

Mastering Go
Third Edition

Harness the power of Go to build professional utilities
and concurrent servers and services

Mihalis Tsoukalos

BIRMINGHAM—MUMBAI

Mastering Go
Third Edition
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Dr. Shailesh Jain
Acquisition Editor – Peer Reviews: Saby Dsilva
Project Editor: Amisha Vathare
Content Development Editor: Edward Doxey
Copy Editor: Safis Editing
Technical Editor: Aniket Shetty
Proofreader: Safis Editing
Indexer: Rekha Nair
Presentation Designer: Pranit Padwal

First published: April 2018
Second edition: August 2019
Third edition: August 2021

Production reference: 1200821

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-931-0

www.packt.com

http://www.packt.com

Contributors

About the author
Mihalis Tsoukalos is a UNIX Systems Engineer who enjoys technical writing.
He is the author of Go Systems Programming and Mastering Go, both first and second
editions. He holds a BSc in Mathematics from the University of Patras and an MSc
in IT from University College London, UK. He has written more than 300 technical
articles for magazines including Sys Admin, MacTech, Linux User and Developer, Usenix
;login:, Linux Format, and Linux Journal. His research interests include time series,
databases, and indexing.

You can reach him at https://www.mtsoukalos.eu/ and @mactsouk.

As writing a book is a team effort, I would like to thank the people at Packt
Publishing for helping me write this book. This includes Amit Ramadas for
answering all my questions, Shailesh Jain for convincing me to write the
third edition of Mastering Go, Edward Doxey for the helpful comments and
suggestions, and Derek Parker, the technical reviewer, for his good work.

Last, I would like to thank you, the reader of the book, for choosing this
book. I hope you find it helpful.

https://www.mtsoukalos.eu/

About the reviewer
Derek Parker is a Software Engineer at Red Hat. He is the creator of the Delve
debugger for Go and a contributor to the Go compiler, linker, and standard library.
Derek is an open-source contributor and maintainer and has worked on everything
from front-end JavaScript to low-level assembly code.

I would like to thank my wife, Erica, and our two incredible children for
lending me the time to work on this project.

[v]

Table of Contents
Preface xv
Chapter 1: A Quick Introduction to Go 1

Introducing Go 2
The history of Go 3
Why UNIX and not Windows? 4
The advantages of Go 5
The go doc and godoc utilities 7

Hello World! 8
Introducing functions 9
Introducing packages 9

Running Go code 10
Compiling Go code 10
Using Go like a scripting language 11
Important formatting and coding rules 11

Important characteristics of Go 13
Defining and using variables 13

Printing variables 14
Controlling program flow 16
Iterating with for loops and range 19
Getting user input 21

Reading from standard input 21
Working with command-line arguments 22

Using error variables to differentiate between input types 26
Understanding the Go concurrency model 28

Developing the which(1) utility in Go 30
Logging information 32

log.Fatal() and log.Panic() 35

Table of Contents

[vi]

Writing to a custom log file 36
Printing line numbers in log entries 38

Overview of Go generics 39
Developing a basic phone book application 41
Exercises 45
Summary 45
Additional resources 45

Chapter 2: Basic Go Data Types 47
The error data type 48
Numeric data types 51
Non-numeric data types 54

Strings, Characters, and Runes 54
Converting from int to string 57
The unicode package 57
The strings package 58

Times and dates 62
A utility for parsing dates and times 63
Working with different time zones 67

Go constants 67
The constant generator iota 68

Grouping similar data 71
Arrays 71
Slices 72

About slice length and capacity 75
Selecting a part of a slice 78
Byte slices 80
Deleting an element from a slice 82
How slices are connected to arrays 86
The copy() function 88
Sorting slices 90

Pointers 92
Generating random numbers 97

Generating random strings 98
Generating secure random numbers 99

Updating the phone book application 100
Exercises 101
Summary 102
Additional resources 102

Chapter 3: Composite Data Types 103
Maps 104

Storing to a nil map 105
Iterating over maps 107

Table of Contents

[vii]

Structures 108
Defining new structures 108
Using the new keyword 109
Slices of structures 112

Regular expressions and pattern matching 114
About Go regular expressions 114
Matching names and surnames 116
Matching integers 117
Matching the fields of a record 118

Improving the phone book application 119
Working with CSV files 119
Adding an index 124
The improved version of the phone book application 125

Exercises 133
Summary 134
Additional resources 134

Chapter 4: Reflection and Interfaces 135
Reflection 136

Learning the internal structure of a Go structure 138
Changing structure values using reflection 140
The three disadvantages of reflection 142

Type methods 142
Creating type methods 143
Using type methods 144

Interfaces 147
The sort.Interface interface 150
The empty interface 152
Type assertions and type switches 154
The map[string]interface{} map 158
The error data type 162
Writing your own interfaces 166

Using a Go interface 166
Implementing sort.Interface for 3D shapes 168

Working with two different CSV file formats 172
Object-oriented programming in Go 176
Updating the phone book application 180

Setting up the value of the CSV file 180
Using the sort package 182

Exercises 183
Summary 184
Additional resources 184

Table of Contents

[viii]

Chapter 5: Go Packages and Functions 185
Go packages 186

Downloading Go packages 186
Functions 189

Anonymous functions 189
Functions that return multiple values 190
The return values of a function can be named 191
Functions that accept other functions as parameters 192
Functions can return other functions 194
Variadic functions 196
The defer keyword 199

Developing your own packages 202
The init() function 203
Order of execution 204

Using GitHub to store Go packages 206
A package for working with a database 208

Getting to know your database 209
Storing the Go package 214
The design of the Go package 214
The implementation of the Go package 217
Testing the Go package 225

Modules 229
Creating better packages 230
Generating documentation 231
GitLab Runners and Go 239

The initial version of the configuration file 240
The final version of the configuration file 242

GitHub Actions and Go 244
Storing secrets in GitHub 245
The final version of the configuration file 246

Versioning utilities 248
Exercises 250
Summary 250
Additional resources 251

Chapter 6: Telling a UNIX System What to Do 253
stdin, stdout, and stderr 254
UNIX processes 254
Handling UNIX signals 255

Handling two signals 258

Table of Contents

[ix]

File I/O 259
The io.Reader and io.Writer interfaces 259
Using and misusing io.Reader and io.Writer 260
Buffered and unbuffered file I/O 264

Reading text files 265
Reading a text file line by line 265
Reading a text file word by word 267
Reading a text file character by character 268
Reading from /dev/random 269
Reading a specific amount of data from a file 271

Writing to a file 272
Working with JSON 275

Using Marshal() and Unmarshal() 275
Structures and JSON 277
Reading and writing JSON data as streams 278
Pretty printing JSON records 280

Working with XML 281
Converting JSON to XML and vice versa 283

Working with YAML 284
The viper package 286

Using command-line flags 287
Reading JSON configuration files 290

The cobra package 293
A utility with three commands 295
Adding command-line flags 296
Creating command aliases 297
Creating subcommands 297

Finding cycles in a UNIX file system 299
New to Go 1.16 301

Embedding files 302
ReadDir and DirEntry 305
The io/fs package 307

Updating the phone book application 309
Using cobra 309
Storing and loading JSON data 311
Implementing the delete command 311
Implementing the insert command 312
Implementing the list command 312
Implementing the search command 313

Exercises 314

Table of Contents

[x]

Summary 315
Additional resources 315

Chapter 7: Go Concurrency 317
Processes, threads, and goroutines 318
The Go scheduler 319

The GOMAXPROCS environment variable 321
Concurrency and parallelism 322

Goroutines 323
Creating a goroutine 323
Creating multiple goroutines 324
Waiting for your goroutines to finish 325
What if the number of Add() and Done() calls differ? 327
Creating multiple files with goroutines 328

Channels 329
Writing to and reading from a channel 330
Receiving from a closed channel 333
Channels as function parameters 334

Race conditions 335
The Go race detector 335

The select keyword 338
Timing out a goroutine 339

Timing out a goroutine – inside main() 340
Timing out a goroutine – outside main() 341

Go channels revisited 342
Buffered channels 343
nil channels 345
Worker pools 346
Signal channels 350

Specifying the order of execution for your goroutines 350
Shared memory and shared variables 353

The sync.Mutex type 354
What happens if you forget to unlock a mutex? 355

The sync.RWMutex type 357
The atomic package 359
Sharing memory using goroutines 361

Closured variables and the go statement 364
The context package 366

Using context as a key/value store 370
The semaphore package 372
Exercises 375
Summary 375

Table of Contents

[xi]

Additional resources 376
Chapter 8: Building Web Services 377

The net/http package 378
The http.Response type 378
The http.Request type 379
The http.Transport type 379

Creating a web server 380
Updating the phone book application 384

Defining the API 385
Implementing the handlers 386

Exposing metrics to Prometheus 394
The runtime/metrics package 395
Exposing metrics 397

Creating a Docker image for a Go server 400
Exposing the desired metrics 402

Reading metrics 405
Putting the metrics in Prometheus 407
Visualizing Prometheus metrics in Grafana 411

Developing web clients 413
Using http.NewRequest() to improve the client 415
Creating a client for the phone book service 418

Creating file servers 424
Downloading the contents of the phone book application 426

Timing out HTTP connections 428
Using SetDeadline() 428
Setting the timeout period on the client side 429
Setting the timeout period on the server side 432

Exercises 434
Summary 434
Additional resources 434

Chapter 9: Working with TCP/IP and WebSocket 435
TCP/IP 436

The nc(1) command-line utility 437
The net package 437
Developing a TCP client 438

Developing a TCP client with net.Dial() 438
Developing a TCP client that uses net.DialTCP() 440

Developing a TCP server 442
Developing a TCP server with net.Listen() 442
Developing a TCP server that uses net.ListenTCP() 445

Table of Contents

[xii]

Developing a UDP client 447
Developing a UDP server 450
Developing concurrent TCP servers 453
Working with UNIX domain sockets 455

A UNIX domain socket server 455
A UNIX domain socket client 458

Creating a WebSocket server 460
The implementation of the server 461

Using websocat 465
Using JavaScript 466

Creating a WebSocket client 470
Exercises 475
Summary 475
Additional resources 476

Chapter 10: Working with REST APIs 477
An introduction to REST 478
Developing RESTful servers and clients 480

A RESTful server 481
A RESTful client 490

Creating a functional RESTful server 499
The REST API 500
Using gorilla/mux 501
The use of subrouters 502
Working with the database 502
Testing the restdb package 508
Implementing the RESTful server 510
Testing the RESTful server 514

Testing GET handlers 515
Testing POST handlers 516
Testing the PUT handler 517
Testing the DELETE handler 518

Creating a RESTful client 518
Creating the structure of the command-line client 519
Implementing the RESTful client commands 520
Using the RESTful client 525
Working with multiple REST API versions 526

Uploading and downloading binary files 527
Using Swagger for REST API documentation 532

Documenting the REST API 534
Generating the documentation file 538
Serving the documentation file 539

Table of Contents

[xiii]

Exercises 542
Summary 542
Additional resources 542

Chapter 11: Code Testing and Profiling 543
Optimizing code 544
Benchmarking code 545

Rewriting the main() function for better testing 546
Benchmarking buffered writing and reading 547
The benchstat utility 551
Wrongly defined benchmark functions 552

Profiling code 553
Profiling a command-line application 553
Profiling an HTTP server 557
The web interface of the Go profiler 559

The go tool trace utility 561
Tracing a web server from a client 563
Visiting all routes of a web server 566

Testing Go code 571
Writing tests for ./ch03/intRE.go 571
The TempDir function 573
The Cleanup() function 573
The testing/quick package 576
Timing out tests 578
Testing code coverage 578
Finding unreachable Go code 581

Testing an HTTP server with a database backend 584
Fuzzing 590
Cross-compilation 591
Using go:generate 592
Creating example functions 595
Exercises 597
Summary 597
Additional resources 598

Chapter 12: Working with gRPC 599
Introduction to gRPC 599

Protocol buffers 600
Defining an interface definition language file 601
Developing a gRPC server 604
Developing a gRPC client 608

Testing the gRPC server with the client 612

Table of Contents

[xiv]

Exercises 613
Summary 613
Additional resources 614

Chapter 13: Go Generics 615
Introducing generics 616
Constraints 618

Creating constraints 620
Defining new data types with generics 621

Using generics in Go structures 622
Interfaces versus generics 625
Reflection versus generics 628
Exercises 630
Summary 630
Additional resources 631

Appendix A – Go Garbage Collector 633
Heap and stack 633
Garbage collection 637

The tricolor algorithm 640
More about the operation of the Go garbage collector 643
Maps, slices, and the Go garbage collector 645

Using a slice 645
Using a map with pointers 646
Using a map without pointers 646
Splitting the map 647

Comparing the performance of the presented techniques 648
Additional resources 648

Other Books You May Enjoy 651
Index 653

[xv]

Preface
The book you are reading right now is Mastering Go, Third Edition, which is all
about helping you become a better Go developer! If you have the second edition of
Mastering Go, do not throw it away—Go has not changed that much, and the second
edition is still useful. However, Mastering Go, Third Edition is better than the second
edition in many aspects.

There exist many exciting new topics in this edition, including writing RESTful
services, working with the WebSocket protocol, and using GitHub Actions and
GitLab Actions for Go projects, as well as an entirely new chapter on generics and
the development of lots of practical utilities. Additionally, I tried to make this book
smaller than the second edition and structure it in a more natural way to make it
both easier and faster to read, especially if you are a busy professional.

I also tried to include the right amount of theory and hands-on content—but, only
you, the reader, can tell whether I succeed! Try to do the exercises located at the end
of each chapter and do not hesitate to contact me about ways or ideas that can make
future editions of this book even better!

Who this book is for
This book is for intermediate Go programmers who want to take their Go
knowledge to the next level. It will also be helpful for experienced developers
in other programming languages who want to learn Go without going over
programming basics.

Preface

[xvi]

What this book covers
Chapter 1, A Quick Introduction to Go, begins by talking about the history of Go,
the important characteristics of Go, and the advantages of Go, before describing
the godoc and go doc utilities and explaining how we can compile and execute Go
programs. Afterward, the chapter talks about printing output and getting user input,
working with command-line arguments, and using log files. Lastly, we develop a
basic version of a phone book application that we are going to keep improving in
forthcoming chapters.

Chapter 2, Basic Go Data Types, discusses the basic data types of Go, both numeric
and non-numeric, as well as arrays and slices that allow you to group data of the
same data type. It also considers Go pointers, constants, and working with dates
and times. The last part of the chapter is about generating random numbers and
populating the phone book application with random data.

Chapter 3, Composite Data Types, begins with maps, before going into structures
and the struct keyword. Additionally, it talks about regular expressions, pattern
matching, and working with CSV files. Lastly, we improve the phone book
application by adding data persistency to it.

Chapter 4, Reflection and Interfaces, is about reflection, interfaces and type methods,
which are functions attached to data types. The chapter also includes the use of
the sort.Interface interface for sorting slices, the use of the empty interface, type
assertions, type switches, and the error data type. Additionally, we discuss how
Go can mimic some object-oriented concepts before improving the phone book
application.

Chapter 5, Go Packages and Functions, is all about packages, modules, and functions,
which are the main elements of packages. Among other things, we create a Go
package for interacting with a PostgreSQL database, create documentation for it, and
explain the use of the sometimes tricky defer keyword. This chapter also includes
information about the use of GitLab Runners and GitHub Actions for automation
and how to create a Docker image for a Go binary.

Chapter 6, Telling a UNIX System What to Do, is about systems programming, which
includes subjects such as working with command-line arguments, handling UNIX
signals, file input and output, the io.Reader and io.Writer interfaces, and the use
of the viper and cobra packages. Additionally, we talk about working with JSON,
XML, and YAML files, create a handy command-line utility for discovering cycles
in a UNIX filesystem, and discuss embedding files in Go binaries as well as the
os.ReadDir() function, the os.DirEntry type, and the io/fs package. Lastly, we
update the phone book application to use JSON data and convert it into a proper
command-line utility with the help of the cobra package.

Preface

[xvii]

Chapter 7, Go Concurrency, discusses goroutines, channels, and pipelines. We learn
about the differences between processes, threads, and goroutines, the sync package,
and the way the Go scheduler operates. Additionally, we explore the use of the
select keyword and we discuss the various "types" of Go channels as well as shared
memory, mutexes, the sync.Mutex type, and the sync.RWMutex type. The rest of the
chapter talks about the context package, the semaphore package, worker pools, how
to time out goroutines, and how to detect race conditions.

Chapter 8, Building Web Services, discusses the net/http package, the development of
web servers and web services, exposing metrics to Prometheus, visualizing metrics
in Grafana, creating web clients and creating file servers. We also convert the phone
book application into a web service and create a command-line client for it.

Chapter 9, Working with TCP/IP and WebSocket, is about the net package, TCP/IP, and
the TCP and UDP protocols, as well as UNIX sockets and the WebSocket protocol.
We develop lots of network servers and clients in this chapter.

Chapter 10, Working with REST APIs, is all about working with REST APIs and
RESTful services. We learn how to define REST APIs and develop powerful
concurrent RESTful servers as well as command-line utilities that act as clients to
RESTful services. Lastly, we introduce Swagger for creating documentation for REST
APIs and learn how to upload and download binary files.

Chapter 11, Code Testing and Profiling, discusses code testing, code optimization, and
code profiling as well as cross-compilation, benchmarking Go code, creating example
functions, the use of go:generate, and finding unreachable Go code.

Chapter 12, Working with gRPC, is all about working with gRPC in Go. gRPC is an
alternative to RESTful services that was developed by Google. This chapter teaches
you how to define the methods and the messages of a gRPC service, how to translate
them into Go code, and how to develop a server and a client for that gRPC service.

Chapter 13, Go Generics, is about generics and how to use the new syntax to write
generic functions and define generic data types. Generics is coming to Go 1.18,
which, according to the Go development cycle, is going to be officially released
during February 2022.

Appendix A, Go Garbage Collector, talks about the operation of the Go garbage collector
and illustrates how this Go component can affect the performance of your code.

Preface

[xviii]

To get the most out of this book
This book requires a UNIX computer with a relatively recent Go version installed,
which includes any machine running macOS X, macOS, or Linux. Most of the
presented code also runs on Microsoft Windows machines without any changes.

To get the most out of this book, you should try to apply the knowledge of each
chapter in your own programs as soon as possible and see what works and what
does not! As I told you before, try to solve the exercises found at the end of each
chapter or create your own programming problems.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/mactsouk/
mastering-Go-3rd. We also have other code bundles from our rich catalog of books
and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801079310_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, folder names, filenames, file extensions,
pathnames, and user input. For example, "The star of this chapter will be the net/
http package, which offers functions that allow you to develop powerful web servers
and web clients."

A block of code is set as follows:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "path/filepath"
 "strconv"

https://github.com/mactsouk/mastering-Go-3rd
https://github.com/mactsouk/mastering-Go-3rd
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801079310_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801079310_ColorImages.pdf

Preface

[xix]

 "time"
)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are highlighted:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "path/filepath"
 "strconv"
 "time"
)

Any command-line input or output is written as follows:

$ go run www.go
Using default port number: :8001
Served: localhost:8001

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes. For example: "The UNIX logging service has
support for two properties named logging level and logging facility."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[xx]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title in the
subject of your message. If you have questions about any aspect of this book, please
email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit http://authors.packtpub.com.

Share your thoughts
Once you've read Mastering Go, Third Edition, we'd love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share
your feedback.

Your review is important to us and the tech community and will help us make sure
we're delivering excellent quality content.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
https://packt.link/r/1-801-07931-5

[1]

1
A Quick Introduction to Go

Imagine that you are a developer and you want to create a command-line utility.
Similarly, imagine that you have a REST API and you want to create a RESTful
server that implements that REST API. The first thought that will come to your mind
will most likely be which programming language to use.

The most common answer to this question is to use the programming language you
know best. However, this book is here to help you consider Go for all these and
many more tasks and projects. In this chapter, we begin by explaining what Go is,
and continue with the history of Go, and how to run Go code. We will explain some
core characteristics of Go, such as how to define variables, control the flow of your
programs, and get user input, and we will apply some of these concepts by creating
a command-line phone book application.

We will cover the following topics:

• Introducing Go
• Hello World!
• Running Go code
• Important characteristics of Go
• Developing the which(1) utility in Go
• Logging information
• Overview of Go generics
• Developing a basic phone book application

A Quick Introduction to Go

[2]

Introducing Go
Go is an open-source systems programming language initially developed as an
internal Google project that went public back in 2009. The spiritual fathers of Go
are Robert Griesemer, Ken Thomson, and Rob Pike.

Although Go is a general-purpose programming language, it is primarily used
for writing system tools, command-line utilities, web services, and software that
work over networks. Go can also be used for teaching programming and is a good
candidate as your first programming language because of its lack of verbosity
and clear ideas and principles. Go can help you develop the following kinds of
applications:

• Professional web services
• Networking tools and servers such as Kubernetes and Istio
• Backend systems
• System utilities
• Powerful command-line utilities such as docker and hugo
• Applications that exchange data in JSON format
• Applications that process data from relational databases, NoSQL databases,

or other popular data storage systems
• Compilers and interpreters for programming languages you design
• Database systems such as CockroachDB and key/value stores such as etcd

Although the official name of the language is Go, it is sometimes
(wrongly) referred to as Golang. The official reason for this is that
go.org was not available for registration and golang.org was
chosen instead. The practical reason for this is that when you are
querying a search engine for Go-related information, the word Go
is usually interpreted as a verb. Additionally, the official Twitter
hashtag for Go is #golang.

http://go.org
http://golang.org

Chapter 1

[3]

There are many things that Go does better than other programming languages,
including the following:

• The default behavior of the Go compiler can catch a large set of silly errors
that might result in bugs.

• Go uses fewer parentheses than C, C++, or Java, and no semicolons, which
makes the look of Go source code more human-readable and less error-
prone.

• Go comes with a rich and reliable standard library.
• Go has support for concurrency out of the box through goroutines and

channels.
• Goroutines are really lightweight. You can easily run thousands of

goroutines on any modern machine without any performance issues.
• Unlike C, Go supports functional programming.
• Go code is backward compatible, which means that newer versions of the Go

compiler accept programs that were created using a previous version of the
language without any modifications. This compatibility guarantee is limited
to major versions of Go. For example, there is no guarantee that a Go 1.x
program will compile with Go 2.x.

Now that we know what Go can do and what Go is good at, let's discuss the history
of Go.

The history of Go
As mentioned earlier, Go started as an internal Google project that went public back
in 2009. Griesemer, Thomson, and Pike designed Go as a language for professional
programmers who want to build reliable, robust, and efficient software that is easy
to manage. They designed Go with simplicity in mind, even if simplicity meant that
Go was not going to be a programming language for everyone.

A Quick Introduction to Go

[4]

The figure that follows shows the programming languages that directly or indirectly
influenced Go. As an example, Go syntax looks like C whereas the package concept
was inspired by Modula-2.

Figure 1.1: The programming languages that influenced Go

The deliverable was a programming language, its tools, and its standard library.
What you get with Go, apart from its syntax and tools, is a pretty rich standard
library and a type system that tries to save you from easy mistakes such as implicit
type conversions, unused variables and unused packages. The Go compiler catches
most of these easy mistakes and refuses to compile until you do something about
them. Additionally, the Go compiler can find difficult to catch mistakes such as race
conditions.

If you are going to install Go for the first time, you can start by visiting https://
golang.org/dl/. However, there is a big chance that your UNIX variant has a ready-
to-install package for the Go programming language, so you might want to get Go
by using your favorite package manager.

Why UNIX and not Windows?
You might ask why we're talking about UNIX all the time and not discussing
Microsoft Windows as well. There are two main reasons for this. The first reason is
that most Go programs will work on Windows machines without any code changes
because Go is portable by design—this means that you should not worry about the
operating system you are using.

https://golang.org/dl/
https://golang.org/dl/

Chapter 1

[5]

However, you might need to make small changes to the code of some system utilities
for them to work in Windows. Additionally, there are still going to be some libraries
that only work on Windows machines and some that only work on non-Windows
machines. The second reason is that many services written in Go are executed in
a Docker environment—Docker images use the Linux operating system, which
means that you should program your utilities having the Linux operating system
in mind.

The advantages of Go
Go comes with some important advantages for developers, starting with the fact
that it was designed and is currently maintained by real programmers. Go is also
easy to learn, especially if you are already familiar with programming languages
such as C, Python, or Java. On top of that, Go code is good-looking, at least to me,
which is great, especially when you are programming applications for a living and
you have to look at code on a daily basis. Go code is also easy to read and offers
support for Unicode out of the box, which means that you can make changes to
existing Go code easily. Lastly, Go has reserved only 25 keywords, which makes
it much easier to remember the language. Can you do that with C++?

Go also comes with concurrency capabilities using a simple concurrency model that
is implemented using goroutines and channels. Go manages OS threads for you
and has a powerful runtime that allows you to spawn lightweight units of work
(goroutines) that communicate with each other using channels. Although Go comes
with a rich standard library, there are really handy Go packages such as cobra and
viper that allow Go to develop complex command-line utilities such as docker and
hugo. This is greatly supported by the fact that Go's executable binaries are statically
linked, which means that once they are generated, they do not depend on any shared
libraries and include all required information.

Due to its simplicity, Go code is predictable and does not have strange side effects,
and although Go supports pointers, it does not support pointer arithmetic like C,
unless you use the unsafe package, which is the root of many bugs and security
holes. Although Go is not an object-oriented programming language, Go interfaces
are very versatile and allow you to mimic some of the capabilities of object-oriented
languages such as polymorphism, encapsulation, and composition.

As far as user experience is concerned, UNIX and Linux are very
similar. The main difference is that Linux is open-source software
whereas UNIX is proprietary software.

A Quick Introduction to Go

[6]

Additionally, the latest Go versions offer support for generics, which simplifies your
code when working with multiple data types. Last but not least, Go comes with
support for garbage collection, which means that no manual memory management
is needed.

Although Go is a very practical and competent programming language, it is not
perfect:

• Although this is a personal preference rather than an actual technical
shortcoming, Go has no direct support for object-oriented programming,
which is a popular programming paradigm.

• Although goroutines are lightweight, they are not as powerful as OS threads.
Depending on the application you are trying to implement, there might
exist some rare cases where goroutines will not be appropriate for the job.
However, in most cases, designing your application with goroutines and
channels in mind will solve your problems.

• Although garbage collection is fast enough most of the time and for almost
all kinds of applications, there are times when you need to handle memory
allocation manually—Go cannot do that. In practice, this means that Go will
not allow you to perform any memory management manually.

However, there are many cases where you can choose Go, including the following:

• Creating complex command-line utilities with multiple commands, sub-
commands, and command-line parameters

• Building highly concurrent applications
• Developing servers that work with APIs and clients that interact by

exchanging data in myriad formats including JSON, XML, and CSV
• Developing WebSocket servers and clients
• Developing gRCP servers and clients
• Developing robust UNIX and Windows system tools
• Learning programming

In the following sections, we will cover a number of concepts and utilities in order
to build a solid foundation of knowledge, before building a simplified version of
the which(1) utility. At the end of the chapter, we'll develop a naive phone book
application that will keep evolving as we explain more Go features in the chapters
that follow.

Chapter 1

[7]

But first, we'll present the go doc command, which allows you to find information
about the Go standard library, its packages, and their functions. Then, we'll show
how to execute Go code using the Hello World! program as an example.

The go doc and godoc utilities
The Go distribution comes with a plethora of tools that can make your life as a
programmer easier. Two of these tools are the go doc subcommand and godoc utility,
which allow you to see the documentation of existing Go functions and packages
without needing an internet connection. However, if you prefer viewing the Go
documentation online, you can visit https://pkg.go.dev/. As godoc is not installed
by default, you might need to install it by running go get golang.org/x/tools/cmd/
godoc.

The go doc command can be executed as a normal command-line application that
displays its output on a terminal, and godoc as a command-line application that
starts a web server. In the latter case, you need a web browser to look at the Go
documentation. The first utility is similar to the UNIX man(1) command, but for
Go functions and packages.

So, in order to find information about the Printf() function of the fmt package, you
should execute the following command:

$ go doc fmt.Printf

Similarly, you can find information about the entire fmt package by running the
following command:

$ go doc fmt

The number after the name of a UNIX program or system call
refers to the section of the manual a manual page belongs to.
Although most of the names can be found only once in the
manual pages, which means that putting the section number is not
required, there are names that can be located in multiple sections
because they have multiple meanings, such as crontab(1) and
crontab(5). Therefore, if you try to retrieve the manual page of a
name with multiple meanings without stating its section number,
you will get the entry that has the smallest section number.

https://pkg.go.dev/

A Quick Introduction to Go

[8]

The second utility requires executing godoc with the -http parameter:

$ godoc -http=:8001

The numeric value in the preceding command, which in this case is 8001, is the port
number the HTTP server will listen to. As we have omitted the IP address, godoc is
going to listen to all network interfaces.

You can omit the equals sign in the presented command and put a space character in
its place. So, the following command is completely equivalent to the previous one:

$ godoc -http :8001

After that, you should point your web browser to the http://localhost:8001/ URL
in order to get the list of available Go packages and browse their documentation. If
you are using Go for the first time, you will find the Go documentation very handy
for learning the parameters and the return values of the functions you want to use—
as you progress in your Go journey, you will use the Go documentation for learning
the gory details of the functions and variables that you want to use.

Hello World!
The following is the Go version of the Hello World program. Please type it and save
it as hw.go:

package main

import (
 "fmt"
)

func main() {
 fmt.Println("Hello World!")
}

You can choose any port number that is available provided that
you have the right privileges. However, note that port numbers
0-1023 are restricted and can only be used by the root user, so it
is better to avoid choosing one of those and pick something else,
provided that it is not already in use by a different process.

Chapter 1

[9]

Each Go source code begins with a package declaration. In this case, the name of the
package is main, which has a special meaning in Go. The import keyword allows
you to include functionality from existing packages. In our case, we only need some
of the functionality of the fmt package that belongs to the standard Go library.
Packages that are not part of the standard Go library are imported using their full
internet path. The next important thing if you are creating an executable application
is a main() function. Go considers this the entry point to the application and begins
the execution of the application with the code found in the main() function of the
main package.

hw.go is a Go program that runs on its own. Two characteristics make hw.go an
autonomous source file that can generate an executable binary: the name of the
package, which should be main, and the presence of the main() function—we discuss
Go functions in more detail in the next subsection but we will learn even more
about functions and methods, which are functions attached to specific data types,
in Chapter 5, Go Packages and Functions.

Introducing functions
Each Go function definition begins with the func keyword followed by its name,
signature and implementation. As happens with the main package, you can name
your functions anything you want—there is a global Go rule that also applies to
function and variable names and is valid for all packages except main: everything
that begins with a lowercase letter is considered private and is accessible in the
current package only. We will learn more about that rule in Chapter 5, Go Packages
and Functions. The only exception to this rule is package names, which can begin
with either lowercase or uppercase letters. Having said that, I am not aware of a Go
package that begins with an uppercase letter!

You might now ask how functions are organized and delivered. Well, the answer is
in packages—the next subsection sheds some light on that.

Introducing packages
Go programs are organized in packages—even the smallest Go program should
be delivered as a package. The package keyword helps you define the name of a
new package, which can be anything you want with just one exception: if you are
creating an executable application and not just a package that will be shared by other
applications or packages, you should name your package main. You will learn more
about developing Go packages in Chapter 5, Go Packages and Functions.

A Quick Introduction to Go

[10]

The import keyword is used for importing other Go packages in your Go programs
in order to use some or all of their functionality. A Go package can either be a part
of the rich Standard Go library or come from an external source. Packages of the
standard Go library are imported by name (os) without the need for a hostname and
a path, whereas external packages are imported using their full internet paths, like
github.com/spf13/cobra.

Running Go code
You now need to know how to execute hw.go or any other Go application. As will be
explained in the two subsections that follow, there are two ways to execute Go code:
as a compiled language using go build or as a scripting language using go run. So,
let us find out more about these two ways of running Go code.

Compiling Go code
In order to compile Go code and create a binary executable file, you need to use
the go build command. What go build does is create an executable file for you to
distribute and execute manually. This means that the go build command requires
an additional step for running your code.

The generated executable is automatically named after the source code filename
without the .go file extension. Therefore, because of the hw.go source file, the
executable will be called hw. In case this is not what you want, go build supports the
-o option, which allows you to change the filename and the path of the generated
executable file. As an example, if you want to name the executable file as helloWorld,
you should execute go build -o helloWorld hw.go instead. If no source files are
provided, go build looks for a main package in the current directory.

After that, you need to execute the generated executable binary file on your own.
In our case, this means executing either hw or helloWorld. This is shown in the next
output:

$ go build hw.go
$./hw
Hello World!

Packages can be used by other packages. In fact, reusing existing
packages is a good practice that saves you from having to write
lots of code or implement existing functionality from scratch.

Chapter 1

[11]

Now that we know how to compile Go code, let us continue with using Go as a
scripting language.

Using Go like a scripting language
The go run command builds the named Go package, which in this case is the main
package implemented in a single file, creates a temporary executable file, executes
that file, and deletes it once it is done—to our eyes, this looks like using a scripting
language. In our case, we can do the following:

$ go run hw.go
Hello World!

If you want to test your code, then using go run is a better choice. However, if you
want to create and distribute an executable binary, then go build is the way to go.

Important formatting and coding rules
You should know that Go comes with some strict formatting and coding rules that
help the developer avoid beginner mistakes and bugs—once you learn these few
rules and Go idiosyncrasies as well as the implications they have for your code, you
will be free to concentrate on the actual functionality of your code. Additionally, the
Go compiler is here to help you follow these rules with its expressive error messages
and warnings. Last, Go offers standard tooling (gofmt) that can format your code for
you so you never have to think about it.

The following is a list of important Go rules that will help you while reading this
chapter:

• Go code is delivered in packages and you are free to use the functionality
found in existing packages. However, if you are going to import a package,
you should use some of this functionality—there are some exceptions to
this rule that mainly have to with initializing connections, but they are not
important for now.

• You either use a variable or you do not declare it at all. This rule helps you
avoid errors such as misspelling an existing variable or function name.

• There is only one way to format curly braces in Go.
• Coding blocks in Go are embedded in curly braces even if they contain just a

single statement or no statements at all.

A Quick Introduction to Go

[12]

• Go functions can return multiple values.
• You cannot automatically convert between different data types, even if

they are of the same kind. As an example, you cannot implicitly convert
an integer to a floating point.

Go has more rules but these rules are the most important ones and will keep you
going for most of the book. You are going to see all these rules in action in this
chapter as well as other chapters. For now, let's consider the only way to format
curly braces in Go because this rule applies everywhere.

Look at the following Go program named curly.go:

package main

import (
 "fmt"
)

func main()
{
 fmt.Println("Go has strict rules for curly braces!")
}

Although it looks just fine, if you try to execute it, you will be fairly disappointed,
because the code will not compile and therefore you will get the following syntax
error message:

$ go run curly.go
command-line-arguments
./curly.go:7:6: missing function body
./curly.go:8:1: syntax error: unexpected semicolon or newline before {

The official explanation for this error message is that Go requires the use
of semicolons as statement terminators in many contexts, and the compiler
automatically inserts the required semicolons when it thinks that they are necessary.
Therefore, putting the opening curly brace ({) in its own line will make the Go
compiler insert a semicolon at the end of the previous line (func main()), which is
the main cause of the error message. The correct way to write the previous code is
the following:

package main

import (
 "fmt"

Chapter 1

[13]

)

func main() {
 fmt.Println("Go has strict rules for curly braces!")
}

After learning about this global rule, let us continue by presenting some important
characteristics of Go.

Important characteristics of Go
This big section discusses important and essential Go features including variables,
controlling program flow, iterations, getting user input, and Go concurrency. We
begin by discussing variables, variable declaration, and variable usage.

Defining and using variables
Imagine that you wanted to perform some basic mathematical calculations with Go.
In that case, you need to define variables to keep your input and your results.

Go provides multiple ways to declare new variables in order to make the variable
declaration process more natural and convenient. You can declare a new variable
using the var keyword followed by the variable name, followed by the desired data
type (we will cover data types in detail in Chapter 2, Basic Go Data Types). If you want,
you can follow that declaration with = and an initial value for your variable. If there
is an initial value given, you can omit the data type and the compiler will guess it for
you.

This brings us to a very important Go rule: if no initial value is given to a variable,
the Go compiler will automatically initialize that variable to the zero value of its
data type.

There is also the := notation, which can be used instead of a var declaration. :=
defines a new variable by inferring the data of the value that follows it. The official
name for := is short assignment statement and it is very frequently used in Go,
especially for getting the return values from functions and for loops with the range
keyword.

The short assignment statement can be used in place of a var declaration with an
implicit type. You rarely see the use of var in Go; the var keyword is mostly used for
declaring global or local variables without an initial value. The reason for the former
is that every statement that exists outside of the code of a function must begin with a
keyword such as func or var.

A Quick Introduction to Go

[14]

This means that the short assignment statement cannot be used outside of a function
environment because it is not available there. Last, you might need to use var when
you want to be explicit about the data type. For example, when you want int8 or
int32 instead of int.

Therefore, although you can declare local variables using either var or :=, only
const (when the value of a variable is not going to change) and var work for global
variables, which are variables that are defined outside of a function and are not
embedded in curly braces. Global variables can be accessed from anywhere in a
package without the need to explicitly pass them to a function and can be changed
unless they were defined as constants using the const keyword.

Printing variables
Programs tend to display information, which means that they need to print data or
send it somewhere for other software to store or process it. For printing data on the
screen, Go uses the functionality of the fmt package. If you want Go to take care of
the printing, then you might want to use the fmt.Println() function. However, there
are times that you want to have full control over how data is going to get printed. In
such cases, you might want to use fmt.Printf().

fmt.Printf() is similar to the C printf() function and requires the use of control
sequences that specify the data type of the variable that is going to get printed.
Additionally, the fmt.Printf() function allows you to format the generated output,
which is particularly convenient for floating point values because it allows you to
specify the digits that will be displayed in the output (%.2f displays 2 digits after
the decimal point). Lastly, the \n character is used for printing a newline character
and therefore creating a new line, as fmt.Printf() does not automatically insert a
newline—this is not the case with fmt.Printf(), which inserts a newline.

The following program illustrates how you can declare new variables, how to use
them, and how to print them—type the following code into a plain text file named
variables.go:

package main

import (
 "fmt"
 "math"
)

var Global int = 1234
var AnotherGlobal = -5678

Chapter 1

[15]

func main() {
 var j int
 i := Global + AnotherGlobal
 fmt.Println("Initial j value:", j)
 j = Global
 // math.Abs() requires a float64 parameter
 //so we type cast it appropriately
 k := math.Abs(float64(AnotherGlobal))
 fmt.Printf("Global=%d, i=%d, j=%d k=%.2f.\n", Global, i, j, k)
}

This program contains the following:

• A global int variable named Global.
• A second global variable named AnotherGlobal—Go automatically infers its

data type from its value, which in this case is an integer.
• A local variable named j that is of type int, which, as you will learn in the

next chapter, is a special data type. j does not have an initial value, which
means that Go automatically assigns the zero value of its data type, which in
this case is 0.

• Another local variable named i—Go infers its data type from its value. As it
is the sum of two int values, it is also an int.

• As math.Abs() requires a float64 parameter, you cannot pass AnotherGlobal
to it because AnotherGlobal is an int variable. The float64() type cast
converts the value of AnotherGlobal to float64. Note that AnotherGlobal
continues to be int.

• Lastly, fmt.Printf() formats and prints our output.

Running variables.go produces the following output:

Initial j value: 0
Global=1234, i=-4444, j=1234 k=5678.00.

This example demonstrated another important Go rule that was also mentioned
previously: Go does not allow implicit data conversions like C.

Personally, I prefer to make global variables stand out by either
beginning them with an uppercase letter or using all capital letters.

A Quick Introduction to Go

[16]

As you saw in variables.go when using the math.Abs() function that expects a
float64 value, an int value cannot be used when a float64 value is expected even if
this particular conversion is straightforward and error-free. The Go compiler refuses
to compile such statements. You should convert the int value to a float64 explicitly
using float64() for things to work properly.

For conversions that are not straightforward (for example, string to int), there exist
specialized functions that allow you to catch issues with the conversion in the form
of an error variable that is returned by the function.

Controlling program flow
So far, we have seen Go variables but how do we change the flow of a Go program
based on the value of a variable or some other condition? Go supports the if/
else and switch control structures. Both control structures can be found in most
modern programming languages, so if you have already programmed in another
programming language, you should already be familiar with if and switch.
if statements use no parenthesis for embedding the conditions that need to be
examined because Go does not use parentheses in general. As expected, if has
support for else and else if statements.

To demonstrate the use of if, let's use a very common pattern in Go that is used
almost everywhere. This pattern says that if the value of an error variable as
returned from a function is nil, then everything is OK with the function execution.
Otherwise, there is an error condition somewhere that needs special care. This
pattern is usually implemented as follows:

err := anyFunctionCall()
if err != nil {
 // Do something if there is an error
}

err is the variable that holds the error value as returned from a function and !=
means that the value of the err variable is not nil. You will see similar code multiple
times in Go programs.

Lines beginning with // are single-line comments. If you put //
in the middle of a line, then everything after // is considered a
comment. This rule does not apply if // is inside a string value.

Chapter 1

[17]

The switch statement has two different forms. In the first form, the switch statement
has an expression that is being evaluated, whereas in the second form, the switch
statement has no expression to evaluate. In that case, expressions are evaluated in
each case statement, which increases the flexibility of switch. The main benefit you
get from switch is that when used properly, it simplifies complex and hard-to-read
if-else blocks.

Both if and switch are illustrated in the following code, which is designed to
process user input given as a command-line argument—please type it and save it as
control.go. For learning purposes, we present the code of control.go in pieces in
order to explain it better:

package main

import (
 "fmt"
 "os"
 "strconv"
)

This first part contains the expected preamble with the imported packages. The
implementation of the main() function starts next:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please provide a command line argument")
 return
 }
 argument := os.Args[1]

This part of the program makes sure that you have a single command-line argument
to process, which is accessed as os.Args[1], before continuing. We will cover this
in more detail later, but you can refer to Figure 1.2 for more information about the
os.Args slice.

 // With expression after switch
 switch argument {
 case "0":
 fmt.Println("Zero!")
 case "1":
 fmt.Println("One!")
 case "2", "3", "4":
 fmt.Println("2 or 3 or 4")

A Quick Introduction to Go

[18]

 fallthrough
 default:
 fmt.Println("Value:", argument)
 }

Here you see a switch block with four branches. The first three require exact string
matches and the last one matches everything else. The order of the case statements
is important because only the first match is executed. The fallthrough keyword tells
Go that after this branch is executed, it will continue with the next branch, which in
this case is the default branch:

 value, err := strconv.Atoi(argument)
 if err != nil {
 fmt.Println("Cannot convert to int:", argument)
 return
 }

As command-line arguments are initialized as string values, we need to convert
user input into an integer value using a separate call, which in this case is a call
to strconv.Atoi(). If the value of the err variable is nil, then the conversion was
successful, and we can continue. Otherwise, an error message is printed onscreen
and the program exits.

The following code shows the second form of switch, where the condition is
evaluated at each case branch:

 // No expression after switch
 switch {
 case value == 0:
 fmt.Println("Zero!")
 case value > 0:
 fmt.Println("Positive integer")
 case value < 0:
 fmt.Println("Negative integer")
 default:
 fmt.Println("This should not happen:", value)
 }
}

This gives you more flexibility but requires more thinking when reading the code.
In this case, the default branch should not be executed, mainly because any valid
integer value would be caught by the other three branches. Nevertheless, the default
branch is there, which is a good practice because it can catch unexpected values.

Chapter 1

[19]

Running control.go generates the next output:

$ go run control.go 10
Value: 10
Positive integer
$ go run control.go 0
Zero!
Zero!

Each one of the two switch blocks in control.go creates one line of output.

Iterating with for loops and range
This section is all about iterating in Go. Go supports for loops as well as the range
keyword for iterating over all the elements of arrays, slices, and (as you will see in
Chapter 3, Composite Data Types) maps. An example of Go simplicity is the fact that
Go provides support for the for keyword only, instead of including direct support
for while loops. However, depending on how you write a for loop, it can function as
a while loop or an infinite loop. Moreover, for loops can implement the functionality
of JavaScript's forEach function when combined with the range keyword.

You can also create for loops with variables and conditions. A for loop can be exited
with a break keyword and you can skip the current iteration with the continue
keyword. When used with range, for loops allow you to visit all the elements of a
slice or an array without knowing the size of the data structure. As you will see in
Chapter 3, Composite Data Types, for and range allow you to iterate over the elements
of a map in a similar way.

The following program illustrates the use of for on its own and with the range
keyword—type it and save it as forLoops.go in order to execute it afterward:

package main

import "fmt"

func main() {
 // Traditional for loop

You need to put curly braces around a for loop even if it contains
a single statement or no statements at all.

A Quick Introduction to Go

[20]

 for i := 0; i < 10; i++ {
 fmt.Print(i*i, " ")
 }
 fmt.Println()
}

The previous code illustrates a traditional for loop that uses a local variable named
i. This prints the squares of 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 onscreen. The square of 10 is
not printed because it does not satisfy the 10 < 10 condition.

The following code is idiomatic Go:

 i := 0
 for ok := true; ok; ok = (i != 10) {
 fmt.Print(i*i, " ")
 i++
 }
 fmt.Println()

You might use it, but it is sometimes hard to read, especially for people that are new
to Go. The following code shows how a for loop can simulate a while loop, which is
not supported directly:

 // For loop used as while loop
 i := 0
 for {
 if i == 10 {
 break
 }
 fmt.Print(i*i, " ")
 i++
 }
 fmt.Println()

The break keyword in the if condition exits the loop early and acts as the loop exit
condition.

Lastly, given a slice named aSlice, you iterate over all its elements with the help
of range, which returns two ordered values: the index of the current element in the
slice and its value. If you want to ignore either of these return values, which is not
the case here, you can use _ in the place of the value that you want to ignore. If you
just need the index, you can leave out the second value from range entirely without
using _.

Chapter 1

[21]

 // This is a slice but range also works with arrays
 aSlice := []int{-1, 2, 1, -1, 2, -2}
 for i, v := range aSlice {
 fmt.Println("index:", i, "value: ", v)
 }

If you run forLoops.go, you get the following output:

$ go run forLoops.go
0 1 4 9 16 25 36 49 64 81
0 1 4 9 16 25 36 49 64 81
0 1 4 9 16 25 36 49 64 81
index: 0 value: -1
index: 1 value: 2
index: 2 value: 1
index: 3 value: -1
index: 4 value: 2
index: 5 value: -2

The previous output illustrates that the first three for loops are equivalent and
therefore produce the same output. The last six lines show the index and the value
of each element found in aSlice.

Now that we know about for loops, let us see how to get user input.

Getting user input
Getting user input is an important part of every program. This section presents two
ways of getting user input, which are reading from standard input and using the
command-line arguments of the program.

Reading from standard input
The fmt.Scanln() function can help you read user input while the program is
already running and store it to a string variable, which is passed as a pointer to
fmt.Scanln(). The fmt package contains additional functions for reading user
input from the console (os.Stdin), from files or from argument lists.

A Quick Introduction to Go

[22]

The following code illustrates reading from standard input—type it and save it as
input.go:

package main

import (
 "fmt"
)

func main() {
 // Get User Input
 fmt.Printf("Please give me your name: ")
 var name string
 fmt.Scanln(&name)
 fmt.Println("Your name is", name)
}

While waiting for user input, it is good to let the user know what kind of information
they have to give, which is the purpose of the fmt.Printf() call. The reason for not
using fmt.Println() instead is that fmt.Println() automatically adds a newline
character at the end, which is not what we want here.

Executing input.go generates the following kind of output and user interaction:

$ go run input.go
Please give me your name: Mihalis
Your name is Mihalis

Working with command-line arguments
Although typing user input when needed might look like a nice idea, this is not
usually how real software works. Usually, user input is given in the form of
command-line arguments to the executable file. By default, command-line arguments
in Go are stored in the os.Args slice. Go also offers the flag package for parsing
command-line arguments, but there are better and more powerful alternatives.

The figure that follows shows the way command-line arguments work in Go, which
is the same as in the C programming language. It is important to know that the
os.Args slice is properly initialized by Go and is available to the program when
referenced. The os.Args slice contains string values:

Chapter 1

[23]

Figure 1.2: How the os.Args slice works

The first command-line argument stored in the os.Args slice is always the name of
the executable. If you are using go run, you will get a temporary name and path,
otherwise, it will be the path of the executable as given by the user. The remaining
command-line arguments are what comes after the name of the executable—the
various command-line arguments are automatically separated by space characters
unless they are included in double or single quotes.

A Quick Introduction to Go

[24]

The use of os.Args is illustrated in the code that follows, which is to find the
minimum and the maximum numeric values of its input while ignoring invalid
input such as characters and strings. Type the code and save it as cla.go (or any
other filename you want):

package main

import (
 "fmt"
 "os"
 "strconv"
)

As expected, cla.go begins with its preamble. The fmt package is used for printing
output whereas the os package is required because os.Args is a part of it. Lastly, the
strconv package contains functions for converting strings to numeric values. Next,
we make sure that we have at least one command-line argument:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Need one or more arguments!")
 return
 }

Remember that the first element in os.Args is always the path of the executable file
so os.Args is never totally empty. Next, the program checks for errors in the same
way we have looked at in previous examples. You will learn more about errors and
error handling in Chapter 2, Basic Go Data Types:

 var min, max float64
 for i := 1; i < len(arguments); i++ {
 n, err := strconv.ParseFloat(arguments[i], 64)
 if err != nil {
 continue
 }

In this case, we use the error variable returned by strconv.ParseFloat() to make
sure that the call to strconv.ParseFloat() was successful and we have a valid
numeric value to process. Otherwise, we should continue to the next command-
line argument. The for loop is used for iterating over all available command-line
arguments except the first one, which uses an index value of 0. This is another
popular technique for working with all command-line arguments.

Chapter 1

[25]

The following code is used for properly initializing the value of min and max after the
first command-line argument has been processed:

 if i == 1 {
 min = n
 max = n
 continue
 }

We are using i == 1 as the test of if this is the first iteration. In this case, it is, so
we are processing the first command-line argument. The next code checks whether
the current value is our new minimum or maximum—this is where the logic of the
program is implemented:

 if n < min {
 min = n
 }
 if n > max {
 max = n
 }
 }
 fmt.Println("Min:", min)
 fmt.Println("Max:", max)
}

The last part of the program is about printing your findings, which are the minimum
and the maximum numeric values of all valid command-line arguments. The output
you get from cla.go depends on its input:

$ go run cla.go a b 2 -1
Min: -1
Max: 2

In this case, a and b are invalid, and the only valid input are -1 and 2, which are the
minimum value and the maximum value, respectively.

$ go run cla.go a 0 b -1.2 10.32
Min: -1.2
Max: 10.32

In this case, a and b are invalid input and therefore ignored.

$ go run cla.go
Need one or more arguments!

A Quick Introduction to Go

[26]

In the final case, as cla.go has no input to process, it prints a help message. If you
execute the program with no valid input values, for example go run cla.go a b c,
then both Min and Max values are going to be zero.

The next subsection shows a technique for differentiating between different data
types using error variables.

Using error variables to differentiate between
input types
Now let me show you a technique that uses error variables to differentiate between
various kinds of user input. For this technique to work, you should go from more
specific cases to more generic ones. If we are talking about numeric values, you
should first examine whether a string is a valid integer before examining whether
the same string is a floating-point value because every valid integer is also a valid
floating-point value.

This is illustrated in the next code excerpt:

 var total, nInts, nFloats int
 invalid := make([]string, 0)
 for _, k := range arguments[1:] {
 // Is it an integer?
 _, err := strconv.Atoi(k)
 if err == nil {
 total++
 nInts++
 continue
 }

First, we create three variables for keeping a count of the total number of valid
values examined, the total number of integer values found, and the total number of
floating-point values found, respectively. The invalid variable, which is a slice, is
used for keeping all non-numeric values.

Once again, we need to iterate over all the command-line arguments except the first
one, which has an index value of 0, because this is the path of the executable file. We
ignore the path of the executable using arguments[1:] instead of just arguments—
selecting a continuous part of a slice is discussed in the next chapter.

The call to strconv.Atoi() determines whether we are processing a valid int value
or not. If so, we increase the total and nInts counters:

Chapter 1

[27]

 // Is it a float
 _, err = strconv.ParseFloat(k, 64)
 if err == nil {
 total++
 nFloats++
 continue
 }

Similarly, if the examined string represents a valid floating-point value, the call to
strconv.ParseFloat() is going to be successful and the program will update the
relevant counters. Lastly, if a value is not numeric, it is added to the invalid slice
with a call to append():

 // Then it is invalid
 invalid = append(invalid, k)
 }

This is a common practice for keeping unexpected input in applications. The
previous code can be found as process.go in the GitHub repository of the book—not
presented here is extra code that warns you when your invalid input is more than
the valid one. Running process.go produces the next kind of output:

$ go run process.go 1 2 3
#read: 3 #ints: 3 #floats: 0

In this case, we process 1, 2, and 3, which are all valid integer values.

$ go run process.go 1 2.1 a
#read: 2 #ints: 1 #floats: 1

In this case, we have a valid integer, 1, a floating-point value, 2.1, and an invalid
value, a.

$ go run process.go a 1 b
#read: 1 #ints: 1 #floats: 0
Too much invalid input: 2
a
b

If the invalid input is more than the valid one, then process.go prints an extra error
message.

The next subsection discusses the concurrency model of Go.

A Quick Introduction to Go

[28]

Understanding the Go concurrency model
This section is a quick introduction to the Go concurrency model. The Go
concurrency model is implemented using goroutines and channels. A goroutine is
the smallest executable Go entity. In order to create a new goroutine, you have to use
the go keyword followed by a predefined function or an anonymous function—both
methods are equivalent as far as Go is concerned.

A channel in Go is a mechanism that, among other things, allows goroutines to
communicate and exchange data. If you are an amateur programmer or you're
hearing about goroutines and channels for the first time, do not panic. Goroutines
and channels, as well as pipelines and sharing data among goroutines, will be
explained in much more detail in Chapter 7, Go Concurrency.

Although it is easy to create goroutines, there are other difficulties when dealing
with concurrent programming including goroutine synchronization and sharing
data between goroutines—this is a Go mechanism for avoiding side effects when
running goroutines. As main() runs as a goroutine as well, you do not want main()
to finish before the other goroutines of the program because when main() exits, the
entire program along with any goroutines that have not finished yet will terminate.
Although goroutines are do not share any variables, they can share memory. The
good thing is that there are various techniques for the main() function to wait for
goroutines to exchange data through channels or, less frequently in Go, using shared
memory.

Type the following Go program, which synchronizes goroutines using time.Sleep()
calls (this is not the right way to synchronize goroutines—we will discuss the proper
way to synchronize goroutines in Chapter 7, Go Concurrency), into your favorite editor
and save it as goRoutines.go:

package main

import (
 "fmt"
 "time"
)

func myPrint(start, finish int) {

Note that you can only execute functions or anonymous functions
as goroutines.

Chapter 1

[29]

 for i := start; i <= finish; i++ {
 fmt.Print(i, " ")
 }
 fmt.Println()
 time.Sleep(100 * time.Microsecond)
}

func main() {
 for i := 0; i < 5; i++ {
 go myPrint(i, 5)
 }
 time.Sleep(time.Second)
}

The preceding naively implemented example creates 4 goroutines and prints some
values on the screen using the myPrint() function—the go keyword is used for
creating goroutines. Running goRoutines.go generates the next output:

$ go run goRoutines.go
2 3 4 5
0 4 1 2 3 1 2 3 4 4 5
5
3 4 5
5

However, if you run it multiple times, you'll most likely get a different output each
time:

1 2 3 4 5
4 2 5 3 4 5
3 0 1 2 3 4 5

4 5

This happens because goroutines are initialized in random order and start running
in random order. The Go scheduler is responsible for the execution of goroutines just
like the OS scheduler is responsible for the execution of the OS threads. Chapter 7, Go
Concurrency, discusses Go concurrency in more detail and presents the solution to
that randomness issue with the use of a sync.WaitGroup variable—however, keep in
mind that Go concurrency is everywhere, which is the main reason for including this
section here. Therefore, as some error messages generated by the compiler talk about
goroutines, you should not think that these goroutines were created by you.

A Quick Introduction to Go

[30]

The next section shows a practical example, which is developing a Go version of the
which(1) utility, which locates a program file in the user's PATH value.

Developing the which(1) utility in Go
Go can work with your operating system through a set of packages. A good way of
learning a new programming language is by trying to implement simple versions
of traditional UNIX utilities. In this section, you'll see a Go version of the which(1)
utility, which will help you understand the way Go interacts with the underlying OS
and reads environment variables.

The presented code, which will implement the functionality of which(1), can be
divided into three logical parts. The first part is about reading the input argument,
which is the name of the executable file that the utility will be searching for. The
second part is about reading the PATH environment variable, splitting it, and
iterating over the directories of the PATH variable. The third part is about looking
for the desired binary file in these directories and determining whether it can be
found or not, whether it is a regular file, and whether it is an executable file. If the
desired executable file is found, the program terminates with the help of the return
statement. Otherwise, it will terminate after the for loop ends and the main()
function exits.

Now let us see the code, beginning with the logical preamble that usually includes
the package name, the import statements, and other definitions with a global scope:

package main

import (
 "fmt"
 "os"
 "path/filepath"
)

The fmt package is used for printing onscreen, the os package is for interacting with
the underlying operating system, and the path/filepath package is used for working
with the contents of the PATH variable that is read as a long string, depending on the
number of directories it contains.

The second logical part of the utility is the following:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {

Chapter 1

[31]

 fmt.Println("Please provide an argument!")
 return
 }
 file := arguments[1]

 path := os.Getenv("PATH")
 pathSplit := filepath.SplitList(path)
 for _, directory := range pathSplit {

First, we read the command-line arguments of the program (os.Args) and save the
first command-line argument into the file variable. Then, we get the contents of the
PATH environment variable and split it using filepath.SplitList(), which offers a
portable way of separating a list of paths. Lastly, we iterate over all the directories
of the PATH variable using a for loop with range as filepath.SplitList() returns a
slice.

The rest of the utility contains the following code:

 fullPath := filepath.Join(directory, file)
 // Does it exist?
 fileInfo, err := os.Stat(fullPath)
 if err == nil {
 mode := fileInfo.Mode()
 // Is it a regular file?
 if mode.IsRegular() {
 // Is it executable?
 if mode&0111 != 0 {
 fmt.Println(fullPath)
 return
 }
 }
 }
 }
}

We construct the full path that we examine using filepath.Join() that is used for
concatenating the different parts of a path using an OS-specific separator—this
makes filepath.Join() work in all supported operating systems. In this part,
we also get some lower-level information about the file—remember that in UNIX
everything is a file, which means that we want to make sure that we are dealing with
a regular file that is also executable.

A Quick Introduction to Go

[32]

Executing which.go generates the following kind of output:

$ go run which.go which
/usr/bin/which
$ go run which.go doesNotExist

The last command could not find the doesNotExist executable—according to the
UNIX philosophy and the way UNIX pipes work, utilities generate no output
onscreen if they have nothing to say. However, an exit code of 0 means success
whereas a non-zero exit code usually means failure.

Although it is useful to print error messages onscreen, there are times that you need
to keep all error messages together and be able to search them when it is convenient
for you. In this case, you need to use one or more log files.

Logging information
All UNIX systems have their own log files for writing logging information that
comes from running servers and programs. Usually, most system log files of a UNIX
system can be found under the /var/log directory. However, the log files of many
popular services, such as Apache and Nginx, can be found elsewhere, depending on
their configuration.

Generally speaking, using a log file to write some information used to be considered
a better practice than writing the same output on screen for two reasons: firstly,
because the output does not get lost as it is stored on a file, and secondly, because
you can search and process log files using UNIX tools, such as grep(1), awk(1), and
sed(1), which cannot be done when messages are printed on a terminal window.
However, this is not true anymore.

In this first chapter, we are including the entire code of the
presented source files. However, starting from Chapter 2, Basic
Go Types, this will not be the case. This serves two purposes: the
first one is that you get to see the code that really matters and the
second one is that we save book space.

Logging and putting logging information in log files is a practical
way of examining data and information from your software
asynchronously either locally or at a central log server or using
server software such as Elasticsearch, Beats, and Grafana Loki.

Chapter 1

[33]

As we usually run our services via systemd, programs should log to stdout so
systemd can put logging data in the journal. https://12factor.net/logs offers
more information about app logs. Additionally, in cloud native applications, we are
encouraged to simply log to stderr and let the container system redirect the stderr
stream to the desired destination.

The UNIX logging service has support for two properties named logging level and
logging facility. The logging level is a value that specifies the severity of the log
entry. There are various logging levels, including debug, info, notice, warning, err,
crit, alert, and emerg, in reverse order of severity. The log package of the standard
Go library does not support working with logging levels. The logging facility is like
a category used for logging information. The value of the logging facility part can be
one of auth, authpriv, cron, daemon, kern, lpr, mail, mark, news, syslog, user, UUCP,
local0, local1, local2, local3, local4, local5, local6, or local7 and is defined
inside /etc/syslog.conf, /etc/rsyslog.conf, or another appropriate file depending
on the server process used for system logging on your UNIX machine. This means
that if a logging facility is not defined correctly, it will not be handled; therefore, the
log messages you send to it might get ignored and therefore lost.

The log package sends log messages to standard error. Part of the log package is the
log/syslog package, which allows you to send log messages to the syslog server
of your machine. Although by default log writes to standard error, the use of log.
SetOutput() modifies that behavior. The list of functions for sending logging data
includes log.Printf(), log.Print(), log.Println(), log.Fatalf(), log.Fatalln(),
log.Panic(), log.Panicln() and log.Panicf().

In order to write to system logs, you need to call the syslog.New() function with
the appropriate parameters. Writing to the main system log file is as easy as calling
syslog.New() with the syslog.LOG_SYSLOG option. After that you need to tell your Go
program that all logging information goes to the new logger—this is implemented
with a call to the log.SetOutput() function. The process is illustrated in the following
code—type it on your favorite plain text editor and save it as systemLog.go:

package main

import (
 "log"
 "log/syslog"

Logging is for application code, not library code. If you are
developing libraries, do not put logging in them.

https://12factor.net/logs

A Quick Introduction to Go

[34]

)

func main() {
 sysLog, err := syslog.New(syslog.LOG_SYSLOG, "systemLog.go")

 if err != nil {
 log.Println(err)
 return
 } else {
 log.SetOutput(sysLog)
 log.Print("Everything is fine!")
 }
}

After the call to log.SetOutput(), all logging information goes to the syslog logger
variable that sends it to syslog.LOG_SYSLOG. Custom text for the log entries coming
from that program is specified as the second parameter to the syslog.New() call.

Running systemLog.go generates no output—however, if you look at the system logs
of a macOS Big Sur machine, for example, you will find entries like the following
inside /var/log/system.log:

Dec 5 16:20:10 iMac systemLog.go[35397]: 2020/12/05 16:20:10
Everything is fine!
Dec 5 16:43:18 iMac systemLog.go[35641]: 2020/12/05 16:43:18
Everything is fine!

The number inside the brackets is the process ID of the process that wrote the log
entry—in our case, 35397 and 35641.

Similarly, if you execute journalctl -xe on a Linux machine, you can see entries
similar to the next:

Dec 05 16:33:43 thinkpad systemLog.go[12682]: 2020/12/05 16:33:43
Everything is fine!
Dec 05 16:46:01 thinkpad systemLog.go[12917]: 2020/12/05 16:46:01
Everything is fine!

Usually, you want to store logging data on user-defined files
because they group relevant information, which makes them easier
to process and inspect.

Chapter 1

[35]

The output on your own operating system might be slightly different but the general
idea is the same.

Bad things happen all the time, even to good people and good software. So, the next
subsection covers the Go way of dealing with bad situations in your programs.

log.Fatal() and log.Panic()
The log.Fatal() function is used when something erroneous has happened and you
just want to exit your program as soon as possible after reporting that bad situation.
The call to log.Fatal() terminates a Go program at the point where log.Fatal() was
called after printing an error message. In most cases, this custom error message can
be Not enough arguments, Cannot access file, or similar. Additionally, it returns
back a non-zero exit code, which in UNIX indicates an error.

There are situations where a program is about to fail for good and you want to
have as much information about the failure as possible—log.Panic() implies that
something really unexpected and unknown, such as not being able to find a file that
was previously accessed or not having enough disk space, has happened. Analogous
to the log.Fatal() function, log.Panic() prints a custom message and immediately
terminates the Go program.

Have in mind that log.Panic() is equivalent to a call to log.Print() followed
by a call to panic(). panic() is a built-in function that stops the execution of the
current function and begins panicking. After that, it returns to the caller function.
On the other hand, log.Fatal() calls log.Print() and then os.Exit(1), which is an
immediate way of terminating the current program.

Both log.Fatal() and log.Panic() are illustrated in the logs.go file, which contains
the next Go code:

package main

import (
 "log"
 "os"
)

func main() {
 if len(os.Args) != 1 {
 log.Fatal("Fatal: Hello World!")
 }
 log.Panic("Panic: Hello World!")
}

A Quick Introduction to Go

[36]

If you call logs.go without any command-line arguments, it calls log.Panic().
Otherwise, it calls log.Fatal(). This is illustrated in the next output from an Arch
Linux system:

$ go run logs.go
2020/12/03 18:39:26 Panic: Hello World!
panic: Panic: Hello World!

goroutine 1 [running]:
log.Panic(0xc00009ef68, 0x1, 0x1)
 /usr/lib/go/src/log/log.go:351 +0xae
main.main()
 /home/mtsouk/Desktop/mGo3rd/code/ch01/logs.go:12 +0x6b
exit status 2
$ go run logs.go 1
2020/12/03 18:39:30 Fatal: Hello World!
exit status 1

So, the output of log.Panic() includes additional low-level information that,
hopefully, will help you to resolve difficult situations that happened in your Go
code.

Writing to a custom log file
Most of the time, and especially on applications and services that are deployed to
production, you just need to write your logging data in a log file of your choice. This
can be for many reasons, including writing debugging data without messing with
the system log files, or keeping your own logging data separate from system logs
in order to transfer it or store it in a database or software like Elasticsearch. This
subsection teaches you how to write to a custom log file that is usually application-
specific.

The path of the log file that is used is hardcoded into the code using a global variable
named LOGFILE. For the purposes of this chapter and for preventing your file system
from getting full in case something goes wrong, that log file resides inside the /tmp
directory, which is not the usual place for storing data because usually, the /tmp
directory is emptied after each system reboot.

Writing to files and file I/O are both covered in Chapter 6, Telling a
UNIX System What to Do—however, saving information to files is
very handy when troubleshooting and debugging Go code, which
is why this is covered in the first chapter of the book.

Chapter 1

[37]

Additionally, at this point, this will save you from having to execute customLog.go
with root privileges and from putting unnecessary files into your precious system
directories.

Type the following code and save it as customLog.go:

package main

import (
 "fmt"
 "log"
 "os"
 "path"
)

func main() {
 LOGFILE := path.Join(os.TempDir(), "mGo.log")
 f, err := os.OpenFile(LOGFILE, os.O_APPEND|os.O_CREATE|os.O_WRONLY,
0644)
// The call to os.OpenFile() creates the log file for writing,
// if it does not already exist, or opens it for writing
// by appending new data at the end of it (os.O_APPEND)

 if err != nil {
 fmt.Println(err)
 return
 }
 defer f.Close()

The defer keyword tells Go to execute the statement just before the current function
returns. This means that f.Close() is going to be executed just before main() returns.
We'll go into more detail on defer in Chapter 5, Go Packages and Functions.

 iLog := log.New(f, "iLog ", log.LstdFlags)
 iLog.Println("Hello there!")
 iLog.Println("Mastering Go 3rd edition!")
}

The last three statements create a new log file based on an opened file (f) and write
two messages to it using Println().

A Quick Introduction to Go

[38]

Running customLog.go generates no output. However, what is really important is
what has been written in the custom log file:

$ cat /tmp/mGo.log
iLog 2020/12/05 17:31:07 Hello there!
iLog 2020/12/05 17:31:07 Mastering Go 3rd edition!

Printing line numbers in log entries
In this subsection, you'll learn how to print the filename as well as the line number
in the source file where the statement that wrote a log entry is located.

The desired functionality is implemented with the use of log.Lshortfile in the
parameters of log.New() or SetFlags(). The log.Lshortfile flag adds the filename
as well as the line number of the Go statement that printed the log entry in the log
entry itself. If you use log.Llongfile instead of log.Lshortfile, then you get the
full path of the Go source file—usually, this is not necessary, especially when you
have a really long path.

Type the following code and save it as customLogLineNumber.go:

package main

import (
 "fmt"
 "log"
 "os"
 "path"
)

func main() {
 LOGFILE := path.Join(os.TempDir(), "mGo.log")
 f, err := os.OpenFile(LOGFILE, os.O_APPEND|os.O_CREATE|os.O_WRONLY,
0644)

 if err != nil {
 fmt.Println(err)

If you ever decide to use the code of customLog.go in a real
application, you should change the path stored in LOGFILE into
something that makes more sense.

Chapter 1

[39]

 return
 }
 defer f.Close()

 LstdFlags := log.Ldate | log.Lshortfile
 iLog := log.New(f, "LNum ", LstdFlags)
 iLog.Println("Mastering Go, 3rd edition!")

 iLog.SetFlags(log.Lshortfile | log.LstdFlags)
 iLog.Println("Another log entry!")
}

In case you are wondering, you are allowed to change the format of the log entries
during program execution—this means that when there is a reason, you can print
more analytical information in the log entries. This is implemented with multiple
calls to iLog.SetFlags().

Running customLogLineNumber.go generates no output but writes the following
entries in the file path that is specified by the value of the LOGFILE global variable:

$ cat /tmp/mGo.log
LNum 2020/12/05 customLogLineNumber.go:24: Mastering Go, 3rd edition!
LNum 2020/12/05 17:33:23 customLogLineNumber.go:27: Another log entry!

You will most likely get a different output on your own machine, which is the
expected behavior.

Overview of Go generics
This section discusses Go generics, which is a forthcoming Go feature. Currently,
generics and Go are under discussion by the Go community. However, one way or
another, it is good to know how generics work, its philosophy, and what the generics
discussions are about.

The main idea behind generics in Go, as well as any other programming language
that supports generics, is not having to write special code for supporting multiple
data types when performing the same task.

Go generics has been one of the most requested additions to the
Go programming language. At the time of writing, it is said that
generics is going to be part of Go 1.18.

A Quick Introduction to Go

[40]

Currently, Go supports multiple data types in functions such as fmt.Println()
using the empty interface and reflection—both interfaces and reflection are
discussed in Chapter 4, Reflection and Interfaces.

However, demanding every programmer to write lots of code and implement lots
of functions and methods for supporting multiple custom data types is not the
optimal solution—generics comes into play for providing an alternative to the use
of interfaces and reflection for supporting multiple data types. The following code
showcases how and where generics can be useful:

package main

import (
 "fmt"
)

func Print[T any](s []T) {
 for _, v := range s {
 fmt.Print(v, " ")
 }
 fmt.Println()
}

func main() {
 Ints := []int{1, 2, 3}
 Strings := []string{"One", "Two", "Three"}
 Print(Ints)
 Print(Strings)
}

In this case, we have a function named Print() that uses generics through a generics
variable, which is specified by the use of [T any] after the function name and before
the function parameters. Due to the use of [T any], Print() can accept any slice of
any data type and work with it. However, Print() does not work with input other
than slices and that is fine because if your application supports slices of different data
types, this function can still save you from having to implement multiple functions
for supporting each distinct slice. This is the general idea behind generics.

In Chapter 4, Reflection and Interfaces, you will learn about the empty
interface and how it can be used for accepting data of any data type.
However, the empty interface requires extra code for working with
specific data types.

Chapter 1

[41]

We end this section by stating some useful facts about generics:

• You do not need to use generics in your programs all the time.
• You can continue working with Go as before even if you use generics.
• You can fully replace generics code with non-generics code. The question is

are you willing to write the extra code required for this?
• I believe that generics should be used when they can create simpler code and

designs. It is better to have repetitive straightforward code than optimal
abstractions that slow down your applications.

• There are times that you need to limit the data types that are supported by
a function that uses generics—this is not a bad thing as all data types do not
share the same capabilities. Generally speaking, generics can be useful when
processing data types that share some characteristics.

You need time to get used to generics and use generics at its full potential. Take
your time. We will cover generics in more depth in Chapter 13, Go Generics.

Developing a basic phone book
application
In this section, to utilize the skills you've picked up so far, we will develop a basic
phone book application in Go. Despite its limitations, the presented application is
a command-line utility that searches a slice of structures that is statically defined
(hardcoded) in the Go code. The utility offers support for two commands named
search and list that search for a given surname and return its full record if the
surname is found, and lists all available records, respectively.

The implementation has many shortcomings, including the following:

• If you want to add or delete any data, you need to change the source code
• You cannot present the data in a sorted form, which might be OK when you

have 3 entries but might not work with more than 40 entries
• You cannot export your data or load it from an external file
• You cannot distribute the phone book application as a binary file because it

uses hardcoded data

The chapters that follow enhance the functionality of the phone
book application in order to be fully functional, versatile, and
powerful.

A Quick Introduction to Go

[42]

The code of phoneBook.go can be briefly described as follows:

• There exists a new user-defined data type for holding the records of the
phone book that is a Go structure with three fields named Name, Surname, and
Tel. Structures group a set of values into a single data type, which allows
you to pass and receive this set of values as a single entity.

• There exists a global variable that holds the data of the phone book, which is
a slice of structures named data.

• There exist two functions that help you implement the functionality of the
search and list commands.

• The contents of the data global variable are defined in the main() function
using multiple append() calls. You can change, add, or delete the contents of
the data slice according to your needs.

• Lastly, the program can only serve one task at a time. This means that to
perform multiple queries, you have to run the program multiple times.

Let us now see phoneBook.go in more detail, beginning with its preamble:

package main

import (
 "fmt"
 "os"
)

After that, we have a section where we declare a Go structure named Entry as well as
a global variable named data:

type Entry struct {
 Name string
 Surname string
 Tel string
}

var data = []Entry{}

After that, we define and implement two functions for supporting the functionality
of the phone book:

func search(key string) *Entry {
 for i, v := range data {
 if v.Surname == key {

Chapter 1

[43]

 return &data[i]
 }
 }
 return nil
}

func list() {
 for _, v := range data {
 fmt.Println(v)
 }
}

The search() function performs a linear search on the data slice. Linear search is
slow, but it does the job for now considering that the phone book does not contain
lots of entries. The list() function just prints the contents of the data slice using a
for loop with range. As we are not interested in displaying the index of the element
that we print, we ignore it using the _ character and just print the structure that
holds the actual data.

Lastly, we have the implementation of the main() function. The first part of it is as
follows:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 exe := path.Base(arguments[0])
 fmt.Printf("Usage: %s search|list <arguments>\n", exe)
 return
 }

The exe variable holds the path to the executable file—it is a nice and professional
touch to print the name of the executable binary in the instructions of the program.

 data = append(data, Entry{"Mihalis", "Tsoukalos", "2109416471"})
 data = append(data, Entry{"Mary", "Doe", "2109416871"})
 data = append(data, Entry{"John", "Black", "2109416123"})

In this part, we check whether we were given any command arguments. If not
(len(arguments) == 1), the program prints a message and exits by calling return.
Otherwise, it puts the desired data in the data slice before continuing.

A Quick Introduction to Go

[44]

The rest of the main() function implementation is as follows:

 // Differentiate between the commands
 switch arguments[1] {
 // The search command
 case "search":
 if len(arguments) != 3 {
 fmt.Println("Usage: search Surname")
 return
 }
 result := search(arguments[2])
 if result == nil {
 fmt.Println("Entry not found:", arguments[2])
 return
 }
 fmt.Println(*result)
 // The list command
 case "list":
 list()
 // Response to anything that is not a match
 default:
 fmt.Println("Not a valid option")
 }
}

This code uses a case block, which is really handy when you want to write readable
code and avoid using multiple and nested if blocks. That case block differentiates
between the two supported commands by examining the value of arguments[1]. If
the given command is not recognized, the default branch is executed instead. For
the search command, arguments[2] is also examined.

Working with phoneBook.go looks as follows:

$ go build phoneBook.go
$./phoneBook list
{Mihalis Tsoukalos 2109416471}
{Mary Doe 2109416871}
{John Black 2109416123}
$./phoneBook search Tsoukalos
{Mihalis Tsoukalos 2109416471}
$./phoneBook search Tsouk
Entry not found: Tsouk
$./phoneBook
Usage: ./phoneBook search|list <arguments>

Chapter 1

[45]

The first command lists the contents of the phone book whereas the second
command searches for a given surname (Tsoukalos). The third command searches
for something that does not exist in the phone book and the last command builds
phoneBook.go and runs the generated executable without any arguments, which
prints the instructions of the program.

Despite its shortcomings, phoneBook.go has a clean design that you can easily extend
and works as expected, which is a great starting point. The phone book application
will keep improving in the chapters that follow as we learn more advanced concepts.

Exercises
• Our version of which(1) stops after finding the first occurrence of the desired

executable. Make the necessary changes to which.go in order to find all
possible occurrences of the desired executable.

• The current version of which.go processes the first command-line argument
only. Make the necessary changes to which.go in order to accept and search
the PATH variable for multiple executable binaries.

• Read the documentation of the fmt package at https://golang.org/pkg/fmt/.

Summary
If you are using Go for the first time, the information in this chapter will help
you understand the advantages of Go, how Go code looks, and some important
characteristics of Go such as variables, iterations, flow control, and the Go
concurrency model. If you already know Go, then this chapter is a good reminder of
where Go excels and the kinds of software where it is advised to use Go. Lastly, we
built a basic phone book application with the techniques that we have learned so far.

The next chapter discusses the basic data types of Go in more detail.

Additional resources
• The official Go website: https://golang.org/
• The Go Playground: https://play.golang.org/
• The log package: https://golang.org/pkg/log/
• Elasticsearch Beats: https://www.elastic.co/beats/
• Grafana Loki: https://grafana.com/oss/loki/
• Microsoft Visual Studio: https://visualstudio.microsoft.com/
• The Standard Go library: https://golang.org/pkg/

https://golang.org/pkg/fmt/
https://golang.org/
https://play.golang.org/
https://golang.org/pkg/log/
https://www.elastic.co/beats/
https://grafana.com/oss/loki/
https://visualstudio.microsoft.com/
https://golang.org/pkg/

[47]

2
Basic Go Data Types

Data is stored and used in variables and all Go variables should have a data type
that is determined either implicitly or explicitly. Knowing the built-in data types of
Go allows you to understand how to manipulate simple data values and construct
more complex data structures when simple data types are not enough or not
efficient for a given job.

This chapter is all about the basic data types of Go and the data structures that
allow you to group data of the same data type. But let us begin with something
more practical: imagine that you want to read data as command-line arguments of a
utility. How can you be sure that what you have read was what you expected? How
can you handle error situations? What about reading not just numbers and strings
but dates and times from the command line? Do you have to write your own parser
for working with dates and times?

This chapter will answer all these questions and many more by implementing the
following three utilities:

• A command-line utility that parses dates and times
• A utility that generates random numbers and random strings
• A new version of the phone book application that contains randomly

generated data

This chapter covers:

• The error data type
• Numeric data types

Basic Go Data Types

[48]

• Non-numeric data types
• Go constants
• Grouping similar data
• Pointers
• Generating random numbers
• Updating the phone book application

We begin this chapter with the error data type, because errors play a key role in Go.

The error data type
Go provides a special data type for representing error conditions and error messages
named error—in practice, this means that Go treats errors as values. In order to
program successfully in Go, you should be aware of the error conditions that might
occur with the functions and methods you are using and handle them accordingly.

As you already know from the previous chapter, Go follows the next convention
about error values: if the value of an error variable is nil, then there was no error.
As an example, let us consider strconv.Atoi(), which is used for converting a string
value into an int value (Atoi stands for ASCII to Int). As specified by its signature,
strconv.Atoi() returns (int, error). Having an error value of nil means that the
conversion was successful and that you can use the int value if you want. Having
an error value that is not nil means that the conversion was unsuccessful and that
the string input is not a valid int value.

You might wonder what happens if you want to create your own error messages. Is
this possible? Should you wish to return a custom error, you can use errors.New()
from the errors package. This usually happens inside a function other than main()
because main() does not return anything to any other function. Additionally, a good
place to define your custom errors is inside the Go packages you create.

If you want to learn more about strconv.Atoi(), you should
execute go doc strconv.Atoi in your terminal window.

You will most likely work with errors in your programs without
needing the functionality of the errors package. Additionally,
you do not need to define custom error messages unless you are
creating big applications or packages.

Chapter 2

[49]

If you want to format your error messages in the way fmt.Printf() works, you
can use the fmt.Errorf() function, which simplifies the creation of custom error
messages—the fmt.Errorf() function returns an error value just like errors.New().

And now we should talk about something important: you should have a global
error handling tactic in each application that should not change. In practice, this
means the following:

• All error messages should be handled at the same level, which means that
all errors should either be returned to the calling function or be handled at
the place they occurred.

• It should be clearly documented how to handle critical errors. This means
that there will be situations where a critical error should terminate the
program and other times where a critical error might just create a warning
message onscreen.

• It is considered a good practice to send all error messages to the log service of
your machine because this way the error messages can be examined at a later
time. However, this is not always true, so exercise caution when setting this
up—for example, cloud native apps do not work that way.

Type the following code in your favorite text editor and save it as error.go in the
directory where you put the code for this chapter. Using ch02 as the directory name
is a good idea.

package main

import (
 "errors"
 "fmt"
 "os"
 "strconv"
)

The first part is the preamble of the program—error.go uses the fmt, os, strconv,
and errors packages.

// Custom error message with errors.New()
func check(a, b int) error {

The error data type is actually defined as an interface—interfaces
are covered in Chapter 4, Reflection and Interfaces.

Basic Go Data Types

[50]

 if a == 0 && b == 0 {
 return errors.New("this is a custom error message")
 }
 return nil
}

The preceding code implements a function named check() that returns an error
value. If both input parameters of check() are equal to 0, the function returns a
custom error message using errors.New()—otherwise it returns nil, which means
that everything is OK.

// Custom error message with fmt.Errorf()
func formattedError(a, b int) error {
 if a == 0 && b == 0 {
 return fmt.Errorf("a %d and b %d. UserID: %d", a, b,
os.Getuid())
 }
 return nil
}

The previous code implements formattedError(), which is a function that returns a
formatted error message using fmt.Errorf(). Among other things, the error message
prints the user ID of the user that executed the program with a call to os.Getuid().
When you want to create a custom error message, using fmt.Errorf() gives you
more control over the output.

func main() {
 err := check(0, 10)
 if err == nil {
 fmt.Println("check() ended normally!")
 } else {
 fmt.Println(err)
 }

 err = check(0, 0)
 if err.Error() == "this is a custom error message" {
 fmt.Println("Custom error detected!")
 }

 err = formattedError(0, 0)
 if err != nil {
 fmt.Println(err)
 }

Chapter 2

[51]

 i, err := strconv.Atoi("-123")
 if err == nil {
 fmt.Println("Int value is", i)
 }

 i, err = strconv.Atoi("Y123")
 if err != nil {
 fmt.Println(err)
 }
}

The previous code is the implementation of the main() function where you can
see the use of the if err != nil statement multiple times as well as the use
of if err == nil, which is used to make sure that everything was OK before
executing the desired code.

Running error.go produces the next output:

$ go run error.go
check() ended normally!
Custom error detected!
a 0 and b 0. UserID: 501
Int value is -123
strconv.Atoi: parsing "Y123": invalid syntax

Now that you know about the error data type, how to create custom errors, and
how to use error values, we'll continue with the basic data types of Go that can be
logically divided into two main categories: numeric data types and non-numeric
data types. Go also supports the bool data type, which can have a value of true or
false only.

Numeric data types
Go supports integer, floating-point, and complex number values in various versions
depending on the memory space they consume—this saves memory and computing
time. Integer data types can be either signed or unsigned, which is not the case for
floating point numbers.

Basic Go Data Types

[52]

The table that follows lists the numeric data types of Go.

Data Type Description
int8 8-bit signed integer
int16 16-bit signed integer
int32 32-bit signed integer
int64 64-bit signed integer
int 32- or 64-bit signed integer
uint8 8-bit unsigned integer
uint16 16-bit unsigned integer
uint32 32-bit unsigned integer
uint64 64-bit unsigned integer
uint 32- or 64-bit unsigned integer
float32 32-bit floating-point number
float64 64-bit floating-point number
complex64 Complex number with float32 parts
Complex128 Complex number with float64 parts

The int and uint data types are special as they are the most efficient sizes for signed
and unsigned integers on a given platform and can be either 32 or 64 bits each—their
size is defined by Go itself. The int data type is the most widely used data type in
Go due to its versatility.

The code that follows illustrates the use of numeric data types—you can find
the entire program as numbers.go inside the ch02 directory of the book GitHub
repository.

func main() {
 c1 := 12 + 1i
 c2 := complex(5, 7)
 fmt.Printf("Type of c1: %T\n", c1)
 fmt.Printf("Type of c2: %T\n", c2)

The previous code creates two complex variables in two different ways—both
ways are perfectly valid and equivalent. Unless you are into mathematics, you will
most likely not use complex numbers in your programs. However, the existence of
complex numbers shows how modern Go is.

 var c3 complex64 = complex64(c1 + c2)
 fmt.Println("c3:", c3)
 fmt.Printf("Type of c3: %T\n", c3)

Chapter 2

[53]

 cZero := c3 - c3
 fmt.Println("cZero:", cZero)

The previous code continues to work with complex numbers by adding and
subtracting two pairs of them. Although cZero is equal to zero, it is still a complex
number and a complex64 variable.

 x := 12
 k := 5
 fmt.Println(x)
 fmt.Printf("Type of x: %T\n", x)

 div := x / k
 fmt.Println("div", div)

In this part, we define two integer variables named x and k—their data type is
identified by Go based on their initial values. Both are of type int, which is what Go
prefers to use for storing integer values. Additionally, when you divide two integer
values, you get an integer result even when the division is not perfect. This means
that if this is not what you want, you should take extra care—this is shown in the
next code excerpt:

 var m, n float64
 m = 1.223
 fmt.Println("m, n:", m, n)

 y := 4 / 2.3
 fmt.Println("y:", y)

 divFloat := float64(x) / float64(k)
 fmt.Println("divFloat", divFloat)
 fmt.Printf("Type of divFloat: %T\n", divFloat)
}

The previous code works with float64 values and variables. As n does not have an
initial value, it is automatically assigned with the zero value of its data type, which
is 0 for the float64 data type.

Additionally, the code presents a technique for dividing integer values and getting
a floating-point result, which is the use of float64(): divFloat := float64(x) /
float64(k). This is a type conversion where two integers (x and k) are converted to
float64 values. As the division between two float64 values is a float64 value, we
get the result in the desired data type.

Basic Go Data Types

[54]

Running numbers.go creates the following output:

$ go run numbers.go
Type of c1: complex128
Type of c2: complex128
c3: (17+8i)
Type of c3: complex64
cZero: (0+0i)
12
Type of x: int
div 2
m, n: 1.223 0
y: 1.7391304347826086
divFloat 2.4
Type of divFloat: float64

The output shows that both c1 and c2 are complex128 values, which is the preferred
complex data type for the machine on which the code was executed. However, c3
is a complex64 value because it was created using complex64(). The value of n is
0 because the n variable was not initialized, which means that Go automatically
assigned the zero value of its data type to n.

After learning about numeric data types, it is time to learn about non-numeric data
types, which is the subject of the next section.

Non-numeric data types
Go has support for Strings, Characters, Runes, Dates, and Times. However, Go
does not have a dedicated char data type. We begin by explaining the string-related
data types.

Strings, Characters, and Runes
Go supports the string data type for representing strings. A Go string is just a
collection of bytes and can be accessed as a whole or as an array. A single byte can
store any ASCII character—however, multiple bytes are usually needed for storing a
single Unicode character.

For Go, dates and times are the same thing and are represented by
the same data type. However, it is up to you to determine whether
a time and date variable contains valid information or not.

Chapter 2

[55]

Nowadays, supporting Unicode characters is a common requirement—Go is
designed with Unicode support in mind, which is the main reason for having
the rune data type. A rune is an int32 value that is used for representing a single
Unicode code point, which is an integer value that is used for representing single
Unicode characters or, less frequently, providing formatting information.

You can create a new byte slice from a given string by using a []byte("A String")
statement. Given a byte slice variable b, you can convert it into a string using the
string(b) statement. When working with byte slices that contain Unicode characters,
the number of bytes in a byte slice is not always connected to the number of characters
in the byte slice, because most Unicode characters require more than one byte for
their representation. As a result, when you try to print each single byte of a byte slice
using fmt.Println() or fmt.Print(), the output is not text presented as characters
but integer values. If you want to print the contents of a byte slice as text, you should
either print it using string(byteSliceVar) or using fmt.Printf() with %s to tell fmt.
Printf() that you want to print a string. You can initialize a new byte slice with the
desired string by using a statement such as []byte("My Initialization String").

You can define a rune using single quotes: r := '€' and you can print the integer
value of the bytes that compose it as fmt.Println(r)—in this case, the integer value
is 8364. Printing it as a single Unicode character requires the use of the %c control
string in fmt.Printf().

As strings can be accessed as arrays, you can iterate over the runes of the string
using a for loop or point to a specific character if you know its place in the string.
The length of the string is the same as the number of characters found in the string,
which is usually not true for byte slices because Unicode characters usually require
more than one byte.

The following Go code illustrates the use of strings and runes and how you can
work with strings in your code. You can find the entire program as text.go in the
ch02 directory of the GitHub repository of the book.

Although a rune is an int32 value, you cannot compare a rune
with an int32 value. Go considers these two data types as totally
different.

We will cover byte slices in more detail in the Byte slices section.

Basic Go Data Types

[56]

The first part of the program defines a string literal that contains a Unicode character.
Then it accesses its first character as if the string was an array.

func main() {
 aString := "Hello World! €"
 fmt.Println("First character", string(aString[0]))

The next part is about working with runes.

 // Runes
 // A rune
 r := '€'
 fmt.Println("As an int32 value:", r)
 // Convert Runes to text
 fmt.Printf("As a string: %s and as a character: %c\n", r, r)

 // Print an existing string as runes
 for _, v := range aString {
 fmt.Printf("%x ", v)
 }
 fmt.Println()

First, we define a rune named r. What makes this a rune is the use of single quotes
around the € character. The rune is an int32 value and is printed as such by fmt.
Println(). The %c control string in fmt.Printf() prints a rune as a character.

Then we iterate over aString as a slice or an array using a for loop with range and
print the contents of aString as runes.

 // Print an existing string as characters
 for _, v := range aString {
 fmt.Printf("%c", v)
 }
 fmt.Println()
}

Lastly, we iterate over aString as a slice or an array using a for loop with range and
print the contents of aString as characters.

Running text.go produces the following output:

$ go run text.go
First character H
As an int32 value: 8364

Chapter 2

[57]

As a string: %!s(int32=8364) and as a character: €
48 65 6c 6c 6f 20 57 6f 72 6c 64 21 20 20ac
Hello World! €

The first line of the output shows that we can access a string as an array whereas
the second line verifies that a rune is an integer value. The third line shows what to
expect when you print a rune as a string and as a character—the correct way is to
print it as a character. The fifth line shows how to print a string as runes and the last
line shows the output of processing a string as characters using range and a for loop.

Converting from int to string
You can convert an integer value into a string in two main ways: using string()
and using a function from the strconv package. However, the two methods are
fundamentally different. The string() function converts an integer value into a
Unicode code point, which is a single character, whereas functions such as strconv.
FormatInt() and strconv.Itoa() convert an integer value into a string value with
the same representation and the same number of characters.

This is illustrated in the intString.go program—its most important statements are
the following. You can find the entire program in the GitHub repository of the book.

 input := strconv.Itoa(n)
 input = strconv.FormatInt(int64(n), 10)
 input = string(n)

Running intString.go generates the following kind of output:

$ go run intString.go 100
strconv.Itoa() 100 of type string
strconv.FormatInt() 100 of type string
string() d of type string

The data type of the output is always string, however, string() converted 100 into d
because the ASCII representation of d is 100.

The unicode package
The unicode standard Go package contains various handy functions for working
with Unicode code points. One of them, which is called unicode.IsPrint(), can help
you to identify the parts of a string that are printable using runes.

Basic Go Data Types

[58]

The following code excerpt illustrates the functionality of the unicode package:

 for i := 0; i < len(sL); i++ {
 if unicode.IsPrint(rune(sL[i])) {
 fmt.Printf("%c\n", sL[i])
 } else {
 fmt.Println("Not printable!")
 }
 }

The for loop iterates over the contents of a string defined as a list of runes ("\x99\
x00ab\x50\x00\x23\x50\x29\x9c") while unicode.IsPrint() examines whether the
character is printable or not—if it returns true then a rune is printable.

You can find this code excerpt inside the unicode.go source file at the ch02 directory
in the GitHub repository of the book. Running unicode.go produces the following
output:

Not printable!
Not printable!
a
b
P
Not printable!
#
P
)
Not printable!

This utility is very handy for filtering your input or filtering data before printing it on
screen, storing it in log files, transferring it on a network, or storing it in a database.

The strings package
The strings standard Go package allows you to manipulate UTF-8 strings in Go
and includes many powerful functions. Many of these functions are illustrated in
the useStrings.go source file, which can be found in the ch02 directory of the book
GitHub repository.

If you are working with text and text processing, you definitely
need to learn all the gory details and functions of the strings
package, so make sure that you experiment with all these functions
and create many examples that will help you to clarify things.

Chapter 2

[59]

The most important parts of useStrings.go are the following:

import (
 "fmt"
 s "strings"
 "unicode"
)

var f = fmt.Printf

As we are going to use the strings package multiple times, we create a convenient
alias for it named s. We do the same for the fmt.Printf() function where we create a
global alias using a variable named f. These two shortcuts make code less populated
with long, repeated lines of code. You can use it when learning Go but this is not
recommended in any kind of production software, as it makes code less readable.

The first code excerpt is the following.

f("EqualFold: %v\n", s.EqualFold("Mihalis", "MIHAlis"))
f("EqualFold: %v\n", s.EqualFold("Mihalis", "MIHAli"))

The strings.EqualFold() function compares two strings without considering their
case and returns true when they are the same and false otherwise.

f("Index: %v\n", s.Index("Mihalis", "ha"))
f("Index: %v\n", s.Index("Mihalis", "Ha"))

The strings.Index() function checks whether the string of the second parameter
can be found in the string that is given as the first parameter and returns the index
where it was found for the first time. On an unsuccessful search, it returns -1.

 f("Prefix: %v\n", s.HasPrefix("Mihalis", "Mi"))
 f("Prefix: %v\n", s.HasPrefix("Mihalis", "mi"))
 f("Suffix: %v\n", s.HasSuffix("Mihalis", "is"))
 f("Suffix: %v\n", s.HasSuffix("Mihalis", "IS"))

The strings.HasPrefix() function checks whether the given string, which is the
first parameter, begins with the string that is given as the second parameter. In the
previous code, the first call to strings.HasPrefix() returns true, whereas the second
returns false.

Basic Go Data Types

[60]

Similarly, the strings.HasSuffix() function checks whether the given string ends
with the second string. Both functions take into account the case of the input string
and the case of the second parameter.

 t := s.Fields("This is a string!")
 f("Fields: %v\n", len(t))
 t = s.Fields("ThisIs a\tstring!")
 f("Fields: %v\n", len(t))

The handy strings.Fields() function splits the given string around one or more
white space characters as defined by the unicode.IsSpace() function and returns
a slice of substrings found in the input string. If the input string contains white
characters only, it returns an empty slice.

 f("%s\n", s.Split("abcd efg", ""))
 f("%s\n", s.Replace("abcd efg", "", "_", -1))
 f("%s\n", s.Replace("abcd efg", "", "_", 4))
 f("%s\n", s.Replace("abcd efg", "", "_", 2))

The strings.Split() function allows you to split the given string according to
the desired separator string—the strings.Split() function returns a string slice.
Using "" as the second parameter of strings.Split() allows you to process a string
character by character.

