up, we can run the program:

nfiles = 100_000
nstates = 10_000
nattr = 3
valuation = SharedArray{Float64}(nstates, nattr, nfiles)



Performance Patterns Chapter 6

[ 230 ]

We simply create a valuation SharedArray object. Then, we pass it to the load_data!
function for processing:

It only took about three minutes to load 100,000 files into memory using 16 parallel
processes. That's pretty good!

If you try to run the program in your own environment but encounter an
error, it may be due to system constraints. Refer to the later section,
Configuring system settings for shared memory usage, for more information. 

It turns out that this exercise is still IO-bound. CPU utilization hovered
just around 5% during the load process. Should the problem demand
incremental computation, we could possibly leverage the remaining CPU
resource by spawning other asynchronous processes that operate on data
and just got loaded into memory.

Analyzing data directly on a shared array
Using shared arrays allows us to perform parallel operations on the data from a single
memory space. As long as we do not mutate the data, then these operations can run
independently without conflicts. This type of problem is called embarrassingly parallel.

To illustrate the power of multi-processing, let's first benchmark a simple function that
calculates the standard deviation of the returns across all securities:

using Statistics: std

# Find standard deviation of each attribute for each security
function std_by_security(valuation)
    (nstates, nattr, n) = size(valuation)
    result = zeros(n, nattr)
    for i in 1:n
        for j in 1:nattr
            result[i, j] = std(valuation[:, j, i])
        end
    end
    return result
end



Performance Patterns Chapter 6

[ 231 ]

The value of n represents number of securities.  The value of nattr represents number of
sources of return. Let's see how much time it takes for a single process. The best timing was
5.286 seconds:

The @benchmark macro provides some statistics about the performance
benchmark. Sometimes, it is useful to see the distribution and have an
idea about how much GC impacts performance.

The seconds=30 parameter was specified because this function takes
seconds to run. The default parameter value is 5 seconds, and that would
not allow the benchmark to collect enough samples for reporting. 

We are now ready to run the program in parallel. First, we need to make sure that all child
processes have the dependent packages loaded:

@everywhere using Statistics: std

Then, we can define a distributed function, as follows:

function std_by_security2(valuation)
    (nstates, nattr, n) = size(valuation)
    result = SharedArray{Float64}(n, nattr)
    @sync @distributed for i in 1:n
        for j in 1:nattr
            result[i, j] = std(valuation[:, j, i])
        end
    end
    return result
end



Performance Patterns Chapter 6

[ 232 ]

This function looks very similar to the previous one, with some exceptions:

We have allocated a new shared array, result, to store the computed data. This1.
array is 2-dimensional because we are reducing the third dimension into a single
standard deviation value. This array is accessible by all worker processes.
The @distributed macro in front of the for loop is used to automatically2.
distribute the work, in other words, the body of the for loop, to the worker
processes. 
The @sync macro in front of the for loop makes the system wait until all of the3.
work is done.

We can now benchmark the performance of this new function using the same 16 worker
processes:

Compared to the performance of a single process, this is approximately 6x faster than
before.

Understanding the overhead of parallel
processing
Have you noticed something interesting here? Since we have 16 worker processes, we
would have expected that the parallel processing function to be close to 16 times faster. But
the result came in at around 6 times, which is somewhat less than we expected. Why is
that?



Performance Patterns Chapter 6

[ 233 ]

The answer is that it is just a matter of scale. There is some performance overhead to use the
parallel processing facility. Typically, this overhead can be ignored because it is immaterial
when compared to the amount of work being performed. In this particular example,
calculating standard deviation is a really trivial computation. So, in relative terms, the
overhead of coordinating remote function calls and collecting results overshadows the
actual work itself. 

Perhaps we should prove it. Let's just do a little more work and calculate skewness and
kurtosis in addition to standard deviation:

using Statistics: std, mean, median
using StatsBase: skewness, kurtosis

function stats_by_security(valuation, funcs)
    (nstates, nattr, n) = size(valuation)
    result = zeros(n, nattr, length(funcs))
    for i in 1:n
        for j in 1:nattr
            for (k, f) in enumerate(funcs)
                result[i, j, k] = f(valuation[:, j, i])
            end
        end
    end
    return result
end

The parallel processing version is similar:

@everywhere using Statistics: std, mean, median
@everywhere using StatsBase: skewness, kurtosis

function stats_by_security2(valuation, funcs)
    (nstates, nattr, n) = size(valuation)
    result = SharedArray{Float64}((n, nattr, length(funcs)))
    @sync @distributed for i in 1:n
        for j in 1:nattr
            for (k, f) in enumerate(funcs)
                result[i, j, k] = f(valuation[:, j, i])
            end
        end
    end
    return result
end



Performance Patterns Chapter 6

[ 234 ]

Let's compare their performance now:

The parallel process is now 9x faster, as shown in the preceding. If we continue on this path
and do more non-trivial computation, then we would expect a higher impact up to
somewhere closer to 16x difference.

Configuring system settings for shared memory
usage
The magic of SharedArrays come from the use of memory map and shared memory
facilities in the operating system. When dealing with large amounts of data, we may need
to configure the system to handle the volume.

Adjusting system kernel parameters 
The Linux operating system has a limit on the size of shared memory. To find out what that
is, we can use the ipcs command:



Performance Patterns Chapter 6

[ 235 ]

The E unit may look a little unfamiliar. It's in exabytes, which basically mean 18 zeros:
kilo, mega, giga, tera, peta, and exa. Get it? So, we're in luck here, because the limit is
so high that we will probably never reach. However, if you see a small number, then you
may need to reconfigure the system. The three kernel parameters are as follows:

Maximum number of segments (SHMMNI)
Maximum segment size (SHMMAX)
Maximum total shared memory (SHMALL)

We can find out the actual values using the sysctl command:

To adjust the values, we can again use the sysctl command. For example, to set the
maximum segment size (shmmax) to 128 GiB, we can do the following:

We can see that the kernel setting is now updated.

Configuring a shared memory device
It is not enough to just change the system limits as shown in the preceding section. The
Linux kernel actually uses the /dev/shm device as an in-memory backing store for shared
memory. We can find out the size of the device using the regular df command:



Performance Patterns Chapter 6

[ 236 ]

At the current state, the /dev/shm device is unused as shown in the preceding. The overall
size of the block device is 16 GiB. As an exercise, let's now open a Julia REPL and
create SharedArray:

Re-running the df command, we can see that /dev/shm is now used:

Now that we know SharedArray uses the /dev/shm device, how can we increase the size
to accommodate our problem, which requires more than 22 GiB? It can be done using
the mount command with a new size:

The size of /dev/shm is now clearly shown as 28G.

Debugging the shared memory size issue 
What happens if we exceed the size of the shared memory device if we have forgotten to
increase the size as described earlier? Let's say we need to allocate 20 GiB but there is only
16 GiB:



Performance Patterns Chapter 6

[ 237 ]

There is no error even though we have exceeded the limit! Are we getting a free ride? The
answer is no. It turns out that Julia does not know the limit has been breached. We can even
work with the array up close and personal to the 16 GiB mark:

The preceding code simply sets the first 15 GiB of memory to 0x01. No error is shown so
far. Going back to the shell, we can check the size of /dev/shm again. Clearly, 15 GiB is in
use:

Now, if we continue to assign values to the later part of the array, we get an ugly Bus error
and a long stack trace:

You may wonder why Julia cannot be smarter and tell you up front that you do not have
enough shared memory space. As it turns out, it's the same behavior if you had used the
underlying operating system's mmap function. Honestly, Julia just does not have any more
information about the system constraint.



Performance Patterns Chapter 6

[ 238 ]

Sometimes, a C function's manual page can be useful and provide some hints. For example,
the documentation about the mmap call indicates that a SIGBUS signal will be thrown when
the program attempts to access an unreachable portion of the memory buffer. The manual
page can be found at https:/ / linux. die. net/ man/ 2/mmap.

Ensuring worker processes have access to code
and data 
When developing parallel computation, a beginner often runs into the following issues:

Functions not defined in the worker processes: This can be a symptom of a
library package not being loaded, or a function that was only defined in the
current process but not defined in the worker processes. Both issues can be
resolved by using the @everywhere macro as shown in the preceding examples.
Data not available in the worker processes: This can be a symptom of the data
being stored as a variable in the current processes but not passed to the worker
processes. SharedArray is convenient because it is automatically made available
to worker processes. For other cases, the programmer generally has two options:

Explicitly pass the data via function arguments.
If the data is in a global variable, then it can be transferred using
the @everywhere macro, as follows:

@everywhere my_global_var = whatever_value

For more advanced use cases, the ParallelDataTransfer.jl package provides several
helpful functions to facilitate data transfer among the master process and worker processes.

Avoiding race conditions among parallel
processes
SharedArrays provides an easy conduit for sharing data across multiple processes. At the
same time, a SharedArray is by design a global variable across all worker processes. As a
general rule of thumb for every parallel program, extreme care should be given when the
array is mutated. If the same memory address needs to be written by multiple processes,
then these operations must be synchronized or the program could crash easily. 

The best option is to avoid mutation whenever possible.

https://linux.die.net/man/2/mmap
https://linux.die.net/man/2/mmap
https://linux.die.net/man/2/mmap
https://linux.die.net/man/2/mmap
https://linux.die.net/man/2/mmap
https://linux.die.net/man/2/mmap
https://linux.die.net/man/2/mmap
https://linux.die.net/man/2/mmap
https://linux.die.net/man/2/mmap
https://linux.die.net/man/2/mmap
https://linux.die.net/man/2/mmap
https://linux.die.net/man/2/mmap
https://linux.die.net/man/2/mmap
https://linux.die.net/man/2/mmap
https://linux.die.net/man/2/mmap


Performance Patterns Chapter 6

[ 239 ]

An alternative is to assign each worker a mutually exclusive set of slots in the array so that
they do not collide with each other.

Working with the constraints of shared arrays
Elements in a SharedArray must be bits type. What does that mean? The formal definition
of bits type can be summarized as follows:

The type is immutable.
The type contains only primitive types or other bits types.

The following OrderItem type is a bits type because all fields are primitive types:

struct OrderItem
    order_id::Int
    item_id::Int
    price::Float64
    quantity::Int
end

The following Customer type is not a bits type because it contains a reference to String,
which is neither a primitive type nor a bits type:

struct Customer
    name::String
    age::Int
end

Let's try to create SharedArray for a bits type. The following code confirms that it works
properly:



Performance Patterns Chapter 6

[ 240 ]

If we try to create SharedArray with a non-bits type such as a mutable struct type, an error
will result:

In summary, Julia's shared array is a great way to distribute data to multiple parallel
processes for high-performance computing. The programming interface is also very easy to
use.

In the next section, we will look into a pattern that improves performance by exploiting the
space-time trade-off.

The memoization pattern
In 1968, an interesting article was published—it envisioned that computers should be able
to learn from experience during execution and improve their own efficiency. 

In developing software, we often face a situation where the speed of execution is
constrained by many factors. Maybe a function needs to read a large amount of historical
data from disk (also known as I/O-bound). Or a function just needs to perform some
complex calculation that takes a lot of time (also known as CPU-bound). When these
functions are called repeatedly, application performance can suffer greatly.

Memoization is a powerful concept to address these problems. In recent years, it has
become more popular as functional programming is becoming more mainstream. The idea
is really simple. When a function is called for the first time, the return value is stored in a
cache. If the function is called again with the exact same argument as before, we can look
up the value from the cache and return the result immediately. 

As you will see later in this section, memoization is a specific form of caching where the
return data of a function call is cached according to the arguments being passed to the
function.



Performance Patterns Chapter 6

[ 241 ]

Introducing the Fibonacci function
In functional programming, recursion is a common technique for computation. Sometimes,
we may fall into a performance pitfall unknowingly. A classic example is the generation of
a Fibonacci sequence, which is defined as follows:

It works well functionally but it is not very efficient. Why? It is because the function is
recursively defined, and the same function is called multiple times with the same
arguments. Let's take a look at the computation graph when finding the sixth Fibonacci
number, where each f(n) node represents a call to the fib function:

As you can see, the function is called many times, especially for those that are at the
beginning part of the sequence. To calculate fib(6), we end up calling the function 15
times! And this is like a snowball, getting worse very quickly. 



Performance Patterns Chapter 6

[ 242 ]

Improving the performance of the Fibonacci
function
First, let's analyze how bad the performance is by revising the function to keep track of the
number of executions. The code is as follows:

function fib(n)
    if n < 3
        return (result = 1, counter = 1)
    else
        result1, counter1 = fib(n - 1)
        result2, counter2 = fib(n - 2)
        return (result = result1 + result2, counter = 1 + counter1 +
counter2)
    end
end

Every time the fib function is called, it keeps tracks a counter. If the value of n is smaller
than 3, then it returns the count of 1 along with the result. If n is a larger number, then it
aggregates the counts from the recursive calls to fib function.

Let's run it several times with various input values:

This simple example just illustrated how quickly it turns into a disaster when the computer
has no memory about what it did before. A high school student would be able to calculate
fib(20) manually with just 18 additions, discounting the first two numbers of the
sequence. Our nice little function calls itself over 13,000 items!

Let's now put back the original code and benchmark the function. To illustrate the problem,
I will start with fib(40):



Performance Patterns Chapter 6

[ 243 ]

For this task, the function should really return instantly. The 430 millisecond feels like an
eternity in computer time!

We can use memoization to solve this problem. Here is our first attempt:

const fib_cache = Dict()

_fib(n) = n < 3 ? 1 : fib(n-1) + fib(n-2)

function fib(n)
    if haskey(fib_cache, n)
        return fib_cache[n]
    else
        value = _fib(n)
        fib_cache[n] = value
        return value
    end
end

First of all, we have created a dictionary object called fib_cache to store the results of
previous calculations. Then, the core logic for the Fibonacci sequence is captured in this
private function, _fib. 

The fib function works by first looking up the input argument from the fib_cache
dictionary. If the value is found, it returns the value. Otherwise, it invokes the private
function, _fib, and updates the cache before returning the value.

The performance should be much better now. Let's test it quickly:

We should be must happier with the performance result by now.



Performance Patterns Chapter 6

[ 244 ]

We have used a Dict object to cache calculation results here for
demonstration purposes. In reality, we can optimize it further by using an
array as a cache. The lookup from an array should be a lot faster than a
dictionary key lookup.

Note that an array cache works well for the fib function because it takes a
positive integer argument. For more complex functions, a Dict cache
would be more appropriate.

Automating the construction of a memoization
cache
While we are quite happy with the result in the preceding implementation, it feels a little
unsatisfactory because we have to write the same code every time we need to memoize a
new function. Wouldn't it be nice if the cache is automatically maintained? Realistically, we
just need one cache for each function that we want to memoize.

So, let's do it a little differently. The thought is that we should be able to build a higher-
order function that takes an existing function and return a memoized version of it. Before
we get there, let's first redefine our fib function as an anonymous function, as follows:

fib = n -> begin
    println("called")
    return n < 3 ? 1 : fib(n-1) + fib(n-2)
end

For now, we have added a println statement just so that we can validate the correctness
of our implementation. If it works properly, fib should not be called millions of times.
Moving on, we can define a memoize function as follows:

function memoize(f)
    memo = Dict()
    x -> begin
        if haskey(memo, x)
            return memo[x]
        else
            value = f(x)
            memo[x] = value
            return value
        end
    end
end



Performance Patterns Chapter 6

[ 245 ]

The memoize function first creates a local variable called memo for storing previous return
values. Then, it returns an anonymous function that captures the memo variable, performs
cache lookup, and calls f functions when it is needed. This coding style of capturing a
variable in an anonymous function is called a closure. Now, we can use the memoize
function to build a cache-aware fib function:

fib = memoize(fib)

Let's also prove that it does not call the original fib function too many times. For example,
running fib(6) should be no more than 6 calls:

That looks satisfactory. If we run the function again with any input less than or equal to 6,
then the original logic should not be called at all, and all results should be returned straight
from the cache. However, if the input is larger than 6, then it calculates the ones above 6.
Let's try that now:

We cannot conclude what we did is good enough until we benchmark the new code. Let's
do it now.



Performance Patterns Chapter 6

[ 246 ]

The original function took 433 ms to compute fib(400). This memoized version only takes
50 ns. This is a huge difference.

Understanding the constraint with generic
functions
One drawback of the preceding method is that we must define the original function as an
anonymous function rather than a generic function. That seems to be a major constraint.
The question is why doesn't it work with generic function?

Let's do a quick test by starting a new Julia REPL, defining the original fib function again,
and wrapping it with the same memoize function:

The problem is that fib is already defined as a generic function, and it cannot be bound to
a new anonymous function, which is what is being returned from the memoize function. To
work around the issue, we may be tempted to assign the memoized function with a new
name:

fib_fast = memoize(fib)

However, it does not really work because the original fib function makes a recursive call
to itself rather than the new memoized version. To see it more clearly, we can unroll a call
as follows:

Call the function as fib_fast(6).1.
In the fib_fast function, it checks whether the cache contains a key that equals2.
6. 
The answer is no, so it calls fib(5).3.
In the fib function, since n is 5 and is greater than 3, it calls fib(4) and fib(3)4.
recursively.

As you can see, the original fib function got called rather than the memoized version, so
we are back to the same problem before. Hence, if the function being memoized uses
recursion, then we must write the function as an anonymous function. Otherwise, it would
be okay to create a memoized function with a new name. 



Performance Patterns Chapter 6

[ 247 ]

Supporting functions that take multiple
arguments
In practice, we would probably encounter functions that are more complex than this. For
example, the function that requires speed-up probably requires multiple arguments and
possibly keyword arguments as well. Our memoize function in the previous section
assumes a single argument, so it would not work properly.

A simple way to fix this is illustrated as follows:

function memoize(f)
    memo = Dict()
    (args...; kwargs...) -> begin
        x = (args, kwargs)
        if haskey(memo, x)
            return memo[x]
        else
            value = f(args...; kwargs...)
            memo[x] = value
            return value
        end
    end
end

The anonymous function being returned now covers any number of positional arguments
and keyword arguments as specified in the splatted arguments, args... and kwargs....
We can quickly test this with a dummy function as follows:

# Simulate a slow function with positional arguments and keyword arguments
slow_op = (a, b = 2; c = 3, d) -> begin
    sleep(2)
    a + b + c + d
end

Then, we can create the fast version as follows:

op = memoize(slow_op)



Performance Patterns Chapter 6

[ 248 ]

Let's test the memoized function with a few different cases:

It's working great!

Handling mutable data types in the arguments
So far, we did not pay much attention to the arguments or keyword arguments being
passed to the function. Care must be taken when any of those arguments are mutable.
Why? Because our current implementation uses the arguments as the key of the dictionary
cache. If we mutate the key of a dictionary, it could lead to unexpected results.

Suppose that we have a function that takes 2 seconds to run:

# This is a slow implementation
slow_sum_abs = (x::AbstractVector{T} where {T <: Real}) -> begin
    sleep(2)
    sum(abs(v) for v in x)
end

Knowing that it's quite slow, we happily memoize it as usual:

sum_abs = memoize(slow_sum_abs)

Initially, it seems to work perfectly, as it has always been:



Performance Patterns Chapter 6

[ 249 ]

However, we are shocked by the following observation:

Bummer! Rather than returning a value of 21, it returns the previous result as if -6 were not
inserted to the array. Out of curiosity, let's push one more value to the array and try again:



Performance Patterns Chapter 6

[ 250 ]

It's working again. Why is that happening? To understand that, let's recap how
the memoize function was written:

function memoize(f)
    memo = Dict()
    (args...; kwargs...) -> begin
        x = (args, kwargs)
        if haskey(memo, x)
            return memo[x]
...

As you can see, we are caching the data using the (args, kwargs) tuple as the key of the
dictionary object. The problem is that the argument being passed to the memoized
sum_abs function is a mutable object. The dictionary object gets confused when the key is
mutated. In that case, it may or may not locate the key anymore.

When we added -6 to the array, it found the same object in the dictionary and returned the
cached result. When we added 7 to the array, it could not find the object. Hence, the
function does not work 100% of the time.

To fix this issue, we need to make sure that the content of the arguments are considered,
not just the memory address of the container. A common practice is to apply a hash
function to the thing that we wish to use as a key to the dictionary. Here's one
implementation:

function hash_all_args(args, kwargs)
    h = 0xed98007bd4471dc2
    h += hash(args, h)
    h += hash(kwargs, h)
    return h
end

The initial value of the h variable is randomly selected. On a 64-bit system, we can generate
it with a call to rand(UInt64). The hash function is a generic function defined in the Base
module. We will keep it simple here for illustration purposes. In reality, a better
implementation would support a 32-bit system as well. 



Performance Patterns Chapter 6

[ 251 ]

The memoize function can now be rewritten to utilize such a hashing scheme:

We can test it again more extensively. Let's redefine the sum_abs function again using the
new memoize function. Then, we run a loop and capture the calculation result and timing.

The result is shown as follows:

Fantastic! It now returns the correct result even though the input data has been mutated.



Performance Patterns Chapter 6

[ 252 ]

Memoizing generic functions with macros
Earlier, we discussed that generic functions cannot be supported by the memoize function.
It would be most awesome if we can just annotate the functions as memoized while they
are being defined. For example, the syntax would be like this:

@memoize fib(n) = n < 3 ? 1 : fib(n-1) + fib(n-2)

It turns out that there's already an awesome package called Memoize.jl that does the exact
same thing. It is indeed quite convenient:

Here, we can observe the following:

The first call to fib(40) was quite fast already, which is an indication that the1.
cache is utilized.
The second call to fib(40) was almost instant, which means that the result was2.
just a cache lookup.
The third call to fib(39) was almost instant, which means that the result was3.
just a cache lookup.

You should be advised that Memoize.jl does not support mutable data
as arguments either. It carries the same problem that we described in the
preceding section because it uses the objects' memory addresses as the key
to the dictionary.



Performance Patterns Chapter 6

[ 253 ]

Turning to real-life examples
Memoization is used in some open source packages. The actual usage may be more
common in private applications and data analysis. Let's see some use cases for
memoization in the following sections.

Symata.jl
The Symata.jl package provides support for Fibonacci polynomials. As we may have
realized, the implementation of Fibonacci polynomials is also recursive just like the
Fibonacci sequence problem we discussed earlier in this section. Symata.jl uses the
Memoize.jl package to create the _fibpoly function as follows:

fibpoly(n::Int) = _fib_poly(n)

let myzero = 0, myone = 1, xvar = Polynomials.Poly([myzero,myone]), zerovar
= Polynomials.Poly([myzero]), onevar = Polynomials.Poly([myone])
    global _fib_poly
    @memoize function _fib_poly(n::Int)
        if n == 0
            return zerovar
        elseif n == 1
            return onevar
        else
            return xvar * _fib_poly(n-1) + _fib_poly(n-2)
        end
    end
end

Omega.jl
The Omega.jl package implements its own memoization cache. Interestingly, it ensures
proper return type from the cache lookup using the Core.Compiler.return_type
function. It is done to avoid type instability problems. In The barrier function pattern section
later in this chapter, we will discuss more the problem of type instability and how to deal
with the issue. Check out the following code example:

@inline function memapl(rv::RandVar, mω::TaggedΩ)
  if dontcache(rv)
    ppapl(rv, proj(mω, rv))
  elseif haskey(mω.tags.cache, rv.id)
    mω.tags.cache[rv.id]::(Core.Compiler).return_type(rv,
typeof((mω.taggedω,)))
  else



Performance Patterns Chapter 6

[ 254 ]

    mω.tags.cache[rv.id] = ppapl(rv, proj(mω, rv))
  end
end

Considerations
Memoization can only be applied to pure functions. 

What is a pure function? A function is called pure when it always returns the same value
given the same input. It may seem intuitive for every function to behave that way but in
practice, it is not that straightforward. Some functions are not pure due to reasons such as
these:

A function uses a random number generator and is expected to return random
results.
A function relies on data from an external source that produces different data at
different times.

Because the memoization pattern uses function arguments as the key of the in-memory
cache, it will always return the same result for the same key.

Another consideration is that we should be aware of the extra memory overhead due to the
use of a cache. It is important to choose the right cache invalidation strategy for the specific
use case. Typical cache invalidation strategies include Least Recently Used (LRU), First-In,
First-Out (FIFO), and time-based expiration.

Utilizing the Caching.jl package
There are several packages that can make memoization easier. Some are mentioned here:

Memoize.jl provides a @memoize macro. It's very easy to use.
Anamnesis.jl provides a @anamnesis macro. It has more functionalities than
Memoize.jl.
Caching.jl was created with the ambition to provide more functionalities such
as persistence to disk, compression, and cache size management.

Here, we can take a look at Caching.jl as it is developed more recently and has great
features.



Performance Patterns Chapter 6

[ 255 ]

Let's build a memoized CSV file reader as follows:

The @cache macro makes a memoized version of the read_csv function. To confirm that a
file is read only once, we inserted a println statement and timed the file read operation.

For demonstration purposes, we have downloaded a copy of the film permits file from the
City of New York. The file is available from https:/ /catalog. data. gov/dataset/ film-
permits. Let's read the data file now:

Here, we can see that the file is read only once. If we call read_csv again with the same
filename, then the same object is returned instantly. 

We can examine the cache. Before doing that, let's see what properties read_csv supports:

https://catalog.data.gov/dataset/film-permits
https://catalog.data.gov/dataset/film-permits
https://catalog.data.gov/dataset/film-permits
https://catalog.data.gov/dataset/film-permits
https://catalog.data.gov/dataset/film-permits
https://catalog.data.gov/dataset/film-permits
https://catalog.data.gov/dataset/film-permits
https://catalog.data.gov/dataset/film-permits
https://catalog.data.gov/dataset/film-permits
https://catalog.data.gov/dataset/film-permits
https://catalog.data.gov/dataset/film-permits
https://catalog.data.gov/dataset/film-permits
https://catalog.data.gov/dataset/film-permits
https://catalog.data.gov/dataset/film-permits


Performance Patterns Chapter 6

[ 256 ]

Without looking at the manual, we can guess that the cache property represents the cache.
Let's take a quick look:

We can also persist the cache to disk. Let's examine the name and size of the cache file:

The location of the cache file is found in the filename property. The file does not exist
until the @persist! macro was used to persist data to disk. We can also see how many
objects are present in memory or on disk by just examining the function itself from the
REPL:

The @empty! macro can be used to purge the in-memory cache:



Performance Patterns Chapter 6

[ 257 ]

Interestingly, because the on-disk cache still exists, we can still utilize it without having to
re-populate the memory cache:

Finally, we can synchronize the memory and disk caches:

The Caching.jl package has more functionalities that are not shown here. Hopefully, we
have got an idea of what it is capable of already.

Next, we will look into a pattern that can be used to address the type-instability problem,
which is a common issue causing performance problems.

The barrier function pattern
While Julia is designed as a dynamic language, it also aims for high performance. The
magic comes from its state-of-the-art compiler. When the type of variables is known in a
function, the compiler can generate highly optimized code. However, when the type of a
variable is unstable, the compiler has to compile more generic code that works with any
data types. In some sense, Julia can be forgiving—it never fails on you even when it comes
with a cost against runtime performance.

What makes the type of a variable unstable? It means that in some circumstances the
variable may be one type, and in other circumstances, it may be another type. This section
will discuss such a type instability problem, how it may arise, and what we can do about it.

Barrier function is a pattern that can be used to solve performance problems due to type
instability. So, let's see how to achieve that.



Performance Patterns Chapter 6

[ 258 ]

Identifying type-unstable functions
In Julia, there is no need to specify the type of variables. In fact, to be more precise,
variables are not typed. Variables are merely bindings to values, and values are typed. That
is what makes Julia programs dynamic. However, such flexibility comes with a cost.
Because the compiler must generate code that supports all possible types that may come up
during runtime, it is unable to generate optimized code. 

Consider a simple function that just returns an array of random numbers:

random_data(n) = isodd(n) ? rand(Int, n) : rand(Float64, n)

If the n argument is odd, then it returns an array of random Int values. Otherwise, it
returns an array of random Float64 values.

This innocent function is actually type-unstable. We can use the @code_warntype facility
to check:

The @code_warntype macro displays an Intermediate Representation (IR) of the code. An
IR is generated by the compiler after it understand the flow and data type of every line in
that code. For our purpose here, we do not need to understand everything printed on
screen but we can pay attention to the highlighted text as related to the data types
generated from the code. In general, when you see red text, it would also be a red flag.

In this case, the compiler has figured that the result of this function can be an array of
Float64 or an array of Int64. Hence, the return type is just Union{Array{Float64,1},
Array{Int64,1}}.



Performance Patterns Chapter 6

[ 259 ]

In general, more red signs from the @code_warntype output indicates
more type instability problems in the code.

The function does exactly what we want to do. But when it's used in the body of another
function, the type instability problem further affects runtime performance. We can use a
barrier function to solve this problem.

Understanding performance impact
When a function is called, the type of its arguments are known and then the function is
compiled with the exact data types from its arguments. This is called specialization. What
exactly is a barrier function? It simply exploits Julia's function specialization to stabilize the
type of variable as part of a function call. We will continue the preceding example to
illustrate the technique.

First, let's create a simple function that makes use of the type unstable function, as
mentioned earlier:

function double_sum_of_random_data(n)
    data = random_data(n)
    total = 0
    for v in data
        total += 2 * v
    end
    return total
end

The double_sum_of_random_data function is just a simple function that returns the sum
of doubled random numbers generated by the random_data function. If we just
benchmark the function with either an odd or an even number argument, it comes back
with the following results:



Performance Patterns Chapter 6

[ 260 ]

The timing is better for the call with an input value of 100001, most likely because the
random number generator for Int is better than the one for Float64. Let's see what
@code_warntype comes back for this function:

As you can see, there are tons of red marks around. The type instability issue of a single
function has a larger impact on other functions that use it.



Performance Patterns Chapter 6

[ 261 ]

Developing barrier functions
A barrier function involves refactoring a piece of logic from an existing function into a new,
separate function. When it's done, all data required by the new function will be passed as
function arguments. Continuing with the preceding example, we can factor out the logic
that calculates the doubled sum of data as follows:

function double_sum(data)
    total = 0
    for v in data
    total += 2 * v
    end
    return total
end

Then, we just modify the original function to make use of this function:

function double_sum_of_random_data(n)
    data = random_data(n)
    return double_sum(data)
end

Does it really improve performance? Let's run the test:

It turns out to have a huge difference for the Float64 case—the elapsed time went from
347 to 245 microseconds. Comparing the floating-point sum versus integer sum cases, the
result also makes perfect sense because summing integers is generally faster than summing
floating-point numbers.



Performance Patterns Chapter 6

[ 262 ]

Dealing with a type-unstable output variable
What we haven't noticed is another type instability problem concerning the accumulator. In
the preceding example, the double_sum function has a total variable that keeps track of
the doubled numbers. The problem is that the variable was defined as an integer, but then
the array may contain floating-pointer numbers instead. This problem can be easily
revealed by running @code_warntype against both scenarios.

Here is the output of @code_warntype for when an array of integers is passed into the
function:



Performance Patterns Chapter 6

[ 263 ]

Compare it with the output when an array of Float64 is passed:

If we call the function with an array of integers, then the type is stable. If we call the
function with an array of floats, then we see the type instability issue.

How do we fix this? Well, there are standard Base functions for creating type-stable zeros
or ones. For example, rather than hardcoding the initial value of total to be an integer
zero, we can do the following instead:

function double_sum(data)
    total = zero(eltype(data))
    for v in data
        total += 2 * v
    end
    return total
end



Performance Patterns Chapter 6

[ 264 ]

If we look into the @code_warntype output of the double_sum_of_random_data
function, it is much better than before. I will let you do this exercise and compare the
@code_warntype output with the prior one.

A similar solution makes use of the parametric method:

function double_sum(data::AbstractVector{T}) where {T <: Number}
    total = zero(T)
    for v in data
        total += v
    end
    return total
end

The T  type parameter is used to initialize the total variable to the properly typed value of
zero.

This kind of performance gotcha is sometimes difficult to catch. To ensure optimized code
is generated, it is always a good practice to use the following functions for an accumulator
or an array that stores output values:

zero and zeros create a value of 0 or an array of 0s for the desired type.
one and ones create a value of 1 or an array of 1s for the desired type.
similar creates an array of the same type as the array argument.

For example, we can create a value of 0 or an array of 0s for any numeric types as follows:



Performance Patterns Chapter 6

[ 265 ]

Likewise, the one and ones functions work the same way:

If we want to create an array that looks like another one (in other words, has the same type,
shape, and size), then we can use the similar function:

Note that the similar function does not zero out the content of the array.

The axes function may come in handy when we need to create an array of zeros that
matches the same dimensions of another array:

Next, we will look into a way to debug type instability issues.



Performance Patterns Chapter 6

[ 266 ]

Using the @inferred macro
Julia comes with a handy macro in the Test package that can be used to check whether the
return type of a function matches the inferred return type of the function. The inferred 
return type is simply the type that we see from the @code_warntype output before.

For example, we can check the notorious random_data function from the beginning of this
section:

The macro reports an error whenever the actual returned type differs from the inferred
return type. It could be a useful tool to validate the type instability problem as part of an
automated test suite in the continuous integration pipeline.

The primary reason to use a barrier function is to improve performance where the type
instability problem exists. If we think about it more deeply, it also has the side benefit of
forcing us to create smaller functions. Smaller functions are easier to read and debug and
perform better.

We have now concluded all patterns in this chapter.



Performance Patterns Chapter 6

[ 267 ]

Summary
In this chapter, we explored several patterns related to performance. 

First, we discussed how global variables hurt performance and the technique of the global
constant pattern. We looked into how the compiler optimizes performance by doing
constant folding, constant propagation, and dead branch elimination. We also learned how
to create a constant placeholder for wrapping a global variable.

We discussed how to utilize the struct of arrays pattern to turn an array of structs into a
struct of arrays. The new layout of the data structure allows better CPU optimization and,
hence, better performance. We took advantage of a very useful package, StructArrays,
for automating such data structure transformation. We reviewed a financial services use
case where a large amount of data needs to be loaded into memory and used by many
parallel processes. We implemented the shared array pattern and went over some tricks to
configure shared memory properly in the operating system.

We learned about the memoization pattern for caching function call results. We did a
sample implementation using a dictionary cache and made it work with functions taking
various arguments and keyword arguments. We also found a way to support mutable
objects as function arguments. Finally, we discussed the barrier function pattern. We saw
how performance can be degraded by type-unstable variables. We learned that splitting
logic into a separate function allows the compiler to produce more optimal code. 

In the next chapter, we will examine several patterns that improve system maintainability.

Questions
Why does the use of global variables impact performance?1.
What would be a good alternative to using a global variable when it cannot be2.
replaced by a constant?
Why does a struct of arrays perform better than an array of structs?3.
What are the limitations of SharedArray?4.
What is an alternative to multi-core computation instead of using parallel5.
processes?
What care must be taken when using the memoization pattern?6.
What is the magic behind barrier functions in improving performance?7.



7
Maintainability Patterns

This chapter will cover several patterns that are related to improving code readability and
the ease of maintenance. These aspects are sometimes overlooked because programmers
always think that they know what they are doing. In reality, programmers do not always
write code that is readable to others. Sometimes, the code could be too cluttered and
difficult to follow, or the files may not be very well organized. These problems can often be
mitigated by refactoring.

Metaprogramming can be a good way to further improve readability and maintainability.
In some cases, there are existing macros that we can utilize today. It would be a shame if we
do not explore such opportunities. We know good programmers always have the relentless
desire for achieving excellence, so learning these techniques would be a rewarding exercise.
In the subsequent sections, we will look into the following patterns:

Sub-module pattern
Keyword definition pattern
Code generation pattern
Domain-specific language pattern

By the end of this chapter, you will have learned how to organize your code better. You will
be able to reduce clutter and write very concise code. In addition, if you are working on a
problem with a specific industry domain, you can build your own domain-specific
language (DSL) to further express your problem clearly in your own syntax.

Let's go!

Technical requirements
The sample source code is located at https:/ /github. com/ PacktPublishing/ Hands- on-
Design-Patterns- and- Best- Practices- with- Julia/ tree/ master/ Chapter07.

The code is tested in a Julia 1.3.0 environment.

https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter07


Maintainability Patterns Chapter 7

[ 269 ]

Sub-module pattern
When a module becomes too large, it can be difficult to manage and comprehend.
Generally, it can happen organically when the programmer keeps adding more and more
functionalities to an application. So, how large is too large? It is difficult to say as it varies
and depends on the programming language, the problem domain, and even the skillsets of
the application maintainers. Nevertheless, it is mostly agreed upon by professionals that
smaller modules are easier to manage, especially when the code is maintained by multiple
developers.

In this section, we will explore the idea of splitting the source code of a large module into
separately managed sub-modules. We will discuss how to make that decision and how to
do that properly. As part of our journey, we will look into some examples and see how
other experts do it in their packages.

Understanding when sub-module is needed
When should we consider creating sub-modules? There are several factors to consider:

First, we could consider the size of the application. Size is an abstract concept
and can be measured in several ways, some of which are mentioned here:

Number of lines of code: This is the simplest measure to
understand the size of an application. The more lines of code in the
source files, the larger the application. This is analogous to the
number of pages in a book. It takes more time for you to read and
understand the content for a book that has more pages.
Number of functions: When there are too many functions in a
single module, it is more difficult to understand and learn all those
functions. When there are too many functions, the number of
interactions between functions naturally increase, making the
application more prone to messy spaghetti code.
Number of data types: Every data type represents a kind of an
object. It is more difficult for a developer to comprehend all the
functions operating on a large number of data types because the
human brain cannot handle too many concepts at the same time.



Maintainability Patterns Chapter 7

[ 270 ]

The second thing we should consider is separation of concern. As we look into an
application that comprises various components, we may logically think of them
as separate things that can be managed independently. Humans are an excellent
species that know how to work on items that are small and organized.
Lastly, we can consider the complexity of matter. Sometimes, you look at the
source code and realize that the logic is difficult to grasp. Perhaps it's the domain
knowledge. Or, it could be a complex algorithm. While the size of the application
is not large, it may still make sense to split the code into separate files physically.

So far, we have not set any concrete threshold for any of the preceding factors. That is
because the decision to call something large or complex is quite subjective. A common way
to do that is to have a discussion among several software engineers and make a group
decision. Doing that allows us to overcome the original developer bias, where the person
already knows everything by heart, and therefore, the person would tend to believe that the
application is not too large nor too complex.

Suppose that you are ready to take the plunge and split part of your code into sub-modules.
The next challenge is to figure out how to do it properly. The work can be part art and part
science. To formalize the process for splitting source code into sub-modules, we will first
discuss the concept of coupling.

Understanding afferent and efferent coupling
Before splitting code into separate components, the first step is to analyze the existing code
structure. Are there any high-level domain concepts that stand on their own? For example,
a banking application may involve account management, deposit/withdrawal, balance
transfer, customer notification, and so on. Each of these domain concepts can potentially be
split into separate components.

We must also understand how components interact with each other. Here, we will talk
about two concepts that originated from object-oriented programming:

Afferent coupling – number of external entities that depend on the current entity
Efferent coupling – number of external entities that the current entity depends
upon



Maintainability Patterns Chapter 7

[ 271 ]

Let's take a look at this diagram:

In this example, we can arrive at the following observations:

Component A has two efferent couplings.
Component B has one afferent coupling and one efferent coupling.
Component C has one efferent coupling.
Component D has three afferent couplings.

So, if a component is used by many external components, then this component has high
afferent coupling. On the other hand, if a component uses many external components, then
it has high efferent coupling. 

These coupling characteristics help us to understand the stability requirement of a
component. A component having high afferent coupling needs to be as stable as possible
because making changes in this component may have a higher risk of breaking other
components. That would be the case for Component D in the preceding example.

Similarly, a component having high efferent coupling means that it may be more unstable
due to many possible changes from the components that it depends on. That would be the 
case for the preceding Component A. Hence, it would be best to reduce coupling whenever
possible, whether it's afferent or efferent. A decoupled system tends to have a minimum
number of afferent and efferent couplings.

The same concepts apply when designing sub-modules. When we split code into separate
sub-modules, it would be most ideal if afferent/efferent couplings are minimized. Now,
we will first take a look at the best practice of organizing files for sub-modules.