The strings.Replace() function takes four parameters. The first parameter is the
string that you want to process. The second parameter contains the string that,
if found, will be replaced by the third parameter of strings.Replace(). The last
parameter is the maximum number of replacements that are allowed to happen.
If that parameter has a negative value, then there is no limit to the number of
replacements that can take place.

 f("SplitAfter: %s\n", s.SplitAfter("123++432++", "++"))

 trimFunction := func(c rune) bool {
 return !unicode.IsLetter(c)
 }
 f("TrimFunc: %s\n", s.TrimFunc("123 abc ABC \t .", trimFunction))

The strings.SplitAfter() function splits its first parameter string into substrings
based on the separator string that is given as the second parameter to the function.
The separator string is included in the returned slice.

Chapter 2

[61]

The last lines of code define a trim function named trimFunction that is used as the
second parameter to strings.TrimFunc() in order to filter the given input based on
the return value of the trim function—in this case, the trim function keeps all letters
and nothing else due to the unicode.IsLetter() call.

Running useStrings.go produces the next output:

To Upper: HELLO THERE!
To Lower: hello there
THis WiLL Be A Title!
EqualFold: true
EqualFold: false
Prefix: true
Prefix: false
Suffix: true
Suffix: false
Index: 2
Index: -1
Count: 2
Count: 0
Repeat: ababababab
TrimSpace: This is a line.
TrimLeft: This is a line.
TrimRight: This is a line.
Compare: 1
Compare: 0
Compare: -1
Fields: 4
Fields: 3
[a b c d e f g]
_a_b_c_d_ _e_f_g_
_a_b_c_d efg
_a_bcd efg
Join: Line 1+++Line 2+++Line 3
SplitAfter: [123++ 432++]
TrimFunc: abc ABC

Visit the documentation page of the strings package at https://golang.org/pkg/
strings/ for the complete list of available functions. You will see the functionality of
the strings package in other places in this book.

https://golang.org/pkg/strings/
https://golang.org/pkg/strings/

Basic Go Data Types

[62]

Enough with strings and text; the next section is about working with dates and times
in Go.

Times and dates
Often, we need to work with date and time information to store the time an entry
was last used in a database or the time an entry was inserted into a database, which
brings us to another interesting topic: working with dates and times in Go.

The king of working with times and dates in Go is the time.Time data type, which
represents an instant in time with nanosecond precision. Each time.Time value is
associated with a location (time zone).

If you are a UNIX person, you might already know about the UNIX epoch time and
wonder how to get it in Go. The time.Now().Unix() function returns the popular
UNIX epoch time, which is the number of seconds that have elapsed since 00:00:00
UTC, January 1, 1970. If you want to convert the UNIX time to the equivalent time.
Time value, you can use the time.Unix() function. If you are not a UNIX person, then
you might not have heard about the UNIX epoch time before but now you know
what it is!

The single most important topic about Go and dates and times is the way Go parses a
string in order to convert it into a date and a time. The reason that this is important is
usually such input is given as a string and not as a valid date variable. The function
used for parsing is time.Parse() and its full signature is Parse(layout, value
string) (Time, error), where layout is the parse string and value is the input
that is being parsed. The time.Time value that is returned is a moment in time with
nanosecond precision and contains both date and time information.

The next table shows the most widely used strings for parsing dates and times.

The time.Since() function calculates the time that has passed
since a given time and returns a time.Duration variable—
the duration data type is defined as type Duration int64.
Although a Duration is, in reality, an int64 value, you cannot
compare or convert a duration to an int64 value implicitly
because Go does not allow implicit data type conversions.

Chapter 2

[63]

Parse Value Meaning (examples)
05 12-hour value (12pm, 07am)
15 24-hour value (23, 07)
04 Minutes (55, 15)
05 Seconds (5, 23)
Mon Abbreviated day of week (Tue, Fri)
Monday Day of week (Tuesday, Friday)
02 Day of month (15, 31)
2006 Year with 4 digits (2020, 2004)
06 Year with the last 2 digits (20, 04)
Jan Abbreviated month name (Feb, Mar)
January Full month name (July, August)
MST Time zone (EST, UTC)

The previous table shows that if you want to parse the 30 January 2020 string and
convert it into a Go date variable, you should match it against the 02 January 2006
string—you cannot use anything else in its place when matching a string with
the 30 January 2020 format. Similarly, if you want to parse the 15 August 2020
10:00 string, you should match it against the 02 January 2006 15:04 string. The
documentation of the time package (https://golang.org/pkg/time/) contains
even more detailed information about parsing dates and times—however, the
ones presented here should be more than enough for regular use.

A utility for parsing dates and times
On a rare occasion, a situation can happen when we do not know anything about
our input. If you do not know the exact format of your input, then you need to try
matching your input against multiple Go strings without being sure that you are
going to succeed in the end. This is the approach that the example uses. The Go
matching strings for dates and times can be tried in any order.

If you are matching a string that only contains the date, then your time will be set
to 00:00 by Go and will most likely be incorrect. Similarly, when matching the time
only, your date will be incorrect and should not be used.

https://golang.org/pkg/time/

Basic Go Data Types

[64]

The code that follows illustrates how to work with epoch time in Go and showcases
the parsing process—create a text file, type the following code, and save it as
dates.go.

package main

import (
 "fmt"
 "os"
 "time"
)

This is the expected preamble of the Go source file.

func main() {
 start := time.Now()

 if len(os.Args) != 2 {
 fmt.Println("Usage: dates parse_string")
 return
 }
 dateString := os.Args[1]

This is how we get user input that is stored in the dateString variable. If the utility
gets no input, there is no point in continuing its operation.

 // Is this a date only?
 d, err := time.Parse("02 January 2006", dateString)
 if err == nil {
 fmt.Println("Full:", d)
 fmt.Println("Time:", d.Day(), d.Month(), d.Year())
 }

The first test is for matching a date only using the 02 January 2006 format. If the
match is successful, you can access the individual fields of a variable that holds a
valid date using Day(), Month(), and Year().

The formatting strings can be also used for printing dates and
times in the desired format. So in order to print the current
date in the 01-02-2006 format, you should use time.Now().
Format("01-02-2006").

Chapter 2

[65]

 // Is this a date + time?
 d, err = time.Parse("02 January 2006 15:04", dateString)
 if err == nil {
 fmt.Println("Full:", d)
 fmt.Println("Date:", d.Day(), d.Month(), d.Year())
 fmt.Println("Time:", d.Hour(), d.Minute())
 }

This time we try to match a string using "02 January 2006 15:04", which contains a
date and a time value. If the match is successful, you can access the fields of a valid
time using Hour() and Minute().

 // Is this a date + time with month represented as a number?
 d, err = time.Parse("02-01-2006 15:04", dateString)
 if err == nil {
 fmt.Println("Full:", d)
 fmt.Println("Date:", d.Day(), d.Month(), d.Year())
 fmt.Println("Time:", d.Hour(), d.Minute())
 }

This time we try to match against the "02-01-2006 15:04" format, which contains
both a date and a time. Note that it is compulsory that the string that is being
examined contains the - and the : characters as specified in the time.Parse() call
and that "02-01-2006 15:04" is different from "02/01/2006 1504".

 // Is it time only?
 d, err = time.Parse("15:04", dateString)
 if err == nil {
 fmt.Println("Full:", d)
 fmt.Println("Time:", d.Hour(), d.Minute())
 }

The last match is for time only using the "15:04" format. Note that the : should exist
in the string that is being examined.

 t := time.Now().Unix()
 fmt.Println("Epoch time:", t)
 // Convert Epoch time to time.Time
 d = time.Unix(t, 0)
 fmt.Println("Date:", d.Day(), d.Month(), d.Year())
 fmt.Printf("Time: %d:%d\n", d.Hour(), d.Minute())

Basic Go Data Types

[66]

 duration := time.Since(start)
 fmt.Println("Execution time:", duration)
}

The last part of dates.go shows how to work with UNIX epoch time. You get the
current date and time in epoch time using time.Now().Unix() and you can convert
that to a time.Time value using a call to time.Unix().

Lastly, you can calculate the time duration between the current time and a time in
the past using a call to time.Since().

Running dates.go creates the following kind of output, depending on its input:

$ go run dates.go
Usage: dates parse_string
$ go run dates.go 14:10
Full: 0000-01-01 14:10:00 +0000 UTC
Time: 14 10
Epoch time: 1607964956
Date: 14 December 2020
Time: 18:55
Execution time: 163.032µs
$ go run dates.go "14 December 2020"
Full: 2020-12-14 00:00:00 +0000 UTC
Time: 14 December 2020
Epoch time: 1607964985
Date: 14 December 2020
Time: 18:56
Execution time: 180.029µs

Now that we know how to work with dates and times, it is time to learn more about
time zones.

If a command-line argument such as 14 December 2020 contains
space characters, you should put it in double quotes for the UNIX
shell to treat it as a single command-line argument. Running go
run dates.go 14 December 2020 does not work.

Chapter 2

[67]

Working with different time zones
The presented utility accepts a date and a time and converts them into different time
zones. This can be particularly handy when you want to preprocess log files from
different sources that use different time zones in order to convert these different
time zones into a common one.

Once again, you need time.Parse() in order to convert a valid input into a time.Time
value before doing the conversions. This time the input string contains the time zone
and is parsed by the "02 January 2006 15:04 MST" string.

In order to convert the parsed date and time into New York time, the program uses
the following code:

 loc, _ = time.LoadLocation("America/New_York")
 fmt.Printf("New York Time: %s\n", now.In(loc))

This technique is used multiple times in convertTimes.go.

Running convertTimes.go generates the following output:

$ go run convertTimes.go "14 December 2020 19:20 EET"
Current Location: 2020-12-14 19:20:00 +0200 EET
New York Time: 2020-12-14 12:20:00 -0500 EST
London Time: 2020-12-14 17:20:00 +0000 GMT
Tokyo Time: 2020-12-15 02:20:00 +0900 JST
$ go run convertTimes.go "14 December 2020 20:00 UTC"
Current Location: 2020-12-14 22:00:00 +0200 EET
New York Time: 2020-12-14 15:00:00 -0500 EST
London Time: 2020-12-14 20:00:00 +0000 GMT
Tokyo Time: 2020-12-15 05:00:00 +0900 JST
$ go run convertTimes.go "14 December 2020 25:00 EET"
parsing time "14 December 2020 25:00": hour out of range

In the last execution of the program, the code has to parse 25 as the hour of the day,
which is wrong and generates the hour out of range error message.

Go constants
Go supports constants, which are variables that cannot change their values.
Constants in Go are defined with the help of the const keyword. Generally speaking,
constants can be either global or local variables.

Basic Go Data Types

[68]

However, you might need to rethink your approach if you find yourself defining
too many constant variables with a local scope. The main benefit you get from using
constants in your programs is the guarantee that their value will not change during
program execution. Strictly speaking, the value of a constant variable is defined at
compile time, not at runtime—this means that it is included in the binary executable.
Behind the scenes, Go uses Boolean, string, or number as the type for storing
constant values because this gives Go more flexibility when dealing with constants.

The next subsection discusses the constant generator iota, which is a handy way of
creating sequences of constants.

The constant generator iota
The constant generator iota is used for declaring a sequence of related values that
use incrementing numbers without the need to explicitly type each one of them.

The concepts related to the const keyword, including the constant generator iota,
are illustrated in the constants.go file.

package main

import (
 "fmt"
)

type Digit int
type Power2 int

const PI = 3.1415926

const (
 C1 = "C1C1C1"
 C2 = "C2C2C2"
 C3 = "C3C3C3"
)

In this part, we declare two new types named Digit and Power2 that will be used in
a while, and four new constants named PI, C1, C2, and C3.

Chapter 2

[69]

func main() {
 const s1 = 123
 var v1 float32 = s1 * 12
 fmt.Println(v1)
 fmt.Println(PI)

 const (
 Zero Digit = iota
 One
 Two
 Three
 Four
)

The previous code defines a constant named s1. Here you also see the definition of a
constant generator iota based on Digit, which is equivalent to the next declaration of
four constants:

const (
 Zero = 0
 One = 1
 Two = 2
 Three = 3
 Four = 4
)

The last part of constants.go is as follows.

 fmt.Println(One)
 fmt.Println(Two)

A Go type is a way of defining a new named type that uses the
same underlying type as an existing type. This is mainly used for
differentiating between different types that might use the same
kind of data. The type keyword can be used for defining structures
and interfaces.

Although we are defining constants inside main(), constants can
be normally found outside of main() or any other function or
method.

Basic Go Data Types

[70]

 const (
 p2_0 Power2 = 1 << iota
 _
 p2_2
 _
 p2_4
 _
 p2_6
)

 fmt.Println("2^0:", p2_0)
 fmt.Println("2^2:", p2_2)
 fmt.Println("2^4:", p2_4)
 fmt.Println("2^6:", p2_6)
}

There is another constant generator iota here that is a little different than the
previous one. Firstly, you can see the use of the underscore character in a const block
with a constant generator iota, which allows you to skip unwanted values. Secondly,
the value of iota always increments and can be used in expressions, which is what
occurred in this case.

Now let us see what really happens inside the const block. For p2_0, iota has
the value of 0 and p2_0 is defined as 1. For p2_2, iota has the value of 2 and p2_2
is defined as the result of the expression 1 << 2, which is 00000100 in binary
representation. The decimal value of 00000100 is 4, which is the result and the value
of p2_2. Analogously, the value of p2_4 is 16 and the value of p2_6 is 64.

Running constants.go produces the next output:

$ go run constants.go
1476
3.1415926
1
2
2^0: 1
2^2: 4
2^4: 16
2^6: 64

Having data is good but what happens when you have lots of similar data? Do you
need to have lots of variables to hold this data or is there a better way to do so? Go
answers these questions by introducing arrays and slices.

Chapter 2

[71]

Grouping similar data
There are times when you want to keep multiple values of the same data type under
a single variable and access them using an index number. The simplest way to do
that in Go is by using arrays or slices.

Arrays are the most widely used data structures and can be found in almost all
programming languages due to their simplicity and speed of access. Go provides
an alternative to arrays that is called a slice. The subsections that follow help you
understand the differences between arrays and slices so that you know which data
structure to use and when.

Arrays
Arrays in Go have the following characteristics and limitations:

• When defining an array variable, you must define its size. Otherwise, you
should put [...] in the array declaration and let the Go compiler find out
the length for you. So you can create an array with 4 string elements either
as [4]string{"Zero", "One", "Two", "Three"} or as [...]string{"Zero",
"One", "Two", "Three"}. If you put nothing in the square brackets, then a
slice is going to be created instead. The (valid) indexes for that particular
array are 0, 1, 2, and 3.

• You cannot change the size of an array after you have created it.
• When you pass an array to a function, what is happening is that Go creates

a copy of that array and passes that copy to that function—therefore any
changes you make to an array inside a function are lost when the function
returns.

As a result, arrays in Go are not very powerful, which is the main reason that Go has
introduced an additional data structure named slice that is similar to an array but
is dynamic in nature and is explained in the next subsection. However, data in both
arrays and slices is accessed the same way.

The quick answer is that you can use slices instead of arrays almost
anywhere in Go but we are also demonstrating arrays because they
can still be useful and because slices are implemented by Go using
arrays!

Basic Go Data Types

[72]

Slices
Slices in Go are more powerful than arrays mainly because they are dynamic, which
means that they can grow or shrink after creation if needed. Additionally, any
changes you make to a slice inside a function also affect the original slice. But how
does this happen? Strictly speaking, all parameters in Go are passed by value—there is
no other way to pass parameters in Go.

In reality, a slice value is a header that contains a pointer to an underlying array
where the elements are actually stored, the length of the array, and its capacity—
the capacity of a slice is explained in the next subsection. Note that the slice value
does not include its elements, just a pointer to the underlying array. So, when
you pass a slice to a function, Go makes a copy of that header and passes it to the
function. This copy of the slice header includes the pointer to the underlying array.
That slice header is defined in the reflect package (https://golang.org/pkg/
reflect/#SliceHeader) as follows:

type SliceHeader struct {
 Data uintptr
 Len int
 Cap int
}

A side effect of passing the slice header is that it is faster to pass a slice to a function
because Go does not need to make a copy of the slice and its elements, just the slice
header.

You can create a slice using make() or like an array without specifying its size or
using [...]. If you do not want to initialize a slice, then using make() is better and
faster. However, if you want to initialize it at the time of creation, then make() cannot
help you. As a result, you can create a slice with three float64 elements as aSlice :=
[]float64{1.2, 3.2, -4.5}. Creating a slice with space for three float64 elements
with make() is as simple as executing make([]float64, 3). Each element of that slice
has a value of 0, which is the zero value of the float64 data type.

Both slices and arrays can have many dimensions—creating a slice with two
dimensions with make() is as simple as writing make([][]int, 2). This returns a slice
with two dimensions where the first dimension is 2 (rows) and the second dimension
(columns) is unspecified and should be explicitly specified when adding data to it.

If you want to define and initialize a slice with two dimensions at the same time, you
should execute something similar to twoD := [][]int{{1, 2, 3}, {4, 5, 6}}.

https://golang.org/pkg/reflect/#SliceHeader
https://golang.org/pkg/reflect/#SliceHeader

Chapter 2

[73]

You can find the length of an array or a slice using len(). As you will find out in the
next subsection, slices have an additional property named capacity. You can add new
elements to a full slice using the append() function. append() automatically allocates
the required memory space.

The example that follows clarifies many things about slices—feel free to experiment
with it. Type the following code and save it as goSlices.go.

package main

import "fmt"

func main() {
 // Create an empty slice
 aSlice := []float64{}
 // Both length and capacity are 0 because aSlice is empty
 fmt.Println(aSlice, len(aSlice), cap(aSlice))

 // Add elements to a slice
 aSlice = append(aSlice, 1234.56)
 aSlice = append(aSlice, -34.0)
 fmt.Println(aSlice, "with length", len(aSlice))

The append() commands add two new elements to aSlice. You should save the
return value of append() to an existing variable or a new one.

 // A slice with length 4
 t := make([]int, 4)
 t[0] = -1
 t[1] = -2
 t[2] = -3
 t[3] = -4
 // Now you will need to use append
 t = append(t, -5)
 fmt.Println(t)

Once a slice has no place left for more elements, you should add new elements to it
using append().

 // A 2D slice
 // You can have as many dimensions as needed
 twoD := [][]int{{1, 2, 3}, {4, 5, 6}}

Basic Go Data Types

[74]

 // Visiting all elements of a 2D slice
 // with a double for loop
 for _, i := range twoD {
 for _, k := range i {
 fmt.Print(k, " ")
 }
 fmt.Println()
 }

The previous code shows how to create a 2D slice variable named twoD and initialize
it at the same time.

 make2D := make([][]int, 2)
 fmt.Println(make2D)
 make2D[0] = []int{1, 2, 3, 4}
 make2D[1] = []int{-1, -2, -3, -4}
 fmt.Println(make2D)
}

The previous part shows how to create a 2D slice with make(). What makes the
make2D a 2D slice is the use of [][]int in make().

Running goSlices.go produces the next output:

$ go run goSlices.go
[] 0 0
[1234.56 -34] with length 2
[-1 -2 -3 -4 -5]
1 2 3
4 5 6
[[] []]
[[1 2 3 4] [-1 -2 -3 -4]]

Chapter 2

[75]

About slice length and capacity
Both arrays and slices support the len() function for finding out their length.
However, slices also have an additional property called capacity that can be found
using the cap() function.

The capacity shows how much a slice can be expanded without the need to allocate
more memory and change the underlying array. Although after slice creation
the capacity of a slice is handled by Go, a developer can define the capacity of a
slice at creation time using the make() function—after that the capacity of the slice
doubles each time the length of the slice is about to become bigger than its current
capacity. The first argument of make() is the type of the slice and its dimensions,
the second is its initial length and the third, which is optional, is the capacity of the
slice. Although the data type of a slice cannot change after creation, the other two
properties can change.

But what happens when you want to append a slice or an array to an existing slice?
Should you do that element by element? Go supports the ... operator, which is used
for exploding a slice or an array into multiple arguments before appending it to an
existing slice.

The capacity of a slice is really important when you want to select a
part of a slice or when you want to reference an array using a slice.
Both subjects will be discussed over the next few sections.

Writing something like make([]int, 3, 2) generates an error
message because at any given time the capacity of a slice (2) cannot
be smaller than its length (3).

Basic Go Data Types

[76]

The figure that follows illustrates with a graphical representation how length and
capacity work in slices.

Figure 2.1: How slice length and capacity are related

For those of you that prefer code, here is a small Go program that showcases the
length and capacity properties of slices. Type it and save it as capLen.go.

package main

import "fmt"

func main() {
 // Only length is defined. Capacity = length
 a := make([]int, 4)

Chapter 2

[77]

In this case, the capacity of a is the same as its length, which is 4.

 fmt.Println("L:", len(a), "C:", cap(a))
 // Initialize slice. Capacity = length
 b := []int{0, 1, 2, 3, 4}
 fmt.Println("L:", len(b), "C:", cap(b))

Once again, the capacity of slice b is the same as its length, which is 5.

 // Same length and capacity
 aSlice := make([]int, 4, 4)
 fmt.Println(aSlice)

This time the capacity of slice aSlice is the same as its length, not because Go
decided to do so but because we specified it.

 // Add an element
 aSlice = append(aSlice, 5)

When you add a new element to slice aSlice, its capacity is doubled and becomes 8.

 fmt.Println(aSlice)
 // The capacity is doubled
 fmt.Println("L:", len(aSlice), "C:", cap(aSlice))
 // Now add four elements
 aSlice = append(aSlice, []int{-1, -2, -3, -4}...)

The ... operator expands []int{-1, -2, -3, -4} into multiple arguments and
append() appends each argument one by one to aSlice.

 fmt.Println(aSlice)
 // The capacity is doubled
 fmt.Println("L:", len(aSlice), "C:", cap(aSlice))
}

Running capLen.go produces the next output:

$ go run capLen.go
L: 4 C: 4
L: 5 C: 5
[0 0 0 0]

Basic Go Data Types

[78]

[0 0 0 0 5]
L: 5 C: 8
[0 0 0 0 5 -1 -2 -3 -4]
L: 9 C: 16

Working with slices is good but what happens when you want to work with a
continuous part of an existing slice? Is there a practical way to select a part of a slice?
Fortunately, the answer is yes—the next subsection sheds some light on selecting a
continuous part of a slice.

Selecting a part of a slice
Go allows you to select parts of a slice, provided that all desired elements are next
to each other. This can be pretty handy when you select a range of elements and
you do not want to give their indexes one by one. In Go you select a part of a slice
by defining two indexes, the first one is the beginning of the selection whereas the
second one is the end of the selection, without including the element at that index,
separated by :.

However, there is a variation where you can add a third parameter that controls the
capacity of the resulting slice. So, using aSlice[0:2:4] selects the first 2 elements
of a slice (at indexes 0 and 1) and creates a new slice with a maximum capacity of
4. The resulting capacity is defined as the result of the 4-0 subtraction where 4 is
the maximum capacity and 0 is the first index—if the first index is omitted, it is
automatically set to 0. In this case, the capacity of the result slice will be 4 because
4-0 equals 4.

If we would have used aSlice[2:4:4], we would have created a new slice with the
aSlice[2] and aSlice[3] elements and with a capacity of 4-2. Lastly, the resulting
capacity cannot be bigger than the capacity of the original slice because in that case,
you would need a different underlying array.

Setting the correct capacity of a slice, if known in advance, will
make your programs faster because Go will not have to allocate a
new underlying array and have all the data copied over.

If you want to process all the command-line arguments of a utility
apart from the first one, which is its name, you can assign it to a
new variable (arguments := os.Args) for ease of use and use the
arguments[1:] notation to skip the first command-line argument.

Chapter 2

[79]

Type the following code using your favorite editor and save it as partSlice.go.

package main
import "fmt"

func main() {
 aSlice := []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 fmt.Println(aSlice)
 l := len(aSlice)

 // First 5 elements
 fmt.Println(aSlice[0:5])
 // First 5 elements
 fmt.Println(aSlice[:5])

In this first part, we define a new slice named aSlice that has 10 elements. Its
capacity is the same as its length. Both 0:5 and :5 notations select the first 5 elements
of the slice, which are the elements found at indexes 0, 1, 2, 3, and 4.

 // Last 2 elements
 fmt.Println(aSlice[l-2 : l])
 // Last 2 elements
 fmt.Println(aSlice[l-2:])

Given the length of the slice (l), we can select the last two elements of the slice either
as l-2 : l or as l-2:.

 // First 5 elements
 t := aSlice[0:5:10]
 fmt.Println(len(t), cap(t))
 // Elements at indexes 2,3,4
 // Capacity will be 10-2
 t = aSlice[2:5:10]
 fmt.Println(len(t), cap(t))

Initially, the capacity of t will be 10-0, which is 10. In the second case, the capacity
of t will be 10-2.

 // Elements at indexes 0,1,2,3,4
 // New capacity will be 6-0
 t = aSlice[:5:6]
 fmt.Println(len(t), cap(t))
}

Basic Go Data Types

[80]

The capacity of t is now 6-0 and its length is going to be 5 because we have selected
the first 5 elements of slice aSlice.

Running partSlice.go generates the next output:

$ go run partSlice.go
[0 1 2 3 4 5 6 7 8 9]

The previous line is the output of fmt.Println(aSlice).

[0 1 2 3 4]
[0 1 2 3 4]

The previous two lines are generated from fmt.Println(aSlice[0:5]) and fmt.
Println(aSlice[:5]).

[8 9]
[8 9]

Analogously, the previous two lines are generated from fmt.Println(aSlice[l-2 :
l]) and fmt.Println(aSlice[l-2:]).

5 10
3 8
5 6

The last three lines print the length and the capacity of aSlice[0:5:10],
aSlice[2:5:10] and aSlice[:5:6].

Byte slices
A byte slice is a slice of the byte data type ([]byte). Go knows that most byte slices
are used to store strings and so makes it easy to switch between this type and the
string type. There is nothing special in the way you can access a byte slice compared
to the other types of slices. What is special is that Go uses byte slices for performing
file I/O operations because they allow you to determine with precision the amount
of data you want to read or write to a file. This happens because bytes are a universal
unit among computer systems.

As Go does not have a char data type, it uses byte and rune for
storing character values. A single byte can only store a single
ASCII character whereas a rune can store Unicode characters.
However, a rune can occupy multiple bytes.

Chapter 2

[81]

The small program that follows illustrates how you can convert a byte slice into a
string and vice versa, which you need for most File I/O operations—type it and
save it as byteSlices.go.

package main

import "fmt"

func main() {
 // Byte slice
 b := make([]byte, 12)
 fmt.Println("Byte slice:", b)

An empty byte slice contains zeros—in this case, 12 zeros.

 b = []byte("Byte slice €")
 fmt.Println("Byte slice:", b)

In this case, the size of b is the size of the string "Byte slice €", without the double
quotes—b now points to a different memory location than before, which is where
"Byte slice €" is stored. This is how you convert a string into a byte slice.

As Unicode characters like € need more than one byte for their representation, the
length of the byte slice might not be the same as the length of the string that it stores.

 // Print byte slice contents as text
 fmt.Printf("Byte slice as text: %s\n", b)
 fmt.Println("Byte slice as text:", string(b))

The previous code shows how to print the contents of a byte slice as text using two
techniques. The first one is by using the %s control string and the second one using
string().

 // Length of b
 fmt.Println("Length of b:", len(b))
}

The previous code prints the real length of the byte slice.

Basic Go Data Types

[82]

Running byteSlices.go produces the next output:

$ go run byteSlices.go
Byte slice: [0 0 0 0 0 0 0 0 0 0 0 0]
Byte slice: [66 121 116 101 32 115 108 105 99 101 32 226 130 172]
Byte slice as text: Byte slice €
Byte slice as text: Byte slice €
Length of b: 14

The last line of the output proves that although the b byte slice has 12 characters, it
has a size of 14.

Deleting an element from a slice
There is no default function for deleting an element from a slice, which means that if
you need to delete an element from a slice, you must write your own code. Deleting
an element from a slice can be tricky, so this subsection presents two techniques for
doing so. The first technique virtually divides the original slice into two slices, split
at the index of the element that needs to be deleted. Neither of the two slices includes
the element that is going to be deleted. After that, we concatenate these two slices
and creates a new one. The second technique copies the last element at the place of
the element that is going to be deleted and creates a new slice by excluding the last
element from the original slice.

The next figure shows a graphical representation of the two techniques for deleting
an element from a slice.

Chapter 2

[83]

Figure 2.2: Deleting an element from a slice

Basic Go Data Types

[84]

The following program shows the two techniques that can be used for deleting
an element from a slice. Create a text file by typing the following code—save it as
deleteSlice.go.

package main

import (
 "fmt"
 "os"
 "strconv"
)

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Need an integer value.")
 return
 }

 index := arguments[1]
 i, err := strconv.Atoi(index)
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Println("Using index", i)

 aSlice := []int{0, 1, 2, 3, 4, 5, 6, 7, 8}
 fmt.Println("Original slice:", aSlice)

 // Delete element at index i
 if i > len(aSlice)-1 {
 fmt.Println("Cannot delete element", i)
 return
 }

 // The ... operator auto expands aSlice[i+1:] so that
 // its elements can be appended to aSlice[:i] one by one
 aSlice = append(aSlice[:i], aSlice[i+1:]...)
 fmt.Println("After 1st deletion:", aSlice)

Chapter 2

[85]

Here we logically divide the original slice into two slices. The two slices are split at
the index of the element that needs to be deleted. After that, we concatenate these
two slices with the help of Next, we see the second technique in action.

 // Delete element at index i
 if i > len(aSlice)-1 {
 fmt.Println("Cannot delete element", i)
 return
 }

 // Replace element at index i with last element
 aSlice[i] = aSlice[len(aSlice)-1]
 // Remove last element
 aSlice = aSlice[:len(aSlice)-1]
 fmt.Println("After 2nd deletion:", aSlice)
}

We replace the element that we want to delete with the last element using the
aSlice[i] = aSlice[len(aSlice)-1] statement and then we remove the last
element with the aSlice = aSlice[:len(aSlice)-1] statement.

Running deleteSlice.go produces the following kind of output, depending on
your input:

$ go run deleteSlice.go 1
Using index 1
Original slice: [0 1 2 3 4 5 6 7 8]
After 1st deletion: [0 2 3 4 5 6 7 8]
After 2nd deletion: [0 8 3 4 5 6 7]

As the slice has 9 elements, you can delete the element at index value 1.

$ go run deleteSlice.go 10
Using index 10
Original slice: [0 1 2 3 4 5 6 7 8]
Cannot delete element 10

As the slice has only 9 elements, you cannot delete an element with an index value of
10 from the slice.

Basic Go Data Types

[86]

How slices are connected to arrays
As mentioned before, behind the scenes, each slice is implemented using an
underlying array. The length of the underlying array is the same as the capacity of
the slice and there exist pointers that connect the slice elements to the appropriate
array elements.

You can understand that by connecting an existing array with a slice, Go allows
you to reference an array or a part of an array using a slice. This has some strange
capabilities including the fact that the changes to the slice affect the referenced array!
However, when the capacity of the slice changes, the connection to the array ceases
to exist! This happens because when the capacity of a slice changes, so does the
underlying array, and the connection between the slice and the original array does
not exist anymore.

Type the following code and save it as sliceArrays.go.

package main

import (
 "fmt"
)

func change(s []string) {
 s[0] = "Change_function"
}

This is a function that changes the first element of a slice.

func main() {
 a := [4]string{"Zero", "One", "Two", "Three"}
 fmt.Println("a:", a)

Here we define an array named a with 4 elements.

 var S0 = a[0:1]
 fmt.Println(S0)
 S0[0] = "S0"

Here we connect S0 with the first element of the array a and we print it. Then we
change the value of S0[0].

 var S12 = a[1:3]
 fmt.Println(S12)

Chapter 2

[87]

 S12[0] = "S12_0"
 S12[1] = "S12_1"

In this part, we associate S12 with a[1] and a[2]. Therefore S12[0] = a[1] and S12[1]
= a[2]. Then, we change the values of both S12[0] and S12[1]. These two changes
will also change the contents of a. Put simply, a[1] takes the new value of S12[0] and
a[2] takes the new value of S12[1].

 fmt.Println("a:", a)

And we print variable a, which has not changed at all in a direct way. However, due
to the connections of a with S0 and S12, the contents of a have changed!

 // Changes to slice -> changes to array
 change(S12)
 fmt.Println("a:", a)

As the slice and the array are connected, any changes you make to the slice will also
affect the array even if the changes take place inside a function.

 // capacity of S0
 fmt.Println("Capacity of S0:", cap(S0), "Length of S0:", len(S0))

 // Adding 4 elements to S0
 S0 = append(S0, "N1")
 S0 = append(S0, "N2")
 S0 = append(S0, "N3")
 a[0] = "-N1"

As the capacity of S0 changes, it is no longer connected to the same underlying array
(a).

 // Changing the capacity of S0
 // Not the same underlying array anymore!
 S0 = append(S0, "N4")

 fmt.Println("Capacity of S0:", cap(S0), "Length of S0:", len(S0))
 // This change does not go to S0
 a[0] = "-N1-"

 // This change does not go to S12
 a[1] = "-N2-"

Basic Go Data Types

[88]

However, array a and slice S12 are still connected because the capacity of S12 has not
changed.

 fmt.Println("S0:", S0)
 fmt.Println("a: ", a)
 fmt.Println("S12:", S12)
}

Lastly, we print the final versions of a, S0, and S12.

Running sliceArrays.go produces the following output:

$ go run sliceArrays.go
a: [Zero One Two Three]
[Zero]
[One Two]
a: [S0 S12_0 S12_1 Three]
a: [S0 Change_function S12_1 Three]
Capacity of S0: 4 Length of S0: 1
Capacity of S0: 8 Length of S0: 5
S0: [-N1 N1 N2 N3 N4]
a: [-N1- -N2- N2 N3]
S12: [-N2- N2]

Let us now discuss the use of the copy() function in the next subsection.

The copy() function
Go offers the copy() function for copying an existing array to a slice or an existing
slice to another slice. However, the use of copy() can be tricky because the
destination slice is not auto-expanded if the source slice is bigger than the destination
slice. Additionally, if the destination slice is bigger than the source slice, then copy()
does not empty the elements from the destination slice that did not get copied. This
is better illustrated in the figure that follows.

Chapter 2

[89]

Figure 2.3: The use of the copy() function

The following program illustrates the use of copy()—type it in your favorite text
editor and save it as copySlice.go.

package main

import "fmt"

func main() {
 a1 := []int{1}
 a2 := []int{-1, -2}
 a5 := []int{10, 11, 12, 13, 14}
 fmt.Println("a1", a1)
 fmt.Println("a2", a2)
 fmt.Println("a5", a5)
 // copy(destination, input)
 // len(a2) > len(a1)
 copy(a1, a2)
 fmt.Println("a1", a1)
 fmt.Println("a2", a2)

Here we run the copy(a1, a2) command. In this case, the a2 slice is bigger than a1.
After copy(a1, a2), a2 remains the same, which makes perfect sense as a2 is the
input slice, whereas the first element of a2 is copied to the first element of a1 because
a1 has space for a single element only.

 // len(a5) > len(a1)
 copy(a1, a5)
 fmt.Println("a1", a1)
 fmt.Println("a5", a5)

Basic Go Data Types

[90]

In this case, a5 is bigger than a1. Once again, after copy(a1, a5), a5 remains the same
whereas a5[0] is copied to a1[0].

 // len(a2) < len(a5) -> OK
 copy(a5, a2)
 fmt.Println("a2", a2)
 fmt.Println("a5", a5)
}

In this last case, a2 is shorter than a5. This means that the entire a2 is copied into a5.
As the length of a2 is 2, only the first 2 elements of a5 change.

Running copySlice.go produces the next output:

$ go run copySlice.go
a1 [1]
a2 [-1 -2]
a5 [10 11 12 13 14]
a1 [-1]
a2 [-1 -2]

The copy(a1, a2) statement does not alter the a2 slice, just a1. As the size of a1 is 1,
only the first element from a2 is copied.

a1 [10]
a5 [10 11 12 13 14]

Similarly, copy(a1, a5) alters a1 only. As the size of a1 is 1, only the first element
from a5 is copied to a1.

a2 [-1 -2]
a5 [-1 -2 12 13 14]

Last, copy(a5, a2) alters a5 only. As the size of a5 is 5, only the first two elements
from a5 are altered and become the same as the first two elements of a2, which has
a size of 2.

Sorting slices
There are times when you want to present your information sorted and you want
Go to do the job for you. In this subsection, we'll see how to sort slices of various
standard data types using the functionality offered by the sort package.

Chapter 2

[91]

The sort package can sort slices of built-in data types without the need to write any
extra code. Additionally, Go provides the sort.Reverse() function for sorting in the
reverse order than the default. However, what is really interesting is that sort allows
you to write your own sorting functions for custom data types by implementing the
sort.Interface interface—you will learn more about the sort.Interface interface
and interfaces in general in Chapter 4, Reflection and Interfaces.

So, you can sort a slice of integers saved as sInts by typing sort.Ints(sInts).
When sorting a slice of integers in reverse order using sort.Reverse(), you need to
pass the desired slice to sort.Reverse() using sort.IntSlice(sInts) because the
IntSlice type implements the sort.Interface internally, which allows you to sort in
a different way than usual. The same applies to the other standard Go data types.

Create a text file with the code that illustrates the use of sort and name it
sortSlice.go.

package main

import (
 "fmt"
 "sort"
)

func main() {
 sInts := []int{1, 0, 2, -3, 4, -20}
 sFloats := []float64{1.0, 0.2, 0.22, -3, 4.1, -0.1}
 sStrings := []string{"aa", "a", "A", "Aa", "aab", "AAa"}

 fmt.Println("sInts original:", sInts)
 sort.Ints(sInts)
 fmt.Println("sInts:", sInts)
 sort.Sort(sort.Reverse(sort.IntSlice(sInts)))
 fmt.Println("Reverse:", sInts)

As sort.Interface knows how to sort integers, it is trivial to sort them in reverse
order. Sorting in reverse order is as simple as calling the sort.Reverse() function.

 fmt.Println("sFloats original:", sFloats)
 sort.Float64s(sFloats)
 fmt.Println("sFloats:", sFloats)
 sort.Sort(sort.Reverse(sort.Float64Slice(sFloats)))
 fmt.Println("Reverse:", sFloats)

Basic Go Data Types

[92]

 fmt.Println("sStrings original:", sStrings)
 sort.Strings(sStrings)
 fmt.Println("sStrings:", sStrings)
 sort.Sort(sort.Reverse(sort.StringSlice(sStrings)))
 fmt.Println("Reverse:", sStrings)
}

The same rules apply when sorting floating point numbers and strings.

Running sortSlice.go produces the next output:

$ go run sortSlice.go
sInts original: [1 0 2 -3 4 -20]
sInts: [-20 -3 0 1 2 4]
Reverse: [4 2 1 0 -3 -20]
sFloats original: [1 0.2 0.22 -3 4.1 -0.1]
sFloats: [-3 -0.1 0.2 0.22 1 4.1]
Reverse: [4.1 1 0.22 0.2 -0.1 -3]
sStrings original: [aa a A Aa aab AAa]
sStrings: [A AAa Aa a aa aab]
Reverse: [aab aa a Aa AAa A]

The output illustrates how the original slices were sorted in both normal and
reverse order.

Pointers
Go has support for pointers but not for pointer arithmetic, which is the cause of
many bugs and errors in programming languages like C. A pointer is the memory
address of a variable. You need to dereference a pointer in order to get its value—
dereferencing is performed using the * character in front of the pointer variable.
Additionally, you can get the memory address of a normal variable using an & in
front of it.

The next diagram shows the difference between a pointer to an int and an int
variable.

Chapter 2

[93]

Figure 2.4: An int variable and a pointer to an int

If a pointer variable points to an existing regular variable, then any changes you
make to the stored value using the pointer variable will modify the regular variable.

You might ask, what is the point of using pointers since there is no support for
pointer arithmetic. The main benefit you get from pointers is that passing a variable
to a function as a pointer (we can call that by reference) does not discard any changes
you make to the value of that variable inside that function when the function returns.
There exist times where you want that functionality because it simplifies your code,
but the price you pay for that simplicity is being extra careful with what you do with
a pointer variable. Remember that slices are passed to functions without the need to
use a pointer—it is Go that passes the pointer to the underlying array of a slice and
there is no way to change that behavior.

The format and the values of memory addresses might be different
between different machines, different operating systems, and
different architectures.

Basic Go Data Types

[94]

Apart from reasons of simplicity, there exist three more reasons for using pointers:

• Pointers allow you to share data between functions. However, when sharing
data between functions and goroutines, you should be extra careful with race
condition issues.

• Pointers are also very handy when you want to tell the difference between
the zero value of a variable and a value that is not set (nil). This is
particularly useful with structures because pointers (and therefore pointers
to structures, which are fully covered in the next chapter), can have the nil
value, which means that you can compare a pointer to a structure with the
nil value, which is not allowed for normal structure variables.

• Having support for pointers and, more specifically, pointers to structures
allows Go to support data structures such as linked lists and binary trees,
which are widely used in computer science. Therefore, you are allowed to
define a structure field of a Node structure as Next *Node, which is a pointer
to another Node structure. Without pointers, this would have been difficult
to implement and may be too slow.

The following code illustrates how you can use pointers in Go—create a text file
named pointers.go and type the presented code.

package main

import "fmt"

type aStructure struct {
 field1 complex128
 field2 int
}

This is a structure with two fields named field1 and field2.

func processPointer(x *float64) {
 *x = *x * *x
}

This is a function that gets a pointer to a float64 variable as input. As we are using
a pointer, all changes to the function parameter inside the function are persistent.
Additionally, there is no need to return something.

func returnPointer(x float64) *float64 {
 temp := 2 * x
 return &temp
}

Chapter 2

[95]

This is a function that requires a float64 parameter as input and returns a pointer to
a float64. In order to return the memory address of a regular variable, you need to
use & (&temp).

func bothPointers(x *float64) *float64 {
 temp := 2 * *x
 return &temp
}

This is a function that requires a pointer to a float64 as input and returns a pointer
to a float64 as output. The *x notation is used for getting the value stored in the
memory address stored in x.

func main() {
 var f float64 = 12.123
 fmt.Println("Memory address of f:", &f)

To get the memory address of a regular variable named f, you should use the &f
notation.

 // Pointer to f
 fP := &f
 fmt.Println("Memory address of f:", fP)
 fmt.Println("Value of f:", *fP)
 // The value of f changes
 processPointer(fP)
 fmt.Printf("Value of f: %.2f\n", f)

fP is now a pointer to the memory address of the f variable. Any changes to the
value stored in the fP memory address have an effect on the f value as well.
However, this is only true for as long as fP points to the memory address of the f
variable.

 // The value of f does not change
 x := returnPointer(f)
 fmt.Printf("Value of x: %.2f\n", *x)

The value of f does not change because the function only uses its value.

 // The value of f does not change
 xx := bothPointers(fP)
 fmt.Printf("Value of xx: %.2f\n", *xx)

Basic Go Data Types

[96]

In this case, the value of f, as well as the value stored in the fP memory address, does
not change because the bothPointers() function does not make any changes to the
value stored in the fP memory address.

 // Check for empty structure
 var k *aStructure

The k variable is a pointer to an aStructure structure. As k points to nowhere, Go
makes it point to nil, which is the zero value for pointers.

 // This is nil because currently k points to nowhere
 fmt.Println(k)
 // Therefore you are allowed to do this:
 if k == nil {
 k = new(aStructure)
 }

As k is nil, we are allowed to assign it to an empty aStructure value with
new(aStructure) without losing any data. Now, k is no longer nil but both fields of
aStructure have the zero values of their data types.

 fmt.Printf("%+v\n", k)
 if k != nil {
 fmt.Println("k is not nil!")
 }
}

Just make sure that k is not nil—you might consider that check redundant, but it
does not hurt to double-check.

Running pointers.go generates the following kind of output:

Memory address of f: 0xc000014090
Memory address of f: 0xc000014090
Value of f: 12.123
Value of f: 146.97
Value of x: 293.93
Value of xx: 293.93
<nil>
&{field1:(0+0i) field2:0}
k is not nil!

We revisit pointers in the next chapter where we discuss structures. Next, we discuss
generating random numbers and random strings.

Chapter 2

[97]

Generating random numbers
Random number generation is an art as well as a research area in computer science.
This is because computers are purely logical machines, and it turns out that using
them to generate random numbers is extremely difficult! Go can help you with that
using the functionality of the math/rand package. Each random number generator
needs a seed to start producing numbers. The seed is used for initializing the entire
process and is extremely important because if you always start with the same seed,
you will always get the same sequence of pseudo-random numbers. This means that
everybody can regenerate that sequence, and that particular sequence will not be
random after all. However, this feature is really useful for testing purposes. In Go,
the rand.Seed() function is used for initializing a random number generator.

The following function, which is part of randomNumbers.go found in ch02 in the
book's GitHub repository, is what generates random numbers in the [min, max)
range.

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

The random() function does all of the work, which is generating pseudo-random
numbers in a given range from min to max-1 by calling rand.Intn(). rand.Intn()
generates non-negative random integers from 0 up to the value of its single
parameter minus 1.

The randomNumbers.go utility accepts four command-line parameters but can also
work with fewer parameters by using default values. By default, randomNumbers.go
produces 100 random integers from 0 up to and including 99.

$ go run randomNumbers.go
Using default values!
39 75 78 89 39 28 37 96 93 42 60 69 50 9 69 27 22 63 4 68 56 23 54 14
93 61 19 13 83 72 87 29 4 45 75 53 41 76 84 51 62 68 37 11 83 20 63 58
12 50 8 31 14 87 13 97 17 60 51 56 21 68 32 41 79 13 79 59 95 56 24 83
53 62 97 88 67 59 49 65 79 10 51 73 48 58 48 27 30 88 19 16 16 11 35 45
72 51 41 28

If you are really interested in random number generation, you
should start by reading the second volume of The Art of Computer
Programming by Donald E. Knuth (Addison-Wesley Professional,
2011).

Basic Go Data Types

[98]

In the next output, we define each of the parameters manually (the last parameter of
the utility is the seed value):

$ go run randomNumbers.go 1 5 10 10
3 1 4 4 1 1 4 4 4 3
$ go run randomNumbers.go 1 5 10 10
3 1 4 4 1 1 4 4 4 3
$ go run randomNumbers.go 1 5 10 11
1 4 2 1 3 2 2 4 1 3

The first two times the seed value was 10, so we got the same output. The third time
the value of the seed was 11, which generated a different output.

Generating random strings
Imagine that you want to generate random strings that can be used as difficult to
guess passwords or for testing purposes. Based on random number generation,
we create a utility that produces random strings. The utility is implemented as
genPass.go and can be found in the ch02 directory of the book's GitHub repository.
The core functionality of genPass.go is found in the next function.

func getString(len int64) string {
 temp := ""
 startChar := "!"
 var i int64 = 1
 for {
 myRand := random(MIN, MAX)
 newChar := string(startChar[0] + byte(myRand))
 temp = temp + newChar
 if i == len {
 break
 }
 i++
 }
 return temp
}

As we only want to get printable ASCII characters, we limit the range of pseudo-
random numbers that can be generated. The total number of printable characters in
the ASCII table is 94. This means that the range of the pseudo-random numbers that
the program can generate should be from 0 to 94, without including 94. Therefore,
the values of the MIN and MAX global variables, which are not shown here, are 0 and
94, respectively.

Chapter 2

[99]

The startChar variable holds the first ASCII character that can be generated by the
utility, which, in this case, is the exclamation mark, which has a decimal ASCII value
of 33. Given that the program can generate pseudo-random numbers up to 94, the
maximum ASCII value that can be generated is 93 + 33, which is equal to 126, which
is the ASCII value of ~. All generated characters are kept in the temp variable, which
is returned once the for loop exits. The string(startChar[0] + byte(myRand))
statement converts the random integers into characters in the desired range.

The genPass.go utility accepts a single parameter, which is the length of the
generated password. If no parameter is given, genPass.go produces a password
with 8 characters, which is the default value of the LENGTH variable.

Running genPass.go produces the following kind of output:

$ go run genPass.go
Using default values...
!QrNq@;R
$ go run genPass.go 20
sZL>{F~"hQqY>r_>TX?O

The first program execution uses the default value for the length of the generated
string whereas the second program execution creates a random string with 20
characters.

Generating secure random numbers
If you intend to use these pseudo-random numbers for security-related work,
it is important that you use the crypto/rand package, which implements a
cryptographically secure pseudo-random number generator. You do not need to
define a seed when using the crypto/rand package.

The following function that is part of the cryptoRand.go source code showcases how
secure random numbers are generated with the functionality of crypto/rand.

func generateBytes(n int64) ([]byte, error) {
 b := make([]byte, n)
 _, err := rand.Read(b)
 if err != nil {
 return nil, err
 }
 return b, nil
}

Basic Go Data Types

[100]

The rand.Read() function randomly generates numbers that occupy the entire
b byte slice. You need to decode that byte slice using base64.URLEncoding.
EncodeToString(b) in order to get a valid string without any control or unprintable
characters. This conversion takes place in the generatePass() function, which is not
shown here.

Running cryptoRand.go creates the following kind of output:

$ go run cryptoRand.go
Using default values!
Ce30g--D
$ go run cryptoRand.go 20
AEIePSYb13KwkDnO5Xk_

The output is not different from the one generated by genPass.go, it is just that the
random numbers are generated more securely, which means that they can be used in
applications where security is important.

Now that we know how to generate random numbers and random strings, we are
going to revisit the phone book application and use these techniques to populate the
phone book with random data.

Updating the phone book application
In this last section of the book, we are going to create a function that populates the
phone book application from the previous chapter with random data, which is pretty
handy when you want to put lots of data in an application for testing purposes.

The biggest change in this version of the phone book application is that the searching
is based on the telephone number because it is easier to search random numbers
instead of random strings. But this is a small code change in the search() function—
this time search() uses v.Tel == key instead of v.Surname == key in order to try to
match the Tel field.

The populate() function of phoneBook.go (as found in the ch02 directory) does all
the work—the implementation of populate() is the following.

I have used this handy technique in the past in order to put sample
data on Kafka topics.

Chapter 2

[101]

func populate(n int, s []Entry) {
 for i := 0; i < n; i++ {
 name := getString(4)
 surname := getString(5)
 n := strconv.Itoa(random(100, 199))
 data = append(data, Entry{name, surname, n})
 }
}

The getString() function generates letters from A to Z and nothing else in order
to make the generated strings more readable. There is no point in using special
characters in names and surnames. The generated telephone numbers are in the 100
to 198 range, which is implemented using a call to random(100, 199). The reason for
this is that it is easier to search for a three-digit number. Feel free to experiment with
the generated names, surnames, and telephone numbers.

Working with phoneBook.go generates the following kind of output:

$ go run phoneBook.go search 123
Data has 100 entries.
{BHVA QEEQL 123}
$ go run phoneBook.go search 1234
Data has 100 entries.
Entry not found: 1234
$ go run phoneBook.go list
Data has 100 entries.
{DGTB GNQKI 169}
{BQNU ZUQFP 120}
...

Although these randomly generated names and surnames are not perfect, they are
more than enough for testing purposes. In the next chapter, we'll learn how to work
with CSV data.

Exercises
• Create a function that concatenates two arrays into a new slice.
• Create a function that concatenates two arrays into a new array.
• Create a function that concatenates two slices into a new array.

Basic Go Data Types

[102]

Summary
In this chapter, we learned about the basic data types of Go, including numerical
data types, strings, and errors. Additionally, we learned how to group similar values
using arrays and slices. Lastly, we learned about the differences between arrays
and slices and why slices are more versatile than arrays, as well as pointers and
generating random numbers and strings in order to provide random data to the
phone book application.

The next chapter discusses a couple of more complex composite data types of Go,
maps and structures. Maps can use keys of different data types whereas structures
can group multiple data types and create new ones that you can access as single
entities. As you will see in later chapters, structures play a key role in Go.

Additional resources
• The sort package documentation: https://golang.org/pkg/sort/
• The time package documentation: https://golang.org/pkg/time/
• The crypto/rand package documentation: https://golang.org/pkg/crypto/

rand/

• The math/rand package documentation: https://golang.org/pkg/math/rand/

https://golang.org/pkg/sort/
https://golang.org/pkg/time/
https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/math/rand/

[103]

3
Composite Data Types

Go offers support for maps and structures, which are composite data types and
the main subject of this chapter. The reason that we present them separately from
arrays and slices is that both maps and structures are more flexible and powerful
than arrays and slices. The general idea is that if an array or a slice cannot do the job,
you might need to look at maps. If a map cannot help you, then you should consider
creating and using a structure.

You have already seen structures in Chapter 1, A Quick Introduction to Go, where we
created the initial version of the phone book application. However, in this chapter we
are going to learn more about structures as well as maps. This knowledge will allow
us to read and save data in CSV format using structures and create an index for
quickly searching a slice of structures, based on a given key, by using a map.

Last, we are going to apply some of these Go features to improve the phone book
application we originally developed in Chapter 1, A Quick Introduction to Go. The
new version of the phone book application loads and saves its data from disk,
which means that it is no longer needed to hardcode your data.

This chapter covers:

• Maps
• Structures
• Pointers and structures
• Regular expressions and pattern matching
• Improving the phone book application

Composite Data Types

[104]

Maps can use keys of different data types whereas structures can group multiple
data types and create new ones. So, without further ado, let us begin by presenting
maps.

Maps
Both arrays and slices limit you to using positive integers as indexes. Maps are
powerful data structures because they allow you to use indexes of various data types
as keys to look up your data as long as these keys are comparable. A practical rule of
thumb is that you should use a map when you are going to need indexes that are not
positive integer numbers or when the integer indexes have big gaps.

You might ask, why do we need maps and what are their advantages? The following
list will help clarify things:

• Maps are very versatile. Later in this chapter we will create a database index
using a map, which allows us to search and access slice elements based on a
given key or, in more advanced situations, a combination of keys.

• Although this is not always the case, working with maps in Go is fast, as
you can access all elements of a map in linear time. Inserting and retrieving
elements from a map is fast and does not depend on the cardinality of the
map.

• Maps are easy to understand, which leads to clear designs.

You can create a new map variable using either make() or a map literal. Creating
a new map with string keys and int values using make() is as simple as writing
make(map[string]int) and assigning its return value to a variable. On the other
hand, if you decide to create a map using a map literal, you need to write something
like the following:

m := map[string]int {
 "key1": -1
 "key2": 123
}

Although bool variables are comparable, it makes no sense to use a
bool variable as the key to a Go map because it only allows for two
distinct values. Additionally, although floating point values are
comparable, precision issues caused by the internal representation
of such values might create bugs and crashes, so you might want to
avoid using floating point values as keys to Go maps.

Chapter 3

[105]

The map literal version is faster when you want to add data to a map at the time of
creation.

You can find the length of a map, which is the number of keys in the map, using
the len() function, which also works with arrays and slices; and you can delete
a key and value pair from a map using the delete() function, which accepts two
arguments: the name of the map and the name of the key, in that order.

Additionally, you can tell whether a key k exists on a map named aMap by the second
return value of the v, ok := aMap[k] statement. If ok is set to true, then k exists, and
its value is v. If it does not exist, v will be set to the zero value of its data type, which
depends on the definition of the map. If you try to get the value of a key that does
not exist in a map, Go will not complain about it and returns the zero value of the
data type of the value.

Now, let us discuss a special case where a map variable has the nil value.

Storing to a nil map
You are allowed to assign a map variable to nil. In that case, you will not be able to
use that variable until you assign it to a new map variable. Put simply, if you try to
store data on a nil map, your program will crash. This is illustrated in the next bit
of code, which is the implementation of the main() function of the nilMap.go source
file that can be found in the ch03 directory of the GitHub repository of this book.

func main() {
 aMap := map[string]int{}
 aMap["test"] = 1

This works because aMap points somewhere, which is the return value of map[string]
int{}.

 fmt.Println("aMap:", aMap)
 aMap = nil

You should make no assumptions about the order of the elements
inside a map. Go randomizes keys when iterating over a map—
this is done on purpose and is an intentional part of the language
design.

Composite Data Types

[106]

At this point aMap points to nil, which is a synonym for nothing.

 fmt.Println("aMap:", aMap)
 if aMap == nil {
 fmt.Println("nil map!")
 aMap = map[string]int{}
 }

Testing whether a map points to nil before using it is a good practice. In this case,
if aMap == nil allows us to determine whether we can store a key/pair value to
aMap or not—we cannot and if we try it, the program will crash. We correct that by
issuing the aMap = map[string]int{} statement.

 aMap["test"] = 1
 // This will crash!
 aMap = nil
 aMap["test"] = 1
}

In this last part of the program, we illustrate how your program will crash if you try
to store on a nil map—never use such code in production!

Running nilMap.go produces this output:

$ go run nilMap.go
aMap: map[test:1]
aMap: map[]
nil map!
panic: assignment to entry in nil map

goroutine 1 [running]:
main.main()
 /Users/mtsouk/Desktop/mGo3rd/code/ch03/nilMap.go:21 +0x225

The reason the program crashed is shown in the program output: panic: assignment
to entry in nil map.

In real-world applications, if a function accepts a map argument,
then it should check that the map is not nil before working with it.

Chapter 3

[107]

Iterating over maps
When for is combined with the range keyword it implements the functionality of
foreach loops found in other programming languages and allows you to iterate over
all the elements of a map without knowing its size or its keys. When range is applied
on a map, it returns key and value pairs in that order.

Type the following code and save it as forMaps.go.

package main

import "fmt"

func main() {
 aMap := make(map[string]string)
 aMap["123"] = "456"
 aMap["key"] = "A value"

 // range works with maps as well
 for key, v := range aMap {
 fmt.Println("key:", key, "value:", v)
 }

In this case we use both the key and the value that returned from range.

 for _, v := range aMap {
 fmt.Print(" # ", v)
 }
 fmt.Println()
}

In this case, as we are only interested in the values returned by the map, we ignore
the keys.

As you already know, you should make no assumptions about
the order that the key and value pairs of a map will be returned in
from a for and range loop.

Composite Data Types

[108]

Running forMaps.go produces this output:

$ go run forMaps.go
key: key value: A value
key: 123 value: 456
 # 456 # A value

Having covered maps, it is time to learn about Go structures.

Structures
Structures in Go are both very powerful and very popular and are used for
organizing and grouping various types of data under the same name. Structures are
the more versatile data types in Go and they can even be associated with functions,
which are called methods.

Defining new structures
When you define a new structure, you group a set of values into a single data type,
which allows you to pass and receive this set of values as a single entity. A structure
has fields, and each field has its own data type, which can even be another structure
or slice of structures. Additionally, as a structure is a new data type, it is defined
using the type keyword followed by the name of the structure and ending with the
struct keyword, which signifies that we are defining a new structure.

The following code defines a new structure named Entry:

type Entry struct {
 Name string
 Surname string
 Year int
}

Structures, as well as other user-defined data types, are usually
defined outside the main() function or any other package function
so that they have a global scope and are available to the entire Go
package. Therefore, unless you want to make clear that a type is
only useful within the current local scope and is not expected to be
used elsewhere, you should write the definitions of new data types
outside functions.

Chapter 3

[109]

For reasons that will become evident in Chapter 5, Go Packages and Functions, the
fields of a structure usually begin with an uppercase letter—this depends on what
you want to do with the fields. The Entry structure has three fields named Name,
Surname, and Year. The first two fields are of the string data type, whereas the last
field holds an int value.

These three fields can be accessed with the dot notation as V.Name, V.Surname,
and V.Year, where V is the name of the variable holding the instance of the Entry
structure. A structure literal named p1 can be defined as p1 := aStructure{"fmt",
12, -2}.

There exist two ways to work with structure variables. The first one is as regular
variables and the second one is as pointer variables that point to the memory
address of a structure. Both ways are equally good and are usually embedded into
separate functions because they allow you to initialize some or all of the fields of
structure variables properly and/or do any other tasks you want before using the
structure variable. As a result, there exist two main ways to create a new structure
variable using a function. The first one returns a regular structure variable whereas
the second one returns a pointer to a structure. Each one of these two ways has two
variations. The first variation returns a structure instance that is initialized by the Go
compiler, whereas the second variation returns a structure instance that is initialized
by the user.

The order in which you put the fields in the definition of a structure type is
significant for the type identity of the defined structure. Put simply, two structures
with the same fields will not be considered identical in Go if their fields are not in
the same order.

Using the new keyword
Additionally, you can create new structure instances using the new() keyword: pS :=
new(Entry). The new() keyword has the following properties:

• It allocates the proper memory space, which depends on the data type, and
then it zeroes it

The type keyword allows you to define new data types or create
aliases for existing ones. Therefore, you are allowed to say type
myInt int and define a new data type called myInt that is an alias
for int. However, Go considers myInt and int as totally different
data types that you cannot compare directly even though they hold
the same kind of values. Each structure defines a new data type,
hence the use of the type keyword.

Composite Data Types

[110]

• It always returns a pointer to the allocated memory
• It works for all data types except channel and map

All these techniques are illustrated in the code that follows. Type the following code
in your favorite text editor and save it as structures.go.

package main

import "fmt"

type Entry struct {
 Name string
 Surname string
 Year int
}

// Initialized by Go
func zeroS() Entry {
 return Entry{}
}

Now is a good time to remind you of an important Go rule: If no initial value is
given to a variable, the Go compiler automatically initializes that variable to
the zero value of its data type. For structures, this means that a structure variable
without an initial value is initialized to the zero values of each one of the data types
of its fields. Therefore, the zeroS() function returns a zero-initialized Entry structure.

// Initialized by the user
func initS(N, S string, Y int) Entry {
 if Y < 2000 {
 return Entry{Name: N, Surname: S, Year: 2000}
 }
 return Entry{Name: N, Surname: S, Year: Y}
}

In this case the user initializes the new structure variable. Additionally, the initS()
function checks whether the value of the Year field is smaller than 2000 and acts
accordingly. If it is smaller than 2000, then the value of the Year field becomes 2000.
This condition is specific to the requirements of the application you are developing—
what this shows is that the place where you initialize a structure is good for
checking your input.

Chapter 3

[111]

// Initialized by Go - returns pointer
func zeroPtoS() *Entry {
 t := &Entry{}
 return t
}

The zeroPtoS() function returns a pointer to a zero-initialized structure.

// Initialized by the user - returns pointer
func initPtoS(N, S string, Y int) *Entry {
 if len(S) == 0 {
 return &Entry{Name: N, Surname: "Unknown", Year: Y}
 }
 return &Entry{Name: N, Surname: S, Year: Y}
}

The initPtoS() function also returns a pointer to a structure but also checks the
length of the user input. Again, this checking is application-specific.

func main() {
 s1 := zeroS()
 p1 := zeroPtoS()
 fmt.Println("s1:", s1, "p1:", *p1)

 s2 := initS("Mihalis", "Tsoukalos", 2020)
 p2 := initPtoS("Mihalis", "Tsoukalos", 2020)
 fmt.Println("s2:", s2, "p2:", *p2)

 fmt.Println("Year:", s1.Year, s2.Year, p1.Year, p2.Year)

 pS := new(Entry)
 fmt.Println("pS:", pS)
}

The new(Entry) call returns a pointer to an Entry structure. Generally speaking,
when you have to initialize lots of structure variables, it is considered a good practice
to create a function for doing so as this is less error-prone.

Running structures.go creates the following output:

s1: { 0} p1: { 0}
s2: {Mihalis Tsoukalos 2020} p2: {Mihalis Tsoukalos 2020}
Year: 0 2020 0 2020
pS: &{ 0}

Composite Data Types

[112]

As the zero value of a string is the empty string, s1, p1, and pS do not show any data
for the Name and Surname fields.

The next subsection shows how to group structures of the same data type and use
them as the elements of a slice.

Slices of structures
You can create slices of structures in order to group and handle multiple structures
under a single variable name. However, accessing a field of a given structure
requires knowing the exact place of the structure in the slice.

For now, have a look at the following figure to better understand how a slice of
structures works and how you can access the fields of a specific slice element.

Figure 3.1: A slice of structures

So, each slice element is a structure that is accessed using a slice index. Once we
select the slice element we want, we can select its field.

As the whole process can be a little perplexing, the code of this subsection
sheds some light and clarifies things. Type the following code and save it as
sliceStruct.go. You can also find it by the same name in the ch03 directory in
the GitHub repository of the book.

Chapter 3

[113]

package main

import (
 "fmt"
 "strconv"
)

type record struct {
 Field1 int
 Field2 string
}

func main() {
 S := []record{}
 for i := 0; i < 10; i++ {
 text := "text" + strconv.Itoa(i)
 temp := record{Field1: i, Field2: text}
 S = append(S, temp)
 }

You still need append() to add a new structure to the slice.

 // Accessing the fields of the first element
 fmt.Println("Index 0:", S[0].Field1, S[0].Field2)
 fmt.Println("Number of structures:", len(S))
 sum := 0
 for _, k := range S {
 sum += k.Field1
 }
 fmt.Println("Sum:", sum)
}

Running sliceStruct.go produces the following output:

Index 0: 0 text0
Number of structures: 10
Sum: 45

Composite Data Types

[114]

We revisit structures in the next chapter where we discuss reflection, as well as
Chapter 6, Telling a UNIX System What to Do where we learn how to work with
JSON data using structures. For now, let us discuss regular expressions and pattern
matching.

Regular expressions and pattern
matching
Pattern matching is a technique for searching a string for some set of characters
based on a specific search pattern that is based on regular expressions and
grammars.

A regular expression is a sequence of characters that defines a search pattern. Every
regular expression is compiled into a recognizer by building a generalized transition
diagram called a finite automaton. A finite automaton can be either deterministic
or nondeterministic. Nondeterministic means that more than one transition out of a
state can be possible for the same input. A recognizer is a program that takes a string
x as input and is able to tell whether x is a sentence of a given language.

A grammar is a set of production rules for strings in a formal language—the
production rules describe how to create strings from the alphabet of the language
that are valid according to the syntax of the language. A grammar does not describe
the meaning of a string or what can be done with it in whatever context—it only
describes its form. What is important here is to realize that grammars are at the
heart of regular expressions because without a grammar, you cannot define or use a
regular expression.

So, you might wonder why we're talking about regular expressions and pattern
matching in this chapter. The reason is simple. In a while, you will learn how to store
and read CSV data from plain text files, and you should be able to tell whether the
data you are reading is valid or not.

About Go regular expressions
We begin this subsection by presenting some common match patterns used for
constructing regular expressions.

Chapter 3

[115]

Expression Description
. Matches any character
* Means any number of times—cannot be used on its own
? Zero or one time—cannot be used on its own
+ Means one or more times—cannot be used on its own
^ This denotes the beginning of the line
^ This denotes the end of the line
[] [] is for grouping characters
[A-Z] This means all characters from capital A to capital Z
\d Any digit in 0-9
\D A non-digit
\w Any word character: [0-9A-Za-z_]
\W Any non-word character
\s A whitespace character
\S A non-whitespace character

The characters presented in the previous table are used for constructing and defining
the grammar of the regular expression. The Go package responsible for defining
regular expressions and performing pattern matching is called regexp. We use the
regexp.MustCompile() function to create the regular expression and the Match()
function to see whether the given string is a match or not.

The regexp.MustCompile() function parses the given regular expression and
returns a regexp.Regexp variable that can be used for matching—regexp.Regexp
is the representation of a compiled regular expression. The function panics if
the expression cannot be parsed, which is good because you will know that your
expression is invalid early in the process. The re.Match() method returns true if
the given byte slice matches the re regular expression, which is a regexp.Regexp
variable, and false otherwise.

Creating separate functions for pattern matching can be handy
because it allows you to reuse the functions without worrying
about the context of the program.

Composite Data Types

[116]

Keep in mind that although regular expressions and pattern matching look
convenient and handy at first, they are the root of lots of bugs. My advice is to use
the simplest regular expression that can solve your problem. However, if you can
avoid using regular expressions at all, it would be much better in the long run!

Matching names and surnames
The presented utility matches names and surnames, that is, strings that begin with
an uppercase letter and continue with lowercase letters. The input should not
contain any numbers or other characters.

The source code of the utility can be found in nameSurRE.go, which is located in
the ch03 directory. The function that supports the desired functionality is named
matchNameSur() and is implemented as follows:

func matchNameSur(s string) bool {
 t := []byte(s)
 re := regexp.MustCompile(`^[A-Z][a-z]*$`)
 return re.Match(t)
}

The logic of the function is in the `^[A-Z][a-z]*$` regular expression, where ^
denotes the beginning of a line and $ denotes the end of a line. What the regular
expression does is match anything that begins with an uppercase letter ([A-Z]) and
continues with any number of lowercase letters ([a-z]*). This means that Z is a
match, but ZA is not a match because the second letter is uppercase. Similarly, Jo+ is
not a match because it contains a + character.

Running nameSurRE.go with various types of input produces the following output:

$ go run nameSurRE.go Z
true
$ go run nameSurRE.go ZA
false
$ go run nameSurRE.go Mihalis
True

This technique can help you check user input.

Chapter 3

[117]

Matching integers
The presented utility matches both signed and unsigned integers—this is
implemented in the way we define the regular expression. If we only want unsigned
integers, then we should remove the [-+]? from the regular expression or replace it
with [+]?.

The source code of the utility can be found in intRE.go, which is in the ch03
directory. The matchInt() function that supports the desired functionality is
implemented as follows:

func matchInt(s string) bool {
 t := []byte(s)
 re := regexp.MustCompile(`^[-+]?\d+$`)
 return re.Match(t)
}

As before, the logic of the function is found in the regular expression that is used for
matching integers, which is `^[-+]?\d+$`. In plain English, what we say here is that
we want to match something that begins with – or +, which is optional (?), and ends
with any number of digits (\d+)—it is required that we have at least one digit before
the end of the string that is examined ($).

Running intRE.go with various types of input produces the following output:

$ go run intRE.go 123
true
$ go run intRE.go /123
false
$ go run intRE.go +123.2
false
$ go run intRE.go +
false
$ go run intRE.go -123.2
false

Later in this book, you will learn how to test Go code by writing testing functions—
for now, we will do most of the testing manually.

Composite Data Types

[118]

Matching the fields of a record
This example takes a different approach as we read an entire record and split it prior
to doing any checking. Additionally, we make an extra check to make sure that the
record we are processing contains the right number of fields. Each record should
contain three fields: name, surname, and telephone number.

The full code of the utility can be found in fieldsRE.go, which is located in the ch03
directory. The function that supports the desired functionality is implemented as
follows:

func matchRecord(s string) bool {
 fields := strings.Split(s, ",")
 if len(fields) != 3 {
 return false
 }

 if !matchNameSur(fields[0]) {
 return false
 }

 if !matchNameSur(fields[1]) {
 return false
 }
 return matchTel(fields[2])
}

What the matchRecord() function does first is to separate the fields of the record
based on the , character and then send each individual field to an appropriate
function for further checking after making sure that the record has the right number
of fields, which is a common practice. The field splitting is done using strings.
Split(s, ","), which returns a slice with as many elements as there are fields of the
record.

If the checks of the first two fields are successful, then the function returns the return
value of matchTel(fields[2]) because it is that last check that determines the final
result.

Running fieldsRE.go with various types of input produces the following output:

$ go run fieldsRE.go Name,Surname,2109416471
true
$ go run fieldsRE.go Name,Surname,OtherName
false

Chapter 3

[119]

$ go run fieldsRE.go One,Two,Three,Four
false

The first record is correct and therefore the true value is returned, which is not true
for the second running where the phone number field is not correct. The last one
failed because it contains four fields instead of three.

Improving the phone book application
It is time to update the phone book application. The new version of the phone book
utility has the following improvements:

• Support for the insert and delete commands
• Ability to read data from a file and write it before it exits
• Each entry has a last visited field that is updated
• Has a database index that is implemented using a Go map
• Uses regular expressions to verify the phone numbers read

Working with CSV files
Most of the time you do not want to lose your data or have to begin without any
data every time you execute your application. There exist many techniques for doing
so—the easiest one is by saving your data locally. A very easy to work with format
is CSV, which is what is explained here and used in the phone book application
later on. The good thing is that Go provides a dedicated package for working with
CSV data named encoding/csv (https://golang.org/pkg/encoding/csv/). For
the presented utility, both the input and output files are given as command-line
arguments.

There exist two very popular Go interfaces named io.Reader and
io.Write that are to do with reading from files and writing to files.
Almost all reading and writing operations in Go use these two
interfaces. The use of the same interface for readers allows readers
to share some common characteristics but most importantly allows
you to create your own readers and use them anywhere that Go
expects an io.Reader reader. The same applies to writers that
satisfy the io.Write interface. You will learn more about interfaces
in Chapter 4, Reflection and Interfaces.

https://golang.org/pkg/encoding/csv/

Composite Data Types

[120]

The main tasks that need to be implemented are the following:

• Loading CSV data from disk and putting it into a slice of structures
• Saving data to disk using CSV format

The encoding/csv package contains functions that can help you read and write CSV
files. As we are dealing with small CSV files, we use csv.NewReader(f).ReadAll() to
read the entire input file all at once. For bigger data files or if we wanted to check the
input or make any changes to the input as we read it, it would have been better to
read it line by line using Read() instead of ReadAll().

Go assumes that the CSV file uses the comma character (,) for separating the
different fields of each line. Should we wish to change that behavior, we should
change the value of the Comma variable of the CSV reader or the writer depending on
the task we want to perform. We change that behavior in the output CSV file, which
separates its fields using the tab character.

As working with CSV files is a new topic, there is a separate utility named
csvData.go in the ch03 directory of the GitHub repository of this book that illustrates
the techniques for reading and writing CSV files. The source code of csvData.go is
presented in chunks. First, we present the preamble of csvData.go that contains the
import section as well as the Record structure and the myData global variable, which
is a slice of Record.

package main

import (
 "encoding/csv"
 "fmt"
 "os"
)

type Record struct {
 Name string
 Surname string
 Number string

For reasons of compatibility, it is better if the input and output
CSV files are using the same field delimiter. We are just using the
tab character as the field delimiter in the output file in order to
illustrate the use of the Comma variable.

Chapter 3

[121]

 LastAccess string
}

var myData = []Record{}

Then we present the readCSVFile() function, which reads the plain text file with the
CSV data.

func readCSVFile(filepath string) ([][]string, error) {
 _, err := os.Stat(filepath)
 if err != nil {
 return nil, err
 }

 f, err := os.Open(filepath)
 if err != nil {
 return nil, err
 }
 defer f.Close()

 // CSV file read all at once
 // lines data type is [][]string
 lines, err := csv.NewReader(f).ReadAll()
 if err != nil {
 return [][]string{}, err
 }

 return lines, nil
}

Note that we check whether the given file path exists and is associated with a regular
file inside the function. There is no right or wrong decision about where to perform
that checking—you just have to be consistent. The readCSVFile() function returns a
[][]string slice that contains all the lines we have read. Additionally, have in mind
that csv.NewReader() does separate the fields of each input line, which is the main
reason for needing a slice with two dimensions to store the input.

After that, we illustrate the writing to a CSV file technique with the help of the
saveCSVFile() function.

func saveCSVFile(filepath string) error {
 csvfile, err := os.Create(filepath)
 if err != nil {

Composite Data Types

[122]

 return err
 }
 defer csvfile.Close()

 csvwriter := csv.NewWriter(csvfile)
 // Changing the default field delimiter to tab
 csvwriter.Comma = '\t'
 for _, row := range myData {
 temp := []string{row.Name, row.Surname, row.Number, row.
LastAccess}
 _ = csvwriter.Write(temp)
 }
 csvwriter.Flush()
 return nil
}

Note that change in the default value of csvwriter.Comma.

Last, we can see the implementation of the main() function.

func main() {
 if len(os.Args) != 3 {
 fmt.Println("csvData input output!")
 return
 }

 input := os.Args[1]
 output := os.Args[2]
 lines, err := readCSVFile(input)
 if err != nil {
 fmt.Println(err)
 return
 }

 // CSV data is read in columns - each line is a slice
 for _, line := range lines {
 temp := Record{
 Name: line[0],
 Surname: line[1],
 Number: line[2],
 LastAccess: line[3],
 }
 myData = append(myData, temp)

Chapter 3

[123]

 fmt.Println(temp)

 }

 err = saveCSVFile(output)
 if err != nil {
 fmt.Println(err)
 return
 }
}

The main() function puts what you have read with readCSVFile() in the myData
slice—remember that lines is a slice with two dimensions and that each row in
lines is already separated into fields.

In this case, each line of input contains four fields. The contents of the CSV data file
used as input are as follows:

$ cat ~/csv.data
Dimitris,Tsoukalos,2101112223,1600665563
Mihalis,Tsoukalos,2109416471,1600665563
Jane,Doe,0800123456,1608559903

Running csvData.go produces the following kind of output:

$ go run csvData.go ~/csv.data /tmp/output.data
{Dimitris Tsoukalos 2101112223 1600665563}
{Mihalis Tsoukalos 2109416471 1600665563}
{Jane Doe 0800123456 1608559903}

The contents of the output CSV file are the following:

$ cat /tmp/output.data
Dimitris Tsoukalos 2101112223 1600665563
Mihalis Tsoukalos 2109416471 1600665563
Jane Doe 0800123456 1608559903

The output.data file uses tab characters for separating the different fields of each
record. The csvData.go utility can be handy for converting between different types of
CSV files.

Composite Data Types

[124]

Adding an index
This subsection explains how the database index is implemented with the help
of a map. Indexing in databases is based on one or more keys that are unique. In
practice, we index something that is unique and that we want to access quickly.
In the database case, primary keys are unique by default and cannot be present in
more than one record. In our case, phone numbers are used as primary keys, which
means that the index is built based on the phone number field of the structure.

Let us now see what this means in practice. Imagine that we have a slice named S
with the following kind of data:

S[0]={0800123123, ...}
S[1]={0800123000, ...}
S[2]={2109416471, ...}
.
.
.

So, each slice element is a structure that can contain much more data apart from the
telephone number. How can we create an index for it? The index, which is named
Index, is going to have the following data and format:

Index["0800123123"] = 0
Index["0800123000"] = 1
Index["2109416471"] = 2
.
.
.

This means that if we want to look for the telephone number 0800123000, we should
see whether 0800123000 exists as a key in Index. If it is there, then we know that the
value of 0800123000, which is Index["0800123000"], is the index of the slice element
that contains the desired record. So, as we know which slice element to access, we do
not have to search the entire slice. With that in mind, let us update the application.

As a rule of thumb, you index a field that is going to be used for
searching. There is no point in creating an index that is not going to
be used for querying.

Chapter 3

[125]

The improved version of the phone book
application
It would be a shame to create a phone book application that has its entries hardcoded
in the code. This time, the entries of the address book are read from an external file
that contains data in CSV format. Similarly, the new version saves its data into the
same CSV file, which you can read afterward.

Each entry of the phone book application is based on the following structure:

type Entry struct {
 Name string
 Surname string
 Tel string
 LastAccess string
}

The key to the entries is the Tel field and therefore its values. In practice, this means
that if you try to add an entry that uses an existing Tel value, the process fails.
This also means that the application searches the phone book using the Tel values.
Databases use primary keys to identify between unique records—the phone book
application has a small database implemented as a slice of Entry structures. Last,
phone numbers are saved without any – characters in them. The utility removes all –
characters from phone numbers, if there are any, before saving them.

As this is a real application implemented as a command-line utility, it should
support commands for data manipulation and searching. The updated functionality
of the utility is explained in the following list:

• Data insertion using the insert command
• Data deletion using the delete command
• Data searching using the search command
• Listing of the available records through the list command

Personally, I prefer to explore the various parts of a bigger
application by creating smaller programs that when combined
implement some or all of the functionality of the bigger program.
This helps me understand how the bigger application needs to be
implemented. This makes it much easier for me to connect all the
dots afterward and develop the final product.

Composite Data Types

[126]

To make the code simpler, the path of the CSV data file is hardcoded. Additionally,
the CSV file is automatically read when the utility is executed but it is automatically
updated when the insert and the delete commands are executed.

As explained earlier, this version of the phone book application has support for
indexing to find the desired records faster without needing to make a linear search to
the slice that holds your phone book data. The indexing technique that is used is not
very fancy, but it makes searching really fast: provided that the searching process is
based on phone numbers, we are going to create a map that associates each phone
number with the index number of the record that contains that phone number in
the slice of structures. This way, a simple and fast map lookup tells us whether a
phone number already exists or not. If the phone number exists, we can access its
record directly without having to search the entire slice of structures for it. The only
downside of this technique, and every indexing technique, is that you must keep the
map up to date all the time.

The previous process is called a high-level design of the application. For such a
simple application, you do not have to be too analytic about the capabilities of the
application—stating the supported commands and the location of the CSV data file
is enough. However, for a RESTful server that implements a REST API, the design
phase or the dependencies of the program are as important as the development
phase itself.

The entire code of the updated phone book utility can be found in ch03 as
phoneBook.go—as always, we are referring to the GitHub repository of the book.
This is the last time we make this clarification—from now on, we will only tell you
the name of the source file unless there is a specific reason to do otherwise.

The most interesting parts of the phoneBook.go file are presented here, starting from
the implementation of the main() function, which is presented in two parts. The first
part is about getting a command to execute and having a valid CSV file to work with.

func main() {
 arguments := os.Args
 if len(arguments) == 1 {

Although Go supports CSV, JSON is a far more popular format
that is used for data exchange in web services. However, working
with CSV data is simpler than working with data in JSON format.
Working with JSON data is explored in Chapter 6, Telling a UNIX
System What to Do.

Chapter 3

[127]

 fmt.Println("Usage: insert|delete|search|list <arguments>")
 return
 }

 // If the CSVFILE does not exist, create an empty one
 _, err := os.Stat(CSVFILE)
 // If error is not nil, it means that the file does not exist
 if err != nil {
 fmt.Println("Creating", CSVFILE)
 f, err := os.Create(CSVFILE)
 if err != nil {
 f.Close()
 fmt.Println(err)
 return
 }
 f.Close()
 }

If the file path specified by the CSVFILE global variable does not already exist, we
have to create it for the rest of the program to use it. This is determined by the return
value of the os.Stat(CSVFILE) call.

 fileInfo, err := os.Stat(CSVFILE)
 // Is it a regular file?
 mode := fileInfo.Mode()
 if !mode.IsRegular() {
 fmt.Println(CSVFILE, "not a regular file!")
 return
 }

Not only must the CSVFILE exist but it should be a regular UNIX file, which is
determined by the call to mode.IsRegular(). If it is not a regular file, the utility prints
an error message and exits.

 err = readCSVFile(CSVFILE)
 if err != nil {
 fmt.Println(err)
 return
 }

Composite Data Types

[128]

This is the place where we read the CSVFILE, even if it is empty. The contents of
CSVFILE are kept in the data global variable that is defined as []Entry{}, which is a
slice of Entry variables.

 err = createIndex()
 if err != nil {
 fmt.Println("Cannot create index.")
 return
 }

This is where we create the index by calling createIndex(). The index is kept in the
index global variable that is defined as map[string]int.

The second part of main() is about running the right command and understanding
whether the command was executed successfully or not.

 // Differentiating between the commands
 switch arguments[1] {
 case "insert":
 if len(arguments) != 5 {
 fmt.Println("Usage: insert Name Surname Telephone")
 return
 }
 t := strings.ReplaceAll(arguments[4], "-", "")
 if !matchTel(t) {
 fmt.Println("Not a valid telephone number:", t)
 return
 }

You need to remove any – characters from the telephone number before storing it
using strings.ReplaceAll(). If there are not any – characters, then no substitution
takes place.

 temp := initS(arguments[2], arguments[3], t)
 // If it was nil, there was an error
 if temp != nil {
 err := insert(temp)
 if err != nil {
 fmt.Println(err)
 return
 }
 }
 case "delete":

Chapter 3

[129]

 if len(arguments) != 3 {
 fmt.Println("Usage: delete Number")
 return
 }
 t := strings.ReplaceAll(arguments[2], "-", "")
 if !matchTel(t) {
 fmt.Println("Not a valid telephone number:", t)
 return
 }
 err := deleteEntry(t)
 if err != nil {
 fmt.Println(err)
 }
 case "search":
 if len(arguments) != 3 {
 fmt.Println("Usage: search Number")
 return
 }
 t := strings.ReplaceAll(arguments[2], "-", "")
 if !matchTel(t) {
 fmt.Println("Not a valid telephone number:", t)
 return
 }
 temp := search(t)
 if temp == nil {
 fmt.Println("Number not found:", t)
 return
 }
 fmt.Println(*temp)
 case "list":
 list()
 default:
 fmt.Println("Not a valid option")
 }
}

In this relatively big switch block, we can see what is executed for each given
command. So, we have the following:

• For the insert command, we execute the insert() function
• For the list command, we execute the list() function, which is the only

function that requires any arguments

Composite Data Types

[130]

• For the delete command, we execute the deleteEntry() function
• For the search command, we execute the search() function

Anything else is handled by the default branch. The index is created and updated
using the createIndex() function, which is implemented as follows:

func createIndex() error {
 index = make(map[string]int)
 for i, k := range data {
 key := k.Tel
 index[key] = i
 }
 return nil
}

Put simply, you access the entire data slice and put the index and value pairs of the
slice in a map using the value as the key for the map and the slice index as the value
of the map.

The delete command is implemented as follows:

func deleteEntry(key string) error {
 i, ok := index[key]
 if !ok {
 return fmt.Errorf("%s cannot be found!", key)
 }
 data = append(data[:i], data[i+1:]...)
 // Update the index - key does not exist any more
 delete(index, key)

 err := saveCSVFile(CSVFILE)
 if err != nil {
 return err
 }
 return nil
}

The operation of the deleteEntry() function is simple. First, you search the index
for the telephone number in order to find the place of the entry in the slice with
the data—if it does not exist, then you simply create an error message with fmt.
Errorf("%s cannot be found!", key) and the function returns. If the telephone
number can be found, then you delete that relevant entry from the data slice with
append(data[:i], data[i+1:]...).

Chapter 3

[131]

Then, you must update the index—taking care of the index is the price you have to
pay for the extra speed that the index gives you. Also, after you delete an entry, you
should save the updated data by calling saveCSVFile(CSVFILE) for changes to take
effect.

The insert command is implemented as follows:

func insert(pS *Entry) error {
 // If it already exists, do not add it
 _, ok := index[(*pS).Tel]
 if ok {
 return fmt.Errorf("%s already exists", pS.Tel)
 }
 data = append(data, *pS)
 // Update the index
 _ = createIndex()

 err := saveCSVFile(CSVFILE)
 if err != nil {
 return err
 }
 return nil
}

The index here helps you determine whether the telephone number you are trying
to add already exists or not—as stated earlier, if you try to add an entry that uses an
existing Tel value, the process fails. If this test passes, you add the new record in that
data slice, update the index, and save the data to the CSV file.

The search command, which uses the index, is implemented as follows:

func search(key string) *Entry {
 i, ok := index[key]
 if !ok {
 return nil
 }

Strictly speaking, as the current version of the phone book
application processes one request at a time, you do not need to
update the index because it is created from scratch each time you
use the application. On database management systems, indexes are
also saved on disk in order to avoid the major cost of creating them
from scratch.

Composite Data Types

[132]

 data[i].LastAccess = strconv.FormatInt(time.Now().Unix(), 10)
 return &data[i]
}

Due to the index, searching for a telephone number is straightforward—the code just
looks in the index for the desired telephone number. If it is present, the code returns
that record—otherwise, the code returns nil, which is possible because the function
returns a pointer to an Entry variable. Before returning the record, the search()
function updates the LastAccess field of the structure that is about to be returned in
order to know the last time it was accessed.

The initial contents of the CSV data file used as input are as follows:

$ cat ~/csv.data
Dimitris,Tsoukalos,2101112223,1600665563
Mihalis,Tsoukalos,2109416471,1600665563
Mihalis,Tsoukalos,2109416771,1600665563
Efipanios,Savva,2101231234,1600665582

As long at the telephone number is unique, the name and surname fields can exist
multiple times. Running phoneBook.go produces the following kind of output:

$ go run phoneBook.go list
{Dimitris Tsoukalos 2101112223 1600665563}
{Mihalis Tsoukalos 2109416471 1600665563}
{Mihalis Tsoukalos 2109416771 1600665563}
{Efipanios Savva 2101231234 1600665582}
$ go run phoneBook.go delete 2109416771
$ go run phoneBook.go search 2101231234
{Efipanios Savva 2101231234 1608559833}
$ go run phoneBook.go search 210-1231-234
{Efipanios Savva 2101231234 1608559840}

Due to our code, 210-1231-234 is converted to 2101231234.

$ go run phoneBook.go delete 210-1231-234
$ go run phoneBook.go search 210-1231-234
Number not found: 2101231234
$ go run phoneBook.go insert Jane Doe 0800-123-456
$ go run phoneBook.go insert Jane Doe 0800-123-456
0800123456 already exists
$ go run phoneBook.go search 2101112223
{Dimitris Tsoukalos 2101112223 1608559928}

Chapter 3

[133]

The contents of the CSV file after the previous commands are the following:

$ cat ~/csv.data
Dimitris,Tsoukalos,2101112223,1600665563
Mihalis,Tsoukalos,2109416471,1600665563
Jane,Doe,0800123456,1608559903

You can see that the utility converted 0800-123-456 into 0800123456, which is the
desired behavior.

Despite being much better than the previous version, the new version of the phone
book utility is still not perfect. Here is a list of things that can be improved:

• Ability to sort its output based on the telephone number
• Ability to sort its output based on the surname
• Ability to use JSON records and JSON slices for the data instead of CSV files

The phone book application will keep improving, starting from the next chapter,
where sorting slices with structure elements is implemented.

Exercises
• Write a Go program that converts an existing array into a map.
• Write a Go program that converts an existing map into two slices—the first

slice contains the keys of the map whereas the second slice contains the
values. The values at index n of the two slices should correspond to a key and
value pair that can be found in the original map.

• Make the necessary changes to nameSurRE.go to be able to process multiple
command-line arguments.

• Change the code of intRE.go to process multiple command-line arguments
and display totals of true and false results at the end.

• Make changes to csvData.go to separate the fields of a record based on the #
character.

• Write a Go utility that converts os.Args into a slice of structures with fields
for storing the index and the value of each command-line argument—you
should define the structure that is going to be used on your own.

• Make the necessary changes to phoneBook.go in order to create the index
based on the LastAccess field. Is this practical? Does it work? Why?

• Make changes to csvData.go in order to separate the fields of a record with a
character that is given as a command-line argument.

Composite Data Types

[134]

Summary
In this chapter we discussed the composite data types of Go, which are maps and
structures. Additionally, we talked about working with CSV files as well as about
using regular expressions and pattern matching in Go. We can now keep our data
in proper structures, validate it using regular expressions, when this is possible, and
store it in CSV files to achieve data persistency.

The next chapter is about type methods, which are functions attached to a data type,
reflection, and interfaces. All these things will allow us to improve the phone book
application.

Additional resources
• The encoding/csv documentation: https://golang.org/pkg/encoding/csv/
• The runtime package documentation: https://golang.org/pkg/runtime/

https://golang.org/pkg/encoding/csv/
https://golang.org/pkg/runtime/

[135]

4
Reflection and Interfaces

Do you remember the phone book application from the previous chapter? You
might wonder what happens if you want to sort user-defined data structures, such
as phone book records, based on your own criteria, such as a surname or first name.
What happens when you want to sort different datasets that share some common
behavior without having to implement sorting from scratch for each one of the
different data types using multiple functions? Now imagine that you have a utility
like the phone book application that can process two different formats of CSV data
files based on the given input file. Each kind of CSV record is stored in a different
Go structure, which means that each kind of CSV record might be sorted differently.
How do you implement that without having to write two different command-line
utilities? Lastly, imagine that you want to write a utility that sorts really unusual
data. For example, imagine that you want to sort a slice that holds various kinds of
3D shapes based on their volume. Can this be performed easily and in a way that
makes sense?

The answer to all these questions and concerns is the use of interfaces. However,
interfaces are not just about data manipulation and sorting. Interfaces are about
expressing abstractions and identifying and defining behaviors that can be shared
among different data types. Once you have implemented an interface for a data type,
a new world of functionality becomes available to the variables and the values of that
type, which can save you time and increase your productivity. Interfaces work with
methods on types or type methods, which are like functions attached to given data types,
which in Go are usually structures. Remember that once you implement the required
type methods of an interface, that interface is satisfied implicitly, which is also the
case with the empty interface that is explained in this chapter.

Reflection and Interfaces

[136]

Another handy Go feature is reflection, which allows you to examine the structure of
a data type at execution time. However, as reflection is an advanced Go feature, you
do not need to use it on a regular basis.

This chapter covers:

• Reflection
• Type methods
• Interfaces
• Working with two different CSV file formats
• Object-oriented programming in Go
• Updating the phone book application

Reflection
We begin this chapter with reflection, which is an advanced Go feature, not because
it is an easy subject but because it is going to help you understand how Go works
with different data types, including interfaces, and why they are needed.

You might be wondering how you can find out the names of the fields of a structure
at execution time. In such cases, you need to use reflection. Apart from enabling you
to print the fields and the values of a structure, reflection also allows you to explore
and manipulate unknown structures like the ones created from decoding JSON data.

The two main questions that I asked myself when I was introduced to reflection for
the first time were the following:

• Why was reflection included in Go?
• When should I use reflection?

To answer the first question, reflection allows you to dynamically learn the type
of an arbitrary object along with information about its structure. Go provides the
reflect package for working with reflection. Remember when we said in a previous
chapter that fmt.Println() is clever enough to understand the data types of its
parameters and act accordingly? Well, behind the scenes, the fmt package uses
reflection to do that.

As far as the second question is concerned, reflection allows you to handle and work
with data types that do not exist at the time at which you write your code but might
exist in the future, which is when we use an existing package with user-defined data
types.

Chapter 4

[137]

Additionally, reflection might come in handy when you have to work with data
types that do not implement a common interface and therefore have an uncommon
or unknown behavior—this does not mean that they have bad or erroneous behavior,
just uncommon behavior such as a user-defined structure.

The most useful parts of the reflect package are two data types named reflect.
Value and reflect.Type. Now, reflect.Value is used for storing values of any type,
whereas reflect.Type is used for representing Go types. There exist two functions
named reflect.TypeOf() and reflect.ValueOf() that return the reflect.Type
and reflect.Value values, respectively. Note that reflect.TypeOf() returns the
actual type of variable—if we are examining a structure, it returns the name of the
structure.

As structures are really important in Go, the reflect package offers the reflect.
NumField() method for listing the number of fields in a structure as well as the
Field() method for getting the reflect.Value value of a specific field of a structure.

The reflect package also defines the reflect.Kind data type, which is used for
representing the specific data type of a variable: int, struct, etc. The documentation
of the reflect package lists all possible values of the reflect.Kind data type. The
Kind() function returns the kind of a variable.

Last, the Int() and String() methods return the integer and string value of a
reflect.Value, respectively.

The introduction of generics in Go might make the use of reflection
less frequent in some cases, because with generics you can work
with different data types more easily and without the need to
know their exact data types in advance. However, nothing beats
reflection for fully exploring the structure and the data types of a
variable. We talk about reflection compared to generics in Chapter
13, Go Generics.

Reflection code can look unpleasant and hard to read sometimes.
Therefore, according to the Go philosophy, you should rarely
use reflection unless it is absolutely necessary because despite its
cleverness, it does not create clean code.

Reflection and Interfaces

[138]

Learning the internal structure of a Go
structure
The next utility shows how to use reflection to discover the internal structure and
fields of a Go structure variable. Type it and save it as reflection.go.

package main

import (
 "fmt"
 "reflect"
)

type Secret struct {
 Username string
 Password string
}

type Record struct {
 Field1 string
 Field2 float64
 Field3 Secret
}

func main() {
 A := Record{"String value", -12.123, Secret{"Mihalis",
"Tsoukalos"}}

We begin by defining a Record structure variable that contains another structure
value (Secret{"Mihalis", "Tsoukalos"}).

 r := reflect.ValueOf(A)
 fmt.Println("String value:", r.String())

This returns the reflect.Value of the A variable.

 iType := r.Type()

Using Type() is how we get the data type of a variable—in this case variable A.

 fmt.Printf("i Type: %s\n", iType)
 fmt.Printf("The %d fields of %s are\n", r.NumField(), iType)

 for i := 0; i < r.NumField(); i++ {

Chapter 4

[139]

The previous for loop allows you to visit all the fields of a structure and examine
their characteristics.

 fmt.Printf("\t%s ", iType.Field(i).Name)
 fmt.Printf("\twith type: %s ", r.Field(i).Type())
 fmt.Printf("\tand value _%v_\n", r.Field(i).Interface())

The previous fmt.Printf() statements return the name, the data type, and the value
of the fields.

 // Check whether there are other structures embedded in Record
 k := reflect.TypeOf(r.Field(i).Interface()).Kind()
 // Need to convert it to string in order to compare it
 if k.String() == "struct" {

In order to check the data type of a variable with a string, we need to convert the
data type into a string variable first.

 fmt.Println(r.Field(i).Type())
 }

 // Same as before but using the internal value
 if k == reflect.Struct {

You can also use the internal representation of a data type during checking.
However, this makes less sense than using a string value.

 fmt.Println(r.Field(i).Type())
 }
 }
}

Running reflection.go produces the following output:

$ go run reflection.go
String value: <main.Record Value>
i Type: main.Record
The 3 fields of main.Record are
 Field1 with type: string and value _String value_
 Field2 with type: float64 and value _-12.123_
 Field3 with type: main.Secret and value _{Mihalis Tsoukalos}_
main.Secret
main.Secret

Reflection and Interfaces

[140]

main.Record is the full unique name of the structure as defined by Go—main is
the package name and Record is the struct name. This happens so that Go can
differentiate between the elements of different packages.

The presented code does not modify any values of the structure. If you were to
make changes to the values of the structure fields, you would use the Elem() method
and pass the structure as a pointer to ValueOf()—remember that pointers allow you
to make changes to the actual variable. There exist methods that allow you to modify
an existing value. In our case, we are going to use SetString() for modifying a
string field and SetInt() for modifying an int field.

This technique is illustrated in the next subsection.

Changing structure values using reflection
Learning about the internal structure of a Go structure is handy, but what is more
practical is being able to change values in the Go structure, which is the subject of
this subsection.

Type the following Go code and save it as setValues.go—it can also be found in the
GitHub repository of the book.

package main

import (
 "fmt"
 "reflect"
)

type T struct {
 F1 int
 F2 string
 F3 float64
}

func main() {
 A := T{1, "F2", 3.0}

A is the variable that is examined in this program.

 fmt.Println("A:", A)

 r := reflect.ValueOf(&A).Elem()

Chapter 4

[141]

With the use of Elem() and a pointer to variable A, variable A can be modified if
needed.

 fmt.Println("String value:", r.String())
 typeOfA := r.Type()
 for i := 0; i < r.NumField(); i++ {
 f := r.Field(i)
 tOfA := typeOfA.Field(i).Name
 fmt.Printf("%d: %s %s = %v\n", i, tOfA, f.Type(),
f.Interface())

 k := reflect.TypeOf(r.Field(i).Interface()).Kind()
 if k == reflect.Int {
 r.Field(i).SetInt(-100)
 } else if k == reflect.String {
 r.Field(i).SetString("Changed!")
 }
 }

We are using SetInt() for modifying an integer value and SetString() for
modifying a string value. Integer values are set to -100 and string values are set to
Changed!.

 fmt.Println("A:", A)
}

Running setValues.go creates the next output:

$ go run setValues.go
A: {1 F2 3}
String value: <main.T Value>
0: F1 int = 1
1: F2 string = F2
2: F3 float64 = 3
A: {-100 Changed! 3}

The first line of output shows the initial version of A whereas the last line shows the
final version of A with the modified fields. The main use of such code is dynamically
changing the values of the fields of a structure.

Reflection and Interfaces

[142]

The three disadvantages of reflection
Without a doubt, reflection is a powerful Go feature. However, as with all tools,
reflection should be used sparingly for three main reasons:

• The first reason is that extensive use of reflection will make your programs
hard to read and maintain. A potential solution to this problem is good
documentation, but developers are notorious for not having the time to write
proper documentation.

• The second reason is that the Go code that uses reflection makes your
programs slower. Generally speaking, Go code that works with a particular
data type is always faster than Go code that uses reflection to dynamically
work with any Go data type. Additionally, such dynamic code makes it
difficult for tools to refactor or analyze your code.

• The last reason is that reflection errors cannot be caught at build time and
are reported at runtime as panics, which means that reflection errors can
potentially crash your programs. This can happen months or even years after
the development of a Go program! One solution to this problem is extensive
testing before a dangerous function call. However, this adds even more Go
code to your programs, which makes them even slower.

Now that we know about reflection and what it can do for us, it is time to begin the
discussion about type methods, which are necessary for using interfaces.

Type methods
A type method is a function that is attached to a specific data type. Although type
methods (or methods on types) are in reality functions, they are defined and used in
a slightly different way.

Defining new type methods is as simple as creating new functions, provided that
you follow certain rules that associate the function with a data type.

The methods on types feature gives some object-oriented
capabilities to Go, which is very handy and is used extensively in
Go. Additionally, interfaces require type methods to work.

Chapter 4

[143]

Creating type methods
So, imagine that you want to do calculations with 2x2 matrices. A very natural way
of implementing that is by defining a new data type and defining type methods for
adding, subtracting, and multiplying 2x2 matrices using that new data type. To make
it even more interesting and generic, we are going to create a command-line utility
that accepts the elements of two 2x2 matrices as command-line arguments, which are
eight integer values in total, and performs all three calculations between them using
the defined type methods.

Having a data type called ar2x2, you can create a type method named FunctionName
for it as follows:

func (a ar2x2) FunctionName(parameters) <return values> {
 ...
}

The (a ar2x2) part is what makes the FunctionName() function a type method
because it associates FunctionName() with the ar2x2 data type. No other data type
can use that function. However, you are free to implement FunctionName() for other
data types or as a regular function. If you have a ar2x2 variable named varAr, you
can invoke FunctionName() as varAr.FunctionName(...), which looks like selecting
the field of a structure variable.

You are not obligated to develop type methods if you do not want to. In fact, each
type method can be rewritten as a regular function. Therefore, FunctionName() can
be rewritten as follows:

func FunctionName(a ar2x2, parameters...) <return values> {
 ...
}

Have in mind that under the hood, the Go compiler does turn methods into regular
function calls with the self value as the first parameter. However, interfaces require
the use of type methods to work.

The expressions used for selecting a field of a structure or a type
method of a data type, which would replace the ellipsis after the
variable name above, are called selectors.

Reflection and Interfaces

[144]

Performing calculations between matrices of a given size is one of the rare cases
where using an array instead of a slice makes more sense because you do not have
to modify the size of the matrices. Some might argue that using a slice instead of an
array pointer is a better practice—you are allowed to use what makes more sense to
you.

Most of the time, and when there is such a need, the results of a type method are
saved in the variable that invoked the type method—in order to implement that
for the ar2x2 data type, we pass a pointer to the array that invoked the type method,
like func (a *ar2x2).

The next subsection illustrates type methods in action.

Using type methods
This subsection shows the use of type methods using the ar2x2 data type as an
example. The Add() function and the Add() method use the exact same algorithm for
adding two matrices. The only difference between them is the way they are being
called and the fact that the function returns an array whereas the method saves the
result to the calling variable.

Although adding and subtracting matrices is a straightforward process—you just
add or subtract each element of the first matrix with the element of the second matrix
that is located at the same position—matrix multiplication is a more complex process.
This is the main reason that both addition and subtraction use for loops, which
means that the code can also work with bigger matrices, whereas multiplication
uses static code that cannot be applied to bigger matrices without major changes.

Type the following code and save it as methods.go.

package main

import (
 "fmt"
 "os"
 "strconv"
)

If you are defining type methods for a structure, you should make
sure that the names of the type methods do not conflict with any
field name of the structure because the Go compiler will reject such
ambiguities.

Chapter 4

[145]

type ar2x2 [2][2]int

// Traditional Add() function
func Add(a, b ar2x2) ar2x2 {
 c := ar2x2{}
 for i := 0; i < 2; i++ {
 for j := 0; j < 2; j++ {
 c[i][j] = a[i][j] + b[i][j]
 }
 }
 return c
}

Here, we have a traditional function that adds two ar2x2 variables and returns their
result.

// Type method Add()
func (a *ar2x2) Add(b ar2x2) {
 for i := 0; i < 2; i++ {
 for j := 0; j < 2; j++ {
 a[i][j] = a[i][j] + b[i][j]
 }
 }
}

Here we have a type method named Add() that is attached to the ar2x2 data type.
The result of the addition is not returned. What happens is that the ar2x2 variable
that called the Add() method is going to be modified and hold the result—this is
the reason for using a pointer when defining the type method. If you do not want
that behavior, you should modify the signature and the implementation of the type
method to fit your needs.

// Type method Subtract()
func (a *ar2x2) Subtract(b ar2x2) {
 for i := 0; i < 2; i++ {
 for j := 0; j < 2; j++ {
 a[i][j] = a[i][j] - b[i][j]
 }
 }
}

Reflection and Interfaces

[146]

The previous method subtracts ar2x2 b from ar2x2 a and the result is saved in a.

// Type method Multiply()
func (a *ar2x2) Multiply(b ar2x2) {
 a[0][0] = a[0][0]*b[0][0] + a[0][1]*b[1][0]
 a[1][0] = a[1][0]*b[0][0] + a[1][1]*b[1][0]
 a[0][1] = a[0][0]*b[0][1] + a[0][1]*b[1][1]
 a[1][1] = a[1][0]*b[0][1] + a[1][1]*b[1][1]
}

As we are working with small arrays, we do the multiplications without using for
loops.

func main() {
 if len(os.Args) != 9 {
 fmt.Println("Need 8 integers")
 return
 }

 k := [8]int{}
 for index, i := range os.Args[1:] {
 v, err := strconv.Atoi(i)
 if err != nil {
 fmt.Println(err)
 return
 }
 k[index] = v
 }
 a := ar2x2{{k[0], k[1]}, {k[2], k[3]}}
 b := ar2x2{{k[4], k[5]}, {k[6], k[7]}}

The main() function gets the input and creates two 2x2 matrices. After that, it
performs the desired calculations with these two matrices.

 fmt.Println("Traditional a+b:", Add(a, b))
 a.Add(b)
 fmt.Println("a+b:", a)
 a.Subtract(a)
 fmt.Println("a-a:", a)

 a = ar2x2{{k[0], k[1]}, {k[2], k[3]}}

Chapter 4

[147]

We calculate a+b using two different ways: using a regular function and using a
type method. As both a.Add(b) and a.Subtract(a) change the value of a, we have
to initialize a before using it again.

 a.Multiply(b)
 fmt.Println("a*b:", a)

 a = ar2x2{{k[0], k[1]}, {k[2], k[3]}}
 b.Multiply(a)
 fmt.Println("b*a:", b)
}

Last, we calculate a*b and b*a to show that they are different because the
commutative property does not apply to matrix multiplication.

Running methods.go produces the next output:

$ go run methods.go 1 2 0 0 2 1 1 1
Traditional a+b: [[3 3] [1 1]]
a+b: [[3 3] [1 1]]
a-a: [[0 0] [0 0]]
a*b: [[4 6] [0 0]]
b*a: [[2 4] [1 2]]

The input here is two 2x2 matrices, [[1 2] [0 0]] and [[2 1] [1 1]], and the
output is their calculations.

Now that we know about type methods, it is time to begin exploring interfaces as
interfaces cannot be implemented without type methods.

Interfaces
An interface is a Go mechanism for defining behavior that is implemented using a
set of methods. Interfaces play a key role in Go and can simplify the code of your
programs when they have to deal with multiple data types that perform the same
task—recall that fmt.Println() works for almost all data types. But remember,
interfaces should not be unnecessarily complex. If you decide to create your own
interfaces, then you should begin with a common behavior that you want to be used
by multiple data types.

Interfaces work with methods on types (or type methods), which are like functions
attached to given data types, which in Go are usually structures (although we can
use any data type we want).

Reflection and Interfaces

[148]

As you already know, once you implement the required type methods of an
interface, that interface is satisfied implicitly.

The empty interface is defined as just interface{}. As the empty interface has no
methods, it means that it is already implemented by all data types.

In a more formal way, a Go interface type defines (or describes) the behavior of
other types by specifying a set of methods that need to be implemented for supporting
that behavior. For a data type to satisfy an interface, it needs to implement all the
type methods required by that interface. Therefore, interfaces are abstract types
that specify a set of methods that need to be implemented so that another type
can be considered an instance of the interface. So, an interface is two things: a set
of methods and a type. Have in mind that small and well-defined interfaces are
usually the most popular ones.

The biggest advantage you get from interfaces is that if needed, you can pass a
variable of a data type that implements a particular interface to any function that
expects a parameter of that specific interface, which saves you from having to write
separate functions for each supported data type. However, Go offers an alternative
to this with the recent addition of generics.

Interfaces can also be used for providing a kind of polymorphism in Go, which is an
object-oriented concept. Polymorphism offers a way of accessing objects of different
types in the same uniform way when they share a common behavior.

Lastly, interfaces can be used for composition. In practice, this means that you can
combine existing interfaces and create new ones that offer the combined behavior
of the interfaces that were brought together. The next figure shows interface
composition in a graphical way.

Once you implement the methods of an interface for a data type,
that interface is satisfied automatically for that data type.

As a rule of thumb, only create a new interface when you want
to share a common behavior between two or more concrete data
types. This is basically duck typing.

Chapter 4

[149]

Figure 4.1: Interface composition

Put simply, the previous figure illustrates that because of its definition, satisfying
interface ABC requires satisfying InterfaceA, InterfaceB, and InterfaceC.
Additionally, any ABC variable can be used instead of an InterfaceA variable, an
InterfaceB variable, or an InterfaceC variable because it supports all these three
behaviors. Last, only ABC variables can be used where an ABC variable is expected.
There is nothing prohibiting you from including additional methods in the definition
of the ABC interface if the combination of existing interfaces does not describe the
desired behavior accurately.

What you should keep in mind is that there is no need for an interface to be
impressive and require the implementation of a large number of methods. In fact, the
fewer methods an interface has, the more generic and widely used it can be, which
improves its usefulness and therefore its usage.

The subsection that follows illustrates the use of sort.Interface.

When you combine existing interfaces, it is better that the interfaces
do not contain methods with the same name.

Reflection and Interfaces

[150]

The sort.Interface interface
The sort package contains an interface named sort.Interface that allows you to
sort slices according to your needs and your data, provided that you implement
sort.Interface for the custom data types stored in your slices. The sort package
defines the sort.Interface as follows:

type Interface interface {
 // Len is the number of elements in the collection.
 Len() int
 // Less reports whether the element with
 // index i should sort before the element with index j.
 Less(i, j int) bool
 // Swap swaps the elements with indexes i and j.
 Swap(i, j int)
}

What we can understand from the definition of sort.Interface is that in order to
implement sort.Interface, we need to implement the following three type methods:

• Len() int

• Less(i, j int) bool

• Swap(i, j int)

The Len() method returns the length of the slice that will be sorted and helps the
interface to process all slice elements whereas the Less() method, which compares
and sorts elements in pairs, defines how elements are going to be compared and
therefore sorted. The return value of Less() is bool, which means that Less() only
cares about whether the element at index i is bigger or not than the element at index
j in the way that the two elements are being compared. Lastly, the Swap() method
is used for swapping two elements of the slice, which is required for the sorting
algorithm to work.

The following code, which can be found as sort.go, illustrates the use of sort.
Interface.

package main

import (
 "fmt"
 "sort"
)

Chapter 4

[151]

type S1 struct {
 F1 int
 F2 string
 F3 int
}

// We want to sort S2 records based on the value of F3.F1,
// Which is equivalent to S1.F1 as F3 is an S1 structure
type S2 struct {
 F1 int
 F2 string
 F3 S1
}

The S2 structure includes a field named F3 that is of the S1 data type, which is also a
structure.

type S2slice []S2

You need to have a slice because all sorting operations work on slices. It is for this
slice, which should be a new data type that in this case is called S2slice, that you are
going to implement the three type methods of the sort.Interface.

// Implementing sort.Interface for S2slice
func (a S2slice) Len() int {
 return len(a)
}

Here is the implementation of Len() for the S2slice data type. It is usually that
simple.

// What field to use when comparing
func (a S2slice) Less(i, j int) bool {
 return a[i].F3.F1 < a[j].F3.F1
}

Here is the implementation of Less() for the S2slice data type. This method defines
the way elements get sorted. In this case, by using a field of the embedded data
structure (F3.F1).

func (a S2slice) Swap(i, j int) {
 a[i], a[j] = a[j], a[i]
}

Reflection and Interfaces

[152]

This is the implementation of the Swap() type method that defines the way to swap
slice elements during sorting. It is usually that simple.

func main() {
 data := []S2{
 S2{1, "One", S1{1, "S1_1", 10}},
 S2{2, "Two", S1{2, "S1_1", 20}},
 S2{-1, "Two", S1{-1, "S1_1", -20}},
 }
 fmt.Println("Before:", data)
 sort.Sort(S2slice(data))
 fmt.Println("After:", data)

 // Reverse sorting works automatically
 sort.Sort(sort.Reverse(S2slice(data)))
 fmt.Println("Reverse:", data)
}

Once you have implemented sort.Interface, you'll see that sort.Reverse(), which
is used for reverse sorting your slice, works automatically.

Running sort.go generates the following output:

$ go run sort.go
Before: [{1 One {1 S1_1 10}} {2 Two {2 S1_1 20}} {-1 Two {-1 S1_1
-20}}]
After: [{-1 Two {-1 S1_1 -20}} {1 One {1 S1_1 10}} {2 Two {2 S1_1 20}}]
Reverse: [{2 Two {2 S1_1 20}} {1 One {1 S1_1 10}} {-1 Two {-1 S1_1
-20}}]

The first line shows the elements of the slice as initially stored. The second line shows
the sorted version whereas the last line shows the reverse sorted version.

The empty interface
As mentioned before, the empty interface is defined as just interface{} and is
already implemented by all data types. Therefore, variables of any data type can
be put in the place of a parameter of the empty interface data type. Therefore, a
function with an interface{} parameter can accept variables of any data type in
this place. However, if you intend to work with interface{} function parameters
without examining their data type inside the function, you should process them with
statements that work on all data types, otherwise your code may crash or misbehave.

Chapter 4

[153]

The program that follows defines two structures named S1 and S2 but just a single
function named Print() for printing both of them. This is allowed because Print()
requires an interface{} parameter that can accept both S1 and S2 variables. The fmt.
Println(s) statement inside Print() can work with both S1 and S2.

The source code of empty.go is as follows:

package main

import "fmt"

type S1 struct {
 F1 int
 F2 string
}

type S2 struct {
 F1 int
 F2 S1
}

func Print(s interface{}) {
 fmt.Println(s)
}

func main() {
 v1 := S1{10, "Hello"}
 v2 := S2{F1: -1, F2: v1}
 Print(v1)
 Print(v2)

Although v1 and v2 are of different data types, Print() can work with both of them.

 // Printing an integer
 Print(123)
 // Printing a string
 Print("Go is the best!")
}

If you create a function that accepts one or more interface{}
parameters and you run a statement that can only be applied to a
limited number of data types, things will not work out well. As an
example, not all interface{} parameters can be multiplied by 5
or be used in fmt.Printf() with the %d control string.

Reflection and Interfaces

[154]

Print() can also work with integers and strings.

Running empty.go produces the following output:

{10 Hello}
{-1 {10 Hello}}
123
Go is the best!

Using the empty interface is easy as soon as you realize that you can pass any
type of variable in the place of an interface{} parameter and you can return any
data type as an interface{} return value. However, with great power comes great
responsibility—you should be very careful with interface{} parameters and their
return values, because in order to use their real values you have to be sure about
their underlying data type. We'll discuss this in the next section.

Type assertions and type switches
A type assertion is a mechanism for working with the underlying concrete value of
an interface. This mainly happens because interfaces are virtual data types without
their own values—interfaces just define behavior and do not hold data of their own.
But what happens when you do not know the data type before attempting a type
assertion? How can you differentiate between the supported data types and the
unsupported ones? How can you choose a different action for each supported data
type? The answer is by using type switches. Type switches use switch blocks for data
types and allow you to differentiate between type assertion values, which are data
types, and process each data type the way you want. On the other hand, in order to
use the empty interface in type switches, you need to use type assertions.

Therefore, the real work begins once you enter the function, because this is where
you need to define the supported data types and the actions that take place for each
supported data type.

Type assertions use the x.(T) notation, where x is an interface type and T is a type,
and help you extract the value that is hidden behind the empty interface. For a type
assertion to work, x should not be nil and the dynamic type of x should be identical
to the T type.

You can have type switches for all kinds of interfaces and data
types in general.

Chapter 4

[155]

The following code can be found as typeSwitch.go:

package main

import "fmt"

type Secret struct {
 SecretValue string
}

type Entry struct {
 F1 int
 F2 string
 F3 Secret
}

func Teststruct(x interface{}) {
 // type switch
 switch T := x.(type) {
 case Secret:
 fmt.Println("Secret type")
 case Entry:
 fmt.Println("Entry type")
 default:
 fmt.Printf("Not supported type: %T\n", T)
 }
}

This is a type switch that supports the Secret and Entry data types.

func Learn(x interface{}) {
 switch T := x.(type) {
 default:
 fmt.Printf("Data type: %T\n", T)
 }
}

The Learn() function prints the data type of its input parameter.

func main() {
 A := Entry{100, "F2", Secret{"myPassword"}}
 Teststruct(A)
 Teststruct(A.F3)

Reflection and Interfaces

[156]

 Teststruct("A string")

 Learn(12.23)
 Learn('€')
}

The last part of the code calls the desired functions to explore variable A. Running
typeSwitch.go produces the following output:

$ go run typeSwitch.go
Entry type
Secret type
Not supported type: string
Data type: float64
Data type: int32

As you can see, we have managed to execute different code based on the data type of
the variable passed to TestStruct() and Learn().

Strictly speaking, type assertions allow you to perform two main tasks:

• Checking whether an interface value keeps a particular type. When used this
way, a type assertion returns two values: the underlying value and a bool
value. The underlying value is what you might want to use. However, it is
the value of the bool variable that tells you whether the type assertion was
successful or not and therefore whether you can use the underlying value
or not. Checking whether a variable named aVar is of the int type requires
the use of the aVar.(int) notation, which returns two values. If successful,
it returns the real int value of aVar and true. Otherwise, it returns false as
the second value, which means that the type assertion was not successful and
that the real value could not be extracted.

• Using the concrete value stored in an interface or assigning it to a new
variable. This means that if there is a float64 variable in an interface, a type
assertion allows you to get that value.

So far, we have seen a variation of the first case where we extract the data type stored
in an empty interface variable. Now, we are going to learn how to extract the real
value stored in an empty interface variable.

The functionality offered by the reflect package helps Go
identify the underlying data type and the real value of an
interface{} variable.

Chapter 4

[157]

As explained, trying to extract the concrete value from an interface using a type
assertion can have two outcomes:

• If you use the correct concrete data type, you get the underlying value
without any issues

• If you use an incorrect concrete data type, your program will panic

All these are illustrated in assertions.go, which contains the next code as well as
lots of code comments that explain the process.

package main

import (
 "fmt"
)

func returnNumber() interface{} {
 return 12
}

func main() {
 anInt := returnNumber()

The returnNumber() function returns an int value that is wrapped in an empty
interface.

 number := anInt.(int)
 number++
 fmt.Println(number)

In the previous code, we get the int value wrapped in an empty interface variable
(anInt).

 // The next statement would fail because there
 // is no type assertion to get the value:
 // anInt++

 // The next statement fails but the failure is under
 // control because of the ok bool variable that tells
 // whether the type assertion is successful or not
 value, ok := anInt.(int64)
 if ok {
 fmt.Println("Type assertion successful: ", value)

Reflection and Interfaces

[158]

 } else {
 fmt.Println("Type assertion failed!")
 }

 // The next statement is successful but
 // dangerous because it does not make sure that
 // the type assertion is successful.
 // It just happens to be successful
 i := anInt.(int)
 fmt.Println("i:", i)

 // The following will PANIC because anInt is not bool
 _ = anInt.(bool)
}

The last statement panics the program because the anInt variable does not hold a
bool value. Running assertions.go generates the next output:

$ go run assertions.go
13
Type assertion failed!
i: 12
panic: interface conversion: interface {} is int, not bool

goroutine 1 [running]:
main.main()
 /Users/mtsouk/Desktop/mGo3rd/code/ch04/assertions.go:39 +0x192

The reason for the panic is written onscreen: panic: interface conversion:
interface {} is int, not bool. What else can the Go compiler do to help you?

Next we discuss the map[string]interface{} map and its use.

The map[string]interface{} map
You have a utility that processes its command-line arguments; if everything goes
as expected, then you get the supported types of command-line arguments and
everything goes smoothly. But what happens when something unexpected occurs?
In that case, the map[string]interface{} map is here to help and this subsection
shows how!

Chapter 4

[159]

Remember that the biggest advantage you get from using a map[string]interface{}
map or any map that stores an interface{} value in general, is that you still have
your data in its original state and data type. If you use map[string]string instead,
or anything similar, then any data you have is going to be converted into a string,
which means that you are going to lose information about the original data type and
the structure of the data you are storing in the map.

Nowadays, web services work by exchanging JSON records. If you get a JSON
record in a supported format, then you can process it as expected and everything
will be fine. However, there are times when you might get an erroneous record
or a record in an unsupported JSON format. In these cases, using map[string]
interface{} for storing these unknown JSON records (arbitrary data) is a good choice
because map[string]interface{} is good at storing JSON records of an unknown
type. We are going to illustrate that using a utility named mapEmpty.go that processes
arbitrary JSON records given as command-line arguments. We process the input
JSON record in two ways that are similar but not identical. There is no real difference
between the exploreMap() and typeSwitch() functions apart from the fact that
typeSwitch() generates a much richer output. The code of mapEmpty.go is as follows:

package main

import (
 "encoding/json"
 "fmt"
 "os"
)

var JSONrecord = `{
 "Flag": true,
 "Array": ["a","b","c"],
 "Entity": {
 "a1": "b1",
 "a2": "b2",
 "Value": -456,
 "Null": null
 },
 "Message": "Hello Go!"
 }`

Reflection and Interfaces

[160]

This global variable holds the default value of JSONrecord, in case there is no user
input.

func typeSwitch(m map[string]interface{}) {
 for k, v := range m {
 switch c := v.(type) {
 case string:
 fmt.Println("Is a string!", k, c)
 case float64:
 fmt.Println("Is a float64!", k, c)
 case bool:
 fmt.Println("Is a Boolean!", k, c)
 case map[string]interface{}:
 fmt.Println("Is a map!", k, c)
 typeSwitch(v.(map[string]interface{}))
 default:
 fmt.Printf("...Is %v: %T!\n", k, c)
 }
 }
 return
}

The typeSwitch() function uses a type switch for differentiating between the values
in its input map. If a map is found, then we recursively call typeSwitch() on the new
map in order to examine it even more.

The for loop allows you to examine all the elements of the map[string]interface{}
map.

func exploreMap(m map[string]interface{}) {
 for k, v := range m {
 embMap, ok := v.(map[string]interface{})
 // If it is a map, explore deeper
 if ok {
 fmt.Printf("{\"%v\": \n", k)
 exploreMap(embMap)
 fmt.Printf("}\n")
 } else {
 fmt.Printf("%v: %v\n", k, v)
 }
 }
}

Chapter 4

[161]

The exploreMap() function inspects the contents of its input map. If a map is found,
then we call exploreMap() on the new map recursively in order to examine it on its
own.

func main() {
 if len(os.Args) == 1 {
 fmt.Println("*** Using default JSON record.")
 } else {
 JSONrecord = os.Args[1]
 }

 JSONMap := make(map[string]interface{})
 err := json.Unmarshal([]byte(JSONrecord), &JSONMap)

As you will learn in Chapter 6, Telling a UNIX System What To Do, json.Unmarshal()
processes JSON data and converts it into a Go value. Although this value is usually
a Go structure, in this case we are using a map as specified by the map[string]
interface{} variable. Strictly speaking, the second parameter of json.Unmarshal()
is of the empty interface data type, which means that its data type can be anything.

 if err != nil {
 fmt.Println(err)
 return
 }
 exploreMap(JSONMap)
 typeSwitch(JSONMap)
}

Running mapEmpty.go produces the following output:

$ go run mapEmpty.go
*** Using default JSON record.
Message: Hello Go!
Flag: true
Array: [a b c]

map[string]interface{} is extremely handy for storing JSON
records when you do not know their schema in advance. In other
words, map[string]interface{} is good at storing arbitrary
JSON data of unknown schema.

Reflection and Interfaces

[162]

{"Entity":
Value: -456
Null: <nil>
a1: b1
a2: b2
}
Is a Boolean! Flag true
...Is Array: []interface {}!
Is a map! Entity map[Null:<nil> Value:-456 a1:b1 a2:b2]
Is a string! a2 b2
Is a float64! Value -456
...Is Null: <nil>!
Is a string! a1 b1
Is a string! Message Hello Go!
$ go run mapEmpty.go '{"Array": [3, 4], "Null": null, "String": "Hello
Go!"}'
Array: [3 4]
Null: <nil>
String: Hello Go!
...Is Array: []interface {}!
...Is Null: <nil>!
Is a string! String Hello Go!
$ go run mapEmpty.go '{"Array":"Error"'
unexpected end of JSON input

The first run is without any command-line parameters, which means that it uses the
default value of JSONrecord and therefore outputs the hardcoded data. The other
two executions use user data. First, valid data, and then data that does not represent
a valid JSON record. The error message in the third execution is generated by json.
Unmarshal() as it cannot understand the schema of the JSON record.

The error data type
As promised, we are revisiting the error data type because it is an interface defined
as follows:

type error interface {
 Error() string
}

Chapter 4

[163]

So, in order to satisfy the error interface you just need to implement the Error()
string type method. This does not change the way we use errors to find out
whether the execution of a function or method was successful or not but shows how
important interfaces are in Go as they are being used transparently all the time.
However, the crucial question is when you should implement the error interface on
your own instead of using the default one. The answer to that question is when you
want to give more context to an error condition.

Now, let us talk about the error interface in a more practical situation. When there is
nothing more to read from a file, Go returns an io.EOF error, which, strictly speaking,
is not an error condition but a logical part of reading a file. If a file is totally empty,
you still get io.EOF when you try to read it. However, this might cause problems
in some situations and you might need to have a way of differentiating between
a totally empty file and a file that has been read fully and there is nothing more to
read. One way of dealing with that issue is with the help of the error interface.

The code of errorInt.go without the package and import blocks is as follows:

type emptyFile struct {
 Ended bool
 Read int
}

This is a new data type that is used in the program.

// Implement error interface
func (e emptyFile) Error() string {
 return fmt.Sprintf("Ended with io.EOF (%t) but read (%d) bytes",
e.Ended, e.Read)
}

This is the implementation of the error interface for emptyFile.

// Check values
func isFileEmpty(e error) bool {
 // Type assertion
 v, ok := e.(emptyFile)

The code example that is presented here is connected to File I/O.
Putting it here might generate some questions about reading files
in Go—however, I feel that this is the appropriate place to put it
because it is connected to errors and error handling more than it is
connected to file reading.

Reflection and Interfaces

[164]

This is a type assertion for getting an emptyFile structure from the error variable.

 if ok {
 if v.Read == 0 && v.Ended == true {
 return true
 }
 }
 return false
}

This is a method for checking whether a file is empty or not. The if condition
translates as: if you have read 0 bytes (v.Read == 0) and you have reached the end
of the file (v.Ended == true), then the file is empty.

If you are dealing with multiple error variables, you should add a type switch to
the isFileEmpty() function after the type assertion.

func readFile(file string) error {
 var err error
 fd, err := os.Open(file)
 if err != nil {
 return err
 }
 defer fd.Close()

 reader := bufio.NewReader(fd)
 n := 0
 for {
 line, err := reader.ReadString('\n')
 n += len(line)

We read the input file line by line—you are going to learn more about File I/O in
Chapter 6, Telling a UNIX System What to Do.

 if err == io.EOF {
 // End of File: nothing more to read
 if n == 0 {
 return emptyFile{true, n}
 }

If we have reached the end of a file (io.EOF) and we have read 0 characters, then
we are dealing with an empty file. This kind of context is added to the emptyFile
structure and returned as an error value.

Chapter 4

[165]

 break
 } else if err != nil {
 return err
 }
 }
 return nil
}

func main() {
 flag.Parse()
 if len(flag.Args()) == 0 {
 fmt.Println("usage: errorInt <file1> [<file2> ...]")
 return
 }

 for _, file := range flag.Args() {
 err := readFile(file)
 if isFileEmpty(err) {
 fmt.Println(file, err)

This is where we check the error message of the readFile() function. The order we
do the checking in is important because only the first match is executed. This means
that we have to go from more specific cases to more generic conditions.

 } else if err != nil {
 fmt.Println(file, err)
 } else {
 fmt.Println(file, "is OK.")
 }
 }
}

Running errorInt.go produces the next output:

$ go run errorInt.go /etc/hosts /tmp/doesNotExist /tmp/empty /tmp /tmp/
Empty.txt
/etc/hosts is OK.
/tmp/doesNotExist open /tmp/doesNotExist: no such file or directory
/tmp/empty open /tmp/empty: permission denied
/tmp read /tmp: is a directory
/tmp/Empty.txt Ended with io.EOF (true) but read (0) bytes

Reflection and Interfaces

[166]

The first file (/etc/hosts) was read without any issues, whereas the second file
(/tmp/doesNotExist) could not be found. The third file (/tmp/empty) was there but
we did not have the required file permissions to read it, whereas the fourth file (/tmp)
was in reality a directory. The last file (/tmp/Empty.txt) was there but was empty,
which is the error situation that we wanted to catch.

Writing your own interfaces
After learning about using existing interfaces, we will write another command-line
utility that sorts 3D shapes according to their volumes. This task requires learning
the following tasks:

• Creating new interfaces
• Combining existing interfaces
• Implementing sort.Interface for 3D shapes

Creating your own interfaces is easy. For reasons of simplicity, we include our own
interface in the main package. However, this is rarely the case as we usually want
to share our interfaces, which means that interfaces are usually included in Go
packages other than main.

The following code excerpt defines a new interface:

type Shape2D interface {
 Perimeter() float64
}

This interface has the following properties:

• It is called Shape2D
• It requires the implementation of a single method named Perimeter() that

returns a float64 value

Apart from being user-defined, there is nothing special about that interface
compared to the built-in Go interfaces—you can use it as you do all other existing
interfaces. So, in order for a data type to satisfy the Shape2D interface, it needs to
implement a type method named Perimeter() that returns a float64 value.

Using a Go interface
The code that follows presents the simplest way of using an interface, which is by
calling its method directly, as if it was a function, to get a result. Although this is
allowed, it is rarely the case as we usually create functions that accept interface
parameters in order for these functions to be able to work with multiple data types.

Chapter 4

[167]

The code uses a handy technique for quickly finding out whether a given variable
is of a given data type that was presented earlier in assertions.go. In this case, we
examine whether a variable is of the Shape2D interface by using the interface{}(a).
(Shape2D) notation, where a is the variable that is being examined and Shape2D is the
data type against the variable being checked.

The next program is called Shape2D.go—its most interesting parts are the following:

type Shape2D interface {
 Perimeter() float64
}

This is the definition of the Shape2D interface that requires the implementation of the
Perimeter() type method.

type circle struct {
 R float64
}

func (c circle) Perimeter() float64 {
 return 2 * math.Pi * c.R
}

This is where the circle type implements the Shape2D interface with the
implementation of the Perimeter() type method.

func main() {
 a := circle{R: 1.5}
 fmt.Printf("R %.2f -> Perimeter %.3f \n", a.R, a.Perimeter())

 _, ok := interface{}(a).(Shape2D)
 if ok {
 fmt.Println("a is a Shape2D!")
 }
}

As stated before, the interface{}(a).(Shape2D) notation checks whether the a
variable satisfies the Shape2D interface without using its underlying value (circle{R:
1.5}).

Running Shape2D.go creates the next output:

R 1.50 -> Perimeter 9.425
a is a Shape2D!

Reflection and Interfaces

[168]

Implementing sort.Interface for 3D shapes
In this section we will create a utility for sorting various 3D shapes based on their
volume, which clearly illustrates the power and versatility of Go interfaces. This
time, we will use a single slice for storing all kinds of structures that all satisfy a
given interface. The fact that Go considers interfaces as data types allows us to create
slices with elements that satisfy a given interface without getting any error messages.

This kind of scenario can be useful in various cases because it illustrates how to store
elements with different data types that all satisfy a common interface on the same
slice and how to sort them using sort.Interface. Put simply, the presented utility
sorts different structures with different numbers and names of fields that all share
a common behavior through an interface implementation. The dimensions of the
shapes are created using random numbers, which means that each time you execute
the utility, you get a different output.

The name of the interface is Shape3D and requires the implementation of the Vol()
float64 type method. This interface is satisfied by the Cube, Cuboid, and Sphere data
types. The sort.Interface interface is implemented for the shapes data type, which
is defined as a slice of Shape3D elements.

All floating-point numbers are randomly generated using the rF64(min, max
float64) float64 function. As floating-point numbers have a lot of decimal points,
printing is implemented using a separate function named PrintShapes() that uses
an fmt.Printf("%.2f ", v) statement to specify the number of decimal points that
are displayed onscreen—in this case, we print the first two decimal points of each
floating-point value.

Type the following code on your favorite editor and save it as sortShapes.go. The
code illustrates how to sort 3D shapes based on their volume.

package main

import (
 "fmt"
 "math"
 "math/rand"
 "sort"

As you might recall, once you have implemented sort.
Interface, you can also sort your data in reverse order using
sort.Reverse().

Chapter 4

[169]

 "time"
)

const min = 1
const max = 5

func rF64(min, max float64) float64 {
 return min + rand.Float64()*(max-min)
}

The rF64() function generates float64 random values.

type Shape3D interface {
 Vol() float64
}

The definition of the Shape3D interface.

type Cube struct {
 x float64
}

type Cuboid struct {
 x float64
 y float64
 z float64
}

type Sphere struct {
 r float64
}

func (c Cube) Vol() float64 {
 return c.x * c.x * c.x
}

Cube implementing the Shape3D interface.

func (c Cuboid) Vol() float64 {
 return c.x * c.y * c.z
}

Reflection and Interfaces

[170]

Cuboid implementing the Shape3D interface.

func (c Sphere) Vol() float64 {
 return 4 / 3 * math.Pi * c.r * c.r * c.r
}

Sphere implementing the Shape3D interface.

type shapes []Shape3D

This is the data type that uses sort.Interface.

// Implementing sort.Interface
func (a shapes) Len() int {
 return len(a)
}

func (a shapes) Less(i, j int) bool {
 return a[i].Vol() < a[j].Vol()
}

func (a shapes) Swap(i, j int) {
 a[i], a[j] = a[j], a[i]
}

The previous three functions implement sort.Interface.

func PrintShapes(a shapes) {
 for _, v := range a {
 switch v.(type) {
 case Cube:
 fmt.Printf("Cube: volume %.2f\n", v.Vol())
 case Cuboid:
 fmt.Printf("Cuboid: volume %.2f\n", v.Vol())
 case Sphere:
 fmt.Printf("Sphere: volume %.2f\n", v.Vol())
 default:
 fmt.Println("Unknown data type!")
 }
 }
 fmt.Println()
}

Chapter 4

[171]

func main() {
 data := shapes{}
 rand.Seed(time.Now().Unix())

The PrintShapes() function is used for customizing the output.

 for i := 0; i < 3; i++ {
 cube := Cube{rF64(min, max)}
 cuboid := Cuboid{rF64(min, max), rF64(min, max), rF64(min,
max)}
 sphere := Sphere{rF64(min, max)}
 data = append(data, cube)
 data = append(data, cuboid)
 data = append(data, sphere)
 }
 PrintShapes(data)

 // Sorting
 sort.Sort(shapes(data))
 PrintShapes(data)

 // Reverse sorting
 sort.Sort(sort.Reverse(shapes(data)))
 PrintShapes(data)
}

The following code produces shapes with randomly generated dimensions using
the rF64() function.

Running sortShapes.go produces the following output:

Cube: volume 105.27
Cuboid: volume 34.88
Sphere: volume 212.31
Cube: volume 55.76
Cuboid: volume 28.84
Sphere: volume 46.50
Cube: volume 52.41
Cuboid: volume 36.90
Sphere: volume 257.03

Reflection and Interfaces

[172]

This is the unsorted output of the program:

Cuboid: volume 28.84
Cuboid: volume 34.88
Cuboid: volume 36.90
Sphere: volume 46.50
Cube: volume 52.41
...
Sphere: volume 257.03

This is the sorted output of the program from smaller to bigger shapes:

Sphere: volume 257.03
...
Cuboid: volume 28.84

This is the reversed sorted output of the program from bigger to smaller shapes.

The next section shows a technique for differentiating between two CSV file formats
in your programs.

Working with two different CSV file
formats
In this section we are going to implement a separate command-line utility that works
with two different CSV formats. The reason we are doing this is that there are times
when you will need your utilities to be able to work with multiple data formats.

Remember that the records of each CSV format are stored using their own Go
structure under a different variable name. As a result, we need to implement
sort.Interface for both CSV formats and therefore for both slice variables.

The two supported formats are the following:

• Format 1: name, surname, telephone number, time of last access
• Format 2: name, surname, area code, telephone number, time of last access

As the two CSV formats that are going to be used have a different number of fields,
the utility determines the format that is being used by the number of fields found
in the first record that was read and acts accordingly. After that, the data will be
sorted using sort.Sort()—the data type of the slice that keeps the data helps Go
determine the sort implementation that is going to be used without any help from
the developer.

Chapter 4

[173]

What follows is the implementation of the most important functions of the utility
beginning with readCSVFile() because the logic of the utility is found in the
readCSVFile() function.

func readCSVFile(filepath string) error {
.
.
.

The code that has to do with reading the input file and making sure that it exists is
omitted for brevity.

 var firstLine bool = true
 var format1 = true

The first line of the CSV file determines its format—therefore, we need a flag
variable for specifying whether we are dealing with the first line (firstLine) or not.
Additionally, we need a second variable for specifying the format we are working
with (format1 is that variable).

 for _, line := range lines {
 if firstLine {
 if len(line) == 4 {
 format1 = true
 } else if len(line) == 5 {
 format1 = false

The first format has four fields whereas the second format has five fields.

 } else {
 return errors.New("Unknown File Format!")
 }
 firstLine = false
 }

The main benefit you get from functions that work with empty
interface variables is that you can add support for additional
data types easily at a later time without the need to implement
additional functions and without breaking existing code.

Reflection and Interfaces

[174]

If the first line of the CSV file has neither four nor five fields, then we have an error,
and the function returns with a custom error message.

 if format1 {
 if len(line) == 4 {
 temp := F1{
 Name: line[0],
 Surname: line[1],
 Tel: line[2],
 LastAccess: line[3],
 }
 d1 = append(d1, temp)
 }

If we are working with format1, we add data to the d1 global variable.

 } else {
 if len(line) == 5 {
 temp := F2{
 Name: line[0],
 Surname: line[1],
 Areacode: line[2],
 Tel: line[3],
 LastAccess: line[4],
 }
 d2 = append(d2, temp)
 }

If we are working with format2, we add data to the d2 global variable.

 }
 }
 return nil
}

The sortData() function accepts an empty interface parameter. The code of the
function determines the data type of the slice that is passed as an empty interface to
that function using a type switch. After that, a type assertion allows you to use the
actual data stored under the empty interface parameter. Its full implementation is as
follows:

func sortData(data interface{}) {
 // type switch

Chapter 4

[175]

 switch T := data.(type) {
 case Book1:
 d := data.(Book1)
 sort.Sort(Book1(d))
 list(d)
 case Book2:
 d := data.(Book2)
 sort.Sort(Book2(d))
 list(d)
 default:
 fmt.Printf("Not supported type: %T\n", T)
 }
}

The type switch does the job of determining the data type we are working with,
which can be either Book1 or Book2. If you want to look at the implementation of
sort.Interface, you should view the sortCSV.go source code file.

Lastly, list() prints the data of the data variable used using the technique found
in sortData(). Although the code that handles Book1 and Book2 is the same as in
sortData(), you still need a type assertion to get the data from the empty interface
variable.

func list(d interface{}) {
 switch T := d.(type) {
 case Book1:
 data := d.(Book1)
 for _, v := range data {
 fmt.Println(v)
 }
 case Book2:
 data := d.(Book2)
 for _, v := range data {
 fmt.Println(v)
 }
 default:
 fmt.Printf("Not supported type: %T\n", T)
 }
}

Reflection and Interfaces

[176]

Running sortCSV.go produces the following kind of output:

$ go run sortCSV.go /tmp/csv.file
{Jane Doe 0800123456 1609310777}
{Dimitris Tsoukalos 2109416871 1609310731}
{Dimitris Tsoukalos 2109416971 1609310734}
{Mihalis Tsoukalos 2109416471 1609310706}
{Mihalis Tsoukalos 2109416571 1609310717}

The program correctly found out the format of /tmp/csv.file and worked with it
even though it supports two CSV formats. Trying to work with an unsupported
format generates the next output:

$ go run sortCSV.go /tmp/differentFormat.csv
Unknown File Format!

This means that the code successfully understands that we are dealing with an
unsupported format.

The next section explores the limited object-oriented capabilities of Go.

Object-oriented programming in Go
As Go does not support all object-oriented features, it cannot replace an object-
oriented programming language fully. However, it can mimic some object-oriented
concepts.

First of all, a Go structure with its type methods is like an object with its methods.
Second, interfaces are like abstract data types that define behaviors and objects of the
same class, which is similar to polymorphism. Third, Go supports encapsulation,
which means it supports hiding data and functions from the user by making them
private to the structure and the current Go package. Lastly, combining interfaces and
structures is like composition in object-oriented terminology.

You have already seen some of these points earlier in this chapter—the next chapter
discusses how to define private fields and functions. The example that follows,
which is named objO.go, illustrates composition and polymorphism as well as
embedding an anonymous structure into an existing one to get all its fields.

If you really want to develop applications using the object-oriented
methodology, then choosing Go might not be your best option. As
I am not really into Java, I would suggest looking at C++ or Python
instead. The general rule here is to choose the best tool for your job.

Chapter 4

[177]

package main

import (
 "fmt"
)

type IntA interface {
 foo()
}

type IntB interface {
 bar()
}

type IntC interface {
 IntA
 IntB
}

The IntC interface combines interfaces IntA and IntB. If you implement IntA and
IntB for a data type, then this data type implicitly satisfies IntC.

func processA(s IntA) {
 fmt.Printf("%T\n", s)
}

This function works with data types that satisfy the IntA interface.

type a struct {
 XX int
 YY int
}

// Satisfying IntA
func (varC c) foo() {
 fmt.Println("Foo Processing", varC)
}

Structure c satisfying IntA as it implements foo().

// Satisfying IntB
func (varC c) bar() {
 fmt.Println("Bar Processing", varC)
}

Reflection and Interfaces

[178]

Structure c satisfying IntB. As structure c satisfies both IntA and IntB, it implicitly
satisfies IntC, which is a composition of the IntA and IntB interfaces.

type b struct {
 AA string
 XX int
}

// Structure c has two fields
type c struct {
 A a
 B b
}

This structure has two fields named A and B that are of the a and b data types,
respectively.

// Structure compose gets the fields of structure a
type compose struct {
 field1 int
 a
}

This new structure uses an anonymous structure (a), which means that it gets the
fields of that anonymous structure.

// Different structures can have methods with the same name
func (A a) A() {
 fmt.Println("Function A() for A")
}

func (B b) A() {
 fmt.Println("Function A() for B")
}

func main() {
 var iC c = c{a{120, 12}, b{"-12", -12}}

Here we define a c variable that is composed of an a structure and a b structure.

 iC.A.A()
 iC.B.A()

Chapter 4

[179]

Here we access a method of the a structure (A.A()) and a method of the b structure
(B.A()).

 // The following will not work
 // iComp := compose{field1: 123, a{456, 789}}
 // iComp := compose{field1: 123, XX: 456, YY: 789}
 iComp := compose{123, a{456, 789}}
 fmt.Println(iComp.XX, iComp.YY, iComp.field1)

When using an anonymous structure inside another structure, as we do with a{456,
789}, you can access the fields of the anonymous structure, which is the a{456, 789}
structure, directly as iComp.XX and iComp.YY.

 iC.bar()
 processA(iC)
}

Although processA() works with IntA variables, it can also work with IntC variables
because the IntC interface satisfies IntA!

All the code in objO.go is pretty simplistic compared to the code of a real object-
oriented programming language that supports abstract classes and inheritance.
However, it is more than adequate for generating types and elements with a
structure in them, as well as for having different data types with the same method
names.

Running objO.go produces the next output:

$ go run objO.go
Function A() for A
Function A() for B
456 789 123
Bar Processing {{120 12} {-12 -12}}
main.c

The first two lines of the output show that two different structures can have a
method with the same name. The third line proves that when using an anonymous
structure inside one other structure, you can access the fields of the anonymous
structure directly. The fourth line is the output of the iC.bar() call, where iC is a c
variable accessing a method from the IntB interface. The last line is the output of
processA(iC) that requires an IntA parameter and prints the real data type of its
parameter, which in this case is main.c.

Reflection and Interfaces

[180]

Evidently, although Go is not an object-oriented programming language, it can
mimic some of the characteristics of object-oriented programming. Moving on, the
last section of this chapter is about updating the phone book application by reading
an environment variable and sorting its output.

Updating the phone book application
The functionality that is added to this new version of the phone book utility is the
following:

• The CSV file path can be optionally given as an environment variable named
PHONEBOOK

• The list command sorts the output based on the surname field

Although we could have given the path of the CSV file as a command-line argument
instead of the value of an environment variable, it would have complicated the code,
especially if that argument was made optional. More advanced Go packages such as
viper, which is presented in Chapter 6, Telling a UNIX System What to Do, simplify the
process of parsing command-line arguments with the use of command-line options
such as -f followed by a file path or --filepath.

Last, if the PHONEBOOK environment variable is not set, then the utility uses a default
value for the CSV file path. Generally speaking, not having to recompile your
software for user-defined data is considered a good practice.

Setting up the value of the CSV file
The value of the CSV file is set in the setCSVFILE() function, which is defined as
follows:

func setCSVFILE() error {
 filepath := os.Getenv("PHONEBOOK")
 if filepath != "" {
 CSVFILE = filepath
 }

The current default value of CSVFILE is set to my home directory
on a macOS Big Sur machine—you should change that default
value to fit your needs or use a proper value for the PHONEBOOK
environment variable.

Chapter 4

[181]

Here is where we read the PHONEBOOK environment variable. The rest of the code is
about making sure that we can use that file path or the default one if PHONEBOOK is
not set.

 _, err := os.Stat(CSVFILE)
 if err != nil {
 fmt.Println("Creating", CSVFILE)
 f, err := os.Create(CSVFILE)
 if err != nil {
 f.Close()
 return err
 }
 f.Close()
 }

If the specified file does not exist, it is created using os.Create().

 fileInfo, err := os.Stat(CSVFILE)
 mode := fileInfo.Mode()
 if !mode.IsRegular() {
 return fmt.Errorf("%s not a regular file", CSVFILE)
 }

Then, we make sure that the specified path belongs to a regular file that can be used
for saving data.

 return nil
}

In order to simplify the implementation of the main() function, we moved the code
related to the existence of and access to the CSV file path to setCSVFILE().

The first time we set the PHONEBOOK environment variable and executed the phone
book application, we got the following output—you should get something similar.

$ export PHONEBOOK="/tmp/csv.file"
$ go run phoneBook.go list
Creating /tmp/csv.file

As /tmp/csv.file does not exist, phoneBook.go creates it from scratch. This verifies
that the Go code of the setCSVFILE() function works as expected.

Now that we know where to get and write our data, it is time to learn how to sort it
using sort.Interface, which is the subject of the subsection that follows.

Reflection and Interfaces

[182]

Using the sort package
The first thing to decide when trying to sort data is the field that is going to be used
for sorting. After that, we need to decide what we are going to do when two or more
records have the same value in the main field used for sorting.

The code related to sorting using sort.Interface is the following:

type PhoneBook []Entry

You need to have a separate data type—sort.Interface is implemented for this data
type.

var data = PhoneBook{}

As you have a separate data type for implementing sort.Interface, the data type
of the data variable needs to change and become PhoneBook. Then sort.Interface is
implemented for PhoneBook.

// Implement sort.Interface
func (a PhoneBook) Len() int {
 return len(a)
}

The Len() function has a standard implementation.

// First based on surname. If they have the same
// surname take into account the name.
func (a PhoneBook) Less(i, j int) bool {
 if a[i].Surname == a[j].Surname {
 return a[i].Name < a[j].Name
 }

The Less() function is the place to define how you are going to sort the elements
of the slice. What we say here is that if the entries that are compared, which are Go
structures, have the same Surname field value, then compare these entries using their
Name field values.

 return a[i].Surname < a[j].Surname
}

If the entries have different values in the Surname field, then compare them using the
Surname field.

Chapter 4

[183]

func (a PhoneBook) Swap(i, j int) {
 a[i], a[j] = a[j], a[i]
}

The Swap() function has a standard implementation. After implementing the
desired interface, we need to tell our code to sort the data, which happens in the
implementation of the list() function:

func list() {
 sort.Sort(PhoneBook(data))
 for _, v := range data {
 fmt.Println(v)
 }
}

Now that we know how sorting is implemented, it is time to use the utility. First, we
add some entries:

$ go run phoneBook.go insert Mihalis Tsoukalos 2109416471
$ go run phoneBook.go insert Mihalis Tsoukalos 2109416571
$ go run phoneBook.go insert Dimitris Tsoukalos 2109416871
$ go run phoneBook.go insert Dimitris Tsoukalos 2109416971
$ go run phoneBook.go insert Jane Doe 0800123456

Last, we print the contents of the phone book using the list command:

$ go run phoneBook.go list
{Jane Doe 0800123456 1609310777}
{Dimitris Tsoukalos 2109416871 1609310731}
{Dimitris Tsoukalos 2109416971 1609310734}
{Mihalis Tsoukalos 2109416471 1609310706}
{Mihalis Tsoukalos 2109416571 1609310717}

As Dimitris comes before Mihalis alphabetically, all relevant entries come first as
well, which means that our sorting works as expected.

Exercises
• Create a slice of structures using a structure that you created and sort the

elements of the slice using a field from the structure
• Integrate the functionality of sortCSV.go in phonebook.go

Reflection and Interfaces

[184]

• Add support for a reverse command to phonebook.go in order to list its
entries in reverse order

• Use the empty interface and a function that allows you to differentiate
between two different structures that you create

Summary
In this chapter, we learned about interfaces, which are like contracts, and also about
type methods, type assertion, and reflection. Although reflection is a very powerful Go
feature, it might slow down your Go programs because it adds a layer of complexity
at runtime. Furthermore, your Go programs could crash if you use reflection
carelessly.

The last section of this chapter discussed writing Go code that follows the principles
of object-oriented programming. If you are going to remember just one thing from
this chapter, it should be that Go is not an object-oriented programming language,
but it can mimic some of the functionality offered by object-programming languages,
such as Java, Python, and C++.

The next chapter discusses Go packages, functions, and automation using GitHub
and GitLab CI/CD systems.

Additional resources
• The documentation of the reflect package: https://golang.org/pkg/

reflect/

• The documentation of the sort package: https://golang.org/pkg/sort/

• Working with errors in Go 1.13: https://blog.golang.org/go1.13-errors
• The implementation of the sort package: https://golang.org/src/sort/

https://golang.org/pkg/reflect/
https://golang.org/pkg/reflect/
https://golang.org/pkg/sort/
https://blog.golang.org/go1.13-errors
https://golang.org/src/sort/

[185]

5
Go Packages and Functions

The main focus of this chapter is Go packages, which are Go's way of organizing,
delivering, and using code. The most common component of packages is functions,
which are pretty flexible and powerful and are used for data processing and
manipulation. Go also supports modules, which are packages with version numbers.
This chapter will also explain the operation of defer, which is used for cleaning up
and releasing resources.

Regarding the visibility of package elements, Go follows a simple rule that states
that functions, variables, data types, structure fields, and so forth that begin with an
uppercase letter are public, whereas functions, variables, types, and so on that begin
with a lowercase letter are private. This is the reason why fmt.Println() is named
Println() instead of just println(). The same rule applies not only to the name of a
struct variable but to the fields of a struct variable—in practice, this means that you
can have a struct variable with both private and public fields. However, this rule
does not affect package names, which are allowed to begin with either uppercase or
lowercase letters.

In summary, this chapter covers:

• Go packages
• Functions
• Developing your own packages
• Using GitHub to store Go packages
• A package for working with a database
• Modules

Go Packages and Functions

[186]

• Creating better packages
• Creating documentation
• GitLab Runners and Go
• GitHub Actions and Go
• Versioning utilities

Go packages
Everything in Go is delivered in the form of packages. A Go package is a Go source
file that begins with the package keyword, followed by the name of the package.

Apart from the packages of the Go standard library, there are external packages that
can be imported using their full address and that should be downloaded on the local
machine, before their first use. One such example is https://github.com/spf13/
cobra, which is stored in GitHub.

Packages are mainly used for grouping related functions, variables, and constants so
that you can transfer them easily and use them in your own Go programs. Note that
apart from the main package, Go packages are not autonomous programs and cannot
be compiled into executable files on their own. As a result, if you try to execute a Go
package as if it were an autonomous program, you are going to be disappointed:

$ go run aPackage.go
go run: cannot run non-main package

Instead, packages need to be called directly or indirectly from a main package in
order to be used, as we have shown in previous chapters.

Downloading Go packages
In this subsection, you will learn how to download external Go packages using
https://github.com/spf13/cobra as an example. The go get command for
downloading the cobra package is as follows:

$ go get github.com/spf13/cobra

Note that packages can have structure. For example, the net
package has several subdirectories, named http, mail, rpc, smtp,
textproto, and url, which should be imported as net/http,
net/mail, net/rpc, net/smtp, net/textproto, and net/url,
respectively.

https://github.com/spf13/cobra
https://github.com/spf13/cobra
https://github.com/spf13/cobra

Chapter 5

[187]

Note that you can download the package without using https:// in its address. The
results can be found inside the ~/go directory—the full path is ~/go/src/github.com/
spf13/cobra. As the cobra package comes with a binary file that helps you structure
and create command-line utilities, you can find that binary file inside ~/go/bin as
cobra.

The following output, which was created with the help of the tree(1) utility, shows
a high-level view with 3 levels of detail of the structure of ~/go on my machine:

$ tree ~/go -L 3
/Users/mtsouk/go
├── bin
│ ├── cobra
│ ├── go-outline
│ ├── gocode
│ ├── gocode-gomod
│ ├── godef
│ ├── golint
│ ├── gopkgs
│ └── goreturns
├── pkg
│ ├── darwin_amd64
│ │ ├── github.com
│ │ ├── golang.org
│ │ ├── gonum.org
│ │ └── google.golang.org
│ ├── mod
│ │ ├── 9fans.net
│ │ ├── cache
│ │ ├── cloud.google.com
│ │ ├── github.com
│ │ ├── go.opencensus.io@v0.22.4
│ │ ├── golang.org
│ │ └── google.golang.org
│ └── sumdb
│ └── sum.golang.org
└── src
 ├── github.com
 │ ├── sirupsen
 │ └── spf13
 └── golang.org
 └── x

23 directories, 8 files

Go Packages and Functions

[188]

Basically, there are three main directories under ~/go with the following properties:

• The bin directory: This is where binary tools are placed.
• The pkg directory: This is where reusable packages are put. The darwin_amd64

directory, which can be found on macOS machines only, contains compiled
versions of the installed packages. On a Linux machine, you can find a
linux_amd64 directory instead of darwin_amd64.

• The src directory: This is where the source code of the packages is located.
The underlying structure is based on the URL of the package you are looking
for. So, the URL for the github.com/spf13/viper package is ~/go/src/
github.com/spf13/viper. If a package is downloaded as a module, then it
will be located under ~/go/pkg/mod.

If you want to upgrade an existing package, you should execute go get with the -u
option. Additionally, if you want to see what is happening behind the scenes, add
the -v option to the go get command—in this case, we are using the viper package
as an example, but we abbreviate the output:

$ go get -v github.com/spf13/viper
github.com/spf13/viper (download)
...
github.com/spf13/afero (download)
get "golang.org/x/text/transform": found meta tag get.
metaImport{Prefix:"golang.org/x/text", VCS:"git", RepoRoot:"https://
go.googlesource.com/text"} at //golang.org/x/text/transform?go-get=1
get "golang.org/x/text/transform": verifying non-authoritative meta tag
...
github.com/fsnotify/fsnotify
github.com/spf13/viper

The x path, which is displayed last, is used by the Go team.

Starting with Go 1.16, go install is the recommended way of
building and installing packages in module mode. The use of
go get is deprecated, but this chapter uses go get because it's
commonly used online and is worth knowing about. However,
most of the chapters in this book use go mod init and go mod
tidy for downloading external dependencies for your own source
files.

Chapter 5

[189]

What you can basically see in the output is the dependencies of the initial package
being downloaded before the desired package—most of the time, you do not want
to know that.

We will continue this chapter by looking at the most important package element:
functions.

Functions
The main elements of packages are functions, which are the subject of this section.

A piece of advice: functions must be as independent from each other as possible and
must do one job (and only one job) well. So, if you find yourself writing functions
that do multiple things, you might want to consider replacing them with multiple
functions instead.

You should already know that all function definitions begin with the func keyword,
followed by the function's signature and its implementation, and that functions
accept none, one, or more arguments and return none, one, or more values back.
The single-most popular Go function is main(), which is used in every executable
Go program—the main() function accepts no parameters and returns nothing, but
it is the starting point of every Go program. Additionally, when the main() function
ends, the entire program ends as well.

Anonymous functions
Anonymous functions can be defined inline without the need for a name, and they
are usually used for implementing things that require a small amount of code. In
Go, a function can return an anonymous function or take an anonymous function
as one of its arguments. Additionally, anonymous functions can be attached to
Go variables. Note that anonymous functions are called lambdas in functional
programming terminology. Similar to that, a closure is a specific type of anonymous
function that carries or closes over variables that are in the same lexical scope as the
anonymous function that was defined.

Type methods and functions are implemented in the same way
and sometimes, the terms functions and type methods are used
interchangeably.

Go Packages and Functions

[190]

It is considered a good practice for anonymous functions to have a small
implementation and a local focus. If an anonymous function does not have a local
focus, then you might need to consider making it a regular function. When an
anonymous function is suitable for a job, it is extremely convenient and makes your
life easier; just do not use too many anonymous functions in your programs without
having a good reason to. We will look at anonymous functions in action in a while.

Functions that return multiple values
As you already know from functions such as strconv.Atoi(), functions can return
multiple distinct values, which saves you from having to create a dedicated structure
for returning and receiving multiple values from a function. However, if you have
a function that returns more than 3 values, you should reconsider that decision and
maybe redesign it to use a single structure or slice for grouping and returning the
desired values as a single entity—this makes handling the returned values simpler
and easier. Functions, anonymous functions, and functions that return multiple
values are all illustrated in functions.go, as shown in the following code:

package main

import "fmt"

func doubleSquare(x int) (int, int) {
 return x * 2, x * x
}

This function returns two int values, without the need for having separate variables
to keep them—the returned values are created on the fly. Note the compulsory use of
parentheses when a function returns more than one value.

// Sorting from smaller to bigger value
func sortTwo(x, y int) (int, int) {
 if x > y {
 return y, x
 }
 return x, y
}

The preceding function returns two int values as well.

func main() {
 n := 10
 d, s := doubleSquare(n)

Chapter 5

[191]

The previous statement reads the two return values of doubleSquare() and saves
them in d and s.

 fmt.Println("Double of", n, "is", d)
 fmt.Println("Square of", n, "is", s)

 // An anonymous function
 anF := func(param int) int {
 return param * param
 }

The anF variable holds an anonymous function that requires a single parameter
as input and returns a single value. The only difference between an anonymous
function and a regular one is that the name of the anonymous function is func() and
that there is no func keyword.

 fmt.Println("anF of", n, "is", anF(n))

 fmt.Println(sortTwo(1, -3))
 fmt.Println(sortTwo(-1, 0))
}

The last two statements print the return values of sortTwo(). Running functions.go
produces the following output:

Double of 10 is 20
Square of 10 is 100
anF of 10 is 100
-3 1
-1 0

The subsection that follows illustrates functions that have named return values.

The return values of a function can be named
Unlike C, Go allows you to name the return values of a Go function. Additionally,
when such a function has a return statement without any arguments, the function
automatically returns the current value of each named return value, in the order in
which they were declared in the function signature.

The following function is included in namedReturn.go:

func minMax(x, y int) (min, max int) {
 if x > y {

Go Packages and Functions

[192]

 min = y
 max = x
 return min, max

This return statement returns the values stored in the min and max variables—both
min and max are defined in the function signature and not in the function body.

 }

 min = x
 max = y
 return
}

This return statement is equivalent to return min, max, which is based on the
function signature and the use of named return values.

Running namedReturn.go produces the following output:

$ go run namedReturn.go 1 -2
-2 1
-2 1

Functions that accept other functions as
parameters
Functions can accept other functions as parameters. The best example of a function
that accepts another function as an argument can be found in the sort package. You
can provide the sort.Slice() function with another function as an argument that
specifies the way sorting is implemented. The signature of sort.Slice() is func
Slice(slice interface{}, less func(i, j int) bool). This means the following:

• The sort.Slice() function does not return any data.
• The sort.Slice() function requires two arguments, a slice of type

interface{} and another function—the slice variable is modified inside
sort.Slice().

• The function parameter of sort.Slice() is named less and should have
the func(i, j int) bool signature—there is no need for you to name
the anonymous function. The name less is required because all function
parameters should have a name.

• The i and j parameters of less are indexes of the slice parameter.

Chapter 5

[193]

Similarly, there is another function in the sort package named sort.SliceIsSorted()
that is defined as func SliceIsSorted(slice interface{}, less func(i, j int)
bool) bool. sort.SliceIsSorted() returns a bool value and checks whether the
slice parameter is sorted according to the rules of the second parameter, which is
a function.

The use of both sort.Slice() and sort.SliceIsSorted() is illustrated in the Go
program that follows—the name of the source file is sorting.go:

package main

import (
 "fmt"
 "sort"
)

type Grades struct {
 Name string
 Surname string
 Grade int
}

func main() {
 data := []Grades{{"J.", "Lewis", 10}, {"M.", "Tsoukalos", 7},
 {"D.", "Tsoukalos", 8}, {"J.", "Lewis", 9}}

 isSorted := sort.SliceIsSorted(data, func(i, j int) bool {
 return data[i].Grade < data[j].Grade
 })

The if else block that follows checks the bool value of sort.SliceIsSorted() to
determine whether the slice is sorted:

 if isSorted {
 fmt.Println("It is sorted!")
 } else {
 fmt.Println("It is NOT sorted!")
 }

You are not obliged to use an anonymous function in either sort.
Slice() or sort.SliceIsSorted(). You can define a regular
function with the required signature and use that. However, using
an anonymous function is more convenient.

Go Packages and Functions

[194]

 sort.Slice(data,
 func(i, j int) bool { return data[i].Grade < data[j].Grade })
 fmt.Println("By Grade:", data)
}

The call to sort.Slice() sorts the data according to the anonymous function that is
passed as the second argument to sort.Slice().

Running sorting.go produces the following output:

It is NOT sorted!
By Grade: [{M. Tsoukalos 7} {D. Tsoukalos 8} {J. Lewis 9} {J. Lewis
10}]

Functions can return other functions
Apart from accepting functions as arguments, functions can also return anonymous
functions, which can be handy when the returned function is not always the same
but depends on the function's input or other external parameters. This is illustrated
in returnFunction.go:

package main

import "fmt"

func funRet(i int) func(int) int {
 if i < 0 {
 return func(k int) int {
 k = -k
 return k + k
 }
 }

 return func(k int) int {
 return k * k
 }
}

The signature of funRet() declares that the function returns another function with
the func(int) int signature. The implementation of the function is unknown, but it
is going to be defined at runtime. Functions are returned using the return keyword.
The developer should take care and save the returned function.

Chapter 5

[195]

func main() {
 n := 10
 i := funRet(n)
 j := funRet(-4)

Note that n and -4 are only used for determining the anonymous functions that are
going to be returned from funRet().

 fmt.Printf("%T\n", i)
 fmt.Printf("%T %v\n", j, j)
 fmt.Println("j", j, j(-5))

The first statement prints the signature of the function whereas the second statement
prints the function signature and its memory address. The last statement also returns
the memory address of j, because j is a pointer to the anonymous function and the
value of j(-5).

 // Same input parameter but DIFFERENT
 // anonymous functions assigned to i and j
 fmt.Println(i(10))
 fmt.Println(j(10))
}

Although both i and j are called with the same input (10), they are going to return
different values because they store different anonymous functions.

Running returnFunction.go generates the following output:

func(int) int
func(int) int 0x10a8d40
j 0x10a8d40 10
100
-20

The first line of the output shows the data type of the i variable that holds the
return value of funRet(n), which is func(int) int as it holds a function. The second
line of output shows the data type of j, as well as the memory address where the
anonymous function is stored. The third line shows the memory address of the
anonymous function stored in the j variable, as well as the return value of j(-5).
The last two lines are the return values of i(10) and j(10), respectively.

So, in this subsection, we learned about functions returning functions. This makes
Go a functional programming language, albeit not a pure one, and allows Go to
benefit from the functional programming paradigm.

Go Packages and Functions

[196]

We are now going to examine variadic functions, which are functions with a variable
number of parameters.

Variadic functions
Variadic functions are functions that can accept a variable number of parameters—
you already know about fmt.Println() and append(), which are both variadic
functions that are widely used. In fact, most functions found in the fmt package are
variadic.

The general ideas and rules behind variadic functions are as follows:

• Variadic functions use the pack operator, which consists of a ..., followed by
a data type. So, for a variadic function to accept a variable number of int
values, the pack operator should be ...int.

• The pack operator can only be used once in any given function.
• The variable that holds the pack operation is a slice and, therefore, is accessed

as a slice inside the variadic function.
• The variable name that is related to the pack operator is always last in the list

of function parameters.
• When calling a variadic function, you should put a list of values separated

by , in the place of the variable with the pack operator or a slice with the
unpack operator.

This list contains all the rules that you need to know in order to define and use
variadic functions.

The pack operator can also be used with an empty interface. In fact, most functions
in the fmt package use ...interface{} to accept a variable number of arguments of
all data types. You can find the source code of the latest implementation of fmt at
https://golang.org/src/fmt/.

However, there is a situation that needs special care here—I made that mistake when
I was learning Go. If you try to pass os.Args, which is a slice of strings ([]string),
as ...interface{} to a variadic function), your code will not compile and will
generate an error message similar to cannot use os.Args (type []string) as type
[]interface {} in argument to <function_name>. This happens because the two
data types ([]string and []interface{}) do not have the same representations in
memory—this applies to all data types. In practice, this means that you cannot write
os.Args... to pass each individual value of the os.Args slice to a variadic function.

https://golang.org/src/fmt/

Chapter 5

[197]

On the other hand, if you just use os.Args, it will work, but this passes the
entire slice as a single entity instead of its individual values! This means that the
everything(os.Args, os.Args) statement works but does not do what you want.

The solution to this problem is converting the slice of strings—or any other slice—
into a slice of interface{}. One way to do that is by using the code that follows:

empty := make([]interface{}, len(os.Args[1:]))
for i, v := range os.Args {
 empty[i] = v
}

Now, you are allowed to use empty... as an argument to the variadic function. This
is the only subtle point related to variadic functions and the pack operator.

We are now ready to see variadic functions in action. Type the following Go code
using your favorite text editor and save it as variadic.go:

package main

import (
 "fmt"
 "os"
)

As variadic functions are built into the grammar of the language, you do not need
anything extra to support variadic functions.

func addFloats(message string, s ...float64) float64 {

This is a variadic function that accepts a string and an unknown number of float64
values. It prints the string variable and calculates the sum of the float64 values.

 fmt.Println(message)
 sum := float64(0)
 for _, a := range s {
 sum = sum + a
 }

As there is no standard library function to perform that conversion
for you, you have to write your own code. Note that the conversion
takes time because the code must visit all slice elements. The more
elements the slice has, the more time the conversion will take. This
topic is also discussed at https://github.com/golang/go/wiki/
InterfaceSlice.

https://github.com/golang/go/wiki/InterfaceSlice
https://github.com/golang/go/wiki/InterfaceSlice

Go Packages and Functions

[198]

This for loop accesses the pack operator as a slice, so there is nothing special here.

 s[0] = -1000
 return sum
}

You can also access individual elements of the s slice.

func everything(input ...interface{}) {
 fmt.Println(input)
}

This is another variadic function that accepts an unknown number of interface{}
values.

func main() {
 sum := addFloats("Adding numbers...", 1.1, 2.12, 3.14, 4, 5, -1,
10)

You can put the arguments of a variadic function inline.

 fmt.Println("Sum:", sum)
 s := []float64{1.1, 2.12, 3.14}

But you usually use a slice variable with the unpack operator.

 sum = addFloats("Adding numbers...", s...)
 fmt.Println("Sum:", sum)
 everything(s)

The previous code works because the content of s is not unpacked.

 // Cannot directly pass []string as []interface{}
 // You have to convert it first!
 empty := make([]interface{}, len(os.Args[1:]))

You can convert []string into []interface{} in order to use the unpack operator.

 for i, v := range os.Args[1:] {
 empty[i] = v
 }
 everything(empty...)

Chapter 5

[199]

And now, we can unpack the contents of empty.

 arguments := os.Args[1:]
 empty = make([]interface{}, len(arguments))
 for i := range arguments {
 empty[i] = arguments[i]
 }

This is a slightly different way of converting []string into []interface{}.

 everything(empty...)
 // This will work!
 str := []string{"One", "Two", "Three"}
 everything(str, str, str)
}

The previous statement works because you are passing the entire str variable three
times—not its contents. So, the slice contains three elements—each element is equal
to the contents of the str variable.

Running variadic.go produces the following output:

$ go run variadic.go
Adding numbers...
Sum: 24.36
Adding numbers...
Sum: 6.36
[[-1000 2.12 3.14]]
[]
[]
[[One Two Three] [One Two Three] [One Two Three]]

The last line of the output shows that we have passed the str variable three times to
the everything() function as three separate entities.

Variadic functions come in very handy when you want to have an unknown number
of parameters in a function. The next subsection discusses the use of defer, which we
have already used multiple times.

The defer keyword
So far, we have seen defer in ch03/csvData.go, as well as in the implementations of
the phone book application. But what does defer do? The defer keyword postpones
the execution of a function until the surrounding function returns.

Go Packages and Functions

[200]

Usually, defer is used in file I/O operations to keep the function call that closes an
opened file close to the call that opened it, so that you do not have to remember to
close a file that you have opened just before the function exits.

It is very important to remember that deferred functions are executed in last in, first
out (LIFO) order after the surrounding function has been returned. Putting it simply,
this means that if you defer function f1() first, function f2() second, and function
f3() third in the same surrounding function, then when the surrounding function is
about to return, function f3() will be executed first, function f2() will be executed
second, and function f1() will be the last one to get executed.

In this section, we will discuss the dangers of defer, when used carelessly using a
simple program. The code for defer.go is as follows.

package main

import (
 "fmt"
)

func d1() {
 for i := 3; i > 0; i-- {
 defer fmt.Print(i, " ")
 }
}

In d1(), defer is executed inside the function body with just a fmt.Print() call.
Remember that these calls to fmt.Print() are executed just before function d1()
returns.

func d2() {
 for i := 3; i > 0; i-- {
 defer func() {
 fmt.Print(i, " ")
 }()
 }
 fmt.Println()
}

In d2(), defer is attached to an anonymous function that does not accept any
parameters. In practice, this means that the anonymous function should get the value
of i on its own—this is dangerous because the current value of i depends on when
the anonymous function is executed.

Chapter 5

[201]

func d3() {
 for i := 3; i > 0; i-- {
 defer func(n int) {
 fmt.Print(n, " ")
 }(i)
 }
}

In this case, the current value of i is passed to the anonymous function as a
parameter that initializes the n function parameter. This means that there are no
ambiguities about the value that i has.

func main() {
 d1()
 d2()
 fmt.Println()
 d3()
 fmt.Println()
}

The task of main() is to call d1(), d2(), and d3().

Running defer.go produces the following output:

$ go run defer.go
1 2 3
0 0 0
1 2 3

You will most likely find the generated output complicated and challenging to
understand, which proves that the operation and the results of the use of defer can
be tricky if your code is not clear and unambiguous. Let me explain the results so
that you get a better idea of how tricky defer can be if you do not pay close attention
to your code.

The anonymous function is a closure, and that is why it has access
to variables that would normally be out of scope.

Go Packages and Functions

[202]

Let's start with the first line of the output (1 2 3) that is generated by the d1()
function. The values of i in d1() are 3, 2, and 1 in that order. The function that is
deferred in d1() is the fmt.Print() statement; as a result, when the d1() function is
about to return, you get the three values of the i variable of the for loop in reverse
order. This is because deferred functions are executed in LIFO order.

Now, let me explain the second line of the output that is produced by the d2()
function. It is really strange that we got three zeros instead of 1 2 3 in the output;
however, there is a reason for that. After the for loop ended, the value of i is 0,
because it is that value of i that made the for loop terminate. However, the tricky
point here is that the deferred anonymous function is evaluated after the for loop
ends because it has no parameters, which means that it is evaluated three times for
an i value of 0, hence the generated output. This kind of confusing code is what
might lead to the creation of nasty bugs in your projects, so try to avoid it.

Finally, we will talk about the third line of the output, which is generated by the d3()
function. Due to the parameter of the anonymous function, each time the anonymous
function is deferred, it gets and therefore uses the current value of i. As a result, each
execution of the anonymous function has a different value to process without any
ambiguities, hence the generated output.

After that, it should be clear that the best approach to using defer is the third one,
which is exhibited in the d3() function, because you intentionally pass the desired
variable in the anonymous function in an easy-to-read way. Now that we have
learned about defer, it is time to discuss something completely different: how to
develop your own packages.

Developing your own packages
At some point, you are going to need to develop your own packages to organize
your code and distribute it if needed. As stated at the beginning of this chapter,
everything that begins with an uppercase letter is considered public and can be
accessed from outside its package, whereas all other elements are considered private.
The only exception to this Go rule is package names—it is a best practice to use
lowercase package names, even though uppercase package names are allowed.

Compiling a Go package can be done manually, if the package exists on the local
machine, but it is also done automatically after you download the package from the
internet, so there is no need to worry about it. Additionally, if the package you are
downloading contains any errors, you will learn about them at downloading time.

However, if you want to compile a package that has been saved in the post05.
go file (a combination of PostgreSQL and Chapter 05) on your own, you can use the
following command:

Chapter 5

[203]

$ go build -o post.a post05.go

So, the previous command compiles the post05.go file and saves its output in the
post.a file:

$ file post.a
post.a: current ar archive

The post.a file is an ar archive.

The init() function
Each Go package can optionally have a private function named init() that is
automatically executed at the beginning of execution time—init() runs when the
package is initialized at the beginning of program execution. The init() function
has the following characteristics:

• init() takes no arguments.
• init() returns no values.
• The init() function is optional.
• The init() function is called implicitly by Go.
• You can have an init() function in the main package. In that case, init() is

executed before the main() function. In fact, all init() functions are always
executed prior to the main() function.

• A source file can contain multiple init() functions—these are executed in
the order of declaration.

• The init() function or functions of a package are executed only once, even
if the package is imported multiple times.

• Go packages can contain multiple files. Each source file can contain one or
more init() functions.

The fact that the init() function is a private function by design means that it cannot
be called from outside the package in which it is contained. Additionally, as the user
of a package has no control over the init() function, you should think carefully before
using an init() function in public packages or changing any global state in init().

The main reason for compiling Go packages on your own
is to check for syntax or other kinds of errors in your code.
Additionally, you can build Go packages as plugins (https://
golang.org/pkg/plugin/) or shared libraries. Discussing more
about these is beyond the scope of this book.

https://golang.org/pkg/plugin/
https://golang.org/pkg/plugin/

Go Packages and Functions

[204]

There are some exceptions where the use of init() makes sense:

• For initializing network connections that might take time prior to the
execution of package functions or methods.

• For initializing connections to one or more servers prior to the execution of
package functions or methods.

• For creating required files and directories.
• For checking whether required resources are available or not.

As the order of execution can be perplexing sometimes, in the next subsection, we
will explain the order of execution in more detail.

Order of execution
This subsection illustrates how Go code is executed. As an example, if a main
package imports package A and package A depends on package B, then the following
will take place:

• The process starts with main package.
• The main package imports package A.
• Package A imports package B.
• The global variables, if any, in package B are initialized.
• The init() function or functions of package B, if they exist, run. This is the

first init() function that gets executed.
• The global variables, if any, in package A are initialized.
• The init() function or functions of package A, if there are any, run.
• The global variables in the main package are initialized.
• The init() function or functions of main package, if they exist, run.
• The main() function of the main package begins execution.

Notice that if the main package imports package B on its own,
nothing is going to happen because everything related to package
B is triggered by package A. This is because package A imports
package B first.

Chapter 5

[205]

The following diagram shows what is happening behind the scenes regarding the
order of execution of Go code:

Figure 5.1: Order of execution in Go

Go Packages and Functions

[206]

You can learn more about the order of execution in Go by reading the Go Language
Specification document at https://golang.org/ref/spec#Order_of_evaluation
and about package initialization at https://golang.org/ref/spec#Package_
initialization.

Using GitHub to store Go packages
This section will teach you how to create a GitHub repository where you can keep
your Go package and make it available to the world.

First, you need to create the GitHub repository on your own. The easiest way to
create a new GitHub repository is by visiting the GitHub website and going to the
Repositories tab, where you can see your existing repositories and create new ones.
Press the New button and type in the necessary information for creating a new
GitHub repository. If you made your repository public, everyone will be able to see
it—if it is a private repository, only the people you choose are going to be able to
look into it.

Next, you need to clone the repository on your local computer. I usually clone it
using the git(1) utility. As the name of the repository is post05 and my GitHub
username is mactsouk, the git clone command looks as follows:

$ git clone git@github.com:mactsouk/post05.git

Type cd post05 and you are done! After that, you just have to write the code of
the Go package and remember to git commit and git push the code to the GitHub
repository.

The look of such a repository, after it has been used for a while, can be seen in Figure
5.2—you are going to learn more about the post05 repository in a while:

Having a clear README.md file in your GitHub repository that
explains the way the Go package works is considered a very good
practice.

https://golang.org/ref/spec#Order_of_evaluation
https://golang.org/ref/spec#Package_initialization
https://golang.org/ref/spec#Package_initialization

Chapter 5

[207]

Figure 5.2: A GitHub repository with a Go package

If you want to use that package, you just need to go get the package using its URL
and include it in your import block—we will see this when we actually use it in a
program.

The next section presents a Go package that allows you to work with a database.

Using GitLab instead of GitHub for hosting your code does not
require making any changes to the way you work.

Go Packages and Functions

[208]

A package for working with a database
This section will develop a Go package for working with a given database schema
stored on a Postgres database, with the end goal of demonstrating how to develop,
store, and use a package. When interacting with specific schemas and tables in your
application, you usually create separate packages with all the database-related
functions—this also applies to NoSQL databases.

Go offers a generic package (https://golang.org/pkg/database/sql/) for working
with databases. However, each database requires a specific package that acts as the
driver and allows Go to connect and work with this specific database.

The steps for creating the desired Go package are as follows:

• Downloading the necessary external Go packages for working with
PostgreSQL.

• Creating package files.
• Developing the required functions.
• Using the Go package for developing utilities.
• Using CI/CD tools for automation (this is optional).

You might be wondering why we would create such a package for working with
a database and not write the actual commands in our programs when needed. The
reasons for this include the following:

• A Go package can be shared by all team members that work with the
application.

• A Go package allows people to use the database in ways that are
documented.

• The specialized functions you put in your Go package fit your needs a lot
better.

• People do not need full access to the database—they just use the package
functions and the functionality they offer.

• If you ever make changes to the database, people do not need to know about
them, as long as the functions of the Go package remain the same.

Put simply, the functions you create can interact with a specific database schema,
along with its tables and data—it would be almost impossible to work with an
unknown database schema without knowing how the tables are connected to
each other.

https://golang.org/pkg/database/sql/

Chapter 5

[209]

Let's now continue by learning more about the database and its tables.

Getting to know your database
You most likely need to download an additional package for working with a
database server such as Postgres, MySQL, or MongoDB. In this case, we are
using PostgreSQL and therefore need to download a Go package that allows us to
communicate with PostgreSQL. There are two main Go packages for connecting to
PostgreSQL—we are going to use the github.com/lib/pq package here, but it is up to
you to decide which package to use.

You can download that package as follows:

$ go get github.com/lib/pq

To make things simpler, the PostgreSQL server is executed from a Docker image
using a docker-compose.yml file, which has the following contents:

version: '3'

services:
 postgres:
 image: postgres
 container_name: postgres
 environment:
 - POSTGRES_USER=mtsouk
 - POSTGRES_PASSWORD=pass
 - POSTGRES_DB=master
 volumes:
 - ./postgres:/var/lib/postgresql/data/

Apart from all these technical reasons, it is really fun to create Go
packages that are shared among multiple developers!

There is another Go package for working with PostgreSQL called
jackc/pgx that can be found at https://github.com/JackC/
pgx.

https://github.com/JackC/pgx
https://github.com/JackC/pgx

Go Packages and Functions

[210]

 networks:
 - psql
 ports:
 - "5432:5432"

volumes:
 postgres:

networks:
 psql:
 driver: bridge

The default port number the PostgreSQL server listens to is 5432. As we connect
to that PostgreSQL server from the same machine, the hostname that is going to
be used is localhost or, if you prefer an IP address, 127.0.0.1. If you are using a
different PostgreSQL server, then you should change the connection details in the
code that follows accordingly.

The following Go utility, which is named getSchema.go, verifies that you can connect
successfully to a PostgreSQL database and get a list of the available databases and
tables in the given database and the public schema—all connection information is
provided as command-line arguments:

package main

import (
 "database/sql"
 "fmt"
 "os"
 "strconv"

 _ "github.com/lib/pq"
)

The lib/pq package, which is the interface to the PostgreSQL database, is not used
directly by the code. Therefore, you need to import the lib/pq package
with _ in order to prevent the Go compiler from creating an error message related to
importing a package and not "using" it.

In PostgreSQL, a schema is a namespace that contains named
database objects such as tables, views, and indexes. PostgreSQL
automatically creates a schema called public for every new
database.

Chapter 5

[211]

Most of the time, you do not need to import a package with _, but this is one of the
exceptions. This kind of import is usually because the imported package has side
effects, such as registering itself as the database handler for the sql package:

func main() {
 arguments := os.Args
 if len(arguments) != 6 {
 fmt.Println("Please provide: hostname port username password
db")
 return
 }

Having a good help message for the information required by such a utility is very
handy.

 host := arguments[1]
 p := arguments[2]
 user := arguments[3]
 pass := arguments[4]
 database := arguments[5]

This is where we collect the details of the database connection.

 // Port number SHOULD BE an integer
 port, err := strconv.Atoi(p)
 if err != nil {
 fmt.Println("Not a valid port number:", err)
 return
 }

 // connection string
 conn := fmt.Sprintf("host=%s port=%d user=%s password=%s dbname=%s
sslmode=disable", host, port, user, pass, database)

This is how you define the connection string with the details for the connection to
the PostgreSQL database server. The connection string should be passed to the sql.
Open() function for establishing the connection. So far, we have no connection.

 // open PostgreSQL database
 db, err := sql.Open("postgres", conn)
 if err != nil {
 fmt.Println("Open():", err)
 return
 }
 defer db.Close()

Go Packages and Functions

[212]

The sql.Open() function opens the database connection and keeps it open until the
program ends, or until you execute Close() in order to properly close the database
connection.

 // Get all databases
 rows, err := db.Query(`SELECT "datname" FROM "pg_database"
 WHERE datistemplate = false`)
 if err != nil {
 fmt.Println("Query", err)
 return
 }

In order to execute a SELECT query, you need to create it first. As the presented
SELECT query contains no parameters, which means that it does not change based on
variables, you can pass it to the Query() function and execute it. The live outcome of
the SELECT query is kept in the rows variable, which is a cursor. You do not get all the
results from the database, as a query might return millions of records, but you get
them one by one—this is the point of using a cursor.

 for rows.Next() {
 var name string
 err = rows.Scan(&name)
 if err != nil {
 fmt.Println("Scan", err)
 return
 }
 fmt.Println("*", name)
 }
 defer rows.Close()

The previous code shows how to process the results of a SELECT query, which can
be from nothing to lots of rows. As the rows variable is a cursor, you advance from
row to row by calling Next(). After that, you need to assign the values returned from
the SELECT query into Go variables, in order to use them. This happens with a call
to Scan(), which requires pointer parameters. If the SELECT query returns multiple
values, you need to put multiple parameters in Scan(). Lastly, you must call Close()
with defer for the rows variable in order to close the statement and free various
types of used resources.

 // Get all tables from __current__ database
 query := `SELECT table_name FROM information_schema.tables WHERE
 table_schema = 'public' ORDER BY table_name`
 rows, err = db.Query(query)

Chapter 5

[213]

 if err != nil {
 fmt.Println("Query", err)
 return
 }

We are going to execute another SELECT query in the current database, as provided
by the user. The definition of the SELECT query is kept in the query variable for
simplicity and for creating easy to read code. The contents of the query variable are
passed to the db.Query() method.

 // This is how you process the rows that are returned from SELECT
 for rows.Next() {
 var name string
 err = rows.Scan(&name)
 if err != nil {
 fmt.Println("Scan", err)
 return
 }
 fmt.Println("+T", name)
 }
 defer rows.Close()
}

Once again, we need to process the rows returned by the SELECT statement using the
rows cursor and the Next() method.

Running getSchema.go generates the following kind of output:

$ go run getSchema.go localhost 5432 mtsouk pass go
* postgres
* master
* go
+T userdata
+T users

But what is the output telling us? Lines beginning with * show PostgreSQL
databases, whereas lines beginning with +T show database tables—this is our
decision. Therefore, this specific PostgreSQL installation contains three databases
named postgres, master, and go. The public schema of the go database, which is
specified by the last command-line argument, contains two tables named userdata
and users.

Go Packages and Functions

[214]

The main advantage of the getSchema.go utility is that it is generic and can be
used for learning more about PostgreSQL servers, which is the main reason that it
requires so many command-line arguments to work.

Now that we know how to access and query a PostgreSQL database using Go,
the next task should be creating a GitHub or GitLab repository for keeping and
distributing the Go package we are about to develop.

Storing the Go package
The first action we should take is creating a repository for storing the Go package. In
our case, we are going to use a GitHub repository to keep the package. It is not a bad
idea to keep the GitHub repository private during development, before exposing it
to the rest of the world, especially when you are creating something critical.

For simplicity, we will use a public Go repository for the Go module, which is
named post05—its full URL is https://github.com/mactsouk/post05.

In order to use that package on your machines, you should go get it first. However,
during development, you should begin with git clone git@github.com:mactsouk/
post05.git to get the contents of the GitHub repository and make changes to it.

The design of the Go package
The following diagram shows the database schema that the Go package works on.
Remember that when working with a specific database and schema, you need to
"include" the schema information in your Go code. Put simply, the Go code should
know about the schema it works on:

Keeping the GitHub repository private does not affect the
development process, but it might make sharing the Go package
more difficult, so in some cases, it would be good to make it public.

https://github.com/mactsouk/post05

Chapter 5

[215]

Figure 5.3: The two database tables the Go package works on

This is a simple schema that allows us to keep user data and update it. What
connects the two tables is the user ID, which should be unique. Additionally, the
Username field on the Users table should also be unique as two or more users cannot
share the same username.

This schema already exists in the PostgreSQL database server, which means that the
Go code assumes that the relevant tables are in the right place and are stored in the
correct PostgreSQL database. Apart from the Users table, there is also a table named
Userdata that holds information about each user. Once a record is entered in the
Users table, it cannot be changed. What can change, however, is the data stored in
the Userdata table.

Go Packages and Functions

[216]

If you want to create the Users database and the two tables in a database called
go, you can execute the following statements, which are saved in a file named
create_tables.sql with the psgl utility:

DROP DATABASE IF EXISTS go;
CREATE DATABASE go;

DROP TABLE IF EXISTS Users;
DROP TABLE IF EXISTS Userdata;

\c go;

CREATE TABLE Users (
 ID SERIAL,
 Username VARCHAR(100) PRIMARY KEY
);

CREATE TABLE Userdata (
 UserID Int NOT NULL,
 Name VARCHAR(100),
 Surname VARCHAR(100),
 Description VARCHAR(200)
);

The command-line utility for working with Postgres is called psql. The psql
command for executing the code of create_tables.sql is as follows:

$ psql -h localhost -p 5432 -U mtsouk master < create_tables.sql

Now that we have the necessary infrastructure up and running, let's begin discussing
the Go package. The tasks that the Go package should perform to make our lives
easier are as follows:

• Create a new user
• Delete an existing user
• Update an existing user
• List all users

Each of these tasks should have one or more Go functions or methods to support it,
which is what we are going to implement in the Go package:

Chapter 5

[217]

• A function to initiate the Postgres connection—the connection details should
be given by the user and the package should be able to use them. However,
the helper function to initiate the connection can be private.

• There should exist default values in some of the connection details.
• A function that checks whether a given username exists—this is a helper

function that might be private.
• A function that inserts a new user into the database.
• A function that deletes an existing user from the database.
• A function for updating an existing user.
• A function for listing all users.

Now that we know the overall structure and functionality of the Go package, we
should begin implementing it.

The implementation of the Go package
In this subsection, we will implement the Go package for working with the
Postgres database and the given database schema. We will present each function
separately—if you combine all these functions, then you have the functionality of
the entire package.

The first element that you need in your Go package is one or more structures
that can hold data from the database tables. Most of the times, you need as many
structures as there are database tables—we will begin with that and see how it goes.
Therefore, we will define the following structures:

type User struct {
 ID int
 Username string
}

type Userdata struct {
 ID int
 Name string

During package development, you should regularly commit your
changes to the GitHub or GitLab repository.

Go Packages and Functions

[218]

 Surname string
 Description string
}

If you think about this, you should see that there is no point in creating two separate
Go structures. This is because the User structure holds no real data, and there is no
point in passing multiple structures to the functions that process data for the Users
and Userdata PostgreSQL tables. Therefore, we can create a single Go structure for
holding all the data that has been defined, as follows:

type Userdata struct {
 ID int
 Username string
 Name string
 Surname string
 Description string
}

I have decided to name the structure after the database table for simplicity—
however, in this case, this is not completely accurate as the Userdata structure has
more fields than the Userdata database table. The thing is that we do not need
everything from the Userdata database table.

The preamble of the package is as follows:

package post05

import (
 "database/sql"
 "errors"
 "fmt"
 "strings"

 _ "github.com/lib/pq"
)

For the first time in this book, you will see a package name different than main, which
in this case is post05. As the package communicates with PostgreSQL, we import
the github.com/lib/pq package and we use _ in front of the package's path. As we
discussed earlier, this happens because the imported package is registering itself as
the database handler for the sql package, but it is not being directly used in the code.
It is only being used through the sql package.

Chapter 5

[219]

Next, you should have variables to hold the connection details. In the case of the
post05 package, this can be implemented with the following global variables:

// Connection details
var (
 Hostname = ""
 Port = 2345
 Username = ""
 Password = ""
 Database = ""
)

Apart from the Port variable, which has an initial value, the other global variables
have the default value of their data type, which is string. All these variables must
be properly initialized by the Go code that uses the post05 package and should be
accessible from outside the package, which means that their first letter should be in
uppercase.

The openConnection() function, which is private and only accessed within the scope
of the package, is defined as:

func openConnection() (*sql.DB, error) {
 // connection string
 conn := fmt.Sprintf("host=%s port=%d user=%s password=%s dbname=%s
sslmode=disable", Hostname, Port, Username, Password, Database)

 // open database
 db, err := sql.Open("postgres", conn)
 if err != nil {
 return nil, err
 }
 return db, nil
}

You have already seen the previous code in the getSchema.go utility. You create the
connection string and you pass it to sql.Open().