Maintainability Patterns Chapter 7

[ 272 ]

Organizing sub-modules
There are generally two patterns for organizing sub-module files. Let's take a look at each:

The first one involves a simpler situation where each sub-module is fully
contained in a single source file, as follows:

module MyPackage
include("sub_module1.jl")
include("sub_module2.jl")
include("sub_module3.jl")
end

The second one involves larger sub-modules where there could be several source
files for each sub-module. In that case, the source code of a sub-module resides in
a subdirectory:

# MyPackage.jl
module MyPackage
include("sub_module1/sub_module1.jl")
include("sub_module2/sub_module2.jl")
include("sub_module3.jl")
end

Of course, the sub module's directory may include multiple files. In the
preceding example, sub_module1 may contain several more source files, which
are shown in the following code snippet:

# sub_module1.jl
module SubModule1
include("file1.jl")
include("file2.jl")
include("file3.jl")
end

Next, we will look into how to reference symbols and functions between the modules and
these sub-modules.



Maintainability Patterns Chapter 7

[ 273 ]

Referencing symbols and functions between
modules and sub-modules
A module can access its sub-modules using the regular using or import statements. In
fact, a sub-module does not work any differently than an external package, except how it is
being referenced.

Perhaps we can recall the example from Chapter 2, Modules, Packages, and Type Concepts.
Back then, we created a Calculator module that defines two interest rate-related
functions and a Mortgage sub-module that defines a payment calculator function. The
Calculator module file has the following source code:

# Calculator.jl
module Calculator

include("Mortgage.jl")

export interest, rate

function interest(amount, rate)
    return amount * (1 + rate)
end

function rate(amount, interest)
    return interest / amount
end

end # module

Furthermore, the sub-module contains the following code:

# Mortgage.jl
module Mortgage

function payment(amount, rate, years)
    # TODO code to calculate monthly payment for the loan
    return 100.00
end

end # module

Let's look into how to reference functions and symbols from a sub-module and vice versa.



Maintainability Patterns Chapter 7

[ 274 ]

Referencing symbols defined in sub-modules
To begin, we can finish our implementation of the Mortgage sub-module with a real
implementation of the payment function.

Let's see how this works:

The payment function takes a loan amount, an annual interest rate, the number1.
of years for the loan, and calculates the monthly payment of the loan, as shown
in the following code:

# Mortgage.jl
module Mortgage

function payment(amount, rate, years)
    monthly_rate = rate / 12.0
    factor = (1 + monthly_rate) ^ (years * 12.0)
    return amount * (monthly_rate * factor / (factor - 1))
end

end # module

At this point, the Calculator module should be able to use the Mortgage sub-2.
module as if it's yet another module, except that the notation to get access to the
sub-module requires a relative path that is prefixed with a dot notation:

# Calculator.jl
module Calculator

# include sub-modules
include("Mortgage.jl")
using .Mortgage: payment

# functions for the main module
include("funcs.jl")

end # module

Here, we have brought the payment function into the current scope of the sub-
module via using .Mortgage: payment. 



Maintainability Patterns Chapter 7

[ 275 ]

In order to organize our code better, we have also moved the functions into a3.
separate file called funcs.jl. The code is shown as follows:

# funcs.jl - common calculation functions

export interest, rate, mortgage

function interest(amount, rate)
    return amount * (1 + rate)
end

function rate(amount, interest)
    return interest / amount
end

# uses payment function from Mortgage.jl
function mortgage(home_price, down_payment, rate, years)
    return payment(home_price - down_payment, rate, years)
end

As we can see, the new mortgage function can use the payment function from the
Mortgage sub-module now.

Referencing symbols from the parent module
If the sub-module needs access to any symbol from the parent module, then the sub-
module may use the import or using statement while adding .. as a prefix to the name of
the parent module. This is shown with the following code:

# Mortgage.jl
module Mortgage

# access to parent module's variable
using ..Calculator: days_per_year

end # module

Now, the Mortgage sub-module has access to the days_per_year constant from the
parent module. 

Having the ability to reference symbols and functions between modules and sub-modules
allows us to just reorganize code into various sub-modules and keep it working as before.
However, the reason for separating code into sub-modules in the first place is to allow the
developer to work in each module independently. In addition, having bidirectional
references could lead to confusion and messy spaghetti code.



Maintainability Patterns Chapter 7

[ 276 ]

Next, we will discuss how to reduce such coupling among modules and sub-modules.

Removing bidirectional coupling
When we have a module (or sub-module) referencing another sub-module and vice versa,
it increases coupling between these components. Generally speaking, it is best to avoid
bidirectional dependency between the parent module and the sub-module because it
introduces tight coupling and makes the code difficult to understand and debug. How can
we fix this? Let's explore this next.

Passing data as function arguments
The first solution is to pass the required data as a function argument. Suppose that the
payment function from the Mortgage sub-module can take a days_per_year keyword
argument, then the Calculator module can just pass the value as follows:

# Calculator.jl
module Calculator

const days_per_year = 365

include("Mortgage.jl")
using .Mortgage: payment

function do_something()
    return payment(1000.00, 3.25, 5; days_per_year = days_per_year)
end

end # module

Hence, the Mortgage sub-module does not really need to reference the days_per_year
symbol from Calculator anymore, reducing any unnecessary dependency.

Factoring common code as another sub-module
Another solution is to split the dependent member into a separate sub-module and have
both existing modules depend on the new sub-module.



Maintainability Patterns Chapter 7

[ 277 ]

Suppose that we have two sub-modules set up in a way that they use functions from each
other. Consider the scenario depicted in the diagram as follows:

The func1 function from the first sub-module uses func6 from the other sub-module. And,
the func4 function from the other sub-module needs to call the func3 function from the
first module. Clearly, there is a high coupling between these two modules.

Considering the dependencies between these modules, it looks like a cycle as the first sub-
module depends on the second sub-module and vice versa. To fix that, we can introduce a
new sub-module to break the cycle as follows:

Breaking the cycle has the benefit of a cleaner dependency graph. It also makes the code
easier to understand.

Considering splitting into top-level modules
If we are already considering creating sub-modules, it may be a good time to consider
splitting the code into top-level modules. These top-level modules can be put together as
separate Julia packages. 



Maintainability Patterns Chapter 7

[ 278 ]

Let's take a look at the benefits and potential issues for making new top-level modules:

The benefits of having separate top-level modules are as follows:

Each package can have its own release life cycle and version. It is possible to
make changes to a package and release only that portion.
Version compatibility is enforced by Julia's Pkg system. A new version of the
package may be released, and it may be used by another package as long as the
package versions are compatible.
Packages are more reusable because they can be utilized by other applications.

Potential issues with top-level modules are as follows:

There is more management overhead because each package will be maintained
and released independently.
Deployment may be more difficult since multiple packages have to be installed
and inter dependent packages must obey version compatibility requirements.

Understanding the counterarguments of using
sub-modules
You are advised to avoid this pattern under the following conditions:

When the existing code base is not large enough, splitting into sub-modules too
early hinders the speed of development. We should avoid doing this
prematurely.
When there is a high coupling in the source code, it can be difficult to split the
code. In that case, try to refactor the code to reduce coupling and then reconsider
splitting code into sub-modules later. 

The idea of creating sub-modules does force the programmer to think about code
dependencies. It is a necessary step when the application eventually grows bigger.

Next, we will discuss the keyword definition pattern, which allows us to construct objects
with more readable code.



Maintainability Patterns Chapter 7

[ 279 ]

Keyword definition pattern
In Julia, you can create an object using the default constructor, which accepts a list of
positional arguments for each of the fields defined for the struct. For small objects, this
should be simple and straightforward. For larger objects, it becomes confusing because it is
hard to remember which argument corresponds to which field without referring to the
struct's definition every time we write code to create such objects.

In 1956, George Miller, a psychologist, published research that involved figuring out how
many random digits a person could remember at any time, so the Bell System could decide
how many numbers to use for the format of a telephone number. He found that most
people can only remember five to nine digits at any time.

If remembering digits is difficult enough, it should be even more difficult to remember
fields that come with different names and types.

We will discuss how to reduce such stress when developing Julia code, and how it can be
done using the @kwdef macro so that the code is easy to read and maintain.

Revisiting struct definitions and constructors
Let's first take a look at how a struct is defined and what constructor is provided. Consider
the use case of text style configuration for a text editing application.

We may define a struct as follows:

struct TextStyle
    font_family
    font_size
    font_weight
    foreground_color
    background_color
    alignment
    rotation
end

By default, Julia provides a constructor with positional arguments for all fields in the same
order as how they are defined in the struct. So, the only way to create a TextStyle object is
to do the following:

style = TextStyle("Arial", 11, "Bold", "black", "white", "left", 0)



Maintainability Patterns Chapter 7

[ 280 ]

There is nothing wrong here, but we could argue that the code is not very readable. Every
time we have to write code to create a TextStyle object, we must ensure that all
arguments are specified in the right order. In particular, as a developer, I must remember
that the first three arguments represent font settings, then followed by two colors where the
foreground color comes first, and so on. In the end, I just give up and go back to revisit the
struct definition again.

Another issue is that we may want to have default values for some fields. For example, we
want the alignment field to have a value of "left" and the rotation field to have 0 by
default. The default constructor does not provide an easy way to do that.

A more sensible syntax for creating objects with so many arguments is to use keyword
arguments in the constructor. Let's try to implement that next.

Using keyword arguments in constructors
We can always add new constructor functions to make it easier for creating objects. Using
keyword arguments solves the following two problems:

Code readability
Ability to specify default values

Let's go ahead and define a new constructor as follows:

function TextStyle(;
        font_family,
        font_size,
        font_weight = "Normal",
        foreground_color = "black",
        background_color = "white",
        alignment = "left",
        rotation = 0)
    return TextStyle(
        font_family,
        font_size,
        font_weight,
        foreground_color,
        background_color,
        alignment,
        rotation)
end



Maintainability Patterns Chapter 7

[ 281 ]

Here, we have elected to provide default values for most of the fields except font_family
and font_size. It is simply defined as a function that provides keyword arguments for all
fields in the struct. Creating the TextStyle object is much easier and the code is more
readable now. In fact, we have obtained an additional benefit that the arguments can be
specified in any order, as shown here:

style = TextStyle(
    alignment = "left",
    font_family = "Arial",
    font_weight = "Bold",
    font_size = 11)

This is, indeed, quite a simple recipe. We can just create this kind of constructor for every
struct and the problem is solved. Right? Well, yes and no. While it is fairly easy to create
these constructors, it is a hassle to do that for every struct everywhere. 

In addition, the constructor definition must specify all field names in the function
arguments, and these fields repeat in the body of the function. So, it becomes quite difficult
to develop and maintain. Next, we will introduce a macro to simplify our code.

Simplifying code with the @kwdef macro
Given that the keyword definition pattern addresses a fairly common use case, there is
already a macro provided by Julia to help define structs along with constructors accepting
keyword arguments. The macro is currently not exported, but you can use it directly as
follows:

Base.@kwdef struct TextStyle
    font_family
    font_size
    font_weight = "Normal"
    foreground_color = "black"
    background_color= "white"
    alignment = "center"
    rotation = 0
end

Basically, we can just place the Base.@kwdef macro in front of the type definition. As a
part of the type definition, we can also provide default values. The macro automatically
defines the struct and the corresponding constructor function with keyword arguments. We
can see that by using the methods function as follows:



Maintainability Patterns Chapter 7

[ 282 ]

From the output, we can see that the first method is the one that accepts keyword
arguments. The second method is the default construct that requires positional arguments.
Now, creating new objects is as convenient as we would like:

We should note that the preceding definition did not specify any default values for
font_family and font_size. So, those fields are mandatory when creating a TextStyle
object:

Using this macro can greatly simplify object construction and make the code more readable.
There is no reason not to use it everywhere.



Maintainability Patterns Chapter 7

[ 283 ]

As of Julia version 1.3, the @kwdef macro is not exported. There is a
feature request to export it. Should you feel uncomfortable using non-
exported features, consider using the Parameters.jl package instead.

Next, we will discuss code generation pattern, which allows us to create new functions
dynamically so as to avoid writing repeated boilerplate code.

Code generation pattern
New Julia programmers are often amazed by the conciseness of the language. Surprisingly,
some of the very popular Julia packages are written with very little code. There are multiple
reasons for that, but one major contributing factor is the ability to generate code
dynamically in Julia.

In certain use cases, code generation can be extremely helpful. In this section, we will look
into some code generation examples and try to explain how it can be done properly.

Introducing the file logger use case
Let's consider a use case for building a file logging facility. 

Suppose that we want to provide an API for logging messages to files based upon a set of
logging levels. By default, we will support three levels: info, warning, and error. A logger
facility is provided so that a message will be directed to a file, as long as it comes with a
high enough logging level.

The functional requirements can be summarized as follows:

An info-level logger accepts messages with info, warning, or error levels.
A warning-level logger accepts messages with warning or error levels only.
An error-level logger accepts messages with an error level only.

To implement the file logger, we will first define some constants for the three logging
levels:

const INFO    = 1
const WARNING = 2
const ERROR   = 3



Maintainability Patterns Chapter 7

[ 284 ]

These constants are designed to be in numerical order, so we can easily determine when a
message has a logging level as high as what the logger can accept. Next, we define the
Logger facility as follows:

struct Logger
    filename   # log file name
    level      # minimum level acceptable to be logged
    handle     # file handle
end

A Logger object carries the filename of the log file, the minimum level for which messages
can be accepted by the logger, and a file handle that is used for saving data. We can provide
a constructor for Logger as follows:

Logger(filename, level) = Logger(filename, level, open(filename, "w"))

The constructor automatically opens the specified file for writing. Now, we can develop the
first logging function for info-level messages:

using Dates

function info!(logger::Logger, args...)
    if logger.level <= INFO
        let io = logger.handle
            print(io, trunc(now(), Dates.Second), " [INFO] ")
            for (idx, arg) in enumerate(args)
                idx > 0 && print(io, " ")
                print(io, arg)
            end
            println(io)
            flush(io)
        end
    end
end

This function is designed to write the message into the file only if the INFO level is high
enough to be accepted by the logger. It also prints the current time using the now()
function and an [INFO] label in the log file. Then, it writes all the arguments separated by
spaces and finally flushes the I/O buffer.



Maintainability Patterns Chapter 7

[ 285 ]

We can quickly test the code so far. First, we will use info_logger:

The message is correctly logged in the /tmp/info.log file. What happens if we send an
info-level message to an error-level logger? Let's take a look:

Now, this is a little more interesting. As expected, because the error-level logger only
accepts a message with an ERROR level or higher, it did not pick up the info-level message. 

At this point, we may be tempted to quickly finish the two other functions: warning! and
error! and call it the day. If we were determined to do that, the warning! function would
look just like info!, with just a few small changes:



Maintainability Patterns Chapter 7

[ 286 ]

What are the differences between these two logging functions? Let's take a look:

The function names are different: info! versus warning!.
The logging level constants are different: INFO versus WARNING.
The labels are different: [INFO] versus [WARNING].

Other than these, both functions shared the exact same code. Of course, we can just keep
going and wrap up the project by writing error! the same way. However, this is not the
best solution. Imagine that if the core logging logic needs to be changed, for example, the
formatting of log messages, then we have to make the same change in three different
functions. Worse yet, if we forget to modify all of these functions, then we end up with
inconsistent logging formats. After all, we have violated the Don't Repeat Yourself (DRY)
principle.

Code generation for function definitions
Code generation is one way to tackle this problem, as mentioned in the preceding section.
What we will do is to build up the syntax of defining the function and then throw that into
a loop to define all three logging functions. Here is how the code may look:

for level in (:info, :warning, :error)
    lower_level_str = String(level)
    upper_level_str = uppercase(lower_level_str)
    upper_level_sym = Symbol(upper_level_str)

    fn = Symbol(lower_level_str * "!")
    label = " [" * upper_level_str * "] "

    @eval function $fn(logger::Logger, args...)
        if logger.level <= $upper_level_sym
            let io = logger.handle
                print(io, trunc(now(), Dates.Second), $label)
                for (idx, arg) in enumerate(args)
                    idx > 0 && print(io, " ")
                    print(io, arg)
                end
                println(io)
                flush(io)
            end
        end
    end
end



Maintainability Patterns Chapter 7

[ 287 ]

The explanation for the preceding code is as follows:

As we need to define functions for three logging levels, we have created a loop
that goes through a list of symbols: :info, :warning, and :error.
Inside the loop, we can see the function name as fn, the label as label, and the
constant for log level comparison (such as INFO, WARN, or
ERROR) as upper_level_sym.
We use the @eval macro to define the logging function, where
the fn variables, label, and upper_level_sym are interpolated into the
function body.

After running the code in the Julia REPL, all three functions: info!, warning!, and
error! should be defined already. For testing, we can call these with three different kinds
of loggers.

Let's try info_logger first:

As expected, all messages are logged to the file because info_logger can take messages at
any level. Next, let's test error_logger:



Maintainability Patterns Chapter 7

[ 288 ]

In this case, only the error-level message was written to the log file. The
error_logger code effectively filtered out any message that is lower than the error level.

Although we are quite satisfied with the resulting code, do we know what actually
happened behind the scenes? How do we debug the code that we cannot even see? Let's
take a look at this next.

Debugging code generation
Given that the code is generated behind the scene, it may feel a little awkward when we
cannot even see what the generated code will look like. How can we guarantee that the
generated code is exactly what we expect after all those interpolations of variables?

Fortunately, there is a package called CodeTracking that can make debugging code
generation easier. We will see how it works here.

From the previous section, we should have generated three functions: info!, warning!,
and error!. As these are defined as generic functions, we can examine what methods are
defined for each. Let's take error! as an example:



Maintainability Patterns Chapter 7

[ 289 ]

In this case, we only have a single method. We can get to the method object itself using the
first function:

Once we have a reference of the method object, we can lean on CodeTracking to reveal the
source code of the generated function. In particular, we can use the definition function,
which takes a method object and returns an expression object. In order to use this function,
we also need to load the Revise package. Enough said, let's try the following:

Here, we can clearly see that the variables are interpolated correctly; the logger.level
variable is compared with the ERROR constant, and the logging label correctly contains
the [ERROR] string.

We can also see that line numbers are included in the output. Since we defined the
functions from the REPL, the line numbers are less useful. If we would have generated the
functions from a module that is stored in a file, the filename and line number information
would be much more interesting.



Maintainability Patterns Chapter 7

[ 290 ]

The line number nodes seem to be a bit too distracting here, though. We can easily remove
them using the rmlines function from the MacroTools package:

The MacroTools.postwalk function is used to apply the rmlines function to every node
in the abstract syntax tree. The postwalk function is necessary because the rmlines
function only works with the current node.

Now that we understand how to do code generation properly, let's turn around and ask
ourselves—is code generation really necessary? Are there any other alternatives? Let us see
in the next section.

Considering options other than code generation
Throughout this section, we have been focusing on code generation techniques. The
premise is that we can easily add a new function that works just like an existing one but a
little differently. In practice, code generation is not the only option we have on hand. 

Let's continue our discussion with the same example. As we recall, we wanted to add
the warning! and error! functions after defining the logic for info!. If we take a step
back, we can generalize the info! function and make it handle different logging levels.
This can be done as follows:

function logme!(level, label, logger::Logger, args...)
    if logger.level <= level
        let io = logger.handle
            print(io, trunc(now(), Dates.Second), label)
            for (idx, arg) in enumerate(args)



Maintainability Patterns Chapter 7

[ 291 ]

                idx > 0 && print(io, " ")
                print(io, arg)
            end
            println(io)
            flush(io)
        end
    end
end

The logme! function looks exactly like info! before, except that it takes two extra
arguments: level and label. These variables are taken and used in the body of the
function. Now we can define all three logging functions as follows:

info!   (logger::Logger, msg...) = logme!(INFO,    " [INFO] ",    logger,
msg...)
warning!(logger::Logger, msg...) = logme!(WARNING, " [WARNING] ", logger,
msg...)
error!  (logger::Logger, msg...) = logme!(ERROR,   " [ERROR] ",   logger,
msg...)

As we can see, we have solved the original problem using a regular structured
programming technique, and we have minimized as much repetitive code as possible.

In this case, the only variation between these functions are simple types: a
constant and a string. In another situation, we may need to call different
functions within the body. That is okay as well because functions are first-
class in Julia, and so we could just pass around a reference of the function.

Can we do better? Yes. The code can be simplified a little more using closure technique. To
illustrate the concept, let's define a new make_log_func function as follows:

function make_log_func(level, label)
    (logger::Logger, args...) -> begin
        if logger.level <= level
            let io = logger.handle
                print(io, trunc(now(), Dates.Second), " [", label, "] ")
                for (idx, arg) in enumerate(args)
                    idx > 0 && print(io, " ")
                    print(io, arg)
                end
                println(io)
                flush(io)
            end
        end
    end
end



Maintainability Patterns Chapter 7

[ 292 ]

This function takes the level and label arguments and returns an anonymous function
that contains the main logging logic. The level and label arguments are captured in a
closure and used inside the anonymous function. So, we can now define the logging
functions more easily as follows:

info!    = make_log_func(INFO,    "INFO")
warning! = make_log_func(WARNING, "WARNING")
error!   = make_log_func(ERROR,   "ERROR")

So, three anonymous functions are defined here: info!, warning!, and error! and they
all work equally well.

In computer science terms, closure is a first-class function that captures
variables from an enclosing environment. 

Technically speaking, there is a non-trivial difference between the
structured programming solution and closure. The former technique
defines generic functions that are named functions within the module that
can be extended. In contrast, anonymous functions are unique and cannot
be extended.

In this section, we have learned how to do code generation in Julia and how to debug this
code. We have also discussed how to restructure code to achieve the same effect without
having to use code generation technique. Both options are available.

Next, we will discuss DSLs, which is a technique for building syntax for specific domain
usage, thereby making the code much easier to read and write.

Domain-specific language pattern
Julia is a general purpose programming language that can be used effectively for any
domain problem. However, Julia is also one of the few programming languages that allows
the developer to build new syntax to fit a specific domain usage.

So, a DSL is an example of Structured Query Language (SQL). SQL is designed to process
data in a two-dimensional table structure. It is very powerful, and yet it is only appropriate
when you need to handle data in tables.



Maintainability Patterns Chapter 7

[ 293 ]

There are a few prominent areas in the Julia ecosystem where a DSL is used extensively.
The one that stood out the most is the DifferentialEquations package, which allows
you to write differential equations in a form that is very close to their original mathematical
notation. For example, consider the Lorenz system equations as follows:

The code to define these equations can be written as follows:

@ode_def begin
  dx = σ * (y - x)
  dy = x * (ρ - z) - y
  dz = x * y - β * z
end σ ρ β

As we can see, the syntax almost matches with the mathematical equations.

After this, in the next section, we will explore how to build our own DSL for a practical use
case in computer graphics called L-System.

Introducing the L-System
An L-System, also known as Lindenmayer System, is a formal syntax for describing how
organisms evolve by way of simple patterns. It was first introduced in 1968 by Aristid
Lindenmayer, a Hungarian biologist and botanist. An L-System can generate interesting
patterns that mimic real-life shape and form. A well-known example is the growth of a
specific algae, which can be modeled as follows:

Axiom: A
  Rule: A -> AB
  Rule: B -> A

Here is how it works. We always start with the axiom, in this case, the character A. For each
generation, we apply the rules to every character in the string. If the character is A, then it is
replaced with AB. Similarly, if the character is B, it is replaced with A. Let's work through
the first five iterations:

A

AB



Maintainability Patterns Chapter 7

[ 294 ]

ABA

ABAAB

ABAABABA

You may wonder, how does it even look like an algae? Here's a visualization of the growth
from the first generation to the fifth generation:

There are many softwares that can produce interesting graphical visualizations based on L-
Systems. An example is My Graphics, an iOS app developed by me. The application can
produce several kinds of patterns such as the preceding algae example. An interesting
sample called a Koch curve is shown as follows:



Maintainability Patterns Chapter 7

[ 295 ]

Enough said. From what we know so far, the concept is fairly simple. What we are going to
do next is design a DSL for the L-System.

Designing DSL for L-System
The characteristics of a DSL are that the source code should look like the original
representation of the domain concept. In this case, the domain concept is described by an 
axiom and a set of rules. Using the algae growth example, it needs to look like the
following:

Axiom: A
  Rule: A -> AB
  Rule: B -> A

If we try to write them in plain Julia language, we may end up with code like this:

model = LModel("A")
add_rule!(model, "A", "AB")
add_rule!(model, "B", "A")

As we can see, this is not ideal. While the code is neither long nor difficult to read, it does
not look as clean as the L-System grammar. What we really want is to build a DSL that lets
us specify the model as follows:

model = @lsys begin
    axiom : A
    rule  : A → AB
    rule  : B → A
end

This will be the target syntax for our DSL.

Reviewing the L-System core logic
As part of this example, we will develop an L-System package together. Before we jump
into the DSL implementation, let's take a quick detour and understand how the core logic
works. Knowledge of the API allows us to design and test DSL properly.



Maintainability Patterns Chapter 7

[ 296 ]

Developing the LModel object
To develop the LModel object, perform the following steps:

Let's first create a type called LModel to keep track of the axiom and the set of1.
rules. The struct can be defined as follows:

struct LModel
    axiom
    rules
end

Then, we can add a constructor that populates the axiom field and initializes the2.
rules field:

"Create a L-system model."
LModel(axiom) = LModel([axiom], Dict())

By design, the axiom is an array of a single element. The rules are captured in a3.
dictionary for fast lookups. An add_rule! function is also written to append
new rules to the model:

"Add rule to a model."
function add_rule!(model::LModel, left::T, right::T) where {T <:
AbstractString}
    model.rules[left] = split(right, "")
    return nothing
end

We have used the split function to convert a string into an array of single-
character strings. 

Lastly, we add a Base.show function just so we can display a model nicely on4.
Terminal:

"Display model nicely."
function Base.show(io::IO, model::LModel)
    println(io, "LModel:")
    println(io, " Axiom: ", join(model.axiom))
    for k in sort(collect(keys(model.rules)))
        println(io, " Rule: ", k, " → ", join(model.rules[k]))
    end
end



Maintainability Patterns Chapter 7

[ 297 ]

Having defined these functions, we can quickly verify our code as follows:

Next, we will work on the core logic that takes a model and keeps track of the current state
of the iteration.  

Developing the state object
To simulate the growth of an L-System model, we can develop an LState type that keeps
track of the current state of the growth. It's a simple type that just keeps a reference to the
model, the current iteration of growth, and the current result. For this, consider the
following code:

struct LState
    model
    current_iteration
    result
end

The constructor just needs to take the model as the only argument. It defaults
current_iteration to 1 and defaults result to the axiom of the model, as shown here:

"Create a L-system state from a `model`."
LState(model::LModel) = LState(model, 1, model.axiom)

We need a function to advance to the next stage of the growth. So, we just provide a next
function:

function next(state::LState)
    new_result = []
    for el in state.result
        # Look up `el` from the rules dictionary and append to
`new_result`.



Maintainability Patterns Chapter 7

[ 298 ]

        # Just default to the element itself when it is not found
        next_elements = get(state.model.rules, el, el)
        append!(new_result, next_elements)
    end
    return LState(state.model, state.current_iteration + 1, new_result)
end

Basically, given the current state, it iterates all the elements of the current result and
expands each element using the rules from the model. The get function looks up the
element in the dictionary. If it is not found, it defaults to itself. The expanded elements are
just appended to the new_results array.

At the end, a new LState object is created with the next iteration number and the new
result. For a better display in Terminal, we can add a Base.show method for LState as
follows:

"Compact the result suitable for display"
result(state::LState) = join(state.result)

Base.show(io::IO, s::LState) =
    print(io, "LState(", s.current_iteration, "): ", result(s))

The result function just combines all the elements of the array into a single string. The
show function displays both the current iteration number and the result string.

We should have a fully functional system now. Let's try to simulate the growth of the algae:

Wonderful! Now that the functionalities are built, we can move on to the interesting part of
this chapter—how to create a DSL with the L-System syntax.



Maintainability Patterns Chapter 7

[ 299 ]

Implementing a DSL for L-System
Recall from the previous section that we want to have a clean syntax for defining an L-
System model. From a metaprogramming perspective, we just need to translate the code
from one abstract syntax tree to another. The following diagram shows graphically what
kind of translation is required:

It turns out that the translation is quite straightforward. When we encounter an axiom, we
translate the code to construct a new LModel object. When we encounter a rule, we
translate the code to an add_rule! function call.

While it seems easy enough, this kind of source-to-source translation can be greatly
simplified using pre-existing tools. In particular, the MacroTools package contains some
very useful macros and functions for handling these cases. Let's first learn about the tool
and then we can utilize them in developing our DSL.

Using the @capture macro 
The MacroTools package provides a macro called @capture that can be used to match an
expression against a pattern. As part of the matching process, it also assigns variables for
which the developer wishes to capture the matched values.

The @capture macro accepts two arguments; the first one is an expression that needs to be
matched, and the second one is a pattern used for matching. Consider the following
example:

The macro returns true when the pattern can be matched, or else it just returns false.
When the pattern is matched, the variables ending with an underscore will be assigned in
the current environment, with the underscore stripped away from the variable name. In the
preceding example, because x = 1 matches x = val_, it has returned true:



Maintainability Patterns Chapter 7

[ 300 ]

Because the pattern was matched successfully, a val variable was also assigned with the
value of 1.

Matching axiom and rule statements
We can use the same trick to extract useful information from the axiom and rule
statements. Let's do a quick experiment for the axiom statement, which consists of the word
axiom, a colon, and a symbol. Matching it with the @capture macro is pretty slick as
follows:

Matching a rule statement is just as easy. The only difference is that we want to match the
original symbol and the corresponding replacement symbol, as shown here:

Once matched, the original and replacement variables are assigned with the
corresponding symbols from the rule. We can also observe that the matched variables are
symbols rather than strings. As the LModel programming interface requires strings, we will
have to perform an additional data conversion from the symbol in the walk function, which
will be presented in the Developing the macro for a DSL section.



Maintainability Patterns Chapter 7

[ 301 ]

Using the postwalk function
In order to traverse the whole abstract syntax tree, we can use the MacroTool's postwalk
function. To understand how it works, we can play with a simple example, as outlined in
the following steps:

Let's create an expression object as follows:1.

Here, we have used the rmlines function to remove the line number nodes since
we do not need them in this exercise.

Then, we can use the postwalk function to traverse the tree and display2.
everything that it has ever encountered:



Maintainability Patterns Chapter 7

[ 302 ]

The postwalk function accepts a function as its first argument and an expression as the
second argument. As it traverses the tree, it calls the function with the sub-expression being
visited. We can see that it considered every single leaf node (for example, :x) as well as
every sub-tree from the expression such as :(x = 1). It also includes the top-level
expression as we can see at the bottom of the output. 

If we pay a little more attention to the order of the traversal, we realize
that the postwalk function works from the bottom up, starting from the
leaf nodes.

MacroTools also provides a prewalk function that also traverses the tree.
The difference between prewalk and postwalk is that prewalk would
work from the top down rather than bottom up. You are encouraged to
try that out and learn how they differ. 

For our use case, we can use either one.

Now that we know how to match expressions and traverse the tree, we have everything in
our toolbox to develop our DSL. That's the fun part. Let's go!

Developing the macro for a DSL
To support the LModel syntax, we have to match both the axiom and rule statements to
how they are written in the model. 

Let's get started by creating the lsys macro, as follows:

macro lsys(ex)
    return MacroTools.postwalk(walk, ex)
end

The macro simply uses postwalk to traverse the abstract syntax tree. The resulting
expression is returned as is. The main translation logic actually resides in the walk function
as follows:

function walk(ex)
    match_axiom = @capture(ex, axiom : sym_)
    if match_axiom
        sym_str = String(sym)
        return :( model = LModel($sym_str) )
    end
    match_rule = @capture(ex, rule : original_ → replacement_)
    if match_rule
        original_str = String(original)



Maintainability Patterns Chapter 7

[ 303 ]

        replacement_str = String(replacement)
        return :(
            add_rule!(model, $original_str, $replacement_str)
        )
    end

    return ex
end

Let's dissect the preceding code one portion at a time.

The walk function uses the @capture macro to match the axiom and rule patterns. When
there is a match, the corresponding symbols are converted to a string and then interpolated
into the corresponding expression, and the final expression is returned. Consider this line
of code:

match_axiom = @capture(ex, axiom : sym_)

The @capture macro call tries to match the expression with the axiom : sym_ pattern,
which is an axiom symbol, followed by a colon, and then followed by another symbol.
Since the sym_ target symbol ends with an underscore, if the match is successful,
the sym variable would be assigned with the matched value. In the algae model example
of the Developing the state object section, we would expect sym to be assigned with
the :A symbol. Once matched, the following code is executed:

    if match_axiom
        sym_str = String(sym)
        return :( model = LModel($sym_str) )
    end

The target expression simply constructs an LModel object and assigns it to the model
variable. With the algae model, we can expect that the translated expression will look like
this:

model = LModel("A")

Similarly, the rule statement can be matched using the pattern as follows:

    match_rule = @capture(ex, rule : original_ → replacement_)

The original and replacement variables are assigned, converted to a string, and
interpolated into an add_rule! statement in the target expression.



Maintainability Patterns Chapter 7

[ 304 ]

From the lsys macro, the walk function is called by the postwalk function many
times—once for each node and sub-tree of the abstract syntax tree. To see how postwalk
generates the code, we can test it from the REPL:

As it turns out, we are not completely done yet because the translated statements sit inside
a quote block and the return value of the block would come from the block's last
expression, which is zero as the add_rule! function does not return any meaningful value.

This final change is actually the simple part. Let's modify the @lsys macro again as follows:

macro lsys(ex)
    ex = MacroTools.postwalk(walk, ex)
    push!(ex.args, :( model ))
    return ex
end

The push! function was used to add the :( model ) expression at the end of the block.
Let's test the macro expansion and see what it looks like:



Maintainability Patterns Chapter 7

[ 305 ]

It's good now! Finally, we can just use the macro as follows:

Awesome! The algae_model example can now be constructed using our little DSL. As it
turns out, developing a DSL is not difficult at all. Given excellent tools such as MacroTools,
we can quickly come up with a set of translation patterns and manipulate an abstract
syntax tree into whatever we want.

A DSL is a great way to simplify the code and make it easier to maintain. It can be very
useful in specific domain areas.

Summary
In this chapter, we have looked at several patterns related to improving the readability and
maintainability of an application.

First, we learned about when a module becomes too large and when it should be
considered for reorganization. We realized that coupling is an important consideration
when splitting code into separate modules. Next, we discussed the problem of constructing
objects that have many fields. We determined that using a keyword-based constructor can
make the code more readable and can provide additional flexibility of supporting default
values. We learned that the Julia Base module already provides a macro.

Then we explored how to do code generation, which is a convenient technique for
dynamically defining many similar functions without having to repeat the code. We picked
up a utility from CodeTracking to review the generated source code.



Maintainability Patterns Chapter 7

[ 306 ]

Finally, we went over details about how to develop DSLs. It is a good way to simplify code
by mimicking the syntax with the original form of the domain concepts. We used an L-
System as an example for developing a DSL. We picked up several utilities from the
MacroTools package, where we can transform our source code by matching patterns. We
learned how to use the postwalk function to examine and transform source code. And,
pleasantly, we were able to complete the exercise with very little code.

In the next chapter, we will go over a set of patterns related to code safety. Enjoy reading!

Questions
What is the difference between afferent and efferent coupling?1.
Why are bidirectional dependencies bad from a maintainability perspective?2.
What is an easy way to generate code on the fly?3.
What would be an alternative to code generation?4.
When and why should you consider building a DSL?5.
What are the tools available for developing a DSL?6.



8
Robustness Patterns

This chapter will cover several patterns that can be used to improve software robustness.
By robustness, we are referring to the quality aspects, that is, can the software perform its
functions correctly? Are all possible scenarios handled properly? This is an extremely
important factor to consider when writing code for mission-critical systems.

Based on the Principle of Least Privilege (POLP), we would consider hiding unnecessary
implementation details to the client of the interface. However, Julia's data structure is
transparent – all fields are automatically exposed and accessible. This poses a potential
problem because any improper usage or mutation can break the system. Additionally, by
accessing the fields directly, the code becomes more tightly coupled with the underlying
implementation of an object. So, what if a field name needs to be changed? What if a field
needs to be replaced by another one? Therefore, there is a need to apply abstraction and
decouple object implementation from its official interface. We should adopt the more
general definition – not only do we want to cover as many lines of code as possible but also
every possible scenario as well. An increase in code coverage would give us more
confidence about the correctness of our code.

We have classified these techniques into the following sections:

Accessor patterns
Property patterns
Let block patterns
Exception handling patterns

By the end of this chapter, you will be able to encapsulate data access by developing your
own accessor functions and property functions. You will also be able to hide away global
variables from unexpected access outside of the module. Finally, you will also know about
various exception handling techniques and understand how to retry failed operations.

Let's get started!



Robustness Patterns Chapter 8

[ 308 ]

Technical requirements
The example source code for this chapter can be found at https:/ /github. com/
PacktPublishing/Hands- on- Design- Patterns- and- Best- Practices- with- Julia/ tree/
master/Chapter08.

The code is tested in a Julia 1.3.0 environment.

Accessor patterns
Julia objects are transparent. What does that mean? Well, currently, the Julia language does
not have the ability to apply access control over the fields of an object. Therefore, people
coming from a C++ or Java background may find it a little uneasy. In this section, we will
explore a number of ways in which to make the language more acceptable for those users
who are seeking more access control.

So, perhaps we should define our requirements first. While we write up the requirements,
we will also ask ourselves why we want to have them in the first place. Let's just consider
any object in a Julia program:

Some fields need to be hidden from the outside world: Some fields are
considered to be part of the public interface and are, therefore, fully documented
and supported. Other fields are considered implementation details, and they
may not be used because they are subject to change in the future.
Some fields require validation before being mutated: Some fields may
only accept a range of values. For example, an age field of a Person object may
reject anything less than 0 or greater than 120! Avoiding invalid data is
paramount to building robust systems.
Some fields require a trigger before they can be read: Some fields may be lazily
loaded, which means they are not loaded until the value is read. Another reason
is that some fields may contain sensitive data, and the use of such fields must be
logged for audit purposes.

We will now discuss how to address these requirements.

Recognizing the implicit interface of an object
Before we dive into the specific patterns, let's first take a quick detour and discuss how and
why we have a problem in the first place.

https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter08


Robustness Patterns Chapter 8

[ 309 ]

Suppose that we have defined a data type called Simulation to keep track of some
scientific experiment data and related statistics. The syntax for it is as follows:

mutable struct Simulation{N}
    heatmap::Array{Float64, N}
    stats::NamedTuple{(:mean, :std)}
end

A Simulation object contains an N-dimensional array of floating-point values and a
named tuple of statistical values. For demonstration purposes, we will create a simple
function to perform a simulation and create an object, as follows:

using Distributions

function simulate(distribution, dims, n)
    tp = ntuple(i -> n, dims)
    heatmap = rand(distribution, tp...)
    return Simulation{dims}(heatmap, (mean = mean(heatmap), std =
std(heatmap)))
end

The simulation data called heatmap is generated using the rand function based on a
distribution provided by the user. The dims argument represents the number of
dimensions in the array, and the value of n represents the size of each dimension. Here's
how to simulate a normally distributed 2-dimensional heatmap of size 1000 x 1000:

sim = simulate(Normal(), 2, 1000);

At this point, we can easily access the heatmap and stats fields of the object as follows:



Robustness Patterns Chapter 8

[ 310 ]

Let's pause for a second. Is it OK to access the fields directly? We can argue here that it is
not. The primary reason is that there is an implicit assumption that the field names
represent the public interface of the object. 

Unfortunately, such an assumption can be a little brittle in reality. As any seasoned
programmer would have pointed out, software is always subject to change. Always
to change. The world is not static, and requirements are not set in stone. For example, here
are some possible changes that will certainly break our programming interface:

Changing the field name of heatmap to heatspace because the new name is
better suited for 3-dimensional or higher-dimensional data
Changing the data type of stats from a named tuple to a new struct type
because it has grown to include more complex statistical measures and we want
to develop new functions along with that
Removing the stats field altogether and computing it on the fly

As you can see, the programming interface cannot be taken lightly. In order to build
software that lasts, we need to be clear about every single interface and understand how to
support them in the future.

One way to provide an interface to an object is to create assessor functions, which are
sometimes called getters and setters in other programming languages. So, in the next
sections, let's look at how to use them.

Implementing getter functions
In mainstream object-oriented languages, we often implement getters for accessing the
fields of an object. In Julia, we can also create getter functions. When implementing getter
functions, we can choose which fields to expose as part of the application programming
interface (API). For our example, we will implement getter functions for both fields, as
follows:

get_heatmap(s::Simulation) = s.heatmap
get_stats(s::Simulation) = s.stats

Our choice of function names here is somewhat non-idiomatic for the Julia language. A
better convention is to use the nouns directly:

heatmap(s::Simulation) = s.heatmap
stats(s::Simulation) = s.stats



Robustness Patterns Chapter 8

[ 311 ]

So, when we read the code that uses the heatmap function, we can read it as the heatmap of
the simulation. Likewise, we can read it as the statistics of the simulation when the stats
function is used.

These getter functions serve the purpose of defining a formal data retrieval interface for the
object. If we ever need to change the names (or even the types) of the underlying fields, it
would be fine as long as the public interface does not change. Furthermore, we could even
remove the stats field and implement the statistical calculation directly in the stats
function. Backward compatibility can now be easily maintained for any program that uses
this object.

Next, we will look at write access for objects.

Implementing setter functions
For mutable types, we may implement setters. The scope would include fields that can only
ever be mutated. For our simulation project, suppose that we want to allow the client
program to do some transformation of the heatmap and put it back to the object. We can
support that use case easily, as shown in the following code snippet:

function heatmap!(
        s::Simulation{N},
        new_heatmap::AbstractArray{Float64, N}) where {N}
    s.heatmap = new_heatmap
    s.stats = (mean = mean(new_heatmap), std = std(new_heatmap))
    return nothing
end

The setter function, heatmap!, accepts a Simulation object and a new heatmap array.
Because the stats field contains the statistics of the underlying heatmap, we must
maintain consistency within the object by recalculating the statistics and updating the field.
Note that such a guarantee for consistency is only possible when we provide a setter
function. Otherwise, the object would be in an inconsistent state if we ever to allow users to
directly mutate the heatmap field in the object.

An additional benefit is that we can perform data validation in the setter function. For
example, we can control the size of the map and throw an error when the size of the
heatmap contains odd shapes:

function heatmap!(
            s::Simulation{N},
            new_heatmap::AbstractArray{Float64, N}) where {N}
    if length(unique(size(new_heatmap))) != 1



Robustness Patterns Chapter 8

[ 312 ]

        error("All dimensions must have same size")
    end
    s.heatmap = new_heatmap
    s.stats = (mean = mean(new_heatmap), std = std(new_heatmap))
    return nothing
end

Here, we first determine the size of new_heatmap, which should be returned as a tuple.
Then, we find out how many unique values are in this tuple. If there is only a single unique
number in the tuple, then we know that the array is square, cubic, and so on. Otherwise, we
just throw an error back to the caller.

Just like getter functions, setter functions serve as a public interface where the data of an
object may be mutated. After we have both getter and setter functions, we can expect the
caller to go through the interfaces. But the original fields can still be accessed directly. So,
how do we stop that from happening? Let's explore that next.

Discouraging direct field access
While getter and setter functions are convenient, it is easy to forget about these functions
and so the program ends up accessing the fields directly. That would be too bad, as we
have just spent all that effort creating getter and setter functions and they end up getting
bypassed.

A possible solution is to discourage direct field access by renaming the fields to something
that looks obviously private. A common convention is to prepend the field names with
underscores.

For our example, we can redefine the struct as follows:

mutable struct Simulation{N}
    _heatmap::Array{Float64, N}
    _stats::NamedTuple{(:mean, :std)}
end

These oddly named fields will then only be used within the implementation of the
Simulation type, and all external usages will avoid them. Such a convention discourages
the programmer from making the mistake of accessing the fields directly.



Robustness Patterns Chapter 8

[ 313 ]

However, some of us may not be very satisfied with this solution because the use of a
coding convention is a very weak method for enforcing the proper use of the programming
interface. Such concern is very valid especially when we hold ourselves to a higher
standard of software robustness. So, in the next section, we will explore a stronger
technique that will allow us to control access programmatically.

Property patterns
In this section, we will take a deep dive and learn how to enforce more granular control
over the fields of an object by using the property interface. Julia's property interface allows
you to provide a custom implementation for the dot notation used in field access. By
overriding the standard behavior, we can apply any kind of access control and validation
against the field being referenced or assigned. To illustrate this concept, we will tackle a
new use case here – implementing a lazy file loader.

Introducing the lazy file loader
Suppose that we are developing a file loading facility that supports lazy loading. By lazy,
we are talking about not loading a file until the content is required. Let's take a look at the
following code:

mutable struct FileContent
    path
    loaded
    contents
end

The FileContent struct contains three fields:

path: The location of the file
loaded: A Boolean value that indicates whether the file has been loaded into
memory
contents: A byte array that contains the contents of the file

Here's the constructor for the same struct:

function FileContent(path)
    ss = lstat(path)
    return FileContent(path, false, zeros(UInt8, ss.size))
end



Robustness Patterns Chapter 8

[ 314 ]

As with our current design, we pre-allocate memory for the file but we do not read the file
content until later. The size of the file is determined by a call to the lstat function. When
creating the FileContent object, we initialize the loaded field with a false value – an
indication that the file has not been loaded into memory.

Eventually, we must load the file content, so we just provide a separate function that reads
the file into the pre-allocated byte array:

function load_contents!(fc::FileContent)
    open(fc.path) do io
        readbytes!(io, fc.contents)
        fc.loaded = true
    end
    nothing
end

Let's run a quick test to see how it works:

Here, we have just created a new FileContent object. Clearly, the loaded field contains a
false value because we have not read the file yet. The content field is also full of zeros.

Let's load the file content now:



Robustness Patterns Chapter 8

[ 315 ]

Now, the contents field contains some real data, and the loaded field has the value of
true. Of course, we are just babysitting and running the code manually for now. The idea
is to implement lazy loading. We need a way to intercept any read operation into the
contents field so that the file content can be loaded just in time. Ideally, this should
happen whenever someone uses the fc.contents expression. In order to hijack the call to
get fc.contents, we must first understand how Julia's dot notation works. Let's take a
detour and go over that now.

Understanding the dot notation for field access
In general, whenever we need to access a specific field of an object, we can conveniently
write it as object.fieldname. As it turns out, this notation is really syntactic sugar, that is,
some sweet syntax, for the getproperty function call. To be clear, whenever we write
the code in the following format:

object.fieldname

It is translated to a function call to getproperty:

getproperty(object, :fieldname)

For our lazy file loader example, fc.path is really the same as getproperty(fc,
:path). 

All that magic is performed automatically by the Julia compiler. A great thing about Julia is
that this kind of magic is quite transparent. We can actually see what the compiler did by
using the Meta.lower function, as follows:



Robustness Patterns Chapter 8

[ 316 ]

Similarly, when we assign a value to a field of an object, the same kind of translation takes
place:

From the preceding result, we can see when the code assigns a string to fc.path, it is just
translated to a setproperty!(fc, :path, "/etc/hosts") function call.

Let's not stop there. What do the getproperty and setproperty! functions do? Well,
they happen to be plain Julia functions defined in the Base module. The best place to
understand how they work is by examining the Julia source code itself. From the Julia
REPL, we can easily bring up the source code as follows:

From the preceding code, we can see that the @edit macro is used to locate the source code
of the function being called – in this case, getproperty. From the REPL terminal, it should
open your editor and display the code as follows:

Aha! We see that the getproperty function just forwards the call to getfield, which is
used to extract the data from the object. The next line in the same source file shows the
definition of setproperty!. The implementation of setproperty! is a bit more
interesting. Besides using the setfield! function to mutate the field in the object, it also
converts the v value to the type of the field in object x, which is determined by a call to
fieldtype.



Robustness Patterns Chapter 8

[ 317 ]

The getfield function is a built-in function for getting any field value from an existing
object. It takes two arguments – an object and a symbol. For example, to get the path from a
FileContent object, we can use getfield(fc, :path). Likewise, the setfield!
function is used to update any field of an existing object. Both getfield and setfield!
are low-level functions in the Julia implementation.

Type conversion is convenient, especially for numerical types. For
example, it is quite common for an object to store a Float64 field but the
code happens to pass an integer instead. Of course, the conversion logic is
more general than just numeric types. For custom types, the same auto-
conversion process would work fine as long as a convert function is
defined.

Now that we understand how the dot notation is translated to the getproperty and
setproperty! function calls, we can develop the lazy loading feature for our file loader.

Implementing read access and lazy loading
In order to implement lazy loading, we can extend the getproperty function. During the
call, we can check whether the file content has been loaded yet. If not, we just load the file
content right before returning the data back to the caller.

Extending the getproperty function is as easy as simply defining it with the
FileContent type and a symbol as the arguments of the function. The following code
shows this:

function Base.getproperty(fc::FileContent, s::Symbol)
    direct_passthrough_fields = (:path, )
    if s in direct_passthrough_fields
        return getfield(fc, s)
    end
    if s === :contents
        !getfield(fc, :loaded) && load_contents!(fc)
        return getfield(fc, :contents)
    end
    error("Unsupported property: $s")
end



Robustness Patterns Chapter 8

[ 318 ]

It is important that we define the function for Base.getproperty rather than just
getproperty. That is because the compiler will translate the dot notation to
Base.getproperty rather than the getproperty function in your own module. If this is
unclear, you are encouraged to revisit the namespace concept from the Understanding
namespaces, modules, and packages section in Chapter 2, Modules, Packages, and Data Type
Concepts.

We have chosen to put Base as a prefix to the function name in the
definition. This style of coding is preferred because it is clear from the
function definition that we are extending the getproperty function from
the Base package.

Another way to extend functions from another package is to first import
the third-party package. For the preceding example, we could have
written it as follows. This coding style is not recommended because it is
less obvious that the getproperty function being defined is an extension
of the function from Base:

import Base: getproperty

function getproperty(fc::FileContent, s::Symbol)
 ....
end

By contrast, the getproperty function must handle all possible property names. Let's first
consider the following section of code:



Robustness Patterns Chapter 8

[ 319 ]

In this case, we must support :path and :contents. If the s symbol is one of those fields
that we want to pass through directly, then we just forward the call to the getfield
function.

Now, let's consider the next section of code: 

If the symbol is :contents, then we check the value of the loaded field. If the loaded
field contains false, then we call the load_contents! function to load the file content
into memory.

Note that we have used getfield all over the place in this function. If we had written the 
code using the normal dot syntax, for example, fc.loaded, then it would start calling
the getproperty function again and we could end up with infinite recursion. 

If the field name is not one of the supported ones, then we just raise an exception, as
follows:



Robustness Patterns Chapter 8

[ 320 ]

One interesting observation is that we have decided to support two property names only
– path and contents – and we have dropped the support for the loaded property. The
reason for this is that the loaded field is really used as an internal state of the object. There
is no reason to expose it as part of the public programming interface. As we talk about
software robustness in this chapter, we can also appreciate developing code that only
exposes necessary information. 

An analogy is that data is always classified but can be released only on a
need-to-know basis, which is how government officials usually like to
describe highly sensitive data.

We are almost done. The only remaining piece of work is to refactor the load_content!
function to use getfield and setfield! instead of the dot notation:

# lazy load
function load_contents!(fc::FileContent)
    open(getfield(fc, :path)) do io
        readbytes!(io, getfield(fc, :contents))
        setfield!(fc, :loaded, true)
    end
    nothing
end

We can now test the lazy loading functionality:

Both references to the path and contents fields are working properly. In particular, a
reference to fc.contents triggered the file load and then returned the proper content. So,
what happened to the loaded field? Let's try it:



Robustness Patterns Chapter 8

[ 321 ]

Voila! We have successfully prevented the loaded field from being accessed directly. 

The property interface has enabled us to manage read access and implement the lazy
loading feature. Next, we will look at how to manage write access as well.

Controlling write access to object fields
In order to manage write access to the fields of an object, we can extend the setproperty!
function, in a similar way to how we did for read access.

Let's recall how the FileContent data type was designed:

mutable struct FileContent
    path
    loaded
    contents
end

Suppose that we want to allow the user to switch to a different file by mutating the path
field with a new file location. In addition to this, we want to prevent the loaded and
contents fields from being changed directly using dot notation. To achieve that, we can
extend the setproperty! function as follows:

function Base.setproperty!(fc::FileContent, s::Symbol, value)
    if s === :path
        ss = lstat(value)
        setfield!(fc, :path, value)
        setfield!(fc, :loaded, false)
        setfield!(fc, :contents, zeros(UInt8, ss.size))
        println("Object re-initialized for $value (size $(ss.size))")
        return nothing
    end
    error("Property $s cannot be changed.")
end

To extend the setproperty! function, we must use setfield! in the function definition
whenever we need to change any field in the object.



Robustness Patterns Chapter 8

[ 322 ]

In this case, when the user tries to assign a value to the path field, we can just reinitialize
the object like how we did in the constructor function. This involves setting the values of
the path and loaded fields, as well as pre-allocating memory space for the file content.
Let's go ahead and test it now:

If the user tries to assign a value to any other field, an error is thrown:

By extending the setproperty! function, we have successfully controlled write access to
any field for any object.

While individual field access can be controlled, we cannot prevent
additional changes to the underlying data of a field. For example, the
contents property is just an array of bytes and the programmer should
be able to change the elements in the array. If we want to protect the data
from being modified, we can return a copy of the contents byte array
from the getproperty call.

By now, we know how to implement the getproperty and setproperty! functions so
that we can control access to the individual fields of an object. Next, we will look at how to
document what properties are available.

Reporting accessible fields
A development environment can often help a programmer to enter field names correctly. In
the Julia REPL, when I press the Tab key twice after entering the dot character, it will try to
autocomplete and display the available field names:



Robustness Patterns Chapter 8

[ 323 ]

Now that we have implemented the getproperty and setproperty! functions, the list is
no longer accurate. More specifically, the loaded field should not be displayed because it
can neither be accessed nor changed. In order to fix this, we can simply extend the
propertynames function, as follows:

function Base.propertynames(fc::FileContent)
    return (:path, :contents)
end

The propertynames function just needs to return a tuple of valid symbols. After
the function is defined, the REPL will only display the valid field names, as follows:

In this section, we have learned how to leverage Julia's property interface to control both
read and write access to any field of an object. It is an essential technique to write robust
programs.

While the use of the property interface seems to address most of the
requirements we set forth earlier, it is not bulletproof. 

For example, there is nothing that prevents the program from calling
the getfield and setfield! functions directly on any object. It would
not be possible to completely hide that from the programmer unless the
language is updated to support granular field access controls. Such a
feature may be available in the future.

Next, we will look at some patterns related to limiting the scope of variables so that we can
minimize the exposure of private variables to the outside world.

Let block patterns
The recurring theme in this chapter is to learn how to improve and gain more control over
the visibility and accessibility of data and functions in the public API. By enforcing the
access of the programming interface, we can guarantee how the program is utilized.
Additionally, we can focus on testing the interface as advertised.



Robustness Patterns Chapter 8

[ 324 ]

Currently, Julia provides little help in encapsulating implementation details within a
module. While we can use the export keyword to expose certain functions and variables to
the other modules, it is not designed to be an access control or data encapsulation feature.
You can always peek into a module and access any variable or function even when they are
not exported.

In this section, we will continue the trend and go over some strategies that we can use to
limit access to variables or functions in a module. Here, we will use a web crawler use case
to illustrate the problem and a possible solution.

Introducing the web crawler use case
Suppose that we have to build a web crawler that can be used to index content from
various websites. The process of doing that involves setting up a list of target sites and then
kicking off the crawler. Let's create a module with the structure, as follows:

module WebCrawler

using Dates

# public interface
export Target
export add_site!, crawl_sites!, current_sites, reset_crawler!

# == insert global variables and functions here ==

end # module

Our programming interface is quite simple. Let's see how to do this:

Target is a data type that represents the website being crawled. Then, we can1.
use the add_site! function to add new target sites to the list. 
When ready, we just call the crawl_sites! function to visit all sites.2.
For convenience, the current_sites function can be used to review the current3.
list of target sites and their crawling status.
Finally, the reset_crawler! function can be used to reset the state of the web4.
crawler.



Robustness Patterns Chapter 8

[ 325 ]

Let's take a look at the data structure now. The Target type is used to maintain the URL of
the target website. It also contains a Boolean variable regarding the status and the time it
finished crawling. The struct is defined as follows:

Base.@kwdef mutable struct Target
    url::String
    finished::Bool = false
    finish_time::Union{DateTime,Nothing} = nothing
end

In order to keep track of the current target sites, a global variable is used:

const sites = Target[]

To complete the web crawler implementation, we have the following functions defined in
the module:

function add_site!(site::Target)
    push!(sites, site)
end

function crawl_sites!()
    for s in sites
        index_site!(s)
    end
end

function current_sites()
    copy(sites)
end

function index_site!(site::Target)
    site.finished = true
    site.finish_time = now()
    println("Site $(site.url) crawled.")
end

function reset_crawler!()
    empty!(sites)
end



Robustness Patterns Chapter 8

[ 326 ]

To use the web crawler, first, we can add some sites, as follows:

Then, we can just run the crawler and retrieve the results afterward:

The current implementation is not bad, but it has the following two access-related issues:

The global variable, sites, is visible to the outside world, which means that1.
anyone can get a handle of the variable and mess it up, for example, by inserting
a malicious website. 
The index_site! function should be considered a private function and should2.
not be included as part of the public API.

Now that we have set the stage, we will demonstrate how to address these problems in the
next section.

Using closure to hide private variables and
functions away
Our goal is to hide the global constant, sites, and the helper function, index_site!, such
that they are not visible in the public API. To achieve that, we can utilize let blocks.



Robustness Patterns Chapter 8

[ 327 ]

In the body of the module, we can wrap all of the functions inside a let block, as follows:

Now, let's see what has been changed:

The sites constant has been replaced by a bound variable at the beginning of
the let block. The variables in a let block are bound only in the scope of the
block and are not visible to the outside world.
The functions that need to be exposed to the API are prefixed with the global
keyword. This includes add_site!, crawl_sites!, current_sites, and
reset_crawler!. The index_site! function is left as-is so that it is not
exposed.

The global keyword allows us to expose the function names to the global scope of the
module, which can be exported and made accessible from the public API.



Robustness Patterns Chapter 8

[ 328 ]

After reloading the module, we can confirm that neither sites nor index_site! are
available from the API, as shown in the following output:

As you can see, a let block is an effective way to control access to global variables or
functions in a module. We have the ability to encapsulate functions or variables that we
want to prevent access from outside of the module.

There may be a performance overhead when wrapping functions within a
let block. You may want to run a performance test before using this
pattern in any performance-critical section of your code.

As let blocks are quite useful in limiting the scope, we can often use it in longer scripts
and functions. Next, we will look at how it is used in practice.

Limiting the variable scope for long scripts or
functions
Another usage of the let block is to limit the scope of variables in a long Julia script or
function. In a long script or function, the code could be difficult to follow if we declare a
variable at the top and use it throughout the body. Instead, we can write a series of let
blocks, which operate independently with their own bound variables. By limiting the
bounded variables in smaller blocks, we can follow the code more easily.

While writing long script/functions is not a generally recommended practice, we can find
them occasionally in testing code, which tends to be quite repetitive. In test scripts, we may
have many test cases that are grouped in the same test set. Here is an example from the
GtkUtilities package:

# Source: GtkUtilities.jl/test/utils.jl

let c = Canvas(), win = Window(c, "Canvas1")
    Gtk.draw(c) do widget



Robustness Patterns Chapter 8

[ 329 ]

        fill!(widget, RGB(1,0,0))
    end
    showall(win)
end
let c = Canvas(), win = Window(c, "Canvas2")
    Gtk.draw(c) do widget
        w, h = Int(width(widget)), Int(height(widget))
        randcol = reshape(reinterpret(RGB{N0f8}, rand(0x00:0xff, 3, w*h)),
w, h)
        copy!(widget, randcol)
    end
    showall(win)
end
let c = Canvas(), win = Window(c, "Canvas3")
    Gtk.draw(c) do widget
        w, h = Int(width(widget)), Int(height(widget))
        randnum = reshape(reinterpret(N0f8, rand(0x00:0xff, w*h)),w,h)
        copy!(widget, randnum)
    end
    showall(win)
end

We have a few observations here from the preceding code:

The c variable is bound to a new Canvas object every time.
The win variable is bound to a new Window object having a different title every
time.
The w, h, randcol, and randnum variables are local variables that do not escape
from their respective let blocks.

By using let blocks, it does not matter how long the test script is. Every let block maintains
its own scope and nothing should leak from one block to the next. This kind of
programming style immediately provides some comfort to the programmer when it comes
to the quality of testing code, as each testing unit is independent from each other.

Next, we will go over some exception handling techniques. Although it is more fun doing
programming projects, exception handling is not something that we want to overlook. So,
let's take a look at it next.



Robustness Patterns Chapter 8

[ 330 ]

Exception handling patterns
Robust software requires robust error handling practice. The fact is that an error can be
raised at any time, sometimes, unexpectedly. As a responsible programmer, we need to
ensure that every path of computation is taken care of, including both the happy paths and
unhappy paths. Happy paths refer to program execution that runs normally as expected.
Unhappy paths refer to an unexpected outcome due to error conditions.

In this section, we will explore several ways about to catch exceptions and recover from
failures effectively.

Catching and handling exceptions
A general technique to catch exceptions is to enclose any logic in a try-catch block. This is
the easiest way to ensure that unexpected errors are handled:

try
    # do something that may possible raise an error
catch ex
    # recover from failure depending on the type of condition
end

A common question, however, is where this try-catch block should be placed. Of course,
we could have just wrapped every single line of code but that would be impractical. After
all, not every line of code would throw an error. 

We do want to be smart about choosing where to catch exceptions. We know that adding
exception handling increases the code size. Additionally, every line of code requires
maintenance. Ironically, the less code we write, the less chance of introducing bugs. After
all, we should not introduce more problems by trying to catch problems, right?

Next, we will look at what kind of scenarios we should consider doing error handling for.

Dealing with various types of exceptions
The most obvious places to wrap a try-catch block are in the code blocks that we need to
acquire network resources, for example, querying a database or connecting to a web server.
Whenever the network is involved, there is a much higher chance of encountering an issue
than doing something locally on the same computer.



Robustness Patterns Chapter 8

[ 331 ]

It is important to understand what kind of errors can be thrown. Suppose that we continue
developing the web crawler use case from the previous section. The index_sites!
function is now implemented using the HTTP library as follows:

function index_site!(site::Target)
    response = HTTP.get(site.url)
    site.finished = true
    site.finish_time = now()
    println("Site $(site.url) crawled. Status=", response.status)
end

The HTTP.get function is used to retrieve the content from the website. The code looks
pretty innocent but it does not handle any error condition. For example, what happens if
the site's URL is wrong or if the site is down? In those cases, we would run into a runtime
exception, such as the following:

So, at a minimum, we should handle IOError. It turns out that the HTTP library actually
does more than that. If the remote site returns any HTTP status code in the 400- or 500-
series, then it also wraps the error code and raises a StatusError exception, as follows:



Robustness Patterns Chapter 8

[ 332 ]

So, how do we know for sure what kind of errors can ever be thrown? Well, we can always
read the fine manual or so-called RTFM. From the HTTP package's documentation, we can
see that the following exceptions may be thrown when making HTTP requests:

HTTP.ExceptionRequest.StatusError

HTTP.Parsers.ParseError

HTTP.IOExtras.IOError

Sockets.DNSError

In Julia, the try-catch block catches all exceptions regardless of the type of exception. So, we
should have the ability to handle any other exception even when it is unknown to us. Here
is an example of a function that handles exceptions properly:

function try_index_site!(site::Target)
    try
        index_site!(site)
    catch ex
        println("Unable to index site: $site")
        if ex isa HTTP.ExceptionRequest.StatusError
            println("HTTP status error (code = ", ex.status, ")")
        elseif ex isa Sockets.DNSError
            println("DNS problem: ", ex)
        else
            println("Unknown error:", ex)
        end
    end
end

We can see from the preceding code that, in the body of the catch block, we can check the
type of exception and handle it appropriately. The else part of the block ensures that all
types of exceptions are caught, whether we know about them or not.  Let's hook up the
crawl_site! function to this new function:

global function crawl_sites!()
    for s in sites
        try_index_site!(s)
    end
end



Robustness Patterns Chapter 8

[ 333 ]

We can test out the error handling code now:

This works well!

So, this is one instance; what other places do we want to inject exception handling logic?
Let's explore this next.

Handling exceptions at the top level
Another place where you would normally handle exceptions is at the very top level of the
program. Why? One reason is that we may want to avoid the program from crashing due to
an uncaught exception. The top level of the program is the very last gate to catch anything,
and the program has an option to either recover from the failure (such as doing a soft reset)
or gracefully close all the resources and shut down.

When a computer program finishes execution, it normally returns an exit status back to the
shell where the program was invoked. In Unix, the usual convention is to indicate
successful termination with a zero status and unsuccessful termination with a nonzero
status.

Consider the following pseudocode:

try
    # 1. do some work related to reading writing files
    # 2. invoke an HTTP request to a remote web service
    # 3. create a status report in PDF and save in a network drive
catch ex
    if ex isa FileNotFoundError
        println("Having trouble with reading local file")
        exit(1)
    elseif ex isa HTTPRequestError
        println("Unable to communicate with web service")
        exit(2)
    elseif ex isa NetworkDriveNotReadyError



Robustness Patterns Chapter 8

[ 334 ]

        println("All done, except that the report cannot be saved")
        exit(3)
    else
        println("An unknown error has occurred, please report. Error=", ex)
        exit(255)
    end
end

We can see from the previous code that, by design, we can exit the program with a specific
status code for different error conditions so that the calling program can handle the
exception properly.

Next, we will take a look at how to determine where an exception was originally raised
from a deeply nested execution frame.

Walking along the stack frames
Often, an exception is raised from a function but it is not handled in the right away. The
exception then travels to the parent calling function. If that function does not catch the
exception either, it again travels to the next parent calling function. This process continues
until a try-catch block catches the exception. At this point, the program's current stack frame
– an execution context of where the code is currently running – handles the exception.

It would be tremendously useful if we can see where the exception was originally raised.
To do that, let's first try to understand how to retrieve a stack trace that is an array of stack
frames. Let's create a simple set of nested function calls such that they throw an error at the
end. Consider the following code:

function foo1()
    foo2()
end

function foo2()
    foo3()
end

function foo3()
    throw(ErrorException("bad things happened"))
end



Robustness Patterns Chapter 8

[ 335 ]

Now, if we execute the foo1 function, we should get an error, as follows:

As you can see, the stack trace shows the execution sequence in reversed order. At the top
of the stack trace is the foo3 function. Because we're doing this in the REPL, we do not see
a source filename; however, the number 2, as in REPL[17]:2, indicates that an error was
thrown from line 2 of the foo3 function.

Let's introduce the stacktrace function now. This function is part of the Base package
and it can be used to obtain the current stack trace. As the stacktrace function returns an
array of StackFrame, it would be nice if we could create a function to display it nicely. We
can define a function to print the stack trace, as follows:

function pretty_print_stacktrace(trace)
    for (i,v) in enumerate(trace)
        println(i, " => ", v)
    end
end

As we want to handle exceptions properly, we will now update the foo1 function by
wrapping the call to foo2 with a try-catch block. In the catch block, we will also print
the stack trace so that we can further debug the issue:

function foo1()
    try
        foo2()
    catch
        println("handling error gracefully")
        pretty_print_stacktrace(stacktrace())
    end
end



Robustness Patterns Chapter 8

[ 336 ]

Let's run the foo1 function now:

Oops! What happened to foo2 and foo3? The exception was thrown from foo3 but we can
no longer see them in the stack trace. This is because we have caught the exception, and
from Julia's perspective, it is already handled and the current execution context is in foo1
already.

In order to address this issue, there is another function in the Base package called
catch_backtrace. It gives us the backtrace of the current exception so we know where the
exception was originally raised. We just need to update the foo1 function as follows:

function foo1()
    try
        foo2()
    catch
        println("handling error gracefully")
        pretty_print_stacktrace(stacktrace(catch_backtrace()))
    end
end

Then, if we run foo1 again, we get the following results, where foo3 and foo2 are back to
the stack trace:



Robustness Patterns Chapter 8

[ 337 ]

Note that the use of catch_backtrace must be within the catch block. If it is called
outside of a catch block, it would return an empty backtrace.

Next, we will look at a different aspect of exception handling – performance impact.

Understanding the performance impact of
exception handling
There is actually a performance overhead to use a try-catch block. In particular, if the
application is doing something in a tight loop, it would be a bad idea to catch exceptions
inside the loop. To understand the impact, let's try a simple example.

Consider the following code that simply calculates the sum of the square root of every
number in an array:

function sum_of_sqrt1(xs)
    total = zero(eltype(xs))
    for i in eachindex(xs)
        total += sqrt(xs[i])
    end
    return total
end

Knowing that sqrt may throw DomainError for negative numbers, our first attempt may
be to catch such exceptions inside the loop:

function sum_of_sqrt2(xs)
    total = zero(eltype(xs))
    for i in eachindex(xs)
        try
            total += sqrt(xs[i])
        catch
            # ignore error intentionally
        end
    end
    return total
end



Robustness Patterns Chapter 8

[ 338 ]

What would be the performance impact of doing that? Let's use the BenchmarkTools
package to measure the performance for both functions:

It turns out that just wrapping the code around a try-catch block has made the loop 5 times
slower! Perhaps that is not a very good deal. So, what should we do in this case? Well, we
can always proactively check the number before calling the sqrt function and avoid the
problem with negative values. Let's write a new sum_of_sqrt3 function as follows:

function sum_of_sqrt3(xs)
    total = zero(eltype(xs))
    for i in eachindex(xs)
        if xs[i] >= 0.0
            total += sqrt(xs[i])
        end
    end
    return total
end

Let's measure the performance again:

Fantastic! We have now restored the performance. The moral of the story is that we should
be smart about using try-catch blocks, especially when performance is a concern. If there is
any way to avoid a try-catch block, then it would certainly be a better option whenever a
higher performance is needed.

Next, we will explore how to perform retries, a commonly-used strategy for recovering
from failures.



Robustness Patterns Chapter 8

[ 339 ]

Retrying operations
Sometimes, exceptions are thrown due to unexpected outages or so-called hiccups. It is not
an uncommon scenario for a system that is highly integrated with other systems or services.
For example, the trading system in a stock exchange may need to publish trade execution
data to a messaging system for downstream processing. But if the messaging system
experiences just a momentary outage, then the operation could fail. In that case, the most
common approach is to sleep for a while and then come back and try again. If the retry fails
again, then the operation will be retried again later, until the system fully recovers.

Such retry logic is not difficult to write. Here, we will play with an example. Suppose that
we have a function that fails randomly:

using Dates

function do_something(name::AbstractString)
    println(now(), " Let's do it")
    if rand() > 0.5
        println(now(), " Good job, $(name)!")
    else
        error(now(), " Too bad :-(")
    end
end

On a good day, we would see this lovely message:

On a bad day, we would get this instead:

Naively, we can develop a new function that incorporates the retry logic:

function do_something_more_robustly(name::AbstractString;
        max_retry_count = 3,
        retry_interval = 2)
    retry_count = 0
    while true
        try



Robustness Patterns Chapter 8

[ 340 ]

            return do_something(name)
        catch ex
            sleep(retry_interval)
            retry_count += 1
            retry_count > max_retry_count && rethrow(ex)
        end
    end
end

This function just calls the do_something function. If it encounters an exception, it will
wait 2 seconds as specified in the retry_interval keyword argument and try again. It
keeps a track of a counter in retry_count, and so it will just retry up to 3 times by default,
as indicated by the max_retry_count keyword argument:

Of course, this code is fairly straightforward and easy to write. But we will get bored
quickly if we do this over and over again for many functions. It turns out that Julia comes
with a retry function that solves this problem nicely. We can achieve the exact same
functionality with a single line of code:

retry(do_something, delays=fill(2.0, 3))("John")

The retry function takes a function as the first argument. The delays keyword argument
can be any object that supports the iteration interface. In this case, we have provided an
array of 3 elements, each containing the number of 2.0. The return value of the retry
function is an anonymous function that takes any number of arguments. Those arguments
will be fed into the original function that needs to be called, in this case, do_something.
Here is how it looks using the retry function:



Robustness Patterns Chapter 8

[ 341 ]

Since the delays argument can contain any number, we could utilize a different strategy
that comes back with a different waiting time. A common usage is that we would want to
retry quickly (that is, sleep less) in the beginning but slow down over time. When
connecting to a remote system, it is possible that the remote system is just having a short
hiccup, or perhaps it is undergoing an extended outage. In the latter scenario, it does not
make sense to flood the system with quick requests as it would be a waste of system
resources and get the water muddier when it is already in a mess.

In fact, the default value for the delays argument is ExponentialBackOff, which iterates
by exponentially increasing the delay time. On a very unlucky day, using
ExponentialBackOff yields the following pattern:

Let's pay attention to the wait time between retries. The result should match the default
setting of ExponentialBackOff as seen from its signature:

ExponentialBackOff(; n=1, first_delay=0.05, max_delay=10.0, factor=5.0,
jitter=0.1)

The keyword argument, n, indicates the number of retries, for which we used the value of
10 in the preceding code. The first retry comes after 0.05 seconds. Then, for every retry, the
time of delay grows by a factor of 5 up until it hits a maximum of 10 seconds. The growth
rate may be jittered by 10%.

The retry function is often overlooked but it is a very convenient and powerful way to
make the system more robust.

It is easy to throw an exception when something goes wrong. But that's not the only way to
handle error conditions. In the next section, we will discuss the concepts of exceptions
versus normal negative conditions.



Robustness Patterns Chapter 8

[ 342 ]

Choosing nothing over exceptions
Given the powerful features of a try-catch block, it is sometimes tempting to handle all
negative scenarios with Exception types. In practice, we want to be very clear about what
is truly an exception and what is a normal negative case.

We can turn to the match function as an example. The match function from the Base
package can be used to match a regular expression against a string. If there is a match, then
it returns a RegexMatch object, which contains the captured results. Otherwise, it returns
nothing. The following example illustrates this effect:

The first match function call returned a RegexMatch object because it found that
google.com ends with .com. The second call could not find any match and so it
returned nothing.

By design, the match function does not throw any exception. Why not? One reason for this
is that the function is frequently used for checking whether a string contains another string
and then the program decides what to do either way. Doing that would require a simple if
statement; for instance, refer to the following code:

url = "http://google.com"
if match(r"\.com$", url) !== nothing
    # do something about .com sites
elseif match(r"\.org$", url) !== nothing
    # do something about .org sites
else
    # do something different
end

If it were to throw an exception instead, then our code would have to look different, as
follows:

url = "http://google.com"
try
    match(r"\.com$", url)
    # do something about .com sites
catch ex1
    try



Robustness Patterns Chapter 8

[ 343 ]

        match(r"\.org$", url)
        # do something about .org sites
    catch ex2
        # do something different
    end
end

As you can see, the code can get very ugly very quickly using a try-catch block.

When designing a programming interface, we should always think about whether an
exception is truly an exception or whether it could be just a negative status. In the case of
the match function, a negative case is effectively represented by nothing.

In this section, we learned where to place try-catch blocks in our code. Now we should be
able to properly catch exceptions and examine the stack frames.

We have come to understand better how performance may be impacted by the exception-
handling code. Based on our understanding, we should be able to design and develop more
robust software.

Summary
In this chapter, we have learned about the various patterns and techniques for building
robust software. While Julia is a great language for quick prototypes and research projects,
it has all the features to build robust, mission-critical systems.

We began our journey with the idea of encapsulating data with accessor functions, which
allow us to design a formal API that we can support. We also discussed a naming
convention that discourages people from accessing the internal state of the object.

We looked at Julia's property interface, which allows us to implement new meanings
whenever the field access dot notation is used. By extending the getproperty and
setproperty! functions, we are able to control both read and write access to the fields of
an object.

We also learned how to hide specific variables or functions defined in a module. This
strategy can be utilized whenever we want to have tighter control of the visibility of
variables and functions of a module.



Robustness Patterns Chapter 8

[ 344 ]

Finally, we wanted to take exception handling seriously! We know robust software needs to be
able to handle all kinds of exceptions. We dived deep into the try-catch process and learned
how to determine the stack trace properly. We have proved that performance can be
negatively impacted by the use of a try-catch block, so we need to be diligent about where
to apply exception handling logic. We also learned how to use the standard retry function
as a recovery strategy.

In the next chapter, we will go over a few more miscellaneous patterns commonly used in
the Julia programs.

 Questions
What are the benefits of developing assessor functions?1.
What would be an easy way to discourage the use of internal fields of an object?2.
Which functions may to be extended as part of the property interface?3.
How can we capture the stack trace from a catch block after an exception has4.
been caught?
What is the best way to avoid the performance impact of a try-catch block for a5.
system that requires optimal performance?
What is the benefit of using the retry function?6.
How do we hide away global variables and functions that are used internally in a7.
module?



9
Miscellaneous Patterns

This chapter will cover a few miscellaneous design patterns that are quite useful in building
larger applications. These patterns provide additional tools that we can leverage apart of
the major patterns that we have seen so far from previous chapters. In a nutshell, we will
explore three patterns, as follows:

The singleton type dispatch pattern
The stubbing/mocking pattern
The functional pipes pattern

The singleton type dispatch pattern leverages Julia's multiple dispatch feature, which
allows you to add new functionalities without having to modify existing code. 

The stubbing/mocking pattern can be utilized to test software components in isolation. It's
also possible to test external dependencies without actually using them. It
makes automated testing a lot easier.

The functional pipes pattern makes use of the pipe operator to represent a linear flow of
execution. It is a way of programming that is adopted in many data processing pipelines.
Some people find this concept of linear execution more intuitive. We will explore some
examples about they may well with this pattern.

Let's get started!

Technical requirements
The sample source code for this chapter is located at https:/ / github. com/
PacktPublishing/Hands- on- Design- Patterns- and- Best- Practices- with- Julia/ tree/
master/Chapter09.

The code in this chapter has been tested in a Julia 1.3.0 environment.

https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter09


Miscellaneous Patterns Chapter 9

[ 346 ]

Singleton type dispatch pattern
Julia supports dynamic dispatch, which is a specific feature of its multiple dispatch system.
Dynamic dispatch allows the program to dispatch to the proper function based on the type
of the function arguments at runtime. If you are familiar with polymorphism in terms of
object-oriented programming languages, then this concept is similar. In this section, we will
explain what singleton types are and how they can be used to implement dynamic
dispatch.

To begin, let's consider a desktop application use case where the system responds to user
click events. Here is what the graphical user interface (GUI) may look like:

We will try to implement the processing function with simple logic first and then see how it
can be improved using the singleton type dispatch pattern.

Developing a command processor
Our first attempt to implement a command process that may look similar to the following:

function process_command(command::String, args)
    if command == "open"
        # open a file
    elseif command == "close"
        # close current file
    elseif command == "exit"
        # exit program
    elseif command == "help"
        # pops up a help dialog
    else
        error("bug - this should have never happened.")
    end
end



Miscellaneous Patterns Chapter 9

[ 347 ]

The process_command function simply takes the command as a string. Then, depending
on the value of the string, it will call the respective function. The args argument may be
passed by the GUI code for additional information; for example, the path of the file that is
being opened or closed.

There is nothing wrong with this code from a logical perspective, but it can be improved, as
follows:

The code contains a list of if-then-else statements. In this example, we only have
to support four functions. In practice, we will probably have to handle many
more functions. Having such a large if-then-else block makes the code very ugly
and hard to maintain. 
Whenever we need to add a new command, we have to modify this function to
include a new condition.

Fortunately, we can make it better using singleton types and dynamic dispatch. We'll go
over that next.