Now, let's consider the exists() function, which is also private:

// The function returns the User ID of the username
// -1 if the user does not exist
func exists(username string) int {
 username = strings.ToLower(username)

 db, err := openConnection()

Go Packages and Functions

[220]

 if err != nil {
 fmt.Println(err)
 return -1
 }
 defer db.Close()

 userID := -1
 statement := fmt.Sprintf(`SELECT "id" FROM "users" where username =
'%s'`, username)
 rows, err := db.Query(statement)

This is where we define the query that shows whether the provided username exists
in the database or not. As all our data is kept in the database, we need to interact
with the database all the time.

 for rows.Next() {
 var id int
 err = rows.Scan(&id)
 if err != nil {
 fmt.Println("Scan", err)
 return -1
 }

If the rows.Scan(&id) call is executed without any errors, then we know that a result
has been returned, which is the desired user ID.

 userID = id
 }
 defer rows.Close()
 return userID
}

The last part of exists() sets or closes the query to free resources and returns the ID
value of the username that is given as a parameter to exists().

During development, I include many fmt.Println() statements
in the package code for debugging purposes. However, I have
removed most of them in the final version of the Go package and
replaced them with error values. These error values are passed
to the program that uses the functionality of the package, which is
responsible for deciding what to do with the error messages and
error conditions. You can also use logging for this—the output can
go to standard output or even /dev/null when not needed.

Chapter 5

[221]

Here is the implementation of the AddUser() function:

// AddUser adds a new user to the database
// Returns new User ID
// -1 if there was an error
func AddUser(d Userdata) int {
 d.Username = strings.ToLower(d.Username)

All usernames are converted into lowercase in order to avoid duplicates. This is a
design decision.

 db, err := openConnection()
 if err != nil {
 fmt.Println(err)
 return -1
 }
 defer db.Close()

 userID := exists(d.Username)
 if userID != -1 {
 fmt.Println("User already exists:", Username)
 return -1
 }

 insertStatement := `insert into "users" ("username") values ($1)`

This is how we construct a query that accepts parameters. The presented query
requires one value that is named $1.

 _, err = db.Exec(insertStatement, d.Username)

This is how you pass the desired value, which is d.Username, into the
insertStatement variable.

 if err != nil {
 fmt.Println(err)
 return -1
 }

 userID = exists(d.Username)
 if userID == -1 {
 return userID
 }

Go Packages and Functions

[222]

 insertStatement = `insert into "userdata" ("userid", "name",
"surname", "description") values ($1, $2, $3, $4)`

The presented query needs 4 values that are named $1, $2, $3, and $4.

 _, err = db.Exec(insertStatement, userID, d.Name, d.Surname,
d.Description)
 if err != nil {
 fmt.Println("db.Exec()", err)
 return -1
 }

As we need to pass 4 variables to insertStatement, we will put 4 values in the
db.Exec() call.

 return userID
}

This is the end of the function that adds a new user to the database. The
implementation of the DeleteUser() function is as follows.

// DeleteUser deletes an existing user
func DeleteUser(id int) error {
 db, err := openConnection()
 if err != nil {
 return err
 }
 defer db.Close()

 // Does the ID exist?
 statement := fmt.Sprintf(`SELECT "username" FROM "users" where id =
%d`, id)
 rows, err := db.Query(statement)

Here, we double-check whether the given user ID exists or not in the users table.

 var username string
 for rows.Next() {
 err = rows.Scan(&username)
 if err != nil {
 return err
 }
 }

Chapter 5

[223]

 defer rows.Close()

 if exists(username) != id {
 return fmt.Errorf("User with ID %d does not exist", id)
 }

If the previously returned username exists and has the same user ID as the parameter
to DeleteUser(), then you can continue the deletion process, which contains two
steps: first, deleting the relevant user data from the userdata table, and, second,
deleting the data from the users table.

 // Delete from Userdata
 deleteStatement := `delete from "userdata" where userid=$1`
 _, err = db.Exec(deleteStatement, id)
 if err != nil {
 return err
 }

 // Delete from Users
 deleteStatement = `delete from "users" where id=$1`
 _, err = db.Exec(deleteStatement, id)
 if err != nil {
 return err
 }

 return nil
}

Now, let's examine the implementation of the ListUsers() function.

func ListUsers() ([]Userdata, error) {
 Data := []Userdata{}
 db, err := openConnection()
 if err != nil {
 return Data, err
 }
 defer db.Close()

Once again, we need to open a connection to the database before executing a
database query.

 rows, err := db.Query(`SELECT
 "id","username","name","surname","description"

Go Packages and Functions

[224]

 FROM "users","userdata"
 WHERE users.id = userdata.userid`)
 if err != nil {
 return Data, err
 }

 for rows.Next() {
 var id int
 var username string
 var name string
 var surname string
 var description string
 err = rows.Scan(&id, &username, &name, &surname, &description)
 temp := Userdata{ID: id, Username: username, Name: name,
Surname: surname, Description: description}

At this point, we will store the data we've received from the SELECT query into a
Userdata structure. This is added to the slice that is going to be returned from the
ListUsers() function. This process continues until there is nothing left to read.

 Data = append(Data, temp)
 if err != nil {
 return Data, err
 }
 }
 defer rows.Close()
 return Data, nil
}

After updating the contents of Data using append(), we end the query, and the
function returns the list of available users, as stored in Data.

Lastly, let's examine the UpdateUser() function:

// UpdateUser is for updating an existing user
func UpdateUser(d Userdata) error {
 db, err := openConnection()
 if err != nil {
 return err
 }
 defer db.Close()

 userID := exists(d.Username)

Chapter 5

[225]

 if userID == -1 {
 return errors.New("User does not exist")
 }

First, we need to make sure that the given username exists in the database—the
update process is based on the username.

 d.ID = userID
 updateStatement := `update "userdata" set "name"=$1, "surname"=$2,
"description"=$3 where "userid"=$4`
 _, err = db.Exec(updateStatement, d.Name, d.Surname, d.Description,
d.ID)
 if err != nil {
 return err
 }

 return nil
}

The update statement stored in updateStatement that is executed using the desired
parameters with the help of db.Exec() updates the user data.

Now that we know the details of how to implement each function in the post05
package, it is time to begin using that package!

Testing the Go package
In order to test the package, we must develop a command-line utility called
postGo.go.

As postGo.go is used for testing purposes only, we hardcoded most of the data apart
from the username of the user we put into the database. All usernames are randomly
generated.

As postGo.go uses an external package, even if we develop that
package, you should not forget to download the latest version of
that external package using go get or go get -u.

Go Packages and Functions

[226]

The code of postGo.go is as follows:

package main

import (
 "fmt"
 "math/rand"
 "time"

 "github.com/mactsouk/post05"
)

As the post05 package works with Postgres, there is no need to import lib/pq here:

var MIN = 0
var MAX = 26

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

func getString(length int64) string {
 startChar := "A"
 temp := ""
 var i int64 = 1
 for {
 myRand := random(MIN, MAX)
 newChar := string(startChar[0] + byte(myRand))
 temp = temp + newChar
 if i == length {
 break
 }
 i++
 }
 return temp
}

Both the random() and getString() functions are helper functions for generating
random strings that are used as usernames.

Chapter 5

[227]

func main() {
 post05.Hostname = "localhost"
 post05.Port = 5432
 post05.Username = "mtsouk"
 post05.Password = "pass"
 post05.Database = "go"

This is where you define the connection parameters to the Postgres server, as well
as the database you are going to work in (go). As all these variables are in the post05
package, they are accessed as such.

 data, err := post05.ListUsers()
 if err != nil {
 fmt.Println(err)
 return
 }
 for _, v := range data {
 fmt.Println(v)
 }

We begin by listing existing users.

 SEED := time.Now().Unix()
 rand.Seed(SEED)
 random_username := getString(5)

Then, we generate a random string that is used as the username. All randomly
generated usernames are 5 characters long because of the getString(5) call. You can
change that value if you want.

 t := post05.Userdata{
 Username: random_username,
 Name: "Mihalis",
 Surname: "Tsoukalos",
 Description: "This is me!"}

 id := post05.AddUser(t)
 if id == -1 {
 fmt.Println("There was an error adding user", t.Username)
 }

Go Packages and Functions

[228]

The previous code adds a new user to the database—the user data, including the
username, is kept in a post05.Userdata structure. That post05.Userdata structure is
passed to the post05.AddUser() function, which returns the user ID of the new user.

 err = post05.DeleteUser(id)
 if err != nil {
 fmt.Println(err)
 }

Here, we delete the user that we created using the user ID value returned by post05.
AddUser(t).

 // Trying to delete it again!
 err = post05.DeleteUser(id)
 if err != nil {
 fmt.Println(err)
 }

If you try to delete the same user again, the process fails because the user does not
exist.

 id = post05.AddUser(t)
 if id == -1 {
 fmt.Println("There was an error adding user", t.Username)
 }

Here, we add the same user again—however, as user ID values are generated by
Postgres, this time, the user is going to have a different user ID value than before.

 t = post05.Userdata{
 Username: random_username,
 Name: "Mihalis",
 Surname: "Tsoukalos",
 Description: "This might not be me!"}

Here, we update the Description field of the post05.Userdata structure before
passing it to post05.UpdateUser(), in order update the information stored in the
database.

 err = post05.UpdateUser(t)
 if err != nil {
 fmt.Println(err)
 }
}

Chapter 5

[229]

Working with postGo.go creates the following kind of output:

$ go run postGo.go
{4 mhmxz Mihalis Tsoukalos This might not be me!}
{6 wsdlg Mihalis Tsoukalos This might not be me!}
User with ID 7 does not exist

The previous output confirms that postGo.go works as expected as it can connect to
the database, add a new user, and delete an existing one. This also means that the
post05 package works as expected. Now that we know how to create Go packages,
let's briefly discuss Go modules.

Modules
A Go module is like a Go package with a version—however, Go modules can consist
of multiple packages. Go uses semantic versioning for versioning modules. This
means that versions begin with the letter v, followed by the major.minor.patch
version numbers. Therefore, you can have versions such as v1.0.0, v1.0.5, and v2.0.2.
The v1, v2, and v3 parts signify the major version of a Go package that is usually
not backward compatible. This means that if your Go program works with v1, it
will not necessarily work with v2 or v3—it might work, but you cannot count on it.
The second number in a version is about features. Usually, v1.1.0 has more features
than v1.0.2 or v1.0.0, while being compatible with all older versions. Lastly, the third
number is just about bug fixes without having any new features. Note that semantic
versioning is also used for Go versions.

If you want to learn more about modules, visit and read https://blog.golang.
org/using-go-modules, which has five parts, as well as https://golang.org/doc/
modules/developing. Just remember that a Go module is similar but not identical
to a regular Go package with a version, and that a module can consist of multiple
packages.

Go modules were introduced in Go v1.11 but were finalized in Go
v1.13.

https://blog.golang.org/using-go-modules
https://blog.golang.org/using-go-modules
https://golang.org/doc/modules/developing
https://golang.org/doc/modules/developing

Go Packages and Functions

[230]

Creating better packages
This section provides handy advice that can help you develop better Go packages.
Here are several good rules to follow to create high-class Go packages:

• The first unofficial rule of a successful package is that its elements must be
connected in some way. Thus, you can create a package for supporting cars,
but it would not be a good idea to create a single package for supporting cars
and bicycles and airplanes. Put simply, it is better to split the functionality
of a package unnecessarily into multiple packages than to add too much
functionality to a single Go package.

• A second practical rule is that you should use your own packages first for a
reasonable amount of time before giving them to the public. This helps you
discover silly bugs and make sure that your packages operate as expected.
After that, give them to some fellow developers for additional testing before
making them publicly available. Additionally, you should always write tests
for any package you intend others to use.

• Next, make sure your package has a clear and useful API so that any
consumer can be productive with it quickly.

• Try and limit the public API of your packages to only what is absolutely
necessary. Additionally, give your functions descriptive but not very long
names.

• Interfaces, and in future Go versions, generics, can improve the usefulness
of your functions, so when you think it is appropriate, use an interface
instead of a single type as a function parameter or return type.

• When updating one of your packages, try not to break things and create
incompatibilities with older versions unless it is absolutely necessary.

• When developing a new Go package, try to use multiple files in order to
group similar tasks or concepts.

• Do not create a package that already exists from scratch. Make changes to
the existing package and maybe create your own version of it.

• Nobody wants a Go package that prints logging information on the screen.
It would be more professional to have a flag for turning on logging when
needed. The Go code of your packages should be in harmony with the Go
code of your programs. This means that if you look at a program that uses
your packages and your function names stand out in the code in a bad way,
it would be better to change the names of your functions. As the name of
a package is used almost everywhere, try to use concise and expressive
package names.

Chapter 5

[231]

• It is more convenient if you put new Go type definitions near where they
are used the first time because nobody, including yourself, wants to search
source files for definitions of new data types.

• Try to create test files for your packages, because packages with test files are
considered more professional than ones without them; small details make all
the difference and give people confidence that you are a serious developer!
Notice that writing tests for your packages is not optional and that you
should avoid using packages that do not include tests. You will learn more
about testing in Chapter 11, Code Testing and Profiling.

Always remember that apart from the fact that the actual Go code in a package
should be bug-free, the next most important element of a successful package is its
documentation, as well as some code examples that clarify its use and showcase the
idiosyncrasies of the functions of the package. The next section discusses creating
documentation in Go.

Generating documentation
This section discusses how to create documentation for your Go code using the code
of the post05 package as an example. The new package is renamed and is now called
document.

Go follows a simple rule regarding documentation: in order to document a function,
a method, a variable, or even the package itself, you can write comments, as usual,
that should be located directly before the element you want to document, without
any empty lines in between. You can use one or more single-line comments, which
are lines beginning with //, or block comments, which begin with /* and end with
*/—everything in-between is considered a comment.

Instead of presenting the entire code of the post05 package, we will only present the
important part, which means that function implementations are going to be return
statements only. The new version of post05.go is called document.go and comes with
the following code and comments:

/*

The package works on 2 tables on a PostgreSQL data base server.

It is highly recommended that each Go package you create has a
block comment preceding the package declaration that introduces
developers to the package, and also explains what the package
does.

Go Packages and Functions

[232]

The names of the tables are:

 * Users
 * Userdata

The definitions of the tables in the PostgreSQL server are:

 CREATE TABLE Users (
 ID SERIAL,
 Username VARCHAR(100) PRIMARY KEY
);

 CREATE TABLE Userdata (
 UserID Int NOT NULL,
 Name VARCHAR(100),
 Surname VARCHAR(100),
 Description VARCHAR(200)
);

 This is rendered as code

This is not rendered as code

*/
package document

This is the first block of documentation that is located right before the name of the
package. This is the appropriate place to document the functionality of the package,
as well as other essential information. In this case, we are presenting the SQL create
commands that fully describe the database tables we are going to work on. Another
important element is specifying the database server this package interacts with.
Other information that you can put at the beginning of a package is the author, the
license, and the version of the package.

If a line in a block comment begins with a tab, then it is rendered differently in
the graphical output, which is good for differentiating between various kinds of
information in the documentation:

// BUG(1): Function ListUsers() not working as expected
// BUG(2): Function AddUser() is too slow

Chapter 5

[233]

The BUG keyword is special when writing documentation. Go knows that bugs are
part of the code and therefore should be documented as well. You can write any
message you want after a BUG keyword, and you can place them anywhere you
want—preferably close to the bugs they describe.

import (
 "database/sql"
 "fmt"
 "strings"
)

The github.com/lib/pq package was removed from the import block to make the
file size smaller.

/*
This block of global variables holds the connection details to the
Postgres server
 Hostname: is the IP or the hostname of the server
 Port: is the TCP port the DB server listens to
 Username: is the username of the database user
 Password: is the password of the database user
 Database: is the name of the Database in PostgreSQL
*/
var (
 Hostname = ""
 Port = 2345
 Username = ""
 Password = ""
 Database = ""
)

The previous code shows a way of documenting lots of variables at once—in this
case, global variables. The good thing with this way is that you do not have to put
a comment before each global variable and make the code less readable. The only
downside of this method is that you should remember to update the comments,
should you wish to make any changes to the code. However, documenting multiple
variables at once might not end up rendering correctly in web-based godoc pages.
For that reason, you might want to document each field directly.

// The Userdata structure is for holding full user data
// from the Userdata table and the Username from the
// Users table
type Userdata struct {

Go Packages and Functions

[234]

 ID int
 Username string
 Name string
 Surname string
 Description string
}

The previous excerpt shows how to document a Go structure—this is especially
useful when you have lots of structures in a source file and you want to have a
quick look at them.

// openConnection() is for opening the Postgres connection
// in order to be used by the other functions of the package.
func openConnection() (*sql.DB, error) {
 var db *sql.DB
 return db, nil
}

When documenting a function, it is good to begin the first line of the comments
with the function name. Apart from that, you can write any information that you
consider important in the comments.

// The function returns the User ID of the username
// -1 if the user does not exist
func exists(username string) int {
 fmt.Println("Searching user", username)
 return 0
}

In this case, we will explain the return values of the exists() function as they have
a special meaning.

// AddUser adds a new user to the database
//
// Returns new User ID
// -1 if there was an error
func AddUser(d Userdata) int {
 d.Username = strings.ToLower(d.Username)
 return -1
}

/*
 DeleteUser deletes an existing user if the user exists.

Chapter 5

[235]

 It requires the User ID of the user to be deleted.
*/
func DeleteUser(id int) error {
 fmt.Println(id)
 return nil
}

You can use block comments anywhere you want, not only at the beginning of a
package.

// ListUsers lists all users in the database
// and returns a slice of Userdata.
func ListUsers() ([]Userdata, error) {
 // Data holds the records returned by the SQL query
 Data := []Userdata{}
 return Data, nil
}

When you request the documentation of the Userdata structure, Go automatically
presents the functions that use Userdata as input or output, or both.

// UpdateUser is for updating an existing user
// given a Userdata structure.
// The user ID of the user to be updated is found
// inside the function.
func UpdateUser(d Userdata) error {
 fmt.Println(d)
 return nil
}

We are not done yet because we need to see the documentation somehow. There are
two ways to see the documentation of the package. The first one involves using go
get, which also means creating a GitHub repository of the package, as we did with
post05. However, as this is for testing purposes, we are going to do things the easy
way: we are going to copy it in ~/go/src and access it from there. As the package is
called document, we are going to create a directory with the same name inside ~/go/
src. After that, we are going to copy document.go in ~/go/src/document and we are
done—for more complex packages, the process is going to be more complex as well.
In such cases, it would be better to go get the package from its repository.

Go Packages and Functions

[236]

Either way, the go doc command is going to work just fine with the document
package:

$ go doc document
package document // import "document"

The package works on 2 tables on a PostgreSQL data base server.

The names of the tables are:

 * Users
 * Userdata

The definitions of the tables in the PostgreSQL server are:

 CREATE TABLE Users (
 ID SERIAL,
 Username VARCHAR(100) PRIMARY KEY
);

 CREATE TABLE Userdata (
 UserID Int NOT NULL,
 Name VARCHAR(100),
 Surname VARCHAR(100),
 Description VARCHAR(200)
);

 This is rendered as code

Chapter 5

[237]

This is not rendered as code

var Hostname = "" ...
func AddUser(d Userdata) int
func DeleteUser(id int) error
func UpdateUser(d Userdata) error
type Userdata struct{ ... }
 func ListUsers() ([]Userdata, error)

BUG: Function ListUsers() not working as expected

BUG: Function AddUser() is too slow

If you want to see information about a specific function, you should use go doc, as
follows:

$ go doc document ListUsers
package document // import "document"

func ListUsers() ([]Userdata, error)
 ListUsers lists all users in the database and returns a slice of
Userdata.

Additionally, we can use the web version of the Go documentation, which can be
accessed after running the godoc utility and going to the Third Party section—by
default, the web server initiated by godoc listens to port number 6060 and can be
accessed at http://localhost:6060.

Go Packages and Functions

[238]

A part of the documentation page for the document package is shown in Figure 5.4:

Figure 5.4: Viewing the documentation of a user-developed Go package

Chapter 5

[239]

In my personal opinion, rendering the documentation is much better when using
the graphical interface, making it better when you do not know what you are looking
for. On the other hand, using go doc from the command line is much faster and
allows you to process the output using traditional UNIX command-line tools.

The next section will briefly present the CI/CD systems of GitLab and GitHub,
starting with GitLab Runners, which can be helpful for automating package
development and deployment.

GitLab Runners and Go
When developing Go packages and documentation, you want to be able to test the
results and find out bugs as quickly as possible. When everything works as expected,
you might want to publish your results to the world automatically, without spending
more time on this. One of the best solutions for this is using a CI/CD system for
automating tasks. This section will briefly illustrate the use of GitLab Runners for
automating Go projects.

We will begin with a GitLab repository that contains the following files:

• hw.go: This is a sample program that is used to make sure that everything
works.

• .gitignore: It is not necessary to have such a file, but it is very handy for
ignoring some files and directories.

• usePost05.go: This is a sample Go file that uses an external package—please
refer to the https://gitlab.com/mactsouk/runners-go/ repository for its
contents.

• README.md: This file is automatically displayed on the repository web page
and is usually used for explaining the purpose of the repository.

Go automatically puts the bugs at the end of the text and graphical
output.

In order to follow this section, you need to have a GitLab account,
create a dedicated GitLab repository, and store the relevant files
there.

https://gitlab.com/mactsouk/runners-go/

Go Packages and Functions

[240]

There is also a directory called .git that contains information and metadata about
the repository.

The initial version of the configuration file
The first version of the configuration file is for making sure that everything is fine
with our GitLab setup. The name of the configuration file is .gitlab-ci.yml and is a
YAML file that should be located in the root directory of the GitLab repository. This
initial version of the .gitlab-ci.yml configuration file compiles hw.go and creates a
binary file, which is executed in a different stage than the one it was created in. This
means that we should create an artifact for keeping and transferring that binary file:

$ cat .gitlab-ci.yml
image: golang:1.15.7

stages:
 - download
 - execute

compile:
 stage: download
 script:
 - echo "Getting System Info"
 - uname -a
 - mkdir bin
 - go version
 - go build -o ./bin/hw hw.go
 artifacts:
 paths:
 - bin/

execute:
 stage: execute
 script:
 - echo "Executing Hello World!"
 - ls -l bin
 - ./bin/hw

The important thing about the previous configuration file is that we are using an
image that comes with Go already installed, which saves us from having to install it
from scratch and allows us to specify the Go version we want to use.

Chapter 5

[241]

However, if you ever want to install extra software, you can do that based on the
Linux distribution being used. After saving the file, you need to push the changes to
GitLab for the pipeline to start running. In order to see the results, you should click
on the CI/CD option on the left bar of the GitLab UI.

Figure 5.5 shows information about a specific workflow based on the aforementioned
YAML file. Everything that is in green is a good thing, whereas red is used in error
situations. If you want to learn more information about a specific stage, you can
press its button and see a more detailed output:

Figure 5.5: Looking at the progress of a GitLab pipeline

Go Packages and Functions

[242]

As everything looks fine, we are ready to create the final version of .gitlab-ci.yml.
Note that if there is an error in the workflow, you will most likely receive an email
the email address you used when registering for GitLab. If everything is fine, no
email will be sent.

The final version of the configuration file
The final version of the CI/CD configuration file compiles usePost05.go, which
imports post05. This is used for illustrating how external packages are downloaded.
The contents of .gitlab-ci.yml is as follows:

image: golang:1.15.7

stages:
 - download
 - execute

compile:
 stage: download
 script:
 - echo "Compiling usePost05.go"
 - mkdir bin
 - go get -v -d ./...

The go get -v -d ./... command is the Go way of downloading all the package
dependencies of a project. After that, you are free to build your project and generate
your executable file:

 - go build -o ./bin/usePost05 usePost05.go
 artifacts:
 paths:
 - bin/

The bin directory, along with its contents, will be available to the execute state:

execute:
 stage: execute
 script:
 - echo "Executing usePost05"
 - ls -l bin
 - ./bin/usePost05

Chapter 5

[243]

Pushing it to GitLab automatically triggers its execution. This is illustrated in
Figure 5.6, which shows in more detail the progress of the compile stage:

Figure 5.6: Seeing a detailed view of a stage

What we can see here is that all the required packages are being downloaded and
that usePost05.go is compiled without any issues. As we do not have a PostgreSQL
instance available, we cannot try interacting with PostgreSQL, but we can execute
usePost05.go and see the values of the Hostname and Port global variables. This is
illustrated in Figure 5.7:

Figure 5.7: Seeing more details about the execute stage

Go Packages and Functions

[244]

So far, we have seen how to use GitLab Runners to automate Go package
development and testing. Next, we are going to create a CI/CD scenario in GitHub
using GitHub Actions as another method of automating software publication.

GitHub Actions and Go
This section will use GitHub Actions to push a Docker image that contains a Go
executable file in Docker Hub.

We will begin with a GitHub repository that contains the following files:

• .gitignore: This is an optional file that's used for ignoring files and
directories during git push operations.

• usePost05.go: This is the same file as before.
• Dockerfile: This file is used for creating a Docker image with the Go

executable. Please refer to https://github.com/mactsouk/actions-with-go
for its contents.

• README.md: As before, this is a Markdown file that contains information
about the repository.

In order to set up GitHub Actions, we need to create a directory named .github
and then create another directory named workflows in it. The .github/workflows
directory contains YAML files with the pipeline configuration.

Figure 5.8 shows the overview screen of the workflows of the selected GitHub
repository:

In order to follow this section, you must have a GitHub account,
create a dedicated GitHub repository, and store the related files
there.

https://github.com/mactsouk/actions-with-go

Chapter 5

[245]

Figure 5.8: Displaying the Workflows associated with a given GitHub repository

To push an image to Docker Hub, you need to log in. As this process requires using
a password, which is sensitive information, the next subsection illustrates how to
store secrets in GitHub.

Storing secrets in GitHub
The credentials for connecting to Docker Hub are stored in GitHub using the secrets
feature that exists in almost all CI/CD systems. However, the exact implementation
might differ.

In your GitHub repository, go to the Settings tab and select Secrets from the left
column. You will see your existing secrets, if any, and an Add new secret link, which
you need to click on. Do this process twice to store your Docker Hub username and
password.

You can also use HashiCorp Vault as a central point for storing
passwords and other sensitive data. Unfortunately, presenting
HashiCorp Vault is beyond the scope of this book.

Go Packages and Functions

[246]

Figure 5.9 shows the secrets associated with the GitHub repository used in this
section—the presented secrets hold the username and password that were used for
connecting to Docker Hub:

Figure 5.9: The secrets of the mactsouk/actions-with-go repository

The final version of the configuration file
The final version of the configuration file compiles the Go code, puts it in a Docker
image, as described by Dockerfile, connects with Docker Hub using the specified
credentials, and pushes the Docker image to Docker Hub using the provided data.
This is a very common way of automation when creating Docker images. The
contents of go.yml is as follows:

name: Go + PostgreSQL

on: [push]

This line in the configuration file specifies that this pipeline is triggered on push
operations only.

jobs:
 build:
 runs-on: ubuntu-18.04

This is the Linux image that is going to be used. As the Go binary is built inside a
Docker image, we do not need to install Go on the Linux VM.

 steps:
 # Checks-out your repository under $GITHUB_WORKSPACE, so your job
can access it
 - uses: actions/checkout@v2
 - uses: actions/setup-go@v2
 with:
 stable: 'false'
 go-version: '1.15.7'

Chapter 5

[247]

 - name: Publish Docker Image
 env:
 USERNAME: ${{ secrets.USERNAME }}
 PASSWORD: ${{ secrets.PASSWORD }}

This is how you access the secrets that were stored previously and how you store them.

 IMAGE_NAME: gopost
 run: |
 docker images
 docker build -t "$IMAGE_NAME" .
 docker images
 echo "$PASSWORD" | docker login --username "$USERNAME"
--password-stdin
 docker tag "${IMAGE_NAME}" "$USERNAME/${IMAGE_NAME}:latest"
 docker push "$USERNAME/${IMAGE_NAME}:latest"
 echo "* Running Docker Image"
 docker run ${IMAGE_NAME}:latest

This time, most of the work is performed by the docker build command because the
Go executable is built inside a Docker image. The following screenshot shows some
of the output of the pipeline defined by go.yml:

Figure 5.10: The pipeline for pushing Docker images to Docker Hub

Go Packages and Functions

[248]

Automation saves you development time, so try to automate as many things as
possible, especially when you're making your software available to the world.

Versioning utilities
One of the most difficult tasks is to automatically and uniquely version command-
line utilities, especially when using a CI/CD system. This section presents a
technique that uses a GitHub value to version a command-line utility on your
local machine.

This technique is used by both the docker and kubectl utilities, among others:

$ docker version
Client: Docker Engine - Community
 Cloud integration: 1.0.4
 Version: 20.10.0
 API version: 1.41
 Go version: go1.13.15
 Git commit: 7287ab3
 Built: Tue Dec 8 18:55:43 2020
 OS/Arch: darwin/amd64
...

The previous output shows that docker uses the Git commit value for versioning—
we are going to use a slightly different value that is longer than the one used by
docker.

The utility that is used, which is saved as gitVersion.go, is implemented as follows:

package main

import (
 "fmt"
 "os"
)

var VERSION string

You can apply the same technique to GitLab—just search for the
available GitLab variables and values and choose one that fits your
needs.

Chapter 5

[249]

VERSION is the variable that is going to be set at runtime using the Go linker.

func main() {
 if len(os.Args) == 2 {
 if os.Args[1] == "version" {
 fmt.Println("Version:", VERSION)
 }
 }
}

The previous code says that if there is a command-line argument and its value is
version, print the version message with the help of the VERSION variable.

What we need to do is tell the Go linker that we are going to define the value of the
VERSION variable. This happens with the help of the -ldflags flag, which stands for
linker flags—this passes values to the cmd/link package, which allows us to change
values in imported packages at build time. The -X value that is used requires a key/
value pair, where the key is a variable name and the value is the value that we
want to set for that key. In our case, the key has the main.Variable form because we
change the value of a variable in the main package. As the name of the variable in
gitVersion.go is VERSION, the key is main.VERSION.

But first, we need to decide on the GitHub value that we are going to use as the
version string. The git rev-list HEAD command returns a full list of commits for
the current repository from the latest to the oldest. We only need the last one—the
most recent—which we can get using git rev-list -1 HEAD or git rev-list HEAD
| head -1. So, we need to assign that value to an environment variable and pass that
environment variable to the Go compiler. As this value changes each time you make
a commit and you always want to have the latest value, you should reevaluate it
each time you execute go build—this will be shown in a while.

In order to provide gitVersion.go with the value of the desired environment
variable, we should execute it as follows:

$ export VERSION=$(git rev-list -1 HEAD)
$ go build -ldflags "-X main.VERSION=$VERSION" gitVersion.go

This works on both bash and zsh shells. If you are using a different
shell, you should make sure that you are defining an environment
variable the right way.

Go Packages and Functions

[250]

If you want to execute the two commands at the same time, you can do the
following:

$ export VERSION=$(git rev-list -1 HEAD) && go build -ldflags "-X main.
VERSION=$VERSION" gitVersion.go

Running the generated executable, which is called gitVersion, produces the next
output:

$./gitVersion version
Version: 99745c8fbaff94790b5818edf55f15d309f5bfeb

Your output is going to be different because your GitHub repository is going to be
different. As GitHub generates random and unique values, you won't have the same
version number twice!

Exercises
• Can you write a function that sorts three int values? Try to write two

versions of the function: one with named returned values and another
without named return values. Which one do you think is better?

• Rewrite the getSchema.go utility so that it works with the jackc/pgx package.
• Rewrite the getSchema.go utility so that it works with MySQL databases.
• Use GitLab CI/CD to push Docker images to Docker Hub.

Summary
This chapter presented two primary topics: functions and packages. Functions are
first-class citizens in Go, which makes them powerful and handy. Remember that
everything that begins with an uppercase letter is public. The only exception to this
rule is package names. Private variables, functions, data type names, and structure
fields can be strictly used and called internally in a package, whereas public ones are
available to everyone. Additionally, we learned more about the defer keyword. Also,
memorize that Go packages are not like Java classes—a Go package can be as big as
it needs to be. Regarding Go modules, keep in mind that a Go module is multiple
packages with a version.

Chapter 5

[251]

Finally, this chapter discussed creating documentation, GitHub Actions and GitLab
Runners, how the two CI/CD systems can help you automate boring processes and
how to assign unique version numbers to your utilities.

The next chapter discusses system programming in general, as well as file I/O in
more detail.

Additional resources
• New module changes in Go 1.16: https://blog.golang.org/go116-module-

changes

• How do you structure your Go apps? Talk by Kat Zien from GopherCon UK
2018: https://www.youtube.com/watch?v=1rxDzs0zgcE

• PostgreSQL: https://www.postgresql.org/
• PostgreSQL Go package: https://github.com/lib/pq
• PostgreSQL Go package: https://github.com/jackc/pgx
• HashiCorp Vault: https://www.vaultproject.io/
• The documentation of database/sql: https://golang.org/pkg/database/sql/
• You can learn more about GitHub Actions environment variables at https://

docs.github.com/en/actions/reference/environment-variables

• GitLab CI/CD variables: https://docs.gitlab.com/ee/ci/variables/
• The documentation of the cmd/link package: https://golang.org/cmd/link/
• golang.org moving to go.dev: https://go.dev/blog/tidy-web

https://blog.golang.org/go116-module-changes
https://blog.golang.org/go116-module-changes
https://www.youtube.com/watch?v=1rxDzs0zgcE
https://www.postgresql.org/
https://github.com/lib/pq
https://github.com/jackc/pgx
https://www.vaultproject.io/
https://golang.org/pkg/database/sql/
https://docs.github.com/en/actions/reference/environment-variables
https://docs.github.com/en/actions/reference/environment-variables
https://docs.gitlab.com/ee/ci/variables/
https://golang.org/cmd/link/
http://golang.org
http://go.dev
https://go.dev/blog/tidy-web

[253]

6
Telling a UNIX System

What to Do
This chapter teaches you about systems programming in Go. Systems programming
involves working with files and directories, process control, signal handling,
network programming, system files, configuration files, and file input and output
(I/O). If you recall from Chapter 1, A Quick Introduction to Go, the reason for writing
system utilities with Linux in mind is that often Go software is executed in a Docker
environment—Docker images use the Linux operating system, which means that
you might need to develop your utilities with the Linux operating system in mind.
However, as Go code is portable, most system utilities work on Windows machines
without any changes or with minor modifications. Among other things, this chapter
implements two utilities, one that finds cycles in UNIX file systems and another that
converts JSON data to XML data and vice versa. Additionally, in this chapter we are
going to improve the phone book application with the help of the cobra package.

Important note: Starting with Go 1.16, the GO111MODULE
environment variable defaults to on—this affects the use of Go
packages that do not belong to the Go standard library. In practice,
this means that you must put your code under ~/go/src. You
can go back to the previous behavior by setting GO111MODULE to
auto, but you do not want to do that—modules are the future.
The reason for mentioning this in this chapter is that both viper
and cobra prefer to be treated as Go modules instead of packages,
which changes the development process but not the code.

Telling a UNIX System What to Do

[254]

This chapter covers:

• stdin, stdout, and stderr
• UNIX processes
• Handling UNIX signals
• File input and output
• Reading plain text files
• Writing to a file
• Working with JSON
• Working with XML
• Working with YAML
• The viper package
• The cobra package
• Finding cycles in a UNIX file system
• New to Go 1.16
• Updating the phone book application

stdin, stdout, and stderr
Every UNIX operating system has three files open all the time for its processes.
Remember that UNIX considers everything, even a printer or your mouse, as a
file. UNIX uses file descriptors, which are positive integer values, as an internal
representation for accessing open files, which is much prettier than using long paths.
So, by default, all UNIX systems support three special and standard filenames:
/dev/stdin, /dev/stdout, and /dev/stderr, which can also be accessed using file
descriptors 0, 1, and 2, respectively. These three file descriptors are also called
standard input, standard output, and standard error, respectively. Additionally,
file descriptor 0 can be accessed as /dev/fd/0 on a macOS machine and as both
/dev/fd/0 and /dev/pts/0 on a Debian Linux machine.

Go uses os.Stdin for accessing standard input, os.Stdout for accessing standard
output, and os.Stderr for accessing standard error. Although you can still use
/dev/stdin, /dev/stdout, and /dev/stderr or the related file descriptor values
for accessing the same devices, it is better, safer, and more portable to stick with
os.Stdin, os.Stdout, and os.Stderr.

UNIX processes
As Go servers, utilities, and Docker images are mainly executed on Linux, it is good
to know about Linux processes and threads.

Chapter 6

[255]

Strictly speaking, a process is an execution environment that contains instructions,
user data and system data parts, and other types of resources that are obtained
during runtime. On the other hand, a program is a binary file that contains
instructions and data that are used for initializing the instruction and user data
parts of a process. Each running UNIX process is uniquely identified by an unsigned
integer, which is called the process ID of the process.

There are three process categories: user processes, daemon processes, and kernel
processes. User processes run in user space and usually have no special access rights.
Daemon processes are programs that can be found in the user space and run in the
background without the need for a terminal. Kernel processes are executed in kernel
space only and can fully access all kernel data structures.

The C way of creating new processes involves the calling of the fork(2) system call.
The return value of fork(2) allows the programmer to differentiate between a parent
and a child process. Although you can fork a new process in Go using the exec
package, Go does not allow you to control threads—Go offers goroutines, which the
user can create on top of threads that are created and handled by the Go runtime.

Handling UNIX signals
UNIX signals offer a very handy way of interacting asynchronously with your
applications. However, UNIX signal handling requires the use of Go channels that
are used exclusively for this task. So, it would be good to talk a little about the
concurrency model of Go, which requires the use of goroutines and channels for
signal handling.

A goroutine is the smallest executable Go entity. In order to create a new goroutine
you have to use the go keyword followed by a predefined function or an anonymous
function—the methods are equivalent. A channel in Go is a mechanism that among
other things allows goroutines to communicate and exchange data. If you are an
amateur programmer or are hearing about goroutines and channels for the first time,
do not panic. Goroutines and channels are explained in much more detail in Chapter
7, Go Concurrency.

In order for a goroutine or a function to terminate the entire Go
application, it should call os.Exit() instead of return. However,
most of the time, you should exit a goroutine or a function using
return because you just want to exit that specific goroutine or
function and not stop the entire application.

Telling a UNIX System What to Do

[256]

The presented program handles SIGINT, which is called syscall.SIGINT in Go,
and SIGINFO separately and uses a default case in a switch block for handling the
remaining cases (other signals). The implementation of that switch block allows you
to differentiate between the various signals according to your needs.

There exists a dedicated channel that receives all signals, as defined by the signal.
Notify() function. Go channels can have a capacity—the capacity of this particular
channel is 1 in order to be able to receive and keep one signal at a time. This makes
perfect sense as a signal can terminate a program and there is no need to try to
handle another signal at the same time. There is usually an anonymous function
that is executed as a goroutine and performs the signal handling and nothing else.
The main task of that goroutine is to listen to the channel for data. Once a signal is
received, it is sent to that channel, read by the goroutine, and stored into a variable—
at this point the channel can receive more signals. That variable is processed by a
switch statement.

Create a text file by typing the following code—a good filename for it would be
signals.go.

package main

import (
 "fmt"
 "os"
 "os/signal"
 "syscall"
 "time"
)
func handleSignal(sig os.Signal) {
 fmt.Println("handleSignal() Caught:", sig)
}

handleSignal() is a separate function for handling signals. However, you can also
handle signals inline, in the branches of a switch statement.

Some signals cannot be caught, and the operating system cannot
ignore them. So, the SIGKILL and SIGSTOP signals cannot be
blocked, caught, or ignored and the reason for this is that they
allow privileged users as well as the UNIX kernel to terminate any
process they desire.

Chapter 6

[257]

func main() {
 fmt.Printf("Process ID: %d\n", os.Getpid())
 sigs := make(chan os.Signal, 1)

We create a channel with data of type os.Signal because all channels must have a
type.

 signal.Notify(sigs)

The previous statement means handle all signals that can be handled.

 start := time.Now()
 go func() {
 for {
 sig := <-sigs

Wait until you read data (<-) from the sigs channel and store it in the sig variable.

 switch sig {

Depending on the read value, act accordingly. This is how you differentiate between
signals.

 case syscall.SIGINT:
 duration := time.Since(start)
 fmt.Println("Execution time:", duration)

For the handling of syscall.SIGINT, we calculate the time that has passed since the
beginning of the program execution, and print it on screen.

 case syscall.SIGINFO:
 handleSignal(sig)

The code of the syscall.SIGINFO case calls the handleSignal() function—it is up to
the developer to decide on the details of the implementation. On Linux machines,
you should replace syscall.SIGINFO with another signal such as syscall.SIGUSR1
or syscall.SIGUSR2 because syscall.SIGINFO is not available on Linux (https://
github.com/golang/go/issues/1653).

 // do not use return here because the goroutine exits
 // but the time.Sleep() will continue to work!
 os.Exit(0)
 default:
 fmt.Println("Caught:", sig)
 }

https://github.com/golang/go/issues/1653
https://github.com/golang/go/issues/1653

Telling a UNIX System What to Do

[258]

If there is not a match, the default case handles the rest of the values and just prints
a message.

 }
 }()

 for {
 fmt.Print("+")
 time.Sleep(10 * time.Second)
 }
}

The endless for loop at the end of the main() function is for emulating the
operation of a real program. Without an endless for loop, the program exits almost
immediately.

Running signals.go and interacting with it creates the following kind of output:

$ go run signals.go
Process ID: 74252
+Execution time: 9.989863093s
+Caught: user defined signal 1
+signal: killed

The second line of output was generated by pressing Ctrl + C on the keyboard,
which on UNIX machines sends the syscall.SIGINT signal to the program. The third
line of output was caused by executing kill -USR1 74252 on a different terminal.
The last line in the output was generated by the kill -9 74252 command. As
the KILL signal, which is also represented by the number 9, cannot be handled, it
terminates the program, and the shell prints the killed message.

Handling two signals
If you want to handle a limited number of signals, instead of all of them, you should
replace the signal.Notify(sigs) statement with the next statement:

signal.Notify(sigs, syscall.SIGINT, syscall.SIGINFO)

After that you need to make the appropriate changes to the code of the goroutine
responsible for signal handling in order to identify and handle syscall.SIGINT and
syscall.SIGINFO—the current version (signals.go) already handles both of them.

Chapter 6

[259]

Now, we need to learn how to read and write files in Go.

File I/O
This section discusses file I/O in Go, which includes the use of the io.Reader and
io.Writer interfaces, buffered and unbuffered I/O, as well as the bufio package.

The io.Reader and io.Writer interfaces
This subsection presents the definitions of the popular io.Reader and io.Writer
interfaces because these two interfaces are the basis of file I/O in Go—the former
allows you to read from a file whereas the latter allows you to write to a file. The
definition of the io.Reader interface is the following:

type Reader interface {
 Read(p []byte) (n int, err error)
}

This definition, which should be revisited when we want one of our data types to
satisfy the io.Reader interface, tells us the following:

• The Reader interface requires the implementation of a single method
• The parameter of Read() is a byte slice
• The return values of Read() are an integer and an error

The Read() method takes a byte slice as input, which is going to be filled with data
up to its length, and returns the number of bytes read as well as an error variable.

The definition of the io.Writer interface is the following:

type Writer interface {
 Write(p []byte) (n int, err error)
}

The io/ioutil package (https://golang.org/pkg/io/ioutil/)
is deprecated in Go version 1.16. Existing Go code that uses the
functionality of io/ioutil will continue to work but it is better to
stop using that package.

https://golang.org/pkg/io/ioutil/

Telling a UNIX System What to Do

[260]

The previous definition, which should be revisited when we want one of our data
types to satisfy the io.Writer interface and to write to a file, reveals the following
information:

• The interface requires the implementation of a single method
• The parameter of Write() is a byte slice
• The return values of Write() are an integer and an error value

The Write() method takes a byte slice, which contains the data that you want to
write, as input and returns the number of bytes written and an error variable.

Using and misusing io.Reader and io.Writer
The code that follows showcases the use of io.Reader and io.Writer for custom
data types, which in this case are two Go structures named S1 and S2.

For the S1 structure, the presented code implements both interfaces in order to read
user data from the terminal and print data to the terminal, respectively. Although
this is redundant as we already have fmt.Scanln() and fmt.Printf(), it is a good
exercise that shows how versatile and flexible both interfaces are. In a different
situation, you could have used io.Writer for writing to a log service, or keeping
a second backup copy of the written data, or anything else that fits your needs.
However, this is also an example of interfaces allowing you to do crazy or, if you
prefer, unusual things—it is up to the developer to create the desired functionality
using the appropriate Go concepts and features!

The Read() method is using fmt.Scanln() to get user input from the terminal
whereas the Write() method is printing the contents of its buffer parameter as many
times as the value of the F1 field of the structure using fmt.Printf()!

For the S2 structure, the presented code implements the io.Reader interface only
in the traditional way. The Read() method reads the text field of the S2 structure,
which is a byte slice. When there is nothing left to read, the Read() method returns
the expected io.EOF error, which in reality is not an error but an expected situation.
Along with the Read() method there exist two helper methods, named eof(), which
declares that there is nothing more to read, and readByte(), which reads the text
field of the S2 structure byte by byte. After the Read() method is done, the text field
of the S2 structure, which is used as a buffer, is emptied.

With this implementation, the io.Reader for S2 can be used for reading in a
traditional way, which in this case is with bufio.NewReader() and multiple Read()
calls—the number of Read() calls depends on the size of the buffer that is used,
which in this case is a byte slice with 2 places for data.

Chapter 6

[261]

Type the following code and save it as ioInterface.go:

package main

import (
 "bufio"
 "fmt"
 "io"
)

The previous part shows that we are using the io and bufio packages for working
with files.

type S1 struct {
 F1 int
 F2 string
}

type S2 struct {
 F1 S1
 text []byte
}

These are the two structures we are going to work with.

// Using pointer to S1 for changes to be persistent when the method
exits
func (s *S1) Read(p []byte) (n int, err error) {
 fmt.Print("Give me your name: ")
 fmt.Scanln(&p)
 s.F2 = string(p)
 return len(p), nil
}

In the preceding code, we are implementing the io.Reader() interface for S1.

func (s *S1) Write(p []byte) (n int, err error) {
 if s.F1 < 0 {
 return -1, nil
 }

 for i := 0; i < s.F1; i++ {
 fmt.Printf("%s ", p)
 }

Telling a UNIX System What to Do

[262]

 fmt.Println()
 return s.F1, nil
}

The previous method implements the io.Writer interface for S1.

func (s S2) eof() bool {
 return len(s.text) == 0
}

func (s *S2) readByte() byte {
 // this function assumes that eof() check was done before
 temp := s.text[0]
 s.text = s.text[1:]
 return temp
}

The previous function is an implementation of bytes.Buffer.ReadByte from the
standard library.

func (s *S2) Read(p []byte) (n int, err error) {
 if s.eof() {
 err = io.EOF
 return
 }

 l := len(p)
 if l > 0 {
 for n < l {

The previous functions read from the given buffer until the buffer is empty. This is
where we implement io.Reader for S2.

 p[n] = s.readByte()
 n++
 if s.eof() {
 s.text = s.text[0:0]
 break
 }
 }
 }
 return
}

Chapter 6

[263]

When all data is read, the relevant structure field is emptied. The previous method
implements io.Reader for S2. However, the operation of Read() is supported by
eof() and readByte(), which are also user-defined.

Recall that Go allows you to name the return values of a function—in that case,
a return statement without any additional arguments automatically returns the
current value of each named return variable in the order they appear in the function
signature. The Read() method uses that feature.

func main() {
 s1var := S1{4, "Hello"}
 fmt.Println(s1var)

We initialize an S1 variable that is named s1var.

 buf := make([]byte, 2)
 _, err := s1var.Read(buf)

The previous line is reading for the s1var variable using a buffer with 2 bytes.

 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Println("Read:", s1var.F2)
 _, _ = s1var.Write([]byte("Hello There!"))

In the previous line, we call the Write() method for s1var in order to write the
contents of a byte slice.

 s2var := S2{F1: s1var, text: []byte("Hello world!!")}

In the previous code, we initialize an S2 variable that is named s2var.

 // Read s2var.text
 r := bufio.NewReader(&s2var)

We now create a reader for s2var.

 for {
 n, err := r.Read(buf)
 if err == io.EOF {
 break

Telling a UNIX System What to Do

[264]

We keep reading from s2var until there is an io.EOF condition.

 } else if err != nil {
 fmt.Println("*", err)
 break
 }
 fmt.Println("**", n, string(buf[:n]))
 }
}

Running ioInterface.go produces the next output:

$ go run ioInterface.go
{4 Hello}

The first line of the output shows the contents of the s1var variable.

Give me your name: Mike

Calling the Read() method of the s1var variable.

Read: Mike
Hello There! Hello There! Hello There! Hello There!

The previous line is the output of s1var.Write([]byte("Hello There!")).

** 2 He
** 2 ll
** 2 o
** 2 wo
** 2 rl
** 2 d!
** 1 !

The last part of the output illustrates the reading process using a buffer with a size
of 2. The next section discusses buffered and unbuffered operations.

Buffered and unbuffered file I/O
Buffered file I/O happens when there is a buffer for temporarily storing data before
reading data or writing data. Thus, instead of reading a file byte by byte, you read
many bytes at once. You put the data in a buffer and wait for someone to read it in
the desired way.

Chapter 6

[265]

Unbuffered file I/O happens when there is no buffer to temporarily store data before
actually reading or writing it—this can affect the performance of your programs.

The next question that you might ask is how to decide when to use buffered and
when to use unbuffered file I/O. When dealing with critical data, unbuffered file
I/O is generally a better choice because buffered reads might result in out-of-
date data and buffered writes might result in data loss when the power of your
computer is interrupted. However, most of the time, there is no definitive answer
to that question. This means that you can use whatever makes your tasks easier
to implement. However, keep in mind that buffered readers can also improve
performance by reducing the number of system calls needed to read from a file or
socket, so there can be a real performance impact on what the programmer decides
to use.

There is also the bufio package. As the name suggests, bufio is about buffered I/O.
Internally, the bufio package implements the io.Reader and io.Writer interfaces,
which it wraps in order to create the bufio.Reader and bufio.Writer objects,
respectively. The bufio package is very popular for working with plain text files and
you are going to see it in action in the next section.

Reading text files
In this section you will learn how to read plain text files, as well as using the /dev/
random UNIX device, which offers you a way of getting random numbers.

Reading a text file line by line
The function for reading a file line by line is found in byLine.go and is named
lineByLine(). The technique for reading a text file line by line is also used when
reading a plain text file word by word as well as when reading a plain text file
character by character because you usually process plain text files line by line. The
presented utility prints every line that it reads, which makes it a simplified version of
the cat(1) utility.

First, you create a new reader to the desired file using a call to bufio.NewReader().
Then, you use that reader with bufio.ReadString() in order to read the input file
line by line. The trick is done by the parameter of bufio.ReadString(), which is a
character that tells bufio.ReadString() to keep reading until that character is found.
Constantly calling bufio.ReadString() when that parameter is the newline character
(\n) results in reading the input file line by line.

Telling a UNIX System What to Do

[266]

The implementation of lineByLine() is as follows:

func lineByLine(file string) error {
 f, err := os.Open(file)
 if err != nil {
 return err
 }
 defer f.Close()

 r := bufio.NewReader(f)

After making sure that you can open the given file for reading (os.Open()), you
create a new reader using bufio.NewReader().

 for {
 line, err := r.ReadString('\n')

bufio.ReadString() returns two values: the string that was read and an error
variable.

 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 break
 }
 fmt.Print(line)

The use of fmt.Print() instead of fmt.Println() for printing the input line shows
that the newline character is included in each input line.

 }
 return nil
}

Running byLine.go generates the following kind of output:

$ go run byLine.go ~/csv.data
Dimitris,Tsoukalos,2101112223,1600665563
Mihalis,Tsoukalos,2109416471,1600665563
Jane,Doe,0800123456,1608559903

Chapter 6

[267]

The previous output shows the contents of ~/csv.data presented line by line with
the help of byLine.go. The next subsection shows how to read a plain text file word
by word.

Reading a text file word by word
Reading a plain text file word by word is the single most useful function that you
want to perform on a file because you usually want to process a file on a per-word
basis—it is illustrated in this subsection using the code found in byWord.go. The
desired functionality is implemented in the wordByWord() function. The wordByWord()
function uses regular expressions to separate the words found in each line of the
input file. The regular expression defined in the regexp.MustCompile("[^\\s]+")
statement states that we use whitespace characters to separate one word from
another.

The implementation of the wordByWord() function is as follows:

func wordByWord(file string) error {
 f, err := os.Open(file)
 if err != nil {
 return err
 }
 defer f.Close()

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 return err
 }

 r := regexp.MustCompile("[^\\s]+")

This is the place where you define the regular expression you want to use.

 words := r.FindAllString(line, -1)

Telling a UNIX System What to Do

[268]

This is where you apply the regular expression to split the line variable into fields.

 for i := 0; i < len(words); i++ {
 fmt.Println(words[i])
 }

This for loop just prints the fields of the words slice. If you want to know the number
of words found in the input line, you can just find the value of the len(words) call.

 }
 return nil
}

Running byWord.go produces the following kind of output:

$ go run byWord.go ~/csv.data
Dimitris,Tsoukalos,2101112223,1600665563
Mihalis,Tsoukalos,2109416471,1600665563
Jane,Doe,0800123456,1608559903

As ~/csv.data does not contain any whitespace characters, each line is considered a
single word!

Reading a text file character by character
In this subsection, you learn how to read a text file character by character, which is a
pretty rare requirement unless you want to develop a text editor. You take each line
that you read and split it using a for loop with range, which returns two values. You
discard the first, which is the location of the current character in the line variable,
and you use the second. However, that value is a rune, which means that you have
to convert it into a character using string().

The implementation of charByChar() is as follows:

func charByChar(file string) error {
 f, err := os.Open(file)
 if err != nil {
 return err
 }
 defer f.Close()

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')

Chapter 6

[269]

 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 return err
 }

 for _, x := range line {
 fmt.Println(string(x))
 }

Note that, due to the fmt.Println(string(x)) statement, each character is printed
in a distinct line, which means that the output of the program is going to be large.
If you want a more compressed output, you should use the fmt.Print() function
instead.

 }
 return nil
}

Running byCharacter.go and filtering it with head(1), without any parameters,
produces the following kind of output:

$ go run byCharacter.go ~/csv.data | head
D
...
,
T

The use of the head(1) utility without any parameters limits the output to just 10
lines.

The next section is about reading from /dev/random, which is a UNIX system file.

Reading from /dev/random
In this subsection, you learn how to read from the /dev/random system device. The
purpose of the /dev/random system device is to generate random data, which you
might use for testing your programs or, in this case, as the seed for a random number
generator. Getting data from /dev/random can be a little bit tricky, and this is the
main reason for specifically discussing it here.

Telling a UNIX System What to Do

[270]

The code of devRandom.go is the following:

package main

import (
 "encoding/binary"
 "fmt"
 "os"
)

You need encoding/binary because you are reading binary data from /dev/random
that you convert into an integer value.

func main() {
 f, err := os.Open("/dev/random")
 defer f.Close()

 if err != nil {
 fmt.Println(err)
 return
 }

 var seed int64
 binary.Read(f, binary.LittleEndian, &seed)
 fmt.Println("Seed:", seed)
}

There are two representations named little endian and big endian that have to do
with the byte order in the internal representation. In our case, we are using little
endian. The endian-ness has to do with the way different computing systems order
multiple bytes of information.

In a big endian representation, bytes are read from left to right, while little endian
reads bytes from right to left. For the 0x01234567 value, which requires 4 bytes for
storing, the big endian representation is 01 | 23 | 45 | 67 whereas the little endian
representation is 67 | 45 | 23 | 01.

A real-world example of endian-ness is how different languages
read text in different ways: European languages tend to be read
from left to right, whereas Arabic texts are read from right to left.

Chapter 6

[271]

Running devRandom.go creates the following kind of output:

$ go run devRandom.go
Seed: 422907465220227415

This means that the /dev/random device is a good place for getting random data
including a seed value for your random number generator.

Reading a specific amount of data from a file
This subsection teaches you how to read a specific amount of data from a file. The
presented utility can come in handy when you want to see a small part of a file. The
numeric value that is given as a command-line argument specifies the size of the
buffer that is going to be used for reading. The most important code of readSize.go
is the implementation of the readSize() function:

func readSize(f *os.File, size int) []byte {
 buffer := make([]byte, size)
 n, err := f.Read(buffer)

All the magic happens in the definition of the buffer variable because this is where
we define the maximum amount of data that we want to read. Therefore, each time
you invoke readSize(), the function is going to read from f at most size characters.

 // io.EOF is a special case and is treated as such
 if err == io.EOF {
 return nil
 }

 if err != nil {
 fmt.Println(err)
 return nil
 }
 return buffer[0:n]
}

The remaining code is about error conditions; io.EOF is a special and expected
condition that should be treated separately and return the read characters as a byte
slice to the caller function.

Telling a UNIX System What to Do

[272]

Running readSize.go produces the following kind of output:

$ go run readSize.go 12 readSize.go
package main

In this case, we read 12 characters from readSize.go itself because of the 12
parameter.

Now that we know how to read files, it is time to learn how to write to files.

Writing to a file
So far, we have seen ways to read files. This subsection shows how to write data to
files in four different ways and how to append data to an existing file. The code of
writeFile.go is as follows:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
)

func main() {
 buffer := []byte("Data to write\n")
 f1, err := os.Create("/tmp/f1.txt")

os.Create() returns an *os.File value associated with the file path that is passed as
a parameter. Note that if the file already exists, os.Create() truncates it.

 if err != nil {
 fmt.Println("Cannot create file", err)
 return
 }
 defer f1.Close()
 fmt.Fprintf(f1, string(buffer))

The fmt.Fprintf() function, which requires a string variable, helps you write
data to your own files using the format you want. The only requirement is having
an io.Writer to write to. In this case, a valid *os.File variable, which satisfies the
io.Writer interface, does the job.

Chapter 6

[273]

 f2, err := os.Create("/tmp/f2.txt")
 if err != nil {
 fmt.Println("Cannot create file", err)
 return
 }
 defer f2.Close()
 n, err := f2.WriteString(string(buffer))

The os.WriteString() method writes the contents of a string to a valid *os.File
variable.

 fmt.Printf("wrote %d bytes\n", n)

 f3, err := os.Create("/tmp/f3.txt")

Here we create a temporary file on our own. Later on in this chapter you are going to
learn about using os.CreateTemp() for creating temporary files.

 if err != nil {
 fmt.Println(err)
 return
 }
 w := bufio.NewWriter(f3)

This function returns a bufio.Writer, which satisfies the io.Writer interface.

 n, err = w.WriteString(string(buffer))
 fmt.Printf("wrote %d bytes\n", n)
 w.Flush()

 f := "/tmp/f4.txt"
 f4, err := os.Create(f)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer f4.Close()

 for i := 0; i < 5; i++ {
 n, err = io.WriteString(f4, string(buffer))
 if err != nil {
 fmt.Println(err)
 return
 }

Telling a UNIX System What to Do

[274]

 fmt.Printf("wrote %d bytes\n", n)
 }

 // Append to a file
 f4, err = os.OpenFile(f, os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0644)

os.OpenFile() provides a better way to create or open a file for writing. os.O_APPEND
is saying that if the file already exists, you should append to it instead of truncating
it. os.O_CREATE is saying that if the file does not already exist, it should be created.
Last, os.O_WRONLY is saying that the program should open the file for writing only.

 if err != nil {
 fmt.Println(err)
 return
 }
 defer f4.Close()

 // Write() needs a byte slice
 n, err = f4.Write([]byte("Put some more data at the end.\n"))

The Write() method gets its input from a byte slice, which is the Go way of writing.
All previous techniques used strings, which is not the best way, especially when
working with binary data. However, using strings instead of byte slices is more
practical as it is more convenient to manipulate string values than the elements of
a byte slice, especially when working with Unicode characters. On the other hand,
using string values increases allocation and can cause a lot of garbage collection
pressure.

 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Printf("wrote %d bytes\n", n)
}

Running writeFile.go generates some information output about the bytes written
on disk. What is really interesting is seeing the files created in the /tmp folder:

$ ls -l /tmp/f?.txt
-rw-r--r-- 1 mtsouk wheel 14 Feb 27 19:44 /tmp/f1.txt
-rw-r--r-- 1 mtsouk wheel 14 Feb 27 19:44 /tmp/f2.txt
-rw-r--r-- 1 mtsouk wheel 14 Feb 27 19:44 /tmp/f3.txt
-rw-r--r-- 1 mtsouk wheel 101 Feb 27 19:44 /tmp/f4.txt

Chapter 6

[275]

The previous output shows that the same amount of information has been written in
f1.txt, f2.txt, and f3.txt, which means that the presented writing techniques are
equivalent.

The next section shows how to work with JSON data in Go.

Working with JSON
The Go standard library includes encoding/json, which is for working with JSON
data. Additionally, Go allows you to add support for JSON fields in Go structures
using tags, which is the subject of the Structures and JSON subsection. Tags control
the encoding and decoding of JSON records to and from Go structures. But first we
should talk about marshaling and unmarshaling JSON records.

Using Marshal() and Unmarshal()
Both the marshaling and unmarshaling of JSON data are important procedures
for working with JSON data using Go structures. Marshaling is the process of
converting a Go structure into a JSON record. You usually want that for transferring
JSON data via computer networks or for saving it on disk. Unmarshaling is the
process of converting a JSON record given as a byte slice into a Go structure. You
usually want that when receiving JSON data via computer networks or when
loading JSON data from disk files.

The code in encodeDecode.go illustrates both the marshaling and unmarshaling of
JSON records using hardcoded data for simplicity:

package main

import (
 "encoding/json"
 "fmt"
)

type UseAll struct {
 Name string `json:"username"`

The number one bug when converting JSON records into Go
structures and vice versa is not making the required fields of your
Go structures exported. When you have issues with marshaling
and unmarshaling, begin your debugging process from there.

Telling a UNIX System What to Do

[276]

 Surname string `json:"surname"`
 Year int `json:"created"`
}

What the previous metadata tells us is that the Name field of the UseAll structure
is translated to username in the JSON record, and vice versa, the Surname field is
translated to surname, and vice versa, and the Year structure field is translated to
created in the JSON record, and vice versa. This information has to do with the
marshaling and unmarshaling of JSON data. Other than this, you treat and use
UseAll as a regular Go structure.

func main() {
 useall := UseAll{Name: "Mike", Surname: "Tsoukalos", Year: 2021}

 // Regular Structure
 // Encoding JSON data -> Convert Go Structure to JSON record with
fields
 t, err := json.Marshal(&useall)

The json.Marshal() function requires a pointer to a structure variable—its real
data type is an empty interface variable—and returns a byte slice with the encoded
information and an error variable.

 if err != nil {
 fmt.Println(err)
 } else {
 fmt.Printf("Value %s\n", t)
 }

 // Decoding JSON data given as a string
 str := `{"username": "M.", "surname": "Ts", "created":2020}`

JSON data usually comes as a string.

 // Convert string into a byte slice
 jsonRecord := []byte(str)

However, as json.Unmarshal() requires a byte slice, you need to convert that string
into a byte slice before passing it to json.Unmarshal().

 // Create a structure variable to store the result
 temp := UseAll{}
 err = json.Unmarshal(jsonRecord, &temp)

Chapter 6

[277]

The json.Unmarshal() function requires the byte slice with the JSON record and
a pointer to the Go structure variable that is going to store the JSON record and
returns an error variable.

 if err != nil {
 fmt.Println(err)
 } else {
 fmt.Printf("Data type: %T with value %v\n", temp, temp)
 }
}

Running encodeDecode.go produces the next output:

$ go run encodeDecode.go
Value {"username":"Mike","surname":"Tsoukalos","created":2021}
Data type: main.UseAll with value {M. Ts 2020}

The next subsection illustrates how to define the JSON tags in a Go structure in more
detail.

Structures and JSON
Imagine that you have a Go structure that you want to convert into a JSON record
without including any empty fields—the next code illustrates how to perform that
task with the use of omitempty:

// Ignoring empty fields in JSON
type NoEmpty struct {
 Name string `json:"username"`
 Surname string `json:"surname"`
 Year int `json:"creationyear,omitempty"`
}

Last, imagine that you have some sensitive data on some of the fields of a Go
structure that you do not want to include in the JSON records. You can do that by
including the "-" special value in the desired json: structure tags. This is shown in
the next code excerpt:

// Removing private fields and ignoring empty fields
type Password struct {
 Name string `json:"username"`
 Surname string `json:"surname,omitempty"`

Telling a UNIX System What to Do

[278]

 Year int `json:"creationyear,omitempty"`
 Pass string `json:"-"`
}

So, the Pass field is going to be ignored when converting a Password structure into a
JSON record using json.Marshal().

These two techniques are illustrated in tagsJSON.go, which can be found in the ch06
directory of the GitHub repository of this book. Running tagsJSON.go produces the
next output:

$ go run tagsJSON.go
noEmptyVar decoded with value {"username":"Mihalis","surname":""}
password decoded with value {"username":"Mihalis"}

For the first line of output, we have the following: the value of noEmpty, which is
converted into a NoEmpty structure variable named noEmptyVar, is NoEmpty{Name:
"Mihalis"}. The noEmpty structure has the default values for the Surname and Year
fields. However, as they are not specifically defined, json.Marshal() ignores the Year
field because it has the omitempty tag but does not ignore the Surname field, which
has the empty string value.

For the second line of output: the value of the password variable is Password{Name:
"Mihalis", Pass: "myPassword"}. When the password variable is converted into a
JSON record, the Pass field is not included in the output. The remaining two fields of
the Password structure, Surname and Year, are omitted because of the omitempty tag.
So, what is left is the username field.

So far, we have seen working with single JSON records. But what happens when
you have multiple records to process? The next subsection answers this question
and many more!

Reading and writing JSON data as streams
Imagine that you have a slice of Go structures that represent JSON records that you
want to process. Should you process the records one by one? It can be done but does
it look efficient? It does not! The good thing is that Go supports the processing of
multiple JSON records as streams instead of individual records, which is faster and
more efficient. This subsection teaches how to perform that using the JSONstreams.go
utility, which contains the following two functions:

Chapter 6

[279]

// DeSerialize decodes a serialized slice with JSON records
func DeSerialize(e *json.Decoder, slice interface{}) error {
 return e.Decode(slice)
}

The DeSerialize() function is used for reading input in the form of JSON records,
decoding it, and putting it into a slice. The function writes the slice, which is of
the interface{} data type and is given as a parameter, and gets its input from the
buffer of the *json.Decoder parameter. The *json.Decoder parameter along with its
buffer is defined in the main() function in order to avoid allocating it all the time and
therefore losing the performance gains and efficiency of using this type—the same
applies to the use of *json.Encoder that follows:

// Serialize serializes a slice with JSON records
func Serialize(e *json.Encoder, slice interface{}) error {
 return e.Encode(slice)
}

The Serialize() function accepts two parameters, a *json.Encoder and a slice of any
data type, hence the use of interface{}. The function processes the slice and writes
the output to the buffer of the json.Encoder—this buffer is passed as a parameter to
the encoder at the time of its creation.

The JSONstreams.go utility generates random data. Running JSONstreams.go creates
the next output:

$ go run JSONstreams.go
After Serialize:[{"key":"XVLBZ","value":16},{"key":"BAICM","value":89}]
After DeSerialize:
0 {XVLBZ 16}
1 {BAICM 89}

The input slice of structures, which is generated in main(), is serialized as seen in the
first line of the output. After that it is deserialized into the original slice of structures.

Both the Serialize() and DeSerialize() functions can work
with any type of JSON record due to the use of interface{}.

Telling a UNIX System What to Do

[280]

Pretty printing JSON records
This subsection illustrates how to pretty print JSON records, which means printing
JSON records in a pleasant and readable format without knowing the format of the
Go structure that holds the JSON records. As there exist two ways to read JSON
records, individually and as a stream, there exist two ways to pretty print JSON data:
as single JSON records and as a stream. Therefore, we are going to implement two
separate functions named prettyPrint() and JSONstream(), respectively.

The implementation of the prettyPrint() function is the following:

func PrettyPrint(v interface{}) (err error) {
 b, err := json.MarshalIndent(v, "", "\t")
 if err == nil {
 fmt.Println(string(b))
 }
 return err
}

All the work is done by json.MarshalIndent(), which applies indent to format the
output.

Although both json.MarshalIndent() and json.Marshal() produce a JSON text
result (byte slice), only json.MarshalIndent() allows applying customizable indent,
whereas json.Marshal() generates a more compact output.

For pretty printing streams of JSON data, you should use the JSONstream() function:

func JSONstream(data interface{}) (string, error) {
 buffer := new(bytes.Buffer)
 encoder := json.NewEncoder(buffer)
 encoder.SetIndent("", "\t")

The json.NewEncoder() function returns a new Encoder that writes to a writer that is
passed as a parameter to json.NewEncoder(). An Encoder writes JSON values to an
output stream. Similarly to json.MarshalIndent(), the SetIndent() method allows
you to apply a customizable indent to a stream.

 err := encoder.Encode(data)
 if err != nil {
 return "", err
 }
 return buffer.String(), nil
}

Chapter 6

[281]

After we are done configuring the encoder, we are free to process the JSON stream
using Encode().

These two functions are illustrated in prettyPrint.go, which generates JSON records
using random data. Running prettyPrint.go produces the following kind of output:

Last record: {BAICM 89}
{
 "key": "BAICM",
 "value": 89
}
[
 {
 "key": "XVLBZ",
 "value": 16
 },
 {
 "key": "BAICM",
 "value": 89
 }
]

The previous output shows the beautified output of a single JSON record followed
by the beautified output of a slice with two JSON records—all JSON records are
represented as Go structures.

The next section is about working with XML in Go.

Working with XML
This section briefly describes how to work with XML data in Go using records. The
idea behind XML and Go is the same as with JSON and Go. You put tags in Go
structures in order to specify the XML tags and you can still serialize and deserialize
XML records using xml.Unmarshal() and xml.Marshal(), which are found in the
encoding/xml package. However, there exist some differences that are illustrated in
xml.go:

package main

import (
 "encoding/xml"
 "fmt"
)

Telling a UNIX System What to Do

[282]

type Employee struct {
 XMLName xml.Name `xml:"employee"`
 ID int `xml:"id,attr"`
 FirstName string `xml:"name>first"`
 LastName string `xml:"name>last"`
 Height float32 `xml:"height,omitempty"`
 Address
 Comment string `xml:",comment"`
}

This is where the structure for the XML data is defined. However, there is additional
information regarding the name and the type of each XML element. The XMLName
field provides the name of the XML record, which in this case will be employee.

A field with the tag ",comment" is a comment and it is formatted as such in the
output. A field with the tag attr appears as an attribute to the provided field name
(which is id in this case) in the output. The name>first notation tells Go to embed
the first tag inside a tag called name.

Lastly, a field with the omitempty option is omitted from the output if it is empty. An
empty value is any of 0, false, a nil pointer or interface, and any array, slice, map,
or string with a length of zero.

type Address struct {
 City, Country string
}

func main() {
 r := Employee{ID: 7, FirstName: "Mihalis", LastName: "Tsoukalos"}
 r.Comment = "Technical Writer + DevOps"
 r.Address = Address{"SomeWhere 12", "12312, Greece"}

 output, err := xml.MarshalIndent(&r, " ", " ")

As is the case with JSON, xml.MarshalIndent() is for beautifying the output.

 if err != nil {
 fmt.Println("Error:", err)
 }
 output = []byte(xml.Header + string(output))
 fmt.Printf("%s\n", output)
}

Chapter 6

[283]

The output of xml.go is the following:

<?xml version="1.0" encoding="UTF-8"?>
 <employee id="7">
 <name>
 <first>Mihalis</first>
 <last>Tsoukalos</last>
 </name>
 <City>SomeWhere 12</City>
 <Country>12312, Greece</Country>
 <!--Technical Writer + DevOps-->
 </employee>

The previous output shows the XML version of the Go structure given as input to the
program.

In the next section we develop a utility that converts JSON records to XML records
and vice versa.

Converting JSON to XML and vice versa
As promised, we are going to produce a utility that converts records between the
JSON and XML formats. The input is given as a command-line argument. The
utility tries to guess the format of the input starting from XML. If xml.Unmarshal()
fails, then the utility tries using json.Unmarshal(). If there is not a match, then the
user is informed about the error condition. On the other hand, if xml.Unmarshal()
is successful, the data is stored into an XMLrec variable and is then converted into a
JSONrec variable. The same happens with json.Unmarshal() in the case where the
xml.Unmarshal() call is unsuccessful.

The logic of the utility can be found in the Go structures:

type XMLrec struct {
 Name string `xml:"username"`
 Surname string `xml:"surname,omitempty"`
 Year int `xml:"creationyear,omitempty"`
}

type JSONrec struct {
 Name string `json:"username"`
 Surname string `json:"surname,omitempty"`
 Year int `json:"creationyear,omitempty"`
}

Telling a UNIX System What to Do

[284]

Both structures store the same data. However, the former (XMLrec) is for storing XML
data whereas the latter (JSONrec) is for storing JSON data.

Running JSON2XML.go produces the next kind of output:

$ go run JSON2XML.go '<XMLrec><username>Mihalis</username></XMLrec>'
<XMLrec><username>Mihalis</username></XMLrec>
{"username":"Mihalis"}

So, we give an XML record as input, which is converted into a JSON record.

The next output illustrates the reverse process:

$ go run JSON2XML.go '{"username": "Mihalis"}'
{"username": "Mihalis"}
<XMLrec><username>Mihalis</username></XMLrec>

In the previous output the input is a JSON record, and the output is an XML record.

The next section discusses working with YAML files in Go.

Working with YAML
In this section, we briefly discuss how to work with YAML files in Go. The Go
standard library does not include support for YAML files, which means that you
should look at external packages for YAML support. There exist three main packages
that allow you to work with YAML from Go:

• https://github.com/kylelemons/go-gypsy

• https://github.com/go-yaml/yaml

• https://github.com/goccy/go-yaml

Choosing one is a matter of personal preference. We are going to work with go-yaml
in this section using the code found in yaml.go. Due to the use of Go modules,
yaml.go is developed in ~/go/src/github.com/mactsouk/yaml—you can also find
it in the GitHub repository of this book. The most important part of it is the next:

var yamlfile = `
image: Golang
matrix:
 docker: python
 version: [2.7, 3.9]
`

https://github.com/kylelemons/go-gypsy
https://github.com/go-yaml/yaml
https://github.com/goccy/go-yaml

Chapter 6

[285]

The yamlfile variable contains the YAML data; you usually read the data from a
file—we are just using that to save some space.

type Mat struct {
 DockerImage string `yaml:"docker"`
 Version []float32 `yaml:",flow"`
}

The Mat structure defines two fields and their associations with the YAML file. The
Version field is a slice of float32 values. As there is no name for the Version field,
the name is going to be version. The flow keyword says that the marshal is using a
flow style, which is useful for structs, sequences, and maps.

type YAML struct {
 Image string
 Matrix Mat
}

The YAML structure embeds a Mat structure and contains a field named Image, which
is associated with image in the YAML file. The main() function contains the expected
yaml.Unmarshal() and yaml.Marshal() calls.

Once you have the source file at the desired place, run the next commands—if you
need to run any extra commands, the go binary is nice enough to help you:

$ go mod init
$ go mod tidy

The go mod init command initializes and writes a new go.mod file in the current
directory whereas the go mod tidy command synchronizes go.mod with the source
code.

Running yaml.go produces the next output:

$ go run yaml.go
After Unmarshal (Structure):
{Golang {python [2.7 3.9]}}

If you want to play it safe and you are using packages that do not
belong to the standard library, then developing inside ~/go/src,
committing to a GitHub repository, and using Go modules for all
dependencies might be the best option. However, this does not
mean that you must develop your own packages in the form of Go
modules.

Telling a UNIX System What to Do

[286]

After Marshal (YAML code):
image: Golang
matrix:
 docker: python
 version: [2.7, 3.9]

The previous output shows how the {Golang {python [2.7 3.9]}} text is converted
into a YAML file and vice versa. Now that we know about working with JSON,
XML, and YAML data in Go, we are ready to learn about the viper package.

The viper package
Flags are specially formatted strings that are passed into a program to control its
behavior. Dealing with flags on your own might become very frustrating if you
want to support multiple flags and options. Go offers the flag package for working
with command-line options, parameters, and flags. Although flag can do many
things, it is not as capable as other external Go packages. Thus, if you are developing
simple UNIX system command-line utilities, you might find the flag package very
interesting and useful. But you are not reading this book to create simple command-
line utilities! Therefore, I'll skip the flag package and introduce you to an external
package named viper, which is a powerful Go package that supports a plethora of
options. viper uses the pflag package instead of flag, which is also illustrated in the
code we will look at in the following sections.

All viper projects follow a pattern. First, you initialize viper and then you define the
elements that interest you. After that, you get these elements and read their values in
order to use them. The desired values can be taken either directly, as happens when
you are using the flag package from the standard Go library, or indirectly using
configuration files. When using formatted configuration files in the JSON, YAML,
TOML, HCL, or Java properties format, viper does all the parsing for you, which
saves you from having to write and debug lots of Go code. viper also allows you
to extract and save values in Go structures. However, this requires that the fields of
the Go structure match the keys of the configuration file.

The home page of viper is on GitHub (https://github.com/spf13/viper). Please
note that you are not obliged to use every capability of viper in your tools—just the
features that you want. The general rule is to use the features of Viper that simplify
your code. Put simply, if your command-line utility requires too many command-
line parameters and flags, then it would be better to use a configuration file instead.

https://github.com/spf13/viper

Chapter 6

[287]

Using command-line flags
The first example shows how to write a simple utility that accepts two values as
command-line parameters and prints them on screen for verification. This means
that we are going to need two command-line flags for these parameters.

Starting from Go version 1.16, using modules is the default behavior, which the
viper package needs to use. So, you need to put useViper.go, which is the name of
the source file, inside ~/go for things to work. As my GitHub username is mactsouk,
I had to run the following commands:

$ mkdir ~/go/src/github.com/mactsouk/useViper
$ cd ~/go/src/github.com/mactsouk/useViper
$ vi useViper.go
$ go mod init
$ go mod tidy

You can either edit useViper.go on your own or copy it from the GitHub repository
of this book. Keep in mind that the last two commands should be executed when
useViper.go is ready and includes all required external packages.

The implementation of useViper.go is as follows:

package main

import (
 "fmt"

 "github.com/spf13/pflag"
 "github.com/spf13/viper"
)

We need to import both the pflag and viper packages as we are going to use the
functionality from both of them.

func aliasNormalizeFunc(f *pflag.FlagSet, n string) pflag.
NormalizedName {
 switch n {
 case "pass":
 n = "password"
 break
 case "ps":
 n = "password"
 break

Telling a UNIX System What to Do

[288]

 }
 return pflag.NormalizedName(n)
}

The aliasNormalizeFunc() function is used for creating additional aliases for a
flag—in this case an alias for the --password flag. According to the existing code,
the --password flag can be accessed as either --pass or --ps.

func main() {
 pflag.StringP("name", "n", "Mike", "Name parameter")

In the preceding code, we create a new flag called name that can also be accessed as
-n. Its default value is Mike and its description that appears in the usage of the utility
is Name parameter.

 pflag.StringP("password", "p", "hardToGuess", "Password")
 pflag.CommandLine.SetNormalizeFunc(aliasNormalizeFunc)

We create another flag named password that can also be accessed as -p and has
a default value of hardToGuess and a description. Additionally, we register a
normalization function for generating aliases for the password flag.

 pflag.Parse()
 viper.BindPFlags(pflag.CommandLine)

The pflag.Parse() call should be used after all command-line flags are defined—its
purpose is to parse the command-line flags into the defined flags.

Additionally, the viper.BindPFlags() call makes all flags available to the viper
package—strictly speaking, we say that the viper.BindPFlags() call binds an
existing set of pflag flags (pflag.FlagSet) to viper.

 name := viper.GetString("name")
 password := viper.GetString("password")

The previous commands show how to read the values of two string command-line
flags.

 fmt.Println(name, password)

 // Reading an Environment variable
 viper.BindEnv("GOMAXPROCS")
 val := viper.Get("GOMAXPROCS")
 if val != nil {

Chapter 6

[289]

 fmt.Println("GOMAXPROCS:", val)
 }

The viper package can work with environment variables. We first need to call viper.
BindEnv() to tell viper the environment variable that interests us and then we can
read its value by calling viper.Get(). If GOMAXPROCS is not already set, the fmt.
Println() call will not get executed.

 // Setting an Environment variable
 viper.Set("GOMAXPROCS", 16)
 val = viper.Get("GOMAXPROCS")
 fmt.Println("GOMAXPROCS:", val)
}

Similarly, we can change the current value of an environment variable using viper.
Set().

The good thing is that viper automatically provides usage information:

$ go run useViper.go --help
Usage of useViper:
 -n, --name string Name parameter (default "Mike")
 -p, --password string Password (default "hardToGuess")
pflag: help requested
exit status 2

Using useViper.go without any command-line arguments produces the next kind of
output. Remember that we are inside ~/go/src/github.com/mactsouk/useViper:

$ go run useViper.go
Mike hardToGuess
GOMAXPROCS: 16

However, if we provide values for the command-line flags, the output is going to be
slightly different:

$ go run useViper.go -n mtsouk -p hardToGuess
mtsouk hardToGuess
GOMAXPROCS: 16

In this second case, we used the shortcuts for the command-line flags because it is
faster.

The next subsection discusses the use of JSON files for storing configuration
information.

Telling a UNIX System What to Do

[290]

Reading JSON configuration files
The viper package can read JSON files to get its configuration, and this subsection
illustrates how. Using text files for storing configuration details can be very helpful
when writing complex applications that require lots of data and setup. This is
illustrated in jsonViper.go.

Once again, we need to put jsonViper.go inside ~/go/src/github.com/mactsouk/
jsonViper—please adjust that command to fit your own GitHub username, although
if you do not create a GitHub repository, you can use mactsouk. The code of
jsonViper.go is as follows:

package main

import (
 "encoding/json"
 "fmt"
 "os"

 "github.com/spf13/viper"
)

type ConfigStructure struct {
 MacPass string `mapstructure:"macos"`
 LinuxPass string `mapstructure:"linux"`
 WindowsPass string `mapstructure:"windows"`
 PostHost string `mapstructure:"postgres"`
 MySQLHost string `mapstructure:"mysql"`
 MongoHost string `mapstructure:"mongodb"`
}

There is an important point here: although we are using a JSON file to store the
configuration, the Go structure uses mapstructure instead of json for the fields of
the JSON configuration file.

var CONFIG = ".config.json"

func main() {
 if len(os.Args) == 1 {
 fmt.Println("Using default file", CONFIG)
 } else {
 CONFIG = os.Args[1]
 }

Chapter 6

[291]

 viper.SetConfigType("json")
 viper.SetConfigFile(CONFIG)
 fmt.Printf("Using config: %s\n", viper.ConfigFileUsed())
 viper.ReadInConfig()

The previous four statements declare that we are using a JSON file, let viper know
the path to the configuration file, print the configuration file used, and read and
parse that configuration file.

Keep in mind that viper does not check whether the configuration file actually exists
and is readable. If the file cannot be found or read, viper.ReadInConfig() acts like
processing an empty configuration file.

 if viper.IsSet("macos") {
 fmt.Println("macos:", viper.Get("macos"))
 } else {
 fmt.Println("macos not set!")
 }

The viper.IsSet() call checks whether a key named macos can be found in the
configuration. If it is set, it reads its value using viper.Get("macos") and prints it
on screen.

 if viper.IsSet("active") {
 value := viper.GetBool("active")
 if value {
 postgres := viper.Get("postgres")
 mysql := viper.Get("mysql")
 mongo := viper.Get("mongodb")
 fmt.Println("P:", postgres, "My:", mysql, "Mo:", mongo)
 }
 } else {
 fmt.Println("active is not set!")
 }

In the aforementioned code, we check whether the active key can be found before
reading its value. If its value is equal to true then we read the values from three
more keys named postgres, mysql, and mongodb.

Telling a UNIX System What to Do

[292]

As the active key should hold a Boolean value, we use viper.GetBool() for
reading it.

 if !viper.IsSet("DoesNotExist") {
 fmt.Println("DoesNotExist is not set!")
 }

As expected, trying to read a key that does not exist fails.

 var t ConfigStructure
 err := viper.Unmarshal(&t)
 if err != nil {
 fmt.Println(err)
 return
 }

The call to viper.Unmarshal() allows you to put the information from the JSON
configuration file into a properly defined Go structure—this is optional but handy.

 PrettyPrint(t)
}

The implementation of the PrettyPrint() function was presented in prettyPrint.go
earlier on in this chapter.

Now you need to download the dependencies of jsonViper.go:

$ go mod init
$ go mod tidy # This command is not always required

The contents of the current directory are as follows:

$ ls -l
total 44
-rw-r--r-- 1 mtsouk users 85 Feb 22 18:46 go.mod
-rw-r--r-- 1 mtsouk users 29678 Feb 22 18:46 go.sum
-rw-r--r-- 1 mtsouk users 1418 Feb 22 18:45 jsonViper.go
-rw-r--r-- 1 mtsouk users 189 Feb 22 18:46 myConfig.json

The contents of the myConfig.json file used for testing are as follows:

{
 "macos": "pass_macos",
 "linux": "pass_linux",

Chapter 6

[293]

 "windows": "pass_windows",

 "active": true,
 "postgres": "machine1",
 "mysql": "machine2",
 "mongodb": "machine3"
}

Running jsonViper.go on the preceding JSON file produces the next output:

$ go run jsonViper.go myConfig.json
Using config: myConfig.json
macos: pass_macos
P: machine1 My: machine2 Mo: machine3
DoesNotExist is not set!
{
 "MacPass": "pass_macos",
 "LinuxPass": "pass_linux",
 "WindowsPass": "pass_windows",
 "PostHost": "machine1",
 "MySQLHost": "machine2",
 "MongoHost": "machine3"
}

The previous output is generated by jsonViper.go when parsing myConfig.json and
trying to find the desired information.

The next section discusses a Go package for creating powerful and professional
command-line utilities such as docker and kubectl.

The cobra package
cobra is a very handy and popular Go package that allows you to develop command-
line utilities with commands, subcommands, and aliases. If you have ever used hugo,
docker, or kubectl you are going to realize immediately what the cobra package
does, as all these tools are developed using cobra. Commands can have one or more
aliases, which is very handy when you want to please both amateur and experienced
users. cobra also supports persistent flags and local flags, which are flags that are
available to all commands and flags that are available to given commands only,
respectively. Also, by default, cobra uses viper for parsing its command-line
arguments.

Telling a UNIX System What to Do

[294]

All cobra projects follow the same development pattern. You use the cobra utility,
then you create commands, and then you make the desired changes to the generated
Go source code files in order to implement the desired functionality. Depending on
the complexity of your utility, you might need to make lots of changes to the created
files. Although cobra saves you lots of time, you still have to write the code that
implements the desired functionality for each command.

You need to take some extra steps in order to download the cobra binary the right
way:

$ GO111MODULE=on go get -u -v github.com/spf13/cobra/cobra

The previous command downloads the cobra binary and the required dependencies
using Go modules even if you are using a Go version older than 1.16.

For the purposes of this section, we are going to need a GitHub repository—this
is optional, but it is the only way for the readers of this book to have access to the
presented code.

The path of the GitHub repository is https://github.com/mactsouk/go-cobra.
The first thing to do is place the files of the GitHub repository in the right place.
Everything is going to be much easier if you put it inside ~/go; the exact place
depends on the GitHub repository, because the Go compiler will not have to
search for the Go files.

In our case, we are going to put it under ~/go/src/github.com/mactsouk because
mactsouk is my GitHub username. This requires running the next commands:

$ cd ~/go/src/github.com
$ mkdir mactsouk # only required if the directory is not there
$ cd mactsouk
$ git clone git@github.com:mactsouk/go-cobra.git
$ cd go-cobra
$ ~/go/bin/cobra init --pkg-name github.com/mactsouk/go-cobra
Using config file: /Users/mtsouk/.cobra.yaml
Your Cobra application is ready at
/Users/mtsouk/go/src/github.com/mactsouk/go-cobra

It is not necessary to know about all of the supported environment
variables such as GO111MODULE, but sometimes they can help you
resolve tricky problems with your Go installation. So, if you want
to learn about your current Go environment, you can use the go
env command.

https://github.com/mactsouk/go-cobra

Chapter 6

[295]

$ go mod init
go: creating new go.mod: module github.com/mactsouk/go-cobra

As the cobra package works better with modules, we define the project dependencies
using Go modules. In order to specify that a Go project uses Go modules, you should
execute go mod init. This command creates two files named go.sum and go.mod.

$ go run main.go
go: finding module for package github.com/spf13/cobra
go: finding module for package github.com/mitchellh/go-homedir
go: finding module for package github.com/spf13/viper
go: found github.com/mitchellh/go-homedir in github.com/mitchellh/go-
homedir v1.1.0
go: found github.com/spf13/cobra in github.com/spf13/cobra v1.1.3
go: found github.com/spf13/viper in github.com/spf13/viper v1.7.1
A longer description that spans multiple lines and likely contains
examples and usage of using your application. For example:

Cobra is a CLI library for Go that empowers applications.
This application is a tool to generate the needed files
to quickly create a Cobra application.

All lines beginning with go: have to do with Go modules and will appear only once.
The last lines are the default message of a cobra project—we are going to modify that
message later on. You are now ready to begin working with the cobra tool.

A utility with three commands
This subsection illustrates the use of the cobra add command, which is used for
adding new commands to a cobra project. The names of the commands are one, two,
and three:

$ ~/go/bin/cobra add one
Using config file: /Users/mtsouk/.cobra.yaml
one created at /Users/mtsouk/go/src/github.com/mactsouk/go-cobra
$ ~/go/bin/cobra add two
$ ~/go/bin/cobra add three

The previous commands create three new files in the cmd folder named one.go,
two.go, and three.go, which are the initial implementations of the three commands.

Telling a UNIX System What to Do

[296]

The first thing you should usually do is delete unwanted code from root.go and
change the messages of the utility and each command as described in the Short and
Long fields. However, if you want you can leave the source files unchanged.

The next subsection enriches the utility by adding command-line flags to the
commands.

Adding command-line flags
We are going to create two global command-line flags and one command-line flag
that is attached to a given command (two) and is not supported by the other two
commands. Global command-line flags are defined in the ./cmd/root.go file. We
are going to define two global flags named directory, which is a string, and depth,
which is an unsigned integer.

Both global flags are defined in the init() function of ./cmd/root.go.

rootCmd.PersistentFlags().StringP("directory", "d", "/tmp", "Path to
use.")
rootCmd.PersistentFlags().Uint("depth", 2, "Depth of search.")
viper.BindPFlag("directory", rootCmd.PersistentFlags().
Lookup("directory"))
viper.BindPFlag("depth", rootCmd.PersistentFlags().Lookup("depth"))

We use rootCmd.PersistentFlags() to define global flags followed by the data type
of the flag. The name of the first flag is directory and its shortcut is d whereas the
name of the second flag is depth and has no shortcut—if you want to add a shortcut
to it, you should use the UintP() method instead. After defining the two flags, we
pass their control to viper by calling viper.BindPFlag(). The first flag is a string
whereas the second one is a uint value. As both of them are available in the cobra
project, we call viper.GetString("directory") to get the value of the directory
flag and viper.GetUint("depth") to get the value of the depth flag.

Last, we add a command-line flag that is only available to the two command using
the next line in the ./cmd/two.go file:

twoCmd.Flags().StringP("username", "u", "Mike", "Username value")

The name of the flag is username and its shortcut is u. As this is a local flag
available to the two command only, we can get its value by calling cmd.Flags().
GetString("username") inside the ./cmd/two.go file only.

The next subsection creates command aliases for the existing commands.

Chapter 6

[297]

Creating command aliases
In this subsection we continue building on the code from the previous subsection
by creating aliases for existing commands. This means that commands one, two, and
three will also be accessible as cmd1, cmd2, and cmd3 respectively.

In order to do that, you need to add an extra field named Aliases in the cobra.
Command structure of each command—the data type of the Aliases field is string
slice. So, for the one command, the beginning of the cobra.Command structure in
./cmd/one.go will look as follows:

var oneCmd = &cobra.Command{
 Use: "one",
 Aliases: []string{"cmd1"},
 Short: "Command one",

You should make similar changes to ./cmd/two.go and ./cmd/three.go. Please keep
in mind that the internal name of the one command is oneCmd—the other commands
have analogous internal names.

The next subsection enriches the utility by adding subcommands for the one and two
commands.

Creating subcommands
This subsection illustrates how to create two subcommands for the command named
three. The names of the two subcommands will be list and delete. The way to
create them using the cobra utility is the following:

$ ~/go/bin/cobra add list -p 'threeCmd'
Using config file: /Users/mtsouk/.cobra.yaml
list created at /Users/mtsouk/go/src/github.com/mactsouk/go-cobra
$ ~/go/bin/cobra add delete -p 'threeCmd'
Using config file: /Users/mtsouk/.cobra.yaml
delete created at /Users/mtsouk/go/src/github.com/mactsouk/go-cobra

If you accidentally put the cmd1 alias, or any other alias, in multiple
commands, the Go compiler will not complain. However, only its
first occurrence gets executed.

Telling a UNIX System What to Do

[298]

The previous commands create two new files inside ./cmd named delete.go and
list.go. The -p flag is followed by the internal name of the command you want
to associate the subcommands with. The internal name of the three command is
threeCmd. You can verify that these two commands are associated with the three
command as follows:

$ go run main.go three delete
delete called
$ go run main.go three list
list called

If you run go run main.go two list, Go considers list as a command-line
argument of two and it will not execute the code in ./cmd/list.go. The final version
of the go-cobra project has the following structure and contains the following files, as
generated by the tree(1) utility:

$ tree
.
├── LICENSE
├── README.md
├── cmd
│ ├── delete.go
│ ├── list.go
│ ├── one.go
│ ├── root.go
│ ├── three.go
│ └── two.go
├── go.mod
├── go.sum
└── main.go

1 directory, 11 files

As there is no point in presenting long listings of code, you can find the code of the
go-cobra project at https://github.com/mactsouk/go-cobra. The cobra package
is also illustrated in the final section where we radically update the phone book
application.

At this point you might wonder what happens when you want to
create two subcommands with the same name for two different
commands. In that case, you create the first subcommand and
rename its file before creating the second one.

https://github.com/mactsouk/go-cobra

Chapter 6

[299]

Finding cycles in a UNIX file system
This section implements a practical UNIX command-line utility that can find cycles
(loops) in UNIX file systems. The idea behind the utility is that with UNIX symbolic
links, there is a possibility to create cycles in our file system. This can perplex backup
software such as tar(1) or utilities such as find(1) and can create security-related
issues. The presented utility, which is called FScycles.go, tries to inform us about
such situations.

The idea behind the solution is that we keep every visited directory path in a map
and if a path appears for the second time, then we have a cycle. The map is called
visited and is defined as map[string]int.

The output of the utility depends on the root path used for initialing the search
process—that path is given as a command-line argument to the utility.

The filepath.Walk() function does not traverse symbolic links by design in order to
avoid cycles. However, in our case, we want to traverse symbolic links to directories
in order to discover loops. We solve that issue in a while.

The utility uses IsDir(), which is a function that helps you to identify directories—
we are only interested in directories because only directories and symbolic links to
directories can create cycles in file systems. Last, the utility uses os.Lstat() because
it can handle symbolic links. Additionally, os.Lstat() returns information about the
symbolic link without following it, which is not the case with os.Stat()—in this case
we do not want to automatically follow symbolic links.

The important code of FScycles.go can be found in the implementation of
walkFunction():

func walkFunction(path string, info os.FileInfo, err error) error {
 fileInfo, err := os.Stat(path)
 if err != nil {
 return nil
 }

 fileInfo, _ = os.Lstat(path)
 mode := fileInfo.Mode()

If you are wondering why we are using a string and not a byte
slice or some other kind of slice as the key for the visited map, it
is because maps cannot have slices as keys because slices are not
comparable.

Telling a UNIX System What to Do

[300]

First, we make sure that the path actually exists, and then we call os.Lstat().

 // Find regular directories first
 if mode.IsDir() {
 abs, _ := filepath.Abs(path)
 _, ok := visited[abs]
 if ok {
 fmt.Println("Found cycle:", abs)
 return nil
 }
 visited[abs]++
 return nil
 }

If a regular directory is already visited, then we have a cycle. The visited map
keeps track of all visited directories.

 // Find symbolic links to directories
 if fileInfo.Mode()&os.ModeSymlink != 0 {
 temp, err := os.Readlink(path)
 if err != nil {
 fmt.Println("os.Readlink():", err)
 return err
 }

 newPath, err := filepath.EvalSymlinks(temp)
 if err != nil {
 return nil
 }

The filepath.EvalSymlinks() function is used for finding out where symbolic links
point to. If that destination is another directory, then the code that follows makes
sure that it is going to be visited as well using an additional call to filepath.Walk().

 linkFileInfo, err := os.Stat(newPath)
 if err != nil {
 return err
 }

 linkMode := linkFileInfo.Mode()
 if linkMode.IsDir() {
 fmt.Println("Following...", path, "-->", newPath)

Chapter 6

[301]

The linkMode.IsDir() statement makes sure that only directories are being followed.

 abs, _ := filepath.Abs(newPath)

The call to filepath.Abs() returns the absolute path of the path that is given as a
parameter. The keys of the visited slice are values returned by filepath.Abs().

 _, ok := visited[abs]
 if ok {
 fmt.Println("Found cycle!", abs)
 return nil
 }
 visited[abs]++
 err = filepath.Walk(newPath, walkFunction)
 if err != nil {
 return err
 }
 return nil
 }
 }
 return nil
}

Running FScycles.go produces the following kind of output:

$ go run FScycles.go ~
Following... /home/mtsouk/.local/share/epiphany/databases/indexeddb/v0
--> /home/mtsouk/.local/share/epiphany/databases/indexeddb
Found cycle! /home/mtsouk/.local/share/epiphany/databases/indexeddb

The previous output tells us that there is a cycle in the home directory of the current
user—once we identify the loop, we should remove it on our own.

The remaining sections of this chapter discuss some new features that came with Go
version 1.16.

New to Go 1.16
Go 1.16 came with some new features including embedding files in Go binaries as
well as the introduction of the os.ReadDir() function, the os.DirEntry type, and the
io/fs package.

Telling a UNIX System What to Do

[302]

As these features are related to systems programming, they are included and
explored in the current chapter. We begin by presenting the embedding of files into
Go binary executables.

Embedding files
This section presents a feature that first appeared in Go 1.16 that allows you
to embed static assets into Go binaries. The allowed data types for keeping an
embedded file are string, []byte, and embed.FS. This means that a Go binary may
contain a file that you do not have to manually download when you execute the Go
binary! The presented utility embeds two different files that it can retrieve based
on the given command-line argument.

The code that follows, which is saved as embedFiles.go, illustrates this new Go
feature:

package main

import (
 _ "embed"
 "fmt"
 "os"
)

You need the embed package in order to embed any files in your Go binaries. As the
embed package is not directly used, you need to put _ in front of it so that the Go
compiler won't complain.

//go:embed static/image.png
var f1 []byte

You need to begin a line with //go:embed, which denotes a Go comment but is
treated in a special way, followed by the path to the file you want to embed. In this
case we embed static/image.png, which is a binary file. The next line should define
the variable that is going to hold the data of the embedded file, which in this case is
a byte slice named f1—using a byte slice is recommended for binary files because we
are going to directly use that byte slice to save that binary file.

//go:embed static/textfile
var f2 string

In this case we save the contents of a plain text file, which is static/textfile, in a
string variable named f2.

Chapter 6

[303]

func writeToFile(s []byte, path string) error {
 fd, err := os.OpenFile(path, os.O_CREATE|os.O_WRONLY, 0644)
 if err != nil {
 return err
 }
 defer fd.Close()

 n, err := fd.Write(s)
 if err != nil {
 return err
 }
 fmt.Printf("wrote %d bytes\n", n)
 return nil
}

The writeToFile() function is used for storing a byte slice into a file and is a helper
function that can be used in other cases as well.

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Print select 1|2")
 return
 }

 fmt.Println("f1:", len(f1), "f2:", len(f2))

This statement prints the lengths of the f1 and f2 variables to make sure that they
represent the size of the embedded files.

 switch arguments[1] {
 case "1":
 filename := "/tmp/temporary.png"
 err := writeToFile(f1, filename)
 if err != nil {
 fmt.Println(err)
 return
 }
 case "2":
 fmt.Print(f2)
 default:
 fmt.Println("Not a valid option!")
 }
}

Telling a UNIX System What to Do

[304]

The switch block is responsible for returning the desired file to the user—in the
case of static/textfile, the file contents are printed on the screen. For the binary
file, we decided to store it as /tmp/temporary.png.

This time we are going to compile embedFiles.go to make things more realistic,
because it is the executable binary file that holds the embedded files. We build
the binary file using go build embedFiles.go. Running embedFiles produces the
following kind of output:

$./embedFiles 2
f1: 75072 f2: 14
Data to write
$./embedFiles 1
f1: 75072 f2: 14
wrote 75072 bytes

The next output verifies that temporary.png is located at the right path (/tmp/
temporary.png):

$ ls -l /tmp/temporary.png
-rw-r--r-- 1 mtsouk wheel 75072 Feb 25 15:20 /tmp/temporary.png

Using the embedding functionality, we can create a utility that embeds its own
source code and prints it on screen when it gets executed! This is a fun way of using
embedded files. The source code of printSource.go is the following:

package main
import (
 _ "embed"
 "fmt"
)

//go:embed printSource.go
var src string

func main() {
 fmt.Print(src)
}

As before, the file that is being embedded is defined in the //go:embed line. Running
printSource.go prints the aforementioned code on screen.

Chapter 6

[305]

ReadDir and DirEntry
This section discusses os.ReadDir() and os.DirEntry. However, it begins by
discussing the deprecation of the io/ioutil package—the functionality of the io/
ioutil package has been transferred to other packages. So, we have the following:

• os.ReadDir(), which is a new function, returns []DirEntry. This means
that it cannot directly replace ioutil.ReadDir(), which returns []FileInfo.
Although neither os.ReadDir() nor os.DirEntry offers any new functionality,
they make things faster and simpler, which is important.

• The os.ReadFile() function directly replaces ioutil.ReadFile().
• The os.WriteFile() function can directly replace ioutil.WriteFile().
• Similarly, os.MkdirTemp() can replace ioutil.TempDir() without any

changes. However, as the os.TempDir() name was already taken, the new
function name is different.

• The os.CreateTemp() function is the same as ioutil.TempFile(). Although
the name os.TempFile() was not taken, the Go people decided to name it
os.CreateTemp() in order to be on par with os.MkdirTemp().

The ReadDirEntry.go utility illustrates the use of os.ReadDir(). Additionally, we
are going to see fs.DirEntry in combination with fs.WalkDir() in action in the
next section—io/fs only supports WalkDir(), which uses DirEntry by default. Both
fs.WalkDir() and filepath.WalkDir() are using DirEntry instead of FileInfo. This
means that in order to see any performance improvements when walking directory
trees, you need to change filepath.Walk() calls to filepath.WalkDir() calls.

The presented utility calculates the size of a directory tree using os.ReadDir() with
the help of the next function:

func GetSize(path string) (int64, error) {
 contents, err := os.ReadDir(path)
 if err != nil {
 return -1, err
 }

Both os.ReadDir() and os.DirEntry can be found as
fs.ReadDir() and fs.DirEntry in the io/fs package for
working with the file system interface found in io/fs.

Telling a UNIX System What to Do

[306]

 var total int64
 for _, entry := range contents {
 // Visit directory entries
 if entry.IsDir() {

If we are processing a directory, we need to keep digging.

 temp, err := GetSize(filepath.Join(path, entry.Name()))
 if err != nil {
 return -1, err
 }
 total += temp
 // Get size of each non-directory entry
 } else {

If it is a file, then we just need to get its size. This involves calling Info() to get
general information about the file and then Size() to get the size of the file:

 info, err := entry.Info()
 if err != nil {
 return -1, err
 }
 // Returns an int64 value
 total += info.Size()
 }
 }
 return total, nil
}

Running ReadDirEntry.go produces the next output, which indicates that the utility
works as expected:

$ go run ReadDirEntry.go /usr/bin
Total Size: 1170983337

Last, keep in mind that both ReadDir and DirEntry are copied from the Python
programming language.

The next section introduces us to the io/fs package.

Chapter 6

[307]

The io/fs package
This section illustrates the functionality of the io/fs package, which was first
introduced in Go 1.16. As io/fs offers a unique kind of functionality, we begin
this section by explaining what io/fs can do. Put simply, io/fs offers a read-only
file system interface named FS. Note that embed.FS implements the fs.FS interface,
which means that embed.FS can take advantage of some of the functionality offered
by the io/fs package. This means that your applications can create their own
internal file systems and work with their files.

The code example that follows, which is saved as ioFS.go, creates a file system
using embed by putting all the files of the ./static folder in there. ioFS.go supports
the following functionality: list all files, search for a filename, and extract a file
using list(), search(), and extract(), respectively. We begin by presenting the
implementation of list():

func list(f embed.FS) error {
 return fs.WalkDir(f, ".", walkFunction)
}

All the magic happens in the walkFunction() function, which is implemented as
follows:

func walkFunction(path string, d fs.DirEntry, err error) error {
 if err != nil {
 return err
 }
 fmt.Printf("Path=%q, isDir=%v\n", path, d.IsDir())
 return nil
}

The walkFunction() function is pretty compact as all functionality is implemented by
Go.

Then, we present the implementation of the extract() function:

func extract(f embed.FS, filepath string) ([]byte, error) {
 s, err := fs.ReadFile(f, filepath)
 if err != nil {
 return nil, err
 }
 return s, nil
}

Telling a UNIX System What to Do

[308]

The ReadFile() function is used for retrieving a file, which is identified by its file
path, from the embed.FS file system as a byte slice, which is returned from the
extract() function.

Last, we have the implementation of the search() function, which is based on
walkSearch():

func walkSearch(path string, d fs.DirEntry, err error) error {
 if err != nil {
 return err
 }
 if d.Name() == searchString {

searchString is a global variable that holds the search string. When a match is found,
the matching path is printed on screen.

 fileInfo, err := fs.Stat(f, path)
 if err != nil {
 return err
 }
 fmt.Println("Found", path, "with size", fileInfo.Size())
 return nil
 }

Before printing a match, we make a call to fs.Stat() in order to get more details
about it.

 return nil
}

The main() function specifically calls these three functions. Running ioFS.go
produces the next kind of output:

$ go run ioFS.go
Path=".", isDir=true
Path="static", isDir=true
Path="static/file.txt", isDir=false
Path="static/image.png", isDir=false
Path="static/textfile", isDir=false
Found static/file.txt with size 14
wrote 14 bytes

Chapter 6

[309]

Initially, the utility lists all files in the file system (lines beginning with Path). Then, it
verifies that static/file.txt can be found in the file system. Last, it verifies that the
writing of 14 bytes into a new file was successful as all 14 bytes have been written.

So, it turns out that Go version 1.16 introduced important additions and performance
improvements.

Updating the phone book application
In this section we will change the format that the phone application uses for storing
its data. This time, the phone book application uses JSON all over. Additionally, it
uses the cobra package for implementing the supported commands. As a result, all
relevant code resides on its own GitHub repository and not in the ch06 directory of
the GitHub repository of this book. The path of the GitHub repository is https://
github.com/mactsouk/phonebook—you can git clone that directory if you want but
try to create your own version if you have the time.

Using cobra
First, you need to create an empty GitHub repository and clone it:

$ cd ~/go/src/github.com/mactsouk
$ git clone git@github.com:mactsouk/phonebook.git
$ cd phonebook

The output of the git clone command is not important, so it is omitted.

The first task after cloning the GitHub repository, which at this point is almost
empty, is to run the cobra init command with the appropriate parameters.

$ ~/go/bin/cobra init --pkg-name github.com/mactsouk/phonebook
Using config file: /Users/mtsouk/.cobra.yaml
Your Cobra application is ready at
/Users/mtsouk/go/src/github.com/mactsouk/phonebook

When developing real applications, do not forget to git commit
and git push your changes from time to time to ensure that you
keep a history of the development phase in GitHub or GitLab.
Among other things, this is a good way to keep backups!

https://github.com/mactsouk/phonebook
https://github.com/mactsouk/phonebook

Telling a UNIX System What to Do

[310]

Then, you should create the structure of the application using the cobra binary. Once
you have the structure, it is easy to know what you have to implement. The structure
of the application is based on the supported commands.

$ ~/go/bin/cobra add list
Using config file: /Users/mtsouk/.cobra.yaml
list created at /Users/mtsouk/go/src/github.com/mactsouk/phonebook
$ ~/go/bin/cobra add delete
$ ~/go/bin/cobra add insert
$ ~/go/bin/cobra add search

At this point the structure of the project should be the following:

$ tree
.
├── LICENSE
├── README.md
├── cmd
│ ├── delete.go
│ ├── insert.go
│ ├── list.go
│ ├── root.go
│ └── search.go
├── go.mod
├── go.sum
└── main.go

1 directory, 10 files

After that you should declare that we want to use Go modules by executing the next
command:

$ go mod init
go: creating new go.mod: module github.com/mactsouk/phonebook

If needed you can run go mod tidy after go mod init. At this point executing go
run main.go should download all required package dependencies and generate the
default cobra output.

The next subsection discusses the storing of JSON data on disk.

Chapter 6

[311]

Storing and loading JSON data
This functionality of the saveJSONFile() helper function is implemented in ./cmd/
root.go using the following function:

func saveJSONFile(filepath string) error {
 f, err := os.Create(filepath)
 if err != nil {
 return err
 }
 defer f.Close()

 err = Serialize(&data, f)
 if err != nil {
 return err
 }
 return nil
}

So, basically, all you have to do is serialize the slice of structures using Serialize()
and save the result into a file. Next, we need to load the JSON data from the file.

The loading functionality is implemented in ./cmd/root.go using the readJSONFile()
helper function. All you have to do is read the data file with the JSON data and put
that data into a slice of structures by deserializing it.

Implementing the delete command
The delete command deletes existing entries from the phone book application—it is
implemented in ./cmd/delete.go:

var deleteCmd = &cobra.Command{
 Use: "delete",
 Short: "delete an entry",
 Long: `delete an entry from the phone book application.`,
 Run: func(cmd *cobra.Command, args []string) {
 // Get key
 key, _ := cmd.Flags().GetString("key")
 if key == "" {
 fmt.Println("Not a valid key:", key)
 return
 }

Telling a UNIX System What to Do

[312]

First, we read the appropriate command-line flag (key) in order to be able to identify
the record that is going to be deleted.

 // Remove data
 err := deleteEntry(key)
 if err != nil {
 fmt.Println(err)
 return
 }
 },
}

Then, we call the deleteEntry() helper function to actually delete the key. After a
successful deletion, deleteEntry() calls saveJSONFile() for changes to take effect.

The next subsection discusses the insert command.

Implementing the insert command
The insert command requires user input, which means that it should support local
command-line flags for doing so. As each record has three fields, the command
requires three command-line flags. Then it calls the insert() helper function for
writing the data to disk. Please refer to the ./cmd/insert.go source file for the
details of the implementation of the insert command.

Implementing the list command
The list command lists the contents in the phone book application. It requires no
command-line arguments and is basically implemented with the list() function:

func list() {
 sort.Sort(PhoneBook(data))
 text, err := PrettyPrintJSONstream(data)
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Println(text)
 fmt.Printf("%d records in total.\n", len(data))
}

The function sorts the data before calling PrettyPrintJSONstream() in order to
beautify the generated output.

Chapter 6

[313]

Implementing the search command
The search command is used for looking into the phone book application for a
given phone number. It is implemented with the search() function found in ./cmd/
search.go that looks into the index map for a given key. If the key is found, then the
respective record is returned.

Working with the phone book utility produces the next kind of output:

$ go run main.go list
[
 {
 "name": "Mastering",
 "surname": "Go",
 "tel": "333123",
 "lastaccess": "1613503772"
 }
]

1 records in total.

This is the output from the list command. Adding an entry is as simple as running
the next command:

$ go run main.go insert -n Mike -s Tsoukalos -t 9416471

Running the list command verifies the success of the insert command:

$ go run main.go list
[
 {
 "name": "Mastering",
 "surname": "Go",
 "tel": "333123",
 "lastaccess": "1613503772"
 },
 {

Apart from the JSON-related operations and changes due to the
use of JSON and cobra, all other Go code is almost the same as the
version of the phone book application from Chapter 4, Reflection and
Interfaces.

Telling a UNIX System What to Do

[314]

 "name": "Mike",
 "surname": "Tsoukalos",
 "tel": "9416471",
 "lastaccess": "1614602404"
 }
]

2 records in total.

Then you can delete that entry by running go run main.go delete --key 9416471.
As stated before, the keys of the application are the phone numbers, which means
that we delete entries based on phone numbers. However, nothing prohibits you
from implementing deletion based on other properties.

If a command is not found, then you are going to get the next kind of output:

$ go run main.go doesNotExist
Error: unknown command "doesNotExist" for "phonebook"
Run 'phonebook --help' for usage.
Error: unknown command "doesNotExist" for "phonebook"
exit status 1

As the doesNotExist command is not supported by the command-line application,
cobra prints a descriptive error message (unknown command).

Exercises
• Use the functionality of byCharacter.go, byLine.go, and byWord.go in order

to create a simplified version of the wc(1) UNIX utility.
• Create a full version of the wc(1) UNIX utility using the viper package for

processing command-line options.
• Create a full version of the wc(1) UNIX utility using commands instead of

command-line options with the help of the cobra package.
• Modify JSONstreams.go to accept user data or data from a file.
• Modify embedFiles.go in order to save the binary file at a user-selected

location.
• Modify ioFS.go in order to get the desired command as well as the search

string as a command-line argument.
• Make ioFS.go a cobra project.

Chapter 6

[315]

• The byLine.go utility uses ReadString('\n') to read the input file. Modify
the code to use Scanner (https://golang.org/pkg/bufio/#Scanner) for
reading.

• Similarly, byWord.go uses ReadString('\n') to read the input file—modify
the code to use Scanner instead.

• Modify the code of yaml.go in order to read the YAML data from an external
file.

Summary
This chapter was all about systems programming and file I/O in Go and included
topics such as signal handling, working with command-line arguments, reading and
writing plain text files, working with JSON data, and creating powerful command-
line utilities using cobra.

This is one of the most important chapters in this book because you cannot create
any real-world utility without interacting with the operating system as well as the
file system.

The next chapter is about concurrency in Go, with the main subjects being
goroutines, channels, and data sharing.

Additional resources
• The viper package: https://github.com/spf13/viper
• The cobra package: https://github.com/spf13/cobra
• The documentation of encoding/json: https://golang.org/pkg/encoding/

json

• The documentation of io/fs: https://golang.org/pkg/io/fs/
• Endian-ness: https://en.wikipedia.org/wiki/Endianness
• Go 1.16 release notes: https://golang.org/doc/go1.16

https://golang.org/pkg/bufio/#Scanner
https://github.com/spf13/viper
https://github.com/spf13/cobra
https://golang.org/pkg/encoding/json
https://golang.org/pkg/encoding/json
https://golang.org/pkg/io/fs/
https://en.wikipedia.org/wiki/Endianness
https://golang.org/doc/go1.16

[317]

7
Go Concurrency

The key component of the Go concurrency model is the goroutine, which is the
minimum executable entity in Go. Everything in Go is executed as a goroutine,
either transparently or consciously. Each executable Go program has at least one
goroutine, which is used for running the main() function of the main package. Each
goroutine is executed on a single OS thread according to the instructions of the Go
scheduler, which is responsible for the execution of goroutines. The OS scheduler
does not dictate how many threads the Go runtime is going to create because the
Go runtime will spawn enough threads to ensure that GOMAXPROCS threads are
available to run Go code.

However, goroutines cannot directly communicate with each other. Data sharing
in Go is implemented using either channels or shared memory. Channels act as the
glue that connects multiple goroutines. Remember that although goroutines can
process data and execute commands, they cannot communicate directly with each
other, but they can communicate in other ways, including channels, local sockets,
and shared memory. On the other hand, channels cannot process data or execute
code but can send data to goroutines, receive data from goroutines, or have a
special purpose.

When you combine multiple channels and goroutines you can create data flows,
which in Go terminology are also called pipelines. So, you might have a goroutine
that reads data from a database and sends it to a channel and a second goroutine
that reads from that channel, processes that data, and sends it to another channel
in order to be read from another goroutine, before making modifications to the
data and storing it to a different database.

Go Concurrency

[318]

This chapter covers:

• Processes, threads, and goroutines
• The Go scheduler
• Goroutines
• Channels
• Race conditions
• The select keyword
• Timing out a goroutine
• Go channels revisited
• Shared memory and shared variables
• Closured variables and the go statement
• The context package
• The semaphore package

Processes, threads, and goroutines
A process is an OS representation of a running program, while a program is a binary
file on disk that contains all the information necessary for creating an OS process.
The binary file is written in a specific format (ELF on Linux) and contains all the
instructions the CPU is going to run as well as a plethora of other useful sections.
That program is loaded into memory and the instructions are executed, creating a
running process. So, a process carries with it additional resources such as memory,
opened file descriptions, and user data as well as other types of resources that are
obtained during runtime.

A thread is a smaller and lighter entity than a process. Processes consist of one or
more threads that have their own flow of control and stack. A quick and simplistic
way to differentiate a thread from a process is to consider a process as the running
binary file and a thread as a subset of a process.

A goroutine is the minimum Go entity that can be executed concurrently. The use of
the word minimum is very important here, as goroutines are not autonomous entities
like UNIX processes—goroutines live in OS threads that live in OS processes. The
good thing is that goroutines are lighter than threads, which, in turn, are lighter
than processes—running thousands or hundreds of thousands of goroutines on a
single machine is not a problem. Among the reasons that goroutines are lighter than
threads is because they have a smaller stack that can grow, they have a faster startup
time, and they can communicate with each other through channels with low latency.

Chapter 7

[319]

In practice, this means that a process can have multiple threads as well as lots of
goroutines, whereas a goroutine needs the environment of a process to exist. So, to
create a goroutine, you need to have a process with at least one thread. The OS takes
care of the process and thread scheduling, while Go creates the necessary threads
and the developer creates the desired number of goroutines.

Now that you know the basics of processes, programs, threads, and goroutines, let
us talk a little bit about the Go scheduler.

The Go scheduler
The OS kernel scheduler is responsible for the execution of the threads of a program.
Similarly, the Go runtime has its own scheduler, which is responsible for the
execution of the goroutines using a technique known as m:n scheduling, where m
goroutines are executed using n OS threads using multiplexing. The Go scheduler is
the Go component responsible for the way and the order in which the goroutines of
a Go program get executed. This makes the Go scheduler a really important part of
the Go programming language. The Go scheduler is executed as a goroutine.

Go uses the fork-join concurrency model. The fork part of the model, which should
not be confused with the fork(2) system call, states that a child branch can be
created at any point of a program. Analogously, the join part of the Go concurrency
model is where the child branch ends and joins with its parent. Keep in mind that
both sync.Wait() statements and channels that collect the results of goroutines are
join points, whereas each new goroutine creates a child branch.

The fair scheduling strategy, which is pretty straightforward and has a simple
implementation, shares all load evenly among the available processors. At first, this
might look like the perfect strategy because it does not have to take many things
into consideration while keeping all processors equally occupied. However, it turns
out that this is not exactly the case because most distributed tasks usually depend
on other tasks. Therefore, some processors are underutilized, or equivalently, some
processors are utilized more than others. A goroutine is a task, whereas everything
after the calling statement of a goroutine is a continuation. In the work-stealing
strategy used by the Go scheduler, a (logical) processor that is underutilized looks
for additional work from other processors.

Be aware that as the Go scheduler only deals with the goroutines of
a single program, its operation is much simpler, cheaper, and faster
than the operation of the kernel scheduler.

Go Concurrency

[320]

When it finds such jobs, it steals them from the other processor or processors,
hence the name. Additionally, the work-stealing algorithm of Go queues and steals
continuations. A stalling join, as is suggested by its name, is a point where a thread
of execution stalls at a join and starts looking for other work to do.

Although both task stealing and continuation stealing have stalling joins,
continuations happen more often than tasks; therefore, the Go scheduling algorithm
works with continuations rather than tasks.

The main disadvantage of continuation stealing is that it requires extra work from
the compiler of the programming language. Fortunately, Go provides that extra help
and therefore uses continuation stealing in its work-stealing algorithm. One of the
benefits of continuation stealing is that you get the same results when using function
calls instead of goroutines or a single thread with multiple goroutines. This makes
perfect sense, as only one thing is executed at any given point in both cases.

The Go scheduler works using three main kinds of entities: OS threads (M), which
are related to the OS in use; goroutines (G); and logical processors (P). The number
of processors that can be used by a Go program is specified by the value of the
GOMAXPROCS environment variable—at any given time, there are at most GOMAXPROCS
processors. Now, let us return to the m:n scheduling algorithm used in Go. Strictly
speaking, at any time, you have m goroutines that are executed, and therefore
scheduled to run, on n OS threads using, at most, GOMAXPROCS number of logical
processors. You will learn more about GOMAXPROCS shortly.

The next figure shows that there are two different kinds of queues: a global run
queue and a local run queue attached to each logical processor. Goroutines from the
global queue are assigned to the queue of a logical processor in order to get executed
at some point.

Figure 7.1: The operation of the Go scheduler

Chapter 7

[321]

Each logical processor can have multiple threads, and the stealing occurs between
the local queues of the available logical processors. Finally, keep in mind that the Go
scheduler is allowed to create more OS threads when needed. OS threads are pretty
expensive in terms of resources, which means that dealing too much with OS threads
might slow down your Go applications.

Next, we discuss the meaning and the use of GOMAXPROCS.

The GOMAXPROCS environment variable
The GOMAXPROCS environment variable allows you to set the number of OS threads
(CPUs) that can execute user-level Go code simultaneously. Starting with Go version
1.5, the default value of GOMAXPROCS should be the number of logical cores available in
your machine. There is also the runtime.GOMAXPROCS() function, which allows you to
set and get the value of GOMAXPROCS programmatically.

If you decide to assign a value to GOMAXPROCS that is smaller than the number of the
cores in your machine, you might affect the performance of your program. However,
using a GOMAXPROCS value that is larger than the number of the available cores does
not necessarily make your Go programs run faster.

As mentioned earlier in this subsection, you can programmatically set and get the
value of the GOMAXPROCS environment variable—this is illustrated in maxprocs.go,
which will also show additional capabilities of the runtime package. The main()
function is implemented as follows:

func main() {
 fmt.Print("You are using ", runtime.Compiler, " ")
 fmt.Println("on a", runtime.GOARCH, "machine")
 fmt.Println("Using Go version", runtime.Version())

The runtime.Compiler variable holds the compiler toolchain used for building the
running binary. The two most well-known values are gc and gccgo. The runtime.
GOARCH variable holds the current architecture and runtime.Version() returns the
current version of the Go compiler. This information is not necessary for using
runtime.GOMAXPROCS() but it is good to have a better knowledge of your system.

 fmt.Printf("GOMAXPROCS: %d\n", runtime.GOMAXPROCS(0))
}

What happens with the runtime.GOMAXPROCS(0) call? runtime.GOMAXPROCS() always
returns the previous value of the maximum number of CPUs that can be executing
simultaneously. When the parameter of runtime.GOMAXPROCS() is equal to or bigger
than 1, then runtime.GOMAXPROCS() also changes the current setting. As we are using
0, our call does not alter the current setting.

Go Concurrency

[322]

Running maxprocs.go produces the next output:

You are using gc on a amd64 machine
Using Go version go1.16.2
GOMAXPROCS: 8

You can change the value of GOMAXPROCS on the fly using the next technique:

$ export GOMAXPROCS=100; go run maxprocs.go
You are using gc on a amd64 machine
Using Go version go1.16.2
GOMAXPROCS: 100

The previous command temporarily changes the value of GOMAXPROCS to 100 and runs
maxprocs.go.

Apart from testing the performance of your code using fewer cores, you will
most likely not need to change GOMAXPROCS. The next subsection will explain the
similarities and the differences between concurrency and parallelism.

Concurrency and parallelism
It is a common misconception that concurrency is the same thing as parallelism—
this is just not true! Parallelism is the simultaneous execution of multiple entities of
some kind, whereas concurrency is a way of structuring your components so that
they can be executed independently when possible.

It is only when you build software components concurrently that you can safely
execute them in parallel, when and if your OS and your hardware permit it. The
Erlang programming language did this a long time ago—long before CPUs had
multiple cores and computers had lots of RAM.

In a valid concurrent design, adding concurrent entities makes the whole system run
faster because more things can be executed in parallel. So, the desired parallelism
comes from a better concurrent expression and implementation of the problem. The
developer is responsible for taking concurrency into account during the design phase
of a system and will benefit from a potential parallel execution of the components of
the system. So, the developer should not think about parallelism but about breaking
things into independent components that solve the initial problem when combined.

Even if you cannot run your functions in parallel on your machine, a valid
concurrent design still improves the design and the maintainability of your
programs.

Chapter 7

[323]

In other words, concurrency is better than parallelism! Let us now talk about
goroutines before looking into channels, which are the main components of the Go
concurrency model.

Goroutines
You can define, create, and execute a new goroutine using the go keyword followed
by a function name or an anonymous function. The go keyword makes the function
call return immediately, while the function starts running in the background as a
goroutine and the rest of the program continues its execution. You cannot control
or make any assumptions about the order in which your goroutines are going to be
executed because that depends on the scheduler of the OS, the Go scheduler, and
the load of the OS.

Creating a goroutine
In this subsection, we learn how to create goroutines. The program that illustrates
the technique is called create.go. The implementation of the main() function is as
follows:

func main() {
 go func(x int) {
 fmt.Printf("%d ", x)
 }(10)

This is how you run an anonymous function as a goroutine. The (10) at the end is
how you pass a parameter to an anonymous function. The previous anonymous
function just prints a value onscreen.

 go printme(15)

This is how you execute a function as a goroutine. As a general rule of thumb,
the functions that you execute as goroutines do not return any values directly.
Exchanging data with goroutines happens via the use of shared memory or
channels or some other mechanism.

 time.Sleep(time.Second)
 fmt.Println("Exiting...")
}

As a Go program does not wait for its goroutines to end before exiting, we need to
delay it manually, which is the purpose of the time.Sleep() call. We will correct that
shortly in order to wait for all goroutines to finish before exiting.

Go Concurrency

[324]

Running create.go produces the next output:

$ go run create.go
10 * 15
Exiting...

The 10 part in the output is from the anonymous function, whereas the * 15 part is
from the go printme(15) statement. However, if you run create.go more than once,
you might get a different output because the two goroutines are not always executed
in the same order:

$ go run create.go
* 15
10 Exiting...

The next subsection shows how to run a variable number of goroutines.

Creating multiple goroutines
In this subsection, you learn how to create a variable number of goroutines.
The program that illustrates the technique is called multiple.go. The number of
goroutines is given as a command-line argument to the program. The important
code from the implementation of the main() function is the following:

fmt.Printf("Going to create %d goroutines.\n", count)
for i := 0; i < count; i++ {

There is nothing prohibiting you from using a for loop to create multiple goroutines,
especially when you want to create lots of them.

 go func(x int) {
 fmt.Printf("%d ", x)
 }(i)
}
time.Sleep(time.Second)
fmt.Println("\nExiting...")

Once again, time.Sleep() delays the termination of the main() function.

Running multiple.go generates the next kind of output:

$ go run multiple.go 15
Going to create 15 goroutines.
3 0 8 4 5 6 7 11 9 12 14 13 1 2 10
Exiting...

Chapter 7

[325]

If you run multiple.go many times, you are going to get different output. So, there
is still room for improvement. The next subsection shows how to remove the call to
time.Sleep() and make your programs wait for the goroutines to finish.

Waiting for your goroutines to finish
It is not enough to create multiple goroutines—you also need to wait for them
to finish before the main() function ends. Therefore, this subsection shows a
technique that improves the code of multiple.go—the improved version is called
varGoroutines.go. But first, we need to explain how this works.

The synchronization process begins by defining a sync.WaitGroup variable and
using the Add(), Done() and Wait() methods. If you look at the source code of the
sync Go package, and more specifically at the waitgroup.go file, you see that the
sync.WaitGroup type is nothing more than a structure with two fields:

type WaitGroup struct {
 noCopy noCopy
 state1 [3]uint32
}

Each call to sync.Add() increases a counter in the state1 field, which is an array
with three uint32 elements. Notice that it is really important to call sync.Add()
before the go statement in order to prevent any race conditions—we are going to
learn about race conditions in the Race conditions section. When each goroutine
finishes its job, the sync.Done() function should be executed in order to decrease
the same counter by one. Behind the scenes, sync.Done() runs a Add(-1) call. The
Wait() method waits until that counter becomes 0 in order to return. The return
of Wait() inside the main() function means that main() is going to return and the
program ends.

The important part of varGoroutines.go is the following:

var waitGroup sync.WaitGroup
fmt.Printf("%#v\n", waitGroup)

You can call Add() with a positive integer value other than 1 in
order to avoid calling Add(1) multiple times. This can be handy
when you know the number of goroutines you are going to create
in advance. Done() does not support that functionality.

Go Concurrency

[326]

This is where you create a sync.WaitGroup variable that you are going to use. The
fmt.Printf() call prints the contents of the sync.WaitGroup structure—you do not
usually do that but it is good for learning more about the sync.WaitGroup structure.

for i := 0; i < count; i++ {
 waitGroup.Add(1)

We call Add(1) just before we create the goroutine in order to avoid race conditions.

 go func(x int) {
 defer waitGroup.Done()

The Done() call is going to be executed just before the anonymous function returns
because of the defer keyword.

 fmt.Printf("%d ", x)
 }(i)
}

fmt.Printf("%#v\n", waitGroup)
waitGroup.Wait()

The Wait() function is going to wait for the counter in the waitGroup variable to
become 0 before it returns, which is what we want to achieve.

fmt.Println("\nExiting...")

When the Wait() function returns, the fmt.Println() statement is going to be
executed. No need to call time.Sleep() anymore!

Running varGoroutines.go produces the next output:

$ go run varGoroutines.go 15
Going to create 15 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[3]uint32{0x0, 0x0, 0x0}}
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[3]uint32{0x0, 0x0, 0xf}}
14 8 9 10 11 5 0 4 1 2 3 6 13 12 7
Exiting...

The value in the third place of the state1 slice is 0xf, which is 15 in the decimal
system, because we called Add(1) fifteen times.

Chapter 7

[327]

What if the number of Add() and Done() calls
differ?
When the number of sync.Add() calls and sync.Done() calls are equal, everything is
going to be fine in your programs. However, this subsection tells you what happens
when these two numbers do not agree with each other.

Depending on whether command-line parameters exist or not, the presented
program acts differently. Without any command-line parameters, the number of
Add() calls is smaller than the number of Done() calls. With at least one command-
line parameter, the number of Done() calls is smaller than the number of Add()
calls. You can look at the Go code of addDone.go on your own. What is important
is the output it generates. Running addDone.go without command-line arguments
produces the next error message:

$ go run addDone.go
Going to create 20 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[3]uint32{0x0, 0x0, 0x0}}
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[3]uint32{0x0, 0x0, 0x13}}
19 14 15 16 17 18 10 8 9 11 12 1 0 2 5 6 3 4 7 13
Exiting...
panic: sync: negative WaitGroup counter

goroutine 19 [running]:
sync.(*WaitGroup).Add(0xc000014094, 0xffffffffffffffff)
 /usr/local/Cellar/go/1.16/libexec/src/sync/waitgroup.go:74
+0x147
sync.(*WaitGroup).Done(0xc000014094)
 /usr/local/Cellar/go/1.16/libexec/src/sync/waitgroup.go:99
+0x34
main.main.func1(0xc000014094, 0xd)
 /Users/mtsouk/ch07/addDone.go:26 +0xdb
created by main.main
 /Users/mtsouk/ch07/addDone.go:23 +0x1c6
exit status 2

Remember that using more goroutines in a program is not a
panacea for performance, as more goroutines, in addition to the
various calls to sync.Add(), sync.Wait(), and sync.Done(),
might slow down your program due to the extra housekeeping
that needs to be done by the Go scheduler.

Go Concurrency

[328]

The cause of the error message can be found in the output: panic: sync: negative
WaitGroup counter—caused by more calls to Done() than calls to Add(). Note that
sometimes addDone.go does not produce any error messages and terminates just fine.
This is an issue with concurrent programs in general—they do not always crash or
misbehave as the order of execution can change, which might change the behavior
of the program. This makes debugging even more difficult.

Running addDone.go with one command-line argument produces the next error
message:

$ go run addDone.go 1
Going to create 20 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[3]uint32{0x0, 0x0, 0x0}}
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[3]uint32{0x0, 0x0, 0x15}}
19 5 6 7 8 9 0 1 3 14 11 12 13 4 17 10 2 15 16 18 fatal error: all
goroutines are asleep - deadlock!

goroutine 1 [semacquire]:
sync.runtime_Semacquire(0xc000014094)
 /usr/local/Cellar/go/1.16/libexec/src/runtime/sema.go:56 +0x45
sync.(*WaitGroup).Wait(0xc000014094)
 /usr/local/Cellar/go/1.16/libexec/src/sync/waitgroup.go:130
+0x65
main.main()
 /Users/mtsouk/ch07/addDone.go:38 +0x2b6
exit status 2

Once again, the reason for the crash is printed on screen: fatal error: all
goroutines are asleep - deadlock!. This means that the program should wait
indefinitely for a goroutine to finish, that is, for a Done() call that is never going to
happen.

Creating multiple files with goroutines
As a practical example of the use of goroutines, this subsection presents a command-
line utility that creates multiple files populated with randomly generated data—such
files can be used for testing file systems or generating data used for testing. The
crucial code of randomFiles.go is the following:

var waitGroup sync.WaitGroup
for i := start; i <= end; i++ {
 waitGroup.Add(1)
 filepath := fmt.Sprintf("%s/%s%d", path, filename, i)

Chapter 7

[329]

 go func(f string) {
 defer waitGroup.Done()
 createFile(f)
 }(filepath)
}
waitGroup.Wait()

We first create a sync.WaitGroup variable in order to wait for all goroutines to finish
the right way. Each file is created by a single goroutine only. What is important
here is that each file has a unique filename—this is implemented with the filepath
variable that contains the value of the for loop counter. Multiple createFile()
functions executed as goroutines create the files. This is a simple yet very efficient
way of creating multiple files.

Running randomFiles.go generates the next output:

$ go run randomFiles.go
Usage: randomFiles firstInt lastInt filename directory

So, the utility requires four parameters, which are the first and last value of the for
loop as well as the filename and the directory where the files are going to be written.
So, let us run the utility with the correct number of parameters:

$ go run randomFiles.go 2 5 masterGo /tmp
/tmp/masterGo5 created!
/tmp/masterGo3 created!
/tmp/masterGo2 created!
/tmp/masterGo4 created!

Everything looks fine, and four files have been created according to our instructions!
Now that we know about goroutines, let us continue with channels.

Channels
A channel is a communication mechanism that, among other things, allows
goroutines to exchange data. Firstly, each channel allows the exchange of a particular
data type, which is also called the element type of the channel, and secondly, for
a channel to operate properly, you need someone to receive what is sent via the
channel. You should declare a new channel using make() and the chan keyword
(make(chan int)), and you can close a channel using the close() function. You can
declare the size of a channel by writing something like make(chan int, 1).

Go Concurrency

[330]

A pipeline is a virtual method for connecting goroutines and channels so that the
output of one goroutine becomes the input of another goroutine using channels
to transfer your data. One of the benefits that you get from using pipelines is that
there is a constant data flow in your program, as no goroutine or channel has to wait
for everything to be completed in order to start their execution. Additionally, you
use fewer variables and therefore less memory space because you do not have to
save everything as a variable. Finally, the use of pipelines simplifies the design of
the program and improves its maintainability.

Writing to and reading from a channel
Writing the value val to channel ch is as easy as writing ch <- val. The arrow shows
the direction of the value, and you will have no problem with this statement as long
as both var and ch are of the same data type.

You can read a single value from a channel named c by executing <-c. In this case,
the direction is from the channel to the outer world. You can save that value into a
variable using aVar := <-c.

Both channel reading and writing are illustrated in channels.go, which comes with
the following code:

package main

import (
 "fmt"
 "sync"
)

func writeToChannel(c chan int, x int) {
 c <- x
 close(c)
}

This function just writes a value to the channel and immediately closes it.

func printer(ch chan bool) {
 ch <- true
}

This function just sends the true value to a bool channel.

func main() {
 c := make(chan int, 1)

Chapter 7

[331]

This channel is buffered with a size of 1. This means that as soon as we fill that
buffer, we can close the channel and the goroutine is going to continue its execution
and return. A channel that is unbuffered has a different behavior: when you try to
send a value to that channel, it blocks forever because it is waiting for someone to
fetch that value. In this case, we definitely want a buffered channel in order to avoid
any blocking.

 var waitGroup sync.WaitGroup
 waitGroup.Add(1)
 go func(c chan int) {
 defer waitGroup.Done()
 writeToChannel(c, 10)
 fmt.Println("Exit.")
 }(c)

 fmt.Println("Read:", <-c)

Here, we read from the channel and print the value without storing it in a separate
variable.

 _, ok := <-c
 if ok {
 fmt.Println("Channel is open!")
 } else {
 fmt.Println("Channel is closed!")
 }

The previous code shows a technique for determining whether a channel is closed
or not. In this case, we are ignoring the read value—if the channel was open, then
the read value would be discarded.

 waitGroup.Wait()

 var ch chan bool = make(chan bool)
 for i := 0; i < 5; i++ {
 go printer(ch)
 }

Here, we make an unbuffered channel, and we create five goroutines without any
synchronization as we do not use any Add() calls.

 // Range on channels
 // IMPORTANT: As the channel c is not closed,

Go Concurrency

[332]

 // the range loop does not exit on its own.
 n := 0
 for i := range ch {

The range keyword works with channels! However, a range loop on a channel only
exits when the channel is closed or using the break keyword.

 fmt.Println(i)
 if i == true {
 n++
 }
 if n > 2 {
 fmt.Println("n:", n)
 close(ch)
 break
 }
 }

We close the ch channel when a condition is met and exit the for loop using break.

 for i := 0; i < 5; i++ {
 fmt.Println(<-ch)
 }
}

When trying to read from a closed channel, we get the zero value of its data type,
so this for loop works just fine and does not cause any issues.

Running channels.go generates the next output:

Exit.
Read: 10

After writing the value 10 to the channel using writeToChannel(c, 10), we read that
value back.

Channel is closed!
true
true
true

The for loop with the range exits after three iterations—each iteration prints true on
screen.

Chapter 7

[333]

n: 3
false
false
false
false
false

These five false values are printed by the last for loop of the program.

Although everything looks fine with channels.go, there is a logical issue with it,
which we will explain and resolve in the Race conditions section. Additionally, if we
run channels.go multiple times, it might crash. However, most of the time it does
not, which makes debugging even more challenging.

Receiving from a closed channel
Reading from a closed channel returns the zero value of its data type. However,
if you try to write to a closed channel, your program is going to crash in a bad way
(panic). These two situations are explored in readCloseCh.go and more specifically
in the implementation of the main() function:

func main() {
 willClose := make(chan complex64, 10)

If you make that an unbuffered channel, the program is going to crash.

 // Write some data to the channel
 willClose <- -1
 willClose <- 1i

We write two values to the willClose channel.

 // Read data and empty channel
 <-willClose
 <-willClose
 close(willClose)

Then, we read and discard these two values and we close the channel.

 // Read again – this is a closed channel
 read := <-willClose
 fmt.Println(read)
}

Go Concurrency

[334]

The last value that we read from the channel is the zero value of a complex64 data
type. Running readCloseCh.go generates the next output:

(0+0i)

So, we got back the zero value of the complex64 data type. Now let us continue and
discuss how to work with functions that accept channels as parameters.

Channels as function parameters
When using a channel as a function parameter, you can specify its direction; that is,
whether it is going to be used for sending or receiving data. In my opinion, if you
know the purpose of a channel in advance, you should use this capability because it
makes your programs more robust. You will not be able to send data accidentally to
a channel from which you should only receive data or receive data from a channel
to which you should only be sending data. As a result, if you declare that a channel
function parameter is going to be used for reading only and you try to write to
it, you get an error message that will most likely save you from nasty bugs in the
future.

All these are illustrated in channelFunc.go—the implementation of the functions
that accept channel parameters are the following:

func printer(ch chan<- bool) {
 ch <- true
}

This function accepts a channel parameter that is available for writing only.

func writeToChannel(c chan<- int, x int) {
 fmt.Println("1", x)
 c <- x
 fmt.Println("2", x)
}

The channel parameter of this function is available for reading only.

func f2(out <-chan int, in chan<- int) {
 x := <-out
 fmt.Println("Read (f2):", x)
 in <- x
 return
}

Chapter 7

[335]

The last function accepts two channel parameters. However, out is available for
reading whereas in is offered for writing. If you try to perform an operation on a
channel parameter that is not allowed, the Go compiler is going to complain. This
happens even if the function is not being used.

The subject of the next section is race conditions—read it carefully in order to
avoid undefined behaviors and unpleasant situations when working with multiple
goroutines.

Race conditions
A data race condition is a situation where two or more running elements, such as
threads and goroutines, try to take control of or modify a shared resource or shared
variable of a program. Strictly speaking, a data race occurs when two or more
instructions access the same memory address, where at least one of them performs a
write (change) operation. If all operations are read operations, then there is no race
condition. In practice, this means that you might get different output if you run your
program multiple times, and that is a bad thing.

Using the -race flag when running or building Go source files executes the Go race
detector, which makes the compiler create a modified version of a typical executable
file. This modified version can record all accesses to shared variables as well as all
synchronization events that take place, including calls to sync.Mutex and sync.
WaitGroup, which are presented later on in this chapter. After analyzing the relevant
events, the race detector prints a report that can help you identify potential problems
so that you can correct them.

The Go race detector
You can run the race detector tool with go run -race. If we test channels.go using
go run -race, we are going to get the following output:

$ go run -race channels.go
Exit.
Read: 10
Channel is closed!
true
true
true
n: 3
==================
WARNING: DATA RACE

Go Concurrency

[336]

Write at 0x00c00006e010 by main goroutine:
 runtime.closechan()
 /usr/local/Cellar/go/1.16.2/libexec/src/runtime/chan.go:355 +0x0
 main.main()
 /Users/mtsouk/ch07/channels.go:54 +0x46c

Previous read at 0x00c00006e010 by goroutine 12:
 runtime.chansend()
 /usr/local/Cellar/go/1.16.2/libexec/src/runtime/chan.go:158 +0x0
 main.printer()
 /Users/mtsouk/ch07/channels.go:14 +0x47

Goroutine 12 (running) created at:
 main.main()
 /Users/mtsouk/ch07/channels.go:40 +0x2b4
==================
false
false
false
false
false
Found 1 data race(s)
exit status 66

Therefore, although channels.go looks fine, there is a race condition waiting to
happen. Let us now discuss where the problem with channels.go lies based on the
previous output.

There is a closing of a channel at channels.go on line 54, and there is a write to the
same channel on line 14 that looks to be the root of the race condition situation.
Line 54 is close(ch), whereas line 14 is ch <- true. The issue is that we cannot be
sure about what is going to happen and in which order—this is the race condition. If
you execute channels.go without the race detector, it might work but if you try it
multiple times, you might get a panic: send on closed channel error message—
this mainly has to do with the order the Go scheduler is going to run the goroutines
of the program. So, if the closing of the channel happens first, then writing to that
channel is going to fail—race condition!

Fixing channels.go requires changing the code and more specifically the
implementation of the printer() function. The corrected version of channels.go is
named chRace.go and comes with the next code:

Chapter 7

[337]

func printer(ch chan<- bool, times int) {
 for i := 0; i < times; i++ {
 ch <- true
 }
 close(ch)
}

The first thing to notice here is that instead of using multiple goroutines for writing
to the desired channel, we use a single goroutine. A single goroutine writing to a
channel followed by the closing of that channel cannot create any race conditions
because things happen sequentially.

func main() {
 // This is an unbuffered channel
 var ch chan bool = make(chan bool)

 // Write 5 values to channel with a single goroutine
 go printer(ch, 5)

 // IMPORTANT: As the channel c is closed,
 // the range loop is going to exit on its own.
 for val := range ch {
 fmt.Print(val, " ")
 }
 fmt.Println()

 for i := 0; i < 15; i++ {
 fmt.Print(<-ch, " ")
 }
 fmt.Println()
}

Running go run -race chRace.go produces the next output, which means that there
is not a race condition any more:

true true true true true
false false false false false false false false false false false false
false false false

The next section is about the important and powerful select keyword.

Go Concurrency

[338]

The select keyword
The select keyword is really important because it allows you to listen to multiple
channels at the same time. A select block can have multiple cases and an optional
default case, which mimics the switch statement. It is good for select blocks to
have a timeout option just in case. Last, a select without any cases (select{})
waits forever.

In practice, this means that select allows a goroutine to wait on multiple
communication operations. So, select gives you the power to listen to multiple
channels using a single select block. As a consequence, you can have nonblocking
operations on channels, provided that you have implemented your select blocks
appropriately.

A select statement is not evaluated sequentially, as all of its channels are examined
simultaneously. If none of the channels in a select statement are ready, the select
statement blocks (waits) until one of the channels is ready. If multiple channels of a
select statement are ready, then the Go runtime makes a random selection from
the set of these ready channels.

The code in select.go presents a simple use of select running in a goroutine that
has three cases. But first, let us see how the goroutine that contains select runs:

 wg.Add(1)
 go func() {
 gen(0, 2*n, createNumber, end)
 wg.Done()
 }()

The previous code tells us that for wg.Done() to get executed, gen() should return
first. So, let us see the implementation of gen():

func gen(min, max int, createNumber chan int, end chan bool) {
 time.Sleep(time.Second)
 for {
 select {
 case createNumber <- rand.Intn(max-min) + min:
 case <-end:
 fmt.Println("Ended!")
 // return

Chapter 7

[339]

The right thing to do here is add the return statement for gen() to finish. But let us
imagine that you have forgotten to add the return statement. This means that the
function is not going to finish after the select branch associated with the end channel
parameter is executed—createNumber is not going to end the function as it has no
return statement. Therefore, the select block keeps waiting for more. The solution
can be found in the code that follows:

 case <-time.After(4 * time.Second):
 fmt.Println("time.After()!")
 return
 }
 }
}

So, what is really happening in the code of the entire select block? This particular
select statement has three cases. As stated earlier, select does not require a default
branch. You can consider the third branch of the select statement as a clever default
branch. This happens because time.After() waits for the specified duration (4 *
time.Second) to elapse and then prints a message and properly ends gen() with
return. This unblocks the select statement in case all of the other channels are
blocked for some reason. Although omitting return from the second branch is a bug,
this shows that having an exit strategy is always a good thing.

Running select.go produces the next output:

$ go run select.go 10
Going to create 10 random numbers.
13 0 2 8 12 4 13 15 14 19 Ended!
time.After()!
Exiting...

We are going to see select in action in the remainder of the chapter, starting from
the next section, which discusses how to time out goroutines. What you should
remember is that select allows us to listen to multiple channels from a single point.

Timing out a goroutine
There are times that goroutines take more time than expected to finish—in such
situations, we want to time out the goroutines so that we can unblock the program.
This section presents two such techniques.

Go Concurrency

[340]

Timing out a goroutine – inside main()
This subsection presents a simple technique for timing out a goroutine. The relevant
code can be found in the main() function of timeOut1.go:

func main() {
 c1 := make(chan string)
 go func() {
 time.Sleep(3 * time.Second)
 c1 <- "c1 OK"
 }()

The time.Sleep() call is used for emulating the time it normally takes for a function
to finish its operation. In this case, the anonymous function that is executed as a
goroutine takes about three seconds before writing a message to the c1 channel.

 select {
 case res := <-c1:
 fmt.Println(res)
 case <-time.After(time.Second):
 fmt.Println("timeout c1")
 }

The purpose of the time.After() call is to wait for the desired time before being
executed—if another branch is executed, the waiting time resets. In this case, we are
not interested in the actual value returned by time.After() but in the fact that the
time.After() branch was executed, which means that the waiting time has passed.
In this case, as the value passed to the time.After() function is smaller than the
value used in the time.Sleep() call that was executed previously, you will most
likely get a timeout message. The reason for saying "most likely" is that Linux is
not a real-time OS and sometimes the OS scheduler plays strange games, especially
when it has to deal with a high load and has to schedule lots of tasks.

 c2 := make(chan string)
 go func() {
 time.Sleep(3 * time.Second)
 c2 <- "c2 OK"
 }()

 select {
 case res := <-c2:
 fmt.Println(res)
 case <-time.After(4 * time.Second):

Chapter 7

[341]

 fmt.Println("timeout c2")
 }
}

The preceding code both executes a goroutine that takes about three seconds to
execute because of the time.Sleep() call and defines a timeout period of four
seconds in select using time.After(4 * time.Second). If the time.After(4 * time.
Second) call returns after you get a value from the c2 channel found in the first case
of the select block, then there will be no timeout; otherwise, you get a timeout.
However, in this case, the value of the time.After() call provides enough time for
the time.Sleep() call to return, so you will most likely not get a timeout message
here.

Let us now verify our thoughts. Running timeOut1.go produces the next output:

$ go run timeOut1.go
timeout c1
c2 OK

As expected, the first goroutine timed out whereas the second one did not. The
subsection that follows presents another timeout technique.

Timing out a goroutine – outside main()
This subsection illustrates another technique for timing out goroutines. The select
statement can be found in a separate function. Additionally, the timeout period is
given as a command-line argument.

The interesting part of timeOut2.go is in the implementation of timeout():

func timeout(t time.Duration) {
 temp := make(chan int)
 go func() {
 time.Sleep(5 * time.Second)
 defer close(temp)
 }()

 select {
 case <-temp:
 result <- false
 case <-time.After(t):
 result <- true
 }
}

Go Concurrency

[342]

In timeout(), the time duration that is used in the time.After() call is a function
parameter, which means that it can vary. Once again, the select block holds the
logic of the time out. Any timeout period bigger than 5 seconds will most likely give
the goroutine enough time to finish. If timeout() writes false to the result channel,
then there was no timeout, whereas if it writes true, there was a timeout. Running
timeOut2.go produces the next output:

$ go run timeOut2.go 100
Timeout period is 100ms
Time out!

The timeout period is 100 milliseconds, which means that the goroutine did not have
enough time to finish, hence the timeout message.

$ go run timeOut2.go 5500
Timeout period is 5.5s
OK

This time the timeout is 5,500 milliseconds, which means that the goroutine had
enough time to finish.

The next section revisits and presents advanced concepts related to channels.

Go channels revisited
So far, we have seen basic usages of channels—this section presents the definition
and the usage of nil channels, signal channels, and buffered channels.

It helps to remember that the zero value of the channel type is nil, and that if you
send a message to a closed channel, the program panics. However, if you try to read
from a closed channel, you get the zero value of the type of that channel. So, after
closing a channel, you can no longer write to it, but you can still read from it. To
be able to close a channel, the channel must not be receive-only.

Additionally, a nil channel always blocks, which means that both reading and
writing from nil channels blocks. This property of channels can be very useful when
you want to disable a branch of a select statement by assigning the nil value to a
channel variable. Finally, if you try to close a nil channel, your program is going to
panic. This is best illustrated in the closeNil.go program:

package main

func main() {
var c chan string

Chapter 7

[343]

The previous statement defines a nil channel named c of type string.

close(c)
}

Running closeNil.go generates the following output:

panic: close of nil channel

goroutine 1 [running]:
main.main()
 /Users/mtsouk/ch07/closeNil.go:5 +0x2a
exit status 2

The previous output shows the message you are going to get if you try to close a nil
channel.

Let us now discuss buffer channels.

Buffered channels
The topic of this subsection is buffered channels. These channels allow us to put
jobs in a queue quickly in order to be able to deal with more requests and process
requests later on. Moreover, you can use buffered channels as semaphores in order
to limit the throughput of your application.

The presented technique works as follows: all incoming requests are forwarded to
a channel, which processes them one by one. When the channel is done processing
a request, it sends a message to the original caller saying that it is ready to process
a new one. So, the capacity of the buffer of the channel restricts the number of
simultaneous requests that it can keep.

The file that implements the technique is named bufChannel.go and contains the
next code:

package main

import (
 "fmt"
)

func main() {
 numbers := make(chan int, 5)

Go Concurrency

[344]

The numbers channel cannot store more than five integers—this is a buffer channel
with a capacity of 5.

 counter := 10

 for i := 0; i < counter; i++ {
 select {
 // This is where the processing takes place
 case numbers <- i * i:
 fmt.Println("About to process", i)
 default:
 fmt.Print("No space for ", i, " ")
 }

We begin putting data into numbers—however, when the channel is full, it is not
going to store more data and the default branch is going to be executed.

 }
 fmt.Println()

 for {
 select {
 case num := <-numbers:
 fmt.Print("*", num, " ")
 default:
 fmt.Println("Nothing left to read!")
 return
 }
 }
}

Similarly, we try to read data from numbers using a for loop. When all data from
channel is read, the default branch is going to be executed and terminate the
program with its return statement.

Running bufChannel.go produces the next output:

$ go run bufChannel.go
About to process 0
. . .
About to process 4
No space for 5 No space for 6 No space for 7 No space for 8 No space
for 9
*0 *1 *4 *9 *16 Nothing left to read!

Chapter 7

[345]

Let us now discuss nil channels.

nil channels
nil channels always block! Therefore, you should use them when you want that
behavior on purpose! The code that follows illustrates nil channels:

package main

import (
 "fmt"
 "math/rand"
 "sync"
 "time"
)

var wg sync.WaitGroup

We are making wg a global variable in order to be available from anywhere in the
code and avoid passing it to every function that needs it.

func add(c chan int) {
 sum := 0
 t := time.NewTimer(time.Second)

 for {
 select {
 case input := <-c:
 sum = sum + input
 case <-t.C:
 c = nil
 fmt.Println(sum)
 wg.Done()
 }
 }
}

The send() function keeps sending random numbers to the c channel. Do not
confuse channel c, which is a channel function parameter, with channel t.C, which is
part of timer t—you can change the name of the c variable but not the name of the C
field. When the time of timer t expires, the timer sends a value to the t.C channel.

Go Concurrency

[346]

This triggers the execution of the relevant branch of the select statement, which
assigns the value nil to channel c, prints the value of the sum variable and wg.Done()
is executed, which is going to unblock wg.Wait() found in the main() function.
Additionally, as c becomes nil, it stops/blocks send() from sending any data to it.

func send(c chan int) {
 for {
 c <- rand.Intn(10)
 }
}

func main() {
 c := make(chan int)
 rand.Seed(time.Now().Unix())
 wg.Add(1)
 go add(c)
 go send(c)
 wg.Wait()
}

Running nilChannel.go produces the next output:

$ go run nilChannel.go
11168960

Since the number of times that the first branch of the select statement in add() is
going to be executed is not fixed, you will get different results each time you execute
nilChannel.go.

The next subsection discusses worker pools.

Worker pools
A worker pool is a set of threads that process jobs assigned to them. The Apache
web server and the net/http package of Go more or less work this way: the main
process accepts all incoming requests, which are forwarded to worker processes
to get served. Once a worker process has finished its job, it is ready to serve a new
client. As Go does not have threads, the presented implementation is going to
use goroutines instead of threads. Additionally, threads do not usually die after
serving a request because the cost of ending a thread and creating a new one is too
high, whereas goroutines do die after finishing their job. Worker pools in Go are
implemented with the help of buffered channels, because they allow you to limit
the number of goroutines running at the same time.

Chapter 7

[347]

The presented utility implements a simple task: it processes integers and prints
their square values using a single goroutine for serving each request. The code of
wPools.go is as follows:

package main

import (
 "fmt"
 "os"
 "runtime"
 "strconv"
 "sync"
 "time"
)

type Client struct {
 id int
 integer int
}

The Client structure is used for keeping track of the requests that the program is
going to process.

type Result struct {
 job Client
 square int
}

The Result structure is used for keeping the data of each Client as well as the results
generated by the client. Put simply, the Client structure holds the input data of
each request, whereas Result holds the results of a request—if you want to process
complex data, you should modify these structures.

var size = runtime.GOMAXPROCS(0)
var clients = make(chan Client, size)
var data = make(chan Result, size)

The clients and data buffered channels are used to get new client requests and
write the results, respectively. If you want your program to run faster, you can
increase the value of size.

func worker(wg *sync.WaitGroup) {
 for c := range clients {

Go Concurrency

[348]

 square := c.integer * c.integer
 output := Result{c, square}
 data <- output
 time.Sleep(time.Second)
 }
 wg.Done()
}

The worker() function processes requests by reading the clients channel. Once
the processing is complete, the result is written to the data channel. The delay that
is introduced with time.Sleep() is not necessary, but it gives you a better sense of
the way that the generated output is printed.

func create(n int) {
 for i := 0; i < n; i++ {
 c := Client{i, i}
 clients <- c
 }
 close(clients)
}

The purpose of the create() function is to create all requests properly and then
send them to the clients buffered channel for processing. Note that the clients
channel is read by worker().

func main() {
 if len(os.Args) != 3 {
 fmt.Println("Need #jobs and #workers!")
 return
 }

 nJobs, err := strconv.Atoi(os.Args[1])
 if err != nil {
 fmt.Println(err)
 return
 }

 nWorkers, err := strconv.Atoi(os.Args[2])
 if err != nil {
 fmt.Println(err)
 return
 }

Chapter 7

[349]

In the preceding code, you read the command-line parameters that define the
number of jobs and workers. If the number of workers is bigger than the size of the
clients buffered channel, then the number of goroutines that are going to be created
is equal to the size of the clients channel. Similarly, if the number of jobs is greater
than the number of workers, the jobs are served in smaller chunks.

 go create(nJobs)

The create() call mimics the client requests that you are going to process.

 finished := make(chan interface{})

The finished channel is used for blocking the program and, therefore, needs no
particular data type.

 go func() {
 for d := range data {
 fmt.Printf("Client ID: %d\tint: ", d.job.id)
 fmt.Printf("%d\tsquare: %d\n", d.job.integer, d.square)
 }
 finished <- true

The finished <- true statement is used for unblocking the program as soon as
the for range loop ends. The for range loop ends when the data channel is closed,
which happens after wg.Wait(), which means after all workers have finished.

 }()

 var wg sync.WaitGroup
 for i := 0; i < nWorkers; i++ {
 wg.Add(1)
 go worker(&wg)
 }
 wg.Wait()
 close(data)

The purpose of the previous for loop is to generate the required number of worker()
goroutines to process all requests.

 fmt.Printf("Finished: %v\n", <-finished)
}

Go Concurrency

[350]

The <-finished statement in fmt.Printf() blocks until the finished channel is
closed.

Running wPools.go creates the next kind of output:

$ go run wPools.go 10 4
Client ID: 1 int: 1 square: 1
Client ID: 0 int: 0 square: 0
Client ID: 2 int: 2 square: 4
Client ID: 3 int: 3 square: 9
Client ID: 4 int: 4 square: 16
Client ID: 5 int: 5 square: 25
Client ID: 6 int: 6 square: 36
Client ID: 7 int: 7 square: 49
Client ID: 8 int: 8 square: 64
Client ID: 9 int: 9 square: 81
Finished: true

The previous output shows that all requests were processed. This technique allows
you to serve a given number of requests that saves you from server overload. The
price you pay for that is having to write more code.

The next subsection introduces signal channels and shows a technique for using
them to define the order of execution for a small number of goroutines.

Signal channels
A signal channel is one that is used just for signaling. Put simply, you can use
a signal channel when you want to inform another goroutine about something.
Signal channels should not be used for data transferring. You are going to see signal
channels in action in the next subsection where we specify the order of execution of
goroutines.

Specifying the order of execution for your
goroutines
This subsection shows a technique for specifying the order of execution of goroutines
with the help of signal channels. However, have in mind that this technique works
best when you are dealing with a small number of goroutines. The presented code
example has four goroutines that we want to execute in the desired order—first,
goroutine for function A(), then function B(), then C(), and finally, D().

Chapter 7

[351]

The code of defineOrder.go without the package statement and import block is the
following:

var wg sync.WaitGroup

func A(a, b chan struct{}) {
 <-a
 fmt.Println("A()!")
 time.Sleep(time.Second)
 close(b)
}

Function A() is going to be blocked until channel a, which is passed as a parameter,
is closed. Just before it ends, it closes channel b, which is passed as a parameter. This
is going to unblock the next goroutine, which is going to be function B().

func B(a, b chan struct{}) {
 <-a
 fmt.Println("B()!")
 time.Sleep(3 * time.Second)
 close(b)
}

Similarly, function B() is going to be blocked until channel a, which is passed as a
parameter, is closed. Just before B() ends, it closes channel b, which is passed as a
parameter. As before, this is going to unblock the next function.

func C(a, b chan struct{}) {
 <-a
 fmt.Println("C()!")
 close(b)
}

As it happened with functions A() and B(), the execution of function C() is blocked
by channel a. Just before it ends, it closes channel b.

func D(a chan struct{}) {
 <-a
 fmt.Println("D()!")
 wg.Done()
}

Go Concurrency

[352]

This is the last function that is going to be executed. Therefore, although it is blocked,
it does not close any channels before exiting. Additionally, being the last function
means that it can be executed more than once, which is not true for functions A(), B()
and C() because a channel can be closed only once.

func main() {
 x := make(chan struct{})
 y := make(chan struct{})
 z := make(chan struct{})
 w := make(chan struct{})

We need to have as many channels as the number of functions we want to execute as
goroutines.

 wg.Add(1)
 go func() {
 D(w)
 }()

This proves that the order of execution dictated by the Go code does not matter as
D() is going to be executed last.

 wg.Add(1)
 go func() {
 D(w)
 }()

 go A(x, y)

 wg.Add(1)
 go func() {
 D(w)
 }()

 go C(z, w)
 go B(y, z)

Although we run C() before B(), C() is going to finish after B() has finished.

 wg.Add(1)
 go func() {
 D(w)
 }()

Chapter 7

[353]

 // This triggers the process
 close(x)

The closing of the first channel is what triggers the execution of the goroutines
because this unblocks A().

 wg.Wait()
}

Running defineOrder.go produces the next output:

$ go run defineOrder.go
A()!
B()!
C()!
D()! D()! D()! D()!

So, the four functions, which are executed as goroutines, are executed in the desired
order, and, in the case of the last function, the desired number of times. The next
section talks about shared memory and shared variables, which is a very handy way
of making goroutines communicate with each other.

Shared memory and shared variables
Shared memory and shared variables are huge topics in concurrent programming
and the most common ways for UNIX threads to communicate with each other. The
same principles apply to Go and goroutines, which is what this section is about. A
mutex variable, which is an abbreviation of mutual exclusion variable, is mainly used
for thread synchronization and for protecting shared data when multiple writes can
occur at the same time. A mutex works like a buffered channel with a capacity of
one, which allows at most one goroutine to access a shared variable at any given
time. This means that there is no way for two or more goroutines to be able to update
that variable simultaneously. Go offers the sync.Mutex and sync.RWMutex data types.

A critical section of a concurrent program is the code that cannot be executed
simultaneously by all processes, threads, or, in this case, goroutines. It is the code
that needs to be protected by mutexes. Therefore, identifying the critical sections of
your code makes the whole programming process so much simpler that you should
pay particular attention to this task. A critical section cannot be embedded into
another critical section when both critical sections use the same sync.Mutex or sync.
RWMutex variable.

Go Concurrency

[354]

Put simply, avoid at almost any cost spreading mutexes across functions because
that makes it really hard to see whether you are embedding or not.

The sync.Mutex type
The sync.Mutex type is the Go implementation of a mutex. Its definition, which can
be found in the mutex.go file of the sync directory, is as follows—you do not need to
know the definition of sync.Mutex in order to use it:

type Mutex struct {
 state int32
 sema uint32
}

The definition of sync.Mutex is nothing special. All of the interesting work is done
by the sync.Lock() and sync.Unlock() functions, which can lock and unlock a
sync.Mutex variable, respectively. Locking a mutex means that nobody else can
lock it until it has been released using the sync.Unlock() function. All these are
illustrated in mutex.go, which contains the next code:

package main

import (
 "fmt"
 "os"
 "strconv"
 "sync"
 "time"
)

var m sync.Mutex
var v1 int

func change(i int) {
 m.Lock()

This function makes changes to the value of v1. The critical section begins here.

 time.Sleep(time.Second)
 v1 = v1 + 1
 if v1 == 10 {
 v1 = 0

Chapter 7

[355]

 fmt.Print("* ")
 }
 m.Unlock()

This is the end of the critical section. Now, another goroutine can lock the mutex.

}
func read() int {
 m.Lock()
 a := v1
 m.Unlock()
 return a
}

This function is used for reading the value of v1—therefore it should use a mutex
to make the process concurrently safe. Most specifically, we want to make sure that
nobody is going to change the value of v1 while we are reading it. The rest of the
program contains the implementation of the main() function—feel free to see the
entire code of mutex.go in the GitHub repository of the book.

Running mutex.go produces the next output:

$ go run -race mutex.go 10
0 -> 1-> 2-> 3-> 4-> 5-> 6-> 7-> 8-> 9* -> 0-> 0

The previous output shows that due to the use of a mutex, goroutines cannot access
shared data and therefore there are no hidden race conditions.

The next subsection shows what could happen if we forget to unlock a mutex.

What happens if you forget to unlock a mutex?
Forgetting to unlock a sync.Mutex mutex creates a panic situation even in the
simplest kind of a program. The same applies to the sync.RWMutex mutex, which is
presented in the next section.

Let us now see a code example to understand this unpleasant situation a lot better—
this is part of forgetMutex.go.

var m sync.Mutex
var w sync.WaitGroup

func function() {
 m.Lock()

Go Concurrency

[356]

 fmt.Println("Locked!")
}

Here, we lock a mutex without releasing it afterwards. This means that if we run
function() as a goroutine more than once, all instances after the first one are
going to be blocked waiting to Lock() the shared mutex. In our case, we run two
goroutines—feel free to see the entire code of forgetMutex.go for more details.
Running forgetMutex.go generates the next output:

Locked!
fatal error: all goroutines are asleep - deadlock!

goroutine 1 [semacquire]:
sync.runtime_Semacquire(0x118d3e8)
 /usr/local/Cellar/go/1.16.2/libexec/src/runtime/sema.go:56
+0x45
sync.(*WaitGroup).Wait(0x118d3e0)
 /usr/local/Cellar/go/1.16.2/libexec/src/sync/waitgroup.go:130
+0x65
main.main()
 /Users/mtsouk/ch07/forgetMutex.go:29 +0x95

goroutine 18 [semacquire]:
sync.runtime_SemacquireMutex(0x118d234, 0x0, 0x1)
 /usr/local/Cellar/go/1.16.2/libexec/src/runtime/sema.go:71
+0x47
sync.(*Mutex).lockSlow(0x118d230)
 /usr/local/Cellar/go/1.16.2/libexec/src/sync/mutex.go:138
+0x105
sync.(*Mutex).Lock(...)
 /usr/local/Cellar/go/1.16.2/libexec/src/sync/mutex.go:81
main.function()
 /Users/mtsouk/ch07/forgetMutex.go:12 +0xac
main.main.func1()
 /Users/mtsouk/ch07/forgetMutex.go:20 +0x4c
created by main.main
 /Users/mtsouk/ch07/forgetMutex.go:18 +0x52
exit status 2

As expected, the program crashes because of the deadlock. To avoid such situations,
always remember to unlock any mutexes created in your program.

Chapter 7

[357]

Let us now discuss sync.RWMutex, which is an improved version of sync.Mutex.

The sync.RWMutex type
The sync.RWMutex data type is an improved version of sync.Mutex and is defined in
the rwmutex.go file of the sync directory of the Go Standard library as follows:

type RWMutex struct {
 w Mutex
 writerSem uint32
 readerSem uint32
 readerCount int32
 readerWait int32
}

In other words, sync.RWMutex is based on sync.Mutex with the necessary additions
and improvements. So, you might ask, how does sync.RWMutex improve sync.Mutex?
Although a single function is allowed to perform write operations with a sync.
RWMutex mutex, you can have multiple readers owning a sync.RWMutex mutex—this
means that read operations are usually faster with sync.RWMutex. However, there
is one important detail that you should be aware of: until all of the readers of a
sync.RWMutex mutex unlock that mutex, you cannot lock it for writing, which is the
small price you have to pay for the performance improvement you get for allowing
multiple readers.

The functions that can help you to work with sync.RWMutex are RLock() and
RUnlock(), which are used for locking and unlocking the mutex for reading
purposes, respectively. The Lock() and Unlock() functions used in sync.Mutex
should still be used when you want to lock and unlock a sync.RWMutex mutex for
writing purposes. Finally, it should be apparent that you should not make changes to
any shared variables inside an RLock() and RUnlock() block of code.

All these are illustrated in rwMutex.go—the important code is the following:

var Password *secret
var wg sync.WaitGroup

type secret struct {
 RWM sync.RWMutex
 password string
}

Go Concurrency

[358]

This is the shared variable of the program—you can share any type of variable you
want.

func Change(pass string) {
 fmt.Println("Change() function")
 Password.RWM.Lock()

This is the beginning of the critical section.

 fmt.Println("Change() Locked")
 time.Sleep(4 * time.Second)
 Password.password = pass
 Password.RWM.Unlock()

This is the end of the critical section.

 fmt.Println("Change() UnLocked")
}

The Change() function makes changes to the shared variable Password and therefore
needs to use the Lock() function, which can be held by a single writer only.

func show () {
 defer wg.Done()
 Password.RWM.RLock()
 fmt.Println("Show function locked!")
 time.Sleep(2 * time.Second)
 fmt.Println("Pass value:", Password.password)
 defer Password.RWM.RUnlock()
}

The show() function reads the shared variable Password and therefore is allowed to
use the RLock() function, which can be held by multiple readers. Inside main(), three
show() functions are executed as goroutines before a call to the Change() function,
which also runs as a goroutine. The key point here is that no race conditions are
going to happen. Running rwMutex.go produces the next output:

$ go run rwMutex.go
Change() function

The Change() function is executed but cannot acquire the mutex because it is already
taken by one or more show() goroutines.

Show function locked!
Show function locked!

Chapter 7

[359]

The previous output verifies that two show() goroutines have successfully taken the
mutex for reading.

Change() function

Here, we can see a second Change() function running and waiting to get the mutex.

Pass value: myPass
Pass value: myPass

This is the output from the two show() goroutines.

Change() Locked
Change() UnLocked

Here we see that one Change() goroutine finishes its job.

Show function locked!
Pass value: 54321

After that another show() goroutine finishes.

Change() Locked
Change() UnLocked
Current password value: 123456

Last, the second Change() goroutine finishes. The last output line is for making sure
that the password value has changed—please look at the full code of rwMutex.go for
more details.

The next subsection discusses the use of the atomic package for avoiding race
conditions.

The atomic package
An atomic operation is an operation that is completed in a single step relative
to other threads or, in this case, to other goroutines. This means that an atomic
operation cannot be interrupted in the middle of it. The Go Standard library offers
the atomic package, which, in some simple cases, can help you to avoid using a
mutex. With the atomic package, you can have atomic counters accessed by multiple
goroutines without synchronization issues and without worrying about race
conditions. However, mutexes are more versatile than atomic operations.

Go Concurrency

[360]

As illustrated in the code that follows, when using an atomic variable, all reading
and writing operations of an atomic variable must be done using the functions
provided by the atomic package in order to avoid race conditions.

The code in atomic.go is as follows, which is made smaller by hardcoding some
values:

package main

import (
 "fmt"
 "sync"
 "sync/atomic"
)

type atomCounter struct {
 val int64
}

This is a structure for holding the desired int64 atomic variable.

func (c *atomCounter) Value() int64 {
 return atomic.LoadInt64(&c.val)
}

This is a helper function that returns the current value of an int64 atomic variable
using atomic.LoadInt64().

func main() {
 X := 100
 Y := 4
 var waitGroup sync.WaitGroup
 counter := atomCounter{}
 for i := 0; i < X; i++ {

We are creating lots of goroutines that change the shared variable—as stated before,
the use of the atomic package for working with the shared variable offers a simple
way of avoiding race conditions when changing the value of the shared variable.

 waitGroup.Add(1)
 go func(no int) {
 defer waitGroup.Done()
 for i := 0; i < Y; i++ {

Chapter 7

[361]

 atomic.AddInt64(&counter.val, 1)
 }

The atomic.AddInt64() function changes the value of the val field of the counter
structure variable in a safe way.

 }(i)
 }

 waitGroup.Wait()
 fmt.Println(counter.Value())
}

Running atomic.go while checking for race conditions produces the next kind of
output:

$ go run -race atomic.go
400

So, the atomic variable is modified by multiple goroutines without any issues.

The next subsection shows how to share memory using goroutines.

Sharing memory using goroutines
This subsection illustrates how to share data using a dedicated goroutine. Although
shared memory is the traditional way that threads communicate with each other,
Go comes with built-in synchronization features that allow a single goroutine to
own a shared piece of data. This means that other goroutines must send messages
to this single goroutine that owns the shared data, which prevents the corruption of
the data. Such a goroutine is called a monitor goroutine. In Go terminology, this is
sharing by communicating instead of communicating by sharing.

The logic of the program can be found in the implementation of the monitor()
function. More specifically, the select statement orchestrates the operation of the
entire program. When you have a read request, the read() function attempts to read
from the readValue channel, which is controlled by the monitor() function.

Personally, I prefer to use a monitor goroutine instead of
traditional shared memory techniques because the implementation
with the monitor goroutine is safer, closer to the Go philosophy,
and easier to understand.

Go Concurrency

[362]

This returns the current value of the value variable. On the other hand, when you
want to change the stored value, you call set(). This writes to the writeValue
channel, which is also handled by the same select statement. As a result, no one
can deal with the shared variable without using the monitor() function, which is
in charge.

The code of monitor.go is as follows:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "strconv"
 "sync"
 "time"
)

var readValue = make(chan int)
var writeValue = make(chan int)

func set(newValue int) {
 writeValue <- newValue
}

This function sends data to the writeValue channel.

func read() int {
 return <-readValue
}

When the read() function is called, it reads from the readValue channel—this
reading happens inside the monitor() function.

func monitor() {
 var value int
 for {
 select {
 case newValue := <-writeValue:
 value = newValue
 fmt.Printf("%d ", value)

Chapter 7

[363]

 case readValue <- value:
 }
 }
}

The monitor() function contains the logic of the program with the endless for loop
and the select statement. The first case receives data from the writeValue channel,
sets the value variable accordingly, and prints that new value. The second case sends
the value of the value variable to the readValue channel. As all traffic goes through
monitor() and its select block, there is no way to have a race condition because
there is a single instance of monitor() running.

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please give an integer!")
 return
 }
 n, err := strconv.Atoi(os.Args[1])
 if err != nil {
 fmt.Println(err)
 return
 }

 fmt.Printf("Going to create %d random numbers.\n", n)
 rand.Seed(time.Now().Unix())
 go monitor()

It is important that the monitor() function is executed first because that is the
goroutine that orchestrates the flow of the program.

 var wg sync.WaitGroup

 for r := 0; r < n; r++ {
 wg.Add(1)
 go func() {
 defer wg.Done()
 set(rand.Intn(10 * n))
 }()
 }

Go Concurrency

[364]

When the for loop ends, it means that we have created the desired number of
random numbers.

 wg.Wait()
 fmt.Printf("\nLast value: %d\n", read())
}

Last, we wait for all set() goroutines to finish before printing the last random
number.

Running monitor.go produces the following output:

$ go run monitor.go 10
Going to create 10 random numbers.
98 22 5 84 20 26 45 36 0 16
Last value: 16

So, 10 random numbers are created by 10 goroutines and all these goroutines send
their output to the monitor() function that is also executed as a goroutine. Apart
from receiving the results, the monitor() function prints them on screen, so all this
output is generated by monitor().

The next section discusses the go statement in more detail.

Closured variables and the go statement
In this section, we are going to talk about closured variables, which are variables
inside closures, and the go statement. Notice that closured variables in goroutines are
evaluated when the goroutine actually runs and when the go statement is executed
in order to create a new goroutine. This means that closured variables are going to be
replaced by their values when the Go scheduler decides to execute the relevant code.
This is illustrated in the main() function of goClosure.go:

func main() {
 for i := 0; i <= 20; i++ {
 go func() {
 fmt.Print(i, " ")
 }()
 }
 time.Sleep(time.Second)
 fmt.Println()
}

Chapter 7

[365]

Running goClosure.go produces the next output:

$ go run goClosure.go
3 7 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21

The program mostly prints the number 21, which is the last value of the variable of
the for loop and not the other numbers. As i is a closured variable, it is evaluated
at the time of execution. As the goroutines begin but wait for the Go scheduler to
allow them to get executed, the for loop ends, so the value of i that is being used is
21. Lastly, the same issue also applies to Go channels, so be careful.

Running goClosure.go with the Go race detector reveals the issue:

$ go run -race goClosure.go
2 ==================
WARNING: DATA RACE
Read at 0x00c00013a008 by goroutine 7:
 main.main.func1()
 /Users/mtsouk/ch07/goClosure.go:11 +0x3c

Previous write at 0x00c00013a008 by main goroutine:
 main.main()
 /Users/mtsouk/ch07/goClosure.go:9 +0xa4

Goroutine 7 (running) created at:
 main.main()
 /Users/mtsouk/ch07/goClosure.go:10 +0x7e
==================
2 3 5 5 7 8 9 10 9 11 12 13 14 17 18 18 18 19 20 21
Found 1 data race(s)
exit status 66

Now, let us correct goClosure.go and present it to you—the new name is
goClosureCorrect.go and its main() function is as follows:

func main() {
 for i := 0; i <= 20; i++ {
 i := i
 go func() {
 fmt.Print(i, " ")
 }()
 }

Go Concurrency

[366]

This is one way of correcting the issue. The valid yet bizarre i := i statement creates
a new instance of the variable for the goroutine that holds the correct value.

 time.Sleep(time.Second)
 fmt.Println()

 for i := 0; i <= 20; i++ {
 go func(x int) {
 fmt.Print(x, " ")
 }(i)
 }

This is a totally different way of correcting the race condition: pass the current value
of i to the anonymous function as a parameter and everything is OK.

 time.Sleep(time.Second)
 fmt.Println()
}

Testing goClosureCorrect.go with the race detector generates the expected output:

$ go run -race goClosureCorrect.go
0 1 2 4 3 5 6 9 8 7 10 11 13 12 14 16 15 17 18 20 19
0 1 2 3 4 5 6 7 8 10 9 12 13 11 14 15 16 17 18 19 20

The next section presents the functionality of the context package.

The context package
The main purpose of the context package is to define the Context type and support
cancellation. Yes, you heard that right; there are times when, for some reason, you
want to abandon what you are doing. However, it would be very helpful to be able
to include some extra information about your cancellation decisions. The context
package allows you to do exactly that.

If you take a look at the source code of the context package, you will realize that its
implementation is pretty simple—even the implementation of the Context type is
pretty simple, yet the context package is very important.

The Context type is an interface with four methods named Deadline(), Done(),
Err(), and Value(). The good news is that you do not need to implement all of these
functions of the Context interface—you just need to modify a Context variable using
methods such as context.WithCancel(), context.WithDeadline(), and context.
WithTimeout().

Chapter 7

[367]

The example that follows showcases the use of the context package. The program
contains four functions, including the main() function. Functions f1(), f2(), and
f3() each require just one parameter, which is a time delay, because everything else
they need is defined inside their function body. In this example, we use context.
Background() to initialize an empty Context. The other function that can create an
empty Context is context.TODO(), which is presented later on in this chapter.

package main

import (
 "context"
 "fmt"
 "os"
 "strconv"
 "time"
)

func f1(t int) {
 c1 := context.Background()
 c1, cancel := context.WithCancel(c1)
 defer cancel()

The WithCancel() method returns a copy of parent context with a new Done channel.
Notice that the cancel variable, which is a function, is one of the return values of
context.CancelFunc(). The context.WithCancel() function uses an existing Context
and creates a child with cancellation. The context.WithCancel() function also
returns a Done channel that can be closed, either when the cancel() function is called,
as shown in the preceding code, or when the Done channel of the parent context is
closed.

 go func() {
 time.Sleep(4 * time.Second)
 cancel()

All three of these functions return a derived Context (the child)
and a CancelFunc() function. Calling the CancelFunc()
function removes the parent's reference to the child and stops any
associated timers. As a side effect, this means that the Go garbage
collector is free to garbage collect the child goroutines that no
longer have associated parent goroutines. For garbage collection to
work correctly, the parent goroutine needs to keep a reference to
each child goroutine. If a child goroutine ends without the parent
knowing about it, then a memory leak occurs until the parent is
canceled as well.

Go Concurrency

[368]

 }()

 select {
 case <-c1.Done():
 fmt.Println("f1() Done:", c1.Err())
 return
 case r := <-time.After(time.Duration(t) * time.Second):
 fmt.Println("f1():", r)
 }
 return
}

The f1() function creates and executes a goroutine. The time.Sleep() call simulates
the time it would take a real goroutine to do its job. In this case it is 4 seconds, but
you can put any time period you want. If the c1 context calls the Done() function in
less than 4 seconds, the goroutine will not have enough time to finish.

func f2(t int) {
 c2 := context.Background()
 c2, cancel := context.WithTimeout(c2, time.Duration(t)*time.Second)
 defer cancel()

The cancel variable in f2() comes from context.WithTimeout(), which requires two
parameters: a Context parameter and a time.Duration parameter. When the timeout
period expires the cancel() function is called automatically.

 go func() {
 time.Sleep(4 * time.Second)
 cancel()
 }()

 select {
 case <-c2.Done():
 fmt.Println("f2() Done:", c2.Err())
 return
 case r := <-time.After(time.Duration(t) * time.Second):
 fmt.Println("f2():", r)
 }
 return
}

func f3(t int) {

Chapter 7

[369]

 c3 := context.Background()
 deadline := time.Now().Add(time.Duration(2*t) * time.Second)
 c3, cancel := context.WithDeadline(c3, deadline)
 defer cancel()

The cancel variable in f3() comes from context.WithDeadline(). context.
WithDeadline() requires two parameters: a Context variable and a time in the future
that signifies the deadline of the operation. When the deadline passes, the cancel()
function is called automatically.

 go func() {
 time.Sleep(4 * time.Second)
 cancel()
 }()

 select {
 case <-c3.Done():
 fmt.Println("f3() Done:", c3.Err())
 return
 case r := <-time.After(time.Duration(t) * time.Second):
 fmt.Println("f3():", r)
 }
 return
}

The logic of f3() is the same as in f1() and f2()—the select block orchestrates the
process.

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Need a delay!")
 return
 }

 delay, err := strconv.Atoi(os.Args[1])
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Println("Delay:", delay)

 f1(delay)

Go Concurrency

[370]

 f2(delay)
 f3(delay)
}

The three functions are executed in sequence by the main() function.

Running useContext.go produces the next kind of output:

$ go run useContext.go 3
Delay: 3
f1(): 2021-03-18 13:10:24.739381 +0200 EET m=+3.001331808
f2(): 2021-03-18 13:10:27.742732 +0200 EET m=+6.004804424
f3(): 2021-03-18 13:10:30.742793 +0200 EET m=+9.004988055

The long lines of the output are the return values of time.After(), which show the
times that After() sent the current time on the returned channel. All of them denote
a normal operation of the program.

If you define a bigger delay, then the output is going to be similar to the following:

$ go run useContext.go 13
Delay: 13
f1() Done: context canceled
f2() Done: context canceled
f3() Done: context canceled

The point here is that the operation of the program is canceled when there are delays
in its execution.

The next subsection shows a different use of the context package.

Using context as a key/value store
In this subsection, we pass values in a Context and use it as a key-value store. In this
case, we do not pass values into contexts in order to provide further information
about why they were canceled. The keyVal.go program illustrates the use of the
context.TODO() function as well as the use of the context.WithValue() function.

All these and many more are found in keyVal.go, which is as follows.

package main

import (
 "context"

Chapter 7

[371]

 "fmt"
)

type aKey string

func searchKey(ctx context.Context, k aKey) {
 v := ctx.Value(k)
 if v != nil {
 fmt.Println("found value:", v)
 return
 } else {
 fmt.Println("key not found:", k)
 }
}

The searchKey() function retrieves a value from a Context variable using Value()
and checks whether that value exists or not.

func main() {
 myKey := aKey("mySecretValue")
 ctx := context.WithValue(context.Background(), myKey, "mySecret")

The context.WithValue() function that is used in main() offers a way to associate a
value with a Context. The next two statements search an existing context (ctx) for
the values of two keys.

 searchKey(ctx, myKey)
 searchKey(ctx, aKey("notThere"))
 emptyCtx := context.TODO()

This time we create a context using context.TODO() instead of context.Background().
Although both functions return a non-nil, empty Context, their purposes differ.
You should never pass a nil context—use the context.TODO() function to create a
suitable context. Additionally, use the context.TODO() function when you are not
sure about the Context that you want to use. The context.TODO() function signifies
that we intend to use an operation context, without being sure about it yet.

 searchKey(emptyCtx, aKey("notThere"))
}

Go Concurrency

[372]

Running keyVal.go creates the following output:

$ go run keyVal.go
found value: mySecret
key not found: notThere
key not found: notThere

The first call to searchKey() is successful whereas the next two calls cannot find the
desired key in the context. So, contexts allow us to store key and value pairs and
search for keys.

We are not completely done with context as the next chapter is going to use it to
time-out HTTP interactions on the client side of the connection. The last section
of this chapter discusses the semaphore package, which is not part of the Standard
library.

The semaphore package
This last section of this chapter presents the semaphore package, which is provided
by the Go team. A semaphore is a construct that can limit or control the access to
a shared resource. As we are talking about Go, a semaphore can limit the access of
goroutines to a shared resource but originally, semaphores were used for limiting
access to threads. Semaphores can have weights that limit the number of threads or
goroutines that can have access to a resource.

The process is supported via the Acquire() and Release() methods, which are
defined as follows:

func (s *Weighted) Acquire(ctx context.Context, n int64) error
func (s *Weighted) Release(n int64)

The second parameter of Acquire() defines the weight of the semaphore.

As we are going an external package, we need to put the code inside ~/go/src in
order to use Go modules: ~/go/src/github.com/mactsouk/semaphore. Now, let us
present the code of semaphore.go, which shows an implementation of a worker pool
using semaphores:

package main

import (
 "context"
 "fmt"

Chapter 7

[373]

 "os"
 "strconv"
 "time"

 "golang.org/x/sync/semaphore"
)

var Workers = 4

This variable specifies the maximum number of goroutines that can be executed by
this program.

var sem = semaphore.NewWeighted(int64(Workers))

This is where we define the semaphore with a weight identical to the maximum
number of goroutines that can be executed concurrently. This means that no more
than Workers goroutines can acquire the semaphore at the same time.

func worker(n int) int {
 square := n * n
 time.Sleep(time.Second)
 return square
}

The worker() function is run as part of a goroutine. However, as we are using a
semaphore, there is no need to return the results to a channel.

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Need #jobs!")
 return
 }

 nJobs, err := strconv.Atoi(os.Args[1])
 if err != nil {
 fmt.Println(err)
 return
 }

The previous code reads the number of jobs that we want to run.

 // Where to store the results
 var results = make([]int, nJobs)

Go Concurrency

[374]

 // Needed by Acquire()
 ctx := context.TODO()

 for i := range results {
 err = sem.Acquire(ctx, 1)
 if err != nil {
 fmt.Println("Cannot acquire semaphore:", err)
 break
 }

In this part, we try to acquire the semaphore as many times as the number of jobs
defined by nJobs. If nJobs is bigger than Workers, then the Acquire() call is going to
block and wait for Release() calls in order to unblock.

 go func(i int) {
 defer sem.Release(1)
 temp := worker(i)
 results[i] = temp
 }(i)
 }

This is where we run the goroutines that do the job and write the results to the
results slice. As each goroutine writes to a different slice element, there are not any
race conditions.

 err = sem.Acquire(ctx, int64(Workers))
 if err != nil {
 fmt.Println(err)
 }

This is a clever trick: we acquire all of the tokens so that the sem.Acquire() call
blocks until all workers/goroutines have finished. This is similar in functionality to a
Wait() call.

 for k, v := range results {
 fmt.Println(k, "->", v)
 }
}

The last part of the program is about printing the results. After writing the code, we
need to run the next commands in order to get the required Go modules:

Chapter 7

[375]

$ go mod init
$ go mod tidy
$ mod download golang.org/x/sync

Apart from the first command, these commands were indicated by the output of go
mod init, so you do not have to remember anything.

Lastly, running semaphore.go produces the next output:

$ go run semaphore.go 6
0 -> 0
1 -> 1
2 -> 4
3 -> 9
4 -> 16
5 -> 25

Each line in the output shows the input value and the output value separated by ->.
The use of the semaphore keeps things in order.

Exercises
• Try to implement a concurrent version of wc(1) that uses a buffered channel.
• Try to implement a concurrent version of wc(1) that uses shared memory.
• Try to implement a concurrent version of wc(1) that uses semaphores.
• Try to implement a concurrent version of wc(1) that saves its output to a file.
• Modify wPools.go so that each worker implements the functionality of wc(1).

Summary
This important chapter was about Go concurrency, goroutines, channels, the select
keyword, shared memory, and mutexes, as well as timing out goroutines and
the use of the context package. All this knowledge is going to allow you to write
powerful concurrent Go applications. Feel free to experiment with the concepts and
the examples of this chapter to better understand goroutines, channels, and shared
memory.

The next chapter is all about web services and working with the HTTP protocol in
Go. Among other things, we are going to convert the phone book application into a
web service.

Go Concurrency

[376]

Additional resources
• The documentation page of sync is at https://golang.org/pkg/sync/
• Learn about semaphore at https://pkg.go.dev/golang.org/x/sync/semaphore
• Learn more about the Go scheduler by reading a series of posts starting with

https://www.ardanlabs.com/blog/2018/08/scheduling-in-go-part1.html

• The implementation of the Go scheduler: https://golang.org/src/runtime/
proc.go

https://golang.org/pkg/sync/
https://pkg.go.dev/golang.org/x/sync/semaphore
https://www.ardanlabs.com/blog/2018/08/scheduling-in-go-part1.html
https://golang.org/src/runtime/proc.go
https://golang.org/src/runtime/proc.go

[377]

8
Building Web Services

The core subject of this chapter is working with HTTP using the net/http
package—remember that all web services require a web server in order to operate.
Additionally, in this chapter, we are going to convert the phone book application
into a web application that accepts HTTP connections and create a command-line
client to work with it. Lastly, we'll illustrate how to create an FTP (File Transfer
Protocol) server and how to export metrics from Go applications to Prometheus
and work with the runtime/metrics package to get implementation-defined metrics
exported by the Go runtime.

In more detail, this chapter covers:

• The net/http package
• Creating a web server
• Updating the phone book application
• Exposing metrics to Prometheus
• Developing web clients
• Creating a client for the phone book service
• Creating file servers
• Timing out HTTP connections

Building Web Services

[378]

The net/http package
The net/http package offers functions that allow you to develop web servers
and clients. For example, http.Get() and http.NewRequest() are used by clients
for making HTTP requests, whereas http.ListenAndServe() is used for starting
web servers by specifying the IP address and the TCP port the server listens to.
Additionally, http.HandleFunc() defines supported URLs as well as the functions
that are going to handle these URLs.

The next three subsections describe three important data structures of the net/http
package—you can use these descriptions as a reference while reading this chapter.

The http.Response type
The http.Response structure embodies the response from an HTTP request—both
http.Client and http.Transport return http.Response values once the response
headers have been received. Its definition can be found at https://golang.org/src/
net/http/response.go:

type Response struct {
 Status string // e.g. "200 OK"
 StatusCode int // e.g. 200
 Proto string // e.g. "HTTP/1.0"
 ProtoMajor int // e.g. 1
 ProtoMinor int // e.g. 0
 Header Header
 Body io.ReadCloser
 ContentLength int64
 TransferEncoding []string
 Close bool
 Uncompressed bool
 Trailer Header
 Request *Request
 TLS *tls.ConnectionState
}

You do not have to use all the structure fields, but it is good to know that they exist.
However, some of them, such as Status, StatusCode, and Body, are more important
than others. The Go source file, as well as the output of go doc http.Response,
contains more information about the purpose of each field, which is also the case
with most struct data types found in the standard Go library.

https://golang.org/src/net/http/response.go
https://golang.org/src/net/http/response.go

Chapter 8

[379]

The http.Request type
The http.Request structure represents an HTTP request as constructed by a client
in order to be sent or received by an HTTP server. The public fields of http.Request
are as follows:

type Request struct {
 Method string
 URL *url.URL
 Proto string
 ProtoMajor int
 ProtoMinor int
 Header Header
 Body io.ReadCloser
 GetBody func() (io.ReadCloser, error)
 ContentLength int64
 TransferEncoding []string
 Close bool
 Host string
 Form url.Values
 PostForm url.Values
 MultipartForm *multipart.Form
 Trailer Header
 RemoteAddr string
 RequestURI string
 TLS *tls.ConnectionState
 Cancel <-chan struct{}
 Response *Response
}

The Body field holds the body of the request. After reading the body of a request,
you are allowed to call GetBody(), which returns a new copy of the body—this is
optional.