Understanding singleton types
A singleton type is just a data type that is designed to have a single instance. In Julia, it can
be implemented easily by defining a type without any field:

struct OpenCommand end

To create a single instance of such a data type, we can use the following default constructor:

OpenCommand()

Unlike in some object-oriented programming languages, this constructor returns exactly the
same instance, even if you call it multiple times. In other words, it is already a singleton.
We can prove this like so:



Miscellaneous Patterns Chapter 9

[ 348 ]

After creating two instances of OpenCommand, we compare them using the === operator,
which tells us that these two instances are indeed referring to the same object. Hence, we
have achieved the creation of a singleton.

Moving on, we can take the same approach and create a singleton types for each command,
that is, CloseCommand, ExitCommand, HelpCommand, and so on. Furthermore, we can also
create a new abstract type called AbstractCommand, which can serve as the supertype for
all these command types.

It seems exhaustively verbose that we have to create a new type for each command. A
better way to handle this situation is to use parametric types. Since it's a fairly common use
case, Julia predefines a type called Val. Let's take a look at it.

Using the Val parametric data type
Val is a parametric data type that is defined in the Julia Base package. Its purpose is to
provide us with an easy way to dispatch using singleton types. The Val type is defined as
follows:

struct Val{x} end

How do we create a singleton object? We can use the Val constructor and pass it any value.
For example, we can create a singleton type that embeds a value of 1, as follows:

Let's confirm the data type of such an object:

Here, we can see that Val(1) and Val(2) have their own types – Val{1} and Val{2},
respectively. Interestingly, the value being passed to the constructor ends up in the type
signature. Again, we can prove that these are indeed singletons by calling the Val
constructor twice and comparing their identities:



Miscellaneous Patterns Chapter 9

[ 349 ]

As you can see, the Val constructor function can also accept a symbol as an argument. Note
that Val can only accept data that is a bit type because it goes to the type signature. Most
use cases involve the Val type with integers and symbols in the type parameter. If we try to
create new Val objects with non-bits type, then we get an error, as follows:

You may be wondering why we go through so much to talk about singleton types. This is
because singleton types can be used for dynamic dispatch. Now that we know how to
create singletons, let's learn how to utilize them for dispatch.

Using singleton types with dynamic dispatch
In Julia, function calls are dispatched according to the type of the arguments when the
function is called. For a quick introduction to this mechanism, please refer to Chapter 3,
Designing Functions and Interfaces.

Let's recall the use case that we presented earlier in this chapter about a command
processor function. With a naive implementation, we have a large if-then-else block that
dispatch to different functions according to the command string. Let's try to implement the
same feature using singleton types.

For each command, we can define a function that takes a singleton type. For example, the
signatures of the functions for the Open and Close events are as follows:

function process_command(::Val{:open}, filename)
    println("opening file $filename")
end

function process_command(::Val{:close}, filename)
    println("closing file $filename")
end



Miscellaneous Patterns Chapter 9

[ 350 ]

We didn't have to specify any name for the first argument because we don't need to use it.
However, we do specify the type of the first argument to be Val{:open} or Val{:close}.
Given such a function signature, we can handle the Open event as follows:

Basically, we create a singleton and pass it to the function. Because the type signature
matches, Julia will dispatch to the function we just defined in the preceding screenshot.
Now, assuming that we have defined all other functions, we can write the code for the main
dispatcher as follows:

function process_command(command::String, args...)
    process_command(Val(Symbol(command)), args...)
end

Here, we simply convert the command into a symbol and then create a singleton type object
by passing it to the Val constructor. At runtime, the proper process_command functions
will be dispatched accordingly. Let's quickly test that out:

Fabulous! Now, let's pause for a moment and think about what we have just achieved. In
particular, we can make two observations:

The main dispatcher function in the preceding screenshot no longer has an if-
then-else block. It just utilizes dynamic dispatch to figure out which underlying
function to call.
Whenever we need to add a new command, we can just define a new
process_command function with a new Val singleton. There is no change to the
main dispatcher function anymore.

It is possible to create your own parametric type rather than using the standard Val type.
This can be achieved quite simply, as follows:

# A parametric type that represents a specific command
struct Command{T} end

# Constructor function to create a new Command instance from a string
Command(s::AbstractString) = Command{Symbol(s)}()



Miscellaneous Patterns Chapter 9

[ 351 ]

The constructor function takes a string and creates a Command singleton object with a
Symbol type parameter that is converted from the string. Having such a singleton type, we
can define our dispatcher function and corresponding actions as follows:

# Dispatcher function
function process_command(command::String, args...)
    process_command(Command(command), args...)
end

# Actions
function process_command(::Command{:open}, filename)
    println("opening file $filename")
end

function process_command(::Command{:close}, filename)
    println("closing file $filename")
end

This style of code is fairly idiomatic in Julia programming – there is no conditional branch
anymore since it is replaced by function dispatch. In addition, you also extend the
functionality of a system by defining new functions, without the need to modify any
existing code. This is a fairly useful characteristic when we need to extend functions from a
third-party library. 

Next, we will do some experiments and measure the performance of dynamic dispatch.

Understanding the performance benefits of
dispatch
Using a singleton type is nice because we can avoid writing conditional branches. Another
side benefit is that performance can be greatly improved. An interesting example can be
found in the ntuple function from Julia's Base package.

The ntuple function is used to create a tuple of N elements by applying a function over the
sequence of 1 to N. For example, we can create a tuple of even numbers as follows:



Miscellaneous Patterns Chapter 9

[ 352 ]

The first argument is an anonymous function that doubles the value. Since we specified 10
in the second argument, it mapped over the range of 1 to 10 and gave us 2, 4, 6, ... 20. If we
take a peek into the source code, we will find this interesting definition:

function ntuple(f::F, n::Integer) where F
    t = n == 0 ? () :
        n == 1 ? (f(1),) :
        n == 2 ? (f(1), f(2)) :
        n == 3 ? (f(1), f(2), f(3)) :
        n == 4 ? (f(1), f(2), f(3), f(4)) :
        n == 5 ? (f(1), f(2), f(3), f(4), f(5)) :
        n == 6 ? (f(1), f(2), f(3), f(4), f(5), f(6)) :
        n == 7 ? (f(1), f(2), f(3), f(4), f(5), f(6), f(7)) :
        n == 8 ? (f(1), f(2), f(3), f(4), f(5), f(6), f(7), f(8)) :
        n == 9 ? (f(1), f(2), f(3), f(4), f(5), f(6), f(7), f(8), f(9)) :
        n == 10 ? (f(1), f(2), f(3), f(4), f(5), f(6), f(7), f(8), f(9),
f(10)) :
        _ntuple(f, n)
    return t
end

While the code is indented quite nicely, we can clearly see that it supports up to 10
elements by hard coding the short-circuit branches with the ? and : ternary operators. If it's
more than 10, then it calls another function to create the tuple:

function _ntuple(f, n)
    @_noinline_meta
    (n >= 0) || throw(ArgumentError(string("tuple length should be ≥ 0, got
", n)))
    ([f(i) for i = 1:n]...,)
end

This _ntuple function is expected to perform poorly because it creates an array using
comprehension and then the result is splatted into a new tuple. You may be very surprised
by the performance benchmarking result when we compare the case of creating a 10-
element tuple versus an 11-element tuple:



Miscellaneous Patterns Chapter 9

[ 353 ]

The ntuple function is designed to perform optimally when the number of elements is
small, that is, for 10 or fewer elements. It would be possible to change the ntuple function
to hardcode more, but it would be too tedious to write the code, and the resulting code
would be extremely ugly.

Perhaps a little more surprisingly, Julia actually comes with another variation of the same
function while using the Val singleton type, as shown in the following screenshot:

There is literally no difference between 10 and 11 elements. In fact, even with 100 elements,
the performance is quite reasonable (17 nanoseconds) compared to the non-Val version
(820 nanoseconds). Let's take a look at how it is implemented. The following has been taken
from the Julia source code:

# Using singleton type dynamic dispatch
# inferrable ntuple (enough for bootstrapping)
ntuple(f, ::Val{0}) = ()
ntuple(f, ::Val{1}) = (@_inline_meta; (f(1),))
ntuple(f, ::Val{2}) = (@_inline_meta; (f(1), f(2)))
ntuple(f, ::Val{3}) = (@_inline_meta; (f(1), f(2), f(3)))

@inline function ntuple(f::F, ::Val{N}) where {F,N}
    N::Int
    (N >= 0) || throw(ArgumentError(string("tuple length should be ≥ 0, got
", N)))
    if @generated
        quote
            @nexprs $N i -> t_i = f(i)
            @ncall $N tuple t
        end
    else
        Tuple(f(i) for i = 1:N)
    end
end



Miscellaneous Patterns Chapter 9

[ 354 ]

From the preceding code, we can see that there are a few functions being defined for tuples
that have fewer than four elements. After that, the function uses a meta-programming
technique to generate code on the fly. In this case, it uses a special construct that allows the
compiler to choose between code generation and its generic implementation, which is
represented in if-blocks and else-blocks in the code. Looking at how
the @generated, @nexprs, and @ncalls macros work is out of the scope of this section,
but you are encouraged to find out more from the Julia reference manual. 

According to our preceding performance test, calling ntuple with Val(100) was quite
fast, so it appears that the compiler has chosen the code generation path.

To summarize, we have learned how to use parametric types to create new singletons and
create functions that are dispatched by these singleton types. We can apply this pattern
whenever we need to handle such conditional branches.

Next, we will learn how to develop automated testing code effectively using stubs and
mocks.

Stubbing/Mocking pattern
Julia comes with excellent tools for building automated unit tests. When the programmer
follows good design patterns and best practices, the software is likely going to be composed
of many small functions that can be tested individually.

Unfortunately, certain test cases are more difficult to handle. They usually involve testing
components that have specific dependencies that are awkward to be included in automated
tests. Common issues include the following:

Performance: The dependency may be a time-consuming process.
Cost: The dependency may incur a financial cost every time it is invoked.
Randomness: The dependency may produce a different result every time it is
invoked.

Stubbing/Mocking is a common strategy to address these issues. In this section, we will
look into how to apply stubs and mocks while testing Julia code.



Miscellaneous Patterns Chapter 9

[ 355 ]

What are testing doubles?
Before we get into the specifics about stubbing/mocking, it would be helpful to go over
some industry-standard terminology. First of all, there is the concept of testing doubles.
Interestingly, the term comes from a movie-making technique that's related to how stunts
are filmed. When performing dangerous acts, a stuntman or stuntwoman replaces the actor
or actress to perform the job. From a viewer's perspective, it would look like the original
actor or actress was performing. Testing doubles are the same in the sense that a fake
component is used in place of the real thing during testing.

There are multiple types of testing doubles, but the most useful ones are stubs and mocks,
which we will focus on in this section. In object-oriented programming, these concepts are
expressed in terms of classes and objects. In Julia, we will leverage the same terminology
for functions. One benefit of working with functions is that we can focus all of our effort on
testing a single thing.

A stub is a fake function that imitates the real function, also known as the collaborator
function. Depending on what is required from the testing objectives, they can be as dumb as
returning the same result all the time, or they can be a little smarter and return different
values, depending on the input arguments. Regardless of how smart they are, return values
are almost always hardcoded for consistency reasons. During testing, stubs replace the
collaborator function when the function under test (FUT) is being exercised. When the
FUT finishes its execution, we can determine the correctness of the returned value. This is
called state verification. The interaction between these functions can be depicted as follows:



Miscellaneous Patterns Chapter 9

[ 356 ]

A mock is also a fake function that imitates the collaborator function. The difference
between mocks and stubs is that a mock focuses on behavior verification. Rather than just
examining the state of the FUT, mocks keep track of all the calls being made. It can be used
to verify behavior, such as how many times the mock is expected to be called, the types and
values of the arguments that the mock expected to be passed, and so on. This is called
behavior verification. At the end of their execution, we can perform both state verification
and behavior verification. This is depicted as follows:

In the upcoming sections, we will focus on how to apply stubs and mocks in testing.

Introducing the credit approval use case
In this section, we'll introduce a sample use case related to credit approval. Suppose that
you are developing a system that has the ability to open a new credit card account for a
customer upon a successful background check. You may create a Julia module that has the
following structure:

module CreditApproval

# primary function to open an account
function open_account(first_name, last_name, email) end

# supportive functions
function check_background(first_name, last_name) end
function create_account(first_name, last_name, email) end
function notify_downstream(account_number) end

end



Miscellaneous Patterns Chapter 9

[ 357 ]

Now, let's implement each of the functions. We'll start with the check_background
function, which just logs the event and returns true, meaning that the background check is
successful. Consider the following code:

# Background check.
# In practice, we would call a remote service for this.
# For this example, we just return true.
function check_background(first_name, last_name)
    println("Doing background check for $first_name $last_name")
    return true
end

The create_account function is similar to this. In this case, the expected behavior is to
return an account number, that is, an integer value that refers to the account that has just
been created. For this example, we just return a hardcoded value of 1, as follows:

# Create an account.
# In practice, we would actually create a record in database.
# For this example, we return an account number of 1.
function create_account(first_name, last_name, email)
    println("Creating an account for $first_name $last_name")
    return 1
end

The notify_customer function is supposed to send an email to the customer. For testing
purposes, we will just log the event; nothing needs to be returned:

# Notify downstream system by sending a message.
# For this example, we just print to console and returns nothing.
function notify_downstream(account_number)
    println("Notifying downstream system about new account
$account_number")
    return nothing
end

Finally, the open_account function is as follows:

# Open a new account.
# Returns `:success` if account is created successfully.
# Returns `:failure` if background check fails.
function open_account(first_name, last_name, email)
    check_background(first_name, last_name) || return :failure
    account_number = create_account(first_name, last_name, email)
    notify_downstream(account_number)
    return :success
end



Miscellaneous Patterns Chapter 9

[ 358 ]

This is the FUT in our example. The logic involves checking the background for a customer
and creating an account and notifying downstream about the new account if the
background check is successful.

Let's think about how to test the open_account function. The obvious thing that needs our
attention is the background check code. More specifically, we expect two possible execution
paths – when the background check is successful and when the background check fails. If
we need to cover both cases, then we need to be able to simulate the different return values
of the check_background function. We will do that next with a stub.

Performing state verification using stubs
Our goal is to test the open_account function with two scenarios, where the
check_background function returns either true or false. When a background check is
successful, we expect open_account to return :success. Otherwise, it should return
:failure.

Using our terminology, open_account is the function under test,
while check_background is the collaborator function. It is a bit unfortunate that we can't
really control how the collaborator function behaves. In practice, this function may even
reach out to a background check service, the working of which we have little influence on.
As a matter of fact, we would not want to call the remote service every single time that we
test our software.

Now that we have copied from the original CreditApproval module to a new module
called CreditApprovalStub, we can move on.

Since we are smart programmers, we can just create a stub that replaces the collaborator
function. As functions are first-class in Julia, we can refactor the open_account function so
that it can take any background check function from a keyword argument, as follows:

function open_account(first_name, last_name, email; checker =
check_background)
    checker(first_name, last_name) || return :failure
    account_number = create_account(first_name, last_name, email)
    notify_downstream(account_number)
    return :success
end



Miscellaneous Patterns Chapter 9

[ 359 ]

The new checker keyword argument takes a function that is used to perform a
background check for a customer. We have set the default value to the original
check_background function, so it should behave the same as before. Now, the function is
more testable.

In our test suite, we can now exercise both execution paths, as follows:

@testset "CreditApprovalStub.jl" begin

# stubs
check_background_success(first_name, last_name) = true
check_background_failure(first_name, last_name) = false

# testing
let first_name = "John", last_name = "Doe", email = "jdoe@julia-is-
awesome.com"
    @test open_account(first_name, last_name, email, checker =
check_background_success) == :success
    @test open_account(first_name, last_name, email, checker =
check_background_failure) == :failure
end

Here, we have created two stubs for background checks: check_background_success
and check_background_failure. They return true and false to simulate a successful and
failed background check, respectively. Then, when we need to test the open_account
function, we can just pass these stub functions via the checker keyword argument.

Let's run the test now:



Miscellaneous Patterns Chapter 9

[ 360 ]

At this point, we have only enabled the check_background function for stubbing in the
open_account function. What if we want to do the same for the create_account and
notify_downstream functions? It would be just as easy if we created two more keyword
arguments and called it done. This isn't a bad option. However, you may not be very
satisfied with the fact that we need to keep changing the code to make new tests.
Furthermore, these keyword arguments were added merely for the sake of testing, rather
than being a part of the call interface.

In the next section, we will explore the use of the Mocking package, which is an excellent
tool for applying stubs and mocks without messing too much with the source code. 

Implementing stubs with the Mocking package
A good alternative to implementing stubs is the Mocking package. This package is fairly
straightforward to use. We will quickly go over how to use Mocking to apply the same
stubs that we applied earlier. 

In order to follow this exercise, you can copy the code from the original CreditApproval
module to a new module called CreditApprovalMockingStub. Now, follow these steps:

First, make sure that the Mocking package is installed. Then, modify the function1.
under test, as follows:

using Mocking

function open_account(first_name, last_name, email)
    @mock(check_background(first_name, last_name)) || return
:failure
    account_number = create_account(first_name, last_name, email)
    notify_downstream(account_number)
    return :success
end

The @mock macro creates an injection point where a stub can be applied, replacing
the existing call to the collaborator function, that is, check_background. Under
normal execution conditions, the @mock macro simply calls the collaborator
function. 



Miscellaneous Patterns Chapter 9

[ 361 ]

During testing, however, a stub can be applied. To achieve such behavior, we2.
need to activate mocking at the top of the test script, as follows:

using Mocking
Mocking.activate()

Next, we can define stub functions using the @patch macro:3.

check_background_success_patch =
    @patch function check_background(first_name, last_name)
        println("check_background stub ==> simulating success")
        return true
    end

check_background_failure_patch =
    @patch function check_background(first_name, last_name)
        println("check_background stub ==> simulating failure")
        return false
    end

The @patch macro can be placed right in front of a function definition. The
function name must match the original collaborator function name. Likewise, the
function arguments should match as well.

The @patch macro returns an anonymous function that can be applied to the call4.
site in the FUT. To apply a patch, we use the apply function, as follows:

# test background check failure case
apply(check_background_failure_patch) do
    @test open_account("john", "doe", "jdoe@julia-is-awesome.com")
== :failure
end

# test background check successful case
apply(check_background_success_patch) do
    @test open_account("peter", "doe", "pdoe@julia-is-awesome.com")
== :success
end



Miscellaneous Patterns Chapter 9

[ 362 ]

The apply function takes the stub and applies it to everywhere that the5.
collaborator function is called, as identified by the @mock macro in the function
under test. Let's run the test from the REPL:

Now, let's make sure that the stubs are not applied under normal execution6.
conditions. From the REPL, we can call the function directly:

Fabulous! From the preceding output, we can see that the original collaborator
function, check_background, was called. 

Next, we will expand on the same idea and apply multiple stubs to the same function.

Applying multiple stubs to the same function
In our example, the open_account function calls several dependent functions. It performs
background checks for a customer, creates the account, and notifies downstream systems.
Practically speaking, we may want to create stubs for all of them. How do we apply
multiple stubs? The Mocking package supports this feature.



Miscellaneous Patterns Chapter 9

[ 363 ]

As usual, we would need to decorate the open_account function with a @mock macro for
every function that we want to apply to our stubs. The following code shows this:

function open_account(first_name, last_name, email)
    @mock(check_background(first_name, last_name)) || return :failure
    account_number = @mock(create_account(first_name, last_name, email))
    @mock(notify_downstream(account_number))
    return :success
end

Now, we're all set to create more stubs. For demonstration purpose, we will define another
stub for the create_account function, as follows:

create_account_patch =
    @patch function create_account(first_name, last_name, email)
        println("create_account stub is called")
        return 314
    end

As part of its design, this stub function must return an account number. Therefore, we are
just returning a fake value of 314. To test the scenario where
both check_background_success_patch and create_account_patch are applied, we
can pass them as an array to the apply function:

apply([check_background_success_patch, create_account_patch]) do
    @test open_account("peter", "doe", "pdoe@julia-is-awesome.com") ==
:success
end

Note that we have not provided any stub for the notify_downstream function. When a
stub is not provided, the original collaborator function is used. Hence, we have all the
flexibility we want in applying stub functions in our test suite. In the open_account
function, since we have placed @mock in three different injection points, we can technically
test eight different scenarios, for which each stub is enabled or disabled.

The complexity of tests for the FUT increases exponentially by the number
of branches and functions that are used inside the function. This is also
one of the reasons why we want to write small functions. Due to this, it is
a good idea to break down large functions into smaller ones so that they
can be tested independently.

Using stubs, we can easily verify the expected return value for a function. A different
approach is mocking, which shifts the focus to verifying the behavior of the FUT and its
collaboration functions. We will look into that next. 



Miscellaneous Patterns Chapter 9

[ 364 ]

Performing behavior verification using mocks
Mocks are different from stubs – rather than just testing the return value of a function, we
focus on testing expectations from the collaborator functions' perspective. What kind of
activities does a collaborator function expect? Here are some examples for our use case:

From the check_background function's perspective, was it called only once for
each open_account call?
From the create_account function's perspective, was it called when a
background check was successful?
From the create_account function's perspective, was it not called when the
background check failed?
From the notify_account function's perspective, was it called with an account
number that is greater than 0?

The process to set up a mock-enabled test involves four main steps:

Set up the mock functions that will be used during the test.1.
Establish the expectations for the collaborator functions.2.
Run the tests.3.
Verify the expectations that we set earlier.4.

Now, let's try to develop our own mock test. Here, we will exercise the success path for
opening a new account. In this case, we can expect the check_background,
create_account, and notify_downstream functions to be called exactly once. Also, we
can expect that the account number being passed to the notify_downstream function
should be a number greater than 1. Keeping this information in mind, we will create a let-
block with bound variables to track everything that we want to test against our
expectations:

let check_background_call_count  = 0,
    create_account_call_count    = 0,
    notify_downstream_call_count = 0,
    notify_downstream_received_proper_account_number = false

    # insert more code here...
end



Miscellaneous Patterns Chapter 9

[ 365 ]

The first three variables will be used to track the number of calls to the three mocks that we
are about to create. Also, the last variable will be used to record whether
the notify_downstream function received a proper account number during the test.
Within this let-block, we will implement the four steps we outlined previously. Let's define
the mock functions first:

check_background_success_patch =
    @patch function check_background(first_name, last_name)
        check_background_call_count += 1
        println("check_background mock is called, simulating success")
        return true
    end

Here, we just increment the check_background_call_count counter within the mock
function so that we can keep track of how many times the mock function is called.
Similarly, we can define the create_account_patch mock function in the same way:

create_account_patch =
    @patch function create_account(first_name, last_name, email)
        create_account_call_count += 1
        println("create account_number mock is called")
        return 314
    end

The last mock function, notify_downstream_patch, covers two expectations. Not only
does it keep track of the number of calls, but it also verifies that the account number being
passed is proper and, if so, updates the Boolean flag. The following code shows this:

notify_downstream_patch =
    @patch function notify_downstream(account_number)
        notify_downstream_call_count += 1
        if account_number > 0
            notify_downstream_received_proper_account_number = true
        end
        println("notify downstream mock is called")
        return nothing
    end

The second step is to establish our expectation formally. This can be defined as a simple
function, as follows:

function verify()
    @test check_background_call_count  == 1
    @test create_account_call_count    == 1
    @test notify_downstream_call_count == 1
    @test notify_downstream_received_proper_account_number
end



Miscellaneous Patterns Chapter 9

[ 366 ]

The verify function includes a set of expectations, formally defined as regular Julia tests.
Now, we are ready to exercise our test by applying all three mock functions:

apply([check_background_success_patch, create_account_patch,
notify_downstream_patch]) do
    @test open_account("peter", "doe", "pdoe@julia-is-awesome.com") ==
:success
end

Finally, as the very last step, we will test against our expectation. It is simply a call to the
verify function that we defined earlier:

verify()

Now, we are ready to run the mock test. The respective results are as follows:

The result statistics show five test cases in total and all of them passed. Four out of the five
tests came from the verify function for behavior verification, while one came from the
state verification for the return value of the open_account function.

As you can see, mocks are quite different from stub because they are used to perform both
behavior and state verifications. 

Next, we will look into a pattern that's related to how data pipelines can be built more
intuitively.

Functional pipes pattern
Sometimes, when building an application, we face a large problem that requires complex
calculations and data transformation. Using structured programming techniques, we
can often break down the large problem into medium-sized problems and then break these
down further into small-sized problems. When a problem is small enough, we can write
functions to tackle each problem individually. 



Miscellaneous Patterns Chapter 9

[ 367 ]

Of course, these functions do not work in isolation – it is more likely that the results of one
function will feed into another function. In this section, we will explore the functional pipes
pattern, which allows data to be passed seamlessly through a data pipeline. This is not
uncommon in functional programming languages but is seen less in Julia. Nevertheless, we
will take a look and see how it can be done.

First, we will go over a sample use case related to downloading recent Hacker News stories
for analysis. Then, we will progressively refactor the code into using the functional pipes
pattern. Let's go!

Introducing the Hacker News analysis use case
Hacker News is a popular online forum that's used by software developers. The topics on
this forum are usually related to technology, but not always. The stories are ranked
according to the number of votes by users, respective timeliness, and other factors. Every
story has a score associated with it.

In this section, we will develop a program that retrieves the top stories from Hacker News
and calculates an average score of those stories. More information about the Hacker News
API can be found in the following GitHub repository: https:/ / github. com/ HackerNews/
API. Here, you can quickly go over the process of retrieving stories and details about each
story.

Fetching top story IDs on Hacker News
First, we will create a module called HackerNewsAnalysis. The very first function is going
to retrieve the top stories from Hacker News. The code for this is as follows:

using HTTP
using JSON3

function fetch_top_stories()
    url = "https://hacker-news.firebaseio.com/v0/topstories.json"
    response = HTTP.request("GET", url)
    return JSON3.read(String(response.body))
end

https://github.com/HackerNews/API
https://github.com/HackerNews/API
https://github.com/HackerNews/API
https://github.com/HackerNews/API
https://github.com/HackerNews/API
https://github.com/HackerNews/API
https://github.com/HackerNews/API
https://github.com/HackerNews/API
https://github.com/HackerNews/API
https://github.com/HackerNews/API


Miscellaneous Patterns Chapter 9

[ 368 ]

How does it work? Let's try it out:

Let's take several steps and dissect the logic in this function. The top stories can be retrieved
from a fixed URL. Here, we have used the HTTP package for fetching data from web
services. The HTTP.request function call, if successful, returns an
HTTP.Message.Response object. It is easy to verify from the REPL:

So, how do we get the content from the Response object? It is available from the body field.
As it turns out, the body field is just a byte array. To understand what the data means, we
can convert it into a String, as follows:



Miscellaneous Patterns Chapter 9

[ 369 ]

Judging from the output, we can see that it is in JSON format. We can also verify the same
by visiting the web URL from a browser. From the API documentation, we know that the
numbers represent story IDs from Hacker News. To parse the data into usable Julia data
types, we can leverage the JSON3 package:

The JSON3.Array object is a lazy version of an array. By design, JSON3 does not extract
the value until you ask for it. We can use it as if it were a regular Julia array. For more
information, you are encouraged to visit JSON3's documentation on GitHub: https:/ /
github.com/quinnj/ JSON3. jl/ blob/ master/ README. md.

Now that we have an array of story IDs, we will develop the function for retrieving detailed
information about a Hacker News story.

Fetching details about a story
Given a story ID, we can retrieve information about the story using the item endpoint of
the Hacker News API. Before we write the function, let's define a type to store the data:

struct Story
    by::String
    descendants::Union{Nothing,Int}
    score::Int
    time::Int
    id::Int
    title::String
    kids::Union{Nothing,Vector{Int}}
    url::Union{Nothing,String}
end

https://github.com/quinnj/JSON3.jl/blob/master/README.md
https://github.com/quinnj/JSON3.jl/blob/master/README.md
https://github.com/quinnj/JSON3.jl/blob/master/README.md
https://github.com/quinnj/JSON3.jl/blob/master/README.md
https://github.com/quinnj/JSON3.jl/blob/master/README.md
https://github.com/quinnj/JSON3.jl/blob/master/README.md
https://github.com/quinnj/JSON3.jl/blob/master/README.md
https://github.com/quinnj/JSON3.jl/blob/master/README.md
https://github.com/quinnj/JSON3.jl/blob/master/README.md
https://github.com/quinnj/JSON3.jl/blob/master/README.md
https://github.com/quinnj/JSON3.jl/blob/master/README.md
https://github.com/quinnj/JSON3.jl/blob/master/README.md
https://github.com/quinnj/JSON3.jl/blob/master/README.md
https://github.com/quinnj/JSON3.jl/blob/master/README.md
https://github.com/quinnj/JSON3.jl/blob/master/README.md
https://github.com/quinnj/JSON3.jl/blob/master/README.md
https://github.com/quinnj/JSON3.jl/blob/master/README.md
https://github.com/quinnj/JSON3.jl/blob/master/README.md
https://github.com/quinnj/JSON3.jl/blob/master/README.md
https://github.com/quinnj/JSON3.jl/blob/master/README.md


Miscellaneous Patterns Chapter 9

[ 370 ]

The fields of a Story are designed according to the JSON schema documented on the
Hacker News API website. Sometimes, a field may be unavailable for certain story types, in
which case we will leave them as nothing in the object. These optional fields include
descendants, kids, and url. Lastly, every story comes with a unique identifier id. 

We need a constructor to create Story objects. Because JSON3 returns a dictionary-like
object, we can just extract individual fields and pass them to the constructor. The
constructor's function can be defined as follows:

# Construct a Story from a Dict (or Dict-compatible) object
function Story(obj)
    value = (x) -> get(obj, x, nothing)
    return Story(
        obj[:by],
        value(:descendants),
        obj[:score],
        obj[:time],
        obj[:id],
        obj[:title],
        value(:kids),
        value(:url))
end

Generally, we can extract the field from a Dict object using the index operator (square
brackets). However, we need to handle the fact that some fields may be unavailable in the
object. To avoid an unexpected KeyError, we can define a closure function
called value for extracting a field or returning nothing when the key is not found in the
object.

Now, let's take a look at the function for retrieving the details of a single story:

function fetch_story(id)
    url = "https://hacker-news.firebaseio.com/v0/item/$(id).json"
    response = HTTP.request("GET", url)
    return Story(JSON3.read(response.body))
end

Again, we retrieve the data using HTTP.request. After we receive the response, we can
parse the data using JSON3 and construct a Story object accordingly. Here's how it works:



Miscellaneous Patterns Chapter 9

[ 371 ]

Next, we will go over the main program for calculating the average score for the top N
stories from Hacker News.

Calculating the average score for the top N stories
Now that we have the ability to find the top stories and retrieve details about each story, we
can create a new function to calculate an average score from the top N stories.

The average_score function is as follows:

using Statistics: mean

function average_score(n = 10)
    story_ids = fetch_top_stories()
    println(now(), " Found ", length(story_ids), " stories")

    top_stories = [fetch_story(id) for id in story_ids[1:min(n,end)]]
    println(now(), " Fetched ", n, " story details")

    avg_top_scores = mean(s.score for s in top_stories)
    println(now(), " Average score = ", avg_top_scores)

    return avg_top_scores
end

There are three parts to this function:

The first part finds the story IDs for top stories using the fetch_top_stories1.
function. 
Then, it retrieves details of the first n stories using the fetch_story function.2.
Finally, it calculates the average score from just those stories. Then, the average3.
score is returned to the caller.

In order to get the top n story IDs, we have chosen to use the index operator with the range
1:min(n,end). The min function is used to handle the case when n is greater than the size
of the array.

Let's run the function and see what happens:



Miscellaneous Patterns Chapter 9

[ 372 ]

From the result, we can see that the top n stories from Hacker News have an average score
of 125.4. Note that you may get a different result since this number changes in real time as
Hacker News users vote on their favorite stories.

Now that the use case has been established, we will leap forward and experiment with a 
different way of writing the same program. We call this style of programming functional
pipes.

Understanding functional pipes
In Julia, there is a pipe operator that can be used to pass data from one function to another.
The concept is very simple. First, let's take a look at some examples.

In the previous section, we developed a fetch_top_stories function that's used to
retrieve the current top stories from Hacker News. The return value is a JSON3.Array
object that looks like an array of integers. Let's say we want to find the first story ID from
the array. To do this, we can create a pipe operation, as follows:

The pipe operator |> is actually defined as a regular function in Julia, just like how + is
defined as a function. Note that the preceding code is syntactically equivalent to the
following:

In addition, we can use multiple pipe operators in an expression. For example, we can
retrieve the details of the first story by appending the fetch_story function at the end of
the pipe:



Miscellaneous Patterns Chapter 9

[ 373 ]

Because the data naturally flows from left to right, this is called a functional pipe pattern.
This can be seen in the following diagram:

Note that every function that follows the piping operator must accept a single argument. In
the preceding example, we can see the following:

The first function takes an array and returns the first element.
The fetch_story function takes an integer of the story ID and returns a Story
object.

This is a very important point, so let me say this once again – a functional pipe only feeds data
to single-argument functions. 

We will learn about how to deal with this constraint later. For now, we will talk about a
similar pattern where the syntax is written in reverse compared to functional pipes. This 
concept is called composability, and is a design technique that leads to highly reusable
code.

Designing composable functions
Sometimes, you may hear other Julia programmers talk about composability. What does
that mean? 

Composability is used to describe how easily functions can be assembled in different ways
to achieve different results. Let's look at an analogy. I would say that Lego has a highly
composable design. This is because almost every piece of Lego can be combined with any
other piece of Lego, even if they have different shapes. For that reason, any kid can use
Lego to build almost anything imaginable.

When it comes to system design, we can also keep composability in mind. If we could build
our functions so that they can be composed easily, then we would have the flexibility to
build many different things as well. In Julia, we can compose functions quite easily.



Miscellaneous Patterns Chapter 9

[ 374 ]

Let's use the same example from the previous section. We will create a new function called
top_story_id that retrieves the first story ID from Hacker News:

From the preceding code, we can see that the top_story_id function is defined as an
anonymous function. The Unicode circle symbol (∘, input as \circ) is the compose
operator in Julia. Unlike the pipe operator, we read the order of composed functions from
right to left. In this case, we apply the fetch_top_stories function first and then apply
the first function. Intuitively, we can use the top_story_id function as usual:

We can also compose multiple functions. To get the top story details, we can compose a
new function called top_story, as follows:

This is great! We have taken three random Lego blocks and built a new thing out of them.
The top_story function is a new thing that is composed of three smaller blocks:



Miscellaneous Patterns Chapter 9

[ 375 ]

Let's go one step further and create a new function to retrieve the title of the top story.
Now, we run into a little trouble. No function that returns the story title from a Story
object has been defined. However, we can solve this problem by utilizing the Accessors
Pattern, which we described in Chapter 8, Robustness Patterns.

Let's define an accessor for the title field and then compose a new top_story_title
function, as follows:

This new function works beautifully, as expected:

The compose operator allows us to create a new function that is composed of several other
functions. It is slightly more convenient than the pipe operator in the sense that the
composed function doesn't need to be executed right away.  

Similar to functional pipes, the compose operator also expects single-argument functions.
Having said that, it is also the reason why single-argument functions are more composable.

Next, we will go back and revisit the Hacker News average_score function and see how
we can refactor the code into the functional pipe style.

Developing a functional pipe for the average
score function
First, let's recap on how the average_score function was written:

function average_score(n = 10)
    story_ids = fetch_top_stories()
    println(now(), " Found ", length(story_ids), " stories")

    top_stories = [fetch_story(id) for id in story_ids[1:min(n,end)]]
    println(now(), " Fetched ", n, " story details")

    avg_top_scores = mean(s.score for s in top_stories)



Miscellaneous Patterns Chapter 9

[ 376 ]

    println(now(), " Average score = ", avg_top_scores)

    return avg_top_scores
end

Although the code looks quite decent and simple to understand, let me point out some
potential issues:

The top stories are retrieved via array comprehension syntax. The logic is a little
busy and we won't be able to test this part of the code independently from the
average_score function.
The println function is used for logging, but we seem to be replicating the code
to display the current timestamp.

Now, we will refactor the code. The logic is largely linear, which makes it a good candidate
for functional pipes. Conceptually, this is what we think about the computation:

It would be nice to design a function that works like this:

average_score2(n = 10) =
    fetch_top_stories() |>
    take(n) |>
    fetch_story_details |>
    calculate_average_score

This is our second version of the same function, so we have named it average_score2.

For now, we just ignore the logging aspect to keep it simple. We will come back to this
later. Since we have already defined the fetch_top_stories function, we just have to
develop the other three functions, as follows:

take(n::Int) = xs -> xs[1:min(n,end)]

fetch_story_details(ids::Vector{Int}) = fetch_story.(ids)

calculate_average_score(stories::Vector{Story}) = mean(s.score for s in
stories)



Miscellaneous Patterns Chapter 9

[ 377 ]

From the preceding code, we can see the following:

The take function takes an integer, n, and returns an anonymous function that
returns the first n elements from an array.
The min function is used to ensure that it will take no more than the actual size of
the array. 
The fetch_story_details function takes an array of story IDs and broadcasts
the fetch_story function over them using the dot notation. 
The calculate_average_score function takes an array of Story objects and
calculates the mean of the scores.

As a quick reminder, all of these functions accept a single argument as input so that they
can participate in the functional pipe operation.

Now, let's get back to logging. Logging plays a funny role in functional pipes. It is designed
to produce side effects and do not affect the result of computation. It is slippery in the sense
that it just returns the same data that it received from its input. Since the standard println
function returns nothing, we cannot use it directly in a piping operation. Instead, we must
create a logging function that is smart enough to print what we want and yet returns the
same data that it was passed.

In addition, we want to be able to format the output using the data that passes through the
system. For that reason, we can utilize the Formatting package. It contains a flexible and
efficient formatting facility. Let's build our own logging function, as follows:

using Formatting: printfmtln

logx(fmt::AbstractString, f::Function = identity) = x -> begin
    let y = f(x)
        print(now(), " ")
        printfmtln(fmt, y)
    end
    return x
end

The logx function takes a format string and a possible transformer function, f. It returns an
anonymous function that passes the transformed value to the printfmln function. It also
automatically prefixes the log with the current timestamp. Most importantly, this
anonymous function returns the original value of the argument.



Miscellaneous Patterns Chapter 9

[ 378 ]

To see how this logging function works, we can play with a few examples:

In the first example shown in the preceding screenshot, the logx function was called with
just a format string, so the input coming via the pipe will be used as-is in the log. The
second example passes the length function as the second argument of logx. The length
function is then used to transform the input value for logging purposes.

Putting this all together, we can introduce logging to our functional pipe in our new
average_score3 function, as follows:

average_score3(n = 10) =
    fetch_top_stories()                        |>
    logx("Number of top stories = {}", length) |>
    take(n)                                    |>
    logx("Limited number of stories = $n")     |>
    fetch_story_details                        |>
    logx("Fetched story details")              |>
    calculate_average_score                    |>
    logx("Average score = {}")

Occasionally, functional pipes can make the code easier to understand. Because conditional
statements are not allowed in a piping operation, the logic is always linear.

You may be wondering how to handle conditional logic in functional pipe design. We'll
learn about this in the next section.

Implementing conditional logic in functional
pipes
Since the logical flow is quite linear, how do we deal with conditional logic?



Miscellaneous Patterns Chapter 9

[ 379 ]

Suppose we want to determine the hotness of top stories by checking the average score
against a threshold. If the average score is higher than 100, then it would be considered
high; otherwise, it would be considered low. So, literally, we need an if-statement that
determines what to execute next.

We can use dynamic dispatch to solve this problem. We are going to build this function
from the bottom-up, as follows.

Create the hotness function, which determines the hotness of the Hacker News1.
site by score. It returns an instance of the Val{:high} or Val{:low} parametric
type. The built-in Val data type is a convenient way to create new parametric
types that can be used for dispatch purposes:

hotness(score) = score > 100 ? Val(:high) : Val(:low)

Create two celebrate functions with respect to the Val parametric types. They2.
simply use the logx function to print some text. We call it with the value of v so
that the hotness argument is passed downstream if we ever want to do more
work after celebration:

celebrate(v::Val{:high}) = logx("Woohoo! Lots of hot topics!")(v)
celebrate(v::Val{:low}) = logx("It's just a normal day...")(v)

Build the check_hotness function, which uses a functional pipe pattern. It uses3.
the average_score3 function to calculate the average score. Then, it uses the
hotness function to determine how to change the execution path. Finally, it calls
the celebrate function via the multiple dispatch mechanism:

check_hotness(n = 10) =
    average_score3(n) |> hotness |> celebrate

Let's test this out:



Miscellaneous Patterns Chapter 9

[ 380 ]

This simple example demonstrates how conditional logic can be implemented in functional
pipe design. Of course, in reality, we would have more complex logic than just printing
something to the screen. 