Let us now present the http.Transport structure.

The http.Transport type
The definition of http.Transport, which gives you more control over your HTTP
connections, is fairly long and complex:

type Transport struct {
 Proxy func(*Request) (*url.URL, error)

Building Web Services

[380]

 DialContext func(ctx context.Context, network, addr string) (net.
Conn, error)
 Dial func(network, addr string) (net.Conn, error)
 DialTLSContext func(ctx context.Context, network, addr string)
(net.Conn, error)
 DialTLS func(network, addr string) (net.Conn, error)
 TLSClientConfig *tls.Config
 TLSHandshakeTimeout time.Duration
 DisableKeepAlives bool
 DisableCompression bool
 MaxIdleConns int
 MaxIdleConnsPerHost int
 MaxConnsPerHost int
 IdleConnTimeout time.Duration
 ResponseHeaderTimeout time.Duration
 ExpectContinueTimeout time.Duration
 TLSNextProto map[string]func(authority string, c *tls.Conn)
RoundTripper
 ProxyConnectHeader Header
 GetProxyConnectHeader func(ctx context.Context, proxyURL *url.URL,
target string) (Header, error)
 MaxResponseHeaderBytes int64
 WriteBufferSize int
 ReadBufferSize int
 ForceAttemptHTTP2 bool
}

Note that http.Transport is pretty low-level, whereas http.Client, which is also
used in this chapter, implements a high-level HTTP client—each http.Client
contains a Transport field. If its value is nil, then DefaultTransport is used. You do
not need to use http.Transport in all of your programs and you are not required
to deal with all of its fields each time you use it. If you want to learn more about
DefaultTransport, type go doc http.DefaultTransport.

Let us now learn how to develop a web server.

Creating a web server
This section presents a simple web server developed in Go in order to better
understand the principles behind such applications.

Chapter 8

[381]

You might ask why the presented web server uses HTTP instead of secure HTTP
(HTTPS). The answer to this question is simple: most Go web servers are deployed
as Docker images and are hidden behind web servers such as Caddy and Nginx that
provide the secure HTTP operation part using the appropriate security credentials.
It does not make any sense to use the secure HTTP protocol along with the required
security credentials without knowing how and under which domain name the
application is going to be deployed. This is a common practice in microservices as
well as regular web applications that are deployed in Docker images.

The net/http package offers functions and data types that allow you to develop
powerful web servers and clients. The http.Set() and http.Get() methods can be
used to make HTTP and HTTPS requests, whereas http.ListenAndServe() is used
for creating web servers given the user-specified handler function or functions
that handle incoming requests. As most web services require support for multiple
endpoints, you end up needing multiple discrete functions for handling incoming
requests, which also leads to the better design of your services.

The simplest way to define the supported endpoints, as well as the handler function
that responds to each client request, is with the use of http.HandleFunc(), which can
be called multiple times.

After this quick and somewhat theoretical introduction, it is time to begin talking
about more practical topics, beginning with the implementation of a simple web
server as illustrated in wwwServer.go:

package main

import (
 "fmt"
 "net/http"
 "os"
 "time"
)

Although a web server programmed in Go can do many things
efficiently and securely, if what you really need is a powerful web
server that supports modules, multiple websites, and virtual hosts,
then you would be better off using a web server such as Apache,
Nginx, or Caddy that is written in Go.

Building Web Services

[382]

func myHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served: %s\n", r.Host)
}

This is a handler function that sends a message back to the client using the w http.
ResponseWriter, which is also an interface that implements io.Writer and is used
for sending the server response.

func timeHandler(w http.ResponseWriter, r *http.Request) {
 t := time.Now().Format(time.RFC1123)
 Body := "The current time is:"
 fmt.Fprintf(w, "<h1 align=\"center\">%s</h1>", Body)
 fmt.Fprintf(w, "<h2 align=\"center\">%s</h2>\n", t)

 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served time for: %s\n", r.Host)
}

This is another handler function called timeHandler that returns back the current
time in HTML format. All fmt.Fprintf() calls send data back to the HTTP client
whereas the output of fmt.Printf() is printed on the terminal the web server runs
on. The first argument of fmt.Fprintf() is the w http.ResponseWriter, which
implements io.Writer and therefore can accept data.

func main() {
 PORT := ":8001"

This is where you define the port number your web server listens to.

 arguments := os.Args
 if len(arguments) != 1 {
 PORT = ":" + arguments[1]
 }
 fmt.Println("Using port number: ", PORT)

If you do not want to use the predefined port number (8001), then you should
provide wwwServer.go with your own port number as a command-line argument.

 http.HandleFunc("/time", timeHandler)
 http.HandleFunc("/", myHandler)

Chapter 8

[383]

So, the web server supports the /time URL as well as /. The / path matches every
URL not matched by other handlers. The fact that we associate myHandler() with
/ makes myHandler() the default handler function.

 err := http.ListenAndServe(PORT, nil)
 if err != nil {
 fmt.Println(err)
 return
 }
}

The http.ListenAndServe() call begins the HTTP server using the predefined port
number. As there is no hostname given in the PORT string, the web server is going to
listen to all available network interfaces. The port number and the hostname should
be separated with a colon (:), which should be there even if there is no hostname—
in that case the server listens to all available network interfaces and, therefore, all
supported hostnames. This is the reason that the value of PORT is :8001 instead of
just 8001.

Part of the net/http package is the ServeMux type (go doc http.ServeMux), which
is an HTTP request multiplexer that provides a slightly different way of defining
handler functions and endpoints than the default one, which is used in wwwServer.go.
So, if we do not create and configure our own ServeMux variable, then http.
HandleFunc() uses DefaultServeMux, which is the default ServeMux. So, in this case
we are going to implement the web service using the default Go router—this is the
reason that the second parameter of http.ListenAndServe() is nil.

Running wwwServer.go and interacting with it using curl(1) produces the next
output:

$ go run wwwServer.go
Using port number: :8001
Served: localhost:8001
Served time for: localhost:8001
Served: localhost:8001

Note that as wwwServer.go does not terminate automatically, you need to stop it on
your own.

On the curl(1) side, the interaction looks as follows:

$ curl localhost:8001
Serving: /

Building Web Services

[384]

In this first case, we visit the / path of the web server and we are being served by
myHandler().

$ curl localhost:8001/time
<h1 align="center">The current time is:</h1><h2 align="center">Mon, 29
Mar 2021 08:26:27 EEST</h2>
Serving: /time

In this case we visit /time and we get HTML output back from timeHandler().

$ curl localhost:8001/doesNotExist
Serving: /doesNotExist

In this last case, we visit /doesNotExist, which does not exist. As this cannot
be matched by any other path, it is served by the default handler, which is the
myHandler() function.

The next section is about making the phone book application a web application!

Updating the phone book application
This time the phone book application is going to work as a web service. The two
main tasks that need to be performed are defining the API along with the endpoints
and implementing the API. A third task that needs to be determined concerns data
exchange between the application server and its clients. There exist four main
approaches regarding data exchange:

• Using plain text
• Using HTML
• Using JSON
• Using a hybrid approach that combines plain text and JSON data

As JSON is explored in Chapter 10, Working with REST APIs, and HTML might not
be the best option for a service because you need to separate the data from the
HTML tags and parse the data, we are going to use the first approach. Therefore,
the service is going to work with plain text data. We begin by defining the API that
supports the operation of the phone book application.

Chapter 8

[385]

Defining the API
The API has support for the following URLs:

• /list: This lists all available entries.
• /insert/name/surname/telephone/: This inserts a new entry. Later on, we are

going to see how to extract the desired information from a URL that contains
user data.

• /delete/telephone/: This deletes an entry based on the value of telephone.
• /search/telephone/: This searches for an entry based on the value of

telephone.
• /status: This is an extra URL that returns the number of entries in the phone

book.

This time we not using the default Go router, which means that we define and
configure our own http.NewServeMux() variable. This changes the way we provide
handler functions: a handler function with the func(http.ResponseWriter, *http.
Request) signature has to be converted into an http.HandlerFunc type and be
used by the ServeMux type and its own Handle() method. Therefore, when using
a different ServeMux than the default one, we should do that conversion explicitly
by calling http.HandlerFunc(), which makes the http.HandlerFunc type act as an
adapter that allows the use of ordinary functions as HTTP handlers provided that
they have the required signature. This is not a problem when using the default
Go router (DefaultServeMux) because the http.HandleFunc() function does that
conversion automatically and internally.

The list of endpoints does not follow standard REST conventions—
all these are going to be presented in Chapter 10, Working with REST
APIs.

To make things clearer, the http.HandlerFunc type has support
for a method named HandlerFunc()—both the type and method
are defined in the http package. The similarly named the http.
HandleFunc() function (without an r) is used with the default Go
router.

Building Web Services

[386]

As an example, for the /time endpoint and the timeHandler() handler function, you
should call mux.Handle() as mux.Handle("/time", http.HandlerFunc(timeHandler)).
If you were using http.HandleFunc() and as a consequence DefaultServeMux, then
you should have called http.HandleFunc("/time", timeHandler) instead.

The subject of the next subsection is the implementation of the HTTP endpoints.

Implementing the handlers
The new version of the phone book is going to be created on a dedicated GitHub
repository for storing and sharing it: https://github.com/mactsouk/www-phone.
After creating the repository, you need to do the following:

$ cd ~/go/src/github.com/mactsouk # Replace with your own path
$ git clone git@github.com:mactsouk/www-phone.git
$ cd www-phone
$ touch handlers.go
$ touch www-phone.go

The www-phone.go file holds the code that defines the operation of the web server.
Usually, handlers are put in a separate package, but for reasons of simplicity,
we decided to put handlers in a separate file within the same package named
handlers.go. The contents of the handlers.go file, which contains all functionality
related to the serving of the clients, are the following:

package main

import (
 "fmt"
 "log"
 "net/http"
 "strings"
)

All required packages for handlers.go are imported even if some of them are already
imported by www-phone.go. Note that the name of the package is main, which is also
the case for www-phone.go.

const PORT = ":1234"

https://github.com/mactsouk/www-phone

Chapter 8

[387]

This is the default port number the HTTP server listens to.

func defaultHandler(w http.ResponseWriter, r *http.Request) {
 log.Println("Serving:", r.URL.Path, "from", r.Host)
 w.WriteHeader(http.StatusOK)
 Body := "Thanks for visiting!\n"
 fmt.Fprintf(w, "%s", Body)
}

This is the default handler, which serves all requests that are not a match for any of
the other handlers.

func deleteHandler(w http.ResponseWriter, r *http.Request) {
 // Get telephone
 paramStr := strings.Split(r.URL.Path, "/")

This is the handler function for the /delete path, which begins by splitting the URL
in order to read the desired information.

 fmt.Println("Path:", paramStr)
 if len(paramStr) < 3 {
 w.WriteHeader(http.StatusNotFound)
 fmt.Fprintln(w, "Not found: "+r.URL.Path)
 return
 }

If we do not have enough parameters, we should send an error message back to
the client with the desired HTTP code, which in this case is http.StatusNotFound.
You can use any HTTP code you want as long as it makes sense. The WriteHeader()
method sends back a header with the provided status code before writing the body
of the response.

 log.Println("Serving:", r.URL.Path, "from", r.Host)

This is where the HTTP server sends data to log files—this mainly happens for
debugging reasons.

 telephone := paramStr[2]

Building Web Services

[388]

As the delete process is based on the telephone number, all that is required is a valid
telephone number. This is where the parameter is read after splitting the provided
URL.

 err := deleteEntry(telephone)
 if err != nil {
 fmt.Println(err)
 Body := err.Error() + "\n"
 w.WriteHeader(http.StatusNotFound)
 fmt.Fprintf(w, "%s", Body)
 return
 }

Once we have a telephone number, we call deleteEntry() in order to delete it. The
return value of deleteEntry() determines the result of the operation and, therefore,
the response to the client.

 Body := telephone + " deleted!\n"
 w.WriteHeader(http.StatusOK)
 fmt.Fprintf(w, "%s", Body)
}

At this point, we know that the delete operation was successful so we send a proper
message to the client as well as the http.StatusOK status code. Type go doc http.
StatusOK for the list of codes.

func listHandler(w http.ResponseWriter, r *http.Request) {
 log.Println("Serving:", r.URL.Path, "from", r.Host)
 w.WriteHeader(http.StatusOK)
 Body := list()
 fmt.Fprintf(w, "%s", Body)
}

The list() helper function that is used in the /list path cannot fail. Therefore,
http.StatusOK is always returned when serving /list. However, sometimes the
return value of list() can be empty.

func statusHandler(w http.ResponseWriter, r *http.Request) {
 log.Println("Serving:", r.URL.Path, "from", r.Host)
 w.WriteHeader(http.StatusOK)
 Body := fmt.Sprintf("Total entries: %d\n", len(data))
 fmt.Fprintf(w, "%s", Body)
}

Chapter 8

[389]

The preceding code defines the handler function for the /status URL. It just returns
information about the total number of entries found in the phone book. It can be
used for verifying that the web service works fine.

func insertHandler(w http.ResponseWriter, r *http.Request) {
 // Split URL
 paramStr := strings.Split(r.URL.Path, "/")
 fmt.Println("Path:", paramStr)

As happened with delete, we need to split the given URL in order to extract the
information. In this case, we need three elements as we are trying to insert a new
entry into the phone book application.

 if len(paramStr) < 5 {
 w.WriteHeader(http.StatusNotFound)
 fmt.Fprintln(w, "Not enough arguments: "+r.URL.Path)
 return
 }

Needing to extract three elements from the URL means that we require paramStr to
have at least four elements in it, hence the len(paramStr) < 5 condition.

 name := paramStr[2]
 surname := paramStr[3]
 tel := paramStr[4]

 t := strings.ReplaceAll(tel, "-", "")
 if !matchTel(t) {
 fmt.Println("Not a valid telephone number:", tel)
 return
 }

In the previous part, we get the desired data and make sure that the telephone
number contains digits only—this happens with the use of the matchTel() helper
function.

 temp := &Entry{Name: name, Surname: surname, Tel: t}
 err := insert(temp)

As the insert() helper function requires an *Entry value, we create one before
calling it.

 if err != nil {
 w.WriteHeader(http.StatusNotModified)

Building Web Services

[390]

 Body := "Failed to add record\n"
 fmt.Fprintf(w, "%s", Body)
 } else {
 log.Println("Serving:", r.URL.Path, "from", r.Host)
 Body := "New record added successfully\n"
 w.WriteHeader(http.StatusOK)
 fmt.Fprintf(w, "%s", Body)
 }

 log.Println("Serving:", r.URL.Path, "from", r.Host)
}

This is the end of the handler for /insert. The last part of the implementation
of insertHandler() deals with the return value of insert(). If there was not an
error, then http.StatusOK is returned to the client. In the opposite case, http.
StatusNotModified is returned to signify that there was not a change in the phone
book. It is the job of the client to examine the status code of the interaction but it is
the job of the server to send an appropriate status code back to the client.

func searchHandler(w http.ResponseWriter, r *http.Request) {
 // Get Search value from URL
 paramStr := strings.Split(r.URL.Path, "/")
 fmt.Println("Path:", paramStr)

 if len(paramStr) < 3 {
 w.WriteHeader(http.StatusNotFound)
 fmt.Fprintln(w, "Not found: "+r.URL.Path)
 return
 }

 var Body string
 telephone := paramStr[2]

At this point, we extract the telephone number from the URL as we did with /delete.

 t := search(telephone)
 if t == nil {
 w.WriteHeader(http.StatusNotFound)
 Body = "Could not be found: " + telephone + "\n"
 } else {
 w.WriteHeader(http.StatusOK)

Chapter 8

[391]

 Body = t.Name + " " + t.Surname + " " + t.Tel + "\n"
 }

 fmt.Println("Serving:", r.URL.Path, "from", r.Host)
 fmt.Fprintf(w, "%s", Body)
}

The last function of handlers.go ends here and is about the /search endpoint. The
search() helper function checks whether the given input exists in the phone book
records or not and acts accordingly. Additionally, the implementation of the main()
function, which can be found in www-phone.go, is the following:

func main() {
 err := readCSVFile(CSVFILE)
 if err != nil {
 fmt.Println(err)
 return
 }

 err = createIndex()
 if err != nil {
 fmt.Println("Cannot create index.")
 return
 }

This first part of main() has to do with the initialization of the phone book
application.

 mux := http.NewServeMux()
 s := &http.Server{
 Addr: PORT,
 Handler: mux,
 IdleTimeout: 10 * time.Second,
 ReadTimeout: time.Second,
 WriteTimeout: time.Second,
 }

Here, we store the parameters of the HTTP server in the http.Server structure and
use our own http.NewServeMux() instead of the default one.

 mux.Handle("/list", http.HandlerFunc(listHandler))
 mux.Handle("/insert/", http.HandlerFunc(insertHandler))
 mux.Handle("/insert", http.HandlerFunc(insertHandler))

Building Web Services

[392]

 mux.Handle("/search", http.HandlerFunc(searchHandler))
 mux.Handle("/search/", http.HandlerFunc(searchHandler))
 mux.Handle("/delete/", http.HandlerFunc(deleteHandler))
 mux.Handle("/status", http.HandlerFunc(statusHandler))
 mux.Handle("/", http.HandlerFunc(defaultHandler))

This is the list of the supported URLs. Note that /search and /search/ are both
handled by the same handler function even though /search is going to fail as it
does not include the required argument. On the other hand, /delete/ is handled
in a special way—this is going to be shown when testing the application. As we
are using http.NewServeMux() and not the default Go router, we need to use
http.HandlerFunc() when defining the handler functions.

 fmt.Println("Ready to serve at", PORT)
 err = s.ListenAndServe()
 if err != nil {
 fmt.Println(err)
 return
 }
}

The ListenAndServe() method starts the HTTP server using the parameters defined
previously in the http.Server structure. The rest of www-phone.go contains helper
functions related to the operation of the phone book. Note that it is important to save
and update the contents of the phone book application as often as possible because
this is a live application, and you might lose data if it crashes.

The next command allows you to execute the application—you need to provide
both files in go run:

$ go run www-phone.go handlers.go
Ready to serve at :1234
2021/03/29 17:13:49 Serving: /list from localhost:1234
2021/03/29 17:13:53 Serving: /status from localhost:1234
Path: [search 2109416471]
Serving: /search/2109416471 from localhost:1234
Path: [search]
2021/03/29 17:28:34 Serving: /list from localhost:1234
Path: [search 2101112223]
Serving: /search/2101112223 from localhost:1234
Path: [delete 2109416471]
2021/03/29 17:29:24 Serving: /delete/2109416471 from localhost:1234
Path: [insert Mike Tsoukalos 2109416471]

Chapter 8

[393]

2021/03/29 17:29:56 Serving: /insert/Mike/Tsoukalos/2109416471 from
localhost:1234
2021/03/29 17:29:56 Serving: /insert/Mike/Tsoukalos/2109416471 from
localhost:1234
Path: [insert Mike Tsoukalos 2109416471]
2021/03/29 17:30:18 Serving: /insert/Mike/Tsoukalos/2109416471 from
localhost:1234

On the client side, which is curl(1), we have the next output:

$ curl localhost:1234/list
Dimitris Tsoukalos 2101112223
Jane Doe 0800123456
Mike Tsoukalos 2109416471

Here, we get all entries from the phone book application by visiting /list.

$ curl localhost:1234/status
Total entries: 3

Next, we visit /status and get back the expected output.

$ curl localhost:1234/search/2109416471
Mike Tsoukalos 2109416471

The previous command searches for an existing phone number—the server responds
with its full record.

$ curl localhost:1234/delete/2109416471
2109416471 deleted!

The previous output shows that we have deleted the record with telephone number
2109416471. In REST, this requires a DELETE method, but for reasons of simplicity we
leave the details for Chapter 10, Working with REST APIs.

Now, let us try and visit /delete instead of /delete/:

$ curl localhost:1234/delete
Moved Permanently.

The presented message was generated by the Go router and tells us that we should
try /delete/ instead as /delete was moved permanently. This is the kind of message
that we get by not specifically defining both /delete and /delete/ in the routes.

Building Web Services

[394]

Now, let us insert a new record:

$ curl localhost:1234/insert/Mike/Tsoukalos/2109416471
New record added successfully

In REST, this requires a POST method, but again, we will leave that for Chapter 10,
Working with REST APIs.

If we try to insert the same record again, the response is going to be as follows:

$ curl localhost:1234/insert/Mike/Tsoukalos/2109416471
Failed to add record

Everything looks like it is working OK. We can now put the phone application online
and interact with it using multiple HTTP requests as the http package uses multiple
goroutines for interacting with clients—in practice, this means that the phone book
application runs concurrently!

Later in this chapter we are going to create a command-line client for the phone book
server. Additionally, Chapter 11, Code Testing and Profiling, shows how to test your
code.

The next section shows how to expose metrics to Prometheus and how to build
Docker images for server applications.

Exposing metrics to Prometheus
Imagine that you have an application that writes files to disk and you want to
get metrics for that application to better understand how the writing of multiple
files has an effect on the general performance—you need to gather performance
data for understanding the behavior of your application. Although the presented
application uses the gauge type of metric only because it is what is appropriate for the
information that is sent to Prometheus, Prometheus accepts many types of data. The
list of supported data types for metrics is the following:

• Counter: This is a cumulative value that is used for representing increasing
counters—the value of a counter can stay the same, go up, or be reset to zero
but cannot decrease. Counters are usually used for representing cumulative
values such as the number of requests served so far, the total number of
errors, etc.

• Gauge: This is a single numerical value that is allowed to increase or decrease.
Gauges are usually used for representing values that can go up or down such
as the number of requests, time durations, etc.

Chapter 8

[395]

• Histogram: A histogram is used for sampling observations and creating
counts and buckets. Histograms are usually used for counting request
durations, response times, etc.

• Summary: A summary is like a histogram but can also calculate quantiles
over sliding windows that work with times.

Both histograms and summaries are useful and handy for performing statistical
calculations and properties. Usually, a counter or a gauge is all that you need for
storing your system metrics.

This section shows how you can collect and expose a system to Prometheus. For
reasons of simplicity, the presented application is going to generate random values.
We begin by explaining the use of the runtime/metrics package, which provides Go
runtime-related metrics.

The runtime/metrics package
The runtime/metrics package makes metrics exported by the Go runtime available
to the developer. Each metric name is specified by a path. As an example, the
number of live goroutines is accessed as /sched/goroutines:goroutines. However,
if you want to collect all available metrics, you should use metrics.All()—this saves
you from having to write lots of code in order to collect all metrics manually.

Metrics are saved using the metrics.Sample data type. The definition of the metrics.
Sample data structure is as follows:

type Sample struct {
 Name string
 Value Value
}

The Name value must correspond to the name of one of the metric descriptions
returned by metrics.All(). If you already know the metric description, there is no
need to use metrics.All().

The use of the runtime/metrics package is illustrated in metrics.go. The presented
code gets the value of /sched/goroutines:goroutines and prints it on screen:

package main

import (
 "fmt"
 "runtime/metrics"

Building Web Services

[396]

 "sync"
 "time"
)

func main() {
 const nGo = "/sched/goroutines:goroutines"

The nGo variable holds the path of the metric we want to collect.

 // A slice for getting metric samples
 getMetric := make([]metrics.Sample, 1)
 getMetric[0].Name = nGo

After that we create a slice of type metrics.Sample in order to keep the metric value.
The initial size of the slice is 1 because we are only collecting values for a single
metric. We set the Name value to /sched/goroutines:goroutines as stored in nGo.

 var wg sync.WaitGroup
 for i := 0; i < 3; i++ {
 wg.Add(1)
 go func() {
 defer wg.Done()
 time.Sleep(4 * time.Second)
 }()

Here we manually create three goroutines to have relevant data to collect.

 // Get actual data
 metrics.Read(getMetric)
 if getMetric[0].Value.Kind() == metrics.KindBad {
 fmt.Printf("metric %q no longer supported\n", nGo)
 }

The metrics.Read() function collects the desired metrics based on the data in the
getMetric slice.

 mVal := getMetric[0].Value.Uint64()
 fmt.Printf("Number of goroutines: %d\n", mVal)
 }

After reading the desired metric, we convert it into a numeric value (unsigned int64
here) in order to use it in our program.

Chapter 8

[397]

 wg.Wait()

 metrics.Read(getMetric)
 mVal := getMetric[0].Value.Uint64()
 fmt.Printf("Before exiting: %d\n", mVal)
}

The last lines of the code verify that after all goroutines have finished, the value
of the metric is going to be 1, which is the goroutine used for running the main()
function.

Running metrics.go produces the next output:

$ go run metrics.go
Number of goroutines: 2
Number of goroutines: 3
Number of goroutines: 4
Before exiting: 1

We have created 3 goroutines and we already have a goroutine for running the
main() function. Therefore, the maximum number of goroutines is indeed 4.

The subsections that follow illustrate how to make any metric you collect available
to Prometheus.

Exposing metrics
Collecting metrics is a totally different task from exposing them for Prometheus to
collect them. This subsection shows how to make the metrics available for collection.

The code of samplePro.go is as follows:

package main

import (
 "fmt"
 "net/http"

 "math/rand"
 "time"

 "github.com/prometheus/client_golang/prometheus"
 "github.com/prometheus/client_golang/prometheus/promhttp"
)

Building Web Services

[398]

We need to use two external packages for communicating with Prometheus.

var PORT = ":1234"

var counter = prometheus.NewCounter(
 prometheus.CounterOpts{
 Namespace: "mtsouk",
 Name: "my_counter",
 Help: "This is my counter",
 })

This is how we define a new counter variable and specify the desired options. The
Namespace field is very important as it allows you to group metrics in sets.

var gauge = prometheus.NewGauge(
 prometheus.GaugeOpts{
 Namespace: "mtsouk",
 Name: "my_gauge",
 Help: "This is my gauge",
 })

This is how we define a new gauge variable and specify the desired options.

var histogram = prometheus.NewHistogram(
 prometheus.HistogramOpts{
 Namespace: "mtsouk",
 Name: "my_histogram",
 Help: "This is my histogram",
 })

This is how we define a new histogram variable and specify the desired options.

var summary = prometheus.NewSummary(
 prometheus.SummaryOpts{
 Namespace: "mtsouk",
 Name: "my_summary",
 Help: "This is my summary",
 })

This is how we define a new summary variable and specify the desired options.
However, as you are going to see, defining a metric variable is not enough. You also
need to register it.

Chapter 8

[399]

func main() {
 rand.Seed(time.Now().Unix())

 prometheus.MustRegister(counter)
 prometheus.MustRegister(gauge)
 prometheus.MustRegister(histogram)
 prometheus.MustRegister(summary)

In these four statements, you register the four metric variables. Now Prometheus
knows about them.

 go func() {
 for {
 counter.Add(rand.Float64() * 5)
 gauge.Add(rand.Float64()*15 - 5)
 histogram.Observe(rand.Float64() * 10)
 summary.Observe(rand.Float64() * 10)
 time.Sleep(2 * time.Second)
 }
 }()

This goroutine runs for as long as the web server runs with the help of the endless
for loop. In this goroutine, the metrics are updated every 2 seconds due to the use of
the time.Sleep(2 * time.Second) statement—in this case using random values.

 http.Handle("/metrics", promhttp.Handler())
 fmt.Println("Listening to port", PORT)
 fmt.Println(http.ListenAndServe(PORT, nil))
}

As you already know, each URL is handled by a handler function that you usually
implement on your own. However, in this case we are using the promhttp.Handler()
handler function that comes with the github.com/prometheus/client_golang/
prometheus/promhttp package—this saves us from having to write our own code.
However, we still need to register the promhttp.Handler() handler function using
http.Handle() before we start the web server. Note that the metrics are found under
the /metrics path—Prometheus knows how to find that.

With samplePro.go running, getting the list of metrics that belong to the mtsouk
namespace is as simple as running the next curl(1) command:

$ curl localhost:1234/metrics --silent | grep mtsouk
HELP mtsouk_my_counter This is my counter

Building Web Services

[400]

TYPE mtsouk_my_counter counter
mtsouk_my_counter 19.948239343027772

This is the output from a counter variable. If the | grep mtsouk part is omitted, then
you are going to get the list of all available metrics.

HELP mtsouk_my_gauge This is my gauge
TYPE mtsouk_my_gauge gauge
mtsouk_my_gauge 29.335329668135287

This is the output from a gauge variable.

HELP mtsouk_my_histogram This is my histogram
TYPE mtsouk_my_histogram histogram
mtsouk_my_histogram_bucket{le="0.005"} 0
mtsouk_my_histogram_bucket{le="0.01"} 0
mtsouk_my_histogram_bucket{le="0.025"} 0
. . .
mtsouk_my_histogram_bucket{le="5"} 4
mtsouk_my_histogram_bucket{le="10"} 9
mtsouk_my_histogram_bucket{le="+Inf"} 9
mtsouk_my_histogram_sum 44.52262035556937
mtsouk_my_histogram_count 9

This is the output from a histogram variable. Histograms contain buckets, hence the
large number of output lines.

HELP mtsouk_my_summary This is my summary
TYPE mtsouk_my_summary summary
mtsouk_my_summary_sum 19.407554729772105
mtsouk_my_summary_count 9

The last lines of the output are for the summary data type.

So, the metrics are there and ready to be pulled by Prometheus—in practice, this
means that every production Go application can export metrics that can be used for
measuring its performance and discovering its bottlenecks. However, we are not
done yet as we need to learn about building Docker images for Go applications.

Creating a Docker image for a Go server
This section shows how to create a Docker image for a Go application. The main
benefit you get from this is that you can deploy it in a Docker environment without
worrying about compiling it and having the required resources—everything is
included in the Docker image.

Chapter 8

[401]

Still, you might ask, "why not use a normal Go binary instead of a Docker image?" The
answer is simple: Docker images can be put in docker-compose.yml files and can be
deployed using Kubernetes. The same is not true about Go binaries.

You usually start with a base Docker image that already includes Go and you create
the desired binary in there. The key point here is that samplePro.go uses an external
package that should be downloaded in the Docker image before building the
executable binary.

The process must start with go mod init and go mod tidy. The contents of the
Dockerfile, which can be found as dFilev2 in the GitHub repository of the book, are
as follows:

WITH Go Modules

FROM golang:alpine AS builder
RUN apk update && apk add --no-cache git

As golang:alpine uses the latest Go version, which does not come with git, we
install it manually.

RUN mkdir $GOPATH/src/server
ADD ./samplePro.go $GOPATH/src/server

If you want to use Go modules, you should put your code in $GOPATH/src.

WORKDIR $GOPATH/src/server
RUN go mod init
RUN go mod tidy
RUN go mod download
RUN mkdir /pro
RUN go build -o /pro/server samplePro.go

We download dependencies using various go mod commands. The building of the
binary file is the same as before.

FROM alpine:latest

RUN mkdir /pro
COPY --from=builder /pro/server /pro/server
EXPOSE 1234
WORKDIR /pro
CMD ["/pro/server"]

Building Web Services

[402]

In this second stage, we put the binary file into the desired location (/pro) and expose
the desired port, which in this case is 1234. The port number depends on the code in
samplePro.go.

Building a Docker image using dFilev2 is as simple as running the next command:

$ docker build -f dFilev2 -t go-app116 .

Once the Docker image has been created, there is no difference in the way you
should use it in a docker-compose.yml file—a relevant entry in a docker-compose.yml
file would look as follows:

 goapp:
 image: goapp
 container_name: goapp-int
 restart: always
 ports:
 - 1234:1234
 networks:
 - monitoring

The name of the Docker image is goapp whereas the internal name of the container
would be goapp-int. So, if a different container from the monitoring network wants
to access that container, it should use the goapp-int hostname. Last, the only open
port is port number 1234.

The next section illustrates how to expose metrics to Prometheus.

Exposing the desired metrics
This section illustrates how to expose metrics from the runtime/metrics package
to Prometheus. In our case we use /sched/goroutines:goroutines and /memory/
classes/total:bytes. You already know about the former, which is the total number
of goroutines. The latter metric is the amount of memory mapped by the Go runtime
into the current process as read-write.

As the presented code uses an external package, it should be put
inside ~/go/src and Go modules should be enabled using go mod
init.

Chapter 8

[403]

The Go code of prometheus.go is as follows:

package main

import (
 "log"
 "math/rand"
 "net/http"
 "runtime"
 "runtime/metrics"
 "time"

 "github.com/prometheus/client_golang/prometheus"
 "github.com/prometheus/client_golang/prometheus/promhttp"
)

The first external package is the Go client library for Prometheus and the second
package is for using the default handler function (promhttp.Handler()).

var PORT = ":1234"

var n_goroutines = prometheus.NewGauge(
 prometheus.GaugeOpts{
 Namespace: "packt",
 Name: "n_goroutines",
 Help: "Number of goroutines"})

var n_memory = prometheus.NewGauge(
 prometheus.GaugeOpts{
 Namespace: "packt",
 Name: "n_memory",
 Help: "Memory usage"})

Here, we define the two Prometheus metrics.

func main() {
 rand.Seed(time.Now().Unix())
 prometheus.MustRegister(n_goroutines)
 prometheus.MustRegister(n_memory)

Building Web Services

[404]

 const nGo = "/sched/goroutines:goroutines"
 const nMem = "/memory/classes/heap/free:bytes"

This is where you define the metrics you want to read from the runtime/metrics
package.

 getMetric := make([]metrics.Sample, 2)
 getMetric[0].Name = nGo
 getMetric[1].Name = nMem

 http.Handle("/metrics", promhttp.Handler())

This is where you register the handler function for the /metrics path. We use
promhttp.Handler().

 go func() {
 for {
 for i := 1; i < 4; i++ {
 go func() {
 _ = make([]int, 1000000)
 time.Sleep(time.Duration(rand.Intn(10)) * time.
Second)
 }()
 }

Note that such a program should definitely have at least two goroutines: one
for running the HTTP server and another one for collecting the metrics. Usually,
the HTTP server is on the goroutine that runs the main() function and the metric
collection happens in a user-defined goroutine.

The external for loop makes sure that the goroutine runs forever whereas the
internal for loop creates additional goroutines so that the value of the /sched/
goroutines:goroutines metric changes all the time.

 runtime.GC()
 metrics.Read(getMetric)
 goVal := getMetric[0].Value.Uint64()
 memVal := getMetric[1].Value.Uint64()
 time.Sleep(time.Duration(rand.Intn(15)) * time.Second)

Chapter 8

[405]

 n_goroutines.Set(float64(goVal))
 n_memory.Set(float64(memVal))
 }
 }()

The runtime.GC() function tells the Go garbage collector to run and is called for
changing the /memory/classes/heap/free:bytes metric. The two Set() calls update
the values of the metrics.

 log.Println("Listening to port", PORT)
 log.Println(http.ListenAndServe(PORT, nil))
}

The last statement runs the web server using the default Go router. Running
prometheus.go from a directory inside ~/go/src/github.com/mactsouk requires
executing the next commands:

$ cd ~/go/src/github.com/mactsouk/Prometheus # use any path inside ~/
go/src
$ go mod init
$ go mod tidy
$ go mod download
$ go run prometheus.go
2021/04/01 12:18:11 Listening to port :1234

Although prometheus.go generates no output apart from the previous line, the next
subsection illustrates how to read the desired metrics from it using curl(1).

Reading metrics
You can get a list of the metrics from prometheus.go using curl(1) in order to make
sure that the application works as expected. I always test the operation of such an
application with curl(1) or some other similar utility such as wget(1) before trying
to get the metrics with Prometheus.

$ curl localhost:1234/metrics --silent | grep packt
HELP packt_n_goroutines Number of goroutines

You can read more about the operation of the Go garbage collector
in Appendix A.

Building Web Services

[406]

TYPE packt_n_goroutines gauge
packt_n_goroutines 5
HELP packt_n_memory Memory usage
TYPE packt_n_memory gauge
packt_n_memory 794624

The previous command assumes that curl(1) is executed on the same machine
as the server and that the server listens to TCP port number 1234. Next, we must
enable Prometheus to pull the metrics. The easiest way for a Prometheus Docker
image to be able to see the Go application with the metrics is to execute both as
Docker images. There is an important point here: the runtime/metrics package was
first introduced with Go version 1.16. This means that to build a Go source file that
uses runtime/metrics, we need to use Go version 1.16 or newer, which means that
we need to use modules for building the Docker image. Therefore, we are going to
use the following Dockerfile:

FROM golang:alpine AS builder

This is the name of the base Docker image that is used for building the binary.
golang:alpine always contains the latest Go version as long as you update it
regularly.

RUN apk update && apk add --no-cache git

As golang:alpine does not come with git, we need to install it manually.

RUN mkdir $GOPATH/src/server
ADD ./prometheus.go $GOPATH/src/server
WORKDIR $GOPATH/src/server
RUN go mod init
RUN go mod tidy
RUN go mod download

The previous commands download the required dependencies before trying to build
the binary.

RUN mkdir /pro
RUN go build -o /pro/server prometheus.go

FROM alpine:latest

RUN mkdir /pro
COPY --from=builder /pro/server /pro/server

Chapter 8

[407]

EXPOSE 1234
WORKDIR /pro
CMD ["/pro/server"]

Building the desired Docker image, which is going to be named goapp, is as simple as
running the next command:

$ docker build -f Dockerfile -t goapp .

As usual, the output of docker images verifies the successful creation of the goapp
Docker image—in my case the relevant entry looks as follows:

goapp latest a1f0cd4bd8f5 5 seconds ago 16.9MB

Let us now discuss how to configure Prometheus to pull the desired metrics.

Putting the metrics in Prometheus
To be able to pull the metrics, Prometheus needs a proper configuration file. The
configuration file that is going to be used is as follows:

prometheus.yml
scrape_configs:
 - job_name: GoServer
 scrape_interval: 5s
 static_configs:
 - targets: ['goapp:1234']

We tell Prometheus to connect to a host named goapp using port number 1234.
Prometheus pulls data every 5 seconds, according to the value of the scrape_interval
field. You should put prometheus.yml in the prometheus directory, which should be in
the same directory as the docker-compose.yml file that is presented next.

Prometheus as well as Grafana and the Go application are going to run as Docker
containers using the next docker-compose.yml file:

version: "3"

services:
 goapp:
 image: goapp
 container_name: goapp
 restart: always

Building Web Services

[408]

 ports:
 - 1234:1234
 networks:
 - monitoring

This is the part that deals with the Go application that collects the metrics. The
Docker image name, as well as the internal hostname of the Docker container, is
goapp. You should define the port number that is going to be open for connections.
In this case both the internal and external port numbers are 1234. The internal one is
mapped to the external one. Additionally, you should put all Docker images under
the same network, which in this case is called monitoring and is defined in a while.

 prometheus:
 image: prom/prometheus:latest
 container_name: prometheus
 restart: always
 user: "0"
 volumes:
 - ./prometheus/:/etc/prometheus/

This is how you pass your own copy of prometheus.yml to the Docker image to be
used by Prometheus. So, ./prometheus/prometheus.yml from the local machine can
be accessed as /etc/prometheus/prometheus.yml from within the Docker image.

 - ./prometheus_data/:/prometheus/
 command:
 - '--config.file=/etc/prometheus/prometheus.yml'

This is where you tell Prometheus which configuration file to use.

 - '--storage.tsdb.path=/prometheus'
 - '--web.console.libraries=/etc/prometheus/console_libraries'
 - '--web.console.templates=/etc/prometheus/consoles'
 - '--storage.tsdb.retention.time=200h'
 - '--web.enable-lifecycle'
 ports:
 - 9090:9090
 networks:
 - monitoring

This is where the definition of the Prometheus part of the scenario ends. The
Docker image used is called prom/prometheus:latest and the internal name of it is
prometheus. Prometheus listens to port number 9090.

Chapter 8

[409]

 grafana:
 image: grafana/grafana
 container_name: grafana
 depends_on:
 - prometheus
 restart: always
 user: "0"
 ports:
 - 3000:3000
 environment:
 - GF_SECURITY_ADMIN_PASSWORD=helloThere

This is the current password of the admin user—you need that for connecting to
Grafana.

 - GF_USERS_ALLOW_SIGN_UP=false
 - GF_PANELS_DISABLE_SANITIZE_HTML=true
 - GF_SECURITY_ALLOW_EMBEDDING=true
 networks:
 - monitoring
 volumes:
 - ./grafana_data/:/var/lib/grafana/

Last, we present the Grafana part. Grafana listens to port number 3000.

volumes:
 grafana_data: {}
 prometheus_data: {}

The preceding two lines in combination with the two volumes fields allow both
Grafana and Prometheus to save their data locally so that data is not lost each time
you restart the Docker images.

networks:
 monitoring:
 driver: bridge

Internally, all three containers are known by the value of their container_name field.
However, externally, you can connect to the open ports from your local machine as
http://localhost:port or from another machine using http://hostname:port—the
second way is not very secure and should be blocked by a firewall. Lastly, you need
to run docker-compose up and you are done! The Go application begins exposing
data and Prometheus begins collecting it.

Building Web Services

[410]

The next figure shows the Prometheus UI (http://hostname:9090) displaying a
simple plot of packt_n_goroutines:

Figure 8.1: The Prometheus UI

Chapter 8

[411]

This output, which shows the values of the metrics in a graphical way, is very handy
for debugging purposes, but it is far from being truly professional as Prometheus is
not a visualization tool. The next subsection shows how to connect Prometheus with
Grafana and create impressive plots.

Visualizing Prometheus metrics in Grafana
There is no point in collecting metrics without doing something with them, and
by something, I mean visualizing them. Prometheus and Grafana work very well
together so we are going to use Grafana for the visualization part. The single most
important task that you should perform in Grafana is connecting it with your
Prometheus instance. In Grafana terminology, you should create a Grafana data
source that allows Grafana to get data from Prometheus.

The steps for creating a data source with our Prometheus installation are the
following:

1. First go to http://localhost:3000 to connect to Grafana.
2. The username of the administrator is admin whereas the password is defined

in the value of the GF_SECURITY_ADMIN_PASSWORD parameter of the docker-
compose.yml file.

3. Then select Add your first data source. From the list of data sources, select
Prometheus, which is usually at the top of the list.

4. Put http://prometheus:9090 in the URL field and then press the Save &
Test button. Due to the internal network that exists between the Docker
images, the Grafana container knows the Prometheus container by the
prometheus hostname—this is the value of the container_name field. As you
already know, you can also connect to Prometheus from your local machine
using http://localhost:9090. We are done! The name of the data source is
Prometheus.

After these steps, create a new dashboard from the initial Grafana screen and put a
new panel on it. Select Prometheus as the data source of the panel, if it is not already
selected. Then go to the Metrics drop-down menu and select the desired metrics.
Click Save and you are done. Create as many panels as you want.

Building Web Services

[412]

The next figure shows Grafana visualizing two metrics from Prometheus as exposed
by prometheus.go.

Figure 8.2: Visualizing metrics in Grafana

Chapter 8

[413]

Grafana has many more capabilities than the ones presented here—if you are
working with system metrics and want to check the performance of your Go
applications, Prometheus and Grafana are good choices.

After learning about HTTP servers, the next section shows how to develop HTTP
clients.

Developing web clients
This section shows how to develop HTTP clients starting with a simplistic version
and continuing with a more advanced one. In this simplistic version, all of the work
is done by the http.Get() call, which is pretty convenient when you do not want
to deal with lots of options and parameters. However, this type of call gives you no
flexibility over the process. Notice that http.Get() returns an http.Response value.
All this is illustrated in simpleClient.go:

package main

import (
 "fmt"
 "io"
 "net/http"
 "os"
 "path/filepath"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("Usage: %s URL\n", filepath.Base(os.Args[0]))
 return
 }

The filepath.Base() function returns the last element of a path. When given
os.Args[0] as its parameter, it returns the name of the executable binary file.

 URL := os.Args[1]
 data, err := http.Get(URL)

Building Web Services

[414]

In the previous two statements we get the URL and get its data using http.Get(),
which returns an *http.Response and an error variable. The *http.Response
value contains all the information so you do not need to make any additional
calls to http.Get().

 if err != nil {
 fmt.Println(err)
 return
 }

 _, err = io.Copy(os.Stdout, data.Body)

The io.Copy() function reads from the data.Body reader, which contains the body of
the server response, and writes the data to os.Stdout. As os.Stdout is always open,
you do not need to open it for writing. Therefore, all data is written to standard
output, which is usually the terminal window.

 if err != nil {
 fmt.Println(err)
 return
 }
 data.Body.Close()
}

Last, we close the data.Body reader to make the work of the garbage collection easier.

Working with simpleClient.go produces the next kind of output, which in this case
is abbreviated:

$ go run simpleClient.go https://www.golang.org
<!DOCTYPE html>
<html lang="en">
<meta charset="utf-8">
<meta name="description" content="Go is an open source programming
language that makes it easy to build simple, reliable, and efficient
software.">
...
</script>

Although simpleClient.go does the job of verifying that the given URL exists and
is reachable, it offers no control over the process. The next subsection develops an
advanced HTTP client that processes the server response.

Chapter 8

[415]

Using http.NewRequest() to improve the client
As the web client of the previous section is relatively simplistic and does not give
you any flexibility, in this subsection, you learn how to read a URL without using the
http.Get() function, and with more options. However, the extra flexibility comes at
a cost as you must write more code.

The code of wwwClient.go, without the import block, is as follows:

package main

// For the import block go to the book GitHub repository

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("Usage: %s URL\n", filepath.Base(os.Args[0]))
 return
 }

Although using filepath.Base() is not necessary, it makes your output more
professional.

 URL, err := url.Parse(os.Args[1])
 if err != nil {
 fmt.Println("Error in parsing:", err)
 return
 }

The url.Parse() function parses a string into a URL structure. This means that if the
given argument is not a valid URL, url.Parse() is going to notice. As usual, check
the error variable.

 c := &http.Client{
 Timeout: 15 * time.Second,
 }

 request, err := http.NewRequest(http.MethodGet, URL.String(), nil)
 if err != nil {
 fmt.Println("Get:", err)
 return
 }

Building Web Services

[416]

The http.NewRequest() function returns an http.Request object given a method, a
URL, and an optional body. The http.MethodGet parameter defines that we want to
retrieve the data using a GET HTTP method whereas URL.String() returns the string
value of an http.URL variable.

 httpData, err := c.Do(request)
 if err != nil {
 fmt.Println("Error in Do():", err)
 return
 }

The http.Do() function sends an HTTP request (http.Request) using an http.Client
and gets an http.Response. So, http.Do() does the job of http.Get() in a more
detailed way.

 fmt.Println("Status code:", httpData.Status)

httpData.Status holds the HTTP status code of the response—this is really
important because it allows you to understand what really happened with the
request.

 header, _ := httputil.DumpResponse(httpData, false)
 fmt.Print(string(header))

The httputil.DumpResponse() function is used here to get the response from
the server and is mainly used for debugging purposes. The second argument of
httputil.DumpResponse() is a Boolean value that specifies whether the function is
going to include the body or not in its output—in our case it is set to false, which
excludes the response body from the output and only prints the header. If you want
to do the same on the server side, you should use httputil.DumpRequest().

 contentType := httpData.Header.Get("Content-Type")
 characterSet := strings.SplitAfter(contentType, "charset=")
 if len(characterSet) > 1 {
 fmt.Println("Character Set:", characterSet[1])
 }

Here we find out about the character set of the response by searching the value of
Content-Type.

 if httpData.ContentLength == -1 {
 fmt.Println("ContentLength is unknown!")
 } else {
 fmt.Println("ContentLength:", httpData.ContentLength)
 }

Chapter 8

[417]

Here, we try to get the content length from the response by reading httpData.
ContentLength. However, if the value is not set, we print a relevant message.

 length := 0
 var buffer [1024]byte
 r := httpData.Body
 for {
 n, err := r.Read(buffer[0:])
 if err != nil {
 fmt.Println(err)
 break
 }
 length = length + n
 }
 fmt.Println("Calculated response data length:", length)
}

In the last part of the program, we use a technique for discovering the size of the
server HTTP response on our own. If we wanted to display the HTML output on
our screen, we could have printed the contents of the r buffer variable.

Working with wwwClient.go and visiting https://www.golang.org produces the next
output, which is the output of fmt.Println("Status code:", httpData.Status):

$ go run wwwClient.go https://www.golang.org
Status code: 200 OK

Next, we see output of the fmt.Print(string(header)) statement with the header
data of the HTTP server response:

HTTP/2.0 200 OK
Alt-Svc: h3-29=":443"; ma=2592000,h3-T051=":443";
ma=2592000,h3-Q050=":443"; ma=2592000,h3-Q046=":443";
ma=2592000,h3-Q043=":443"; ma=2592000,quic=":443"; ma=2592000;
v="46,43"
Content-Type: text/html; charset=utf-8
Date: Sat, 27 Mar 2021 19:19:25 GMT
Strict-Transport-Security: max-age=31536000; includeSubDomains; preload
Vary: Accept-Encoding
Via: 1.1 google

https://www.golang.org

Building Web Services

[418]

The last part of the output is about the character set of the interaction (utf-8) and
the content length of the response (9216) as calculated by the code:

Character Set: utf-8
ContentLength is unknown!
EOF
Calculated response data length: 9216

The next section shows how to create a client for the phone book web service we
developed earlier.

Creating a client for the phone book service
In this subsection, we create a command-line utility that interacts with the phone
book web service that was developed earlier in this chapter. This version of the
phone book client is going to be created using the cobra package, which means that
a dedicated GitHub or GitLab repository is required. In this case the repository can
be found at https://github.com/mactsouk/phone-cli. The first thing to do after
running git clone is associating that repository with the directory that is going to
be used for development:

$ cd ~/go/src/github.com/mactsouk
$ git clone git@github.com:mactsouk/phone-cli.git
$ cd phone-cli
$ ~/go/bin/cobra init --pkg-name github.com/mactsouk/phone-cli
$ go mod init
$ go mod tidy
$ go mod download

Next, we have to create the commands for the utility. The structure of the utility is
implemented using the next cobra commands:

$ ~/go/bin/cobra add search
$ ~/go/bin/cobra add insert
$ ~/go/bin/cobra add delete
$ ~/go/bin/cobra add status
$ ~/go/bin/cobra add list

So, we have a command-line utility with five commands named search, insert,
delete, status, and list. After that, we need to implement the commands and
define their local parameters in order to interact with the phone book server.

https://github.com/mactsouk/phone-cli

Chapter 8

[419]

Now let us see the implementations of the commands, starting from the
implementation of the init() function of the root.go file because this is where
the global command-line parameters are defined:

func init() {
 rootCmd.PersistentFlags().StringP("server", "S", "localhost",
"Server")
 rootCmd.PersistentFlags().StringP("port", "P", "1234", "Port number")

 viper.BindPFlag("server", rootCmd.PersistentFlags().Lookup("server"))
 viper.BindPFlag("port", rootCmd.PersistentFlags().Lookup("port"))
}

So, we define two global parameters named server and port, which are the
hostname and the port number, respectively. Both parameters have an alias and
both parameters are handled by viper.

Let us now examine the implementation of the status command as found in status.
go:

SERVER := viper.GetString("server")
PORT := viper.GetString("port")

All commands read the values of the server and port command-line parameters in
order to get information about the server, and the status command is no exception.

// Create request
URL := "http://" + SERVER + ":" + PORT + "/status"

After that we construct the full URL of the request.

data, err := http.Get(URL)
if err != nil {
 fmt.Println(err)
 return
}

Then, we send a GET request to the server using http.Get().

// Check HTTP Status Code
if data.StatusCode != http.StatusOK {
 fmt.Println("Status code:", data.StatusCode)

Building Web Services

[420]

 return
}

After that we check the HTTP status code of the request to make sure that everything
is OK.

// Read data
responseData, err := io.ReadAll(data.Body)
if err != nil {
 fmt.Println(err)
 return
}
fmt.Print(string(responseData))

If everything is OK, we read the entire body of the server response, which is a byte
slice, and print it on screen as a string. The implementation of list is almost identical
to the implementation of status. The only differences are that the implementation is
found in list.go and that the full URL is constructed as follows:

URL := "http://" + SERVER + ":" + PORT + "/list"

After that, let us see how the delete command is implemented in delete.go:

SERVER := viper.GetString("server")
PORT := viper.GetString("port")
number, _ := cmd.Flags().GetString("tel")
if number == "" {
 fmt.Println("Number is empty!")
 return
}

Apart from reading the values of the server and port global parameters, we read the
value of the tel parameter. If tel has no value, the command returns.

// Create request
URL := "http://" + SERVER + ":" + PORT + "/delete/" + number

Once again, we construct the full URL of the request before connecting to the server.

// Send request to server
data, err := http.Get(URL)
if err != nil {
 fmt.Println(err)
 return
}

Chapter 8

[421]

Then, we send the request to the server.

// Check HTTP Status Code
if data.StatusCode != http.StatusOK {
 fmt.Println("Status code:", data.StatusCode)
 return
}

If there was an error in the server response, the delete command terminates.

// Read data
responseData, err := io.ReadAll(data.Body)
if err != nil {
 fmt.Println(err)
 return
}
fmt.Print(string(responseData))

If everything was fine, the server response text is printed on the screen.

The init() function of delete.go contains the definition of the local tel command-
line parameter:

func init() {
 rootCmd.AddCommand(deleteCmd)
 deleteCmd.Flags().StringP("tel", "t", "", "Telephone number to
delete")
}

This is a local flag available to the delete command only. Next, let us learn
more about the search command and how it is implemented in search.go. The
implementation is the same as in delete except for the full request URL:

URL := "http://" + SERVER + ":" + PORT + "/search/" + number

The search command also supports the tel command-line parameter for getting the
telephone number to search for—this is defined in the init() function of search.go.

The last command that is presented is the insert command, which supports three
local command-line parameters that are defined in the init() function in insert.go:

func init() {
 rootCmd.AddCommand(insertCmd)
 insertCmd.Flags().StringP("name", "n", "", "Name value")

Building Web Services

[422]

 insertCmd.Flags().StringP("surname", "s", "", "Surname value")
 insertCmd.Flags().StringP("tel", "t", "", "Telephone value")
}

These three parameters are needed for getting the required user input. Note that
the alias for surname is a lowercase s whereas the alias for server, which is defined
in root.go, is an uppercase S. Commands and their aliases are user-defined—use
common sense when selecting command names and aliases.

The command is implemented using the next code:

SERVER := viper.GetString("server")
PORT := viper.GetString("port")

First, we read the server and port global parameters.

number, _ := cmd.Flags().GetString("tel")
if number == "" {
 fmt.Println("Number is empty!")
 return
}
name, _ := cmd.Flags().GetString("name")
if number == "" {
 fmt.Println("Name is empty!")
 return
}
surname, _ := cmd.Flags().GetString("surname")
if number == "" {
 fmt.Println("Surname is empty!")
 return
}

Then, we get the values of the three local command-line parameters. If any one of
them has an empty value, the command returns without sending the request to the
server.

URL := "http://" + SERVER + ":" + PORT + "/insert/"
URL = URL + "/" + name + "/" + surname + "/" + number

Here, we create the server request in two steps for readability.

data, err := http.Get(URL)
if err != nil {
 fmt.Println("**", err)

Chapter 8

[423]

 return
}

Then, we send the request to the server.

if data.StatusCode != http.StatusOK {
 fmt.Println("Status code:", data.StatusCode)
 return
}

Checking the HTTP status code is considered a good practice. Therefore, if
everything is OK with the server response, we continue by reading the data.
Otherwise, we print the status code, and we exit.

responseData, err := io.ReadAll(data.Body)
if err != nil {
 fmt.Println("*", err)
 return
}
fmt.Print(string(responseData))

After reading the body of the server response, which is stored in a byte slice, we
print it on screen as a string using string(responseData).

The client application generates the next kind of output:

$ go run main.go list
Dimitris Tsoukalos 2101112223
Jane Doe 0800123456
Mike Tsoukalos 2109416471

This is the output of the list command.

$ go run main.go status
Total entries: 3

The output of the status command informs us about the number of entries in the
phone book.

$ go run main.go search --tel 0800123456
Jane Doe 0800123456

Building Web Services

[424]

The previous output shows the use of the search command when successfully
finding a number.

$ go run main.go search --tel 0800
Status code: 404

The previous output shows the use of the search command when not finding a
number.

$ go run main.go delete --tel 2101112223
2101112223 deleted!

This is the output of the delete command.

$ go run main.go insert -n Michalis -s Tsoukalos -t 2101112223
New record added successfully

This is the operation of the insert command. If you try to insert the same number
more than once, the server output is going to be Status code: 304.

The next section shows how to create an FTP server using net/http.

Creating file servers
Although a file server is not a web server per se, it is closely connected to web
services because it is being implemented using similar Go packages. Additionally,
file servers are frequently used for supporting the functionality of web servers and
web services.

Go offers the http.FileServer() handler for doing so, as well as http.ServeFile().
The biggest difference between these two is that http.FileServer() is an http.
Handler whereas http.ServeFile() is not. Additionally, http.ServeFile() is better
at serving single files whereas http.FileServer() is better at serving entire directory
trees.

A simple code example of http.FileServer() is presented in fileServer.go:

package main

import (
 "fmt"
 "log"
 "net/http"
)

Chapter 8

[425]

var PORT = ":8765"

func defaultHandler(w http.ResponseWriter, r *http.Request) {
 log.Println("Serving:", r.URL.Path, "from", r.Host)
 w.WriteHeader(http.StatusOK)
 Body := "Thanks for visiting!\n"
 fmt.Fprintf(w, "%s", Body)
}

This is the expected default handler of the HTTP server.

func main() {
 mux := http.NewServeMux()
 mux.HandleFunc("/", defaultHandler)

 fileServer := http.FileServer(http.Dir("/tmp/"))
 mux.Handle("/static/", http.StripPrefix("/static", fileServer))

mux.Handle() registers the file server as the handler for all URL paths that begin with
/static/. However, when a match is found, we strip the /static/ prefix before the
file server tries to serve such a request because /static/ is not part of the location
where the actual files are located. As far as Go is concerned, http.FileServer() is
just another handler.

 fmt.Println("Starting server on:", PORT)
 err := http.ListenAndServe(PORT, mux)
 fmt.Println(err)
}

Last, we start the HTTP server using http.ListenAndServe().

Using curl(1) for visiting /static/ produces the next kind of output, which is in
HTML format:

$ curl http://localhost:8765/static/
<pre>
AlTest1.out
adobegc.log
com.google.Keystone/
data.csv
fseventsd-uuid
powerlog/
</pre>

Building Web Services

[426]

You can also visit http://localhost:8765/static/ in your web browser or an FTP
client to browse the files and the directories of the FTP server.

The next subsection shows how to utilize http.ServeFile() to serve single files.

Downloading the contents of the phone book
application
In this subsection we create and implement an endpoint that allows us to download
the contents of a single file. The code creates a temporary file with a different
filename for each request with the contents of the phone book application. For
reasons of simplicity, the presented code supports two HTTP endpoints: one for the
default router and the other for the serving of the file. As we are serving a single file,
we are going to use http.ServeFile(), which replies to a request with the contents of
the specified file or directory.

Each temporary file is kept in the file system for 30 seconds before it is deleted.
To simulate a real-world situation, the presented utility reads data.csv, puts it
into a slice, and creates a file based on the contents of data.csv. The name of the
utility is getEntries.go—its most important code is the implementation of the
getFileHandler() function:

func getFileHandler(w http.ResponseWriter, r *http.Request) {
 var tempFileName string

 // Create temporary file name
 f, err := os.CreateTemp("", "data*.txt")
 tempFileName = f.Name()

The temporary path is created using os.CreateTemp() based on a given pattern and
by adding a random string to the end. If the pattern includes an *, then the randomly
generated string replaces the last *. The exact place where the file is created depends
on the operating system being used.

 // Remove the file
 defer os.Remove(tempFileName)

We do not want to end up having lots of temporary files, so we delete the file when
the handler function returns.

 // Save data to it
 err = saveCSVFile(tempFileName)

Chapter 8

[427]

 if err != nil {
 fmt.Println(err)
 w.WriteHeader(http.StatusNotFound)
 fmt.Fprintln(w, "Cannot create: "+tempFileName)
 return
 }

 fmt.Println("Serving ", tempFileName)

 http.ServeFile(w, r, tempFileName)

This is where the temporary file is sent to the client.

 // 30 seconds to get the file
 time.Sleep(30 * time.Second)
}

The time.Sleep() call delays the deletion of the temporary file for 30 seconds—you
can define any delay period you like.

As far as the main() function is concerned, getFileHandler() is a regular handler
function used in a mux.HandleFunc("/getContents/", getFileHandler) statement.
Therefore, each time there is a client request for /getContents/, the contents of a file
are returned to the HTTP client.

Running getEntries.go and visiting /getContents/ produces the next kind of
output:

$ curl http://localhost:8765/getContents/
Dimitris,Tsoukalos,2101112223,1617028128
Jane,Doe,0800123456,1608559903
Mike,Tsoukalos,2109416471,1617028196

As we are returning plain text data, the output is presented on screen.

The next section explains how to time out HTTP connections.

Chapter 10, Working with REST APIs, presents a different way
of creating a file server that supports both uploading and
downloading files by using the gorilla/mux package.

Building Web Services

[428]

Timing out HTTP connections
This section presents techniques for timing out HTTP connections that take too long
to finish and work either on the server or the client side.

Using SetDeadline()
The SetDeadline() function is used by net to set the read and write deadlines of
network connections. Due to the way the SetDeadline() function works, you need
to call SetDeadline() before any read or write operation. Keep in mind that Go uses
deadlines to implement timeouts, so you do not need to reset the timeout every time
your application receives or sends any data. The use of SetDeadline() is illustrated
in withDeadline.go and more specifically in the implementation of the Timeout()
function:

var timeout = time.Duration(time.Second)

func Timeout(network, host string) (net.Conn, error) {
 conn, err := net.DialTimeout(network, host, timeout)
 if err != nil {
 return nil, err
 }

 conn.SetDeadline(time.Now().Add(timeout))
 return conn, nil
}

The timeout global variable defines the timeout period used in the SetDeadline()
call.

The previous function is used in the next code inside main():

t := http.Transport{
 Dial: Timeout,
}

client := http.Client{
 Transport: &t,
}

Chapter 8

[429]

So, http.Transport uses Timeout() in the Dial field and http.Client uses http.
Transport. When you call the client.Get() method with the desired URL, which is
not shown here, Timeout is automatically being used because of the http.Transport
definition. So, if the Timeout function returns before the server response is received,
we have a timeout.

Using withDeadline.go produces the next kind of output:

$ go run withDeadline.go http://www.golang.org
Timeout value: 1s
<!DOCTYPE html>
...

The call was successful and took less than 1 second to finish, so there was no timeout.

$ go run withDeadline.go http://localhost:80
Timeout value: 1s
Get "http://localhost:80": read tcp 127.0.0.1:52492->127.0.0.1:80: i/o
timeout

This time we have a timeout as the server took too long to answer.

Next, we show how to time out a connection using the context package.

Setting the timeout period on the client side
This section presents a technique for timing out network connections that take too
long to finish on the client side. So, if the client does not receive a response from the
server in the desired time, it closes the connection. The timeoutClient.go source file,
without the import block, illustrates the technique.

package main

// For the import block go to the book code repository

var myUrl string
var delay int = 5
var wg sync.WaitGroup

Building Web Services

[430]

type myData struct {
 r *http.Response
 err error
}

In the previous code we define global variables and a structure that are going to be
used in the rest of the program.

func connect(c context.Context) error {
 defer wg.Done()
 data := make(chan myData, 1)
 tr := &http.Transport{}
 httpClient := &http.Client{Transport: tr}
 req, _ := http.NewRequest("GET", myUrl, nil)

This is where you initialize the variables of the HTTP connection. The data channel
is used in the select statement that follows. Additionally, the c context.Context
parameter comes with an embedded channel that is also used in the select
statement.

 go func() {
 response, err := httpClient.Do(req)
 if err != nil {
 fmt.Println(err)
 data <- myData{nil, err}
 return
 } else {
 pack := myData{response, err}
 data <- pack
 }
 }()

The previous goroutine is used for interacting with the HTTP server. There is
nothing special here as this is a regular interaction of an HTTP client with an HTTP
server.

 select {
 case <-c.Done():
 tr.CancelRequest(req)
 <-data
 fmt.Println("The request was canceled!")
 return c.Err()

Chapter 8

[431]

The code that this select block executes is based on whether the context is going to
time out or not. If the context times out first, then the client connection is canceled
using tr.CancelRequest(req).

 case ok := <-data:
 err := ok.err
 resp := ok.r
 if err != nil {
 fmt.Println("Error select:", err)
 return err
 }
 defer resp.Body.Close()

 realHTTPData, err := io.ReadAll(resp.Body)
 if err != nil {
 fmt.Println("Error select:", err)
 return err
 }
 fmt.Printf("Server Response: %s\n", realHTTPData)
 }
 return nil
}

The second select branch deals with the data received from the HTTP server, which
is handled in the usual way.

func main() {
 if len(os.Args) == 1 {
 fmt.Println("Need a URL and a delay!")
 return
 }

 myUrl = os.Args[1]
 if len(os.Args) == 3 {
 t, err := strconv.Atoi(os.Args[2])
 if err != nil {
 fmt.Println(err)
 return
 }
 delay = t
 }

Building Web Services

[432]

The URL is read directly because it is already a string value whereas the delay period
is converted into a numeric value using strconv.Atoi().

 fmt.Println("Delay:", delay)
 c := context.Background()
 c, cancel := context.WithTimeout(c, time.Duration(delay)*time.
Second)
 defer cancel()

The timeout period is defined by the context.WithTimeout() method. It is considered
a good practice to use context.Background() in the main() function or the init()
function of a package or in tests.

 fmt.Printf("Connecting to %s \n", myUrl)
 wg.Add(1)
 go connect(c)
 wg.Wait()
 fmt.Println("Exiting...")
}

The connect() function, which is also executed as a goroutine, either terminates
normally or when the cancel() function is executed—the cancel() function is what
calls the Done() method of c.

Working with timeoutClient.go and having a timeout situation generates the
following kind of output:

$ go run timeoutClient.go http://localhost:80
Delay: 5
Connecting to http://localhost:80
Get "http://localhost:80": net/http: request canceled
The request was canceled!
Exiting...

The next subsection shows how to time out an HTTP request on the server side.

Setting the timeout period on the server side
This section presents a technique for timing out network connections that take too
long to finish on the server side. This is much more important than the client side
because a server with too many open connections might not be able to process more
requests unless some of the already open connections close. This usually happens
for two reasons. The first reason is software bugs, and the second reason is when a
server is experiencing a Denial of Service (DoS) attack!

Chapter 8

[433]

The main() function in timeoutServer.go shows the technique:

func main() {
 PORT := ":8001"
 arguments := os.Args
 if len(arguments) != 1 {
 PORT = ":" + arguments[1]
 }
 fmt.Println("Using port number: ", PORT)

 m := http.NewServeMux()
 srv := &http.Server{
 Addr: PORT,
 Handler: m,
 ReadTimeout: 3 * time.Second,
 WriteTimeout: 3 * time.Second,
 }

This is where the timeout periods are defined. Note that you can define timeout
periods for both reading and writing processes. The value of the ReadTimeout field
specifies the maximum duration allowed to read the entire client request, including
the body, whereas the value of the WriteTimeout field specifies the maximum time
duration before timing out the sending of the client response.

 m.HandleFunc("/time", timeHandler)
 m.HandleFunc("/", myHandler)

 err := srv.ListenAndServe()
 if err != nil {
 fmt.Println(err)
 return
 }
}

Apart from the parameters in the definition of http.Server, the rest of the code is as
usual: it contains the handler functions and calls ListenAndServe() for starting the
HTTP server.

Working with timeoutServer.go generates no output. However, if a client connects
to it without sending any requests, the client connection is going to end after 3
seconds. The same is going to happen if it takes the client more than 3 seconds to
receive the server response.

Building Web Services

[434]

Exercises
• Put all handlers from www-phone.go in a different Go package and modify

www-phone.go accordingly. You need a different repository for storing the
new package.

• Modify wwwClient.go to save the HTML output to an external file.
• Include the functionality of getEntries.go in the phone book application.
• Implement a simple version of ab(1) using goroutines and channels. ab(1)

is an Apache HTTP server benchmarking tool.

Summary
In this chapter, we learned how to work with HTTP, how to create Docker images
from Go code, how to expose metrics to Prometheus, as well as how to develop
HTTP clients and servers. We have also updated the phone book application into
a web application and programmed a command-line client for it. Additionally, we
learned how to time out HTTP connections and develop file servers.

We are now ready to begin developing powerful and concurrent HTTP
applications—however, we are not done yet with HTTP. Chapter 10, Working with
REST APIs, is going to connect the dots and show how to develop powerful RESTful
servers and clients.

But first, we need to learn about working with TCP/IP, TCP, UDP, and WebSocket,
which are the subjects of the next chapter.

Additional resources
• Caddy server: https://caddyserver.com/
• Nginx server: https://nginx.org/en/
• Histograms in Prometheus: https://prometheus.io/docs/practices/

histograms/

• The net/http package: https://golang.org/pkg/net/http/
• Official Docker Go images: https://hub.docker.com/_/golang/

https://caddyserver.com/
https://nginx.org/en/
https://prometheus.io/docs/practices/histograms/
https://prometheus.io/docs/practices/histograms/
https://golang.org/pkg/net/http/
https://hub.docker.com/_/golang/

[435]

9
Working with TCP/IP

and WebSocket
This chapter teaches you how to work with the lower-level protocols of TCP/IP,
which are TCP and UDP, with the help of the net package so that we can develop
TCP/IP servers and clients. Additionally, this chapter illustrates how to develop
servers and clients for the WebSocket protocol, which is based on HTTP, as well as
UNIX domain sockets, for programming services that work on the local machine
only.

In more detail, this chapter covers:

• TCP/IP
• The net package
• Developing a TCP client
• Developing a TCP server
• Developing a UDP client
• Developing a UDP server
• Developing concurrent TCP servers
• Working with UNIX domain sockets
• Creating a WebSocket server
• Creating a WebSocket client

Working with TCP/IP and WebSocket

[436]

TCP/IP
TCP/IP is a family of protocols that help the internet operate. Its name comes from
its two most well-known protocols: TCP and IP. TCP stands for Transmission Control
Protocol. TCP software transmits data between machines using segments, which are
also called TCP packets. The main characteristic of TCP is that it is a reliable protocol,
which means that it makes sure that a packet was delivered without requiring any
extra code from the programmer. If there is no proof of packet delivery, TCP resends
that particular packet. Among other things, TCP packets can be used for establishing
connections, transferring data, sending acknowledgments, and closing connections.

When a TCP connection is established between two machines, a full-duplex virtual
circuit, similar to a telephone call, is created between those two machines. The
two machines constantly communicate to make sure that data is sent and received
correctly. If the connection fails for some reason, the two machines try to find the
problem and report to the relevant application. The TCP header of each packet
includes the source port and destination port fields. These two fields, plus the
source and destination IP addresses, are combined to uniquely identify every single
TCP connection. All these details are handled by TCP/IP as long as you provide
the required details without any extra effort.

IP stands for Internet Protocol. The main characteristic of IP is that it is not a
reliable protocol by nature. IP encapsulates the data that travels over a TCP/IP
network because it is responsible for delivering packets from the source host to the
destination host according to the IP addresses. IP must find an addressing method
for sending a packet to its destination effectively. Although there are dedicated
devices, called routers, that perform IP routing, every TCP/IP device has to
perform some basic routing. The first version of the IP protocol is now called IPv4
to differentiate it from the latest version of the IP protocol, which is called IPv6.
The main problem with IPv4 is that it is about to run out of available IP addresses,
which is the main reason for creating the IPv6 protocol. This happened because an
IPv4 address is represented using 32 bits only, which allows a total number of 232
(4,294,967,296) different IP addresses. On the other hand, IPv6 uses 128 bits to define
each one of its addresses. The format of an IPv4 address is 10.20.32.245 (four parts
separated by dots), while the format of an IPv6 address is 3fce:1706:4523:3:150:f8f
f:fe21:56cf (eight parts separated by colons).

When creating TCP/IP server processes, remember that port
numbers 0-1024 have restricted access and can only be used by the
root user, which means that you need administrative privileges to
use a port in that range. Running a process with root privileges is a
security risk and must be avoided.

Chapter 9

[437]

UDP (User Datagram Protocol) is based on IP, which means that it is also unreliable.
UDP is simpler than TCP, mainly because UDP is not reliable by design. As a result,
UDP messages can be lost, duplicated, or arrive out of order. Furthermore, packets
can arrive faster than the recipient can process them. So, UDP is used when speed is
more important than reliability.

This chapter implements both TCP and UDP software—TCP and UDP services are
the basis of the internet, and it is handy to know how to develop TCP/IP servers
and clients in Go. But first, let us talk about the nc(1) utility.

The nc(1) command-line utility
The nc(1) utility, which is also called netcat(1), comes in very handy when you
want to test TCP/IP servers and clients. Actually, nc(1) is a utility for everything
that involves TCP and UDP as well as IPv4 and IPv6, including opening TCP
connections, sending and receiving UDP messages, and acting as a TCP server.

You can use nc(1) as a client for a TCP service that runs on a machine with the
10.10.1.123 IP address and listens to port number 1234, as follows:

$ nc 10.10.1.123 1234

The -l option tells netcat(1) to act as a server, which means that netcat(1) starts
listening for incoming connections at the given port number. By default, nc(1) uses
the TCP protocol. However, if you execute nc(1) with the -u flag, then nc(1) uses
the UDP protocol, either as a client or as a server. Finally, the -v and -vv options tell
netcat(1) to generate verbose output, which can come in handy when you want to
troubleshoot network connections.

The net package
The net package of the Go Standard Library is all about TCP/IP, UDP, domain name
resolution, and UNIX domain sockets. The net.Dial() function is used to connect to
a network as a client, whereas the net.Listen() function is used to tell a Go program
to accept incoming network connections and thus act as a server. The return value of
both net.Dial() and net.Listen() is of the net.Conn data type, which implements
the io.Reader and io.Writer interfaces—this means that you can both read and
write to a net.Conn connection using code related to file I/O. The first parameter
of both net.Dial()and net.Listen() is the network type, but this is where their
similarities end.

Working with TCP/IP and WebSocket

[438]

The net.Dial() function is used for connecting to a remote server. The first
parameter of the net.Dial() function defines the network protocol that is going to
be used, while the second parameter defines the server address, which must also
include the port number. Valid values for the first parameter are tcp, tcp4 (IPv4-
only), tcp6 (IPv6-only), udp, udp4 (IPv4-only), udp6 (IPv6-only), ip, ip4 (IPv4-only),
ip6 (IPv6-only), unix (UNIX sockets), unixgram, and unixpacket. On the other hand,
valid values for net.Listen() are tcp, tcp4, tcp6, unix, and unixpacket.

Developing a TCP client
This section presents two equivalent ways of developing TCP clients.

Developing a TCP client with net.Dial()
First, we are going to present the most widely used way, which is implemented in
tcpC.go:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strings"
)

The import block contains packages such as bufio and fmt that also work with file
I/O operations.

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide host:port.")
 return
 }

Execute the go doc net.Listen and go doc net.Dial
commands for more detailed information regarding these two
functions.

Chapter 9

[439]

First, we read the details of the TCP server we want to connect to.

 connect := arguments[1]
 c, err := net.Dial("tcp", connect)
 if err != nil {
 fmt.Println(err)
 return
 }

With the connection details, we call net.Dial()—its first parameter is the protocol
we want to use, which in this case is tcp, and its second parameter is the connection
details. A successful net.Dial() call returns an open connection (a net.Conn
interface), which is a generic stream-oriented network connection.

 for {
 reader := bufio.NewReader(os.Stdin)
 fmt.Print(">> ")
 text, _ := reader.ReadString('\n')
 fmt.Fprintf(c, text+"\n")

 message, _ := bufio.NewReader(c).ReadString('\n')
 fmt.Print("->: " + message)
 if strings.TrimSpace(string(text)) == "STOP" {
 fmt.Println("TCP client exiting...")
 return
 }
 }
}

The last part of the TCP client keeps reading user input until the word STOP is given
as input—in this case, the client waits for the server response before terminating
after STOP because this is how the for loop is constructed. This mainly happens
because the server might have a useful answer for us, and we do not want to
miss that. All given user input is sent (written) to the open TCP connection using
fmt.Fprintf(), whereas bufio.NewReader() is used for reading data from the TCP
connection, just like you would do with a regular file.

Using tcpC.go to connect to a TCP server, which in this case is implemented with
nc(1), produces the next kind of output:

$ go run tcpC.go localhost:1234
>> Hello!
->: Hi from nc -l 1234

Working with TCP/IP and WebSocket

[440]

>> STOP
->: Bye!
TCP client exiting...

Lines beginning with >> denote user input, whereas lines beginning with -> signify
server messages. After sending STOP, we wait for the server response and then the
client ends the TCP connection. The previous code demonstrates how to create a
proper TCP client in Go with some extra logic in it (the STOP keyword).

The next subsection shows a different way of creating a TCP client.

Developing a TCP client that uses net.DialTCP()
This subsection presents an alternative way to develop a TCP client. The difference
lies in the Go functions that are being used for establishing the TCP connection,
which are net.DialTCP() and net.ResolveTCPAddr(), and not in the functionality
of the client.

The code of otherTCPclient.go is as follows:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strings"
)

Although we are working with TCP/IP connections, we need packages such as bufio
because UNIX treats network connections as files, so we are basically working with
I/O operations over networks.

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a server:port string!")
 return
 }

Chapter 9

[441]

We need to read the details of the TCP server we want to connect to, including the
desired port number. The utility cannot operate with default parameters when
working with TCP/IP unless we are developing a very specialized TCP client.

 connect := arguments[1]
 tcpAddr, err := net.ResolveTCPAddr("tcp4", connect)
 if err != nil {
 fmt.Println("ResolveTCPAddr:", err)
 return
 }

The net.ResolveTCPAddr() function is specific to TCP connections, hence its name,
and resolves the given address to a *net.TCPAddr value, which is a structure that
represents the address of a TCP endpoint—in this case, the endpoint is the TCP
server we want to connect to.

 conn, err := net.DialTCP("tcp4", nil, tcpAddr)
 if err != nil {
 fmt.Println("DialTCP:", err)
 return
 }

With the TCP endpoint at hand, we call net.DialTCP() to connect to the server.
Apart from the use of net.ResolveTCPAddr() and net.DialTCP(), the rest of the code
that has to do with the TCP client and TCP server interaction is exactly the same.

 for {
 reader := bufio.NewReader(os.Stdin)
 fmt.Print(">> ")
 text, _ := reader.ReadString('\n')
 fmt.Fprintf(conn, text+"\n")

 message, _ := bufio.NewReader(conn).ReadString('\n')
 fmt.Print("->: " + message)
 if strings.TrimSpace(string(text)) == "STOP" {
 fmt.Println("TCP client exiting...")
 conn.Close()
 return
 }
 }
}

Working with TCP/IP and WebSocket

[442]

Lastly, an infinite for loop is used for interacting with the TCP server. The TCP client
reads user data, which is sent to the server. After that, it reads data from the TCP
server. Once again, the STOP keyword ends the TCP connection on the client side
using the Close() method.

Working with otherTCPclient.go and interacting with a TCP server process
produces the next kind of output:

$ go run otherTCPclient.go localhost:1234
>> Hello!
->: Hi from nc -l 1234
>> STOP
->: Thanks for connection!
TCP client exiting...

The interaction is the same as with tcpC.go—we have just learned a different way of
developing TCP clients. If you want my opinion, I prefer the implementation found
in tcpC.go because it uses more generic functions. However, this is just personal
taste.

The next section shows how to program TCP servers.

Developing a TCP server
This section presents two ways of developing a TCP server that can interact with
TCP clients, just as we did with the TCP client.

Developing a TCP server with net.Listen()
The TCP server presented in this section, which uses net.Listen(), returns the
current date and time to the client in a single network packet. In practice, this
means that after accepting a client connection, the server gets the time and date
from the operating system and sends that data back to the client. The net.Listen()
function listens for connections, whereas the net.Accept() method waits for the
next connection and returns a generic Conn variable with the client information.
The code of tcpS.go is as follows:

package main

import (
 "bufio"
 "fmt"

Chapter 9

[443]

 "net"
 "os"
 "strings"
 "time"
)

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide port number")
 return
 }

The TCP server should know about the port number it is going to use—this is given
as a command-line argument.

 PORT := ":" + arguments[1]
 l, err := net.Listen("tcp", PORT)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer l.Close()

The net.Listen() function listens for connections and is what makes that particular
program a server process. If the second parameter of net.Listen() contains a port
number without an IP address or a hostname, net.Listen() listens to all available
IP addresses of the local system, which is the case here.

 c, err := l.Accept()
 if err != nil {
 fmt.Println(err)
 return
 }

We just call Accept() and wait for a client connection—Accept() blocks until a
connection comes. There is something unusual with this particular TCP server: it can
only serve the first TCP client that is going to connect to it because the Accept() call
is outside of the for loop and therefore is called only once. Each individual client
should be specified by a different Accept() call.

Working with TCP/IP and WebSocket

[444]

Correcting that is left as an exercise for the reader.

 for {
 netData, err := bufio.NewReader(c).ReadString('\n')
 if err != nil {
 fmt.Println(err)
 return
 }
 if strings.TrimSpace(string(netData)) == "STOP" {
 fmt.Println("Exiting TCP server!")
 return
 }

 fmt.Print("-> ", string(netData))
 t := time.Now()
 myTime := t.Format(time.RFC3339) + "\n"
 c.Write([]byte(myTime))
 }
}

This endless for loop keeps interacting with the same TCP client until the word
STOP is sent from the client. As it happened with the TCP clients, bufio.NewReader()
is used for reading data from the network connection, whereas Write() is used for
sending data to the TCP client.

Running tcpS.go and interacting with a TCP client produces the next kind of output:

$ go run tcpS.go 1234
-> Hello!
-> Have to leave now!
EOF

The server connection ended automatically with the client connection because the
for loop concluded when bufio.NewReader(c).ReadString('\n') had nothing more
to read. The client was nc(1), which produced the next output:

$ nc localhost 1234
Hello!
2021-04-12T08:53:32+03:00
Have to leave now!
2021-04-12T08:53:51+03:00

Chapter 9

[445]

In order to exit nc(1), we need to press Ctrl + D, which is EOF (End Of File) in UNIX.

So, we now know how to develop a TCP server in Go. As it happened with the TCP
client, there is an alternative way to develop a TCP server, which is presented in the
next subsection.

Developing a TCP server that uses
net.ListenTCP()
This time, this alternative version of the TCP server implements the echo service.
Put simply, the TCP server sends back to the client the data that was received by
the client.

The code of otherTCPserver.go is as follows:

package main

import (
 "fmt"
 "net"
 "os"
 "strings"
)

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a port number!")
 return
 }

 SERVER := "localhost" + ":" + arguments[1]
 s, err := net.ResolveTCPAddr("tcp", SERVER)
 if err != nil {
 fmt.Println(err)
 return
 }

The previous code gets the TCP port number value as a command-line argument,
which is used in net.ResolveTCPAddr()—this is required to define the TCP port
number the TCP server is going to listen to.

Working with TCP/IP and WebSocket

[446]

That function only works with TCP, hence its name.

 l, err := net.ListenTCP("tcp", s)
 if err != nil {
 fmt.Println(err)
 return
 }

Similarly, net.ListenTCP() only works with TCP and is what makes that program a
TCP server ready to accept incoming connections.

 buffer := make([]byte, 1024)
 conn, err := l.Accept()
 if err != nil {
 fmt.Println(err)
 return
 }

As before, due to the place where Accept() is called, this particular implementation
can work with a single client only. This is used for reasons of simplicity. The
concurrent TCP server that is developed later on in this chapter puts the Accept()
call inside the endless for loop.

 for {
 n, err := conn.Read(buffer)
 if err != nil {
 fmt.Println(err)
 return
 }

 if strings.TrimSpace(string(buffer[0:n])) == "STOP" {
 fmt.Println("Exiting TCP server!")
 conn.Close()
 return
 }

You need to use strings.TrimSpace() in order to remove any space characters from
your input and compare the result with STOP, which has a special meaning in this
implementation. When the STOP keyword is received from the client, the server
closes the connection using the Close() method.

 fmt.Print("> ", string(buffer[0:n-1]), "\n")
 _, err = conn.Write(buffer)

Chapter 9

[447]

 if err != nil {
 fmt.Println(err)
 return
 }
 }
}

All previous code is for interacting with the TCP client until the client decides to
close the connection.

Running otherTCPserver.go and interacting with a TCP client produces the next
kind of output:

$ go run otherTCPserver.go 1234
> Hello from the client!
Exiting TCP server!

The first line that begins with > is the client message, whereas the second line is the
server output when getting the STOP message from the client. Therefore, the TCP
server processes client requests as programmed and exits when it gets the STOP
message, which is the expected behavior.

The next section is about developing UDP clients.

Developing a UDP client
This section demonstrates how to develop a UDP client that can interact with UDP
services. The code of udpC.go is as follows:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strings"
)

func main() {
 arguments := os.Args
 if len(arguments) == 1 {

Working with TCP/IP and WebSocket

[448]

 fmt.Println("Please provide a host:port string")
 return
 }
 CONNECT := arguments[1]

This is how we get the UDP server details from the user.

 s, err := net.ResolveUDPAddr("udp4", CONNECT)
 c, err := net.DialUDP("udp4", nil, s)

The previous two lines declare that we are using UDP and that we want to connect
to the UDP server that is specified by the return value of net.ResolveUDPAddr().
The actual connection is initiated using net.DialUDP().

 if err != nil {
 fmt.Println(err)
 return
 }

 fmt.Printf("The UDP server is %s\n", c.RemoteAddr().String())
 defer c.Close()

This part of the program finds the details of the UDP server by calling the
RemoteAddr() method.

 for {
 reader := bufio.NewReader(os.Stdin)
 fmt.Print(">> ")
 text, _ := reader.ReadString('\n')
 data := []byte(text + "\n")
 _, err = c.Write(data)

Data is read from the user using bufio.NewReader(os.Stdin) and is written to the
UDP server using Write().

 if strings.TrimSpace(string(data)) == "STOP" {
 fmt.Println("Exiting UDP client!")
 return
 }

If the input read from the user is the STOP keyword, then the connection is
terminated.

Chapter 9

[449]

 if err != nil {
 fmt.Println(err)
 return
 }

 buffer := make([]byte, 1024)
 n, _, err := c.ReadFromUDP(buffer)

Data is read from the UDP connection using the ReadFromUDP() method.

 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Printf("Reply: %s\n", string(buffer[0:n]))
 }
}

The for loop is going to keep going forever until the STOP keyword is received as
input or the program is terminated in some other way.

Working with udpC.go is as simple as follows—the client side is implemented using
nc(1):

$ go run udpC.go localhost:1234
The UDP server is 127.0.0.1:1234

127.0.0.1:1234 is the value of c.RemoteAddr().String(), which shows the details of
the UDP server we have connected to.

>> Hello!
Reply: Hi from the server

Our client sent Hello! to the UDP server and received Hi from the server back.

>> Have to leave now :)
Reply: OK - bye from nc -l -u 1234

Our client sent Have to leave now :) to the UDP server and received OK - bye from
nc -l -u 1234 back.

>> STOP
Exiting UDP client!

Working with TCP/IP and WebSocket

[450]

Finally, after sending the STOP keyword to the server, the client prints Exiting UDP
client! and terminates—the message is defined in the Go code and can be anything
you want.

The next section is about programming a UDP server.

Developing a UDP server
This section shows how to develop a UDP server, which generates and returns
random numbers to its clients. The code for the UDP server (udpS.go) is as follows:

package main

import (
 "fmt"
 "math/rand"
 "net"
 "os"
 "strconv"
 "strings"
 "time"
)

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a port number!")
 return
 }
 PORT := ":" + arguments[1]

The UDP port number the server is going to listen to is provided as a command-line
argument.

 s, err := net.ResolveUDPAddr("udp4", PORT)
 if err != nil {
 fmt.Println(err)
 return
 }

Chapter 9

[451]

The net.ResolveUDPAddr() function creates a UDP endpoint that is going to be used
to create the server.

 connection, err := net.ListenUDP("udp4", s)
 if err != nil {
 fmt.Println(err)
 return
 }

The net.ListenUDP("udp4", s) function call makes this process a server for the udp4
protocol using the details specified by its second parameter.

 defer connection.Close()
 buffer := make([]byte, 1024)

The buffer variable stores a byte slice and is used to read data from the UDP
connection.

 rand.Seed(time.Now().Unix())

 for {
 n, addr, err := connection.ReadFromUDP(buffer)
 fmt.Print("-> ", string(buffer[0:n-1]))

The ReadFromUDP() and WriteToUDP() methods are used to read data from a UDP
connection and write data to a UDP connection, respectively. Additionally, due to
the way UDP operates, the UDP server can serve multiple clients.

 if strings.TrimSpace(string(buffer[0:n])) == "STOP" {
 fmt.Println("Exiting UDP server!")
 return
 }

The UDP server terminates when any one of the clients sends the STOP message.
Aside from this, the for loop is going to keep running forever.

 data := []byte(strconv.Itoa(random(1, 1001)))
 fmt.Printf("data: %s\n", string(data))

A byte slice is stored in the data variable and used to write the desired data to the
client.

 _, err = connection.WriteToUDP(data, addr)
 if err != nil {

Working with TCP/IP and WebSocket

[452]

 fmt.Println(err)
 return
 }
 }
}

Working with udpS.go is as simple as the following:

$ go run udpS.go 1234
-> Hello from client!
data: 395

Lines beginning with -> show data coming from a client. Lines beginning with data
show random numbers generated by the UDP server—in this case, 395.

-> Going to terminate the connection now.
data: 499

The previous two lines show another interaction with a UDP client.

-> STOP
Exiting UDP server!

Once the UDP server receives the STOP keyword from the client, it closes the
connection and exits.

On the client side, which uses udpC.go, we have the next interaction:

$ go run udpC.go localhost:1234
The UDP server is 127.0.0.1:1234
>> Hello from client!
Reply: 395

The client sends the Hello from client! message to the server and receives 395.

>> Going to terminate the connection now.
Reply: 499

The client sends Going to terminate the connection now. to the server and
receives the 499 random number.

>> STOP
Exiting UDP client!

Chapter 9

[453]

When the client gets STOP as user input, it terminates the UDP connection and exits.

The next section shows how to develop a concurrent TCP server that uses goroutines
for serving its clients.

Developing concurrent TCP servers
This section teaches a pattern for developing concurrent TCP servers, which are
servers that are using separate goroutines to serve their clients following a successful
Accept() call. Therefore, such servers can serve multiple TCP clients at the same
time. This is how real-world production servers and services are implemented.

The code of concTCP.go is as follows:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strconv"
 "strings"
)

var count = 0

func handleConnection(c net.Conn) {
 fmt.Print(".")

The previous statement is not required—it just informs us that a new client has been
connected.

 for {
 netData, err := bufio.NewReader(c).ReadString('\n')
 if err != nil {
 fmt.Println(err)
 return
 }

 temp := strings.TrimSpace(string(netData))
 if temp == "STOP" {

Working with TCP/IP and WebSocket

[454]

 break
 }
 fmt.Println(temp)
 counter := "Client number: " + strconv.Itoa(count) + "\n"
 c.Write([]byte(string(counter)))
 }

The for loop makes sure that handleConnection() is not going to exit automatically.
Once again, the STOP keyword stops the current client connection—however, the
server process, as well as all other active client connections, are going to keep
running.

 c.Close()
}

This is the end of the function that is executed as a goroutine to serve clients. All
you need in order to serve a client is a net.Conn parameter with the client details.
After reading client data, the server sends back to the client a message indicating
the number of the client that is being served so far.

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a port number!")
 return
 }

 PORT := ":" + arguments[1]
 l, err := net.Listen("tcp4", PORT)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer l.Close()

 for {
 c, err := l.Accept()
 if err != nil {
 fmt.Println(err)
 return
 }
 go handleConnection(c)
 count++

Chapter 9

[455]

 }
}

Each time a new client connects to the server, the count variable is increased. Each
TCP client is served by a separate goroutine that executes the handleConnection()
function. This frees the server process and allows it to accept new connections. Put
simply, while multiple TCP clients are served, the TCP server is free to interact with
more TCP clients. As before, new TCP clients are connected using the Accept()
function.

Working with concTCP.go produces the next kind of output:

$ go run concTCP.go 1234
.Hello
.Hi from nc localhost 1234

The first line of output is from the first TCP client, whereas the second line is from
the second TCP client. This means that the concurrent TCP server works as expected.
Therefore, when you want to be able to serve multiple TCP clients in your TCP
services, you can use the technique and code presented as a template for developing
your TCP servers.

The next section shows how to work with UNIX domain sockets, which are really
fast for interactions on the local machine only.

Working with UNIX domain sockets
A UNIX Domain Socket or Inter-Process Communication (IPC) socket is a data
communications endpoint that allows you to exchange data between processes that
run on the same machine. You might ask, why use UNIX domain sockets instead of
TCP/IP connections for processes that exchange data on the same machine? First,
because UNIX domain sockets are faster than TCP/IP connections and second,
because UNIX domain sockets require fewer resources than TCP/IP connections. So,
you can use UNIX domain sockets when both the clients and the server are on the
same machine.

A UNIX domain socket server
This section illustrates how to develop a UNIX domain socket server. Although we
do not have to deal with TCP ports and network connections, the code presented is
very similar to the code of the TCP server as found in tcpS.go and concTCP.go. The
presented server implements the echo service.

Working with TCP/IP and WebSocket

[456]

The source code of socketServer.go is as follows:

package main

import (
 "fmt"
 "net"
 "os"
)

func echo(c net.Conn) {

The echo() function is used for serving client requests, hence the use of the net.Conn
parameter that holds the client's details:

 for {
 buf := make([]byte, 128)
 n, err := c.Read(buf)
 if err != nil {
 fmt.Println("Read:", err)
 return
 }

We read data from the socket connection using Read() inside a for loop.

 data := buf[0:n]
 fmt.Print("Server got: ", string(data))
 _, err = c.Write(data)
 if err != nil {
 fmt.Println("Write:", err)
 return
 }
 }
}

In this second part of echo(), we send back to the client the data that the client sent
to us. The buf[0:n] notation makes sure that we are going to send back the same
amount of data that was read even if the size of the buffer is bigger.

This function serves all client connections—as you are going to see in a while, it is
executed as a goroutine, which is the main reason that it does not return any values.

Chapter 9

[457]

You cannot tell whether this function serves TCP/IP connections or UNIX socket
domain connections, which mainly happens because UNIX treats all connections as
files.

func main() {
 if len(os.Args) == 1 {
 fmt.Println("Need socket path")
 return
 }
 socketPath := os.Args[1]

This is the part where we specify the socket file that is going to be used by the server
and its clients. In this case, the path to the socket file is given as a command-line
argument.

 _, err := os.Stat(socketPath)
 if err == nil {
 fmt.Println("Deleting existing", socketPath)
 err := os.Remove(socketPath)
 if err != nil {
 fmt.Println(err)
 return
 }
 }

If the socket file already exists, you should delete it before the program continues—
net.Listen() creates that file again.

 l, err := net.Listen("unix", socketPath)
 if err != nil {
 fmt.Println("listen error:", err)
 return
 }

What makes this a UNIX domain socket server is the use of net.Listen() with the
"unix" parameter. In this case, we need to provide net.Listen() with the path of the
socket file.

 for {
 fd, err := l.Accept()
 if err != nil {
 fmt.Println("Accept error:", err)

Working with TCP/IP and WebSocket

[458]

 return
 }
 go echo(fd)
 }
}

Each client connection is handled by a goroutine—in this sense, this is a concurrent
UNIX domain socket server that can work with multiple clients! So, if you need to
serve thousands of domain socket clients on a production server, this is the way to
go!

In the next section, we are going to see the server in action as it is going to interact
with the UNIX domain socket client that we are going to create.

A UNIX domain socket client
This subsection shows a UNIX domain socket client implementation, which can be
used to communicate with a domain socket server, such as the one developed in the
previous subsection. The relevant code can be found in socketClient.go:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strings"
 "time"
)

func main() {
 if len(os.Args) == 1 {
 fmt.Println("Need socket path")
 return
 }
 socketPath := os.Args[1]

This is the part where we get from the user the socket file that is going to be used—
the socket file should already exist and be handled by the UNIX domain socket
server.

Chapter 9

[459]

 c, err := net.Dial("unix", socketPath)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer c.Close()

The net.Dial() function is used for connecting to the socket.

 for {
 reader := bufio.NewReader(os.Stdin)
 fmt.Print(">> ")
 text, _ := reader.ReadString('\n')

 _, err = c.Write([]byte(text))

Here, we convert user input into a byte slice and send it to the server using Write().

 if err != nil {
 fmt.Println("Write:", err)
 break
 }

 buf := make([]byte, 256)

 n, err := c.Read(buf[:])
 if err != nil {
 fmt.Println(err, n)
 return
 }
 fmt.Print("Read:", string(buf[0:n]))

This fmt.Print() statement prints as many characters from the buf slice as the
number of characters read from the Read() method using the buf[0:n] notation.

 if strings.TrimSpace(string(text)) == "STOP" {
 fmt.Println("Exiting UNIX domain socket client!")
 return
 }

Working with TCP/IP and WebSocket

[460]

If the word STOP is given as input, then the client returns and therefore closes the
connection to the server. Generally speaking, it is always good to have a way of
gracefully exiting such a utility.

 time.Sleep(5 * time.Second)
 }
}

The time.Sleep() call is used to delay the for loop and emulate the operation of a
real program.

Working with both socketServer.go and socketClient.go, provided that the server
is executed first, generates the next kind of output:

$ go run socketServer.go /tmp/packt.socket
Server got: Hello!
Server got: STOP
Read: EOF

Although the client connection ended, the server continues to run and waits for more
client requests.

On the client side, we have the following:

$ go run socketClient.go /tmp/packt.socket
>> Hello!
Read: Hello!
>> STOP
Read: STOP
Exiting UNIX domain socket client!

In the previous two sections, we learned how to create UNIX domain socket clients
and servers that are faster than TCP/IP servers but work on the same machine only.

The sections that follow concern the WebSocket protocol.

Creating a WebSocket server
The WebSocket protocol is a computer communications protocol that provides
full-duplex (transmission of data in two directions simultaneously) communication
channels over a single TCP connection. The WebSocket protocol is defined in RFC
6455 (https://tools.ietf.org/html/rfc6455) and uses ws:// and wss:// instead of
http:// and https://, respectively. Therefore, the client should begin a WebSocket
connection by using a URL that starts with ws://.

https://tools.ietf.org/html/rfc6455

Chapter 9

[461]

In this section, we are going to develop a small yet fully functional WebSocket server
using the gorilla/websocket (https://github.com/gorilla/websocket) module. The
server implements the Echo service, which means that it automatically returns its
input to the client.

The golang.org/x/net/websocket package offers another way of developing
WebSocket clients and servers. However, according to its documentation, golang.
org/x/net/websocket lacks some features and it is advised that you use https://
godoc.org/github.com/gorilla/websocket, the one used here, or https://godoc.
org/nhooyr.io/websocket instead.

The advantages of the WebSocket protocol include the following:

• A WebSocket connection is a full-duplex, bidirectional communications
channel. This means that a server does not need to wait to read from a client
to send data to the client and vice versa.

• WebSocket connections are raw TCP sockets, which means that they do not
have the overhead required to establish an HTTP connection.

• WebSocket connections can also be used for sending HTTP data. However,
plain HTTP connections cannot work as WebSocket connections.

• WebSocket connections live until they are killed, so there is no need to
reopen them all the time.

• WebSocket connections can be used for real-time web applications.
• Data can be sent from the server to the client at any time, without the client

even requesting it.
• WebSocket is part of the HTML5 specification, which means that it is

supported by all modern web browsers.

Before showing the server implementation, it would be good for you to know
that the websocket.Upgrader method of the gorilla/websocket package upgrades
an HTTP server connection to the WebSocket protocol and allows you to define
the parameters of the upgrade. After that, your HTTP connection is a WebSocket
connection, which means that you will not be allowed to execute statements that
work with the HTTP protocol.

The next subsection shows the implementation of the server.

The implementation of the server
This subsection presents the implementation of the WebSocket server that
implements the echo service, which can be really handy when testing network
connections.

https://github.com/gorilla/websocket
http://golang.org/x/net/websocket
http://golang.org/x/net/websocket
https://godoc.org/github.com/gorilla/websocket
https://godoc.org/github.com/gorilla/websocket
https://godoc.org/nhooyr.io/websocket
https://godoc.org/nhooyr.io/websocket

Working with TCP/IP and WebSocket

[462]

The GitHub repository used for keeping the code can be found at https://
github.com/mactsouk/ws. If you want to follow along with this section, you should
download that repository and put it inside ~/go/src—in my case, it was put inside
~/go/src/github.com/mactsouk, in the ws folder.

The implementation of the WebSocket server can be found in ws.go, which contains
the next code:

package main

import (
 "fmt"
 "log"
 "net/http"
 "os"
 "time"

 "github.com/gorilla/websocket"
)

This is the external package used for working with the WebSocket protocol.

var PORT = ":1234"

var upgrader = websocket.Upgrader{
 ReadBufferSize: 1024,
 WriteBufferSize: 1024,
 CheckOrigin: func(r *http.Request) bool {
 return true
 },
}

This is where the parameters of websocket.Upgrader are defined. They are going to
be used shortly.

func rootHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Welcome!\n")

The GitHub repository contains a Dockerfile file for producing a
Docker image from the WebSocket server source file.

https://github.com/mactsouk/ws
https://github.com/mactsouk/ws

Chapter 9

[463]

 fmt.Fprintf(w, "Please use /ws for WebSocket!")
}

This is a regular HTTP handler function.

func wsHandler(w http.ResponseWriter, r *http.Request) {
 log.Println("Connection from:", r.Host)

 ws, err := upgrader.Upgrade(w, r, nil)
 if err != nil {
 log.Println("upgrader.Upgrade:", err)
 return
 }
 defer ws.Close()

A WebSocket server application calls the Upgrader.Upgrade method in order to get a
WebSocket connection from an HTTP request handler. Following a successful call to
Upgrader.Upgrade, the server begins working with the WebSocket connection and the
WebSocket client.

 for {
 mt, message, err := ws.ReadMessage()
 if err != nil {
 log.Println("From", r.Host, "read", err)
 break
 }
 log.Print("Received: ", string(message))
 err = ws.WriteMessage(mt, message)
 if err != nil {
 log.Println("WriteMessage:", err)
 break
 }
 }
}

The for loop in wsHandler() handles all incoming messages for /ws—you can use
any technique you want. Additionally, in the presented implementation, only the
client is allowed to close an existing WebSocket connection unless there is a network
issue, or the server process is killed.

Working with TCP/IP and WebSocket

[464]

Last, remember that in a WebSocket connection, you cannot use fmt.Fprintf()
statements for sending data to the WebSocket client—if you use any of these, or
any other call that can implement the same functionality, the WebSocket connection
fails and you are not going to be able to send or receive any data. Therefore, the
only way to send and receive data in a WebSocket connection implemented with
gorilla/websocket is through WriteMessage() and ReadMessage() calls, respectively.
Of course, you can always implement the desired functionality on your own by
working with raw network data, but implementing this goes beyond the scope of
this book.

func main() {
 arguments := os.Args
 if len(arguments) != 1 {
 PORT = ":" + arguments[1]
 }

If there is not a command-line argument, use the default port number stored in PORT.

 mux := http.NewServeMux()
 s := &http.Server{
 Addr: PORT,
 Handler: mux,
 IdleTimeout: 10 * time.Second,
 ReadTimeout: time.Second,
 WriteTimeout: time.Second,
 }

These are the details of the HTTP server that also handles WebSocket connections.

 mux.Handle("/", http.HandlerFunc(rootHandler))
 mux.Handle("/ws", http.HandlerFunc(wsHandler))

The endpoint used for WebSocket can be anything you want—in this case, it is
/ws. Additionally, you can have multiple endpoints that work with the WebSocket
protocol.

 log.Println("Listening to TCP Port", PORT)
 err := s.ListenAndServe()
 if err != nil {
 log.Println(err)
 return
 }
}

Chapter 9

[465]

The code presented uses log.Println() instead of fmt.Println() for printing
messages—as this is a server process, using log.Println() is a much better choice
than fmt.Println() because logging information is sent to files that can be examined
at a later time. However, during development, you might prefer fmt.Println()
calls and avoid writing to your log files because you can see your data on screen
immediately without having to look elsewhere.

The server implementation is short, yet fully functional. The single most important
call in the code is Upgrader.Upgrade because this is what upgrades an HTTP
connection to a WebSocket connection.

Getting and running the code from GitHub requires the following steps—most of the
steps have to do with module initialization and downloading the required packages:

$ cd ~/go/src/github.com/mactsouk/
$ git clone https://github.com/mactsouk/ws.git
$ cd ws
$ go mod init
$ go mod tidy
$ go mod download
$ go run ws.go

To test that server, you need to have a client. As we have not developed our own
client so far, we are going to test the WebSocket server using two other means.

Using websocat
websocat is a command-line utility that can help you test WebSocket connections.
However, as websocat is not installed by default, you need to install it on your
machine using your package manager of choice. You can use it as follows, provided
that there is a WebSocket server at the desired address:

$ websocat ws://localhost:1234/ws
Hello from websocat!

This is what we type and send to the server.

Hello from websocat!

This is what we get back from the WebSocket server, which implements the echo
service—different WebSocket servers implement different functionality.

Bye!

Working with TCP/IP and WebSocket

[466]

Again, the previous line is user input given to websocat.

Bye!

And the last line is the data sent back from the server. The connection was closed by
pressing Ctrl + D on the websocat client.

Should you wish for a more verbose output from websocat, you can execute it with
the -v flag:

$ websocat -v ws://localhost:1234/ws
[INFO websocat::lints] Auto-inserting the line mode
[INFO websocat::stdio_threaded_peer] get_stdio_peer (threaded)
[INFO websocat::ws_client_peer] get_ws_client_peer
[INFO websocat::ws_client_peer] Connected to ws
Hello from websocat!
Hello from websocat!
Bye!
Bye!
[INFO websocat::sessionserve] Forward finished
[INFO websocat::ws_peer] Received WebSocket close message
[INFO websocat::sessionserve] Reverse finished
[INFO websocat::sessionserve] Both directions finished

In both cases, the output from our WebSocket server should be similar to the
following:

$ go run ws.go
2021/04/10 20:54:30 Listening to TCP Port :1234
2021/04/10 20:54:42 Connection from: localhost:1234
2021/04/10 20:54:57 Received: Hello from websocat!
2021/04/10 20:55:03 Received: Bye!
2021/04/10 20:55:03 From localhost:1234 read websocket: close 1005 (no
status)

The next subsection illustrates how to test the WebSocket server using HTML and
JavaScript.

Using JavaScript
The second way of testing the WebSocket server is by creating a web page with some
HTML and JavaScript code. This technique gives you more control over what is
happening, but requires more code and familiarity with HTML and JavaScript.

Chapter 9

[467]

The HTML page with the JavaScript code that makes it act like a WebSocket client is
the following:

<!DOCTYPE html>
<meta charset="utf-8">

<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-
scale=1.0" />
 <meta http-equiv="X-UA-Compatible" content="ie=edge" />
 <title>Testing a WebSocket Server</title>
 </head>
 <body>
 <h2>Hello There!</h2>

 <script>
 let ws = new WebSocket("ws://localhost:1234/ws");

This is the single most important JavaScript statement because this is where you
specify the address of the WebSocket server, the port number, and the endpoint you
want to connect to.

 console.log("Trying to connect to server.");

 ws.onopen = () => {
 console.log("Connected!");
 ws.send("Hello From the Client!")
 };

The ws.onopen event is used for making sure that the WebSocket connection is open,
whereas the send() method is used for sending messages to the WebSocket server.

 ws.onmessage = function(event) {
 console.log(`[message] Data received from server: ${event.
data}`);
 ws.close(1000, "Work complete");
 };

Working with TCP/IP and WebSocket

[468]

The onmessage event is triggered each time the WebSocket server sends a new
message—however, in our case, the connection is closed as soon as the first message
from the server is received.

Lastly, the close() JavaScript method is used for closing a WebSocket connection—
in our case, the close() call is included in the onmessage event. Calling close()
triggers the onclose event, which contains the code that follows:

 ws.onclose = event => {
 if (event.wasClean) {
 console.log(`[close] Connection closed cleanly,
code=${event.code} reason=${event.reason}`);
 }
 console.log("Socket Closed Connection: ", event);
 };

 ws.onerror = error => {
 console.log("Socket Error: ", error);
 };

 </script>
 </body>
</html>

You can see the output of the JavaScript code by visiting the JavaScript console on
your favorite web browser, which in this case is Google Chrome. The following
screenshot shows the generated output.

Chapter 9

[469]

Figure 9.1: Interacting with the WebSocket server using JavaScript

Working with TCP/IP and WebSocket

[470]

For the WebSocket interaction defined in test.html, the WebSocket server generated
the following output in the command line:

2021/04/10 21:43:22 Connection from: localhost:1234
2021/04/10 21:43:22 Received: Hello From the Client!
2021/04/10 21:43:22 From localhost:1234 read websocket: close 1000
(normal): Work complete

Both ways verify that the WebSocket server works as expected: the client can connect
to the server, the server sends data that is received by the client, and the client
closes the connection with the server successfully. So, it is time to develop our own
WebSocket client in Go.

Creating a WebSocket client
This subsection shows how to program a WebSocket client in Go. The client reads
user data that sends it to the server and reads the server response. The client
directory of https://github.com/mactsouk/ws contains the implementation of the
WebSocket client—I find it more convenient to include both implementations in the
same repository.

As with the WebSocket server, the gorilla/websocket package is going to help us
develop the WebSocket client.

The code of ./client/client.go is as follows:

package main

import (
 "bufio"
 "fmt"
 "log"
 "net/url"
 "os"
 "os/signal"
 "syscall"
 "time"

We are going to see gorilla in the next chapter when working
with RESTful services.

https://github.com/mactsouk/ws

Chapter 9

[471]

 "github.com/gorilla/websocket"
)

var SERVER = ""
var PATH = ""
var TIMESWAIT = 0
var TIMESWAITMAX = 5
var in = bufio.NewReader(os.Stdin)

The in variable is just a shortcut for bufio.NewReader(os.Stdin).

func getInput(input chan string) {
 result, err := in.ReadString('\n')
 if err != nil {
 log.Println(err)
 return
 }
 input <- result
}

The getInput() function, which is executed as a goroutine, gets user input that is
transferred to the main() function via the input channel. Each time the program
reads some user input, the old goroutine ends and a new getInput() goroutine
begins in order to get new input.

func main() {
 arguments := os.Args
 if len(arguments) != 3 {
 fmt.Println("Need SERVER + PATH!")
 return
 }

 SERVER = arguments[1]
 PATH = arguments[2]
 fmt.Println("Connecting to:", SERVER, "at", PATH)

 interrupt := make(chan os.Signal, 1)
 signal.Notify(interrupt, os.Interrupt)

Working with TCP/IP and WebSocket

[472]

The WebSocket client handles UNIX interrupts with the help of the interrupt
channel. When the appropriate signal is caught (syscall.SIGINT), the WebSocket
connection with the server is closed with the help of the websocket.CloseMessage
message. This is how professional tools work!

 input := make(chan string, 1)
 go getInput(input)

 URL := url.URL{Scheme: "ws", Host: SERVER, Path: PATH}
 c, _, err := websocket.DefaultDialer.Dial(URL.String(), nil)
 if err != nil {
 log.Println("Error:", err)
 return
 }
 defer c.Close()

The WebSocket connection begins with a call to websocket.DefaultDialer.Dial().
Everything that goes to the input channel is transferred to the WebSocket server
using the WriteMessage() method.

 done := make(chan struct{})
 go func() {
 defer close(done)
 for {
 _, message, err := c.ReadMessage()
 if err != nil {
 log.Println("ReadMessage() error:", err)
 return
 }
 log.Printf("Received: %s", message)
 }
 }()

Another goroutine, which this time is implemented using an anonymous Go
function, is responsible for reading data from the WebSocket connection using the
ReadMessage() method.

 for {
 select {
 case <-time.After(4 * time.Second):
 log.Println("Please give me input!", TIMESWAIT)
 TIMESWAIT++
 if TIMESWAIT > TIMESWAITMAX {

Chapter 9

[473]

 syscall.Kill(syscall.Getpid(), syscall.SIGINT)
 }

The syscall.Kill(syscall.Getpid(), syscall.SIGINT) statement sends the
interrupt signal to the program using Go code. According to the logic of client.go,
the interrupt signal makes the program close the WebSocket connection with the
server and terminate its execution. This only happens if the current number of
timeout periods is bigger than a predefined global value.

 case <-done:
 return
 case t := <-input:
 err := c.WriteMessage(websocket.TextMessage, []byte(t))
 if err != nil {
 log.Println("Write error:", err)
 return
 }
 TIMESWAIT = 0

If you get user input, the current number of the timeout periods (TIMESWAIT) is reset
and new input is read.

 go getInput(input)
 case <-interrupt:
 log.Println("Caught interrupt signal - quitting!")
 err := c.WriteMessage(websocket.CloseMessage, websocket.
FormatCloseMessage(websocket.CloseNormalClosure, ""))

Just before we close the client connection, we send websocket.CloseMessage to the
server in order to do the closing the right way.

 if err != nil {
 log.Println("Write close error:", err)
 return
 }
 select {
 case <-done:
 case <-time.After(2 * time.Second):
 }
 return
 }
 }
}

Working with TCP/IP and WebSocket

[474]

As ./client/client.go is in a separate directory to ws.go, we need to run the next
commands in order to collect the required dependencies and run it:

$ cd client
$ go mod init
$ go mod tidy
$ go mod download

Interacting with the WebSocket server produces the next kind of output:

$ go run client.go localhost:1234 ws
Connecting to: localhost:1234 at ws
Hello there!
2021/04/10 21:30:33 Received: Hello there!

The previous two lines show user input as well as the server response.

2021/04/10 21:30:37 Please give me input! 0
2021/04/10 21:30:41 Please give me input! 1
2021/04/10 21:30:45 Please give me input! 2
2021/04/10 21:30:49 Please give me input! 3
2021/04/10 21:30:53 Please give me input! 4
2021/04/10 21:30:57 Please give me input! 5
2021/04/10 21:30:57 Caught interrupt signal - quitting!
2021/04/10 21:30:57 ReadMessage() error: websocket: close 1000 (normal)

The last lines show how the automatic timeout process works.

The WebSocket server generated the following output for the previous interaction:

2021/04/10 21:30:29 Connection from: localhost:1234
2021/04/10 21:30:33 Received: Hello there!
2021/04/10 21:30:57 From localhost:1234 read websocket: close 1000
(normal)

However, if a WebSocket server cannot be found at the address provided, the
WebSocket client produces the next output:

$ go run client.go localhost:1234 ws
Connecting to: localhost:1234 at ws
2021/04/09 10:29:23 Error: dial tcp [::1]:1234: connect: connection
refused

Chapter 9

[475]

The connection refused message indicates that there is no process listening to port
1234 at localhost.

WebSocket gives you an alternative way of creating services. As a rule of thumb,
WebSocket is better when we want to exchange lots of data, and we want the
connection to remain open all the time and exchange data in full-duplex. However,
if you are not sure about what to use, begin with a TCP/IP service and see how it
goes before upgrading it to the WebSocket protocol.

Exercises
• Develop a concurrent TCP server that generates random numbers in a

predefined range.
• Develop a concurrent TCP server that generates random numbers in a

range that is given by the TCP client. This can be used as a way of randomly
picking values from a set.

• Add UNIX signal processing to the concurrent TCP server developed in this
chapter to gracefully stop the server process when a given signal is received.

• Develop a UNIX domain socket server that generates random numbers. After
that, program a client for that server.

• Develop a WebSocket server that creates a variable number of random
integers that are sent to the client. The number of random integers is
specified by the client at the initial client message.

Summary
This chapter was all about the net package, TCP/IP, TCP, UDP, UNIX sockets, and
WebSocket, which implement pretty low-level connections. TCP/IP is what governs
the internet. Additionally, WebSocket is handy when you must transfer lots of
data. Lastly, UNIX domain sockets are preferred when the data exchange between
the server and its various clients takes place on the same machine. Go can help
you create all kinds of concurrent servers and clients. You are now ready to begin
developing and deploying your own services!

The next chapter is about REST APIs, exchanging JSON data over HTTP, and
developing RESTful clients and servers—Go is widely used for developing RESTful
clients and servers.

Working with TCP/IP and WebSocket

[476]

Additional resources
• The WebSocket protocol: https://tools.ietf.org/rfc/rfc6455.txt
• Wikipedia WebSocket: https://en.wikipedia.org/wiki/WebSocket
• Gorilla WebSocket package: https://github.com/gorilla/websocket
• Gorilla WebSocket docs: https://www.gorillatoolkit.org/pkg/websocket
• The websocket package: https://pkg.go.dev/golang.org/x/net/websocket

https://tools.ietf.org/rfc/rfc6455.txt
https://en.wikipedia.org/wiki/WebSocket
https://github.com/gorilla/websocket
https://www.gorillatoolkit.org/pkg/websocket
https://pkg.go.dev/golang.org/x/net/websocket

[477]

10
Working with REST APIs

The subject of this chapter is the development and use of simple RESTful servers
and clients using the Go programming language. REST is an acronym for
REpresentational State Transfer and is primarily an architecture for designing
web services. Although web services exchange information in HTML, RESTful
services usually use JSON format, which is well supported by Go. REST is not tied
to any operating system or system architecture and is not a protocol; however,
to implement a RESTful service, you need to use a protocol such as HTTP. When
developing RESTful servers, you need to create the appropriate Go structures and
perform the necessary marshaling and unmarshaling operations for the exchange
of JSON data.

This truly important and practical chapter covers:

• An introduction to REST
• Developing RESTful servers and clients
• Creating a functional RESTful server
• Creating a RESTful client
• Uploading and downloading binary files
• Using Swagger for REST API documentation

Working with REST APIs

[478]

An introduction to REST
Most modern web applications work by exposing their APIs and allowing clients to
use these APIs to interact and communicate with them. Although REST is not tied
to HTTP, most web services use HTTP as their underlying protocol. Additionally,
although REST can work with any data format, usually REST means JSON over HTTP
because most of the time, data is exchanged in JSON format in RESTful services.
There are also times where data is exchanged in plain text format, usually when the
exchanged data is simple and there is no need for using JSON records. Due to the
way a RESTful service works, it should have an architecture that follows the next
principles:

• Client-server design
• Stateless implementation—this means that each interaction does not depend

on others
• Cacheable
• Uniform interface
• Layered system

According to the HTTP protocol, you can perform the following operations on an
HTTP server:

• POST, which is used for creating new resources.
• GET, which is used for reading (getting) existing resources.
• PUT, which is used for updating existing resources. As a convention, a PUT

request should contain the full and updated version of an existing resource.
• DELETE, which is used for deleting existing resources.
• PATCH, which is used for updating existing resources. A PATCH request only

contains the modifications to an existing resource.

The important thing here is that everything you do, especially when it is out of the
ordinary, must be well documented. As a reference, have in mind that the HTTP
methods supported by Go are defined as constants in the net/http package:

const (
 MethodGet = "GET"
 MethodHead = "HEAD"
 MethodPost = "POST"
 MethodPut = "PUT"
 MethodPatch = "PATCH" // RFC 5789

Chapter 10

[479]

 MethodDelete = "DELETE"
 MethodConnect = "CONNECT"
 MethodOptions = "OPTIONS"
 MethodTrace = "TRACE"
)

There also exist conventions regarding the returning HTTP status code of each
client request. The most popular HTTP status codes as well as their meanings are
the following:

• 200 means that everything went well, and the specified action was executed
successfully.

• 201 means that the desired resource was created.
• 202 means that the request was accepted and is currently being processed.

This is usually used when an action takes too much time to complete.
• 301 means that the requested resource has been moved permanently—the

new URI should be part of the response. This is rarely used in RESTful
services because usually you use API versioning.

• 400 means that there was a bad request and that you should change your
initial request before sending it again.

• 401 means that the client tried to access a protected request without
authorization.

• 403 means that the client does not have the required permissions for
accessing a resource even though the client is properly authorized. In UNIX
terminology, 403 means that the user does not have the required privileges
to perform an action.

• 404 means that the resource was not found.
• 405 means that the client used a method that is not allowed by the type of

resource.
• 500 means internal server error—it probably indicates a server failure.

If you want to learn more about the HTTP protocol, you should visit RFC 7231 at
https://datatracker.ietf.org/doc/html/rfc7231.

As I am writing this chapter, I am developing a small RESTful client for a project I
am working on. The client connects to a given server and gets a list of usernames.
For each username, I must get a list of login and logout times by hitting another
endpoint.

https://datatracker.ietf.org/doc/html/rfc7231

Working with REST APIs

[480]

What I can tell you from my experience is that most of the code is not about
interacting with the RESTful server but about taking care of the data, transforming it
to the desired format, and storing it in a MySQL database—the two most tricky tasks
that I needed to perform were getting a date and time in UNIX epoch format and
truncating the information about the minutes and seconds from that epoch time, as
well as inserting a new record into a database table after making sure that the record
was not already stored in that database. So, expect the logic of the program to be
responsible for most of the code, which is true not only for RESTful services but for
all services.

The first section of this chapter contains general yet essential information about
programming RESTful servers and clients.

Developing RESTful servers and clients
This section is going to develop a RESTful server and a client for that server using
the functionality of the Go standard library to understand how things really work
behind the scenes. The functionality of the server is described in the following list of
endpoints:

• /add: This endpoint is for adding new entries to the server
• /delete: This endpoint is used for deleting an existing entry
• /get: This endpoint is for getting information about an entry that already

exists
• /time: This endpoint returns the current date and time and is mainly used

for testing the operation of the RESTful server
• /: This endpoint is used for serving any request that is not a match to any

other endpoint

This is my preferred way of structuring the RESTful service. An alternative way of
defining the endpoints would be the following:

• /users/ with the GET method: Get a list of all users
• /users/:id with the GET method: Get information about the user with the

given ID value
• /users/:id with the DELETE method: Delete the user with the given ID
• /users/ with the POST method: Create a new user
• /users/:id with either the PATCH or the PUT method: Update the user with

the given ID value

Chapter 10

[481]

The implementation of the alternative way is left as an exercise for the reader—it
should not be that difficult to implement it given that the Go code for the handlers
is going to be the same and you only have to redefine the part where we specify the
handling of the endpoints. The next subsection presents the implementation of the
RESTful server.

A RESTful server
The purpose of the presented implementation is to understand how things work
behind the scenes because the principles behind REST services remain the same. The
logic behind each handler function is simple: read user input and decide whether
the given input and HTTP method are the desired ones. The principles of each client
interaction are also simple: the server should send appropriate error messages and
HTTP codes back to the client so that everyone knows what really happened. Lastly,
everything should be documented to communicate in a common language.

The code of the server, which is saved as rServer.go, is the following:

package main

import (
 "encoding/json"
 "fmt"
 "io"
 "log"
 "net/http"
 "os"
 "time"
)

type User struct {
 Username string `json:"user"`
 Password string `json:"password"`
}

This is a structure that holds user data. The use of JSON tags is crucial.

var user User

This global variable holds user data—this is the input for the /add, /get, and /delete
endpoints and their simplistic implementations. As this global variable is shared by
the entire program, our code is not concurrently safe, which is fine for a RESTful
server used as a proof of concept.

Working with REST APIs

[482]

The real-world RESTful server that is implemented in the Creating a functional
RESTful server section is going to be concurrently safe.

// PORT is where the web server listens to
var PORT = ":1234"

A RESTful server is just an HTTP server, so we define the TCP port number the
server listens to.

// DATA is the map that holds User records
var DATA = make(map[string]string)

The preceding is another global variable that contains the data of the service.

func defaultHandler(w http.ResponseWriter, r *http.Request) {
 log.Println("Serving:", r.URL.Path, "from", r.Host)
 w.WriteHeader(http.StatusNotFound)
 Body := "Thanks for visiting!\n"
 fmt.Fprintf(w, "%s", Body)
}

This is the default handler. On a production server, the default handler might
print instructions about the operation of the server as well as the list of available
endpoints.

func timeHandler(w http.ResponseWriter, r *http.Request) {
 log.Println("Serving:", r.URL.Path, "from", r.Host)
 t := time.Now().Format(time.RFC1123)
 Body := "The current time is: " + t + "\n"
 fmt.Fprintf(w, "%s", Body)
}

This is another simple handler that returns the current date and time—such simple
handlers are usually used for testing the health of the server and are usually
removed in the production version.

func addHandler(w http.ResponseWriter, r *http.Request) {
 log.Println("Serving:", r.URL.Path, "from", r.Host, r.Method)
 if r.Method != http.MethodPost {
 http.Error(w, "Error:", http.StatusMethodNotAllowed)
 fmt.Fprintf(w, "%s\n", "Method not allowed!")
 return
 }

Chapter 10

[483]

This is the first time that you are seeing the http.Error() function. The http.Error()
function sends a reply to the client request that includes the specified error message,
which should be in plain text, as well as the desired HTTP code. However, you still
need to write the data you want to send back to the client using an fmt.Fprintf()
statement.

 d, err := io.ReadAll(r.Body)
 if err != nil {
 http.Error(w, "Error:", http.StatusBadRequest)
 return
 }

We try to read all data from the client at once using io.ReadAll() and we make sure
that we read the data without any errors by checking the value of the error variable
returned by io.ReadAll(r.Body).

 err = json.Unmarshal(d, &user)
 if err != nil {
 log.Println(err)
 http.Error(w, "Error:", http.StatusBadRequest)
 return
 }

After reading the data from the client, we put it into the user global variable. Where
you want to store the data and what to do with it is decided by the server. There is
no rule on how to interpret the data. However, the client should communicate with
the server according to the wishes of the server.

 if user.Username != "" {
 DATA[user.Username] = user.Password
 log.Println(DATA)
 w.WriteHeader(http.StatusOK)

If the given Username field is not empty, add the new structure to the DATA map. Data
persistence is not implemented—each time you restart the RESTful server, DATA is
initialized from scratch.

 } else {
 http.Error(w, "Error:", http.StatusBadRequest)
 return
 }
}

Working with REST APIs

[484]

If the value of the username field is empty, then we cannot add it to the DATA map
and the operation fails with an http.StatusBadRequest code.

func getHandler(w http.ResponseWriter, r *http.Request) {
 log.Println("Serving:", r.URL.Path, "from", r.Host, r.Method)
 if r.Method != http.MethodGet {
 http.Error(w, "Error:", http.StatusMethodNotAllowed)
 fmt.Fprintf(w, "%s\n", "Method not allowed!")
 return
 }

For the /get endpoint we need to use http.MethodGet, so we have to make sure that
this condition is met (if r.Method != http.MethodGet).

 d, err := io.ReadAll(r.Body)
 if err != nil {
 http.Error(w, "ReadAll - Error", http.StatusBadRequest)
 return
 }

Again, we need to make sure that we can read the data from the client request
without issues.

 err = json.Unmarshal(d, &user)
 if err != nil {
 log.Println(err)
 http.Error(w, "Unmarshal - Error", http.StatusBadRequest)
 return
 }
 fmt.Println(user)

Then, we use the client data and put it into a User structure (the user global variable).

 _, ok := DATA[user.Username]
 if ok && user.Username != "" {
 log.Println("Found!")
 w.WriteHeader(http.StatusOK)
 fmt.Fprintf(w, "%s\n", d)

If the desired user record is found, we send it back to the client using the data stored
in the d variable—remember that d was initialized in the io.ReadAll(r.Body) call
and already contains a JSON record that is marshaled.

Chapter 10

[485]

 } else {
 log.Println("Not found!")
 w.WriteHeader(http.StatusNotFound)
 http.Error(w, "Map - Resource not found!", http.StatusNotFound)
 }
 return
}

Otherwise, we inform the client that the desired record was not found.

func deleteHandler(w http.ResponseWriter, r *http.Request) {
 log.Println("Serving:", r.URL.Path, "from", r.Host, r.Method)
 if r.Method != http.MethodDelete {
 http.Error(w, "Error:", http.StatusMethodNotAllowed)
 fmt.Fprintf(w, "%s\n", "Method not allowed!")
 return
 }

The DELETE HTTP method looks like a rational choice when deleting a resource,
hence the r.Method != http.MethodDelete test.

 d, err := io.ReadAll(r.Body)
 if err != nil {
 http.Error(w, "ReadAll - Error", http.StatusBadRequest)
 return
 }

Again, we read the client input and store it in the d variable.

 err = json.Unmarshal(d, &user)
 if err != nil {
 log.Println(err)
 http.Error(w, "Unmarshal - Error", http.StatusBadRequest)
 return
 }
 log.Println(user)

It is considered a good practice to keep additional logging information when
deleting resources.

 _, ok := DATA[user.Username]
 if ok && user.Username != "" {
 if user.Password == DATA[user.Username] {

Working with REST APIs

[486]

For the delete process, we make sure that both the given username and password
values are the same as the ones that exist in the DATA map before deleting the relevant
entry.

 delete(DATA, user.Username)
 w.WriteHeader(http.StatusOK)
 fmt.Fprintf(w, "%s\n", d)
 log.Println(DATA)
 }
 } else {
 log.Println("User", user.Username, "Not found!")
 w.WriteHeader(http.StatusNotFound)
 http.Error(w, "Delete - Resource not found!", http.
StatusNotFound)
 }
 log.Println("After:", DATA)

After the deletion process, we print the contents of the DATA map to make sure that
everything went as expected—you usually do not do that on a production server.

 return
}

func main() {
 arguments := os.Args
 if len(arguments) != 1 {
 PORT = ":" + arguments[1]
 }

The previous code presents a technique for defining the TCP port number of a
web server while having a default value at hand. So, if there are no command-line
arguments, the default value is used. Otherwise, the value given as a command-line
argument is used.

 mux := http.NewServeMux()
 s := &http.Server{
 Addr: PORT,
 Handler: mux,
 IdleTimeout: 10 * time.Second,
 ReadTimeout: time.Second,
 WriteTimeout: time.Second,
 }

Chapter 10

[487]

Above are the details and the options for the web server.

 mux.Handle("/time", http.HandlerFunc(timeHandler))
 mux.Handle("/add", http.HandlerFunc(addHandler))
 mux.Handle("/get", http.HandlerFunc(getHandler))
 mux.Handle("/delete", http.HandlerFunc(deleteHandler))
 mux.Handle("/", http.HandlerFunc(defaultHandler))

The previous code defines the endpoints of the web server—nothing special here as
a RESTful server implements an HTTP server behind the scenes.

 fmt.Println("Ready to serve at", PORT)
 err := s.ListenAndServe()
 if err != nil {
 fmt.Println(err)
 return
 }
}

The last step is about running the web server with the predefined options, which is
common practice. After that, we test the RESTful server using the curl(1) utility,
which is very handy when you do not have a client and you want to test the
operation of a RESTful server—the good thing is that curl(1) can send and receive
JSON data.

$ curl localhost:1234/
Thanks for visiting!

The first interaction with the RESTful server is for making sure that the server works
as expected. The next interaction is for adding a new user to the server—the details
of the user are in the {"user": "mtsouk", "password" : "admin"} JSON record:

$ curl -H 'Content-Type: application/json' -d '{"user": "mtsouk",
"password" : "admin"}' http://localhost:1234/add -v
* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 1234 (#0)

The previous output shows that curl(1) has successfully connected to the server
(localhost) using the desired TCP port (1234).

> POST /add HTTP/1.1
> Host: localhost:1234
> User-Agent: curl/7.64.1

Working with REST APIs

[488]

> Accept: */*
> Content-Type: application/json
> Content-Length: 40

The previous output shows that curl(1) is going to send data using the POST method
and the length of the data is 40 bytes.

>
* upload completely sent off: 40 out of 40 bytes
< HTTP/1.1 200 OK
< Date: Tue, 27 Apr 2021 09:41:38 GMT
< Content-Length: 0

The previous output tells us that the data was sent and that the body of the server
response is 0 bytes.

<
* Connection #0 to host localhost left intact
* Closing connection 0

The last part of the output tells us that after sending the data to the server, the
connection was closed.

If we try to add the same user, the RESTful server is not going to complain:

$ curl -H 'Content-Type: application/json' -d '{"user": "mtsouk",
"password" : "admin"}' http://localhost:1234/add

Although this behavior might not be perfect, it is good if it is documented. This is not
allowed on a production server, but it is acceptable when experimenting.

$ curl -H 'Content-Type: application/json' -d '{"user": "mihalis",
"password" : "admin"}' http://localhost:1234/add

With the preceding command, we add another user as specified by {"user":
"mihalis", "password" : "admin"}.

When working with a RESTful server, we need to add -H
'Content-Type: application/json' to curl(1) to specify that
we are going to work using the JSON format. The -d option is used
for passing data to a server and is equivalent to the --data option,
whereas the -v option generates more verbose output if we need
more details to understand what is going on.

Chapter 10

[489]

$ curl -H -d '{"user": "admin"}' http://localhost:1234/add
curl: (3) URL using bad/illegal format or missing URL
Error:
Method not allowed!

The previous output shows an erroneous interaction where -H is not followed by a
value. Although the request is sent to the server, it is rejected because /add does not
use the default HTTP method.

$ curl -H 'Content-Type: application/json' -d '{"user": "admin",
"password" : "admin"}' http://localhost:1234/get
Error:
Method not allowed!

This time, the curl command is correct, but the HTTP method used is not set
correctly. Therefore, the request is not served.

$ curl -X GET -H 'Content-Type: application/json' -d '{"user": "admin",
"password" : "admin"}' http://localhost:1234/get
Map - Resource not found!
$ curl -X GET -H 'Content-Type: application/json' -d '{"user":
"mtsouk", "password" : "admin"}' http://localhost:1234/get
{"user": "mtsouk", "password" : "admin"}

The previous two interactions use /get to get information about an existing user.
However, only the second user is found.

$ curl -H 'Content-Type: application/json' -d '{"user": "mtsouk",
"password" : "admin"}' http://localhost:1234/delete -X DELETE
{"user": "mtsouk", "password" : "admin"}

The last interaction successfully deletes the user specified by {"user": "mtsouk",
"password" : "admin"}.

The output generated by the server process for all previous interactions would look
like the following:

$ go run rServer.go
Ready to serve at :1234
2021/04/27 12:41:31 Serving: / from localhost:1234
2021/04/27 12:41:38 Serving: /add from localhost:1234 POST
2021/04/27 12:41:38 map[mtsouk:admin]
2021/04/27 12:41:41 Serving: /add from localhost:1234 POST
2021/04/27 12:41:41 map[mtsouk:admin]

Working with REST APIs

[490]

2021/04/27 12:41:58 Serving: /add from localhost:1234 POST
2021/04/27 12:41:58 map[mihalis:admin mtsouk:admin]
2021/04/27 12:43:02 Serving: /add from localhost:1234 GET
2021/04/27 12:43:13 Serving: /get from localhost:1234 POST
2021/04/27 12:43:30 Serving: /get from localhost:1234 GET
{admin admin}
2021/04/27 12:43:30 Not found!
2021/04/27 12:43:30 http: superfluous response.WriteHeader call from
main.getHandler (rServer.go:101)
2021/04/27 12:43:41 Serving: /get from localhost:1234 GET
{mtsouk admin}
2021/04/27 12:43:41 Found!
2021/04/27 12:44:00 Serving: /delete from localhost:1234 DELETE
2021/04/27 12:44:00 {mtsouk admin}
2021/04/27 12:44:00 map[mihalis:admin]
2021/04/27 12:44:00 After: map[mihalis:admin]

So far, we have a working RESTful server that has been tested with the help of the
curl(1) utility. The next section is about developing a command-line client for the
RESTful server.

A RESTful client
This subsection illustrates the development of a client for the RESTful server
developed previously. However, in this case, the client acts as a testing program
that tries the capabilities of the RESTful server—later in this chapter, you are going
to learn how to write proper clients using cobra. So, the code of the client, which
can be found in rClient.go, is as follows:

package main

import (
 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "net/http"
 "os"
 "time"
)

type User struct {

Chapter 10

[491]

 Username string `json:"user"`
 Password string `json:"password"`
}

This same structure is found in the server implementation and is used for
exchanging data.

var u1 = User{"admin", "admin"}
var u2 = User{"tsoukalos", "pass"}
var u3 = User{"", "pass"}

Here, we predefine three User variables that are going to be used during testing.

const addEndPoint = "/add"
const getEndPoint = "/get"
const deleteEndPoint = "/delete"
const timeEndPoint = "/time"

The previous constants define the endpoints that are going to be used.

func deleteEndpoint(server string, user User) int {
 userMarshall, _ := json.Marshal(user)
 u := bytes.NewReader(userMarshall)

 req, err := http.NewRequest("DELETE", server+deleteEndPoint, u)

We prepare a request that is going to access /delete using the DELETE HTTP method.

 if err != nil {
 fmt.Println("Error in req: ", err)
 return http.StatusInternalServerError
 }
 req.Header.Set("Content-Type", "application/json")

This is the correct way to specify that we want to use JSON data when interacting
with the server.

 c := &http.Client{
 Timeout: 15 * time.Second,
 }

 resp, err := c.Do(req)
 defer resp.Body.Close()

Working with REST APIs

[492]

Then, we send the request and wait for the server response using the Do() method
with a 15-second timeout.

 if err != nil {
 fmt.Println("Error:", err)
 }
 if resp == nil {
 return http.StatusNotFound
 }

 data, err := io.ReadAll(resp.Body)
 fmt.Print("/delete returned: ", string(data))

The reason for putting that fmt.Print() here is that we want to know the server
response even if there is an error in the interaction.

 if err != nil {
 fmt.Println("Error:", err)
 }
 return resp.StatusCode
}

The resp.StatusCode value specifies the result from the /delete endpoint.

func getEndpoint(server string, user User) int {
 userMarshall, _ := json.Marshal(user)
 u := bytes.NewReader(userMarshall)

 req, err := http.NewRequest("GET", server+getEndPoint, u)

We are going to access /get using the GET HTTP method.

 if err != nil {
 fmt.Println("Error in req: ", err)
 return http.StatusInternalServerError
 }
 req.Header.Set("Content-Type", "application/json")

We specify that we are going to interact with the server using the JSON format using
Header.Set().

 c := &http.Client{
 Timeout: 15 * time.Second,
 }

Chapter 10

[493]

We define a timeout period for the HTTP client in case the server is too busy
responding.

 resp, err := c.Do(req)
 defer resp.Body.Close()

 if err != nil {
 fmt.Println("Error:", err)
 }
 if resp == nil {
 return http.StatusNotFound
 }

The previous code sends the client request to the server using c.Do(req) and saves
the server response in resp and the error value in err. If the value of resp is nil,
then the server response was empty, which is an error condition.

 data, err := io.ReadAll(resp.Body)
 fmt.Print("/get returned: ", string(data))
 if err != nil {
 fmt.Println("Error:", err)
 }
 return resp.StatusCode
}

The value of resp.StatusCode, which is specified and transferred by the RESTful
server, determines if the interaction was successful in an HTTP sense (logically) or
not.

func addEndpoint(server string, user User) int {
 userMarshall, _ := json.Marshal(user)
 u := bytes.NewReader(userMarshall)

 req, err := http.NewRequest("POST", server+addEndPoint, u)

We are going to access /add using the POST HTTP method. You can use http.
MethodPost instead of POST. As stated earlier in this chapter, there exist relevant
global variables in http for the remaining HTTP methods (http.MethodGet, http.
MethodDelete, http.MethodPut, etc.) and it is recommended that you use them
because this is the portable way.

 if err != nil {
 fmt.Println("Error in req: ", err)

Working with REST APIs

[494]

 return http.StatusInternalServerError
 }
 req.Header.Set("Content-Type", "application/json")

As before, we specify that we are going to interact with the server using the JSON
format.

 c := &http.Client{
 Timeout: 15 * time.Second,
 }

Once again, we define a timeout period for the client in case the server is too busy
responding.

 resp, err := c.Do(req)
 defer resp.Body.Close()

 if resp == nil || (resp.StatusCode == http.StatusNotFound) {
 return resp.StatusCode
 }

 return resp.StatusCode
}

The addEndpoint() function is for testing the /add endpoint using the POST method
and the /add endpoint.

func timeEndpoint(server string) (int, string) {
 req, err := http.NewRequest("POST", server+timeEndPoint, nil)

We are going to access the /time endpoint using the POST HTTP method.

 if err != nil {
 fmt.Println("Error in req: ", err)
 return http.StatusInternalServerError, ""
 }

 c := &http.Client{
 Timeout: 15 * time.Second,
 }

As before, we define a timeout period for the client in case the server is too busy
responding.

Chapter 10

[495]

 resp, err := c.Do(req)
 defer resp.Body.Close()

 if resp == nil || (resp.StatusCode == http.StatusNotFound) {
 return resp.StatusCode, ""
 }

 data, _ := io.ReadAll(resp.Body)
 return resp.StatusCode, string(data)
}

The timeEndpoint() function is for testing the /time endpoint—note that this
endpoint does not require any data from the client, so the client request is empty.
The server is going to return a time and date string.

func slashEndpoint(server, URL string) (int, string) {
 req, err := http.NewRequest("POST", server+URL, nil)

We are going to access / using the POST HTTP method.

 if err != nil {
 fmt.Println("Error in req: ", err)
 return http.StatusInternalServerError, ""
 }

 c := &http.Client{
 Timeout: 15 * time.Second,
 }

It is considered a good practice to have a timeout period on the client side in case
there are delays in the server response.

 resp, err := c.Do(req)
 defer resp.Body.Close()

 if resp == nil {
 return resp.StatusCode, ""
 }

 data, _ := io.ReadAll(resp.Body)
 return resp.StatusCode, string(data)
}

Working with REST APIs

[496]

The slashEndpoint() function is for testing the default endpoint in the server—note
that this endpoint does not require any data from the client.

Next is the implementation of the main() function, which uses all previous functions
to visit the RESTful server endpoints:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Wrong number of arguments!")
 fmt.Println("Need: Server")
 return
 }
 server := os.Args[1]

The server variable holds both the server address and the port number that is going
to be used.

 fmt.Println("/add")
 HTTPcode := addEndpoint(server, u1)
 if HTTPcode != http.StatusOK {
 fmt.Println("u1 Return code:", HTTPcode)
 } else {
 fmt.Println("u1 Data added:", u1, HTTPcode)
 }

 HTTPcode = addEndpoint(server, u2)
 if HTTPcode != http.StatusOK {
 fmt.Println("u2 Return code:", HTTPcode)
 } else {
 fmt.Println("u2 Data added:", u2, HTTPcode)
 }

 HTTPcode = addEndpoint(server, u3)
 if HTTPcode != http.StatusOK {
 fmt.Println("u3 Return code:", HTTPcode)
 } else {
 fmt.Println("u3 Data added:", u3, HTTPcode)
 }

All the previous code is used for testing the /add endpoint using various types of
data.

Chapter 10

[497]

 fmt.Println("/get")
 HTTPcode = getEndpoint(server, u1)
 fmt.Println("/get u1 return code:", HTTPcode)
 HTTPcode = getEndpoint(server, u2)
 fmt.Println("/get u2 return code:", HTTPcode)
 HTTPcode = getEndpoint(server, u3)
 fmt.Println("/get u3 return code:", HTTPcode)

All the previous code is used for testing the /get endpoint using various types of
input. We only test for the return code because the HTTP code specifies the success
or failure of the operation.

 fmt.Println("/delete")
 HTTPcode = deleteEndpoint(server, u1)
 fmt.Println("/delete u1 return code:", HTTPcode)
 HTTPcode = deleteEndpoint(server, u1)
 fmt.Println("/delete u1 return code:", HTTPcode)
 HTTPcode = deleteEndpoint(server, u2)
 fmt.Println("/delete u2 return code:", HTTPcode)
 HTTPcode = deleteEndpoint(server, u3)
 fmt.Println("/delete u3 return code:", HTTPcode)

All the previous code is used for testing the /delete endpoint using various types
of input. Once again, we print the HTTP code of the interaction because the value
of the HTTP code specifies the success or failure of the operation.

 fmt.Println("/time")
 HTTPcode, myTime := timeEndpoint(server)
 fmt.Print("/time returned: ", HTTPcode, " ", myTime)
 time.Sleep(time.Second)
 HTTPcode, myTime = timeEndpoint(server)
 fmt.Print("/time returned: ", HTTPcode, " ", myTime)

The previous code tests the /time endpoint—it prints the HTTP code as well as the
rest of the server response.

 fmt.Println("/")
 URL := "/"
 HTTPcode, response := slashEndpoint(server, URL)
 fmt.Print("/ returned: ", HTTPcode, " with response: ", response)

 fmt.Println("/what")

Working with REST APIs

[498]

 URL = "/what"
 HTTPcode, response = slashEndpoint(server, URL)
 fmt.Print(URL, " returned: ", HTTPcode, " with response: ",
response)
}

The last part of the program tries to connect to an endpoint that does not exist to
verify the correct operation of the default handler function.

Running rClient.go while rServer.go is already running produces the next kind
of output:

$ go run rClient.go http://localhost:1234
/add
u1 Data added: {admin admin} 200
u2 Data added: {tsoukalos pass} 200
u3 Return code: 400

The previous part is related to the testing of the /add endpoint. The first two users
were successfully added, whereas the third user (var u3 = User{"", "pass"}) was
not added because it does not contain all the required information.

/get
/get returned: {"user":"admin","password":"admin"}
/get u1 return code: 200
/get returned: {"user":"tsoukalos","password":"pass"}
/get u2 return code: 200
/get returned: Map - Resource not found!
/get u3 return code: 404

The previous part is related to the testing of the /get endpoint. The data of the
first two users with the usernames admin and tsoukalos was successfully returned,
whereas the user stored in the u3 variable was not found.

/delete
/delete returned: {"user":"admin","password":"admin"}
/delete u1 return code: 200
/delete returned: Delete - Resource not found!
/delete u1 return code: 404
/delete returned: {"user":"tsoukalos","password":"pass"}
/delete u2 return code: 200
/delete returned: Delete - Resource not found!
/delete u3 return code: 404

Chapter 10

[499]

The previous output is related to the testing of the /delete endpoint. The users admin
and tsoukalos were deleted. However, trying to delete admin for the second time
failed.

/time
/time returned: 200 The current time is: Tue, 20 Apr 2021 10:23:04 EEST
/time returned: 200 The current time is: Tue, 20 Apr 2021 10:23:05 EEST

Similarly, the previous part is related to the testing of the /time endpoint.

/
/ returned: 404 with response: Thanks for visiting!
/what
/what returned: 404 with response: Thanks for visiting!

The last part of the output is related to the operation of the default handler.

So far, both the RESTful server and the client can interact with each other. However,
neither of them perform a real job. The next section shows how to develop a real-
world RESTful server using gorilla/mux and a database backend for storing data.

Creating a functional RESTful server
This section illustrates how to develop a RESTful server in Go given a REST API.
The biggest difference between the presented RESTful service and the phone
book application created in Chapter 8, Building Web Services, is that the RESTful
service in this chapter uses JSON messages everywhere, whereas the phone book
application interacts and works using plain text messages. If you are thinking of
using net/http for the implementation of the RESTful server, please do not do so!
This implementation uses the gorilla/mux package, which is a much better choice
because it supports subrouters—more about that in the Using gorilla/mux subsection.

The purpose of the RESTful server is to implement a login/authentication system.
The purpose of the login system is to keep track of the users who are logged in, as
well as their permissions. The system comes with a default administrator user named
admin—the default password is also admin and you should change it. The application
stores its data in a database (PostgreSQL), which means that if you restart it, the list
of existing users is read from that database and is not lost.

Working with REST APIs

[500]

The REST API
The API of an application helps you implement the functionality that you have in
mind. However, this is a job for the client, not the server. The job of the server is to
facilitate the job of its clients as much as possible by supporting a simple yet fully
working functionality through a properly defined and implemented REST API. Make
sure that you understand that before trying to develop and use a RESTful server.

We are going to define the endpoints that are going to be used, the HTTP codes that
are going to return, as well as the allowed method or methods. Creating a RESTful
server based on a REST API for production is a serious job that should not be taken
lightly. Creating a prototype to test and validate your ideas and designs is going to
save you lots of time in the long run. Always begin with a prototype.

The supported endpoints as well as the supported HTTP methods and the
parameters are as follows:

• /: Used for catching and serving everything that is not a match. This
endpoint works with all HTTP methods.

• /getall: Used for getting the full contents of the database. Using this requires
a user with administrative privileges. This endpoint might return multiple
JSON records and works with the GET HTTP method.

• /getid/username: Used for getting the ID of a user identified by their
username, which is passed to the endpoint. This command should be issued
by a user with administrative privileges and supports the GET HTTP method.

• /username/ID: Used for deleting or getting information about the user with
an ID equal to ID, depending on the HTTP method used. Therefore, the
actual action that is going to be performed depends on the HTTP method
used. The DELETE method deletes the user, whereas the GET method returns
the user information. This endpoint should be issued by a user with
administrative privileges.

• /logged: Used for getting a list of all logged-in users. This endpoint might
return multiple JSON records and requires the use of the GET HTTP method.

• /update: Used for updating the username, the password, or the admin status
of a user—the ID of the user in the database remains the same. This endpoint
works with the PUT HTTP method only and the search for the user is based
on the username.

• /login: Used for logging in a user to the system, given a username and a
password. This endpoint works with the POST HTTP method.

• /logout: Used for logging out a user, given a username and a password.
This endpoint works with the POST HTTP method.

Chapter 10

[501]

• /add: Used for adding a new user to the database. This endpoint works
with the POST HTTP method and is issued by a user with administrative
privileges.

• /time: This is an endpoint used mainly for testing purposes. It is the only
endpoint that does not work with JSON data, does not require a valid
account, and works with all HTTP methods.

Now, let us discuss the capabilities and the functionality of the gorilla/mux package.

Using gorilla/mux
The gorilla/mux package (https://github.com/gorilla/mux) is a popular and
powerful alternative to the default Go router that allows you to match incoming
requests to their respective handler. Although there exist many differences between
the default Go router (http.ServeMux) and mux.Router (the gorilla/mux router), the
main difference is that mux.Router supports multiple conditions when matching
a route with a handler function. This means that you can write less code to handle
some options such as the HTTP method used. Let us begin by presenting some
matching examples—this functionality is not supported by the default Go router:

• r.HandleFunc("/url", UrlHandlerFunction): The previous command calls
the UrlHandlerFunction function each time /url is visited.

• r.HandleFunc("/url", UrlHandlerFunction).Methods(http.MethodPut):
This example shows how you can tell Gorilla to match a specific HTTP
method (PUT in this case, which is defined by the use of http.MethodPut),
which saves you from having to write code to do that manually.

• mux.NotFoundHandler = http.HandlerFunc(handlers.DefaultHandler):
With Gorilla, the right way to match anything that is not a match by any
other path is by using mux.NotFoundHandler.

• mux.MethodNotAllowedHandler = notAllowed: If a method is not allowed for
an existing route, it is handled with the help of MethodNotAllowedHandler.
This is specific to gorilla/mux.

• s.HandleFunc("/users/{id:[0-9]+}"), HandlerFunction): This last
example shows that you can define a variable in a path using a name (id)
and a pattern and Gorilla does the matching for you! If there is not a regular
expression, then the match is going to be anything from the beginning slash
to the next slash in the path.

Now, let us talk about another capability of gorilla/mux, which is subrouters.

https://github.com/gorilla/mux

Working with REST APIs

[502]

The use of subrouters
The server implementation uses subrouters. A subrouter is a nested route that will
only be examined for potential matches if the parent route matches the parameters of
the subrouter. The good thing is that the parent route can contain conditions that are
common among all paths that are defined under a subrouter, which includes hosts,
path prefixes, and, as it happens in our case, HTTP request methods. As a result,
our subrouters are divided based on the common request method of the endpoints
that follow. Not only does this optimize the request matchings, but it also makes the
structure of the code easier to understand.

As an example, the subrouter for the DELETE HTTP method is as simple as the
following:

deleteMux := mux.Methods(http.MethodDelete).Subrouter()
deleteMux.HandleFunc("/username/{id:[0-9]+}", handlers.DeleteHandler)

The first statement is for defining the common characteristics of the subrouter,
which in this case is the http.MethodDelete HTTP method, whereas the remaining
statement, which in this case is the deleteMux.HandleFunc(...) one, is for defining
the supported paths.

Yes, gorilla/mux might be more difficult than the default Go router, but you should
understand by now the benefits of the gorilla/mux package for working with HTTP
services.

Working with the database
In this subsection, we develop a Go package for working with the PostgreSQL
database that supports the functionality of the RESTful server. The package is
named restdb and is stored in https://github.com/mactsouk/restdb. Due to
the use of Go modules, its development can take place anywhere you want in
your filesystem—in this case, in the ~/code/restdb folder. So, we run go mod
init github.com/mactsouk/restdb to enable Go modules for the restdb package
during its development.

The RESTful server itself knows nothing about the PostgreSQL
server. All related functionality is kept in the restdb package,
which means that if you change the database, the handler functions
do not have to know about it.

https://github.com/mactsouk/restdb

Chapter 10

[503]

To make things easier for the readers, the database is going to run using Docker and
with a configuration that can be found in docker-compose.yml, inside the restdb
GitHub repository, which comes with the following contents:

version: '3.1'

services:
 postgres:
 image: postgres
 container_name: postgredb
 environment:
 POSTGRES_USER: mtsouk
 POSTGRES_PASSWORD: pass
 POSTGRES_DB: restapi
 volumes:
 - ./postgres:/var/lib/postgresql/data/
 ports:
 - 5432:5432

volumes:
 postgres_data:
 driver: local

So, the PostgreSQL server listens to port number 5432, both internally and externally.
What really matters is the external port number because this is what all clients are
going to be using. The database name, the database table, and the admin user are
created using the next create_db.sql SQL file:

DROP DATABASE IF EXISTS restapi;
CREATE DATABASE restapi;
\c restapi;

/*
Users
*/
CREATE TABLE users (
id SERIAL PRIMARY KEY,
username VARCHAR NOT NULL,
password VARCHAR NOT NULL,
lastlogin INT,
admin INT,

Working with REST APIs

[504]

active INT
);

INSERT INTO users (username, password, lastlogin, admin, active) VALUES
('admin', 'admin', 1620922454, 1, 1);

Provided that PostgreSQL is executed using the presented docker-compose.yml, you
can use create_db.sql as follows:

$ psql -U mtsouk postgres -h 127.0.0.1 < create_db.sql
Password for user mtsouk:
DROP DATABASE
CREATE DATABASE
You are now connected to database "restapi" as user "mtsouk".
CREATE TABLE
INSERT 0 1

As most commands in restdb work in a similar way, we are going to present the
most important functions here, beginning with ConnectPostgres():

func ConnectPostgres() *sql.DB {
 conn := fmt.Sprintf("host=%s port=%d user=%s password=%s dbname=%s
sslmode=disable",
 Hostname, Port, Username, Password, Database)

All of Hostname, Port, Username, Password, and Database are global variables defined
elsewhere in the package—they contain the connection details.

 db, err := sql.Open("postgres", conn)
 if err != nil {
 log.Println(err)
 return nil
 }

 return db
}

As we need to connect to PostgreSQL all the time, we created a helper function that
returns an *sql.DB variable that can be used for interaction with PostgreSQL.

Next, we present the DeleteUser() function:

func DeleteUser(ID int) bool {
 db := ConnectPostgres()

Chapter 10

[505]

 if db == nil {
 log.Println("Cannot connect to PostgreSQL!")
 db.Close()
 return false
 }
 defer db.Close()

The preceding code is how we use ConnectPostgres() to get a database connection
to work with.

 t := FindUserID(ID)
 if t.ID == 0 {
 log.Println("User", ID, "does not exist.")
 return false
 }

Here, we use the FindUserID() helper function to make sure that the user with the
given user ID exists in the database. If the user does not exist, the function stops and
returns false.

 stmt, err := db.Prepare("DELETE FROM users WHERE ID = $1")
 if err != nil {
 log.Println("DeleteUser:", err)
 return false
 }

This is the actual statement for deleting the user. We use Prepare() to construct
the required SQL statement that we will execute using Exec(). The $1 in Prepare()
denotes a parameter that is going to be given in Exec(). If we wanted to have more
parameters, we should have named them $2, $3, and so on.

 _, err = stmt.Exec(ID)
 if err != nil {
 log.Println("DeleteUser:", err)
 return false
 }

 return true
}

This is where the implementation of the DeleteUser() function ends. The stmt.
Exec(ID) statement is what deletes a user from the database.

Working with REST APIs

[506]

The ListAllUsers() function, which is presented next, returns a slice of User
elements, which holds all users found in the RESTful server:

func ListAllUsers() []User {
 db := ConnectPostgres()
 if db == nil {
 fmt.Println("Cannot connect to PostgreSQL!")
 db.Close()
 return []User{}
 }
 defer db.Close()

 rows, err := db.Query("SELECT * FROM users \n")
 if err != nil {
 log.Println(err)
 return []User{}
 }

As the SELECT query requires no parameters, we use Query() to run it instead of
Prepare() and Exec(). Keep in mind that this is a query that most likely returns
multiple records.

 all := []User{}
 var c1 int
 var c2, c3 string
 var c4 int64
 var c5, c6 int

 for rows.Next() {
 err = rows.Scan(&c1, &c2, &c3, &c4, &c5, &c6)

This is how we read the values from a single record returned by the SQL query.
First, we define multiple variables for each one of the returned values and then we
pass their pointers to Scan(). The rows.Next() method keeps returning records as
long as there are results.

 temp := User{c1, c2, c3, c4, c5, c6}
 all = append(all, temp)
 }

 log.Println("All:", all)
 return all
}

Chapter 10

[507]

So, as mentioned before, a slice of User structures is returned from ListAllUsers().

Lastly, we are going to present the implementation of IsUserValid():

func IsUserValid(u User) bool {
 db := ConnectPostgres()
 if db == nil {
 fmt.Println("Cannot connect to PostgreSQL!")
 db.Close()
 return false
 }
 defer db.Close()

This is a common pattern: we call ConnectPostgres() and wait to get a connection to
use.

 rows, err := db.Query("SELECT * FROM users WHERE Username = $1 \n",
u.Username)
 if err != nil {
 log.Println(err)
 return false
 }

Here we pass our parameter to Query() without using Prepare() and Exec().

 temp := User{}
 var c1 int
 var c2, c3 string
 var c4 int64
 var c5, c6 int

Here, we create the required parameters to keep the output of the SQL query.

 // If there exist multiple users with the same username,
 // we will get the FIRST ONE only.
 for rows.Next() {
 err = rows.Scan(&c1, &c2, &c3, &c4, &c5, &c6)
 if err != nil {
 log.Println(err)
 return false
 }
 temp = User{c1, c2, c3, c4, c5, c6}
 }

Working with REST APIs

[508]

Once again, the for loop keeps running for as long as rows.Next() returns new
records.

 if u.Username == temp.Username && u.Password == temp.Password {
 return true
 }

This is an important point: not only should the given user exist, but the given
password should be the same as the one stored in the database for a given user to be
valid.

 return false
}

You can view the rest of the restdb implementation on your own. Most functions
are like the ones presented here. The code of restdb.go is going to be used in the
implementation of the RESTful server that is presented next. However, as you are
going to see, we are going to test restdb first.

Testing the restdb package
The RESTful server is developed in ~/go/src/github.com/mactsouk/rest-api—if
you do not plan on making it available to the world, you do not need to create a
separate GitHub repository for it. However, I do want to be able to share it with you,
so the GitHub repository for the server is https://github.com/mactsouk/rest-api.

Before continuing with the server implementation, we use the restdb package
to make sure that it is working as expected before using it in the RESTful server
implementation. The presented utility uses functions from restdb; you do not have
to test every possible usage of the restdb package—just make sure that it works and
that it connects to the PostgreSQL database. For this reason, we are going to create a
separate command-line utility called useRestdb.go that contains the next code and is
in the test-db directory. The most important detail in that file is the use of restdb.
User in the code because this is the structure that is needed by the restdb package.
We cannot pass a different structure as a parameter to the functions of restdb.

Initializing modules and running useRestdb.go produces the next kind of output:

$ go mod init
go: creating new go.mod: module github.com/mactsouk/rest-api/test-db
go: to add module requirements and sums:

https://github.com/mactsouk/rest-api

Chapter 10

[509]

 go mod tidy
$ go mod tidy
go: finding module for package github.com/mactsouk/restdb
go: finding module for package github.com/lib/pq
go: downloading github.com/mactsouk/restdb v0.0.0-20210510205310-
63ba9fa172df
go: found github.com/lib/pq in github.com/lib/pq v1.10.1
go: found github.com/mactsouk/restdb in github.com/mactsouk/restdb
v0.0.0-20210510205310-63ba9fa172df
$ go run useRestdb.go
&{0 {host=localhost port=5432 user=mtsouk password=pass dbname=restapi
sslmode=disable 0x856110} 0 {0 0} [] map[] 0 0 0xc00007c240 false map[]
map[] 0 0 0 0 <nil> 0 0 0 0 0x4dd260}
{0 0 0 0}
mike
packt
admin
2021/05/17 09:40:23 Populating PostgreSQL
User inserted successfully.
2021/05/17 09:40:23 Found user: {9 mtsouk admin 1621233623 1 1}
mtsouk: {9 mtsouk admin 1621233623 1 1}
2021/05/17 09:40:23 Found user: {9 mtsouk admin 1621233623 1 1}
User Deleted.
mtsouk: {0 0 0 0}
2021/05/17 09:40:23 User 0 does not exist.
User not Deleted.
2021/05/17 09:40:23 User 0 does not exist.
User not Deleted.

The absence of error messages tells us that, so far, the restdb package works as
expected: users are added and deleted from the database and queries to the database
are performed. Just remember that this is a quick and dirty way of testing a package.

All packages are improved and new functionality is added to
almost all existing packages. Should you wish to update the
restdb package, or any other external package, and use the newer
version while developing your own utilities, you can issue the
go get -u -v command in the directory where the go.sum and
go.mod files of your utility reside.

Working with REST APIs

[510]

Implementing the RESTful server
Now that we are sure that the restdb package works as expected, we are ready to
explain the implementation of the RESTful server. The server code is split into two
files, both belonging to the main package: main.go and handlers.go. The main reason
for doing so is to avoid having huge code files to work with and separating the
functionality of the server logically.

The most important part of main.go, which belongs to the main() function, is the
following:

 rMux.NotFoundHandler = http.HandlerFunc(DefaultHandler)

First, we need to define the default handler function—although this is not necessary,
it is a good practice to have such a handler.

 notAllowed := notAllowedHandler{}
 rMux.MethodNotAllowedHandler = notAllowed

The MethodNotAllowedHandler handler is executed when you try to visit an endpoint
using an unsupported HTTP method. The actual implementation of the handler is
found in handlers.go.

 rMux.HandleFunc("/time", TimeHandler)

The /time endpoint is supported by all HTTP methods, so it does not belong to any
subrouter.

 // Define Handler Functions
 // Register GET
 getMux := rMux.Methods(http.MethodGet).Subrouter()

 getMux.HandleFunc("/getall", GetAllHandler)
 getMux.HandleFunc("/getid/{username}", GetIDHandler)
 getMux.HandleFunc("/logged", LoggedUsersHandler)
 getMux.HandleFunc("/username/{id:[0-9]+}", GetUserDataHandler)

First, we define a subrouter for the GET HTTP method along with the supported
endpoints. Remember that gorilla/mux is responsible for making sure that only GET
requests are going to be served by the getMux subrouter.

 // Register PUT
 // Update User
 putMux := rMux.Methods(http.MethodPut).Subrouter()
 putMux.HandleFunc("/update", UpdateHandler)

Chapter 10

[511]

After that, we define a subrouter for PUT requests.

 // Register POST
 // Add User + Login + Logout
 postMux := rMux.Methods(http.MethodPost).Subrouter()
 postMux.HandleFunc("/add", AddHandler)
 postMux.HandleFunc("/login", LoginHandler)
 postMux.HandleFunc("/logout", LogoutHandler)

Then, we define the subrouter for POST requests.

 // Register DELETE
 // Delete User
 deleteMux := rMux.Methods(http.MethodDelete).Subrouter()
 deleteMux.HandleFunc("/username/{id:[0-9]+}", DeleteHandler)

The last subrouter is for DELETE HTTP methods. The code in gorilla/mux is
responsible for choosing the correct subrouter based on the client request.

 go func() {
 log.Println("Listening to", PORT)
 err := s.ListenAndServe()
 if err != nil {
 log.Printf("Error starting server: %s\n", err)
 return
 }
 }()

The HTTP server is executed as a goroutine because the program supports signal
handling—refer to Chapter 7, Go Concurrency, for the details.

 sigs := make(chan os.Signal, 1)
 signal.Notify(sigs, os.Interrupt)
 sig := <-sigs
 log.Println("Quitting after signal:", sig)
 time.Sleep(5 * time.Second)
 s.Shutdown(nil)

Last, we add signal handling for gracefully terminating the HTTP server. The sig :=
<-sigs statement prevents the main() function from exiting unless an os.Interrupt
signal is received.

Working with REST APIs

[512]

The handlers.go file contains the implementations for the handler functions and is
also part of the main package—its most important parts are the following:

// AddHandler is for adding a new user
func AddHandler(rw http.ResponseWriter, r *http.Request) {
 log.Println("AddHandler Serving:", r.URL.Path, "from", r.Host)
 d, err := io.ReadAll(r.Body)
 if err != nil {
 rw.WriteHeader(http.StatusBadRequest)
 log.Println(err)
 return
 }

This handler is for the /add endpoint. The server reads the client input using
io.ReadAll().

 if len(d) == 0 {
 rw.WriteHeader(http.StatusBadRequest)
 log.Println("No input!")
 return
 }

Then, the code makes sure that the body of the client request is not empty.

 // We read two structures as an array:
 // 1. The user issuing the command
 // 2. The user to be added
 var users = []restdb.User{}
 err = json.Unmarshal(d, &users)
 if err != nil {
 log.Println(err)
 rw.WriteHeader(http.StatusBadRequest)
 return
 }

As the /add endpoint requires two User structures, the previous code uses json.
Unmarshal() to put them into a []restdb.User variable—this means that the client
should send these two JSON records using an array. The reason for using restdb.
User is that all database-related functions work with restdb.User variables. Even
if we had a structure with the same definition as restdb.User, Go would consider
them as different. This is not the case with the client because the client sends data
without a data type associated with it.

Chapter 10

[513]

 log.Println(users)

 if !restdb.IsUserAdmin(users[0]) {
 log.Println("Issued by non-admin user:", users[0].Username)
 rw.WriteHeader(http.StatusBadRequest)
 return
 }

If the user issuing the command is not an admin, the request fails.
restdb.IsUserAdmin() is implemented in the restdb package.

 result := restdb.InsertUser(users[1])
 if !result {
 rw.WriteHeader(http.StatusBadRequest)
 }
}

Otherwise, restdb.InsertUser() inserts the desired user into the database.

Last, we present the handler for the /getall endpoint.

// GetAllHandler is for getting all data from the user database
func GetAllHandler(rw http.ResponseWriter, r *http.Request) {
 log.Println("GetAllHandler Serving:", r.URL.Path, "from", r.Host)
 d, err := io.ReadAll(r.Body)
 if err != nil {
 rw.WriteHeader(http.StatusBadRequest)
 log.Println(err)
 return
 }

Once again, we read the data from the client using io.ReadAll(r.Body) and we make
sure that the process is error-free by examining the err variable.

 if len(d) == 0 {
 rw.WriteHeader(http.StatusBadRequest)
 log.Println("No input!")
 return
 }

 var user = restdb.User{}
 err = json.Unmarshal(d, &user)

Working with REST APIs

[514]

 if err != nil {
 log.Println(err)
 rw.WriteHeader(http.StatusBadRequest)
 return
 }

Here, we put the client data into a restdb.User variable. The /getall endpoint
requires a single restdb.User record as input.

 if !restdb.IsUserAdmin(user) {
 log.Println("User", user, "is not an admin!")
 rw.WriteHeader(http.StatusBadRequest)
 return
 }

Only admin users can visit /getall and get back the list of all users.

 err = SliceToJSON(restdb.ListAllUsers(), rw)
 if err != nil {
 log.Println(err)
 rw.WriteHeader(http.StatusBadRequest)
 return
 }
}

The last part of the code is about getting the desired data from the database and
sending it to the client using the SliceToJSON(restdb.ListAllUsers(), rw) call.

Feel free to put each handler into a separate Go file. The general idea is that if you
have lots of handler functions, using a separate file for each handler function is a
good practice.

The next section tests the RESTful server using curl(1) before developing a proper
client.

Testing the RESTful server
This subsection shows how to test the RESTful server using the curl(1) utility.
You should test the RESTful server as much and as extensively as possible to find
bugs or unwanted behavior. As we use two files for the server implementation, we
need to run it as go run main.go handlers.go. Additionally, do not forget to have
PostgreSQL up and running. We begin by testing the /time handler, which works
with all HTTP methods:

Chapter 10

[515]

$ curl localhost:1234/time
The current time is: Mon, 17 May 2021 09:14:00 EEST

Next, we test the default handler:

$ curl localhost:1234/
/ is not supported. Thanks for visiting!
$ curl localhost:1234/doesNotExist
/doesNotExist is not supported. Thanks for visiting!

Last, we see what happens if we use an unsupported HTTP method with a
supported endpoint—in this case, the /getall endpoint that works with GET only:

$ curl -s -X PUT -H 'Content-Type: application/json' localhost:1234/
getall
Method not allowed!

Although the /getall endpoint requires a valid user to operate, the fact that we are
using an HTTP method that is not supported by that endpoint takes precedence and
the call fails for the right reasons.

The next subsection tests all handlers that support the GET HTTP method.

Testing GET handlers
First, we test the /getall endpoint:

$ curl -s -X GET -H 'Content-Type: application/json' -d '{"username":
"admin", "password" : "newPass"}' localhost:1234/getall
[{"ID":1,"Username":"admin","Password":"newPass","LastLogin":1620922454
,"Admin":1,"Active":1},{"ID":6,"Username":"mihalis","Password":"admin",
"LastLogin":1620926815,"Admin":1,"Active":0},{"ID":7,"Username":"mike",
"Password":"admin","LastLogin":1620926862,"Admin":1,"Active":0}]

The previous output is a list of all existing users found in the database in JSON
format.

It is important to look at the output of the RESTful server and the
log entries that it generates during testing. Not all information can
be sent back to a client, but the server process is allowed to print
anything we want. This can be very helpful for debugging a server
process such as our RESTful server.

Working with REST APIs

[516]

Then, we test the /logged endpoint:

$ curl -X GET -H 'Content-Type: application/json' -d '{"username":
"admin", "password" : "newPass"}' localhost:1234/logged
[{"ID":1,"Username":"admin","Password":"newPass","LastLogin":1620922454
,"Admin":1,"Active":1}]

After that, we test the /username/{id} endpoint:

$ curl -X GET -H 'Content-Type: application/json' -d '{"username":
"admin", "password" : "newPass"}' localhost:1234/username/7
{"ID":7,"Username":"mike","Password":"admin","LastLogin":1620926862,"Ad
min":1,"Active":0}

Last, we test the /getid/{username} endpoint:

$ curl -X GET -H 'Content-Type: application/json' -d '{"username":
"admin", "password" : "newPass"}' localhost:1234/getid/admin
User admin has ID: 1

So far, we can get a list of existing users and the list of logged-in users and get
information about specific users—all these endpoints use the GET method. The next
subsection tests all handlers that support the POST HTTP method.

Testing POST handlers
First, we test the /add endpoint by adding the packt user, which does not have
admin privileges:

$ curl -X POST -H 'Content-Type: application/json' -d '[{"username":
"admin", "password" : "newPass", "admin":1}, {"username": "packt",
"password" : "admin", "admin":0}]' localhost:1234/add

The previous call passes an array of JSON records to the server to add a new user
named packt. The command is issued by the admin user.

If we try to add the same username more than once, the process is going to fail—
this is revealed with the use of -v in the curl(1) command. The relevant message is
HTTP/1.1 400 Bad Request.

Additionally, if we try to add a new user using the credentials of a user that is not
an administrator, the server is going to generate the Command issued by non-admin
user: packt message.

Chapter 10

[517]

Then, we test the /login endpoint:

$ curl -X POST -H 'Content-Type: application/json' -d '{"username":
"packt", "password" : "admin"}' localhost:1234/login

The previous command is used for logging in the packt user.

Last, we test the /logout endpoint:

$ curl -X POST -H 'Content-Type: application/json' -d '{"username":
"packt", "password" : "admin"}' localhost:1234/logout

The previous command is used for logging out the packt user. You can use the
/logged endpoint to verify the results of the previous two interactions.

Let us now test the only endpoint that supports the PUT HTTP method.

Testing the PUT handler
First, we test the /update endpoint as follows:

$ curl -X PUT -H 'Content-Type: application/json' -d '[{"username":
"admin", "password" : "newPass", "admin":1}, {"username": "admin",
"password" : "justChanged", "admin":1}]' localhost:1234/update

The previous command changes the password of the admin user from newPass to
justChanged.

Then, we try to change a user password using the credentials of a non-admin user
(packt):

$ curl -X PUT -H 'Content-Type: application/json' -d '[{"Username
":"packt","Password":"admin"}, {"username": "admin", "password" :
"justChanged", "admin":1}]' localhost:1234/update

The generated log message is Command issued by non-admin user: packt.

We might consider the fact that a non-admin user cannot even change their
password a flaw—it might be, but this is the way the RESTful server is implemented.
The idea is that non-admin users should not issue dangerous commands directly.
Additionally, this flaw can be easily fixed as follows: generally speaking, regular
users are not going to interact in this way with the server and are going to be offered
a web interface for doing so. After that, an admin user can send the user request to
the server. Therefore, this can be implemented in a different way that is more secure
and does not give unnecessary privileges to regular users.

Lastly, we are going to test the DELETE HTTP method.

Working with REST APIs

[518]

Testing the DELETE handler
For the DELETE HTTP method, we need to test the /username/{id} endpoint. As
that endpoint does not return any output, using -v in curl(1) is going to reveal the
returned HTTP status code:

$ curl -X DELETE -H 'Content-Type: application/json' -d '{"username":
"admin", "password" : "justChanged"}' localhost:1234/username/6 -v

The HTTP/1.1 200 OK status code verifies that the user was deleted successfully. If
we try to delete the same user again, the request is going to fail, and the returned
message is going to be HTTP/1.1 404 Not Found.

So far, we know that the RESTful server works as expected. However, curl(1) is far
from perfect for working with the RESTful server on a daily basis. The next section
shows how to develop a command-line client for the RESTful server we developed
in this section.

Creating a RESTful client
Creating a RESTful client is much easier than programming a server mainly because
you do not have to work with the database on the client side. The only thing that the
client needs to do is send the right amount and kind of data to the server and receive
back the server response. The RESTful client is going to be developed in ~/go/src/
github.com/mactsouk/rest-cli—if you do not plan to make it available to the world,
you do not need to create a separate GitHub repository for it. However, for you to
be able to see the code of the client, I created a GitHub repository, which is https://
github.com/mactsouk/rest-cli.

The supported first-level cobra commands are the following:

• list: This command accesses the /getall endpoint and returns the list of
users

• time: This command is for visiting the /time endpoint
• update: This command is for updating user records—the user ID cannot

change
• logged: This command lists all logged-in users
• delete: This command deletes an existing user
• login: This command is for logging in a user

https://github.com/mactsouk/rest-cli
https://github.com/mactsouk/rest-cli

Chapter 10

[519]

• logout: This command is for logging out a user
• add: This command is for adding a new user to the system
• getid: This command returns the ID of a user, identified by their username
• search: This command displays information about a given user, identified by

their ID

There exist two main command-line flags for passing the username and the
password of the user issuing the command: user and pass. As you are going to
see in their implementations, they have the -u and -p shortcuts, respectively.
Additionally, as the JSON record that holds user info has a small number of fields,
all the fields are going to be given in a JSON record as plain text, using the data
flag and -d shortcut—this is implemented in root.go. Each command is going to
read the desired flags only and the desired fields of the input JSON record—this is
implemented in the source code file of each command. Lastly, the utility is going
to return JSON records, when this makes sense, or a text message related to the
endpoint that was visited. Now, let us continue with the structure of the client and
the implementation of the commands.

Creating the structure of the command-line
client
This subsection uses the cobra utility to create a structure for the command-line
utility. But first we are going to create a proper cobra project and Go module:

$ cd ~/go/src/github.com/mactsouk
$ git clone git@github.com:mactsouk/rest-cli.git
$ cd rest-cli
$ ~/go/bin/cobra init --pkg-name github.com/mactsouk/rest-cli
$ go mod init
$ go mod tidy
$ go run main.go

A client like the one we are about to present is much better
than working with curl(1) because it can process the received
information but, most importantly, it can interpret the HTTP return
codes and preprocess data before sending it to the server. The price
you pay is the extra time needed for developing and debugging the
RESTful client.

Working with REST APIs

[520]

You do not need to execute the last command, but it makes sure that everything is
fine so far. After that, we are ready to define the commands that the utility is going
to support by running the following cobra commands:

$ ~/go/bin/cobra add add
$ ~/go/bin/cobra add delete
$ ~/go/bin/cobra add list
$ ~/go/bin/cobra add logged
$ ~/go/bin/cobra add login
$ ~/go/bin/cobra add logout
$ ~/go/bin/cobra add search
$ ~/go/bin/cobra add getid
$ ~/go/bin/cobra add time
$ ~/go/bin/cobra add update

Now that we have the desired structure, we can begin implementing the commands
and maybe remove some of the comments inserted by cobra, which is the subject of
the next subsection.

Implementing the RESTful client commands
As there is no point in presenting all code that can be found in the GitHub
repository, we are going to present the most characteristic code found in some of
the commands, starting with root.go, which is where the next global variables are
defined:

var SERVER string
var PORT string
var data string
var username string
var password string

These global variables hold the values of the command-line options of the utility
and are accessible from anywhere in the utility code.

type User struct {
 ID int `json:"id"`
 Username string `json:"username"`
 Password string `json:"password"`
 LastLogin int64 `json:"lastlogin"`
 Admin int `json:"admin"`
 Active int `json:"active"`
}

Chapter 10

[521]

We define the User structure for sending and receiving data.

func init() {
 rootCmd.PersistentFlags().StringVarP(&username, "username", "u",
"username", "The username")
 rootCmd.PersistentFlags().StringVarP(&password, "password", "p",
"admin", "The password")
 rootCmd.PersistentFlags().StringVarP(&data, "data", "d", "{}",
"JSON Record")

 rootCmd.PersistentFlags().StringVarP(&SERVER, "server", "s",
"http://localhost", "RESTful server hostname")
 rootCmd.PersistentFlags().StringVarP(&PORT, "port", "P", ":1234",
"Port of RESTful Server")
}

We present the implementation of the init() function that holds the definitions of
the command-line options. The values of the command-line flags are automatically
stored in the variables that are passed as the first argument to rootCmd.
PersistentFlags().StringVarP(). So, the username flag, which has the -u alias,
stores its value to the username global variable.

Next is the implementation of the list command as found in list.go:

var listCmd = &cobra.Command{
 Use: "list",
 Short: "List all available users",
 Long: `The list command lists all available users.`,

This part is about the help messages that are displayed for the command. Although
they are optional, it is good to have an accurate description of the command. We
continue with the implementation:

 Run: func(cmd *cobra.Command, args []string) {
 endpoint := "/getall"
 user := User{Username: username, Password: password}

First, we construct a User variable to hold the username and the password of the user
issuing the command—this variable is going to be passed to the server.

 // bytes.Buffer is both a Reader and a Writer
 buf := new(bytes.Buffer)
 err := user.ToJSON(buf)

Working with REST APIs

[522]

 if err != nil {
 fmt.Println("JSON:", err)
 return
 }

We need to encode the user variable before passing it to the RESTful server, which
is the purpose of the ToJSON() method. The implementation of the ToJSON() method
is found in root.go.

 req, err := http.NewRequest(http.MethodGet,
 SERVER+PORT+endpoint, buf)
 if err != nil {
 fmt.Println("GetAll – Error in req: ", err)
 return
 }
 req.Header.Set("Content-Type", "application/json")

Here, we create the request using the SERVER and PORT global variables followed by
the endpoint, using the desired HTTP method (http.MethodGet), and declare that
we are going to send JSON data using Header.Set().

 c := &http.Client{
 Timeout: 15 * time.Second,
 }

 resp, err := c.Do(req)
 if err != nil {
 fmt.Println("Do:", err)
 return
 }

After that, we send our data to the server using Do() and get the server response.

 if resp.StatusCode != http.StatusOK {
 fmt.Println(resp)
 return
 }

If the status code of the response is not http.StatusOK, then the request has failed.

 var users = []User{}
 SliceFromJSON(&users, resp.Body)
 data, err := PrettyJSON(users)

Chapter 10

[523]

 if err != nil {
 fmt.Println(err)
 return
 }

 fmt.Print(data)
 },
}

If the status code is http.StatusOK, then we prepare to read a slice of User
variables. As these variables hold JSON records, we need to decode them using
SliceFromJSON(), which is defined in root.go.

Last is the code of the add command, as found in add.go. The difference between add
and list is that the add command needs to send two JSON records to the RESTful
server: the first one holding the data of the user issuing the command, and the
second holding the data for the user that is about to be added to the system. The
username and password flags hold the data for the Username and Password fields
of the first record, whereas the data command-line flag holds the data for the
second record.

var addCmd = &cobra.Command{
 Use: "add",
 Short: "Add a new user",
 Long: `Add a new user to the system.`,
 Run: func(cmd *cobra.Command, args []string) {
 endpoint := "/add"
 u1 := User{Username: username, Password: password}

As before, we get the information about the user issuing the command and put it
into a structure.

 // Convert data string to User Structure
 var u2 User
 err := json.Unmarshal([]byte(data), &u2)
 if err != nil {
 fmt.Println("Unmarshal:", err)
 return
 }

Working with REST APIs

[524]

As the data command-line flag holds a string value, we need to convert that string
value to a User structure—this is the purpose of the json.Unmarshal() call.

 users := []User{}
 users = append(users, u1)
 users = append(users, u2)

Then we create a slice of User variables that are going to be sent to the server. The
order you put the structures in that slice is important: first, the user issuing the
command, and then the data of the user that is going to be created.

 buf := new(bytes.Buffer)
 err = SliceToJSON(users, buf)
 if err != nil {
 fmt.Println("JSON:", err)
 return
 }

Then we encode that slice before sending it to the RESTful server through the HTTP
request.

 req, err := http.NewRequest(http.MethodPost,
 SERVER+PORT+endpoint, buf)
 if err != nil {
 fmt.Println("GetAll – Error in req: ", err)
 return
 }
 req.Header.Set("Content-Type", "application/json")

 c := &http.Client{
 Timeout: 15 * time.Second,
 }

 resp, err := c.Do(req)
 if err != nil {
 fmt.Println("Do:", err)
 return
 }

We prepare the request and send it to the server. The server is responsible for
decoding the provided data and acting accordingly, in this case adding a new user to
the system. The client just needs to visit the correct endpoint using the appropriate
HTTP method (http.MethodPost) and check the returned status code.

Chapter 10

[525]

 if resp.StatusCode != http.StatusOK {
 fmt.Println("Status code:", resp.Status)
 } else {
 fmt.Println("User", u2.Username, "added.")
 }
 },
}

The add command does not return any data back to the client—what interests us
is the HTTP status code because this is what determines the success or failure of
the command.

Using the RESTful client
We are now going to use the command-line utility to interact with the RESTful
server. This type of utility can be used for administering a RESTful server, creating
automated tasks, and carrying out CI/CD jobs. For reasons of simplicity, the client
and the server reside on the same machine, and we mostly work with the default
user (admin)—this makes the presented commands shorter. Additionally, we execute
go build to create a binary executable to avoid using go main.go all the time.

First, we get the time from the server:

$./rest-cli time
The current time is: Tue, 25 May 2021 08:38:04 EEST

Next, we list all users. As the output depends on the contents of the database, we
print a small part of the output. Note that the list command requires a user with
admin privileges:

$./rest-cli list -u admin -p admin
[
 {
 "id": 7,
 "username": "mike",
 "password": "admin",
 "lastlogin": 1620926862,
 "admin": 1,
 "active": 0
 },

Working with REST APIs

[526]

Next, we test the logged command with an invalid password:

$./rest-cli logged -u admin -p notPass
&{400 Bad Request 400 HTTP/1.1 1 1 map[Content-Length:[0] Date:[Tue,
25 May 2021 05:42:36 GMT]] 0xc000190020 0 [] false false map[]
0xc0000fc800 <nil>}

As expected, the command fails—this output is used for debugging purposes. After
making sure that the command works as expected, you might want to print a more
appropriate error message.

After that, we test the add command:

$./rest-cli add -u admin -p admin --data '{"Username":"newUser",
"Password":"aPass"}'
User newUser added.

Trying to add the same user again is going to fail:

$./rest-cli add -u admin -p admin --data '{"Username":"newUser",
"Password":"aPass"}'
Status code: 400 Bad Request

Next, we are going to delete newUser—but first, we need to find the user ID of
newUser:

$./rest-cli getid -u admin -p admin --data '{"Username":"newUser"}'
User newUser has ID: 15
$./rest-cli delete -u admin -p admin --data '{"ID":15}'
User with ID 15 deleted.

Feel free to continue testing the RESTful client and let me know if you find any bugs!

Working with multiple REST API versions
A REST API can change and evolve over time. There exist various approaches on
how to implement REST API versioning, including the following:

• Using a custom HTTP header (version-used) to define the used version
• Using a different subdomain for each version (v1.servername and

v2.servername)
• Using a combination of Accept and Content-Type headers—this method is

based on content negotiation

Chapter 10

[527]

• Using a different path for each version (/v1 and /v2 if the RESTful server
supports two REST API versions)

• Using a query parameter to reference the desired version (..../
endpoint?version=v1 or/endpoint?v=1)

There is no correct answer for how to implement REST API versioning. Use what
seems more natural to you and your users. What is important is to be consistent
and use the same approach everywhere. Personally, I prefer to use /v1/... for
supporting the endpoints of version 1, and /v2/... for supporting the endpoints of
version 2, and so on.

The development of RESTful servers and clients has come to an end here. The next
section illustrates how to upload and download binary files using gorilla/mux in
case you want to add that feature.

Uploading and downloading binary files
It is not unusual to need to store binary files in a RESTful server and being able to
download them afterward—for example, for developing photo libraries or document
libraries. This section illustrates how to implement that functionality.

For reasons of simplicity, the example is going to be included in the mactsouk/rest-
api GitHub repository used earlier for implementing the RESTful server. For this
subsection, we are going to be using the file directory to store the relevant code,
which is saved as binary.go. In reality, binary.go is a small RESTful server that
only supports the uploading and downloading of binary files through the /files/
endpoint.

There exist three main ways to save the files you upload:

• On the local filesystem
• On a database management system that supports the storing of binary files
• On the cloud using a cloud provider

In our case, we are storing the files on the filesystem the server runs on. More
specifically, we are storing uploaded files under /tmp/files as we are testing things.

The code of binary.go is as follows:

package main

import (
 "errors"

Working with REST APIs

[528]

 "io"
 "log"
 "net/http"
 "os"
 "time"

 "github.com/gorilla/mux"
)

var PORT = ":1234"
var IMAGESPATH = "/tmp/files"

The previous two global parameters hold the TCP port the server is going to listen
to and the local path where uploaded files are going to be saved, respectively. Note
that on most UNIX systems, /tmp is automatically emptied after a system reboot.

func uploadFile(rw http.ResponseWriter, r *http.Request) {
 filename, ok := mux.Vars(r)["filename"]
 if !ok {
 log.Println("filename value not set!")
 rw.WriteHeader(http.StatusNotFound)
 return
 }
 log.Println(filename)
 saveFile(IMAGESPATH+"/"+filename, rw, r)
}

The uploadFile() function is responsible for the uploading of new files to the
predefined directory. The most important part of it is the use of mux.Vars(r) for
getting the value of the filename key. Note that the parameter to mux.Vars() is the
http.Request variable. If the desired key exists, then the function continues and
calls saveFile(). Otherwise, it returns without saving any files.

func saveFile(path string, rw http.ResponseWriter, r *http.Request) {
 log.Println("Saving to", path)
 err := saveToFile(path, r.Body)
 if err != nil {
 log.Println(err)
 return
 }
}

Chapter 10

[529]

The purpose of saveFile() is to save the uploaded file by calling saveToFile(). You
might ask, why not combine both saveFile() and saveToFile() and have a single
function? The answer is that this way, the code of saveToFile() is generic and can be
reused by other utilities.

func saveToFile(path string, contents io.Reader) error {
 _, err := os.Stat(path)
 if err == nil {
 err = os.Remove(path)
 if err != nil {
 log.Println("Error deleting", path)
 return err
 }
 } else if !os.IsNotExist(err) {
 log.Println("Unexpected error:", err)
 return err
 }

 f, err := os.Create(path)
 if err != nil {
 log.Println(err)
 return err
 }
 defer f.Close()

 n, err := io.Copy(f, contents)
 if err != nil {
 return err
 }
 log.Println("Bytes written:", n)

 return nil
}

All the previous code is related to file I/O and is used for saving the contents of the
contents io.Reader to the desired path.

func createImageDirectory(d string) error {
 _, err := os.Stat(d)
 if os.IsNotExist(err) {
 log.Println("Creating:", d)
 err = os.MkdirAll(d, 0755)

Working with REST APIs

[530]

 if err != nil {
 log.Println(err)
 return err
 }
 } else if err != nil {
 log.Println(err)
 return err
 }

 fileInfo, _ := os.Stat(d)

 mode := fileInfo.Mode()
 if !mode.IsDir() {
 msg := d + " is not a directory!"
 return errors.New(msg)
 }

The purpose of createImageDirectory() is to create the directory where the files are
going to be saved, if the directory does not already exist. If the path exists and is not
a directory, then we have a problem, so the function returns a custom error message.

 return nil
}
func main() {
 err := createImageDirectory(IMAGESPATH)
 if err != nil {
 log.Println(err)
 return
 }

 mux := mux.NewRouter()
 putMux := mux.Methods(http.MethodPut).Subrouter()
 putMux.HandleFunc("/files/{filename:[a-zA-Z0-9][a-zA-Z0-9\\.]*[a-
zA-Z0-9]}", uploadFile)

Only the PUT HTTP method is supported for uploading files to the server. The
regular expression dictates that we want filenames that begin with a single letter or
digit and end with a letter or digit. This means that filenames should not begin with
. or .. to avoid visiting subdirectories and therefore compromising the security of
the system. As we saw earlier, the code saves the filename value in a map using the
filename key—this map is accessed by the uploadFile() function.

Chapter 10

[531]

 getMux := mux.Methods(http.MethodGet).Subrouter()
 getMux.Handle("/files/{filename:[a-zA-Z0-9][a-zA-Z0-9\\.]*[a-
zA-Z0-9]}", http.StripPrefix("/files/", http.FileServer(http.
Dir(IMAGESPATH))))

The downloading part is a combination of the functionality of gorilla/mux and
the Go handler for file servers. So, the external package offers support for regular
expressions and an easy way to define that we want to use the GET HTTP method,
whereas Go offers the functionality of http.FileServer() for serving the files. This
mainly happens because we are serving files from the local filesystem. However,
nothing prohibits us from writing our own handler function for the downloading
of the binary files when we want to divert from the default behavior.

 s := http.Server{
 Addr: PORT,
 Handler: mux,
 ErrorLog: nil,
 ReadTimeout: 5 * time.Second,
 WriteTimeout: 5 * time.Second,
 IdleTimeout: 10 * time.Second,
 }

 log.Println("Listening to", PORT)

 err = s.ListenAndServe()
 if err != nil {
 log.Printf("Error starting server: %s\n", err)
 return
 }
}

The last part of the utility is about beginning the server with the desired parameters.
It is really surprising that main() is pretty short, yet it does so many useful things.

We now need to initialize the Go module functionality for binary.go to run:

$ go mod init
$ go mod tidy
$ go mod download

We are going to use curl(1) to work with binary.go:

$ curl -X PUT localhost:1234/files/packt.png --data-binary @packt.png

Working with REST APIs

[532]

So, first we upload a file named packt.png to the server and the file is saved as
packt.png on the server side. The next command saves the same file as 1.png on
the server:

$ curl -X PUT localhost:1234/files/1.png --data-binary @packt.png

Downloading 1.png on the local machine as downloaded.png is as easy as running the
next command:

$ curl -X GET localhost:1234/files/1.png --output downloaded.png

If you forget to use --output, then curl(1) generates the next error message:

Warning: Binary output can mess up your terminal. Use "--output -" to
tell
Warning: curl to output it to your terminal anyway, or consider
"--output
Warning: <FILE>" to save to a file.