An important observation is that functional pipes only handle linear execution. Hence,
whenever the execution splits conditionally, we would form a new pipe for each possible
path. The following diagram depicts how an execution path may be designed with
functional pipes. Each split of execution is enabled by dispatching over the type of a single
argument:

Functional pipes look fairly simple and straightforward from a conceptual point of view.
However, they are sometimes criticized for having to pass intermediate data between each
component in the pipe, causing unnecessary memory allocation and slowness. In the next
section, we will go over how to use broadcasting to overcome this issue.

Broadcasting along functional pipes
In a data processing pipeline, we may encounter a situation where the functions can be
fused together into a single loop. This is called broadcasting and it can be conveniently
enabled by using the dot notation. Using broadcasting may make a huge performance 
difference for data-intensive applications.



Miscellaneous Patterns Chapter 9

[ 381 ]

Consider the following scenario, where two vectorized functions have already been
defined, as follows:

add1v(xs) = [x + 1 for x in xs]
mul2v(xs) = [2x for x in xs]

The add1v function takes a vector and increments all the elements by 1. Likewise, the
mul2v function takes a vector and multiplies every element by 2. Now, we can combine the
functions to create a new one that takes a vector and sends it down the pipe to add1v and
subsequently mul2v:

add1mul2v(xs) = xs |> add1v |> mul2v

However, the add1mul2v function is not optimal from a performance perspective. The
reason for this is that each operation must be fully completed and then passed to the next
function. The intermediate result, while only needed temporarily, must be allocated in
memory:

As depicted in the preceding diagram, besides the input vector and the output vector, an
intermediate vector must be allocated to hold the results from the add1v function.

In order to avoid the allocation of the intermediate results, we can utilize broadcasting.
Let's create another set of functions that operate on individual elements rather than arrays,
as follows:

add1(x) = x + 1
mul2(x) = 2x

Our original problem still requires taking a vector, adding 1, and multiplying by 2 for every
element. So, we can define such a function using the dot notation, as follows:

add1mul2(xs) = xs .|> add1 .|> mul2



Miscellaneous Patterns Chapter 9

[ 382 ]

The dot character right before the pipe operator indicates that the elements in xs will be
broadcast to the add1 and mul2 functions, fusing the whole operation into a single loop.
The data flow now looks more like the following:

Here, the intermediate result becomes a single integer, eliminating the need for the
temporary array. To appreciate the performance improvement we get from broadcasting,
we can run a performance benchmark for the two functions, as shown in the following
screenshot:

As you can see, the broadcasting version ran twice as fast as the vectorized version in this
scenario.

In the next section, we will review some considerations about using functional pipes.

Considerations about using functional pipes
Before you get too excited about functional pipes, let's make sure that we understand the
pros and cons of using functional pipes.

From a readability perspective, functional pipes can possibly make the code easier to read
and easier to follow. This is because the logic has to be linear. On the contrary, some people
may find it less intuitive and harder to read because the direction of computation is
reversed as compared to nested function calls.



Miscellaneous Patterns Chapter 9

[ 383 ]

Functional pipes require single-argument functions, for which they can be easily composed
with other functions. When it comes to functions that require multiple arguments, the
general solution is to create curried functions – higher-order functions that fix an argument.
Previously, we defined a take function that takes the first few elements from a collection:

take(n::Int) = xs -> xs[1:min(n,end)]

The take function is a curried function made out of the getindex function (with a
convenient syntax of using square brackets). The getindex function takes two arguments:
a collection and a range. Because the number of arguments has been reduced to 1, it can
now participate in the functional pipe.

On the flip side, we cannot utilize multiple dispatch for single-argument functions. This
could be a huge disadvantage when you are handling logic that requires consideration of
multiple arguments.

While functions can only accept single arguments, it is possible to work
around the issue by using tuples. Tuples have a composite type signature
that can be used for dispatch. However, it's not recommended because it
is quite awkward to define functions that take a single tuple argument
rather than multiple arguments.

Nevertheless, functional pipes can be a useful pattern under certain circumstances. Any
data-processing task that fits into a linear process style could be a good fit.

Summary
In this chapter, we learned about several patterns that can be quite useful in application
design.

We started with the singleton type dispatch pattern. Using a command processor example,
we successfully refactored the code from using if-then-else conditional statements to
utilizing dynamic dispatch. We learned how to create new singleton types using the
standard Val type or rolling our own parametric type.

Then, we switched gears and discussed how to implement automated testing effectively
using the stubbing/mocking pattern. We took a simple use case of a credit approval process
and experimented with a simple way to inject stubs using keyword arguments. We weren't
very satisfied with the need to change the API for testing, so we leaned on the Mocking
package for a more seamless approach. We then learned how to replace function calls with
stubs and mocks in our test suite and how they work differently.



Miscellaneous Patterns Chapter 9

[ 384 ]

Finally, we learned about the functional pipes pattern and how it can make the code easier
to read and follow. We learned about composability and how the compose operator works
similarly to the pipe operator. We went over how to develop efficient code using functional
pipes and broadcasting. Finally, we discussed the pros and cons of using functional pipes
and other related considerations.

In the next chapter, we will turn around and look at some anti-patterns of Julia
programming.

Questions
What predefined data type can be used to conveniently create new singleton1.
types?
What are the benefits of using singleton type dispatch?2.
Why do we want to create stubs?3.
What is the difference between mocking and stubbing?4.
What does composability mean?5.
What is the primary constraint of using functional pipes?6.
How are functional pipes useful?7.



10
Anti-Patterns

Over the last five chapters, we have looked in great detail at reusability, performance,
maintainability, safety, and some miscellaneous design patterns. These patterns are
extremely useful and can be applied to various situations for different types of applications.
While it is important to know what the best practices are, it is also beneficial to understand
what pitfalls to avoid. To do this, we are going to cover several anti-patterns in this
chapter.

Anti-patterns are bad practices that programmers may do unintentionally. Sometimes,
these problems are not severe enough to cause trouble; however, it is possible that an
application may become unstable or have degraded performance due to improper design.
In this chapter, we will cover the following topics:

Piracy anti-pattern
Narrow argument types anti-pattern
Nonconcrete field types anti-pattern

By the end of this chapter, you will have learned how to avoid developing pirate functions.
You will also be more conscious and smart about the level of abstraction when specifying
the type of function arguments. Finally, you will be able to leverage more parametric types
in your design for your own composite types for high-performance applications.

Let's start with the most interesting topic—piracy!

Technical requirements
The sample source code is located at https:/ /github. com/ PacktPublishing/ Hands- on-
Design-Patterns- and- Best- Practices- with- Julia/ tree/ master/ Chapter10.

The code is tested in a Julia 1.3.0 environment.

https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter10


Anti-Patterns Chapter 10

[ 386 ]

Piracy anti-pattern
In Chapter 2, Modules, Packages and Data Type Concepts, we learned how to create new
namespaces using modules. As you may recall, modules are used to define functions so
that they are logically separated. It is possible, then, that we can define two different
functions—one in module X and another in module Y, with both having exactly the same
name. In fact, these functions do not even need to mean the same thing. For example, in a
mathematics package, we can define a trace function for matrices. In a computer graphics
package, we can define a trace function for doing ray tracing work. These two trace
functions perform different things, and they do not interfere with each other. 

On the other hand, a function can also be designed to be extended from another package.
For example, in the Base package, the AbstractArray interface is designed to be
extended. Here's an example:

# My own array-like type for tracking scores
struct Scores <: AbstractVector{Float64}
    values::Vector{Float64}
end

# implement AbstractArray interface
Base.size(s::Scores) = (length(s.values),)
Base.getindex(s::Scores, i::Int) = s.values[i]

Here, we have extended the size and getindex functions from the Base package so that
they can work with our own data types. This is a perfectly good usage of the Julia language;
however, it can be problematic when we do not extend functions from other packages
correctly. In particular, piracy refers to the situation in which a third-party function is
replaced or extended in a bad way. This is an anti-pattern because it may cause system
behavior to become nondeterministic. For convenience, we can define three different kinds
of piracy:

Type I piracy: Function is redefined 
Type II piracy: Function is extended without using your own types in any of the
arguments 
Type III piracy: Function is extended but used for a different purpose

We will now drill down into each one in more detail.



Anti-Patterns Chapter 10

[ 387 ]

Type I – Redefining a function
Type I piracy refers to the situation where a programmer redefines a third-party function
from their own module. Perhaps you did not like the original implementation in the third-
party module and replaced the function with your own implementation.

The worst form of Type I piracy is when you replace the function without conforming to
the original function's interface. Let's do an experiment and see what could happen. We
will use the + function from Base as an example. As you know, when the + function is
passed with two Int arguments, it should return an Int value as a result. What would
happen if we replace the function so that it returns a string? Let's open up a REPL and give
it a try:

Boom! The Julia REPL crashed immediately as soon as the function was defined. That is
because the return value of this + function is expected to be an integer. When we return a
string, it violates the contract of this function and all functionalities that rely on the +
function are negatively impacted. Given that + is a commonly used function, it crashes the
system immediately.

Why does Julia even allow us to do that? For some situations, the ability to do this can be
useful. Say that you found a bug for a specific function in a third-party package—you can
inject a fix immediately without having to wait for the bug fix upstream. Likewise, you can
replace a slow function with a more performant version. Ideally, these changes should be
sent upstream, but you have the flexibility to implement the change immediately.

The only requirement is that the function being replaced should adhere to the same
contract that was originally intended. Therefore, it requires an intimate understanding
about how the third-party package is designed. In reality, it is even better if you can contact
the original author and discuss the change before applying piracy.



Anti-Patterns Chapter 10

[ 388 ]

With great power comes great responsibility. Great care must be taken if we ever want to make
use of Type I piracy. 

Next, we will look into Type II piracy, which is more common across packages in the Julia
ecosystem.

Type II piracy – Extending without your own
types
Type II piracy is commonly known as type piracy by the Julia developer community. It
refers to the situation where a third-party function is extended without using the
programmer's own types in any of the function arguments. It usually happens when you
want to extend the third-party package by injecting your own code. Let's go through a
hypothetical example.

Suppose that you want to mimic the same behavior in JavaScript of adding a string and a
number together, where the values concatenate as if they are both strings:

To make it happen in Julia, we would be tempted to do the following in MyModule:

module MyModule
    import Base.+
    (+)(s::AbstractString, n::Number) = "$s$n"
end

We can paste the preceding code in the REPL and do a quick test:



Anti-Patterns Chapter 10

[ 389 ]

This seems to be working great! But there are some hidden issues with this approach. Let's
look at why it is still a bad idea.

Conflicting with another pirate
Now that we are using the enhanced version of the + function, can we rely on the fact that
the function will always do exactly what we have made it do? Perhaps surprisingly, the
answer is no.

Let's say we have found an open source package called AnotherModule, and we want to
use it in our MyModule module. The AnotherModule module happens to do the same kind
of type II piracy; however, the author decided to do the right thing—instead of
concatenating the arguments as if they are strings, the string argument is parsed into a
number and then the two numbers are added together. The code is as follows:

module AnotherModule
    import Base: +, -, *, /
    (+)(s::AbstractString, n::T) where T <: Number = parse(T, s) + n
    (-)(s::AbstractString, n::T) where T <: Number = parse(T, s) - n
    (*)(s::AbstractString, n::T) where T <: Number = parse(T, s) * n
    (/)(s::AbstractString, n::T) where T <: Number = parse(T, s) / n
end

If we go back to the REPL and define this module, then we get the new definition:

We now have two implementations of the same function with exactly the same signature,
and they return different results. Who is going to win? Is it the one defined in MyModule or
the one in AnotherModule? Only one of them can be in effect. That means that either
AnotherModule or MyModule is going to break. This problem can lead to a disastrous
situation and hard-to-find bugs.

Another reason to avoid type II piracy is the future-proofing problem. We will discuss this
next.



Anti-Patterns Chapter 10

[ 390 ]

Future-proofing your code
Say that we have extended the + function in Base as follows:

module MyModule
    import Base.+
    (+)(s::AbstractString, n::Number) = "$s$n"
end

It may seem to be a great addition today; however, there is no guarantee that the same
function will not be implemented in a future version of Julia. It is conceivable (which is not
to say that it's likely or unlikely) that the + function will be enhanced to work with strings
in the future. 

In addition, these kinds of changes would be considered nonbreaking, meaning that the
Julia dev team can add this feature with just a minor release. Unfortunately, your
application now breaks for a nonbreaking Julia upgrade. That's not something that we
normally expect.

If you want to future-proof your code, then do not be a pirate! 

Avoiding type piracy
Type II piracy can be mitigated by creating your own types and using them in the function
argument. In this case, perhaps we should consider creating a wrapper type to hold the
string and using this new type for dispatch:

module MyModule
    export @str_str
    import Base: +, show

    struct MyString
        value::AbstractString
    end

    macro str_str(s::AbstractString)
        MyString(s)
    end

    show(io::IO, s::MyString) = print(io, s.value)
    (+)(s::MyString, n::Number) = MyString(s.value * string(n))
    (+)(n::Number, s::MyString) = MyString(string(n) * s.value)
    (+)(s::MyString, t::MyString) = MyString(s.value * t.value)
end



Anti-Patterns Chapter 10

[ 391 ]

Here, we have redefined the module with a new MyString type that holds a string. Then,
we can still extend the + function to concatenate MyString with any number. For
completeness, we have defined three variations of the + function for accepting MyString
and Number arguments in any order and another one that accepts two MyString
arguments. We have also defined a str_str macro for convenience. The new module
works properly as follows:

By using your own type in the function argument, we can avoid any conflict with other
dependent packages, as well as future-proofing our code for Julia upgrades.

The last kind of piracy is somewhat less severe but still worth a look. Let's take a look at
that next.

Type III piracy – Extending with your own type,
but for a different purpose
Type III piracy refers to the situation where a function is extended, but is used for a 
different purpose. It is the right procedure of extending code, but done in a bad way. This
kind of piracy is also called a pun by the Julia developers. To understand what it is, let's
consider a fun example here.

Suppose that we are developing a simple party registration application. The type definition
and constructor are shown here:

# A Party just contains a title and guest names
struct Party
    title::String
    guests::Vector{String}
end

# constructor
Party(title) = Party(title, String[])



Anti-Patterns Chapter 10

[ 392 ]

The Party type contains just a title and an array of guest names. The constructor just takes
the title and initializes the guest array as an empty array. Now, just to be cute, we can
define a function for joining a party as follows:

Base.join(name::String, party::Party) = push!(party.guests, name)

This is an extension to the join method from Base. Why would we want to do that? Well,
if we create the join function in our own namespace, then we can get into a naming
conflict with the standard join function. To avoid handling that conflict, maybe it is easier
to just extend the function from Base.

At first glance, it would work as expected:

However, there is a hidden trap. If we were to let multiple people join the party at the same
time, then we could get into trouble easily:

What happened? Let's take a look at the original meaning of the join function, as shown in
the help screen:

help?> join

  join([io::IO,] strings, delim, [last])

The purpose of the join function is to take multiple strings and put them together
separated by some kind of delimiter. So the call to the join function in the preceding code
ended up using the Party object as a delimiter. 



Anti-Patterns Chapter 10

[ 393 ]

Let's think a little bit about how we got into trouble. When we defined the function using
our own type (Party), we did not expect our function to be used by any other code except
our own. However, that is not true here. Our function was clearly utilized by the string
concatenation logic from the Base package. 

It turns out that we are an unfortunate victim of duck typing. If you look into the source
code of Julia, you will find that some join functions are defined without specifying any
type in the arguments. So, when we pass a Party object to the join function, it leaks into
the original join logic. Worse yet, no error was thrown because everything just worked.

It is best to avoid type III piracy altogether. In the preceding example, we could have
defined the join function in our own module rather than extending the one from Base. If
we are bothered by the name conflict issue, we can also choose a different function
name—for example, register. We have to realize that the meaning of joining a party is
not the same as joining strings together.

All three types of piracy are bad, and they can cause bugs that are surprisingly difficult to
find or debug. We should avoid them as much as possible.

Next, we will go over another anti-pattern related to specifying argument types in function
definitions.

Narrow argument types anti-pattern
When designing functions in Julia, we have many options about whether and how to
provide the type of arguments. The narrow argument types anti-pattern refers to the
situation in which the types of the arguments are too narrowly specified, causing the
function to be less useful unnecessarily.

Let's consider a simple example function that is used for computing the sum of the
products of two vectors:

function sumprod(A::Vector{Float64}, B::Vector{Float64})
    return sum(A .* B)
end

There is nothing wrong with this design, except that the function can only be used when
the arguments are vectors of Float64 values. What are the other possible options? Let's
take a look at that next.



Anti-Patterns Chapter 10

[ 394 ]

Considering various options for argument types
Julia's dispatch mechanism can select the right function to call as long as the type of the
arguments being passed matches the signature of the function. Based upon the type
hierarchy, we can possibly specify abstract types and the function still gets selected
properly.

Such flexibility gives us many options. We can consider any of the following:

sumprod(A::Vector{Float64}, B::Vector{Float64})

sumprod(A::Vector{Number}, B::Vector{Number})

sumprod(A::Vector{T}, B::Vector{T}) where T <: Number

sumprod(A::Vector{S}, B::Vector{T}) where {S <: Number, T <:
Number}

sumprod(A::Array{S,N}, B::Array{T,N}) where {N, S <: Number, T
<: Number}

sumprod(A::AbstractArray{S,N}, B::AbstractArray{T,N}) where {N,
S <: Number, T <: Number}

sumprod(A, B)

Which one is the most appropriate option for our function? We're not sure yet, but we can
always revisit our requirements and perform some testing before drawing a conclusion.

Let's first define what scenarios we plan to support. As we expect, this is just a numeric
calculation: we would like to support any numeric container that supports broadcasting.
Broadcasting is required because we use dot notation when calculating the product of A
and B in the preceding code.

Our test scenarios involve the following combinations of arguments:

Scenario Argument 1 Argument 2
1 Array{Float64, 1} Array{Float64, 1}

2 Array{Int64, 1} Array{Int64, 1}

3 Array{Int, 1} Array{Float64, 1}

4 Array{Float64, 2} Array{Float64, 2}

5 Array{Number,1} Array{Number,1}



Anti-Patterns Chapter 10

[ 395 ]

To test these scenarios for various function signature options, we can build a test harness
function, as follows:

function test_harness(f, scenario, args...)
    try
        f(args...)
        println(f, " #$(scenario) success")
    catch ex
        if ex isa MethodError
            println(f, " #$(scenario) failure (method not selected)")
        else
            println(f, " #$(scenario) failure (unknown error $ex)")
        end
    end
end

The test harness applies function f with the provided arguments args for a specific
scenario. If the function is dispatched, it displays a success message in the console;
otherwise, it displays a failure message. As we want to test the preceding listed scenarios,
we can define just one more function so that we can execute our tests easily:

function test_sumprod(f)
    test_harness(f, 1, [1.0,2.0], [3.0, 4.0]);
    test_harness(f, 2, [1,2], [3,4]);
    test_harness(f, 3, [1,2], [3.0,4.0]);
    test_harness(f, 4, rand(2,2), rand(2,2));
    test_harness(f, 5, Number[1,2.0], Number[3.0, 4]);
end

The test_sumprod function takes a function and executes the five preceding test cases.

Now we are all set. Let's dissect each option and see how well they work for us.

Option 1 – Vectors of Float64 values
The first option is what we started with at the beginning of this section. It has the most
specific types of arguments. The drawback is that it can only work with a vector of
Float64 values.

Let's define our function as follows so that we can pass it to the testing function:

sumprod_1(A::Vector{Float64}, B::Vector{Float64}) = sum(A .* B)



Anti-Patterns Chapter 10

[ 396 ]

We can try our test harness now:

As expected, this function can work with the first scenario when both arguments are
vectors of Float64 values. So it does not satisfy all of our requirements. Let's try the next
option.

Option 2 – Vectors of instances of Number
The second option is a little more interesting. We have switched the type parameter from
Float64 to Number, which is the topmost abstract type in the numeric type hierarchy:

sumprod_2(A::Vector{Number}, B::Vector{Number}) = sum(A .* B)

Let's test it now:

At first glance, it may appear that using Number as a type parameter would make it more
generic. It turns that out that it can only accept an array of Number types, which means that
it has to be a heterogenous array where each element can be a different type as long as all
element types are subtypes of Number. For that reason, a vector of Float64 values is not a
subtype of a vector of Number values. Check the following code snippet:



Anti-Patterns Chapter 10

[ 397 ]

For that reason, none of the scenarios was successful except the last one, which takes
vectors of Number exactly as arguments. So this option is not a great one either. Let's move
on!

Option 3 – Vectors of type T where T is a subtype of
Number
The third option is to take vectors of type T, where T is just a subtype of Number.

The function can be defined as follows:

sumprod_3(A::Vector{T}, B::Vector{T}) where T <: Number = sum(A .* B)

Let's try it first:

As the type parameter T can be any subtype of Number, this function comfortably handles
vectors of Float64, Int64, and even Number types. Unfortunately, it cannot handle
arguments of different types, but we should be able to improve it further. Let's try the next
option.

Option 4 – Vectors of type S and T where S and T are
subtypes of Number
This option differs from option 3 only in the way that the types of arguments are separately
specified. Thus, the function can accept different types for the first and second arguments.
The function is defined as follows:

sumprod_4(A::Vector{S}, B::Vector{T}) where {S <: Number, T <: Number} =
sum(A .* B)



Anti-Patterns Chapter 10

[ 398 ]

We can try it now:

We have definitely addressed the issue with mixed argument types by now. We're getting
close to the final destination. Scenario 4 is the case where the arguments are matrices rather
than vectors. For sure we know how to fix this, so let's do that next.

Option 5 – Arrays of type S and type T where S and T
are subtypes of Number
Since Julia arrays support broadcasting, we can generalize the function arguments from a
Vector{T} to an Array{T,N} signature in order to support multidimensional arrays. Let's
now define the function as follows:

sumprod_5(A::Array{S,N}, B::Array{T,N}) where {N, S <: Number, T <: Number}
=
    sum(A .* B)

We have pretty good confidence that this would work. Let's test it now:

Fabulous! We have finally satisfied all the requirements as listed in the test scenarios. Are
we done? Maybe not. For the sake of argument, we may want to support other types of
containers that are not necessarily a dense array. What if the input is sparse matrices? Let's
improve the function once again.



Anti-Patterns Chapter 10

[ 399 ]

Option 6 – Abstract arrays
The AbstractArray is the abstract type for all Julia array containers. Many Julia packages
implement the array interface and are made to be subtypes of AbstractArray. It would be
a shame if we go so far to make the sumprod function versatile enough, and yet we cannot 
support sparse matrices or other types of array-type containers. To make it more general,
let's turn our function definition from Array to AbstractArray as follows:

sumprod_6(A::AbstractArray{S,N}, B::AbstractArray{T,N}) where
    {N, S <: Number, T <: Number} = sum(A .* B)

The signature is the same as the previous option, except that the function can be dispatched
with any AbstractArray container types. Let's make sure that the function works as
expected:

The function is working properly for our existing cases. Let's just try it once again using the
sparse matrix type:



Anti-Patterns Chapter 10

[ 400 ]

Bravo! It is working great now, even with a non-dense array type. We are almost done. Let's
look at our last option—duck typing.

Option 7 – Duck typing
Our last option basically skips the types in the function arguments. This is also called duck
typing, as the function will be dispatched as long as two arguments are provided. Julia will
specialize and compile a new version for different variations of the argument types. The
function is simply defined as follows:

sumprod_7(A, B) = sum(A .* B)

For completeness, we will run the test again:

The benefit of this option is that the function is free of type information in the signature, so
it looks very clean. However, the drawback is that the function can be dispatched for any
type—not even an array or for numeric values. When garbage is passed into the function,
garbage comes out, or the function just throws an error when the objects being passed do
not have the * operator function defined.

Now that we have considered all the options and performed the respective tests, let's
summarize what we have done so far and what we would want to do next.

Summarizing all options
Let's now summarize all the options that we have considered so far:

Option Signature Passed
all tests?

1 sumprod(A::Vector{Float64}, B::Vector{Float64}) No
2 sumprod(A::Vector{Number}, B::Vector{Number}) No
3 sumprod(A::Vector{T}, B::Vector{T}) where T <: Number No



Anti-Patterns Chapter 10

[ 401 ]

Option Signature Passed
all tests?

4
sumprod(A::Vector{S}, B::Vector{T}) where {S <: Number, T
<: Number}

No

5
sumprod(A::Array{S,N}, B::Array{T,N}) where {N, S <:
Number, T <: Number}

Yes

6
sumprod(A::AbstractArray{S,N}, B::AbstractArray{T,N})
where {N, S <: Number, T <: Number}

Yes

7 sumprod(A, B) Yes

Technically speaking, options 5, 6, or 7 could work for all array types. Options 6 and 7
support other array containers, such as sparse matrix. Option 7 works with non-
AbstractArray types, as long as the type is broadcasting multiplication as well as
summation.

Before we draw our conclusion, let's do one last test from a performance perspective. Do
you wonder whether making the function accept more general types would sacrifice
performance? The only way to know this is to prove it with real experiments. Let's do that
next.

Evaluating performance
Do we sacrifice performance when we make the functions accept more general types in
their arguments? Let's do some benchmarking tests and see how they perform.

Here, we will benchmark the functions for options 1, 5, 6, and 7 using exactly the same
input: two Float64 vectors with 10,000 elements:

using BenchmarkTools

A = rand(10_000);
B = rand(10_000);

@btime sumprod_1($A, $B);
@btime sumprod_5($A, $B);
@btime sumprod_6($A, $B);
@btime sumprod_7($A, $B);



Anti-Patterns Chapter 10

[ 402 ]

Here are the test results:

As you can see, there is no material difference between these options. How the argument
types are specified does not affect the runtime performance of the function.

In summary, what we have learned about this anti-pattern is that the function argument
should not be made too narrow unnecessarily. A function can be much more useful when
the net is cast wide. A function that can accept and support more input types is
automatically more reusable.

Our next anti-pattern relates to how field types should be chosen when designing data
types. This is an extremely important topic as it can dramatically affect system
performance.

Nonconcrete field types anti-pattern
The nonconcrete field types anti-pattern is an anti-pattern in which a struct field is not
concrete. The main problem with nonconcrete types for fields is that they can cause major
performance problems. To understand why, let's take a look at the memory layout for
composite types that have nonconcrete versus concrete types, then design and compare the
two.



Anti-Patterns Chapter 10

[ 403 ]

Understanding the memory layout of composite
data types
Let's first take a look at a simple example for a composite type for tracking the coordinates
of a point:

struct Point
    x
    y
end

When the field type is not specified, it is implicitly interpreted as Any, the super type of all
types, hence the preceding code is syntactically equivalent to the following (except that we
have renamed the type name as Point2 to avoid confusion):

struct Point2
    x::Any
    y::Any
end

The fields x and y have the Any type, meaning that they can be anything: Int64, Float64,
or any other data type. To compare the memory layout and utilization, it is worth creating a
new point type that uses a small concrete type, such as UInt8:

struct Point3
    x::UInt8
    y::UInt8
end

As we know, UInt8 should occupy a single byte of storage. Having both x and y fields
should consume only two bytes of storage. Perhaps we should just prove it to ourselves.
Check the following code:

Clearly, a single Point3 object only occupies two bytes. Let's do the same with the original
Point object:



Anti-Patterns Chapter 10

[ 404 ]

The Point object takes 16 bytes, even though we want to store just two bytes. As we know,
the Point object can take any data type in the x and y fields. Now, let's do the same
exercise with a larger data type, such as Int128:

An Int128 is a 128-bit integer, which occupies 16 bytes in memory. Interestingly, even
though we are carrying two Int128 fields in Point, the size of the object remains as 16
bytes.

Why? It is because Point actually stores two 64-bit pointers, each occupying eight bytes of
storage. We can visualize the memory of a Point object as follows:

When the field types are concrete, the Julia compiler knows exactly what the memory
layout looks like. With two UInt8 fields, it is compactly represented with two bytes. With
two Int128 fields, it will occupy 32 bytes. Let's try that in REPL:

The memory layout of Point4 is compact, as shown in the following diagram:



Anti-Patterns Chapter 10

[ 405 ]

Now that we know the difference in memory layout, we can immediately see the benefits of
using concrete types. Every time we need to access the x or y field, if it is a concrete type,
then the data is right there. If the fields are just pointers, then we have to dereference the
pointer to find the data. Furthermore, the physical memory locations of x and y may not
even be adjacent to each other, which may cause hardware cache misses, further hurting
performance.

So, do we just follow the rule of using concrete types directly in the field definitions? Not
necessarily. There are other options that we can consider, which we will do in the following
sections.

Designing composite types with concrete types
in mind
Perhaps the reason why we use abstract types in the fields in the first place is to support
different types of data in the field. Taking the Point type in the previous section, we can
see that the type can be useful in the context of computer games, where the coordinates are
identified by integer pixel positions on the screen. On the other hand, we also think that the
same type may be useful for storing coordinates of shapes in architectural diagrams, in
which case, we would want floating-point values.

If we want to be flexible, we would want to support Point fields with any subtype of the
Real type. Conceptually, we want something like this:

struct Point
    x::Real
    y::Real
end

However, since Real is an abstract type, we would expect poor performance, just like we
would with Any. In order to utilize concrete types without sacrificing the flexibility of
supporting other numeric types, we can turn Point into a parametric type. Let's restart the
REPL and define the new Point type, as follows:

struct Point{T <: Real}
    x::T
    y::T
end



Anti-Patterns Chapter 10

[ 406 ]

Making it a parametric type has the benefit of being concrete. We can check this out easily
from the REPL. The following is a basic syntax implementation:

The following code shows another example:

So far, we have been assuming that concrete types would outperform nonconcrete types in
struct fields. It would be nice to get an idea of how much difference it makes. Let's try
that now.

Comparing performance between concrete
versus nonconcrete field types
We can run a performance test with these two different types, depicted here:

Our benchmark test function will compute the center of all points from an array, as follows:

using Statistics: mean

function center(points::AbstractVector{T}) where T
    return T(
        mean(p.x for p in points),
        mean(p.y for p in points))
end



Anti-Patterns Chapter 10

[ 407 ]

In addition, we will also define a function that can be used to make an array of points for
whatever type we want:

make_points(T::Type, n) = [T(rand(), rand()) for _ in 1:n]

Let's start with a PointAny type.

We will generate 100,000 points and use BenchmarkTools to measure the time:

Next, we will run the performance test for the Point type:

As we can see, there is a huge difference between the two. Using the parametric Point type
is approximately 25 times faster than the one that uses Any as a field type.

What we have learned from this anti-pattern is that we should use concrete types for fields
defined in composite types. It is quite easy to factor out the abstract type we want into a type
parameter. Doing this allows us to gain performance benefits from concrete types without
sacrificing the ability to support other data types.

Summary
In this chapter, we learned about several anti-patterns in Julia programming. When we
went over details for each anti-pattern, we also figured out how to apply alternative design
solutions.

We began with the piracy anti-pattern, which refers to bad practices as related to extending
functions from a third-party module. For convenience, we classified piracy anti-patterns
into three different types—type I, II, and III. Each type poses a different problem in causing
the system to become unstable or potentially invite problems in the future.



Anti-Patterns Chapter 10

[ 408 ]

Next, we looked into the narrow argument types anti-pattern. When function arguments
are too narrowly specified, they become less reusable. Because Julia can specialize the
function for various argument types, it is more beneficial to make argument types as
general as possible, utilizing abstract types. We went through several design options
in great detail, and concluded that the most general types can be used without sacrificing
performance.

Finally, we reviewed the nonconcrete field types anti-pattern. We proved that having
nonconcrete types poses a performance problem because of the resulting inefficient
memory layout structure. We figured that the problem can be solved easily by using
parametric types, specifying concrete types as part of the type parameters.

In the next chapter, we will turn our attention to traditional object-oriented design patterns
and see how they can be applied in Julia programming. Fasten your seat belt: if you used to be
an OOP programmer, your ride may be a little bumpy! 

Questions
What are the risks and potential benefits of type I piracy?1.
What kind of problems can arise from type II piracy?2.
How does type III piracy cause trouble?3.
What should we watch out for when specifying function arguments?4.
How is system performance affected by using abstract function arguments?5.
How is system performance affected by using abstract field types for composite6.
types?



11
Traditional Object-Oriented

Patterns
By now, we have already learned about the many design patterns that we need to know in
order to be an effective Julia programmer. The cases presented in the previous chapters
included various problems that we can solve by writing idiomatic Julia code. Some might
ask, after all these years, I have learned and adapted to the object-oriented programming
(OOP) paradigm; how do I apply the same concepts in Julia? The general answer is, you
won't solve the problem the same way. The solution written in Julia will look different,
reflecting a different programming paradigm. Nevertheless, it is still an interesting exercise
to think about how to adopt some of the OOP techniques in Julia.

In this chapter, we will cover all 23 design patterns from the classic Gang of Four
(GoF) Design Patterns book. We will keep the tradition and organize the topics in the
following sections:

Creational patterns
Behavioral patterns
Structural patterns

By the end of this chapter, you will have an idea of how each of these patterns may be
applied in Julia, as compared to an OOP approach.



Traditional Object-Oriented Patterns Chapter 11

[ 410 ]

Technical requirements
The sample source code is located at https:/ /github. com/ PacktPublishing/ Hands- on-
Design-Patterns- and- Best- Practices- with- Julia/ tree/ master/ Chapter11.

The code is tested in a Julia 1.3.0 environment.

Creational patterns
Creational patterns refer to the various ways of constructing and instantiating objects.
Since OOP groups data and behavior together, and since a class may inherit the structure
and behavior from an ancestor class, there are additional levels of complexity involved
when building a large-scale system. By design, Julia has already gotten rid of many issues
by not allowing fields to be declared in abstract types and not allowing creating new
subtypes from concrete types. Nevertheless, some of these patterns could be helpful in
certain situations.

The creational patterns include the factory method, abstract factory, singleton, builder, and
prototype patterns. We shall discuss them in detail in the following sections.

The factory method pattern
The idea of the factory method pattern is to provide a single interface to create different
types of objects that conform to an interface while hiding the actual implementation from
the client. This abstraction decouples the client from the underlying implementation of the
feature provider.

For example, a program might need to format some numbers in the output. In Julia, we
might want to use the Printf package to format numbers, as follows:

https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter11


Traditional Object-Oriented Patterns Chapter 11

[ 411 ]

Perhaps we do not want to couple with the Printf package because we want to switch and
use a different formatting package in the future. In order to make the application more
flexible, we can design an interface where numbers can be formatted according to their
types. The following interface is described in the doc string:

"""
 format(::Formatter, x::T) where {T <: Number}

Format a number `x` using the specified formatter.
Returns a string.
"""
function format end

The format function takes a formatter and a numeric value, x, and returns a formatted
string. The Formatter type is defined as follows:

abstract type Formatter end
struct IntegerFormatter <: Formatter end
struct FloatFormatter <: Formatter end

Then, the factory methods basically create singleton types for dispatch purposes:

formatter(::Type{T}) where {T <: Integer} = IntegerFormatter()
formatter(::Type{T}) where {T <: AbstractFloat} = FloatFormatter()
formatter(::Type{T}) where T = error("No formatter defined for type $T")

The default implementation may look like the following, utilizing the Printf package:

using Printf
format(nf::IntegerFormatter, x) = @sprintf("%d", x)
format(nf::FloatFormatter, x) = @sprintf("%.2f", x)

Putting everything in a FactoryExample module, we can run the following testing code:

function test()
    nf = formatter(Int)
    println(format(nf, 1234))
    nf = formatter(Float64)
    println(format(nf, 1234))
end

The output is as follows:



Traditional Object-Oriented Patterns Chapter 11

[ 412 ]

Should we ever want to change the formatter in the future, we just need to provide a new
implementation with format functions defined for the numeric types that we want to
support. This is handy when we have a lot of number-formatting code lying around. The
switch to a different formatter involves literally two lines of code changes (in this example).

Let's look at the abstract factory pattern next.

The abstract factory pattern
The abstract factory pattern is used for creating objects via a set of factory methods, which
are abstracted away from the concrete implementation. The abstract factory pattern can be
viewed as a factory of factories.

We can explore the example of building a multiplatform GUI library that supports
Microsoft Windows and macOS. As we want to develop code that is cross-platform, we can
leverage this design pattern. This design is described in the following UML diagram:



Traditional Object-Oriented Patterns Chapter 11

[ 413 ]

In a nutshell, we have presented two types of GUI objects here: Button and Label. The
concept is the same for both Microsoft Windows and macOS platforms. The client does not
care how these objects are instantiated; instead, it asks an abstract factory GUIFactory to
return factories (either MacOSFactory or WindowsFactory) that support multiple factory
methods for creating platform-dependent GUI objects.

The Julia implementation can simply be modeled with the appropriate abstract and
concrete types. Let's start at the OS level:

abstract type OS end
struct MacOS <: OS end
struct Windows <: OS end

We intended to use MacOS and Windows as singleton types for dispatch purposes later. For
now, let's continue and define the abstract types Button and Label as follows.
Additionally, we have defined show methods for each type respectively:

abstract type Button end
Base.show(io::IO, x::Button) =
    print(io, "'$(x.text)' button")

abstract type Label end
Base.show(io::IO, x::Label) =
    print(io, "'$(x.text)' label")

We do need to provide concrete implementation for these GUI objects. Let's define them
now:

# Buttons
struct MacOSButton <: Button
    text::String
end

struct WindowsButton <: Button
    text::String
end

# Labels
struct MacOSLabel <: Label
    text::String
end

struct WindowsLabel <: Label
    text::String
end



Traditional Object-Oriented Patterns Chapter 11

[ 414 ]

For the sake of simplicity, we just hold on to a text string, whether it's a button or a label.
As factory methods are platform-dependent, we can leverage the OS trait and multiple
dispatch to call the right make_button or make_label functions:

# Generic implementation using traits
current_os() = MacOS() # should get from system
make_button(text::String) = make_button(current_os(), text)
make_label(text::String) = make_label(current_os(), text)

For testing, we have hardcoded the current_os function to return MacOS(). In reality, this
function should return either MacOS() or Windows() by examining whatever system
variable is appropriate to identify the platform. Finally, we need to implement the specific
functions for each platform as follows:

# MacOS implementation
make_button(::MacOS, text::String) = MacOSButton(text)
make_label(::MacOS, text::String) = MacOSLabel(text)

# Windows implementation
make_button(::Windows, text::String) = WindowsButton(text)
make_label(::Windows, text::String) = WindowsLabel(text)

Our simple test just involves calling the make_button function:

Using multiple dispatch, we can easily extend to new platforms or new GUI objects by
simply defining new functions for the specific OS.

Next, we will look into the singleton pattern.

The singleton pattern
The singleton pattern is used to create a single instance of an object and reuse it from
anywhere. A singleton object is typically constructed when the application starts, or it can
be created lazily on the first use of the object. An interesting requirement for the singleton
pattern arises for multithreaded applications because the instantiation of the singleton
object must happen only once. It can be a challenge if the object creation function is called
lazily from many threads.



Traditional Object-Oriented Patterns Chapter 11

[ 415 ]

Suppose that we want to create a singleton called AppKey that is used for encryption in the
application:

# AppKey contains an app id and encryption key
struct AppKey
    appid::String
    value::UInt128
end

Initially, we may be tempted to use a global variable. Given that we have learned about the
performance impact of global variables, we can apply the global constant pattern that we
learned in Chapter 6, Performance Patterns. Essentially, a Ref object is created as a
placeholder, as follows:

# placeholder for AppKey object.
const appkey = Ref{AppKey}()

The appkey global constant is first created without being assigned with any value, but then
it can be updated when the singleton is instantiated. The construction of singleton can be
done as follows:

function construct()
    global appkey
    if !isassigned(appkey)
        ak = AppKey("myapp", rand(UInt128))
        println("constructing $ak")
        appkey[] = ak
    end
    return nothing
end

This code works fine as long as there is a single thread. If we test it with multiple threads,
then the isassigned check is problematic. For example, two threads might check whether
the key is assigned at the same time, and both threads might think that the singleton object
needs to be instantiated. In this case, we end up constructing the singleton twice.

The testing code is shown as follows:

function test_multithreading()
    println("Number of threads: ", Threads.nthreads())
    global appkey
    Threads.@threads for i in 1:8
        construct()
    end
end



Traditional Object-Oriented Patterns Chapter 11

[ 416 ]

We can demonstrate the problem below. Let's start the Julia REPL with four threads:

Then, we can run the testing code:

As you can see, the singleton being constructed twice here.

So how do we solve this problem? We can use a lock to synchronize the singleton
construction logic. Let's first create another global constant to hold the lock:

const appkey_lock = Ref(ReentrantLock())

To use the lock, we can modify the construct function as follows:



Traditional Object-Oriented Patterns Chapter 11

[ 417 ]

We must first acquire the lock before checking whether appkey[] is already assigned.
When we are done constructing the singleton (or skipping it, if it has already been created),
we release the lock. Note that we have wrapped the critical section of the code in a try
block, and we placed the unlock function in the finally block. This is done to ensure that
the lock is released regardless of whether the construction of the singleton is successful or
not.

Our new test shows that the singleton is constructed only once:

The singleton pattern is useful when we need to hold on to a single object. Practical use
cases include database connections or other references to external resources. Next, we will
take a look at the builder pattern.

The builder pattern
The builder pattern is used to build a complex object by incrementally building simpler
parts of it. We can imagine that a factory assembly line would work in a similar fashion. In
that case, a product is assembled step-by-step with more and more parts, and at the end of
the assembly line, the product is finished and ready to go.

One benefit of this pattern is that the builder code looks like a linear data flow and is easier
for some people to read. In Julia, we may want to write something like this:

car = Car() |>
    add(Engine("4-cylinder 1600cc Engine")) |>
    add(Wheels("4x 20-inch wide wheels")) |>
    add(Chassis("Roadster Chassis"))

Essentially, this is the exact functional pipe pattern described in Chapter 9, Miscellaneous
Patterns. For this example, we can develop higher-order functions for building each part
(such as the wheels, engine, and chassis). The following code illustrates how to create a
curry (higher-order) function for creating wheels:

function add(wheels::Wheels)
    return function (c::Car)



Traditional Object-Oriented Patterns Chapter 11

[ 418 ]

        c.wheels = wheels
        return c
    end
end

The add function just returns an anonymous function that takes a Car object as input and
returns an enhanced Car object. Likewise, we can develop similar functions for the Engine
and Chassis types. Once these functions are ready, we can build a car by simply chaining
these function calls together.

Next, we will discuss the prototype pattern.

The prototype pattern
The prototype pattern is used to create new objects by cloning fields from an existing
object, or the prototype object. The idea is that some objects are difficult or time-consuming
to construct, so it would be useful to make a copy of the object and call it a new one by
making small modifications.

As Julia keeps data and logic separate, making copies of objects is really the same as
duplicating the content. That sounds easy, but we should not overlook the difference
between a shallow copy and a deep copy.

A shallow copy of an object is merely an object with all the fields copied from another
object. A deep copy of an object is created by recursively going into the fields of the object
and copying their underlying fields as well. As such, a shallow copy may not be desirable
because some data can be shared with the original object.

To illustrate this, let's consider the following struct definitions for a bank account example:

mutable struct Account
    id::Int
    balance::Float64
end

struct Customer
    name::String
    savingsAccount::Account
    checkingAccount::Account
end



Traditional Object-Oriented Patterns Chapter 11

[ 419 ]

Now, suppose that we have an array of Customer objects that are returned from this
function:

function sample_customers()
    a1 = Account(1, 100.0)
    a2 = Account(2, 200.0)
    c1 = Customer("John Doe", a1, a2)
    a3 = Account(3, 300.0)
    a4 = Account(4, 400.0)
    c2 = Customer("Brandon King", a3, a4)

    return [c1, c2]
end

The sample_customer function returns an array of two customers. For testing purposes,
let's build a test harness to update the balance for the first customer as follows:

function test(copy_function::Function)
    println("--- testing ", string(copy_function), " ---")
    customers = sample_customers()
    c = copy_function(customers)
    c[1].checkingAccount.balance += 500
    println("orig: ", customers[1].checkingAccount.balance)
    println("new: ", c[1].checkingAccount.balance)
end

If we exercise the test harness with built-in copy and deepcopy functions, we get the
following results:

Unexpectedly, we got the wrong result in the orig output since we should be adding $500
to the new customer. Why do we have the same balance for both the original customer
record and the new customer record instead? This is because a shallow copy was made
from the customer array when the copy function was used. When this happens, the
customer records are essentially shared between the original array and the new array. This
means that mutating the new record also affected the original record.



Traditional Object-Oriented Patterns Chapter 11

[ 420 ]

In the second part of the result, only the new copy of the customer record was changed.
This is because the deepcopy function was used. By definition, the prototype pattern
requires making changes to the copy. It is probably safer to make a deep copy should this
pattern be applied.

We have covered all five creational patterns. These patterns allow us to build new objects in
an effective manner.

Next, we're going to cover a set of behavioral design patterns.

Behavioral patterns
Behavioral patterns refer to how objects are designed to collaborate and communicate with
each other. There are 11 GoF patterns from the OOP paradigm. We will cover all of them
here with some interesting hands-on examples.

The chain-of-responsibility pattern
The chain-of-responsibility (CoR) pattern is used to process the request using a chain of
request handlers, whereas each handler has its own distinct and independent
responsibility.

This pattern is quite common in many applications. For example, web servers usually
handle HTTP requests using so-called middleware. Each piece of middleware is responsible
for performing a specific task—for example, authenticating requests, maintaining cookies,
validating requests, and performing business logic. A specific requirement about the CoR
pattern is that any part of the chain can be broken at any time, resulting in an early exit of
the process. In the preceding web server example, the authentication middleware may have
decided that the user has not been authenticated, and that therefore, the user should be
redirected to a separate website for login. This means that the rest of the middleware is
skipped unless the user gets past the authentication step.

How do we design something like this in Julia? Let's look at a simple example:

mutable struct DepositRequest
    id::Int
    amount::Float64
end



Traditional Object-Oriented Patterns Chapter 11

[ 421 ]

A DepositRequest object contains an amount that a customer wants to deposit in their
account. Our marketing department wants us to provide a thank-you note to the customer
if the deposit amount is greater than $100,000. To process such a request, we have designed
three functions, as follows:

@enum Status CONTINUE HANDLED

function update_account_handler(req::DepositRequest)
    println("Deposited $(req.amount) to account $(req.id)")
    return CONTINUE
end

function send_gift_handler(req::DepositRequest)
    req.amount > 100_000 &&
        println("=> Thank you for your business")
    return CONTINUE
end

function notify_customer(req::DepositRequest)
    println("deposit is finished")
    return HANDLED
end

What is the responsibility of these functions?

The update_account_handler function is responsible for updating the account
with the new deposit.
The send_gift_handler function is responsible for sending a thank-you
note to the customer for a large deposit amount.
The notify_customer function is responsible for informing the customer after
the deposit is made.

These functions also return an enum value, either CONTINUE or HANDLED, to indicate
whether the request should be passed on to the next handler when the current one is
finished.

It should be quite clear that these functions run in a specific order. In particular, the
notify_customer function should run at the end of the transaction. For that reason, we
can establish an array of functions:

handlers = [
    update_account_handler,
    send_gift_handler,
    notify_customer
]



Traditional Object-Oriented Patterns Chapter 11

[ 422 ]

We can also have a function to execute these handlers in order:

function apply(req::DepositRequest, handlers::AbstractVector{Function})
    for f in handlers
        status = f(req)
        status == HANDLED && return nothing
    end
end

As part of this design, the loop will end immediately if any handler returns a value of
HANDLED. Our test code for testing the function of sending the thank-you note to a premier
customer is shown as follows:

function test()
    println("Test: customer depositing a lot of money")
    amount = 300_000
    apply(DepositRequest(1, amount), handlers)

    println("\nTest: regular customer")
    amount = 1000
    apply(DepositRequest(2, amount), handlers)
end

Running the test gives us this result:

I will leave it as an exercise for you to build another function in this chain to perform an
early exit. But for now, let's move on to the next pattern—the mediator pattern.

The mediator pattern
The mediator pattern is used to facilitate communication between different components in
an application. This is done in such a way that individual components are decoupled from
each other. In most applications, changes in one component can affect another. Sometimes,
there are also cascading effects. A mediator can take the responsibility of getting notified
when one component is changed, and it can notify other components about the event so
that further downstream updates can be made.



Traditional Object-Oriented Patterns Chapter 11

[ 423 ]

As an example, we can consider the use case of a graphical user interface (GUI). Suppose
that we have a screen that contains three fields for our favorite banking application:

Amount: Current balance in the account.
Interest Rate: Current interest rate expressed as a percentage.
Interest Amount: Interest amount. This is a read-only field.

How do they interact with each other? If the amount is changed, then the interest amount
needs to be updated. Likewise, if the interest rate is changed, then the interest amount
needs to be updated as well.

To model the GUI, we can define the following types for the individual GUI objects
onscreen:

abstract type Widget end

mutable struct TextField <: Widget
    id::Symbol
    value::String
end

The Widget is an abstract type and it can be used as the supertype for all GUI objects. This
application only needs text fields, so we just define a TextField widget. A text field is
identified by an id, and it contains a value. In order to extract and update the value in the
text field widget, we can define functions as follows:

# extract numeric value from a text field
get_number(t::TextField) = parse(Float64, t.value)

# set text field from a numeric value
function set_number(t::TextField, x::Real)
    println("* ", t.id, " is being updated to ", x)
    t.value = string(x)
    return nothing
end

From the preceding code, we can see that the get_number function gets the value from the
text field widget and returns it as a floating-point number. The set_number function
populates the text field widget with the provided numeric value. Now, we also need to
create the application, so we conveniently define a struct as follows:

Base.@kwdef struct App
    amount_field::TextField
    interest_rate_field::TextField
    interest_amount_field::TextField
end



Traditional Object-Oriented Patterns Chapter 11

[ 424 ]

For this example, we will implement a notify function to simulate an event that is sent to
the text field widget after the user enters a value. In reality, the GUI platform typically
performs that function. Let's call it on_change_event, as follows:

function on_change_event(widget::Widget)
    notify(app, widget)
end

The on_change_event function does nothing else but communicate to the mediator (the
app) that something has just happened to this widget. As for the app itself, here's how it
handles the notification:

# Mediator logic - handling changes to the widget in this app
function notify(app::App, widget::Widget)
    if widget in (app.amount_field, app.interest_rate_field)
        new_interest = get_number(app.amount_field) *
get_number(app.interest_rate_field)/100
        set_number(app.interest_amount_field, new_interest)
    end
end

As you can see, it simply checks whether the widget that is being updated is either the
Amount or Interest Rate field. If so, it calculates a new interest amount and populates the
Interest Amount field with the new value. Let's do a quick test:

function test()
    # Show current state before testing
    print_current_state()

    # double principal amount from 100 to 200
    set_number(app.amount_field, 200)
    on_change_event(app.amount_field)
    print_current_state()
end

The test function displays the initial state of the application, updates the amount field,
and displays the new state. For the sake of brevity, the source code for
the print_current_state function is not shown here, but is available on the book's
GitHub site. The output of the test program is shown as follows:



Traditional Object-Oriented Patterns Chapter 11

[ 425 ]

The benefit of using the 2 mediator pattern is that every object can focus on its own
responsibility and not worry about the downstream impact. A central mediator takes on the
responsibility of organizing activities and handling events and communications.

Next, we shall look at the memento pattern.

The memento pattern
The memento pattern is a state management technique that you can use to restore your
work to a previous state when needed. A common example is the Undo function of a word
processor application. After making 10 changes, we can always undo the prior operations
and return to the original state before those 10 changes were made. Similarly, an
application may remember the most recently opened files and provide a menu of choices so
that the user can quickly reopen a previously opened file.

Implementing the memento pattern in Julia is quite simple. We can just store previous
states in an array and when making a change, we can push the new state to the array. When
we want to undo our actions, we restore the previous state by popping from the array. To
illustrate this idea, let's consider the case of a blog post-editing application. We can define
the data types as follows:

struct Post
    title::String
    content::String
end

struct Blog
    author::String
    posts::Vector{Post}
    date_created::DateTime
end



Traditional Object-Oriented Patterns Chapter 11

[ 426 ]

As you can see, a Blog object contains an array of Post objects. By convention, the last
element in the array is the current version of the blog post. If there were five posts in the
array, then it means that four changes have been made so far. Creating a new blog is as
easy, as shown in the following code:

function Blog(author::String, post::Post)
    return Blog(author, [post], now())
end

By default, a new blog object contains just one version. As the user makes changes, the
array will grow. For convenience, we can provide a version_count function that returns
the number of revisions that the user has made so far.

version_count(blog::Blog) = length(blog.posts)

To obtain the current post, we can simply take the last element of the array:

current_post(blog::Blog) = blog.posts[end]

Now, when we have to update the blog, we must push the new version to the array. Here is
the function that we use to update the blog with a new title or content:

function update!(blog::Blog;
                 title = nothing,
                 content = nothing)
    post = current_post(blog)
    new_post = Post(
        something(title, post.title),
        something(content, post.content)
    )
    push!(blog.posts, new_post)
    return new_post
end

The update! function takes a Blog object, and optionally it can take either an
updated title, content, or both. Basically, it creates a new Post object and pushes it into
the posts array. Undoing is done as follows:

function undo!(blog::Blog)
    if version_count(blog) > 1
        pop!(blog.posts)
        return current_post(blog)
    else
        error("Cannot undo... no more previous history.")
    end
end



Traditional Object-Oriented Patterns Chapter 11

[ 427 ]

We can test it with the following test function:

function test()
    blog = Blog("Tom", Post("Why is Julia so great?", "Blah blah."))
    update!(blog, content = "The reasons are...")

    println("Number of versions: ", version_count(blog))
    println("Current post")
    println(current_post(blog))
    println("Undo #1")
    undo!(blog)
    println(current_post(blog))

    println("Undo #2") # expect failure
    undo!(blog)
    println(current_post(blog))
end

The output is shown as follows:

As you can see, it is quite easy to implement the memento pattern. We will cover the 
observer pattern next.

The observer pattern
The observer pattern is useful for registering observers to an object so that all state changes
in that object trigger the sending of notifications to the observers. In a language that
supports first-class functions—for example, Julia—such functionality can be implemented
easily by maintaining a list of functions that can be called before or after the state changes
of an object. Sometimes, these functions are called hooks.



Traditional Object-Oriented Patterns Chapter 11

[ 428 ]

The implementation of the observer pattern in Julia may consist of two parts:

Extend the setproperty! function of an object to monitor state changes and1.
notify observers.
Maintain a dictionary that can be used to look up the functions to call.2.

For this demonstration, we will bring up the bank account example again:

mutable struct Account
    id::Int
    customer::String
    balance::Float64
end

Here is the data structure for maintaining observers:

const OBSERVERS = IdDict{Account,Vector{Function}}();

Here, we have chosen to use IdDict instead of the regular Dict object. IdDict is a special
type that uses Julia's internal object ID as the key of the dictionary. To register observers,
we provide the following function:

function register(a::Account, f::Function)
    fs = get!(OBSERVERS, a, Function[])
    println("Account $(a.id): registered observer function $(Symbol(f))")
    push!(fs, f)
end

Now, let's extend the setproperty! function:

function Base.setproperty!(a::Account, field::Symbol, value)
    previous_value = getfield(a, field)
    setfield!(a, field, value)
    fs = get!(OBSERVERS, a, Function[])
    foreach(f -> f(a, field, previous_value, value), fs)
end

This new setproperty! function not only updates the field for the object, but also calls the
observer functions with both the previous state and the current state after the field has been
updated. For testing purposes, we will create an observer function as follows:

function test_observer_func(a::Account, field::Symbol, previous_value,
current_value)
    println("Account $(a.id): $field was changed from $previous_value to
$current_value")
end



Traditional Object-Oriented Patterns Chapter 11

[ 429 ]

Our test function is written as follows:

function test()
    a1 = Account(1, "John Doe", 100.00)
    register(a1, test_observer_func)
    a1.balance += 10.00
    a1.customer = "John Doe Jr."
    return nothing
end

When running the test program, we get the following output:

From the output, we can see that the test_observer_func function was called every time
a property is updated. The observer pattern is an easy thing to develop. Next, we will look
at the state pattern.

The state pattern
The state pattern is used in situations where an object behaves differently depending on its
internal state. A networking service is a great example. A typical implementation for a
network-based service is to listen to a specific port number. When a remote process
connects to the service, it establishes a connection, and they use it to communicate with
each other until the end of the session. When a network service is currently in a listening
state, it should allow a new connection to be opened; however, no data transmission should
be allowed until after the connection is opened. Then, after the connection is opened, we
should be able to send data. By contrast, we should not allow any data to be sent through
the network connection if the connection is already closed.

In Julia, we can possibly implement the state pattern using multiple dispatch. Let's first
define the following types that are meaningful for network connections:

abstract type AbstractState end

struct ListeningState <: AbstractState end
struct EstablishedState <: AbstractState end
struct ClosedState <: AbstractState end

const LISTENING = ListeningState()



Traditional Object-Oriented Patterns Chapter 11

[ 430 ]

const ESTABLISHED = EstablishedState()
const CLOSED = ClosedState()

Here, we have leveraged the singleton type pattern. As for the network connection itself,
we can define the type as follows:

struct Connection{T <: AbstractState,S}
    state::T
    conn::S
end

Now, let's develop a send function, which is used to send a message via a connection. In
our implementation, the send function does not do anything else except gather the current
state of the connection and forward the call to a state-specific send function:

# Use multiple dispatch
send(c::Connection, msg) = send(c.state, c.conn, msg)

# Implement `send` method for each state
send(::ListeningState, conn, msg) = error("No connection yet")
send(::EstablishedState, conn, msg) = write(conn, msg * "\n")
send(::ClosedState, conn, msg) = error("Connection already closed")

You may recognize this as the Holy Trait pattern. For unit testing, we can develop a test
function for creating a new Connection with the specified message and sending a message
to the Connection object:

function test(state, msg)
    c = Connection(state, stdout)
    try
        send(c, msg)
    catch ex
        println("$(ex) for message '$msg'")
    end
    return nothing
end

Then, the testing code simply runs the test function three times, once for each possible
state:

function test()
    test(LISTENING, "hello world 1")
    test(CLOSED, "hello world 2")
    test(ESTABLISHED, "hello world 3")
end



Traditional Object-Oriented Patterns Chapter 11

[ 431 ]

When running the test function, we get the following output:

Only the third message was sent successfully, because the connection was in the
ESTABLISHED state. Now, let's take a look at the strategy pattern.

The strategy pattern
The strategy pattern enables clients to select the best algorithm to use at runtime. Instead of
coupling the client with predefined algorithms, the client can be configured with a specific
algorithm (strategy) when necessary. In addition, sometimes the choice of algorithm cannot
be determined ahead of time because the decision may depend on the input data, the
environment, or something else.

In Julia, we can solve the problem using multiple dispatch. Let's consider the case of a
Fibonacci sequence generator. As we learned from Chapter 6, Performance Patterns, the
calculation of the nth Fibonacci number can be tricky when we implement it recursively, so
our first algorithm (strategy) may be memoization. In addition, we can also solve the same
problem using an iterative algorithm without using any recursion. 

In order to support both memoization and iterative algorithms, let's create some new types
as follows:

abstract type Algo end
struct Memoized <: Algo end
struct Iterative <: Algo end

The Algo abstract type is the supertype for all Fibonacci algorithms. At the moment, we
only have two algorithms to choose from: Memoized or Iterative. Now, we can define
the memoized version of the fib function as follows:

using Memoize
@memoize function _fib(n)
    n <= 2 ? 1 : _fib(n-1) + _fib(n-2)
end

function fib(::Memoized, n)
    println("Using memoization algorithm")
    _fib(n)
end



Traditional Object-Oriented Patterns Chapter 11

[ 432 ]

A memoized function _fib is first defined. Then a wrapper function fib is defined, taking
a Memoized object as the first argument. The corresponding iterative algorithm can be
implemented as follows:

function fib(algo::Iterative, n)
    n <= 2 && return 1
    prev1, prev2 = 1, 1
    local curr
    for i in 3:n
        curr = prev1 + prev2
        prev1, prev2 = curr, prev1
    end
    return curr
end

How the algorithm actually works is unimportant in this discussion. As the first argument
is an Iterative object, we know that this function will be dispatched accordingly. 

From the client's perspective, it can choose either the memoized version or the iterative
function, depending on what it needs. As the memoized version runs at O(1) speed, it
should be faster when n is large; however, for a small value of n, the iterative version
would work better. We can call the fib function in one of the following ways:

fib(Memoized(), 10)
fib(Iterative(), 10)

Should the client choose to implement an algorithm-selection process, it can be
done easily, as follows:

function fib(n)
    algo = n > 50 ? Memoized() : Iterative()
    return fib(algo, n)
end

The successful test result is shown here:



Traditional Object-Oriented Patterns Chapter 11

[ 433 ]

As you can see, implementing the strategy pattern is quite easy. The unreasonable
effectiveness of multiple dispatch has come to rescue again! Next, we will go over another
behavioral pattern called the template method.

The template method pattern
The template method pattern is used to create a well-defined process that can use different
kinds of algorithms or operations. As a template, it can be customized with whatever
algorithm or functions the client requires.

Here, we will explore how the template method pattern can be utilized in a machine
learning (ML) pipeline use case. For those who are unfamiliar with ML pipelines, here is a
simplified version of what a data scientist might do:

A dataset is first split into two separate datasets for training and testing purposes. The
training dataset is fed into a process that fits the data into a statistical model. Then, the
validate function uses the model to predict the response (also called the target) variable
in the test set. Finally, it compares the predicted values against the actual values and
determines how accurate the model is.

Let's say we have the pipeline already set up as follows:

function run(data::DataFrame, response::Symbol, predictors::Vector{Symbol})
    train, test = split_data(data, 0.7)
    model = fit(train, response, predictors)
    validate(test, model, response)
end



Traditional Object-Oriented Patterns Chapter 11

[ 434 ]

For the sake of brevity, the specific functions, split_data, fit, and validate, are not
shown here; you can look them up on this book's GitHub site if you wish. However, the
pipeline concept is demonstrated in the preceding logic. Let's take a quick spin at
predicting Boston house prices:

In this example, the response variable is :MedV, and we will build a statistic model based
on :Rm, :Tax, and :Crim. 

The Boston housing dataset contains data collected by the U.S. Census
Service concerning housing in the area of Boston, Massachusetts. It is used
extensively by much statistical analysis educational literature. The
variables that we used in this example are:

MedV: Median value of owner-occupied homes in $1,000's
Rm: Average number of rooms per dwelling
Tax: Full-value property tax rate per $10,000
Crim: Per capita crime rate by town

The accuracy of the model is captured in the rmse variable (meaning the root mean squared
error). The default implementation uses linear regression as the fitting function.

To implement the template method pattern, we should allow the client to plug in any part
of the process. For that reason, we can modify the function with keyword arguments:

function run2(data::DataFrame, response::Symbol,
predictors::Vector{Symbol};
            fit = fit, split_data = split_data, validate = validate)
    train, test = split_data(data, 0.7)
    model = fit(train, response, predictors)
    validate(test, model, response)
end



Traditional Object-Oriented Patterns Chapter 11

[ 435 ]

Here, we have added three keyword arguments: fit, split_data, and validate. The
function is named as run2 to avoid confusion here, so the client should be able to
customize any one of them by passing in a custom function. To illustrate how it works, let's
create a new fit function that uses the generalized linear model (GLM):

using GLM

function fit_glm(df::DataFrame, response::Symbol,
predictors::Vector{Symbol})
    formula = Term(response) ~ +(Term.(predictors)...)
    return glm(formula, df, Normal(), IdentityLink())
end

Now that we have customized the fitting function, we can rerun the program by passing it
via the fit keyword argument: 

As you can see, the client can customize the pipeline easily by just passing in functions.
This is possible because Julia supports first-class functions.

In the next section, we will review a few other traditional behavioral patterns.

Command, interpreter, iterator, and visitor
patterns
The command, interpreter, and visitor patterns are grouped in this section only because we
have already covered their use cases earlier in this book.

The command pattern is used to parameterize actions that are to be performed. In Chapter
9, Miscellaneous Patterns, in the Singleton type dispatch pattern section, we explored a use case
where the GUI invokes different commands and reacts to specific actions that the user has
requested. By defining singleton types, we can leverage Julia's multiple dispatch
mechanism to execute the proper function. We can extend this to new commands
by simply adding new functions that take new singleton types.



Traditional Object-Oriented Patterns Chapter 11

[ 436 ]

The interpreter pattern is used to model an abstract syntax tree for a particular domain
model. As it turns out, we have already done this in Chapter 7, Maintainability Patterns, in
the Domain-specific language section. Every Julia expression can be modeled as an abstract
syntax tree without any additional work, and so we can develop a DSL using regular
metaprogramming facilities, such as macros and generated functions.

The iterator pattern is used to iterate over a collection of objects using a standard protocol.
In Julia, there is already an officially established iteration interface that can be implemented
by any collection framework. As long as an iterate function is defined for a custom
object, the elements in the object can be iterated as part of any looping construct. More
information can be found from the official Julia reference manual.

Finally, the visitor pattern is used to extend functionalities of an existing class in the OOP
paradigm. In Julia, adding new functions to an existing system can be done easily via an
extension of generic functions. For example, there are many array-like data structure
packages in the Julia ecosystem, such as OffsetArrays, StridedArrays, and
NamedArrays. All of these are extensions to the existing AbstractArray framework. 

We are now finished with behavioral patterns. Let's move on and take a look at the last
group—structural patterns.

Structural patterns
Structural design patterns are used to compose objects together to make bigger things. As
you continue developing a system and adding functionalities, its size and complexity
grows. Not only do we want to integrate components with each other, but at the same time,
we also want to reuse components as much as possible. By learning the structural patterns
described in this section, we have a template to follow when we encounter similar
situations in our projects.

In this section, we will review the traditional object-oriented patterns, including the
adapter, bridge, composite, decorator, facade, flyweight, and proxy patterns. Let's start
with the adapter pattern.



Traditional Object-Oriented Patterns Chapter 11

[ 437 ]

The adapter pattern
The adapter pattern is used to make one object work with another. Say that we need to 
integrate two subsystems, but they cannot talk to each other because the interface
requirements are not met. In real life, you may have encountered a situation where
traveling to a different country is troublesome because the power plugs are not the same.
To solve this problem, you would probably bring a universal power adapter, which acts as
an intermediary to make your device work with foreign electrical outlets. Similarly,
different software can be made to fit with each other by the use of adapters.

As long as the interface for working with a subsystem is clear, then creating an adapter can
be a straightforward task. In Julia, we can use the Delegation pattern to wrap an object and
provide additional functionalities that conform to the required interface.

Let's imagine that we are using a library that performs a computation and returns a linked
list. A linked list is a convenient data structure that supports very fast inserts at O(1) speed.
Now, say that we want to pass the data to another subsystem that requires us to conform to
an AbstractArray interface. In this case, we cannot just pass the linked list as it does not
fit!

How do we solve this problem? First, let me introduce the LinkedList implementation:



Traditional Object-Oriented Patterns Chapter 11

[ 438 ]

This is a fairly standard design for a doubly-linked list. Each node contains a data value,
but also maintains a reference to the node before and after. The typical usage of such a
linked list is shown as follows:

In general, we can traverse the linked list by using the prev and next functions. The reason
why we need to call next(LL) when inserting the value of 3 is because we want to insert it
after the second node.

Because using a linked list does not implement the AbstractArray interface, we cannot
really reference any element by index, nor can we figure out the number of elements:

In this case, we can build a wrapper (or so-called adapter) that conforms to the
AbstractArray interface. First, let's create a new type and make it a subtype of
AbstractArray:

struct MyArray{T} <: AbstractArray{T,1}
    data::Node{T}
end



Traditional Object-Oriented Patterns Chapter 11

[ 439 ]

As we only need to support a single-dimension array, we have defined the supertype to be
AbstractArray{T,1}. The underlying data is just a reference to the linked list Node
object. In order to conform to the AbstractArray interface, we should implement
the Base.size and Base.getindex functions. Here's what the size function looks like:

function Base.size(ar::MyArray)
    n = ar.data
    count = 0
    while next(n) !== nothing
        n = next(n)
        count += 1
    end
    return (1 + count, 1)
end

The function simply determines the length of the array by traversing the linked list using
the next function. To support indexing elements, we can define the getindex function as
follows:

function Base.getindex(ar::MyArray, idx::Int)
    n = ar.data
    for i in 1:(idx-1)
        next_node = next(n)
        next_node === nothing && throw(BoundsError(n.data, idx))
        n = next_node
    end
    return value(n)
end

That is all we need to do for the wrapper. Let's give it a spin now:

Now that we have an indexable array on top of the linked list, we can pass it to any library
that expects arrays as input.



Traditional Object-Oriented Patterns Chapter 11

[ 440 ]

In the situation where mutation is required for the array, we can just
implement the Base.setindex! function as well. Alternatively, we can
physically convert the linked list into an array. An array has the
performance characteristic of fast indexing at O(1), while being relatively
slow for inserts.

Using an adapter allows us to make components talk to each other more easily. Next, we
will discuss the composite pattern.

The composite pattern
The composite pattern is used to model objects that can be grouped together and yet be
treated the same as individual objects. This is not an uncommon case—for example, in a 
drawing application, we might be able to draw different kinds of shapes, such as circles,
rectangles, and triangles. Every shape has a position and size so we can determine where
they are located on screen as well as how large they are. When we group several shapes
together, we can still determine the position and size of the large, grouped object.
Additionally, resize, rotate, and other transformation functions can be applied to individual
shape objects as well as grouped objects.

A similar situation happens with portfolio management. I have a retirement investment
account that is composed of multiple mutual funds. Each mutual fund may either invest in
stocks, bonds, or both. Then, some funds may also invest in other mutual funds. From an
accounting perspective, we can always determine the market value of a stock, a bond, a
fund of stocks, a fund of bonds, and a fund of funds. In Julia, we can tackle this problem by
just implementing a market_value function for different types of instruments, whether it
is a stock, a bond, or a fund. Let's take a look at some code now.

Let's say we have the following type defined for stock/bond holdings:

struct Holding
    symbol::String
    qty::Int
    price::Float64
end

The Holding type contains a trading symbol, quantity, and current price. We can define a
portfolio as follows:

struct Portfolio
    symbol::String
    name::String
    stocks::Vector{Holding}



Traditional Object-Oriented Patterns Chapter 11

[ 441 ]

    subportfolios::Vector{Portfolio}
end

A portfolio is identified by a symbol, a name, an array of holdings, and an array of
subportfolios. For testing, we can create a sample portfolio:

function sample_portfolio()
    large_cap = Portfolio("TOMKA", "Large Cap Portfolio", [
        Holding("AAPL", 100, 275.15),
        Holding("IBM", 200, 134.21),
        Holding("GOOG", 300, 1348.83)])

    small_cap = Portfolio("TOMKB", "Small Cap Portfolio", [
        Holding("ATO", 100, 107.05),
        Holding("BURL", 200, 225.09),
        Holding("ZBRA", 300, 257.80)])
    p1 = Portfolio("TOMKF", "Fund of Funds Sleeve", [large_cap, small_cap])
    p2 = Portfolio("TOMKG", "Special Fund Sleeve", [Holding("C", 200,
76.39)])
    return Portfolio("TOMZ", "Master Fund", [p1, p2])
end

The structure is visualized more clearly from an indented output:

As we want to support the ability to calculate the market value at any level, we just need to
define the market_value function for each type. The simplest one is for holdings:

market_value(s::Holding) = s.qty * s.price



Traditional Object-Oriented Patterns Chapter 11

[ 442 ]

The market value is nothing but quantity multiplied by price. The calculation of market
value for a portfolio is just a little more involved:

market_value(p::Portfolio) =
    mapreduce(market_value, +, p.stocks, init = 0.0) +
    mapreduce(market_value, +, p.subportfolios, init = 0.0)

Here, we use the mapreduce function to calculate the market values of individual stocks
(or subportfolios) and sum them up. As a portfolio may include multiple holdings and
multiple subportfolios, we need to perform the calculation for both and add them
together. As each subportfolio is also a portfolio object, this code naturally recurses
deeper into sub-subportfolios, and so forth.

There is nothing fancy about composites. Because Julia supports generic functions, we can
just provide an implementation for individual objects as well as grouped objects.

We will discuss the flyweight pattern next.

The flyweight pattern
The flyweight pattern is used to handle a large number of fine-grained objects efficiently by
sharing memory for similar/same objects. 

A good example of this involves handling strings. In the field of data science, we frequently
need to read and analyze a large amount of data that is represented in a tabular format. In
many cases, certain columns may contain a large number of strings that are just repeated
values. For example, a population survey might have a column stating gender, and so it
will contain either Male or Female.

Unlike some other programming languages, strings are not interned in Julia. This means
that 10 copies of the word Male are going to be stored repeatedly, occupying 10 times the
memory space that is used by a single string of Male. We can see this effect easily from the
REPL, as follows:



Traditional Object-Oriented Patterns Chapter 11

[ 443 ]

So, storing 100,000 copies of a Male string occupies roughly 800 KB of memory. That is
quite a waste of memory. A common way to solve this problem is to maintain a pooled
array. Rather than storing 100,000 strings, we can just encode the data and store 100,000
bytes instead so that 0x01 corresponds to male and 0x00 corresponds to female. We can
reduce the memory footprint eightfold by using s as follows:

You may wonder why there are 40 extra bytes being reported. Those 40 bytes are actually
used by the array container. Now, given that the gender column is binary in this case, we
can actually squeeze it further by storing bits instead of bytes, as follows:

Again, we reduce the memory usage approximately eightfold (by going from 1 byte to 1
bit) by using BitArray to store the gender values. This is an aggressive optimization of
memory usage. But we still need to store the Male and Female strings somewhere, right?
This is an easy task because we know they can be tracked in any data structure, such as a
dictionary:

To summarize, we are now capable of storing 100,000 gender values in 12,568 + 370 = 12,938
bytes of memory. Compared to the original dumb way of storing strings directly, we have
saved more than 98% of memory consumption! How did we achieve such a huge saving?
Because all records share the same two strings. The only data that we have to maintain is an
array of references to those strings.



Traditional Object-Oriented Patterns Chapter 11

[ 444 ]

So, that is the concept of the flyweight pattern. The same trick is used over and over again
in many places. For example, the CSV.jl package uses a package called
CategoricalArrays, which provides essentially the same kind of memory optimization.

Next, we will go over the last few traditional patterns—bridge, decorator, and facade.

Bridge, decorator, and facade patterns
Let me explain how the bridge, decorator, and facade patterns work. At this point, we will
not provide any more code samples for these patterns, only because they are relatively easy
to implement, as you are already equipped with many ideas from prior design pattern
sections. Perhaps not too surprisingly, the same tricks that you have learned so
far—delegation, singleton type, multiple dispatch, first-class functions, abstract types, and
interfaces—are the same ones that you can use to tackle any type of problem.

The bridge pattern is used to decouple an abstraction from its implementation so that it can
evolve independently. In Julia, we can build a hierarchy of abstract types for which
implementers can develop software that conforms to those interfaces.

Julia's numeric types are good examples of how such a system can be designed. There are
many abstract types available, such as Integer, AbstractFloat, and Real. Then, there
are concrete implementations, such as Int and Float64, provided by the Base package.
The abstraction is designed in such a way that people can provide an alternative
implementation of numbers. For example, the SaferInteger packages provide a safer
implementation for integers that avoids numerical overflow.

The decorator pattern is also simple to implement. It can be used to enhance an existing
object with new functionalities, hence the term decorator. Suppose that we have bought a
third-party library, but we are not totally satisfied with the functionalities. Using the
decorator pattern, we can add value by wrapping the existing library with new functions.

This can be done naturally using the Delegation pattern. By wrapping an existing type with
a new type, we can reuse existing functionalities by delegating to the underlying object.
Then, we can add new functions to the new type to gain new capabilities. We see this
pattern used over and over again.

The facade pattern is used to encapsulate complex subsystems and provide a simplified
interface for clients. How do we do that in Julia? By now, we should have seen this pattern
over and over again; all we need to do is create a new type and provide a simple API that
operates on the new type. We can use the Delegation pattern to forward requests to other
enclosed types.



Traditional Object-Oriented Patterns Chapter 11

[ 445 ]

We have now looked at all traditional object-oriented patterns. You might have noticed that
many of the use cases can be solved with the standard Julia features and patterns described
in this book. This is not a coincidence—it is just that easy to deal with complex problems in
Julia.

Summary
In this chapter, we have gone over the traditional object-oriented design patterns
extensively. We started with the humble belief that the same patterns in object-oriented
programming often need to be applied in Julia programming.

We started reviewing creational design patterns, which include the factory method, abstract
factory, singleton, builder, and prototype patterns. These patterns involve various
techniques for creating objects. When it comes to Julia, we can mostly solve these problems
using abstract types, interfaces, and multiple dispatch.

We also spent a considerable amount of effort looking at behavioral design patterns. These
patterns are made to handle collaboration and communication between components in an
application. We looked at 11 patterns: chain of responsibility, mediator, memento, observer,
state, strategy, template method, command, interpreter, iterator, and visitor. These patterns
can be implemented in Julia using traits, interfaces, multiple dispatch, and first-class
functions.

Finally, we reviewed several structural design patterns. These patterns are used to
construct bigger components by reusing existing ones. This includes the adapter,
composite, flyweight, bridge, decorator, and facade patterns. In Julia, they can be handled
with abstract types, interfaces, and the delegation design pattern.

I hope you are convinced that building software does not need to be difficult. Just because
OOP made us believe that we need all of this complexity to design software, it does not
mean that we have to do the same in Julia. The solutions to the problems that are presented
in this chapter mostly require the basic software design skills and patterns that you found
in this book.

In the next chapter, we will get into a more advanced topic regarding data types and
dispatch. Get ready to rock!



Traditional Object-Oriented Patterns Chapter 11

[ 446 ]

Questions
What technique can we use to implement the abstract factory pattern?1.
How do we prevent a singleton from being initialized multiple times in a2.
multithreaded application?
What Julia feature is essential to implementing the observer pattern?3.
How can we customize an operation using the template method pattern?4.
How do we make an adapter to implement a target interface?5.
What is the benefit of the flyweight pattern and what strategy can we use to6.
achieve it?
What Julia feature can we use to implement the strategy pattern?7.



4
Section 4: Advanced Topics

The aim of this section is to provide you with a more in-depth analysis of the Julia
language. Understanding such advanced concepts will help you come up with better
designs.

This section contains the following chapter:

Chapter 12, Inheritance and Variance



12
Inheritance and Variance

If we had to choose the most important thing to learn in Julia, or in any programming
language, then it has to be the concept of the data type. Abstract types and concrete types
work together, providing the programmer with a powerful tool to model solutions to solve
real-world problems. Multiple dispatch rely on well-defined data types to invoke the right
functions. Parametric types are used so that we can reuse the basic structure of an object
with a specific physical representation of the underlying data. As you can see, having a
well-thought-out design for data types is of the utmost importance in software engineering
practice.

In Chapter 2, Modules, Packages, and Data Type Concepts, we learned about the basics of
abstract and concrete types and how to build a type hierarchy based upon an inheritance
relationship between the types. In Chapter 3, Designing Functions and Interfaces, and
Chapter 5, Reusability Patterns, we also touched on the subject of parametric types and
parametric methods. In order to utilize these concepts and language features effectively, we
need a good understanding of how subtyping works. It may sound similar to inheritance,
but it is fundamentally different.

In this chapter, we will go deeper and explore the meaning of subtyping and related topics,
which includes the following topics:

Implementation inheritance and behavior subtyping
Covariance, contravariance, and invariance
Parametric methods and diagonal rule

By the end of this chapter, you will have a good understanding of subtyping in Julia. You
will be more equipped to design your own data type hierarchy and utilize multiple
dispatch more effectively.



Inheritance and Variance Chapter 12

[ 449 ]

Technical requirements
The sample source code is located at https:/ /github. com/ PacktPublishing/ Hands- on-
Design-Patterns- and- Best- Practices- with- Julia/ tree/ master/ Chapter12.

The code is tested in a Julia 1.3.0 environment.

Implementing inheritance and behavior
subtyping
When we learned about inheritance, we realized that abstract types can be used to describe
real-world concepts. We can say quite confidently that we already know how to classify
concepts with parent–child relationships. With this knowledge, we can build a type
hierarchy around those concepts. For example, the personal asset type hierarchy from
Chapter 2, Modules, Packages, and Data Type Concepts, looks like the following:

All data types shown in the preceding diagram are abstract types. Going from the bottom
up, we know that both House and Apartment are subtypes of Property, and we know that
both Property and Investment are a subtype of Asset. These are all reasonable
interpretations based on how we speak about these concepts in our daily life.

https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-on-Design-Patterns-and-Best-Practices-with-Julia/tree/master/Chapter12


Inheritance and Variance Chapter 12

[ 450 ]

We also talked about concrete types that are the physical realization of abstract concepts.
For this same example, we ended up having Stock as a subtype of Equity and Bond as a
subtype of FixedIncome. As you may recall, the Stock type can be defined as follows:

struct Stock <: Equity
    symbol::String
    name::String
end

Back then, we did not emphasize the fact that we cannot declare any field inside abstract
types, which is something that is given in some object-oriented programming (OOP)
languages, such as Java. If you come from an OOP background, then you may mistakenly
feel that this is a huge constraint in Julia's inheritance system. Why is Julia designed the
way it is? In this section, we will try to analyze inheritance in greater depth and answer this
very question.

There are two important concepts related to inheritance that are very similar, but
fundamentally different—implementation inheritance and behavior subtyping. We will
discuss both in the next few sections. Let's start with implementation inheritance.

Understanding implementation inheritance
Implementation inheritance allows a subclass to inherit both fields and methods from its
superclass. As Julia does not support implementation inheritance, we will switch language
for a moment and present the following example in Java. Here is a class that provides a
container for holding any number of objects:

import java.util.ArrayList;

public class Bag
{
    ArrayList<Object> items = new ArrayList<Object>();

    public void add(final Object object) {
        this.items.add(object);
    }

    public void addMany(final Object[] objects) {
        for (Object obj : objects) {
            this.add(obj);
        }
    }
}



Inheritance and Variance Chapter 12

[ 451 ]

The Bag class basically maintains a list of objects in the items field and provides two
convenient functions, add and addMany, for adding a single object or an array of objects to
the bag. 

To demonstrate code reuse, we can develop a new CountingBag class that inherits from
Bag and provides additional functionality for keep tracking of how many items are stored
in the bag:

public class CountingBag extends Bag
{
    int count = 0;

    public void add(Object object) {
        super.add(object);
        this.count += 1;
    }

    public int size() {
        return count;
    }
}

In this CountingBag class, we have a new field called count to keep track of the bag size.
Whenever a new item is added to the bag, the count variable is incremented. The size
function is used to report the size of the bag. So what is the situation with CountingBag?
Let's quickly summarize:

The count field is available as defined here.
The items field is available as inherited from Bag.
The add method overrides the parent's implementation, but it also reuses the
parent's method via super.add.
The addMany method is available as inherited from Bag.
The size method is available as defined here.

As both fields and methods are inherited, this is called implementation inheritance. The
effect is almost the same as if the code from the superclass was copied into the subclass.

Next, let's talk about behavior subtyping.



Inheritance and Variance Chapter 12

[ 452 ]

Understanding behavior subtyping
Behavior subtyping is sometimes called interface inheritance. In order to avoid confusion
with the overloaded word inheritance, we will avoid using the term interface inheritance
here. Behavior subtyping says that a subtype only inherits behaviors from the supertype. 

As we switch the language back to Julia, we will refer to types rather than
classes.

Julia supports behavior subtyping. Every data type inherits functions that are defined for
its supertype. Let's try a quick and fun exercise in the Julia REPL:

Here, an abstract type, Vehicle, is defined with a subtype of Car. We have also defined a
move function for Vehicle. When we pass a Car object to the move function, it still works
properly because Car is a subtype of Vehicle. This is consistent with the Liskov
substitution principle, which says that a program accepting type T can also accept any
subtype of T and continue to work properly without any unintended outcome.

Now, the inheritance of a method can travel quite far over multiple levels. Let's create
another level of abstraction:



Inheritance and Variance Chapter 12

[ 453 ]

We just defined a new FlyingVehicle abstract type and a Helicopter struct. The move
function is available for a helicopter as inherited from Vehicle, and the liftoff function
is also available, as inherited from FlyingVehicle. 

Additional methods can be defined for more specific types, and the most specific one
would be chosen for dispatch. Doing this essentially has the same effect as method
overrides in implementation inheritance. Here's an example:

So far, we have defined two liftoff methods—one accepting FlyingVehicle and
another for Helicopter. When a Helicopter object is passed to the function, it is
dispatched to the one defined for Helicopter, because it is the most specific method that
works with helicopters.

The relationship can be summarized in the following diagram:

According to behavior subtyping, a car should behave like a vehicle, a flying vehicle should
behave like a vehicle, and a helicopter should behave like a flying vehicle and also like a
vehicle. Behavior subtyping allows us to reuse the behavior already defined for a
supertype.



Inheritance and Variance Chapter 12

[ 454 ]

In Java, behavior subtyping can be achieved using interfaces.

Now that we know about implementation inheritance and behavior subtyping, we can
revisit our earlier question: why does Julia not support implementation inheritance? What
are the reasons for not following other mainstream OOP languages? In order to understand
this, we can review some of the well-known issues with implementation inheritance. Let's
start with the square-rectangle problem.

The square-rectangle problem
Julia does not support implementation inheritance. Let's list the reasons:

All concrete types are final, so there is no way to create new subtypes from
another concrete type. Therefore, it is not possible to inherit object fields from
anywhere.
You cannot declare any field in an abstract type because otherwise, it would be
concrete rather than abstract.

The core developers of the Julia programming language made a very early design decision
to avoid implementation inheritance for a number of reasons. One of them is the so-called
square-rectangle problem, also sometimes called the circle-ellipse problem.

The square-rectangle problem presents a clear challenge for implementation inheritance. As
we know by common sense, every square is a rectangle with an additional constraint that
the length of both sides is equal. In order to model these concepts in a class-based, object-
oriented language, we may attempt to create a Rectangle class and a Square subclass:



Inheritance and Variance Chapter 12

[ 455 ]

Very quickly, we realize that we have already gotten ourselves into trouble. If a Square has
to inherit all fields from its parent class, then it would have inherited both width and
height. But we really want to have a single field called length instead.

The exact same issue is sometimes presented as the circle–ellipse problem.
In that case, a circle is an ellipse, but there is only one radius rather than
major and minor axis lengths.

How do we solve this kind of problem? Well, one way is to ignore the issue and create a
Square subclass without any field defined. Then, when a Square is instantiated with a
particular length, both width and height fields are populated with the same value. Is that
good enough? The answer is no. Given that Square also inherits the methods
of Rectangle, we probably need to provide override methods for the mutating methods,
such as setWidth and setHeight, so that we can keep both fields with the same value. In
the end, we have a solution that seems to work functionally but is terrible in performance
and memory usage.

But how did we get into trouble in the first place? To analyze this further, we should realize
that a square, while it can be classified as a rectangle, is a more restrictive version of a
rectangle in nature. This is already starting to sound unintuitive—typically, when we create
subclasses, we extend the parent class and add more fields and functionalities. When do we
want to remove fields or functionality in subclasses? It already seems to
be logically backward. Maybe we should make Rectangle a subclass of Square? That
does not sound very logical either.

We end up with a conundrum. On one hand, we would like to model real-world concepts
properly in code. On the other hand, the code does not really fit without causing
maintenance or performance issues. By now, we cannot help but ask ourselves whether we
really want to write code to work around problems with implementation inheritance. We
don't.

Perhaps you are not yet 100% convinced that implementation inheritance is more evil than
good. Let's look at another problem.

The fragile base class problem
Another problem with implementation inheritance is that changes to the base class (parent
class) can possibly break functionalities of its subclasses. From the earlier Java example, we
have a CountingBag class that extends from the Bag class. Let's look at the complete source
code, including the main function:



Inheritance and Variance Chapter 12

[ 456 ]

The program simply creates a CountingBag object. Then it adds apple using the add
method and adds banana and orange using the addMany method. Finally, it prints out the
items in the bag and the size of the bag. The output is shown in the following code:

Everything looks fine at the moment. But let's say that the original author of Bag realizes
that the addMany method can be improved by directly adding objects into the items array
list:



Inheritance and Variance Chapter 12

[ 457 ]

Unfortunately, this seemingly safe change in the parent class ends up in a disaster for
CountingBag:

What happened? When CountingBag was designed, it was assumed that the add method
would always be called when new items are added to the bag. When the addMany method
stops calling the add method, the assumption no longer applies.

Whose fault is this? Of course, the designer of the Bag class cannot foresee who will inherit
the class. The change in the addMany method did not violate any contract; the same
functionality is provided, only with a different implementation under the hood. The
designer of the CountingBag class thought it was wise to tag along and leverage the fact
that addMany was already calling the add method, and so only the add method needed to
be overridden to make counting work.

This poses a second issue with implementation inheritance. The subclass developer has too
much knowledge about the implementation of the parent class. The ability to override the
parent class's add method has also violated the principle of encapsulation.

How does OOP solve this problem? In Java, there are multiple facilities to prevent the
problem presented in the preceding example:

A method can be annotated with the final keyword to prevent the subclass
from overriding the method.
A field can be annotated with the private keyword to prevent the subclass from
accessing the field.

The trouble is that the developer must anticipate how classes are going to be inherited in the
future. Methods must be carefully examined to determine whether it is safe to allow
subclasses to access or override. Likewise for fields. As you can see, the problem is called
the fragile base class problem for a good reason.

I hope we have shown you that implementation inheritance does more harm than good. For
reference, in the GoF design patterns book, it was also suggested that composition is
preferred over inheritance. Julia took a more radical approach by just disallowing
implementation inheritance altogether.

Next, we will go a little further and look at a specific kind of behavior subtyping called
duck typing.



Inheritance and Variance Chapter 12

[ 458 ]

Revisiting duck typing
There are two ways to implement behavior subtyping: nominal subtyping and structural
subtyping:

With nominal subtyping, you must explicitly define the relationship between a
type and its supertype. Julia uses nominal subtyping, where types are explicitly
annotated in function arguments. That is why a type hierarchy needs to be built
to express type relationships. 
With structural subtyping, the relationship is implicitly derived as long as the
subtype implements the required functions from the supertype. Julia supports
structural subtyping when functions are defined with arguments and not
annotated with any type.

Julia supports structural subtyping via duck typing. We first mentioned duck typing in
Chapter 3, Designing Functions and Interfaces. The saying is as follows:

"If it walks like a duck and quacks like a duck, then it is a duck."

In a dynamic type language, we sometimes care less about the exact type as long as we get
the behavior we want. If we just want to hear a quack sound, who cares if we get a frog? As
long as it makes that quack sound, we will be happy.

Sometimes, we want duck typing for good reasons. For example, we do not normally
consider horses as vehicles; however, think about the old days when horses were used for
transport. In our definition, anything that implements the move function can be considered
a vehicle. So, if we have any algorithm that needs something that moves, then there is no
reason why we cannot pass a horse object to the algorithm:

For some people, duck typing is a little loose because you cannot easily figure out whether
a type supports an interface (such as move). The general remedy is to use the Holy Trait
pattern as described in Chapter 5, Reusability Patterns.

Next, we will look at an important concept called variance.



Inheritance and Variance Chapter 12

[ 459 ]

Covariance, invariance, and contravariance
As it turns out, the rules for subtyping are not very straightforward. When you look at a
simple type hierarchy, you can immediately tell whether one type is a subtype of another
by tracing the relationships of the data types in the hierarchy. The situation becomes more
complex when parametric types are involved. In this section, we will take a look at how
Julia is designed with respect to variance, a concept that explains subtyping relationships
for parametric types.

Let's first review the different kinds of variance.

Understanding different kinds of variance
There are four different kinds of variance as described in computer science literature. We
will first describe them in a formal manner first and then come back to do more hands-on
exercises to reinforce our understanding. 

Given that S is a subtype of T, there are four different ways to reason about the relationship
between parametric types P{S} and P{T}:

Covariant: P{S} is a subtype of P{T} (co here means the same direction)
Contravariant: P{T} is a subtype of P{S} (contra here means the opposite
direction)
Invariant: neither covariant nor contravariant
Bivariant: both covariant and contravariant

When do we find variance useful? Perhaps not too surprisingly, variance is a key
ingredient whenever multiple dispatch come into action. Based on the Liskov substitution
principle, the language runtime must figure out whether the object being passed is a
subtype of the method argument before dispatching to the method.

Interestingly, variance is one thing that often diverges between different programming
languages. Sometimes, there are historical reasons for this, and sometimes it depends on
the target use cases for the language. In the next few sections, we will explore the topic
from several angles. We will start with parametric types.



Inheritance and Variance Chapter 12

[ 460 ]

Parametric types are invariant
For the purposes of illustration, we will consider a popular type hierarchy that is used by
some of the OOP literature— the animal kingdom! Everyone loves cats and dogs. I have
also included crocodiles here to explain related concepts:

The corresponding code to build such a hierarchy is as follows:

abstract type Vertebrate end
abstract type Mammal <: Vertebrate end
abstract type Reptile <: Vertebrate end

struct Cat <: Mammal
    name
end

struct Dog <: Mammal
    name
end

struct Crocodile <: Reptile
    name
end

For convenience, we can also define the show function for these new types:

Base.show(io::IO, cat::Cat) = print(io, "Cat ", cat.name)
Base.show(io::IO, dog::Dog) = print(io, "Dog ", dog.name)
Base.show(io::IO, croc::Crocodile) = print(io, "Crocodile ", croc.name)



Inheritance and Variance Chapter 12

[ 461 ]

Given such a type hierarchy, we can verify how subtypes are handled with the following
adopt function. As nobody wants to adopt crocodiles (well, not me at least), we are
restricting the function argument to subtypes of Mammal only:

function adopt(m::Mammal)
    println(m, " is now adopted.")
    return m
end

As expected, we can adopt only cats and dogs, but not crocodiles:

What if we want to adopt many pets at the same time? Intuitively, we can just define a new
function that takes an array of mammals, as follows:

adopt(ms::Array{Mammal,1}) = "adopted " * string(ms)

Unfortunately, it already failed our very first test for adopting Felix and Garfield:

What is going on? We know cats are mammals, so why would an array of cats not be
passed to the method that takes an array of mammals? The answer is simple—parametric
types are invariant. Here comes the very first surprise for people coming from an OOP
background, for which parametric types are often covariant.

By invariance, even though Cat is a subtype of Mammal, we cannot say that Array{Cat,1}
is a subtype of Array{Mammal,1}. In addition, an Array{Mammal,1} actually represents a
one-dimensional array of Mammal objects, for which each object can be any subtype of
Mammal. As each concrete type may have different memory layout requirements, this array
must store pointers rather than actual values. Another way to say this is that the objects are
boxed.



Inheritance and Variance Chapter 12

[ 462 ]

In order to dispatch to this method, we must create an Array{Mammal,1}. This can be
achieved by prefixing the array constructor with Mammal, as follows:

adopt(Mammal[Cat("Felix"), Cat("Garfield")])

In practice, this happens a lot more often when we have to handle an array of objects of the
same type. In Julia, we can express such a homogeneous array using the type expression
Array{T,1} where T. This means that we can define a new adopt method that can
accept multiple mammals as long as they are the same kind:

function adopt(ms::Array{T,1}) where {T <: Mammal}
    return "accepted same kind:" * string(ms)
end

Let's test the new adopt method now. The results are shown in the following code:

As expected, the new adopt method was dispatched accordingly, depending on whether
the array contains Mammal pointers or physical values of cats or dogs. 

In Julia, the choice of making parametric types invariant is a conscious design decision for
practical reasons. When an array contains concrete type objects, the memory can be
allocated to store these objects in a very compact manner. On the other hand, when an array
contains boxed objects, every reference to an element would involve dereferencing a
pointer to find the object, and performance would suffer as a result.

There is indeed one place where Julia uses covariance, that is, method arguments. We will
discuss these next.

Method arguments are covariant
It should be quite intuitive that method arguments are covariant because that is how
multiple dispatch work today. Consider the following function:

friend(m::Mammal, f::Mammal) = "$m and $f become friends."



Inheritance and Variance Chapter 12

[ 463 ]

In Julia, method arguments are formally represented as a tuple. In the preceding example,
the method argument is just Tuple{Mammal,Mammal}.

When we call this function with two arguments that have type S and T respectively, then it
will only be dispatched if S <: Mammal and T <: Mammal. In this case, we should be able
to pass any combination of mammals—dog/dog, dog/cat, cat/dog, and cat/cat. The
following screenshot proves this:

Let's also check whether a crocodile can join the party:

As expected, Tuple{Cat,Crocodile} is not a subtype of Tuple{Mammal,Mammal} since
Crocodile is not a Mammal. 

Next, let's move on to a more complex scenario. As we know, functions are first-class
citizens in Julia. How do we determine whether a function is a subtype of another function
during dispatch?

Dissecting function types 
In Julia, functions are first class. This means that functions can be passed around as
variables and can appear in method arguments. Since we have learned about the covariance
property of method arguments, how do we handle the situation where functions are passed
as arguments?

The best way to understand this is to see how functions are typically passed. Let's pick a
simple example from Base:



Inheritance and Variance Chapter 12

[ 464 ]

The all function can be used to check whether a certain condition is evaluated as true for
all elements in an array. To make it more flexible, it can accept a custom predicate function.
For example, we can check whether all numbers are odd in an array as follows:

Although we know it was dispatched correctly, we can also confirm that the type of isodd
is a subtype of Function as follows:

It turns out that all Julia functions have their own unique type, displayed as
typeof(isodd) in the following code, and they all have a supertype of Function:

Because the all method was defined to accept any Function objects, we can actually pass
any function and Julia will gladly dispatch to the method. Unfortunately, this can
potentially lead to undesirable results, as shown in the following screenshot:



Inheritance and Variance Chapter 12

[ 465 ]

We are getting an error here because the function being passed to all is supposed to take
an element and return a Boolean value. Since println always returns nothing, the all
function just raised an exception.

In the case that a stronger type is demanded, the specific function type can be enforced as
such. Here is how we can create a safer all function:

const SignFunctions = Union{typeof(isodd),typeof(iseven)};
myall(f::SignFunctions, a::AbstractArray) = all(f, a);

The SignFunctions constant is a union type that consists of only the types for the isodd
and iseven functions. As such, the myall method will only be dispatched when the first
argument is isodd or iseven; otherwise, a method error will be raised, as shown in the
following screenshot:

Of course, doing this severely limits the usefulness of the function. We must also enumerate
all possible functions that may be passed, and that is not always feasible. So it seems that
the means to handle function arguments is somewhat limited. 

Coming back to the topic of variance, there is really nothing to talk about when all
functions are final and there is only one supertype for all of them.

In practice, when we design software, we do care about the types of functions. As shown in
the preceding example, the all function can only work with functions that take a single
argument and return a Boolean value. That should be the interface contract. How do we
enforce that contract, though? At the end of the day, we need to have a better
understanding of functions and the contractual agreement between the caller and callee.
The contract can be seen as a combination of method arguments and return types. Let's
figure out whether there is a better way to handle this issue in the next section.



Inheritance and Variance Chapter 12

[ 466 ]

Determining the variance of the function type 
In this section, we will attempt to understand how to reason about function types. While
Julia does not provide too much help in formalizing function types, it does not stop us from
doing the analysis ourselves. In some strongly typed, static OOP languages, function types
are more formally defined as the combination of method arguments and return type.

Suppose that a function takes three arguments and returns a single value. Then we can
describe the function with the following notation:

Let's continue the animal kingdom example and define some new variables and functions,
as follows:

female_dogs = [Dog("Pinky"), Dog("Pinny"), Dog("Moonie")]
female_cats = [Cat("Minnie"), Cat("Queenie"), Cat("Kittie")]

select(::Type{Dog}) = rand(female_dogs)
select(::Type{Cat}) = rand(female_cats)

Here, we have defined two arrays—one for female dogs and another for female cats. The
select function can be used to randomly select a dog or cat. Next, let's consider the
following function:

match(m::Mammal) = select(typeof(m))

The match function takes a Mammal and returns an object of the same type. Here's how it
works:

Given that the match function can only return Dog or Cat, we can reason the function type
as follows:



Inheritance and Variance Chapter 12

[ 467 ]

Suppose that we define two more functions, as follows:

# It's ok to kiss mammals :-)
kiss(m::Mammal) = "$m kissed!"

# Meet a partner
function meet_partner(finder::Function, self::Mammal)
    partner = finder(self)
    kiss(partner)
end

The meet_partner function takes a finder function as the first argument. Then, it calls
the finder function to find a partner and finally kiss the partner. By design, we are going
to pass the match function that we defined in the preceding code. Let's see how it works:

So far, so good. From the perspective of the meet_partner function, it expects the finder
function to accept a Mammal argument and returns a Mammal object. That is exactly how the
match function was designed. Now, let's see if we can mess it up by defining a function
that does not return a mammal:

neighbor(m::Mammal) = Crocodile("Solomon")

Although the neighbor function can take a mammal as an argument, it returns a crocodile,
which is a reptile rather than a mammal. If we try to pass it to the meet_partner function,
we are met with disaster:

What we have just proven is quite intuitive. As the return type of the finder function is
expected to be a Mammal, any other finder function that returns any subtype of Mammal
would also work. So the return type of function types is covariant. 

Now, what about the arguments of function types? Again, the meet_partner function is
expected to pass any mammal to the finder function. The finder function must be able to
accept either a dog or cat object. It would not work if the finder function only takes a cat
or dog. Let's see what happens if we have a more restrictive finder function:

buddy(cat::Cat) = rand([Dog("Astro"), Dog("Goofy"), Cat("Lucifer")])



Inheritance and Variance Chapter 12

[ 468 ]

Here, the buddy function takes a cat and returns a mammal. If we passed it to
the meet_partner function, then it would not work when we want to find a partner for
our dog Chef:

So the arguments of function types are not covariant. Could it be contravariant? Well, to be
contravariant, the finder function must accept a supertype of Mammal. In our animal
kingdom, the only supertype is Vertebrate; however, Vertebrate is an abstract type and
it cannot be constructed. If we instantiate any other concrete type that is a subtype of
Vertebrate, it would not be a mammal (otherwise, it would be considered a mammal
already). Therefore, function arguments are invariant.

Stated more formally, this looks as follows:

Function g is a subtype of function f, as long as T is Mammal and S is a subtype of Mammal.
There is a saying about this: "Be liberal in what you accept and conservative in what you
produce."

While it is fun doing this kind of analysis, do we gain anything, given that the Julia runtime
does not support function types as granular as those we have seen? It seems to be possible
to simulate a type-checking effect on our own, which is the topic of the next section.

Implementing our own function type dispatch
As we have seen earlier in this section, Julia creates a unique function type for every
function, and they are all subtypes of the Function abstract type. We seem to be missing
an opportunity for multiple dispatch. Taking the all function from Base as an example, it
would be very nice if we could design a type that represents predicate functions rather than
letting all fail miserably when an incompatible function is passed.



Inheritance and Variance Chapter 12

[ 469 ]

In order to work around this limitation, let's define a parametric type called
PredicateFunction as follows:

struct PredicateFunction{T,S}
    f::Function
end

The PredicateFunction parametric type just wraps a function f. The type parameters T
and S are used to represent the types of function arguments and return a type of f
respectively. As an example, the iseven function can be wrapped as follows, because we
know the function can take a number and return a Boolean value:

PredicateFunction{Number,Bool}(iseven)

Conveniently, since Julia supports callable structs, we can make it so that
the PredicateFunction struct can be invoked as if it was a function itself. To enable this,
we can define the following function:

(pred::PredicateFunction{T,S})(x::T; kwargs...) where {T,S} =
    pred.f(x; kwargs...)

As you can see, this function merely forwards the call to the pred.f wrapped function.
Once it is defined, we can do some small experiments to see how it works:

That looks pretty good. Let's define our own safe version of the all function as follows:

function safe_all(pred::PredicateFunction{T,S}, a::AbstractArray) where
        {T <: Any, S <: Bool}
    all(pred, a)
end

The safe_all function takes a PredicteFunction{T,S} as the first argument, with the
constraint that T is a subtype of Any and S is a subtype of Bool. It's exactly the function
type signature we want for predicate functions. Knowing that Number <: Any and Bool
<: Bool, we can definitely pass the iseven function to safe_all. Let's test it now:



Inheritance and Variance Chapter 12

[ 470 ]

Bravo! We have created a safe version of the all function. The first argument must be a
predicate function that takes anything and returns a Boolean value. Rather than taking a
generic Function argument, we can now enforce strict type matching and participate in
multiple dispatch.

That is enough about variance. Next, we will move on and revisit the rules for the
parametric method dispatch.

Parametric methods revisited
The ability to dispatch to various methods based upon subtyping relationships is a key
feature of the Julia language. We initially introduced the concept of parametric methods in
Chapter 3, Designing Functions and Interfaces. In this section, we will go a little deeper and
examine some subtle situations about how methods are selected for dispatch.

Let's start with the basics: how do we specify type variables for parametric methods?

Specifying type variables
When we define a parametric method, we use the where clause to introduce type variables.
Let's go over a simple example:

triple(x::Array{T,1}) where {T <: Real} = 3x

The triple function takes an Array{T}, where T is any subtype of Real. This code is very
readable, and it is the format that most Julia developers choose to specify type parameters.
So what could the value of T be? Could it be a concrete type, abstract type, or both?

To answer this question, we can test it out from the REPL:



Inheritance and Variance Chapter 12

[ 471 ]

So the method does get dispatched on both the abstract type (Real) and concrete type
(Int64). It is worth mentioning that the where clause can also be placed right next to the
method argument:

triple(x::Array{T,1} where {T <: Real}) = 3x

From a functional perspective, it is the same as before, whether the where clause is placed
inside or outside.

There are some subtle differences, however. When the where clause is placed outside, you
gain two additional benefits:

The type variable T is accessible inside the method body.
The type variable T can be used to enforce the same values if it is used for
multiple method arguments.

It turns out that the second point leads to an interesting feature in Julia's dispatch system.
We will go over this next.

Matching type variables
Whenever a type variable occurs more than once in a method signature, it is used to enforce
the same type as determined across all positions where it occurs. Consider the following
function:

add(a::Array{T,1}, x::T) where {T <: Real} = (T, a .+ x)

The add function takes an Array{T} and a value of type T. It returns a tuple of T and the
result of adding the value to the array. Intuitively, we want the type T to be consistent
across both arguments. In other words, we would want the function to be specialized in
each of the realizations of T when the function is called. Obviously, the function works
great when the type agrees:

In the first case, T is determined to be Int64, and in the second case, T is determined to be
Float64. Perhaps not too surprisingly, we may get a method error when the types do not
match:



Inheritance and Variance Chapter 12

[ 472 ]

Since we said that T could be an abstract type, could we dispatch to this method, as T could
be considered Real? The answer is no, because parametric types are invariant! An array of
Real objects is not the same as an array of Int64 values. More formally, Array{Int} is not
a subtype of Array{Real}.

It gets a little more interesting when T is an abstract type in the array. Let's try this:

Here, T is unambiguously set to Signed, and because Int8 is a subtype of Signed, the
method is dispatched properly.

Next, we will look into another unique typing feature called the diagonal rule.

Understanding the diagonal rule
As we learned earlier, it is a nice feature to be able to match type variables and keep them
consistent across method arguments. In practice, there are situations where we want to be
even more specific when determining the right type for each type variable.

Consider this function:

diagonal(x::T, y::T) where {T <: Number} = T

The diagonal function takes two arguments with the same type, where the type T must be
a subtype of Number. The type variable T is simply returned to the caller.

When T is concrete, it is easy to reason that the types are consistent. For example, we can
pass a pair of Int64 values or a pair of Float64 values to the function and expect to see
the respective concrete type returned:



Inheritance and Variance Chapter 12

[ 473 ]

Intuitively, we also expect this to fail when the types are not consistent:

While it seems to work intuitively, we could have argued that the type variable T is an
abstract type, such as Real. Since the value of 1 is Int64 and Int64 is a subtype of Real,
and the value of 2.0 is Float64 and Float64 is a subtype of Real, shouldn't the method
still get dispatched anyway? To make this point more clear, we can even annotate the
argument as such when calling the function:

It turns out that Julia is designed to give us more intuitive behavior. It is also the very
reason why the diagonal rule was introduced. The diagonal rule says that when a type
variable occurs more than once in the covariant position (that is, the method arguments),
then the type variable will be restricted to match with concrete types only. 

In this case, the type variable T is considered a diagonal variable, so T must be a concrete
type.

There is an exception to the diagonal rule, though. We will discuss this next.

An exception to the diagonal rule
The diagonal rule says that when a type variable occurs more than once in the covariant
position (that is, the method arguments), then the type variable will be restricted to match
with concrete types only; however, there is an exception to that rule—when the type
variable is unambiguously determined from an invariant position, then it is allowed to be
an abstract type rather than a concrete type.



Inheritance and Variance Chapter 12

[ 474 ]

Consider this example:

not_diagonal(A::Array{T,1}, x::T, y::T) where {T <: Number} = T

Unlike the diagonal function from the previous section, this one allows T to be abstract.
We can prove it as such:

The reason is that T appears in the first argument in a parametric type. As we know that
parametric types are invariant, we have already determined that T is Signed. Because
Int64 is a subtype of Signed, everything matched.

In the next section, we will go over the availability of type variables. 

The availability of type variables
An important feature of the parametric method is that the type variable specified in the
where clause is also accessible from the method body. Contrary to what you might think,
this is not always true. Here, we will present a case where the type variable is not available
at runtime.

Consider the following functions:

mytypes1(a::Array{T,1}, x::S) where {S <: Number, T <: S} = T
mytypes2(a::Array{T,1}, x::S) where {S <: Number, T <: S} = S

We can use the mytypes1 and mytypes2 functions to experiment with what type variables
are derived by the Julia runtime. Let's start with the happy case:



Inheritance and Variance Chapter 12

[ 475 ]

However, the picture is not always rosy. In other situations, it may not work 100% of the
time. Here's an example:

Why is S not defined here? First of all, we already know that T is Signed because the
parametric type is invariant. As part of the where clause, we also know that T is a subtype
of S. As such, S could be Integer, Real, Number, or even Any. As there are too many
possible answers, the Julia runtime decided not to assign any value to S.

The moral of the story is don't assume that a type variable is always defined and accessible
from the method, especially for a more complex situation like this. 

Summary
In this chapter, we learned about various topics related to subtyping, variance, and
dispatch. These concepts are the fundamental building blocks for creating
larger, more complex applications.

We first went over the topic of implementation inheritance and behavior subtyping and the
differences between them. We reasoned that implementation inheritance is not a great
design pattern because of various issues. We came to an understanding that Julia's type
system is designed to avoid the flaws that we have seen in other programming languages.

Then, we reviewed different kinds of variance, which are nothing but ways to explain the
subtyping relationship between parametric types. We walked through in great details how
parametric types are invariant and method arguments are covariant. We then went even
further to discuss the variance of function types and how we can build our own data type
that wraps a function for dispatch purpose.

Finally, we revisited parametric methods and looked at how type variables are specified
and matched during dispatch. We learned about the diagonal rule, which is a key design
feature in the Julia language that allows us to enforce type consistency across method
arguments in an intuitive manner.

We are now finished with the chapter and the book. Thank you for reading it!



Inheritance and Variance Chapter 12

[ 476 ]

Questions
How is implementation inheritance different from behavior subtyping?1.
What are some major issues with implementation inheritance?2.
What is duck typing?3.
What is the variance of method arguments and why?4.
Why are parametric types invariant in Julia?5.
When does the diagonal rule apply?6.



Assessments

Chapter 1 
What are the benefits of using design patterns?

Design patterns help the programmer apply already-proven approaches to common
problems. There will be less time wasted in searching for the proper solution or fixing a
design issue after a sub-optimal implementation. Anti-patterns provide additional
guidance for avoiding common design flaws.

What are some of the key design principles?

The key design principles include SOLID, DRY, KISS, POLA, YAGNI, and POLP. These
principles are widely recognized as good guidance for object-oriented programming, but
they can be applied equally well in other programming paradigms.

What problem does the open/closed principle solve?

The open/closed principle encourages the programmer to design a system that is easy to
extend without having to modify the component that is being extended. It promotes better
reusability of software components.  

Why is interface segregation important for software reusability?

Interface segregation promotes a minimalistic design for interfaces so that software
components can implement the respective interfaces more easily. A large, complex interface
is difficult to implement and it makes the component less reusable.

What are the simplest ways to develop maintainable software?

The simplest way to is to adhere to the general design principles such as KISS, DRY, POLA,
and SOLID.

What is a good practice for avoiding over-engineering and bloated software?

The best way to avoid over-engineering and bloated software is to only implement
functionalities that are absolutely necessary according to the YAGNI principle. Also, keep it
simple (KISS) and avoid duplicate code (DRY).



Assessments

[ 478 ]

How does memory usage affect system performance?

When the system allocates more memory, it also triggers the Garbage Collector (GC) more
frequently. Garbage collection is a relatively expensive operation and, hence, it can slow
down the system. Avoiding over memory allocation is usually one of the best ways to
optimize application performance.

Chapter 2
How do we create a new namespace?

A namespace is created using a module block. Typically, a module is defined as part of a
Julia package.

How do we expose the functions of a module to the outside world?

Functions and other objects defined within a module can be exposed using an export
statement.

How do we reference the proper function when the same function name is exported from
different packages?

We can just prefix the function name with the package name. As an alternative, we can use
a using statement for one package, and an import statement for the other, so that we can
use the function name directly for the first package but use the prefix syntax for the other.

When do we separate code into multiple modules?

It is time to consider separating code into modules when the code becomes too big and too
difficult to manage. We expect some refactoring to ensure the proper level of coupling
between modules.

Why is semantic versioning important in managing package dependencies?

Semantic versioning defines a clear contract about when a breaking change is introduced in
a new version. When used properly and consistently, it helps programmers to determine
whether the change is compatible with the existing software and whether additional testing
is required.

How is defining functional behavior for abstract types useful?

It is useful to define functional behavior for abstract types because the same behavior can
be applied for the respective subtypes.



Assessments

[ 479 ]

When should we make a type mutable?

It is appropriate to make a type mutable when some parts of the data type are expected to
be changed. It is also useful when memory allocation needs to be reduced for performance
reasons.

How are parametric types useful?

Parametric types allow a concrete type to be defined without hardcoding the type of its
fields, so the same type can be used to generate new variations for different purposes.

Chapter 3
How are positional arguments different from keyword arguments?

Position arguments must be passed in the same order as they are defined in the function
signature. They are typically mandatory, but can be made optional when default values are
provided. Keyword arguments can be passed in any order that they are written, and they
are optional when default value is not provided.

What is the difference between splatting and slurping?

Splatting and slurping have the same syntax but mean different things in different contexts.
Splatting refers to the automatic assignment of function arguments from a tuple or array.
Slurping refers to the process of passing multiple function arguments, which becomes a
single tuple variable accessible from the body of the function.

What is the purpose of do-syntax?

Do-syntax is a convenient way of formatting a block of code that is needed to be wrapped
as an anonymous function and passed to another function. It makes the code much more
readable.

What tool is available for detecting method ambiguities as related to multiple dispatch?

The detect_ambiguities function from the Test package can be used to detect method
ambiguities within a single module or across multiple modules.



Assessments

[ 480 ]

How do we ensure that the same concrete type is passed to a function in a parametric
method?

A convenient way to ensure that the same concrete type is passed for the arguments of a
function is to designate these arguments as a type parameter (for example, T). Note that this
works as long as the type parameter is used as a standalone type rather than part of a
parametric type, for example, AbstractVector{T}.

How are interfaces implemented without any formal language syntax?

Interfaces can be implemented according to the contract specified by the designer of the
interface even though there is no formal syntax in Julia for specifying interfaces.

How do we implement traits, and how are traits useful?

A trait can be implemented by a function that takes the specific data type(s) and returns a
flag. Normally, a trait is defined to return a Boolean value, that is, whether the trait exists or
not. However, it can also be designed to return multiple values to indicate various kinds of
trait. Traits are useful if the developer needs to programmatically figure out whether a data
type (or combination of data types) exhibits a specific behavior.

Chapter 4
What are the two ways to quote expressions so the code can be manipulated later?

One way is to enclose an expression with :( and ). Another way is to put the code
between quote and end keywords. In general, a quote block is used for multiline
expressions.

In which scope does the eval function execute the code on?

The eval function evaluates the code in the global scope. So, if it is used from a function
inside a module, then the code that is evaluated will be within the scope of the module.

How do we interpolate physical symbols into quoted expressions rather than being
misinterpreted as source code?

To interpolate symbols into quoted expressions, create a QuoteNode object and interpolate
that object normally.



Assessments

[ 481 ]

What is the naming convention for a macro where it defines non-standard string literals?

Non-standard string literals are defined as macros having names ending with _str. For
example, when an ip_str macro is defined for an IP address, it can be
written: ip"192.168.1.1".

When do we use the esc function?

The esc function is needed to ensure that the quoted expression is evaluated at the call site,
which could be in the local scope of a function.

How are generated functions different from macros?

Generated functions have access to the types of the arguments. They are functions by
definition so, unlike macros, they do not have access to the source code. Macros operate at
the syntax level and do not have any runtime information. Both generated functions and
macros are expected to return expressions.

How do we debug metaprogramming code?

Debugging macros can be challenging. It comes down to making sure that the expression
being returned is correct. We can use the @macroexpand macro (or the
corresponding macroexpand function) to verify results. Also, because a macro or generated
function is defined using regular Julia code, the same debugging technique, such
as println, can be used.

Chapter 5
How does delegation pattern work?

Delegation pattern can be implemented by wrapping a parent object in a new object. The
function for the new objects can be forwarded (or delegated) to the parent object. 

What is the purpose of traits?

The purpose of traits is to formally define the behavior of certain objects. Once a trait is
defined, we can programmatically examine whether an object exhibits the trait.

Are traits always binary?

Traits are typically binary, but there is no mandatory requirement. It would be fine as long
as the traits are mutually exclusive. Julia's Base.IteratorSize trait is a good example of
a multi-valued trait.



Assessments

[ 482 ]

Can traits be used for objects from a different type hierarchy?

Yes, traits are not restricted by how the abstract type hierarchy is defined. The same trait
can be assigned to objects coming from different type hierarchies.

What are the benefits of parametric types?

Parametric types allow us to define a template for data types. New data types can be
created programmatically by filling in parameters. The primary benefit of parametric type
is that the code becomes shorter because we do not need to spell out every possible
concrete type.

How do we store information with a parametric type?

Additional information can be stored in the type itself as a parameter. It is quite convenient
to access such data because it is first-class and is available in the function that takes
parametric type arguments.

Chapter 6
Why does the use of global variables impact performance?

Global variables are not typed. Whenever it is used, the compiler must generate code that
handles any possible data types that it may encounter. Hence, the compiler cannot generate
highly-optimized code.

What would be a good alternative to using a global variable when it cannot be replaced
by a constant?

We can define a typed global constant as a placeholder. The Ref type may also be used to
hold a single value for the variable. Because Ref contains the type of data, the compiler can
generate more optimized code.

Why does a struct of arrays perform better than an array of structs?

Modern CPUs can perform many numerical calculations in parallel. When the memory is
aligned and packed together as in an array, the hardware cache can quickly look them up.
An array of structs may have the objects scattered around in memory, which hurts
performance.



Assessments

[ 483 ]

What are the limitations of SharedArray?

SharedArray only supports bit types. If we need to process non-bits type data in parallel,
then we cannot use SharedArrays.

What is an alternative to multi-core computation instead of using parallel processes?

An alternative is to use the multithreading facility. The Julia 1.3 release implemented a
state-of-the-art multi-threading scheduler that supports multiple levels of parallelism.

What kind of care must be taken when using the memoization pattern?

Memoization trades space with time. The use of a cache demands more memory space.
Depending on the function result, it may or may not impact the memory footprint of the
application. If memory is already constrained in the system, it may not be the best option.

What is the magic behind the barrier function in improving performance?

When using the barrier function, the compiler can specialize the function based upon the
types of arguments being passed to the function. Even though the type of argument is
unstable, when a new type is encountered, a new specialized function is compiled
automatically.

Chapter 7
What are afferent and efferent couplings?

Afferent coupling represents how many external components are depending on the current
component. By contrast, efferent coupling represents how many external components the
current one depends on. These measurements are useful in determining how tightly the
current component is coupled with other ones.

Why are bi-directional dependencies bad from a maintainability perspective?

Bi-directional dependencies tend to introduce messy, spaghetti code. To comprehend a
single component, the developer must work through and understand the other
components  that it both uses and depends on.



Assessments

[ 484 ]

What is an easy way to generate code on the fly?

The @eval macro can be used to generate code. For example, it can be used inside a for
loop so that variables can be interpolated into the definition of a function. The result is that
multiple functions are defined, and they are all similar in terms of code structure and logic.

What would be an alternative to code generation?

Sometimes, code generation is not needed. Instead, the developer can choose to use a
functional programming technique, such as closure, to reuse existing logic. Code generation
may increase the program footprint and makes the program more difficult to debug. So, it
would be prudent for a developer to consider other options before plunging into code
generation technique.

When and why should we consider building a domain-specific language?

A Domain-Specific Language (DSL) is often used for writing code that is clean and easy to
understand for people in that particular domain. For example, the
DifferentialEquations package allows the developer to write code in a syntax that is
very similar to the corresponding mathematical equations. Because the syntax is user
friendly, it allows the developer to focus on mathematic modeling rather than the coding
aspect.

What are the tools available for developing a domain-specific language?

The MacroTools package provides several convenient macros that are very helpful in
writing macros and, in particular, domain-specific languages. The @capture macro allows
users to perform pattern matching and parse source code. The prewalk and postwalk
functions allow us to surgically replace expressions in an abstract syntax tree. The
combination of @capture and prewalk/postwalk makes it a very powerful tool for
developing domain-specific languages.

Chapter 8
What are the benefits of developing assessor functions?

Assessor functions are a great way to provide an official API to users of the particular
object. The underlying implementation is therefore decoupled from the interface. Should
there be any changes to the implementation, there will be zero impact on users of the object
as long as the contract of the assessor functions is unchanged.



Assessments

[ 485 ]

What would be an easy way to discourage the use of internal fields of an object?

The easiest way to discourage the use of internal fields of an object is to have a special
naming convention. A commonly used convention is to have an underscore as the prefix of
the field name. If the programmer tries to use the field, then they are reminded that the
field is supposed to be private.

Which functions may be extended as part of the property interface?

There are three functions from the Base package that can be extended to provide specific
functionalities to the dot notation for field access. The functions are getproperty,
setproperty!, and propertynames. An important point to remember is that once these
functions are defined, all direct field access has to be changed to getfield and setfield!
to avoid the recursion problem.

How can we capture the stack trace from a catch-block after an exception has been
caught?

Once an exception is caught, we can use the catch_backtrace function to capture the
stack frames right before the exception was caught. We can then pass the result to
the stacktrace function to retrieve an array of StackFrame objects.

What is the best way to avoid the performance impact of a try-catch block for a system
that requires optimal performance?

The best way to avoid the performance impact of a try-catch block is to not use it at all. We
should find other ways to handle exceptions. For example, we can check for any condition
that might cause a subsequent function to fail. In that case, we can proactively handle such
a scenario. Another option is to catch the exception outside of a loop; hence, we would
handle the exception at a higher level.

What are the benefits of using the retry function?

The retry function is a great way to automatically repeat an operation that may fail. Doing
this ensures that important tasks are guaranteed to be completed, barring other types of
unrecoverable exceptions.  

How do we hide away global variables and functions that are used internally in a
module?

We can use a let-block so that global variables are bound as part of the let-block and not
exposed to the global scope of the module. Functions that are defined inside the let-block
can be declared as global when we need to expose them to the module.



Assessments

[ 486 ]

Chapter 9
What predefined data type can be used to conveniently create new singleton types?

The built-in Val type can be used to create new singleton types easily. The Val constructor
function can accept any bits-type value and return a singleton of type Val{X}, where X is
the value being passed to the constructor function.

What are the benefits of using singleton type dispatch?

Using singleton type dispatch, we can eliminate conditional statements that depend on the
data type. It also allows us to add new functionalities by just defining new functions,
without having to modify an existing function. Because Julia does the dispatch natively,
there is no need to create any custom function just for dispatch.

Why do we want to create stubs?

Stubs are very useful indeed in automated testing. First, if a function requires connecting to
a remote web service, then it can be inconvenient or even costly to connect to the live
service all of the time. In that case, a stub can be used to replace the service. Second, a stub
can be designed to exercise all positive and negative scenarios so that desired tests can be
included in the automated testing process.

What is the difference between mocking and stubbing?

Stubbing focuses on state verification, that is, what comes out of the Function Under Test
(FUT) after the stub is used. Mocking, on the other hand, focuses on behavior verification,
that is, how the mocked function was used by the FUT. In general, mocking also includes
state verification just like stubs.  

What does composability mean?

Composability means how easy functions can be combined to create something greater.
Composable functions allow applications to be built by reusing existing code. Because
functions are first-class in Julia, they can be combined easily, as long as the functions accept
only a single argument.

What is the primary constraint for using functional pipes?

The primary constraint of functional pipes is that functions participating in the pipe can
only accept a single argument. Functions that need more than one argument can be
transformed to a curried function such that the higher-order function can participate in
the pipe.



Assessments

[ 487 ]

How are functional pipes useful?

Functional pipes can be useful for data processing pipelines, especially if the process is
linear in nature. The syntax is easy to read for some people.

Chapter 10
What are the risks and potential benefits of Type I piracy?

Type I piracy refers to a situation where a third-party function is redefined with a custom
implementation. The risk is that custom implementation may not conform to the contract as
expected by the third-party module. Coded incorrectly, the system may become unstable
and crash.

What kind of problems can arise due to Type II piracy?

Type II piracy refers to a situation where a third-party function is extended without using
your own types in the function arguments. It can be problematic because there is no
guarantee that another dependent package also implements Type II piracy, conflicting with
your pirate function. The result can be an unstable system.

How does Type III piracy cause trouble?

Type III piracy refers to a situation where a third-party function is extended with your own
types but for a different purpose. While the function is defined using a custom type in the
argument, there is no guarantee that the third-party module does not end up using your
own function due to duck typing. Hence, your pirate function leaks into the third-party
module and causes unexpected results.

What should we watch out for when specifying function arguments?

When specifying function arguments, we should avoid making the argument types too
narrow. Arguments that are too narrow limit the reusability of the function.

How is system performance affected by using abstract function arguments?

System performance is not affected when function arguments are specified with abstract
types. Julia always specifies the function depending on the type that is passed into the
function. Hence, there is no runtime overhead.



Assessments

[ 488 ]

How is system performance affected by using abstract field types for composite types?

System performance is affected negatively when abstract types are used for fields in a
composite type. The Julia compiler must store pointers in memory for these objects because
it has to support any data types relevant to those fields. Because pointers must be
dereferenced to get to the data, system performance can be degraded greatly.

Chapter 11
What technique can we use to implement the abstract factory pattern?

To implement the abstract factory pattern, we can create a hierarchy of abstract types. Then,
we can implement concrete functions that take a singleton type in the argument. By way of
multiple dispatches, we should be able to call the right function for the right platform or
environment.  

How do we avoid a singleton from being initialized multiple times in a multithreaded
application?

To avoid multiple initializations of a singleton, we can use a reentrant lock to synchronize
the threads. The first thread would be able to obtain the lock and initialize the singleton,
while the other threads should wait until the initialization is finished. The lock must be
released at the end of the initialization.  

What Julia feature is essential for implementing the observer pattern?

We can implement the setproperty! function so that all updates to an object's field can be
monitored and additional actions can be triggered.

How can we customize an operation using the template method pattern?

We can design the template function to take in customized functions via keyword
arguments. A keyword argument may be defaulted to a standard implementation, and at
the same time a custom function can be passed by the caller. The expected interface of the
function should be clearly documented.

How do we make an adapter to implement a target interface?

We can make an adapter by creating a new type that wraps the original type. Then, we can
implement the expected interface on the new type. Using a delegation pattern, the new type
can reuse existing functionality by forwarding specific functions to the original type.



Assessments

[ 489 ]

What are the benefits of the flyweight pattern and what strategy can we use to achieve
that?

We can potentially save a lot of memory space when using the flyweight pattern because
objects are shared. The general technique is to maintain a reference table that uses a more
compact data element as a lookup key. The key is used to look up the more memory-
intensive objects.

What Julia feature can we use to implement the strategy pattern?

We can implement the strategy pattern using singleton types as functional arguments. The
function with the proper algorithm (strategy) is automatically selected at runtime by
multiple dispatch.

Chapter 12
How does implementation inheritance differ from behavior subtyping?

Implementation inheritance allows a subclass to inherit both fields and methods from a
super-class. Behavior subtyping allows a subtype to inherit methods defined for a super-
type.  

What are some major issues associated with implementation inheritance?

Implementation inheritance is problematic because sometimes, the subclass may not want
to inherit the fields from a super-class even when it makes logical sense to define the
parent-child relationship. As demonstrated from the square-rectangle problem, a subclass
may be more restrictive and take away features rather than adding new functionality on
top of the super-class. Second, implementation inheritance suffers from the fragile base
class issue, for which changes to the super-class may unintentionally modify the behavior
of the subclass.

What is duck typing?

Duck typing is a dynamic feature that allows a method to be dispatched without strong
type checking. A function may be dispatched as long as it adheres to the expected interface
contract.

What is the variance of method arguments and why?

Method arguments are covariant as they are consistent with the Liskov Substitution
Principle, which states that a function that is defined to accept type S should be able to
work with any subtype of S.



Assessments

[ 490 ]

Why are parametric types invariant in Julia?

Parametric types are invariant in Julia for a very practical reason. The type parameter
unambiguously determines the memory layout of the underlying container. When it is
invariant, there is an opportunity to achieve high performance by compacting storage data
consecutively without having to dereference pointers.

When does the diagonal rule apply?

The diagonal rule is applied whenever a type variable occurs more than once in a
covariance position. There is an exception to the rule when the same type variable is
unambiguously determined from an invariant position such as in a parametric type.



Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Julia 1.0 High Performance
Avik Sengupta, Alan Edelman

ISBN: 978-1-78829-811-7

Understand how Julia code is transformed into machine code
Measure the time and memory taken by Julia programs
Create fast machine code using Julia's type information
Define and call functions without compromising Julia's performance
Accelerate your code via the GPU
Use tasks and asynchronous IO for responsive programs
Run Julia programs on large distributed clusters

https://www.packtpub.com/application-development/julia-10-high-performance


Other Books You May Enjoy

[ 492 ]

Julia Programming Projects
Adrian Salceanu

ISBN: 978-1-78829-274-0

Leverage Julia's strengths, its top packages, and main IDE options
Analyze and manipulate datasets using Julia and DataFrames
Write complex code while building real-life Julia applications
Develop and run a web app using Julia and the HTTP package
Build a recommender system using supervised machine learning
Perform exploratory data analysis
Apply unsupervised machine learning algorithms
Perform time series data analysis, visualization, and forecasting

https://www.packtpub.com/big-data-and-business-intelligence/julia-programming-projects


Other Books You May Enjoy

[ 493 ]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!



Index

@
@inferred macro
   using  266
@kwdef macro
   used, for simplifying code  281, 282
@time macro
   used, for measuring performance  124, 125

A
abstract factory pattern  412, 413, 414
abstract syntax tree (AST)  127
abstract types
   defining  50
   designing  49
   functions, defining  53
   personal asset type hierarchy example  51
   replacing, with type parameters  109, 110
   type hierarchy, navigating  52
   versus concrete types  64
accessor patterns
   about  308
   direct field access, discouraging  312
   getter functions, implementing  310
   object implicit interface, recognizing  308, 310
   setter functions, implementing  311
adapter pattern  437, 438, 439
Advanced Vector Extensions (AVX)  212
afferent coupling  270, 271
ambiguities
   detecting  103, 104, 105
   in dispatch  101, 103
anonymous functions
   developing  93, 94
Anti-lock Braking System (ABS)  24
application programming interface (API)  310
argument types

   abstract arrays  399
   arrays of type S and type T  398
   duck typing  400
   options  394, 395, 400
   performance, evaluating  401
   vectors of Float64 values  395
   vectors of instances of Number  396
   vectors of type S and T  397
   vectors of type T  397
arguments
   narrowest types, matching  97, 99
automatic conversion
   rules, reviewing  72, 73, 74, 75

B
barrier function pattern
   about  257
   developing  261
   performance impact  259, 260
   type-unstable functions, identifying  258, 259
   type-unstable output variable, dealing with  262,

263, 265
behavior subtyping
   about  452, 453, 454
   implementing  449
   nominal subtyping  458
   structural subtyping  458
behavioral patterns
   about  420, 435
   chain of responsibility (CoR) pattern  420
   command pattern  435
   interpreter pattern  435
   iterator pattern  435
   mediator pattern  422
   memento pattern  425
   observer pattern  427
   state pattern  429



[ 495 ]

   strategy pattern  431
   template method pattern  433
bidirectional coupling
   common code, factoring  276, 277
   data, passing as function arguments  276
   removing  276
Boston housing dataset  434
bottom-up approach  20
bridge pattern  444
broadcasting  380
builder pattern  417, 418

C
chain of responsibility (CoR) pattern  420, 421,

422

circular dependencies
   avoiding  47
   issue  48
   issue, fixing  48, 49
closure  245
code generation pattern
   about  283
   debugging  288, 290
   file logger use case  283, 285
   other options  290, 292
   using, for function definitions  286, 287
code
   characteristics  22
command pattern
   visitor patterns  435
command-line interface (CLI)  44
complex expressions
   assignment  133
   code block  134
   conditional construct  135
   constructs, looping  136
   evaluating  138, 139
   function definition, structure  137, 138
   working with  133
composite data types
   designing, with concrete types  405, 406
   memory layout  403, 404, 405
composite pattern  440, 441
concrete types
   composite type  56

   composite types, designing  56
   designing  55
   immutability  57, 58
   immutable objects  59
   mutability  58
   mutable objects  59
   primitive type  55
   Union types  59, 61
concrete, versus nonconcrete field types
   performance, comparing  406, 407
conflicts
   resolving  38, 39
constants.jl file
   reference link  210
contravariance  459
convariance
   about  459
   method arguments  462
creational patterns
   about  410
   abstract factory pattern  412
   builder pattern  417
   factory method pattern  410
   prototype pattern  418
   singleton pattern  414
currency risk  224

D
data science projects
   about  28
   growth-related problem  29
data types
   conversion  70
   numeric type conversions  71
decorator pattern  444
deep copy  418
delegation pattern
   about  166, 167
   applying, to banking use case  167, 168
   boilerplate code, reducing for forwarding

methods  170, 171, 172
   considerations  174, 175
   examples  172
   new type, composing that contains existing type 

169, 170



[ 496 ]

   OffsetArrays.jl package  173
   ScikitLearn.jl package  173, 174
Dependency Inversion Principle
   about  15
   benefits  16
design patterns
   about  11
   defining  13
   GoF design patterns  12
   history  11
diagonal rule
   about  472, 473
   exception  473
dispatch
   about  97
   ambiguities  101, 103
   with multiple arguments  99, 100, 101
do-syntax
   using  94, 95, 96
domain-specific language (DSL) pattern
   about  292
   implementing, for L-System  299
   L-System  293
Don't Repeat Yourself (DRY) principle  16, 175,

286

DSL, with Lindenmayer System (L-System)
   @capture macro, using  299
   axiom, matching with rule statements  300
   macro, developing  302, 304, 305
   postwalk function, using  301, 302
duck typing
   revisiting  458
   structural subtyping via  458
dynamic dispatch  97, 105, 106

E
efferent coupling  270, 271
enterprise applications
   challenges  30
   developing  29
exception handling patterns
   about  330
   at top level  333, 334
   catching  330
   operations, retrying  337, 338, 339, 340, 341

   prioritizing  342, 343
   stack frames  334, 336
   types, dealing with  330, 332
expression object
   constructing manually  131, 132
expressions, macros
   abstract syntax tree, tweaking  153, 154
   hygiene  154, 156
   manipulating  151
   new expression, creating  151, 152
   nonstandard string literals, developing  156, 158,

159

expressions
   function calls, with keyword arguments  129
   parser, experimenting with  128
   QuoteNode, using for symbols  140, 141
   single-variable expression  129
   variables, interpolating  139, 140
   working with  127, 128
Extreme Programming (XP)  18

F
facade pattern  444
factory method pattern  410, 411
FighterJets module
   implementing  116, 117, 118
file organization, module
   coupling  41
   file size  41
   ordering  41
film permits file
   reference link  255
first-class functions  92, 93
First-In, First-Out (FIFO)  254
flyweight pattern  442, 443
fragile base class problem  455, 456, 457
function arguments
   annotating  81
   typed arguments  82, 83, 84, 85
   untyped arguments  82
function dispatches
   rules  75, 76
function type dispatch
   implementing  468, 470
function types



[ 497 ]

   dissecting  463, 464, 465
function under test (FUT)  355
functional behavior
   defining  36
functional pipes pattern
   about  366, 372, 373
   broadcasting along  380, 382
   composable functions, designing  373, 375
   conditional logic, implementing  378, 380
   developing, for average score function  375, 377
   Hacker News analysis use case  367
   using, considerations  382
functions, abstract types
   defining  53
   descriptive functions  53
   functional behavior  54
   interaction, between objects  55
functions
   defining  80
   designing  79
   exporting  36, 37, 38
   writing, with duck typing  81
   writing, with exclamation points  81
   writing, with underscore  81

G
generalized linear model (GLM)  435
generated functions
   about  159
   defining  160
   examining  161, 162, 163
   using  159
global constant pattern
   about  202
   considerations  211
   examples  210
   global variables, passing as function arguments 

207

   performance  205, 206, 207
   performance, benchmarking with global variables 

202, 204
   PyCall.jl package  210
   SASLib.jl package  210
   variable, hiding  208, 209
   variables, annotating with type information  205

global variable placeholder  208
GoF design patterns
   about  12
   behavioral patterns  12
   creational patterns  12
   structural patterns  12
graphical user interface (GUI)  346, 423

H
Hacker News analysis use case
   about  367
   average score, calculating from N stories  371,

372

   story details, fetching  369, 371
   top story IDs, fetching  367, 369
hard contracts  118
holy traits pattern
   about  175
   AbstractPlotting.jl ConversionTrait  185, 186
   Base.IteratorSize  183, 184, 185
   behavior, implementing  180, 181, 182
   examples  183
   identifying  179, 180
   implementing  178, 179
   personal asset management use case, reviewing 

175, 176, 177
   SimpleTraits.jl package, using  186, 187
   types  179
   using, with different type of hierarchy  183
hooks  427
Hue-Saturation-Value (HSV)  195

I
idiosyncratic risk  224
inheritance
   implementing  449, 450, 451, 453, 454
Inter-Process Communication (IPC)  223
interface inheritance  452
Interface Segregation Principle
   about  15
   benefits  15
interface traits
   using  119, 120
interfaces
   designing  113



[ 498 ]

   developing  113
   soft contracts, handling  118, 119
   working with  113
Intermediate Representation (IR)  258
interpreter pattern  436
invariance  459
is-a-subtype-of operator  62, 63
isa operator  62
iterator pattern  436

J
Julia packages
   dependencies, specifying  44, 45, 47
Julia
   about  28
   object  308

K
kernel parameters
   maximum number of segments (SHMMNI)  235
   maximum segment size (SHMMAX)  235
   maximum total shared memory (SHMALL)  235
keyword arguments
   using, in arguments  280, 281
   utilizing  87, 88, 89
keyword definition pattern
   about  279
   constructors  279
   struct definitions  279
KISS principle  16
Koch curve  294

L
lazy file loader  313, 314
Least Recently Used (LRU)  254
let block patterns
   about  324
   closure, using  326, 327
   variable scope, limiting  328, 329
   web crawler use case  324, 326
Lindenmayer System (L-System)
   about  293, 294
   DSL pattern, designing for  295
   DSL, implementing  299
   logic, reviewing  295

   object, developing  296, 297
   state object, developing  297, 298
Liskov Substitution Principle
   about  15
   benefits  15
loops
   unrolling  125, 126, 127

M
machine learning (ML) pipeline  433
macro expansion process
   about  148
   timing  149, 150
macros
   about  144, 145
   developing  144
   expression arguments, passing  147, 148
   expressions, manipulating  151
   literal arguments, passing  146
   writing  145, 146
mediator pattern  422, 424, 425
memento pattern  425, 426, 427
memoization pattern
   about  240
   Caching.jl package, utilizing  254, 255, 256
   considerations  254
   constraint, with generic functions  246
   construction of memoization cache, automating 

244, 245
   examples  253
   Fibonacci function  241
   Fibonacci function performance, improving  242,

243

   functions, with multiple arguments  247
   generic functions, memoizing with macros  252
   mutable data types, handling in arguments  248,

249, 251
memoization, use cases
   Omega.jl  253
   Symata.jl package  253
metaprogramming
   need for  123
method signature
   type information, extracting from  112
mmap



[ 499 ]

   reference link  238
mock
   about  356
   used, for performing behavior verification  364
Mocking package
   used, for stub implementation  360, 362
modules
   creating  32, 34, 35
   files, organizing  41
   working with  30
multiple arguments
   used, for dispatching  99, 100, 101
multiple dispatches
   about  96
   narrowest types, matching in arguments  97, 99

N
namespaces
   about  31, 32
   working with  30
narrow argument types anti-pattern
   about  393
nested expressions
   interpolating in  142, 143
nested functions  130
nominal subtyping  458
nonconcrete field types anti-pattern  402

O
object
   implicit interface, recognizing  308, 310
observer pattern  427, 429
Omega.jl  253
Open/Closed Principle
   about  15
   benefits  15
optional arguments
   working with  85, 86, 87

P
package dependencies
   managing  42
   semantic versioning scheme  42
   specifying, for Julia packages  44, 46, 47
packages

   creating  32, 34, 35
   working with  31
parametric abstract types
   working with  68, 69
parametric composite types
   working with  65, 66, 68
parametric methods
   about  470
   leveraging  107
   type parameters, using  107, 108
   type variables, matching  471
   type variables, specifying  470
parametric type pattern
   about  188, 189, 190
   ColorTypes.jl package  195, 196
   examples  194
   methods, designing  192
   NamedDims.jl package  196, 197, 198, 199
   remove text, utilizing  190
   type arguments, using  193, 194
   types, designing  191
parametric types
   abstract types, working with  68, 69
   as invariant  460, 461, 462
   composite types  65
   working with  64
parent module
   symbols, referencing  275
parser
   experimenting with  128
piracy anti-pattern
   about  386
   Type I piracy  387
   Type II piracy  388
   Type III piracy  391, 392
Principle of Least Privilege (POLP) principle  17
   about  18
   benefits  18
property patterns
   about  313
   accessible fields, reporting  322, 323
   dot notation, for field access  315, 316
   lazy file loader  313, 315
   lazy loading implementation  317, 319, 321
   read access, implementing  317, 319, 321



[ 500 ]

   write access, controlling to object fields  321, 322
prototype pattern  418, 419, 420
PyCall.jl package  210

Q
QuoteNode
   using, for symbols  140, 142

R
red-green-blue (RGB)  195
reduction  223
release candidates (RC)  43
reusable components
   characteristics  20

S
safe applications
   characteristics  23
SASLib.jl package  210
semantic versioning scheme
   about  42, 43
   reference link  42
shallow copy  418
shared array pattern
   about  223
   constraints, working with  239, 240
   data, analyzing on shared array  230, 231, 232
   data, populating in shared array  227, 228, 229
   data, preparing  225, 226
   high-performance solution, overview  226
   parallel processing, overhead  232, 234
   race conditions, avoiding among parallel

processes  238
   risk management, use case  223, 224
   system settings, configuring for shared memory

usage  234
   worker processes, accessing to code  238
   worker processes, accessing to data  238
shared memory device
   configuring  235, 236
shared memory size
   issue, debugging  236, 237
shared memory usage
   system settings, configuring  234
simple data type conversion

   lossy conversions, alerting  70, 71
   performing  70
SimpleTraits.jl package
   reference link  186
   using  186, 187
Single Instruction, Multiple Data (SIMD)  212
Single Responsibility Principle
   about  14
   benefits  14
singleton pattern  414, 416, 417
singleton type dispatch pattern
   about  346, 347
   command processor, developing  346
   performance benefits  351, 354
   using, with dynamic dispatch  349, 351
   Val parametric data type  348
slurping  89
soft contracts
   about  118
   handling  118, 119
software design principles
   about  14
   DRY principle  16
   KISS principle  16
   POLA principle  17
   POLP principle  18
   SOLID  14
   SOLID principle  14
   YAGNI principle  17
software quality objectives
   exploring  19
   maintainability  22
   performance  21
   reusability  19
   safety  23
SOLID principle
   about  14
   Dependency Inversion Principle  15
   Interface Segregation Principle  15
   Liskov Substitution Principle  15
   Open/Closed Principle  15
   Single Responsibility Principle  14
space war game, data types
   Position type  80
   Size type  80



[ 501 ]

   Widget type  80
space war game
   building  79
splatting  90, 91
square-rectangle problem  454, 455
state pattern  429, 430
strategy pattern  431, 432
Streaming SIMD Extension (SSE)  212
struct of arrays pattern
   about  212
   business domain model, working with  212, 214,

215

   considerations  222
   constructing  216
   nested object structures, handling  220, 221, 222
   performance, improving with data layout  215
   space, versus time trade-off  219
   StructArrays package, using  217, 218
structural patterns
   about  436
   adapter pattern  437
   bridge pattern  444
   composite pattern  440
   decorator pattern  444
   facade pattern  444
   flyweight pattern  442
structural subtyping  458
Structured Query Language (SQL)  292
stub
   about  355
   applying, to same function  362, 363
   implementing, with Mocking package  360, 362
   used, for performing behavior verification  366
   used, for performing state verification  358, 360
Stubbing/Mocking pattern
   about  354
   credit approval use case  356, 358
   issues  354
   testing doubles  355
sub-module pattern
   about  269
   creating, need for  269
   factors  269
submodules
   creating  40, 41

   defined symbols, referencing  274
   organizing  272
   using, counter-arguments  278
Symata.jl package  253
symbols and functions
   referencing, between modules and sub-modules 

273

system kernel parameters
   using  234
system settings
   configuring, for shared memory usage  234
systematic risk  224

T
template method pattern  433, 434, 435
Tim Holy Traits Trick (THTT)  175
top-down approach  19
top-level modules
   benefits  277
   potential issues  278
TripPayment type  213
type consistency
   enforcing, in using parameters  110, 111
Type I piracy  386, 387
Type II piracy  386, 388
Type II piracy, hidden issues
   code, future-proofing  390
   conflicts, with pirate  389
   type piracy, avoiding  390
Type III piracy  386, 391, 392
type inference  81
type information
   extracting, from method signature  112
type operators
   is-a-subtype-of operator  62
   isa operator  62
   working with  61
type parameters
   used, for replacing abstract types  109, 110
   using  107, 108
type variables
   availability  474, 475
typed arguments  82, 83, 84, 85



U
Unified Modeling Language (UML)  11
Union types
   used, for supporting multiple types  59, 61
   using  61
universal unique identifier (UUID)  45
untyped arguments  82

V
Val parametric data type
   using  348, 349
variable numbers of arguments
   accepting  89, 90
variance
   about  459

   bivariance  459
   contravariance  459
   covariance  459
   invariance  459
   of function type, determining  466, 467, 468
Vehicle module
   interface, defining  113, 114, 115
visitor patterns  436

W
worker processes
   issues  238

Y
YAGNI principle  18


	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Foreword
	Contributors
	Table of Contents
	Preface
	Section 1: Getting Started with Design Patterns
	Chapter 1: Design Patterns and Related Principles
	The history of design patterns
	The rise of design patterns
	More thoughts about GoF patterns
	How do we describe patterns in this book?

	Software design principles
	SOLID
	Single Responsibility Principle
	Open/Closed Principle
	Liskov Substitution Principle
	Interface Segregation Principle
	Dependency Inversion Principle

	DRY
	KISS
	POLA
	YAGNI
	POLP

	Software quality objectives
	Reusability
	Characteristics of reusable components

	Performance
	Characteristics of high-performance code

	Maintainability
	Characteristics of maintainable code

	Safety
	Characteristics of safe applications


	Summary
	Questions

	Section 2: Julia Fundamentals
	Chapter 2: Modules, Packages, and Data Type Concepts
	Technical requirements
	The growing pains of developing applications
	Data science projects
	Enterprise applications
	Adapting to growth

	Working with namespaces, modules, and packages
	Understanding namespaces
	Creating modules and packages
	Defining functional behavior
	Exporting functions
	Resolving conflicts

	Creating submodules
	Organizing files in a module

	Managing package dependencies
	Understanding the semantic versioning scheme
	Specifying dependencies for Julia packages
	Avoiding circular dependencies
	What's the problem?
	How do we fix this?


	Designing abstract and concrete types
	Designing abstract types
	A personal asset type hierarchy example
	Navigating the type hierarchy
	Defining functions for abstract types
	Descriptive functions
	Functional behavior
	Interaction between objects


	Designing concrete types
	Designing composite types
	Immutability
	Mutability
	Mutable or immutable?
	Supporting multiple types using Union types

	Working with type operators
	The isa operator
	The <: operator

	Differences between abstract and concrete types

	Working with parametric types
	Working with parametric composite types
	Working with parametric abstract types

	Conversion between data types
	Performing simple data type conversion
	Beware of lossy conversions
	Understanding numeric type conversions
	Reviewing the rules for automatic conversion
	Case 1: Assigning a value to an array
	Case 2: Assigning a value to a field of an object
	Case 3: Constructing an object with the new function 
	Case 4: Assigning to a variable that has a declared type
	Case 5: Function has a declared return type
	Case 6: Passing a value to ccall

	Understanding the rules for function dispatches

	Summary
	Questions

	Chapter 3: Designing Functions and Interfaces
	Technical requirements
	Designing functions
	Our use case – a space war game
	Defining functions
	Annotating function arguments
	Untyped arguments
	Typed arguments

	Working with optional arguments
	Utilizing keyword arguments
	Accepting variable numbers of arguments
	Splatting arguments 
	Understanding first-class functions
	Developing anonymous functions
	Using do-syntax

	Understanding Multiple Dispatch
	What is a dispatch?
	Matching to the narrowest types
	Dispatching with multiple arguments
	Possible ambiguities during dispatch 
	Detecting ambiguities
	Understanding dynamic dispatch

	Leveraging parametric methods
	Using type parameters
	Replacing abstract types with type parameters
	Enforcing type consistency in using parameters 
	Extracting type information from the method signature

	Working with interfaces
	Designing and developing interfaces
	Defining the Vehicle interface
	Implementing FighterJet 

	Handling soft contracts
	Using interface traits

	Summary
	Questions

	Chapter 4: Macros and Metaprogramming Techniques
	Technical requirements
	Understanding the need for metaprogramming
	Measuring performance with the @time macro
	Unrolling loops

	Working with expressions
	Experimenting with the parser
	Single-variable expressions
	Function calls with keyword arguments
	Nested functions

	Constructing expression objects manually
	Playing with more complex expressions
	Assignment
	Code blocks
	Conditional
	Loop
	Function definition

	Evaluating expressions
	Interpolating variables in expressions
	Using QuoteNode for symbols
	Interpolating in nested expressions

	Developing macros
	What are macros?
	Writing our first macro
	Passing literal arguments
	Passing expression arguments
	Understanding the macro expansion process
	Timing of macro expansion

	Manipulating expressions
	Example 1 – Making a new expression
	Example 2 - Tweaking the abstract syntax tree

	Understanding macro hygiene
	Developing nonstandard string literals

	Using generated functions
	Defining generated functions
	Examining generated function arguments

	Summary
	Questions

	Section 3: Implementing Design Patterns
	Chapter 5: Reusability Patterns
	Technical requirements
	The delegation pattern
	Applying the delegation pattern to a banking use case
	Composing a new type that contains an existing type
	Reducing boilerplate code for forwarding methods

	Reviewing some real-life examples
	Example 1 – the OffsetArrays.jl package
	Example 2 – the ScikitLearn.jl package

	Considerations

	The holy traits pattern
	Revisiting the personal asset management use case
	Implementing the holy traits pattern
	Defining the trait type
	Identifying traits
	Implementing trait behavior
	Using traits with a different type of hierarchy

	Reviewing some common usages
	Example 1 – Base.IteratorSize
	Example 2 – AbstractPlotting.jl ConversionTrait

	Using the SimpleTraits.jl package

	The parametric type pattern
	Utilizing remove text parametric type for the stock trading app
	Designing parametric types
	Designing parametric methods
	Using multiple parametric type arguments

	Real-life examples
	Example 1 – the ColorTypes.jl package
	Example 2 – the NamedDims.jl package


	Summary
	Questions

	Chapter 6: Performance Patterns
	Technical requirements
	The global constant pattern
	Benchmarking performance with global variables
	Enjoying the speed of global constants
	Annotating variables with type information
	Understanding why constants help performance
	Passing global variables as function arguments
	Hiding a variable inside a global constant 
	Turning to some real-life examples
	Example 1 – SASLib.jl package
	Example 2 – PyCall.jl package

	Considerations

	The struct of arrays pattern
	Working with a business domain model
	Improving performance using a different data layout
	Constructing a struct of arrays
	Using the StructArrays package
	Understanding the space versus time trade-off
	Handling nested object structures

	Considerations

	The shared array pattern
	Introducing a risk management use case
	Preparing data for the example
	Overview of a high-performance solution
	Populating data in the shared array
	Analyzing data directly on a shared array
	Understanding the overhead of parallel processing
	Configuring system settings for shared memory usage
	Adjusting system kernel parameters 
	Configuring a shared memory device
	Debugging the shared memory size issue 

	Ensuring worker processes have access to code and data 
	Avoiding race conditions among parallel processes
	Working with the constraints of shared arrays

	The memoization pattern
	Introducing the Fibonacci function
	Improving the performance of the Fibonacci function
	Automating the construction of a memoization cache
	Understanding the constraint with generic functions
	Supporting functions that take multiple arguments
	Handling mutable data types in the arguments
	Memoizing generic functions with macros
	Turning to real-life examples
	Symata.jl
	Omega.jl

	Considerations
	Utilizing the Caching.jl package

	The barrier function pattern
	Identifying type-unstable functions
	Understanding performance impact
	Developing barrier functions
	Dealing with a type-unstable output variable
	Using the @inferred macro

	Summary
	Questions

	Chapter 7: Maintainability Patterns
	Technical requirements
	Sub-module pattern
	Understanding when sub-module is needed
	Understanding afferent and efferent coupling
	Organizing sub-modules
	Referencing symbols and functions between modules and sub-modules
	Referencing symbols defined in sub-modules
	Referencing symbols from the parent module

	Removing bidirectional coupling
	Passing data as function arguments
	Factoring common code as another sub-module

	Considering splitting into top-level modules
	Understanding the counterarguments of using sub-modules

	Keyword definition pattern
	Revisiting struct definitions and constructors
	Using keyword arguments in constructors
	Simplifying code with the @kwdef macro

	Code generation pattern
	Introducing the file logger use case
	Code generation for function definitions
	Debugging code generation
	Considering options other than code generation

	Domain-specific language pattern
	Introducing the L-System
	Designing DSL for L-System
	Reviewing the L-System core logic
	Developing the LModel object
	Developing the state object

	Implementing a DSL for L-System
	Using the @capture macro 
	Matching axiom and rule statements
	Using the postwalk function
	Developing the macro for a DSL


	Summary
	Questions

	Chapter 8: Robustness Patterns
	Technical requirements
	Accessor patterns
	Recognizing the implicit interface of an object
	Implementing getter functions
	Implementing setter functions
	Discouraging direct field access

	Property patterns
	Introducing the lazy file loader
	Understanding the dot notation for field access
	Implementing read access and lazy loading
	Controlling write access to object fields
	Reporting accessible fields

	Let block patterns
	Introducing the web crawler use case
	Using closure to hide private variables and functions away
	Limiting the variable scope for long scripts or functions

	Exception handling patterns
	Catching and handling exceptions
	Dealing with various types of exceptions
	Handling exceptions at the top level
	Walking along the stack frames
	Understanding the performance impact of exception handling
	Retrying operations
	Choosing nothing over exceptions

	Summary
	 Questions

	Chapter 9: Miscellaneous Patterns
	Technical requirements
	Singleton type dispatch pattern
	Developing a command processor
	Understanding singleton types
	Using the Val parametric data type
	Using singleton types with dynamic dispatch
	Understanding the performance benefits of dispatch

	Stubbing/Mocking pattern
	What are testing doubles?
	Introducing the credit approval use case
	Performing state verification using stubs
	Implementing stubs with the Mocking package
	Applying multiple stubs to the same function
	Performing behavior verification using mocks

	Functional pipes pattern
	Introducing the Hacker News analysis use case
	Fetching top story IDs on Hacker News
	Fetching details about a story
	Calculating the average score for the top N stories

	Understanding functional pipes
	Designing composable functions
	Developing a functional pipe for the average score function
	Implementing conditional logic in functional pipes
	Broadcasting along functional pipes
	Considerations about using functional pipes

	Summary
	Questions

	Chapter 10: Anti-Patterns
	Technical requirements
	Piracy anti-pattern
	Type I – Redefining a function
	Type II piracy – Extending without your own types
	Conflicting with another pirate
	Future-proofing your code
	Avoiding type piracy

	Type III piracy – Extending with your own type, but for a different purpose

	Narrow argument types anti-pattern
	Considering various options for argument types
	Option 1 – Vectors of Float64 values
	Option 2 – Vectors of instances of Number
	Option 3 – Vectors of type T where T is a subtype of Number
	Option 4 – Vectors of type S and T where S and T are subtypes of Number
	Option 5 – Arrays of type S and type T where S and T are subtypes of Number
	Option 6 – Abstract arrays
	Option 7 – Duck typing
	Summarizing all options

	Evaluating performance

	Nonconcrete field types anti-pattern
	Understanding the memory layout of composite data types
	Designing composite types with concrete types in mind
	Comparing performance between concrete versus nonconcrete field types

	Summary
	Questions

	Chapter 11: Traditional Object-Oriented Patterns
	Technical requirements
	Creational patterns
	The factory method pattern
	The abstract factory pattern
	The singleton pattern
	The builder pattern
	The prototype pattern

	Behavioral patterns
	The chain-of-responsibility pattern
	The mediator pattern
	The memento pattern
	The observer pattern
	The state pattern
	The strategy pattern
	The template method pattern
	Command, interpreter, iterator, and visitor patterns

	Structural patterns
	The adapter pattern
	The composite pattern
	The flyweight pattern
	Bridge, decorator, and facade patterns

	Summary
	Questions

	Section 4: Advanced Topics
	Chapter 12: Inheritance and Variance
	Technical requirements
	Implementing inheritance and behavior subtyping
	Understanding implementation inheritance
	Understanding behavior subtyping
	The square-rectangle problem
	The fragile base class problem
	Revisiting duck typing

	Covariance, invariance, and contravariance
	Understanding different kinds of variance
	Parametric types are invariant
	Method arguments are covariant
	Dissecting function types 
	Determining the variance of the function type 
	Implementing our own function type dispatch

	Parametric methods revisited
	Specifying type variables
	Matching type variables
	Understanding the diagonal rule
	An exception to the diagonal rule
	The availability of type variables

	Summary
	Questions

	Appendix: Assessments
	Chapter 1 
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Other Books You May Enjoy
	Index