Last, if you try to download a file that cannot be found, curl(1) prints the 404 page
not found message.

For the previous interactions, binary.go generated the following output:

2021/05/25 09:06:46 Creating: /tmp/files
2021/05/25 09:06:46 Listening to :1234
2021/05/25 09:10:21 packt.png
2021/05/25 09:10:21 Saving to /tmp/files/packt.png
2021/05/25 09:10:21 Bytes written: 733

Now that we know how to create RESTful servers, download and upload files, and
define REST APIs, it is time to learn how to document REST APIs using Swagger.

Using Swagger for REST API
documentation
In this section, we discuss the documentation of a REST API. We are going to use the
OpenAPI Specification for documenting the REST API. The OpenAPI Specification,
which is also called the Swagger Specification, is a specification for describing,
producing, consuming, and visualizing RESTful web services.

Chapter 10

[533]

Put simply, Swagger is a representation of your RESTful API. Swagger reads the
appropriate code annotations and creates the OpenAPI file. To be able to document a
REST API using Swagger, you basically have two choices. First, writing the OpenAPI
Specification file on your own (manually), or adding annotations in the source code
that help Swagger generate the OpenAPI Specification file for you (automatically).

We are going to use go-swagger, which brings to Go a way of working with the
Swagger API. The extra content for creating the documentation for the REST API
is put in the Go source files as Go comments. The utility reads these comments and
generates the documentation! However, all comments should follow certain rules
and comply with the supported grammar and conventions.

First, we need to install the go-swagger binary by following the instructions found
at https://goswagger.io/install.html. As instructions and versions change from
time to time, do not forget to check for updates. The instructions from the previous
web page install the swagger binary in /usr/local/bin, which is the appropriate
place for external binary files. However, you are free to put it elsewhere as long as
the directory you put it in is in your PATH. After a successful installation, running
Swagger on the command line should generate the next message, which states the
commands that are supported by swagger:

Please specify one command of: diff, expand, flatten, generate, init,
mixin, serve, validate or version

You can also get extra help for each swagger command with the --help flag. For
example, getting help for the generate command is as simple as running swagger
generate --help:

$ swagger generate --help
Usage:
 swagger [OPTIONS] generate <command>

generate go code for the swagger spec file

Application Options:
 -q, --quiet silence logs
 --log-output=LOG-FILE redirect logs to file

Help Options:
 -h, --help Show this help message

https://goswagger.io/install.html

Working with REST APIs

[534]

Available commands:
 cli generate a command line client tool from the swagger spec
 client generate all the files for a client library
 markdown generate a markdown representation from the swagger spec
 model generate one or more models from the swagger spec
 operation generate one or more server operations from the swagger
spec
 server generate all the files for a server application
 spec generate a swagger spec document from a go application
 support generate supporting files like the main function and the
api builder

Next, we learn how to document the REST API by adding Swagger-related metadata
to a source file.

Documenting the REST API
This section teaches you how to document an existing REST API. For reasons of
simplicity, we are going to use a relatively short file that contains handler functions.
So, we create a new folder named swagger in the https://github.com/mactsouk/
rest-api repository for storing the Go file with the extra Swagger information—
in our case, we are going to create a new copy of handlers.go inside the swagger
directory and modify it. Have in mind that as far as Go is concerned, the new version
is still a valid Go package that can be compiled and used without any issues—it just
contains extra Swagger-related information in Go comments.

There is no point in displaying the entire code of the new version of handlers.go,
which is contained in a Go package named handlers—we just present the most
important parts of it, beginning with the preamble of the source file:

// Package handlers for the RESTful Server
//
// Documentation for REST API
//
// Schemes: http
// BasePath: /
// Version: 1.0.7
//
// Consumes:
// - application/json
//
// Produces:

https://github.com/mactsouk/rest-api
https://github.com/mactsouk/rest-api

Chapter 10

[535]

// - application/json
//
// swagger:meta

We declare that we are communicating with data in JSON format (Consumes and
Produces), define the version, and put in some comments that describe the general
purpose of the package. The swagger:meta tag is what informs the swagger binary
that this is a source file with metadata about an API. Just make sure that you do not
forget that particular tag. Then, we present the documentation for the User structure,
which is essential for the operation of the service and is going to be used indirectly
by extra structures that we need to define for the purposes of documentation
generation.

// User defines the structure for a Full User Record
//
// swagger:model
type User struct {
 // The ID for the user
 // in: body
 //
 // required: false
 // min: 1
 ID int `json:"id"`

The user ID is provided by the database, which makes it a not-required field, and has
a minimum value of 1.

 // The Username of the user
 // in: body
 //
 // required: true
 Username string `json:"username"`

The Username field is required.

 // The Password of the user
 //
 // required: true
 Password string `json:"password"`

Similarly, the Password field is required.

 // The Last Login time of the User
 //

Working with REST APIs

[536]

 // required: true
 // min: 0
 LastLogin int64 `json:"lastlogin"`

 // Is the User Admin or not
 //
 // required: true
 Admin int `json:"admin"`

 // Is the User Logged In or Not
 //
 // required: true
 Active int `json:"active"`
}

At the end of the day, you need to add comments for all the fields of the structure.

Next, we document the /delete endpoint along with its handler function:

// swagger:route DELETE /delete/{id} DeleteUser deleteID
// Delete a user given their ID.
// The command should be issued by an admin user

In this first part, we say that this endpoint works with the DELETE HTTP method,
uses the /delete path, requires a parameter named id, and is going to be displayed
as DeleteUser on screen. The last part (deleteID) allows us to define the details of
the id parameter, which is going to be presented in a while.

//
// responses:
// 200: noContent
// 404: ErrorMessage

In the preceding code, we define the two possible responses of the endpoint. Both are
going to be implemented later.

// DeleteHandler is for deleting users based on user ID
func DeleteHandler(rw http.ResponseWriter, r *http.Request) {
}

The handler implementation for /delete is omitted for brevity.

After that, we are going to document the /logged endpoint along with its handler
function:

Chapter 10

[537]

// swagger:route GET /logged logged getUserInfo
// Returns a list of logged in users
//
// responses:
// 200: UsersResponse
// 400: BadRequest

This time, the first response of the handler function is called UsersResponse and is
going to be presented in a while. If you recall, this handler returns a slice of User
elements.

// LoggedUsersHandler returns the list of all logged in users
func LoggedUsersHandler(rw http.ResponseWriter, r *http.Request) {

}

Lastly, we need to define Go structures to represent the various inputs and results
of an interaction—this is mainly needed for Swagger to work (you usually put these
definitions in a separate file that is usually called docs.go). The two most important
such Go structures are the following:

// swagger:parameters deleteID
type idParamWrapper struct {
 // The user id to be deleted
 // in: path
 // required: true
 ID int `json:"id"`
}

This one is for the /delete endpoint and defines the ID variable, which is given in
the path, hence the in: path line. Notice the use of swagger:parameters followed by
deleteID, which is what associates that particular structure with the documentation
of the /delete handler function.

// A User
// swagger:parameters getUserInfo loggedInfo
type UserInputWrapper struct {
 // A list of users
 // in: body
 Body User
}

Working with REST APIs

[538]

This time, the structure is associated with two endpoints, hence the use of both
getUserInfo and loggedInfo. Each endpoint should be associated with a unique
name.

These helper structures are defined once and are the (small) price you have to pay
for the automatic generation of the documentation. The next subsection shows how
to create the OpenAPI file given the modified version of handlers.go.

Generating the documentation file
Now that we have the Go file with the Swagger metadata, we are ready to generate
the OpenAPI file:

$ swagger generate spec --scan-models -o ./swagger.yaml

What the previous command does is tell swagger to generate a Swagger spec
document from a Go application that resides in the directory where we run swagger.
The --scan-models option tells swagger to include models that were annotated with
swagger:model. The result of the previous command is a file named swagger.yaml,
as specified by the -o option. Part of the contents of that file is as follows—there is
no point in trying to understand everything in the presented output:

 /delete/{id}:
 delete:
 description: |-
 Delete a user given their ID
 The command should be issued by an admin user
 operationId: deleteID
 parameters:
 - description: The user id to be deleted
 format: int64
 in: path
 name: id
 required: true
 type: integer
 x-go-name: ID
 responses:
 "200":
 $ref: '#/responses/noContent'
 "404":
 $ref: '#/responses/ErrorMessage'
 tags:
 - DeleteUser

Chapter 10

[539]

The previous part is related to the /delete endpoint. The output says that the
/delete endpoint requires a single parameter, which is the user ID of the user that
is about to get deleted. The server returns HTTP code 200 on success and 404 on
failure.

Feel free to have a look at the full version of swagger.yaml. However, we are not
done yet. We need to be able to serve that generated file using a web server. The
process is illustrated in the next subsection.

Serving the documentation file
Before we begin the discussion about serving the Swagger file, we first need to
discuss the use of middleware functions using a simple yet fully functional example.
The reason for doing so is simple: the swagger tool generates a YAML file that
needs to be properly rendered before being presented on screen. So, we use ReDoc
(https://github.com/Redocly/redoc) to do that. However, we need the middleware
package for hosting ReDoc sites—although the job is done transparently by the
middleware package, it is good to know what middleware functions are and what
they do. Middleware functions are functions with a short amount of code that
get a request, do something with it, and pass it to another middleware or to the
last handler function. gorilla/mux allows you to attach one or more middleware
functions to a router using Router.Use(). If a match is found, the relevant
middleware functions are executed in the order they were added to the router (or
subrouter).

The important code in middleware.go is the following:

 mux := mux.NewRouter()
 mux.Use(middleWare)

 putMux := mux.Methods(http.MethodPut).Subrouter()
 putMux.HandleFunc("/time", timeHandler)

 getMux := mux.Methods(http.MethodGet).Subrouter()
 getMux.HandleFunc("/add", addHandler)
 getMux.Use(anotherMiddleWare)

As middleWare() was added to the main router (mux.Use(middleWare)), it is always
executed before any subrouter middleware function. Additionally, middleWare() is
executed with all requests, whereas anotherMiddleWare() is executed for the getMux
subrouter only.

https://github.com/Redocly/redoc

Working with REST APIs

[540]

Now that you have a sense of middleware functions, it is time to continue with
the serving of swagger.yaml. As stated before, serving swagger.yaml requires the
addition of a handler that we are going to find in an external package, which saves
us from having to write everything from scratch. As we try to keep things simple,
we are going to serve swagger.yaml on its own in ./swagger/serve/swagger.go using
the /docs path. The code that follows illustrates the technique by presenting the
implementation of the main() function:

func main() {
 mux := mux.NewRouter()

 getMux := mux.Methods(http.MethodGet).Subrouter()
 opts := middleware.RedocOpts{SpecURL: "/swagger.yaml"}

This is where we define the options of a middleware function that is going to be used
when serving /swagger.yaml. As discussed earlier, this middleware function renders
the YAML code.

 sh := middleware.Redoc(opts, nil)

This is how we define a handler function that is based on the middleware function.
This middleware function does not require the use of the Use() method.

 getMux.Handle("/docs", sh)

And now, we must associate the previous handler with /docs and we are done!

 getMux.Handle("/swagger.yaml", http.FileServer(http.Dir("./")))

 s := http.Server{
 . . .
 }

 log.Println("Listening to", PORT)
 err := s.ListenAndServe()
 if err != nil {
 log.Printf("Error starting server: %s\n", err)
 return
 }
}

The rest of the code is for defining the parameters of the server and for starting the
server.

Chapter 10

[541]

The figure that follows shows the rendered swagger.yaml as displayed in a Firefox
browser.

Figure 10.1: Creating documentation for the RESTful API

Figure 10.1 shows information about the /getid endpoint, the required payload, and
the expected responses.

Unfortunately, further discussion about Swagger and go-swagger is beyond the
scope of this book—as usual, you need to experiment with the tools to create the
desired results. The point here is that having a RESTful service without proper
documentation is not going to be very pleasing for potential developers.

Working with REST APIs

[542]

Exercises
• Include the functionality of binary.go in your own RESTful server
• Change the restdb package to support SQLite instead of PostgreSQL
• Change the restdb package to support MySQL instead of PostgreSQL
• Put the handler functions from handlers.go into separate files

Summary
Go is widely used for developing RESTful clients and servers and this chapter
illustrated how to program professional RESTful clients and servers in Go, and how
to document a REST API using Swagger. Remember that defining a proper REST API
and implementing a server and clients for it is a process that takes time and requires
small adjustments and modifications.

The next chapter is about code testing, benchmarking, profiling, cross-compilation,
and creating example functions. Among other things, we are going to write code
for testing the HTTP handlers developed in this chapter as well as creating random
input for testing purposes.

Additional resources
• You can find more about gorilla/mux at https://github.com/gorilla/mux

and at https://www.gorillatoolkit.org/pkg/mux
• The go-querystring library is for encoding Go structures into URL query

parameters: https://github.com/google/go-querystring
• You can find more about Swagger at https://swagger.io/
• Go Swagger 2.0: https://goswagger.io/
• The OpenAPI Specification: https://www.openapis.org/
• If you want to validate JSON input, have a look at the Go validator package

at https://github.com/go-playground/validator
• You might find the jq(1) command-line utility pretty handy when working

with JSON records: https://stedolan.github.io/jq/ and https://jqplay.
org/

• You can view OpenAPI files online at https://editor.swagger.io/

https://github.com/gorilla/mux
https://www.gorillatoolkit.org/pkg/mux
https://github.com/google/go-querystring
https://swagger.io/
https://goswagger.io/
https://www.openapis.org/
https://github.com/go-playground/validator
https://stedolan.github.io/jq/
https://jqplay.org/
https://jqplay.org/
https://editor.swagger.io/

[543]

11
Code Testing and Profiling

The topics of this chapter are both practical and important, especially if you are
interested in improving the performance of your Go programs and discovering bugs.
This chapter primarily addresses code optimization, code testing, and code profiling.

Code optimization is the process where one or more developers try to make certain
parts of a program run faster, be more efficient, or use fewer resources. Put simply,
code optimization is about eliminating the bottlenecks of a program that matter.
Code testing is about making sure that your code does what you want it to do. In
this chapter, we are experiencing the Go way of code testing. The best time to write
testing code is during development, as this can help to reveal bugs in the code as
early as possible. Code profiling relates to measuring certain aspects of a program
to get a detailed understanding of the way the code works. The results of code
profiling may help you to decide which parts of your code need to change.

Have in mind that when writing code, we should focus on its correctness as well
as other desirable properties such as readability, simplicity, and maintainability,
not its performance. Once we are sure that the code is correct, then we might need
to focus on its performance. A good trick on performance is to execute the code on
machines that are going to be a bit slower than the ones that are going to be used in
production.

This chapter covers:

• Optimizing code
• Benchmarking code
• Profiling code

Code Testing and Profiling

[544]

• The go tool trace utility
• Tracing a web server
• Testing Go code
• Cross-compilation
• Using go:generate
• Creating example functions

Optimizing code
Code optimization is both an art and a science. This means that there is no
deterministic way to help you optimize your code and that you should use your
brain and try many things if you want to make your code faster. However, the
general principle regarding code optimization is first make it correct, then make it
fast. Always remember what Donald Knuth said about optimization:

"The real problem is that programmers have spent far too much time worrying about
efficiency in the wrong places and at the wrong times; premature optimization is the
root of all evil (or at least most of it) in programming."

Also, remember what the late Joe Armstrong, one of the developers of Erlang, said
about optimization:

"Make it work, then make it beautiful, then if you really, really have to, make it fast.
90 percent of the time, if you make it beautiful, it will already be fast. So really, just
make it beautiful!"

If you are really into code optimization, you might want to read Compilers: Principles,
Techniques, and Tools by Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D.
Ullman (Pearson Education Limited, 2014), which focuses on compiler construction.
Additionally, all volumes in The Art of Computer Programming series by Donald
Knuth (Addison-Wesley Professional, 1998) are great resources for all aspects of
programming if you have the time to read them.

The section that follows is about benchmarking Go code, which helps you determine
what is faster and what is slower in your code—this makes it a perfect place to begin.

Chapter 11

[545]

Benchmarking code
Benchmarking measures the performance of a function or program, allowing you
to compare implementations and to understand the performance impact of code
changes. Using that information, you can easily reveal the part of the code that
needs to be rewritten to improve its performance. It goes without saying that you
should not benchmark Go code on a busy machine that is currently being used
for other, more important, purposes unless you have a very good reason to do so!
Otherwise, you might interfere with the benchmarking process and get inaccurate
results, but most importantly, you might generate performance issues on the
machine.

Go follows certain conventions regarding benchmarking. The most important
convention is that the name of a benchmark function must begin with Benchmark.
After the Benchmark word, we can put an underscore or an uppercase letter.
Therefore, both BenchmarkFunctionName() and Benchmark_functionName() are
valid benchmark functions whereas Benchmarkfunctionname() is not. The same rule
applies to testing functions that begin with Test. Although we are allowed to put
the testing and benchmarking code on the same file with the other code, it should
be avoided. By convention such functions are put in files that end with _test.go.
Once the benchmarking or the testing code is correct, the go test subcommand
does all the dirty work for you, which includes scanning all *_test.go files for
special functions, generating a proper temporary main package, calling these
special functions, getting the results, and generating the final output.

Starting from Go 1.17, we can shuffle the execution order of both tests and
benchmarks with the help of the shuffle parameter (go test -shuffle=on).
The shuffle parameter accepts a value, which is the seed for the random number
generator, and can be useful when you want to replay an execution order. Its
default value is off. The logic behind that capability is that sometimes the order
in which tests and benchmarks are executed affects their results.

Most of the time, the load of the operating system plays a key role
in the performance of your code. Let me tell you a story here: a
Java utility I developed for a project performs lots of computations
and finishes in 6,242 seconds when running on its own. It took
about a day for four instances of the same Java command-line
utility to run on the same Linux machine! If you think about it,
running them one after the other would have been faster than
running them at the same time!

Code Testing and Profiling

[546]

Rewriting the main() function for better
testing
There exists a clever way that you can rewrite each main() function in order to make
testing and benchmarking a lot easier. The main() function has a restriction, which
is that you cannot call it from test code—this technique presents a solution to that
problem using the code found in main.go. The import block is omitted to save space.

func main() {
 err := run(os.Args, os.Stdout)
 if err != nil {
 fmt.Printf("%s\n", err)
 return
 }
}

As we cannot have an executable program without a main() function, we have
to create a minimalistic one. What main() does is to call run(), which is our own
customized version of main(), send os.Args to it, and collect the return value of
run().

func run(args []string, stdout io.Writer) error {
 if len(args) == 1 {
 return errors.New("No input!")
 }

 // Continue with the implementation of run()
 // as you would have with main()

 return nil
}

As discussed before, the run() function, or any other function that is called by main()
in the same way, replaces main() with the additional benefit of being able to be called
by test functions. Put simply, the run() function contains the code that would have
been located in main()—the only difference is that run() returns an error variable,
which is not possible with main(), which can only return exit codes to the operating
system. You might say that this creates a slightly bigger stack because of the extra
function call but the benefits are more important than this additional memory usage.
Although you can omit the second parameter (stdout io.Writer), which is used for
redirecting the generated output, the first one is important because it allows you to
pass the command-line arguments to run().

Chapter 11

[547]

Running main.go produces the next output:

$ go run main.go
No input!
$ go run main.go some input

There is nothing special in the way main.go operates. The good thing is that you
can call run() from anywhere you want, including the code you write for testing,
and pass the desired parameters to run()! It is good to have that technique in mind
because it might save you.

The subject of the next subsection is benchmarking buffered writing.

Benchmarking buffered writing and reading
In this section, we are going to test whether the size of the buffer plays a key role in
the performance of write operations. This also gives us the opportunity to discuss
table tests as well as the use of the testdata folder, which is reserved by Go for
storing files that are going to be used during benchmarking—both table tests and the
testdata folder can also be used in testing functions.

The code of table_test.go is the following:

package table

import (
 "fmt"
 "os"
 "path"
 "strconv"
 "testing"
)

var ERR error
var countChars int

Benchmark functions use testing.B variables whereas testing
functions use testing.T variables. It is easy to remember.

Code Testing and Profiling

[548]

func benchmarkCreate(b *testing.B, buffer, filesize int) {
 filename := path.Join(os.TempDir(), strconv.Itoa(buffer))
 filename = filename + "-" + strconv.Itoa(filesize)
 var err error
 for i := 0; i < b.N; i++ {
 err = Create(filename, buffer, filesize)
 }
 ERR = err

And now some important information regarding benchmarking: each benchmark
function is executed for at least one second by default—this duration also includes
the execution time of the functions that are called by a benchmark function. If the
benchmark function returns in a time that is less than one second, the value of b.N is
increased, and the function runs again as many times in total as the value of b.N. The
first time the value of b.N is 1, then it becomes 2, then 5, then 10, then 20, then 50, and
so on. This happens because the faster the function, the more times Go needs to run
it to get accurate results.

The reason for storing the return value of Create() in a variable named err and
using another global variable named ERR afterward is tricky. We want to prevent
the compiler from doing any optimizations that might exclude the function that we
want to measure from being executed because its results are never used.

 err = os.Remove(filename)
 if err != nil {
 fmt.Println(err)
 }
 ERR = err
}

Neither the signature nor the name of benchmarkCreate() makes it a benchmark
function. This is a helper function that allows you to call Create(), which creates a
new file on disk and its implementation can be found in table.go, with the proper
parameters. Its implementation is valid and it can be used by benchmark functions.

func BenchmarkBuffer4Create(b *testing.B) {
 benchmarkCreate(b, 4, 1000000)
}

func BenchmarkBuffer8Create(b *testing.B) {
 benchmarkCreate(b, 8, 1000000)
}

Chapter 11

[549]

func BenchmarkBuffer16Create(b *testing.B) {
 benchmarkCreate(b, 16, 1000000)
}

These are three correctly defined benchmark functions that all call
benchmarkCreate(). Benchmark functions require a single *testing.B variable and
return no values. In this case, the numbers at the end of the function name indicate
the size of the buffer.

func BenchmarkRead(b *testing.B) {
 buffers := []int{1, 16, 96}
 files := []string{"10.txt", "1000.txt", "5k.txt"}

This is the code that defines the array structures that are going to be used in the
table tests. This saves us from having to implement 3x3 = 9 separate benchmark
functions.

 for _, filename := range files {
 for _, bufSize := range buffers {
 name := fmt.Sprintf("%s-%d", filename, bufSize)
 b.Run(name, func(b *testing.B) {
 for i := 0; i < b.N; i++ {
 t := CountChars("./testdata/"+filename, bufSize)
 countChars = t
 }
 })
 }
 }
}

The b.Run() method, which allows you to run one or more sub-benchmarks
within a benchmark function, accepts two parameters. First, the name of the sub-
benchmark, which is displayed onscreen, and second, the function that implements
the sub-benchmark. This is the proper way to run multiple benchmarks with the
use of table tests. Just remember to define a proper name for each sub-benchmark
because this is going to be displayed onscreen.

Running the benchmarks generates the next output:

$ go test -bench=. *.go

Code Testing and Profiling

[550]

There are two important points here: first, the value of the -bench parameter specifies
the benchmark functions that are going to be executed. The . value used is a regular
expression that matches all valid benchmark functions. The second point is that if
you omit the -bench parameter, no benchmark functions are going to be executed.

goos: darwin
goarch: amd64
cpu: Intel(R) Core(TM) i7-4790K CPU @ 4.00GHz
BenchmarkBuffer4Create-8 78212 12862 ns/op
BenchmarkBuffer8Create-8 145448 7929 ns/op
BenchmarkBuffer16Create-8 222421 5074 ns/op

The previous three lines are the results from the BenchmarkBuffer4Create(),
BenchmarkBuffer8Create(), and BenchmarkBuffer16Create() benchmark functions
respectively, and indicate their performance.

BenchmarkRead/10.txt-1-8 78852 17268 ns/op
BenchmarkRead/10.txt-16-8 84225 14161 ns/op
BenchmarkRead/10.txt-96-8 92056 14966 ns/op
BenchmarkRead/1000.txt-1-8 2821 395419 ns/op
BenchmarkRead/1000.txt-16-8 21147 56148 ns/op
BenchmarkRead/1000.txt-96-8 58035 20362 ns/op
BenchmarkRead/5k.txt-1-8 600 1901952 ns/op
BenchmarkRead/5k.txt-16-8 4893 239557 ns/op
BenchmarkRead/5k.txt-96-8 19892 57309 ns/op

The previous results are from the table tests with the 9 sub-benchmarks.

PASS
ok command-line-arguments 44.756s

So, what does this output tell us? First, the -8 at the end of each benchmark function
signifies the number of goroutines used for its execution, which is essentially the
value of the GOMAXPROCS environment variable. Similarly, you can see the values
of GOOS and GOARCH, which show the operating system and the architecture of the
machine. The second column in the output displays the number of times that the
relevant function was executed. Faster functions are executed more times than
slower functions. As an example, BenchmarkBuffer4Create() was executed 78212
times, while BenchmarkBuffer16Create() was executed 222421 times because it is
faster! The third column in the output shows the average time of each run and is
measured in nanoseconds per benchmark function execution (ns/op). The bigger the
value of the third column, the slower the benchmark function. A large value in the
third column is an indication that a function might need to be optimized.

Chapter 11

[551]

Should you wish to include memory allocation statistics in the output, you can
include -benchmem in the command:

BenchmarkBuffer4Create-8 91651 11580 ns/op 304 B/op 5 allocs/op
BenchmarkBuffer8Create-8 170814 6202 ns/op 304 B/op 5 allocs/op

The generated output is like the one without the -benchmem command-line parameter
but includes two additional columns. The fourth column shows the amount of
memory that was allocated on average in each execution of the benchmark function.
The fifth column shows the number of allocations used to allocate the memory value
of the fourth column.

So far, we have learned how to create benchmark functions to test the performance
of our own functions to better understand potential bottlenecks that might need
to be optimized. You might ask, how often do we need to create benchmark functions?
The answer is simple: when something runs slower than needed and/or when you
want to choose between two or more implementations.

The next subsection shows how to compare benchmark results.

The benchstat utility
Now imagine that you have benchmarking data, and you want to compare it
with the results that were produced in another computer or with a different
configuration. The benchstat utility can help you here. The utility can be found in
the golang.org/x/perf/cmd/benchstat package and can be downloaded using go
get -u golang.org/x/perf/cmd/benchstat. Go puts all binary files in ~/go/bin and
benchstat is no exception.

So, imagine that we have two benchmark results for table_test.go saved in r1.txt
and r2.txt—you should remove all lines from the go test output that do not
contain benchmarking results, which leaves all lines that begin with Benchmark. You
can use benchstat as follows:

$ ~/go/bin/benchstat r1.txt r2.txt
name old time/op new time/op delta
Buffer4Create-8 10.5µs ± 0% 0.8µs ± 0% ~ (p=1.000 n=1+1)
Buffer8Create-8 6.88µs ± 0% 0.79µs ± 0% ~ (p=1.000 n=1+1)

The benchstat utility replaces the benchcmp utility that can be
found at https://pkg.go.dev/golang.org/x/tools/cmd/
benchcmp.

http://golang.org/x/perf/cmd/benchstat
https://pkg.go.dev/golang.org/x/tools/cmd/benchcmp
https://pkg.go.dev/golang.org/x/tools/cmd/benchcmp

Code Testing and Profiling

[552]

Buffer16Create-8 5.01µs ± 0% 0.78µs ± 0% ~ (p=1.000 n=1+1)
Read/10.txt-1-8 15.0µs ± 0% 4.0µs ± 0% ~ (p=1.000 n=1+1)
Read/10.txt-16-8 12.2µs ± 0% 2.6µs ± 0% ~ (p=1.000 n=1+1)
Read/10.txt-96-8 11.9µs ± 0% 2.6µs ± 0% ~ (p=1.000 n=1+1)
Read/1000.txt-1-8 381µs ± 0% 174µs ± 0% ~ (p=1.000 n=1+1)
Read/1000.txt-16-8 54.0µs ± 0% 22.6µs ± 0% ~ (p=1.000 n=1+1)
Read/1000.txt-96-8 19.1µs ± 0% 6.2µs ± 0% ~ (p=1.000 n=1+1)
Read/5k.txt-1-8 1.81ms ± 0% 0.89ms ± 0% ~ (p=1.000 n=1+1)
Read/5k.txt-16-8 222µs ± 0% 108µs ± 0% ~ (p=1.000 n=1+1)
Read/5k.txt-96-8 51.5µs ± 0% 21.5µs ± 0% ~ (p=1.000 n=1+1)

If the value of the delta column is ~, as it happens to be here, it means that there
was no significant change in the results. The previous output shows no differences
between the two results. Discussing more about benchstat is beyond the scope of
the book. Type benchstat -h to learn more about the supported parameters.

The next subsection touches on a sensitive subject, which is incorrectly defined
benchmark functions.

Wrongly defined benchmark functions
You should be very careful when defining benchmark functions because you might
define them wrongly. Look at the Go code of the following benchmark function:

func BenchmarkFiboI(b *testing.B) {
 for i := 0; i < b.N; i++ {
 _ = fibo1(i)
 }
}

The BenchmarkFibo() function has a valid name and the correct signature. The bad
news is that this benchmark function is logically wrong and is not going to produce
any results. The reason for this is that as the b.N value grows in the way described
earlier; the runtime of the benchmark function also increases because of the for loop.
This fact prevents BenchmarkFiboI() from converging to a stable number, which
prevents the function from completing and therefore returning any results. For
analogous reasons, the next benchmark function is also wrongly implemented:

func BenchmarkfiboII(b *testing.B) {
 for i := 0; i < b.N; i++ {
 _ = fibo1(b.N)
 }
}

Chapter 11

[553]

On the other hand, there is nothing wrong with the implementation of the following
two benchmark functions:

func BenchmarkFiboIV(b *testing.B) {
 for i := 0; i < b.N; i++ {
 _ = fibo1(10)
 }
}

func BenchmarkFiboIII(b *testing.B) {
 _ = fibo1(b.N)
}

Correct benchmark functions are a tool for identifying bottlenecks on your code that
you should put in your own projects, especially when working with file I/O or CPU-
intensive operations—as I am writing this, I have been waiting 3 days for a Python
program to finish its operation to test the performance of the brute force method of
a mathematical algorithm. Enough with benchmarking. The next section discusses
code profiling.

Profiling code
Profiling is a process of dynamic program analysis that measures various values
related to program execution to give you a better understanding of the program
behavior. In this section, we are going to learn how to profile Go code to understand
it better and improve its performance. Sometimes, code profiling can even reveal
bugs in the code such an endless loop or functions that never return.

The runtime/pprof standard Go package is used for profiling all kinds of
applications apart from HTTP servers. The high-level net/http/pprof package
should be used when you want to profile a web application written in Go. You can
see the help page of the pprof tool by executing go tool pprof -help.

This next section is going to illustrate how to profile a command-line application,
and the following subsection shows the profiling of an HTTP server.

Profiling a command-line application
The code of the application is saved as profileCla.go and collects CPU and memory
profiling data. What is interesting is the implementation of main() because this is
where the collection of the profiling data takes place:

func main() {
 cpuFilename := path.Join(os.TempDir(), "cpuProfileCla.out")

Code Testing and Profiling

[554]

 cpuFile, err := os.Create(cpuFilename)
 if err != nil {
 fmt.Println(err)
 return
 }
 pprof.StartCPUProfile(cpuFile)
 defer pprof.StopCPUProfile()

The previous code is about collecting CPU profiling data. pprof.StartCPUProfile()
starts the collecting, which is stopped with the pprof.StopCPUProfile() call. All data
is saved into a file named cpuProfileCla.out under the os.TempDir() directory—this
depends on the OS used and makes the code portable. The use of defer means that
pprof.StopCPUProfile() is going to get called just before main() exits.

 total := 0
 for i := 2; i < 100000; i++ {
 n := N1(i)
 if n {
 total = total + 1
 }
 }
 fmt.Println("Total primes:", total)

 total = 0
 for i := 2; i < 100000; i++ {
 n := N2(i)
 if n {
 total = total + 1
 }
 }
 fmt.Println("Total primes:", total)

 for i := 1; i < 90; i++ {
 n := fibo1(i)
 fmt.Print(n, " ")
 }
 fmt.Println()

 for i := 1; i < 90; i++ {
 n := fibo2(i)
 fmt.Print(n, " ")
 }

Chapter 11

[555]

 fmt.Println()
 runtime.GC()

All the previous code performs lots of CPU-intensive calculations for the CPU
profiler to have data to collect—this is where your actual code usually goes.

 // Memory profiling!
 memoryFilename := path.Join(os.TempDir(), "memoryProfileCla.out")
 memory, err := os.Create(memoryFilename)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer memory.Close()

We create a second file for collecting memory-related profiling data.

 for i := 0; i < 10; i++ {
 s := make([]byte, 50000000)
 if s == nil {
 fmt.Println("Operation failed!")
 }
 time.Sleep(50 * time.Millisecond)
 }

 err = pprof.WriteHeapProfile(memory)
 if err != nil {
 fmt.Println(err)
 return
 }
}

The pprof.WriteHeapProfile() function writes the memory data into the specified
file. Once again, we allocate lots of memory for the memory profiler to have data to
collect.

Running profileCla.go is going to create two files in the folder returned by
os.TempDir()—usually, we save them in a different folder. Feel free to change the
code of profileCla.go and put the profiling files at a different place. So, what do we
do next? We should use go tool pprof to process these files:

$ go tool pprof /path/ToTemporary/Directory/cpuProfileCla.out
(pprof) top
Showing nodes accounting for 5.65s, 98.78% of 5.72s total

Code Testing and Profiling

[556]

Dropped 47 nodes (cum <= 0.03s)
Showing top 10 nodes out of 18
 flat flat% sum% cum cum%
 3.27s 57.17% 57.17% 3.65s 63.81% main.N2 (inline)

The top command returns a summary of the top 10 entries.

(pprof) top10 -cum
Showing nodes accounting for 5560ms, 97.20% of 5720ms total
Dropped 47 nodes (cum <= 28.60ms)
Showing top 10 nodes out of 18
 flat flat% sum% cum cum%
 80ms 1.40% 1.40% 5660ms 98.95% main.main
 0 0% 1.40% 5660ms 98.95% runtime.main

The top10 –cum command returns the cumulative time for each function.

(pprof) list main.N1
list main.N1
Total: 5.72s
ROUTINE ======================== main.N1 in /Users/mtsouk/ch11/
profileCla.go
 1.72s 1.83s (flat, cum) 31.99% of Total
 . . 35:func N1(n int) bool {
 . . 36: k := math.Floor(float64(n/2 + 1))
 50ms 60ms 37: for i := 2; i < int(k); i++ {
 1.67s 1.77s 38: if (n % i) == 0 {

Last, the list command shows information about a given function. The previous
output shows that the if (n % i) == 0 statement is responsible for most of the time
it takes N1() to run.

We are not showing the full output of these commands for brevity. Try the profile
commands on your own in your own code to see their full output. Visit https://
blog.golang.org/pprof from the Go blog to learn more about profiling.

Now, let us discuss how to profile an HTTP server, which is the subject of the next
subsection.

You can also create PDF output of the profiling data from the
shell of the Go profiler using the pdf command. Personally, most
of the time, I begin with this command because it gives me a rich
overview of the collected data.

https://blog.golang.org/pprof
https://blog.golang.org/pprof

Chapter 11

[557]

Profiling an HTTP server
As discussed, the net/http/pprof package should be used when you want to collect
profiling data for a Go application that runs an HTTP server. To that end, importing
net/http/pprof installs various handlers under the /debug/pprof/ path. You are
going to see more on this in a short while. For now, it is enough to remember that
the net/http/pprof package should be used to profile web applications, whereas
runtime/pprof should be used to profile all other kinds of applications.

The technique is illustrated in profileHTTP.go, which comes with the following code:

package main

import (
 "fmt"
 "net/http"
 "net/http/pprof"
 "os"
 "time"
)

As discussed earlier, you should import the net/http/pprof package.

func myHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served: %s\n", r.Host)
}

func timeHandler(w http.ResponseWriter, r *http.Request) {
 t := time.Now().Format(time.RFC1123)
 Body := "The current time is:"
 fmt.Fprintf(w, "%s %s", Body, t)
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served time for: %s\n", r.Host)
}

The previous two functions implement two handlers that are going to be used
in our naïve HTTP server. myHandler() is the default handler function whereas
timeHandler() returns the current time and date on the server.

func main() {
 PORT := ":8001"
 arguments := os.Args

Code Testing and Profiling

[558]

 if len(arguments) == 1 {
 fmt.Println("Using default port number: ", PORT)
 } else {
 PORT = ":" + arguments[1]
 fmt.Println("Using port number: ", PORT)
 }

 r := http.NewServeMux()
 r.HandleFunc("/time", timeHandler)
 r.HandleFunc("/", myHandler)

Up to this point, there is nothing special as we just register the handler functions.

 r.HandleFunc("/debug/pprof/", pprof.Index)
 r.HandleFunc("/debug/pprof/cmdline", pprof.Cmdline)
 r.HandleFunc("/debug/pprof/profile", pprof.Profile)
 r.HandleFunc("/debug/pprof/symbol", pprof.Symbol)
 r.HandleFunc("/debug/pprof/trace", pprof.Trace)

All previous statements install the handlers for the HTTP profiler—you can access
them using the hostname and port number of the web server. You do not have to
use all handlers.

 err := http.ListenAndServe(PORT, r)
 if err != nil {
 fmt.Println(err)
 return
 }
}

Last, you start the HTTP server as usual.

Chapter 11

[559]

What is next? First, you run the HTTP server (go run profileHTTP.go). After that,
you run the next command to collect profiling data while interacting with the
HTTP server:

$ go tool pprof http://localhost:8001/debug/pprof/profile
Fetching profile over HTTP from http://localhost:8001/debug/pprof/
profile
Saved profile in /Users/mtsouk/pprof/pprof.samples.cpu.004.pb.gz
Type: cpu
Time: Jun 18, 2021 at 12:30pm (EEST)
Duration: 30s, Total samples = 10ms (0.033%)
Entering interactive mode (type "help" for commands, "o" for options)
(pprof) %

The previous output shows the initial screen of the HTTP profiler—the available
commands are the same as when profiling a command-line application.

You can either exit the shell and analyze your data later using go tool pprof or
continue giving profiler commands. This is the general idea behind profiling HTTP
servers in Go.

The next subsection discusses the web interface of the Go profiler.

The web interface of the Go profiler
The good news is that starting with Go version 1.10, go tool pprof comes with
a web user interface that you can start as go tool pprof -http=[host]:[port]
aProfile.out—do not forget to put the correct values to -http.

Code Testing and Profiling

[560]

A part of the web interface of the profiler is seen in the next figure, which shows how
program execution time was spent.

Figure 11.1: The web interface of the Go profiler

Chapter 11

[561]

Feel free to browse the web interface and see the various options that are offered.
Unfortunately, talking more about profiling is beyond the scope of this chapter. As
always, if you are really interested in code profiling, experiment with it as much as
possible.

The next section is about code tracing.

The go tool trace utility
Code tracing is a process that allows you to learn information such as the operation
of the garbage collector, the lifetime of goroutines, the activity of each logical
processor, and the number of operating system threads used. The go tool trace
utility is a tool for viewing the data stored in trace files, which can be generated in
any one of the following three ways:

• With the runtime/trace package
• With the net/http/pprof package
• With the go test -trace command

This section illustrates the use of the first technique using the code of traceCLA.go:

package main

import (
 "fmt"
 "os"
 "path"
 "runtime/trace"
 "time"
)

The runtime/trace package is required for collecting all kinds of tracing data—there
is no point in selecting specific tracing data as all tracing data is interconnected.

func main() {
 filename := path.Join(os.TempDir(), "traceCLA.out")
 f, err := os.Create(filename)
 if err != nil {
 panic(err)
 }
 defer f.Close()

Code Testing and Profiling

[562]

As it happened with profiling, we need to create a file to store tracing data. In this
case the file is called traceCLA.out and is stored inside the temporary directory of
your operating system.

 err = trace.Start(f)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer trace.Stop()

This part is all about acquiring data for go tool trace, and it has nothing to do with
the purpose of the program. We start the tracing process using trace.Start(). When
we are done, we call the trace.Stop() function. The defer call means that we want
to terminate tracing when the main() function returns.

 for i := 0; i < 3; i++ {
 s := make([]byte, 50000000)
 if s == nil {
 fmt.Println("Operation failed!")
 }
 }

 for i := 0; i < 5; i++ {
 s := make([]byte, 100000000)
 if s == nil {
 fmt.Println("Operation failed!")
 }
 time.Sleep(time.Millisecond)
 }
}

All the previous code is about allocating memory to trigger the operation of the
garbage collector and generate more tracing data—you can learn more about the
Go garbage collector in Appendix A, Go Garbage Collector. The program is executed
as usual. However, when it finishes, it populates traceCLA.out with tracing data.
After that, we should process the tracing data as follows:

$ go tool trace /path/ToTemporary/Directory/traceCLA.out

The last command automatically starts a web server and opens the web interface of
the trace tool on your default web browser—you can run it on your own computer to
play with the web interface of the trace tool.

Chapter 11

[563]

The View trace link shows information about the goroutines of your program and
the operation of the garbage collector.

Have in mind that although go tool trace is very handy and powerful, it cannot
solve every kind of performance problem. There are times where go tool pprof is
more appropriate, especially when we want to reveal where our code spends most
of its time.

As it happens with profiling, collecting tracing data for an HTTP server is a slightly
different process, which is explained in the next subsection.

Tracing a web server from a client
This section shows how to trace a web server application using net/http/httptrace.
The package allows you to trace the phases of an HTTP request from a client. The
code of traceHTTP.go that interacts with web servers is as follows:

package main

import (
 "fmt"
 "net/http"
 "net/http/httptrace"
 "os"
)

As expected, we need to import net/http/httptrace before being able to enable
HTTP tracing.

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("Usage: URL\n")
 return
 }

 URL := os.Args[1]
 client := http.Client{}

 req, _ := http.NewRequest("GET", URL, nil)

Code Testing and Profiling

[564]

Up to this point, we prepare the client request to the web server as usual.

 trace := &httptrace.ClientTrace{
 GotFirstResponseByte: func() {
 fmt.Println("First response byte!")
 },
 GotConn: func(connInfo httptrace.GotConnInfo) {
 fmt.Printf("Got Conn: %+v\n", connInfo)
 },
 DNSDone: func(dnsInfo httptrace.DNSDoneInfo) {
 fmt.Printf("DNS Info: %+v\n", dnsInfo)
 },
 ConnectStart: func(network, addr string) {
 fmt.Println("Dial start")
 },
 ConnectDone: func(network, addr string, err error) {
 fmt.Println("Dial done")
 },
 WroteHeaders: func() {
 fmt.Println("Wrote headers")
 },
 }

The preceding code is all about tracing HTTP requests. The httptrace.ClientTrace
structure defines the events that interest us, which are GotFirstResponseByte,
GotConn, DNSDone, ConnectStart, ConnectDone, and WroteHeaders. When such an
event occurs, the relevant code is executed. You can find more information about the
supported events and their purpose in the documentation of the net/http/httptrace
package.

 req = req.WithContext(httptrace.WithClientTrace(req.Context(),
trace))
 fmt.Println("Requesting data from server!")
 _, err := http.DefaultTransport.RoundTrip(req)
 if err != nil {
 fmt.Println(err)
 return
 }

The httptrace.WithClientTrace() function returns a new context value based
on the given parent context while http.DefaultTransport.RoundTrip() wraps the
request with the context value in order to keep track of the request.

Chapter 11

[565]

Have in mind that Go HTTP tracing has been designed to trace the events of a single
http.Transport.RoundTrip.

 _, err = client.Do(req)
 if err != nil {
 fmt.Println(err)
 return
 }

}

The last part sends the client request to the server for the tracing to begin.

Running traceHTTP.go generates the next output:

$ go run traceHTTP.go https://www.golang.org/
Requesting data from server!
DNS Info: {Addrs:[{IP:2a00:1450:4001:80e::2011 Zone:}
{IP:142.250.185.81 Zone:}] Err:<nil> Coalesced:false}

In this first part, we see that the IP address of the server has been resolved, which
means that the client is ready to begin interacting with the HTTP server.

Dial start
Dial done
Got Conn: {Conn:0xc000078000 Reused:false WasIdle:false IdleTime:0s}
Wrote headers
First response byte!
Got Conn: {Conn:0xc000078000 Reused:true WasIdle:false IdleTime:0s}
Wrote headers
First response byte!
DNS Info: {Addrs:[{IP:2a00:1450:4001:80e::2011 Zone:}
{IP:142.250.185.81 Zone:}] Err:<nil> Coalesced:false}
Dial start
Dial done
Got Conn: {Conn:0xc0000a1180 Reused:false WasIdle:false IdleTime:0s}
Wrote headers
First response byte!

The previous output helps you understand the progress of the connection in more
detail and is handy when troubleshooting. Unfortunately, talking more about tracing
is beyond the scope of this book. The next subsection shows how to visit all the
routes of a web server to make sure that they are properly defined.

Code Testing and Profiling

[566]

Visiting all routes of a web server
The gorilla/mux package offers a Walk function that can be used for visiting all the
registered routes of a router—this can be very handy when you want to make sure
that every route is registered and is working.

The code of walkAll.go, which contains lots of empty handler functions because
its purpose is not to test handling functions but to visit them, is as follows (nothing
prohibits you from using the same technique on a fully implemented web server):

package main

import (
 "fmt"
 "net/http"
 "strings"

 "github.com/gorilla/mux"
)

As we are using an external package, the running of walkAll.go should take place
somewhere in ~/go/src.

func handler(w http.ResponseWriter, r *http.Request) {
 return
}

This empty handler function is shared by all endpoints for reasons of simplicity.

func (h notAllowedHandler) ServeHTTP(rw http.ResponseWriter, r *http.
Request) {
 handler(rw, r)
}

The notAllowedHandler handler also calls the handler() function.

type notAllowedHandler struct{}

func main() {
 r := mux.NewRouter()

 r.NotFoundHandler = http.HandlerFunc(handler)
 notAllowed := notAllowedHandler{}

Chapter 11

[567]

 r.MethodNotAllowedHandler = notAllowed

 // Register GET
 getMux := r.Methods(http.MethodGet).Subrouter()
 getMux.HandleFunc("/time", handler)
 getMux.HandleFunc("/getall", handler)
 getMux.HandleFunc("/getid", handler)
 getMux.HandleFunc("/logged", handler)
 getMux.HandleFunc("/username/{id:[0-9]+}", handler)

 // Register PUT
 // Update User
 putMux := r.Methods(http.MethodPut).Subrouter()
 putMux.HandleFunc("/update", handler)

 // Register POST
 // Add User + Login + Logout
 postMux := r.Methods(http.MethodPost).Subrouter()
 postMux.HandleFunc("/add", handler)
 postMux.HandleFunc("/login", handler)
 postMux.HandleFunc("/logout", handler)

 // Register DELETE
 // Delete User
 deleteMux := r.Methods(http.MethodDelete).Subrouter()
 deleteMux.HandleFunc("/username/{id:[0-9]+}", handler)

The previous part is about defining the routes and the HTTP methods that we want
to support.

 err := r.Walk(func(route *mux.Route, router *mux.Router, ancestors
[]*mux.Route) error {

This is how we call the Walk() method.

 pathTemplate, err := route.GetPathTemplate()
 if err == nil {
 fmt.Println("ROUTE:", pathTemplate)
 }
 pathRegexp, err := route.GetPathRegexp()
 if err == nil {

Code Testing and Profiling

[568]

 fmt.Println("Path regexp:", pathRegexp)
 }
 qT, err := route.GetQueriesTemplates()
 if err == nil {
 fmt.Println("Queries templates:", strings.Join(qT, ","))
 }
 qRegexps, err := route.GetQueriesRegexp()
 if err == nil {
 fmt.Println("Queries regexps:", strings.Join(qRegexps, ","))
 }
 methods, err := route.GetMethods()
 if err == nil {
 fmt.Println("Methods:", strings.Join(methods, ","))
 }
 fmt.Println()
 return nil
 })

For each visited route, the program collects the desired information. Feel free to
remove some of the fmt.Println() calls if it does not help your purpose to reduce
output.

 if err != nil {
 fmt.Println(err)
 }

 http.Handle("/", r)
}

So, the general idea behind walkAll.go is that you assign an empty handler to each
route that you have in your server and then you call mux.Walk() for visiting all
routes. Enabling Go modules and running walkAll.go generates the next output:

$ go mod init
$ go mod tidy
$ go run walkAll.go
Queries templates:
Queries regexps:
Methods: GET

ROUTE: /time

Chapter 11

[569]

Path regexp: ^/time$
Queries templates:
Queries regexps:
Methods: GET

The output shows the HTTP methods that each route supports as well as the format
of the path. So, the /time endpoint works with GET and its path is /time because the
value of Path regexp means that /time is between the beginning (^) and the end of
the path ($).

ROUTE: /getall
Path regexp: ^/getall$
Queries templates:
Queries regexps:
Methods: GET

ROUTE: /getid
Path regexp: ^/getid$
Queries templates:
Queries regexps:
Methods: GET

ROUTE: /logged
Path regexp: ^/logged$
Queries templates:
Queries regexps:
Methods: GET

ROUTE: /username/{id:[0-9]+}
Path regexp: ^/username/(?P<v0>[0-9]+)$
Queries templates:
Queries regexps:
Methods: GET

In the case of /username, the output includes the regular expressions associated with
that endpoint that is used for selecting the value of the id variable.

Queries templates:
Queries regexps:
Methods: PUT

ROUTE: /update

Code Testing and Profiling

[570]

Path regexp: ^/update$
Queries templates:
Queries regexps:
Methods: PUT

Queries templates:
Queries regexps:
Methods: POST

ROUTE: /add
Path regexp: ^/add$
Queries templates:
Queries regexps:
Methods: POST

ROUTE: /login
Path regexp: ^/login$
Queries templates:
Queries regexps:
Methods: POST

ROUTE: /logout
Path regexp: ^/logout$
Queries templates:
Queries regexps:
Methods: POST

Queries templates:
Queries regexps:
Methods: DELETE

ROUTE: /username/{id:[0-9]+}
Path regexp: ^/username/(?P<v0>[0-9]+)$
Queries templates:
Queries regexps:
Methods: DELETE

Although visiting the routes of a web server is a kind of testing, it is not the official
Go way of testing. The main thing to look for in such output is the absence of an
endpoint, the use of the wrong HTTP method, or the absence of a parameter from
an endpoint.

The next section discusses the testing of Go code in more detail.

Chapter 11

[571]

Testing Go code
The subject of this section is the testing of Go code by writing test functions.
Software testing is a very large subject and cannot be covered in a single section of
a chapter in a book. So, this section tries to present as much practical information as
possible.

Go allows you to write tests for your Go code to detect bugs. However, software
testing can only show the presence of one or more bugs, not the absence of bugs.
This means that you can never be 100% sure that your code has no bugs!

Strictly speaking, this section is about automated testing, which involves writing
extra code to verify whether the real code—that is, the production code—works as
expected or not. Thus, the result of a test function is either PASS or FAIL. You will see
how this works shortly. Although the Go approach to testing might look simple at
first, especially if you compare it with the testing practices of other programming
languages, it is very efficient and effective because it does not require too much of
the developer's time.

You should always put the testing code in a different source file. There is no need
to create a huge source file that is hard to read and maintain. Now, let us present
testing by revisiting the matchInt() function from Chapter 3, Composite Data Types.

Writing tests for ./ch03/intRE.go
In this subsection, we write tests for the matchInt() function, which was
implemented in intRE.go back in Chapter 3, Composite Data Types. First, we create a
new file named intRE_test.go, which is going to contain all tests. Then, we rename
the package from main to testRE and remove the main() function—this is an optional
action. After that, we must decide what we are going to test and how. The main
steps in testing include writing tests for expected input, unexpected input, empty
input, and edge cases. All these are going to be seen in the code. Additionally, we are
going to generate random integers, convert them to strings, and use them as input
for matchInt(). Generally speaking, a good way to test functions that works with
numeric values is by using random numbers, or random values in general, as input
and see how your code behaves and handles these values.

The two test functions of intRE_test.go are the following:

func Test_matchInt(t *testing.T) {
 if matchInt("") {
 t.Error(`matchInt("") != true`)
 }

Code Testing and Profiling

[572]

The matchInt("") call should return false, so if it returns true, it means that the
function does not work as expected.

 if matchInt("00") == false {
 t.Error(`matchInt("00") != true`)
 }

The matchInt("00") call should also return true because 00 is a valid integer, so if it
returns false, it means that the function does not work as expected.

 if matchInt("-00") == false {
 t.Error(`matchInt("-00") != true`)
 }

 if matchInt("+00") == false {
 t.Error(`matchInt("+00") != true`)
 }
}

This first test function uses static input to test the correctness of matchInt(). As
discussed earlier, a testing function accepts a single *testing.T parameter and
returns no values.

func Test_with_random(t *testing.T) {
 SEED := time.Now().Unix()
 rand.Seed(SEED)
 n := strconv.Itoa(random(-100000, 19999))

 if matchInt(n) == false {
 t.Error("n = ", n)
 }
}

The second test function uses random but valid input to test matchInt(). Therefore,
the given input should always pass the test. Running the two test functions with go
test creates the next output:

$ go test -v *.go
=== RUN Test_matchInt
--- PASS: Test_matchInt (0.00s)
=== RUN Test_with_random
--- PASS: Test_with_random (0.00s)
PASS
ok command-line-arguments 0.410s

Chapter 11

[573]

So, all tests passed, which means that everything is fine with matchInt().

The next subsection discusses the use of the TempDir() method.

The TempDir function
The TempDir() method works with both testing and benchmarking. Its purpose is to
create a temporary directory that is going to be used during testing or benchmarking.
Go automatically removes that temporary directory when the test and its subtests or
the benchmarks are about to finish with the help of the CleanUp() method—this is
arranged by Go and you do not need to use and implement CleanUp() on your own.
The exact place where the temporary directory is going to be created depends on
the operating system used. On macOS, it is under /var/folders whereas on Linux it
is under /tmp. We are going to illustrate TempDir() in the next subsection where we
also talk about Cleanup().

The Cleanup() function
Although we present the Cleanup() method in a testing scenario, Cleanup() works
for both testing and benchmarking. Its name reveals its purpose, which is to clean
up some things that we have created when testing or benchmarking a package.
However, it is us who need to tell Cleanup() what to do—the parameter of Cleanup()
is a function that does the cleaning up. That function is usually implemented inline
as an anonymous function, but you can also create it elsewhere and call it by its
name.

The cleanup.go file contains a dummy function named Foo()—as it contains no code,
there is no point in presenting it. On the other hand, all important code can be found
in cleanup_test.go:

func myCleanUp() func() {
 return func() {
 fmt.Println("Cleaning up!")
 }
}

The myCleanUp() function is going to be used as a parameter to CleanUp() and should
have that specific signature. Apart from the signature, you can put any kind of code
in the implementation of myCleanUp().

func TestFoo(t *testing.T) {
 t1 := path.Join(os.TempDir(), "test01")
 t2 := path.Join(os.TempDir(), "test02")

Code Testing and Profiling

[574]

These are the paths of two directories that we are going to create.

 err := os.Mkdir(t1, 0755)
 if err != nil {
 t.Error("os.Mkdir() failed:", err)
 return
 }

We create a directory with os.Mkdir() and we specify its path. Therefore, it is our
duty to delete that directory when it is no longer needed.

 defer t.Cleanup(func() {
 err = os.Remove(t1)
 if err != nil {
 t.Error("os.Mkdir() failed:", err)
 }
 })

After TestFoo() finishes, t1 is going to be deleted by the code of the anonymous
function that is passed as a parameter to t.CleanUp().

 err = os.Mkdir(t2, 0755)
 if err != nil {
 t.Error("os.Mkdir() failed:", err)
 return
 }
}

We create another directory with os.Mkdir()—however, in this case we are not
deleting that directory. Therefore, after TestFoo() finishes, t2 is not going to be
deleted.

func TestBar(t *testing.T) {
 t1 := t.TempDir()

Because of the use of the t.TempDir() method, the value (directory path) of t1 is
assigned by the operating system. Additionally, that directory path is going to be
automatically deleted when the test function is about to finish.

 fmt.Println(t1)
 t.Cleanup(myCleanUp())
}

Chapter 11

[575]

Here we use myCleanUp() as the parameter to Cleanup(). This is handy when you
want to perform the same cleanup multiple times. Running the tests creates the next
output:

$ go test -v *.go
=== RUN TestFoo
--- PASS: TestFoo (0.00s)
=== RUN TestBar
/var/folders/sk/ltk8cnw50lzdtr2hxcj5sv2m0000gn/T/TestBar2904465158/01

This is the temporary directory that was created with TempDir() on a macOS
machine.

Cleaning up!
--- PASS: TestBar (0.00s)
PASS
ok command-line-arguments 0.096s

Checking whether the directories created by TempDir() are there shows that they
have been successfully deleted. On the other hand, the directory stored in the t2
variable of TestFoo() has not been deleted. Running the same tests again is going to
fail because the test02 file already exists and cannot be created:

$ go test -v *.go
=== RUN TestFoo
 cleanup_test.go:33: os.Mkdir() failed: mkdir /var/folders/sk/ltk8cn
w50lzdtr2hxcj5sv2m0000gn/T/test02: file exists
--- FAIL: TestFoo (0.00s)
=== RUN TestBar
/var/folders/sk/ltk8cnw50lzdtr2hxcj5sv2m0000gn/T/TestBar2113309096/01
Cleaning up!
--- PASS: TestBar (0.00s)
FAIL
FAIL command-line-arguments 0.097s
FAIL

The /var/folders/sk/ltk8cnw50lzdtr2hxcj5sv2m0000gn/T/test02: file exists
error message shows the root of the problem. The solution is to clean up your tests.

The next subsection discusses the use of the testing/quick package.

Code Testing and Profiling

[576]

The testing/quick package
There are times where you need to create testing data without human intervention.
The Go standard library offers the testing/quick package, which can be used for
black box testing (a software testing method that checks the functionality of an
application or function without any prior knowledge of its internal working) and
is somewhat related to the QuickCheck package found in the Haskell programming
language—both packages implement utility functions to help you with black box
testing. With the help of testing/quick, Go generates random values of built-in
types that you can use for testing, which saves you from having to generate all
these values manually.

The code of quickT.go is the following:

package quickT

type Point2D struct {
 X, Y int
}

func Add(x1, x2 Point2D) Point2D {
 temp := Point2D{}
 temp.X = x1.X + x2.X
 temp.Y = x1.Y + x2.Y
 return temp
}

The previous code implements a single function that adds two Point2D variables—
this is the function that we are going to test.

The code of quickT_test.go is as follows:

package quickT

import (
 "testing"
 "testing/quick"
)

var N = 1000000

func TestWithItself(t *testing.T) {
 condition := func(a, b Point2D) bool {

Chapter 11

[577]

 return Add(a, b) == Add(b, a)
 }

 err := quick.Check(condition, &quick.Config{MaxCount: N})
 if err != nil {
 t.Errorf("Error: %v", err)
 }
}

The call to quick.Check() automatically generates random numbers based on the
signature of its first argument, which is a function defined earlier. There is no need
to create these random numbers on your own, which makes the code easy to read
and write. The actual tests happen in the condition function.

func TestThree(t *testing.T) {
 condition := func(a, b, c Point2D) bool {
 return Add(Add(a, b), c) == Add(a, b)
 }

This implementation is wrong on purpose. To correct the implementation, we
should replace Add(Add(a, b), c) == Add(a, b) with Add(Add(a, b), c) == Add(c,
Add(a, b)). We did that to see the output that is generated when a test fails.

 err := quick.Check(condition, &quick.Config{MaxCount: N})
 if err != nil {
 t.Errorf("Error: %v", err)
 }
}

Running the created tests generates the next output:

$ go test -v *.go
=== RUN TestWithItself
--- PASS: TestWithItself (0.86s)

As expected, the first test was successful.

=== RUN TestThree
 quickT_test.go:28: Error: #1: failed on input quickT.
Point2D{X:761545203426276355, Y:-915390795717609627}, quickT.
Point2D{X:-3981936724985737618, Y:2920823510164787684}, quickT.
Point2D{X:-8870190727513030156, Y:-7578455488760414673}
--- FAIL: TestThree (0.00s)
FAIL

Code Testing and Profiling

[578]

FAIL command-line-arguments 1.153s
FAIL

However, as expected, the second test generated an error. The good thing is that the
input that caused the error is presented onscreen so that you can see the input that
caused your function to fail.

The next subsection tells us how to time out tests that take too long to finish.

Timing out tests
If the go test tool takes too long to finish or for some reason it never ends, there is
the -timeout parameter that can help you.

To illustrate that, we are using the code from the previous subsection as well as the
-timeout and -count command-line flags. While the former specifies the maximum
allowed time duration for the tests, the latter specifies the number of times the tests
are going to be executed.

Running go test -v *.go -timeout 1s tells go test that all tests should take at
most one second to finish—on my machine, the tests did take less than a second to
finish. However, running the following generates a different output:

$ go test -v *.go -timeout 1s -count 2
=== RUN TestWithItself
--- PASS: TestWithItself (0.87s)
=== RUN TestThree
 quickT_test.go:28: Error: #1: failed on input quickT.
Point2D{X:-312047170140227400, Y:-5441930920566042029}, quickT.
Point2D{X:7855449254220087092, Y:7437813460700902767}, quickT.
Point2D{X:4838605758154930957, Y:-7621852714243790655}
--- FAIL: TestThree (0.00s)
=== RUN TestWithItself
panic: test timed out after 1s

The output is longer than the presented one—the rest of the output has to do with
goroutines being terminated before they have finished. The key thing here is that the
go test command timed out the process due to the use of -timeout 1s.

Testing code coverage
In this section, we are going to learn how to find information about the code
coverage of our programs to discover blocks of code or single code statements that
are not being executed by testing functions.

Chapter 11

[579]

Among other things, seeing the code coverage of programs can reveal issues and
bugs in the code, so do not underestimate its usefulness. However, the code coverage
test complements unit testing without replacing it. The only thing to remember is
that you should make sure that the testing functions do try to cover all cases and
therefore try to run all available code. If the testing functions do not try to cover all
cases, then the issue might be with them, not the code that is being tested.

The code of coverage.go, which has some intentional issues in order to show how
unreachable code is identified, is as follows:

package coverage

import "fmt"

func f1() {
 if true {
 fmt.Println("Hello!")
 } else {
 fmt.Println("Hi!")
 }
}

The issue with this function is that the first branch of if is always true and therefore
the else branch is not going to get executed.

func f2(n int) int {
 if n >= 0 {
 return 0
 } else if n == 1 {
 return 1
 } else {
 return f2(n-1) + f2(n-2)
 }
}

There exist two issues with f2(). The first one is that it does not work well with
negative integers and the second one is that all positive integers are handled by the
first if branch. Code coverage can only help you with the second issue. The code of
coverage_test.go is the following—these are regular test functions that try to run all
available code:

package coverage

import "testing"

Code Testing and Profiling

[580]

func Test_f1(t *testing.T) {
 f1()
}

This test function naively tests the operation of f1().

func Test_f2(t *testing.T) {
 _ = f2(123)
}

The second test function checks the operation of f2() by running f2(123).

First, we should run go test as follows—the code coverage task is done by the
-cover flag:

$ go test -cover *.go
ok command-line-arguments 0.420s coverage: 50.0% of statements

The previous output shows that we have 50% code coverage, which is not a good
thing! However, we are not done yet as we can generate a test coverage report. The
next command generates the code coverage report:

$ go test -coverprofile=coverage.out *.go

The contents of coverage.out are as follows—yours might vary a little depending on
your username and the folder used:

$ cat coverage.out
mode: set
/Users/mtsouk/Desktop/coverage.go:5.11,6.10 1 1
/Users/mtsouk/Desktop/coverage.go:6.10,8.3 1 1
/Users/mtsouk/Desktop/coverage.go:8.8,10.3 1 0
/Users/mtsouk/Desktop/coverage.go:13.20,14.12 1 1
/Users/mtsouk/Desktop/coverage.go:14.12,16.3 1 1
/Users/mtsouk/Desktop/coverage.go:16.8,16.19 1 0
/Users/mtsouk/Desktop/coverage.go:16.19,18.3 1 0
/Users/mtsouk/Desktop/coverage.go:18.8,20.3 1 0

The format and the fields in each line of the coverage file are name.go:line.
column,line.column numberOfStatements count. The last field is a flag that tells
you whether the statements specified by line.column,line.column are covered or
not. So, when you see 0 in the last field, it means that the code is not covered.

Chapter 11

[581]

Last, the HTML output can be seen in your favorite web browser by running go
tool cover -html=coverage.out. If you used a different filename than coverage.out,
modify the command accordingly. The next figure shows the generated output—if
you are reading the printed version of the book, you might not be able to see the
colors. Red lines denote code that is not being executed whereas green lines show
code that was executed by the tests.

Figure 11.2: Code coverage report

Some of the code is marked as not tracked (gray in color) because this is code that
cannot be processed by the code coverage tool. The generated output clearly shows
the code issues with both f1() and f2(). You just have to correct them now!

The next section discusses unreachable code and how to discover it.

Finding unreachable Go code
Sometimes, a wrongly implemented if or a misplaced return statement can create
blocks of code that are unreachable, that is, blocks of code that are not going to be
executed at all. As this is a logical kind of error, which means that it is not going to
get caught by the compiler, we need to find a way of discovering it.

Code Testing and Profiling

[582]

Fortunately, the go vet tool, which examines Go source code and reports suspicious
constructs, can help with that—the use of go vet is illustrated with the help of the
cannotReach.go source code file, which contains the next two functions:

func S2() {
 return
 fmt.Println("Hello!")
}

There is a logical error here because S2() returns before printing the desired
message.

func S1() {
 fmt.Println("In S1()")
 return

 fmt.Println("Leaving S1()")
}

Similarly, S1() returns without giving the fmt.Println("Leaving S1()") statement
a chance to be executed.

Running go vet on cannotReach.go creates the next output:

$ go vet cannotReach.go
command-line-arguments
./cannotReach.go:9:2: unreachable code
./cannotReach.go:16:2: unreachable code

The first message points to the fmt.Println() statement of S2() and the second one
to the second fmt.Println() statement of S1(). In this case, go vet did a great job.
However, go vet is not particularly sophisticated and cannot catch every possible
type of logical error. If you need a more advanced tool, have a look at staticcheck
(https://staticcheck.io/), which can also be integrated with Microsoft Visual
Studio Code (https://code.visualstudio.com/)—the next figure shows how
Visual Studio Code signifies unreachable code with the help of staticcheck.

https://staticcheck.io/
https://code.visualstudio.com/

Chapter 11

[583]

Figure 11.3: Viewing unreachable code in Visual Studio Code

As a rule of thumb, it does not hurt to include go vet in your workflow. You can find
more information about the capabilities of go vet by running go doc cmd/vet.

The next section illustrates how to test an HTTP server with a database backend.

Code Testing and Profiling

[584]

Testing an HTTP server with a database
backend
An HTTP server is a different kind of animal because it should already run for tests
to get executed. Thankfully, the net/http/httptest package can help—you do not
need to run the HTTP server on your own as the net/http/httptest package does
the work for you, but you need to have the database server up and running. We are
going to test the REST API server we have developed in Chapter 10, Working with
REST APIs—we are going to copy the server_test.go file with the test code in the
https://github.com/mactsouk/rest-api GitHub repository of the server.

The code of server_test.go, which holds the test functions for the HTTP service, is
the following:

package main

import (
 "bytes"
 "net/http"
 "net/http/httptest"
 "strconv"
 "strings"
 "testing"
 "time"

 "github.com/gorilla/mux"
)

The only reason for including github.com/gorilla/mux is the use of mux.
SetURLVars() later on.

func TestTimeHandler(t *testing.T) {
 req, err := http.NewRequest("GET", "/time", nil)
 if err != nil {
 t.Fatal(err)
 }

To create server_test.go, we do not have to change the
implementation of the REST API server.

https://github.com/mactsouk/rest-api

Chapter 11

[585]

 rr := httptest.NewRecorder()
 handler := http.HandlerFunc(TimeHandler)
 handler.ServeHTTP(rr, req)

 status := rr.Code
 if status != http.StatusOK {
 t.Errorf("handler returned wrong status code: got %v want %v",
 status, http.StatusOK)
 }
}

The http.NewRequest() function is used for defining the HTTP request method,
the endpoint, and for sending data to the endpoint when needed. The http.
HandlerFunc(TimeHandler) call defines the handler function that is being tested.

func TestMethodNotAllowed(t *testing.T) {
 req, err := http.NewRequest("DELETE", "/time", nil)
 if err != nil {
 t.Fatal(err)
 }

 rr := httptest.NewRecorder()
 handler := http.HandlerFunc(MethodNotAllowedHandler)

We are testing MethodNotAllowedHandler in this test function.

 handler.ServeHTTP(rr, req)

 status := rr.Code
 if status != http.StatusNotFound {
 t.Errorf("handler returned wrong status code: got %v want %v",
 status, http.StatusOK)
 }
}

We know that this interaction is going to fail as we are testing
MethodNotAllowedHandler. Therefore, we expect to get an http.StatusNotFound
response code back—if we get a different code, the test function is going to fail.

func TestLogin(t *testing.T) {
 UserPass := []byte(`{"Username": "admin", "Password": "admin"}`)

Code Testing and Profiling

[586]

Here we store the desired fields of a User structure in a byte slice. For the tests to
work, the admin user should have admin as the password because this is what is used
in the code—modify server_test.go in order to have the correct password for the
admin user, or any other user with admin privileges, of your installation.

 req, err := http.NewRequest("POST", "/login", bytes.
NewBuffer(UserPass))
 if err != nil {
 t.Fatal(err)
 }
 req.Header.Set("Content-Type", "application/json")

The previous lines of code construct the desired request.

 rr := httptest.NewRecorder()
 handler := http.HandlerFunc(LoginHandler)
 handler.ServeHTTP(rr, req)

NewRecorder() returns an initialized ResponseRecorder that is used in ServeHTTP()—
ServeHTTP() is the method that performs the request. The response is saved in the rr
variable.

There is also a test function for the /logout endpoint, which is not presented here
as it is almost identical to TestLogin(). However, running the tests in random order
might create issues with testing because TestLogin() should always get executed
before TestLogout().

 status := rr.Code
 if status != http.StatusOK {
 t.Errorf("handler returned wrong status code: got %v want %v",
 status, http.StatusOK)
 return
 }
}

If the status code is http.StatusOK, it means that the interaction worked as expected.

func TestAdd(t *testing.T) {
 now := int(time.Now().Unix())
 username := "test_" + strconv.Itoa(now)
 users := `[{"Username": "admin", "Password": "admin"},
{"Username":"` + username + `", "Password": "myPass"}]`

Chapter 11

[587]

For the Add() handler, we need to pass an array of JSON records, which is
constructed here. As we do not want to create the same username every time, we
append the current timestamp to the _test string.

 UserPass := []byte(users)
 req, err := http.NewRequest("POST", "/add", bytes.
NewBuffer(UserPass))
 if err != nil {
 t.Fatal(err)
 }
 req.Header.Set("Content-Type", "application/json")

This is where we construct the slice of JSON records (UserPass) and create the
request.

 rr := httptest.NewRecorder()
 handler := http.HandlerFunc(AddHandler)
 handler.ServeHTTP(rr, req)

 // Check the HTTP status code is what we expect.
 if status := rr.Code; status != http.StatusOK {
 t.Errorf("handler returned wrong status code: got %v want %v",
 status, http.StatusOK)
 return
 }
}

If the server response is http.StatusOK, then the request is successful and the test
passes.

func TestGetUserDataHandler(t *testing.T) {

 UserPass := []byte(`{"Username": "admin", "Password": "admin"}`)
 req, err := http.NewRequest("GET", "/username/1", bytes.
NewBuffer(UserPass))

Although we use /username/1 in the request, this does not add any value in the Vars
map. Therefore, we need to use the SetURLVars() function for changing the values in
the Vars map—this is illustrated next.

 if err != nil {
 t.Fatal(err)

Code Testing and Profiling

[588]

 }
 req.Header.Set("Content-Type", "application/json")

 vars := map[string]string{
 "id": "1",
 }
 req = mux.SetURLVars(req, vars)

The gorilla/mux package provides the SetURLVars() function for testing purposes—
this function allows you to add elements to the Vars map. In this case, we need to set
the value of the id key to 1. You can add as many key/value pairs as you want.

 rr := httptest.NewRecorder()
 handler := http.HandlerFunc(GetUserDataHandler)
 handler.ServeHTTP(rr, req)

 if status := rr.Code; status != http.StatusOK {
 t.Errorf("handler returned wrong status code: got %v want %v",
 status, http.StatusOK)
 return
 }

expected := `{"ID":1,"Username":"admin","Password":"admin",
"LastLogin":0,"Admin":1,"Active":0}`

This is the record we expect to get back from our request. As we cannot guess the
value of LastLogin in the server response, we replace it with 0, hence the use of 0
here.

 serverResponse := rr.Body.String()

 result := strings.Split(serverResponse, "LastLogin")
 serverResponse = result[0] + `LastLogin":0,"Admin":1,"Active":0}`

As we do not want to use the value of LastLogin from the server response, we are
changing it to 0.

 if serverResponse != expected {
 t.Errorf("handler returned unexpected body: got %v but wanted
%v",
 rr.Body.String(), expected)
 }
}

Chapter 11

[589]

The last part of the code contains the standard Go way of checking whether we have
received the expected answer or not.

Creating tests for HTTP services is easy once you understand the presented
examples. This mainly happens because most of the code is repeated among test
functions.

Running the tests generates the next output:

$ go test -v server_test.go main.go handlers.go
=== RUN TestTimeHandler
2021/06/17 08:59:15 TimeHandler Serving: /time from
--- PASS: TestTimeHandler (0.00s)

This is the output from visiting the /time endpoint. Its result is PASS.

=== RUN TestMethodNotAllowed
2021/06/17 08:59:15 Serving: /time from with method DELETE
--- PASS: TestMethodNotAllowed (0.00s)
=== RUN TestLogin

This is the output from visiting the /time endpoint with the DELETE HTTP method.
Its result is PASS because we were expecting this request to fail as it uses the wrong
HTTP method.

2021/06/17 08:59:15 LoginHandler Serving: /login from
2021/06/17 08:59:15 Input user: {0 admin admin 0 0 0}
2021/06/17 08:59:15 Found user: {1 admin admin 1620922454 1 0}
2021/06/17 08:59:15 Logging in: {1 admin admin 1620922454 1 0}
2021/06/17 08:59:15 Updating user: {1 admin admin 1623909555 1 1}
2021/06/17 08:59:15 Affected: 1
2021/06/17 08:59:15 User updated: {1 admin admin 1623909555 1 1}
--- PASS: TestLogin (0.01s)

This is the output from TestLogin() that tests the /login endpoint. All lines
beginning with the date and time are generated by the REST API server and show
the progress of the request.

=== RUN TestLogout
2021/06/17 08:59:15 LogoutHandler Serving: /logout from
2021/06/17 08:59:15 Found user: {1 admin admin 1620922454 1 1}
2021/06/17 08:59:15 Logging out: admin
2021/06/17 08:59:15 Updating user: {1 admin admin 1620922454 1 0}
2021/06/17 08:59:15 Affected: 1

Code Testing and Profiling

[590]

2021/06/17 08:59:15 User updated: {1 admin admin 1620922454 1 0}
--- PASS: TestLogout (0.01s)

This is the output from TestLogout() that tests the /logout endpoint, which also has
the PASS result.

=== RUN TestAdd
2021/06/17 08:59:15 AddHandler Serving: /add from
2021/06/17 08:59:15 [{0 admin admin 0 0 0} {0 test_1623909555 myPass 0
0 0}]
--- PASS: TestAdd (0.01s)

This is the output from the TestAdd() test function. The name of the new user that is
created is test_1623909555 and it should be different each time the test is executed.

=== RUN TestGetUserDataHandler
2021/06/17 08:59:15 GetUserDataHandler Serving: /username/1 from
2021/06/17 08:59:15 Found user: {1 admin admin 1620922454 1 0}
--- PASS: TestGetUserDataHandler (0.00s)
PASS
ok command-line-arguments (cached)

Last, this is the output from the TestGetUserDataHandler() test function that was
also executed without any issues.

The next subsection discusses fuzzing, which offers a different way of testing.

Fuzzing
As software engineers, we do not worry when things go as expected but when
unexpected things happen. One way to deal with the unexpected is fuzzing. Fuzzing
(or fuzz testing) is a testing technique that provides invalid, unexpected, or random
data on programs that require input.

The advantages of fuzzing include the following:

• Making sure that the code can handle invalid or random input
• Bugs that are discovered with fuzzing are usually severe and might indicate

security risks
• Attackers often use fuzzing for locating vulnerabilities, so it is good to be

prepared

Chapter 11

[591]

Fuzzing is going to be officially included in the Go language in a future Go release,
but do not expect it in 2021. It is most likely going to be officially released with Go
version 1.18 or Go version 1.19. The dev.fuzz branch at GitHub (https://github.
com/golang/go/tree/dev.fuzz) contains the latest implementation of fuzzing. This
branch is going to exist until the relevant code is merged to the master branch. With
fuzzing comes the testing.F data type, in the same way that we use testing.T for
testing and testing.B for benchmarking. If you want to try fuzzing in Go, begin by
visiting https://blog.golang.org/fuzz-beta.

The next section discusses a handy Go feature, which is cross-compilation.

Cross-compilation
Cross-compilation is the process of generating a binary executable file for a different
architecture than the one on which we are working without having access to other
machines. The main benefit that we receive from cross-compilation is that we do not
need a second or third machine to create and distribute executable files for different
architectures. This means that we basically need just a single machine for our
development. Fortunately, Go has built-in support for cross-compilation.

To cross-compile a Go source file, we need to set the GOOS and GOARCH environment
variables to the target operating system and architecture, respectively, which is not
as difficult as it sounds.

The code of crossCompile.go is the following:

package main

import (
 "fmt"
 "runtime"
)

func main() {
 fmt.Print("You are using ", runtime.GOOS, " ")
 fmt.Println("on a(n)", runtime.GOARCH, "machine")
 fmt.Println("with Go version", runtime.Version())
}

You can find a list of available values for the GOOS and GOARCH
environment variables at https://golang.org/doc/install/
source. Keep in mind, however, that not all GOOS and GOARCH
combinations are valid.

https://github.com/golang/go/tree/dev.fuzz
https://github.com/golang/go/tree/dev.fuzz
https://blog.golang.org/fuzz-beta
https://golang.org/doc/install/source
https://golang.org/doc/install/source

Code Testing and Profiling

[592]

Running it on a macOS machine with Go version 1.16.5 generates the next output:

$ go run crossCompile.go
You are using darwin on a(n) amd64 machine
with Go version go1.16.5

Compiling crossCompile.go for the Linux OS that runs on a machine with an amd64
processor is as simple as running the next command on a macOS machine:

$ env GOOS=linux GOARCH=amd64 go build crossCompile.go
$ file crossCompile
crossCompile: ELF 64-bit LSB executable, x86-64, version 1
(SYSV), statically linked, Go BuildID=GHF99KZkGUrFADRlsS7l/ty-
Ka44KVhMItrIvMZ6l/rdRP5mt_yw2AEox_8uET/HqP0KyUBaOB87LY7gvVu, not
stripped

Transferring that file to an Arch Linux machine and running it generates the next
output:

$./crossCompile
You are using linux on a(n) amd64 machine
with Go version go1.16.5

One thing to notice here is that the cross-compiled binary file of crossCompile.go
prints the Go version of the machine used for compiling it—this makes perfect sense
as the target machine might not even have Go installed on it.

Cross-compilation is a great Go feature that can come in handy when you want
to generate multiple versions of your executables through a CI/CD system and
distribute them.

The next section discusses go:generate.

Using go:generate
Although go:generate is not directly connected to testing or profiling, it is a
handy and advanced Go feature and I believe that this chapter is the perfect place
for discussing it as it can also help you with testing. The go:generate directive is
associated with the go generate command, was added in Go 1.4 in order to help
with automation, and allows you to run commands described by directives within
existing files.

Chapter 11

[593]

The go generate command supports the -v, -n, and -x flags. The -v flag prints the
names of packages and files as they are processed whereas the -n flag prints the
commands that would be executed. Last, the -x flag prints commands as they are
executed—this is great for debugging go:generate commands.

The main reasons that you might need to use go:generate are the following:

• You want to download dynamic data from the Internet or some other source
prior to the execution of the Go code.

• You want to execute some code prior to running the Go code.
• You want to generate a version number or other unique data before code

execution.
• You want to make sure that you have sample data to work with. For

example, you can put data into a database using go:generate.

The use of go:generate is illustrated in goGenerate.go, which has the following
content:

package main

import "fmt"

//go:generate ./echo.sh

This executes the echo.sh script, which should be available in the current directory.

//go:generate echo GOFILE: $GOFILE
//go:generate echo GOARCH: $GOARCH
//go:generate echo GOOS: $GOOS
//go:generate echo GOLINE: $GOLINE
//go:generate echo GOPACKAGE: $GOPACKAGE

As using go:generate is not considered a good practice because
it hides things from the developer and creates additional
dependencies, I try to avoid it when I can, and I usually can. On the
other hand, if you really need it, you are going to know it!

Code Testing and Profiling

[594]

$GOFILE, $GOARCH, $GOOS, $GOLINE, and $GOPACKAGE are special variables and are
translated at the time of execution.

//go:generate echo DOLLAR: $DOLLAR
//go:generate echo Hello!
//go:generate ls -l
//go:generate ./hello.py

This executes the hello.py Python script, which should be available in the current
directory.

func main() {
 fmt.Println("Hello there!")
}

The go generate command is not going to run the fmt.Println() statement or any
other statements found in a Go source file. Last, have in mind that go generate is not
executed automatically and must be run explicitly.

Working with goGenerate.go from within ~/go/src/ generates the next output:

$ go mod init
$ go mod tidy
$ go generate
Hello world!
GOFILE: goGenerate.go
GOARCH: amd64
GOOS: darwin
GOLINE: 9
GOPACKAGE: main

This is the output of the $GOFILE, $GOARCH, $GOOS, $GOLINE, and $GOPACKAGE variables,
which shows the values of these variables defined at runtime.

DOLLAR: $

There is also a special variable named $DOLLAR for printing a dollar character in the
output because $ has a special meaning in the OS environment.

Hello!
total 32
-rwxr-xr-x 1 mtsouk staff 32 Jun 2 18:18 echo.sh
-rw-r--r-- 1 mtsouk staff 45 Jun 2 16:15 go.mod
-rw-r--r-- 1 mtsouk staff 381 Jun 2 18:18 goGenerate.go

Chapter 11

[595]

-rwxr-xr-x 1 mtsouk staff 52 Jun 2 18:18 hello.py
drwxr-xr-x 5 mtsouk staff 160 Jun 2 17:07 walk

This is the output of the ls -l command that shows the files found in the current
directory at the time of the code execution. This can be used for testing whether some
necessary files are present at the time of execution or not.

Hello from Python!

Last is the output of a naïve Python script.

Running go generate with -n shows the commands that are going to be executed:

$ go generate -n
./echo.sh
echo GOFILE: goGenerate.go
echo GOARCH: amd64
echo GOOS: darwin
echo GOLINE: 9
echo GOPACKAGE: main
echo DOLLAR: $
echo Hello!
ls -l
./hello.py

So, go:generate can help you work with the OS before program execution. However,
as it hides things from the developer, its usage should be limited.

The last section of this chapter talks about example functions.

Creating example functions
Part of the documentation process is generating example code that showcases the
use of some or all the functions and data types of a package. Example functions have
many benefits, including the fact that they are executable tests that are executed
by go test. Therefore, if an example function contains an // Output: line, the go
test tool checks whether the calculated output matches the values found after the
// Output: line. Although we should include example functions in Go files that
end with _test.go, we do not need to import the testing Go package for example
functions. Moreover, the name of each example function must begin with Example.
Lastly, example functions take no input parameters and return no results.

Code Testing and Profiling

[596]

We are going to illustrate example functions using the code of exampleFunctions.go
and exampleFunctions_test.go. The content of exampleFunctions.go is as follows:

package exampleFunctions

func LengthRange(s string) int {
 i := 0
 for _, _ = range s {
 i = i + 1
 }
 return i
}

The previous code presents a regular package that contains a single function named
LengthRange(). The contents of exampleFunctions_test.go, which includes the
example functions, are the following:

package exampleFunctions

import "fmt"

func ExampleLengthRange() {
 fmt.Println(LengthRange("Mihalis"))
 fmt.Println(LengthRange("Mastering Go, 3rd edition!"))
 // Output:
 // 7
 // 7
}

What the comment lines say is that the expected output is 7 and 7, which is obviously
wrong. This is going to be seen after we run go test:

$ go test -v exampleFunctions*
=== RUN ExampleLengthRange
--- FAIL: ExampleLengthRange (0.00s)
got:
7
26
want:
7
7
FAIL

Chapter 11

[597]

FAIL command-line-arguments 0.410s
FAIL

As expected, there is an error in the generated output—the second generated value
is 26 instead of the expected 7. If we make the necessary corrections, the output is
going to look as follows:

$ go test -v exampleFunctions*
=== RUN ExampleLengthRange
--- PASS: ExampleLengthRange (0.00s)
PASS
ok command-line-arguments 1.157s

Example functions can be a great tool both for learning the capabilities of a package
and for testing the correctness of functions, so I suggest that you include both test
code and example functions in your Go packages. As a bonus, your test functions
appear in the documentation of the package, if you decide to generate package
documentation.

Exercises
• Implement a simple version of ab(1) (https://httpd.apache.org/docs/2.4/

programs/ab.html) on your own using goroutines and channels for testing
the performance of web services.

• Write test functions for the phoneBook.go application from Chapter 3,
Composite Data Types.

• Create test functions for a package that calculates numbers in the Fibonacci
sequence. Do not forget to implement that package.

• Try to find the value of os.TempDir() in various operating systems.
• Create three different implementations of a function that copies binary

files and benchmark them to find the faster one. Can you explain why this
function is faster?

Summary
This chapter discussed go:generate, code profiling and tracing, benchmarking, and
testing Go code. You might find the Go way of testing and benchmarking boring,
but this happens because Go is boring and predictable in general and that is a good
thing! Remember that writing bug-free code is important whereas writing the fastest
code possible is not always that important.

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html

Code Testing and Profiling

[598]

Most of the time, you need to be able to write fast enough code. So, spend more time
writing tests than benchmarks unless your code runs really slowly. We have also
learned how to find unreachable code and how to cross-compile Go code.

Although the discussions of the Go profiler and go tool trace are far from
complete, you should understand that with topics such as profiling and code tracing,
nothing can replace experimenting and trying new techniques on your own!

The next chapter is about creating gRPC services in Go.

Additional resources
• The generate package: https://golang.org/pkg/cmd/go/internal/generate/
• Generating code: https://blog.golang.org/generate
• Look at the code of testing at https://golang.org/src/testing/testing.go

• About net/http/httptrace: https://golang.org/pkg/net/http/httptrace/
• Introducing HTTP Tracing by Jaana Dogan: https://blog.golang.org/http-

tracing

• GopherCon 2019: Dave Cheney - Two Go Programs, Three Different Profiling
Techniques: https://youtu.be/nok0aYiGiYA

https://golang.org/pkg/cmd/go/internal/generate/
https://blog.golang.org/generate
https://golang.org/src/testing/testing.go
https://golang.org/pkg/net/http/httptrace/
https://blog.golang.org/http-tracing
https://blog.golang.org/http-tracing
https://youtu.be/nok0aYiGiYA

[599]

12
Working with gRPC

This chapter is about working with gRPC in Go. gRPC, which stands for gRPC
Remote Procedure Calls, is an alternative to RESTful services that was developed by
Google. The main advantage of gRPC is that it is faster than working with REST and
JSON messages. Additionally, creating clients for gRPC services is also faster due
to the available tooling. Last, as gRPC uses the binary data format, it is lighter than
RESTful services that work with the JSON format.

The process for creating a gRPC server and client has three main steps. The first
step is creating the interface definition language (IDL) file, the second step is the
development of the gRPC server, and the third step is the development of the gRPC
client that can interact with the gRPC server.

This chapter covers the following topics:

• Introduction to gRPC
• Defining an interface definition language file
• Developing a gRPC server
• Developing a gRPC client

Introduction to gRPC
gRPC is an open source remote procedure call (RPC) system that was developed at
Google back in 2015, is built on top of HTTP/2, allows you to create services easily,
and uses protocol buffers as the IDL which specifies the format of the interchanged
messages and the service interface.

Working with gRPC

[600]

gRPC clients and servers can be written in any programming language without the
need to have clients written in the same programming language as their servers.
This means that you can develop a client in Python, even if the gRPC server is
implemented in Go. The list of supported programming languages includes, but
is not limited to, Python, Java, C++, C#, PHP, Ruby, and Kotlin.

The advantages of gRPC include the following:

• The use of binary format for data exchange makes gRPC faster than services
that work with data in plain text format

• The command-line tools provided make your work simpler and faster
• Once you have defined the functions and the messages of a gRPC service,

creating servers and clients for it is simpler than RESTful services
• gRPC can be used for streaming services
• You do not have to deal with the details of data exchange because gRPC

takes care of the details

The next section discusses protocol buffers, which are the foundation of gRPC
services.

Protocol buffers
A protocol buffer (protobuf) is basically a method for serializing structured data.
A part of protobuf is the IDL. As protobuf uses binary format for data exchange,
it takes up less space than plain text serialization formats. However, data needs to
be encoded and decoded to be machine-usable and human-readable, respectively.
Protobuf has its own data types that are translated to natively supported data types
of the programming language used.

Generally speaking, the IDL file is the center of each gRPC service because it defines
the format of the data that is exchanged as well as the service interface. You cannot
have a gRPC service without having a protobuf file at hand. Strictly speaking, a
protobuf file includes the definition of services, methods of services, and the format
of the messages that are going to be exchanged—it is not an exaggeration to say
that if you want to understand a gRPC service, you should start by looking at its
definition file. The next section shows the protobuf file that is going to be used in our
gRPC service.

The list of advantages should not make you think that gRPC is a
panacea that does not have any flaws—always use the best tool or
technology for the job.

Chapter 12

[601]

Defining an interface definition language
file
The gRPC service that we are developing is going to support the following
functionality:

• The server should return its date and time to the client
• The server should return a randomly generated password of a given length

to the client
• The server should return random integers to the client

Before we begin developing the gRPC client and server for our service, we need to
define the IDL file. We need a separate GitHub repository to host the files related to
the IDL file, which is going to be https://github.com/mactsouk/protoapi.

Next, we are going to present the IDL file, which is called protoapi.proto:

syntax = "proto3";

The presented file uses the proto3 version of the protocol buffers language—there is
also an older version of the language named proto2, which has some minor syntax
differences. If you do not specify that you want to use proto3, then the protocol
buffer compiler assumes you want to use proto2. The definition of the version must
be in the first non-empty, non-comment line in the .proto file.

option go_package = "./;protoapi";

The gRPC tools are going to generate Go code from that .proto file. The previous
line specifies that the name of the Go package that is going to be created is protoapi.
The output is going to be written in the current directory as protoapi.proto due to
the use of ./.

service Random {
 rpc GetDate (RequestDateTime) returns (DateTime);
 rpc GetRandom (RandomParams) returns (RandomInt);
 rpc GetRandomPass (RequestPass) returns (RandomPass);
}

This block specifies the name of the gRPC service (Random) as well as the supported
methods. Additionally, it specifies the messages that need to be exchanged for an
interaction. So, for GetDate, the client needs to send a RequestDateTime message and
expects to get a DateTime message back.

https://github.com/mactsouk/protoapi

Working with gRPC

[602]

These messages are defined in the same .proto file.

// For random number

All .proto files support C- and C++-type comments. This means that you can use //
text and /* text */ comments in your .proto files.

message RandomParams {
 int64 Seed = 1;
 int64 Place = 2;
}

A random number generator starts with a seed value, which in our case is specified
by the client and sent to the server with a RandomParams message. The Place
field specifies the place of the random number that is going to be returned in the
sequence of randomly generated integers.

message RandomInt {
 int64 Value = 1;
}

The previous two messages are related to the GetRandom method. RandomParams is
for setting the parameters of the request, whereas RandomInt is for storing a random
number that is generated by the server. All message fields are of the int64 data type.

// For date time
message DateTime {
 string Value = 1;
}

message RequestDateTime {
 string Value = 2;
}

The previous two messages are for supporting the operation of the GetDate method.
The RequestDateTime message is a dummy one in the sense that it does not hold any
useful data—we just need to have a message that the client sends to the server—
you can store any kind of information in the Value field of RequestDateTime. The
information returned by the server is stored as a string value in a DateTime message.

// For random password
message RequestPass {
 int64 Seed = 1;
 int64 Length = 8;

Chapter 12

[603]

}

message RandomPass {
 string Password = 1;
}

Lastly, the previous two messages are for the operation of GetRandomPass.

So, the IDL file:

• specifies that we are using proto3.
• defines the name of the service, which is Random.
• specifies that the name of the generated Go package is going to be protoapi.
• defines that the gRPC service is going to support three methods: GetDate,

GetRandom, and GetRandomPass. It also defines the names of the messages that
are going to be exchanged in these three method calls.

• defines the format of six messages that are used for data exchange.

The next important step is converting that file into a format that can be used by Go.
You might need to download some extra tools in order to process protoapi.proto,
or any other .proto file, and generate the relevant Go .pb.go files. The name of the
protocol buffer compiler binary is protoc—on my macOS machine, I had to install
protoc using the brew install protobuf command. Similarly, I also had to install
protoc-gen-go-grpc and protoc-gen-go packages using Homebrew—the last two
packages are Go-related.

On a Linux machine, you need to install protobuf using your favorite package
manager and protoc-gen-go using the go install github.com/golang/protobuf/
protoc-gen-go@latest command. Similarly, you should install the protoc-gen-go-
grpc executable by running go install google.golang.org/grpc/cmd/protoc-gen-
go-grpc@latest.

So, the conversion process requires the next step:

$ protoc --go_out=. --go_opt=paths=source_relative --go-grpc_out=.
--go-grpc_opt=paths=source_relative protoapi.proto

Starting with Go 1.16, go install is the recommended way of
building and installing packages in module mode. The use of
go get is deprecated. However, when using go install, do not
forget to add @latest after the package name to install the latest
version.

Working with gRPC

[604]

After that, we have a file named protoapi_grpc.pb.go and a file named
protoapi.pb.go—both located in the root directory of the GitHub repository.
The protoapi.pb.go source code file contains the messages, whereas
protoapi_grpc.pb.go contains the services.

The first ten lines of protoapi_grpc.pb.go are as follows:

// Code generated by protoc-gen-go-grpc. DO NOT EDIT.

package protoapi

As discussed earlier, the name of the package is protoapi.

import (
 context "context"
 grpc "google.golang.org/grpc"
 codes "google.golang.org/grpc/codes"
 status "google.golang.org/grpc/status"
)

This is the import block—the reason for having context "context" is that context
used to be an external Go package that was not a part of the standard Go library.

The first lines of protoapi.pb.go are the following:

// Code generated by protoc-gen-go. DO NOT EDIT.
// versions:
// protoc-gen-go v1.27.1
// protoc v3.17.3
// source: protoapi.proto

package protoapi

Both protoapi_grpc.pb.go, and protoapi.pb.go are part of the protoapi Go package,
which means that we only need to include them once in our code.

The next section is about the development of the gRPC server.

Developing a gRPC server
In this section, we are going to create a gRPC server based on the api.proto file
presented in the previous section. As gRPC needs external packages, we are going
to need a GitHub repository to host the files, which is going to be https://github.
com/mactsouk/grpc.

https://github.com/mactsouk/grpc
https://github.com/mactsouk/grpc

Chapter 12

[605]

The code of gServer.go (located in the server directory) that is related to gRPC
(some functions were omitted for brevity) is the following:

package main

import (
 "context"
 "fmt"
 "math/rand"
 "net"
 "os"
 "time"

This program uses math/rand instead of the more secure crypto/rand for generating
random numbers because we need a seed value to be able to reproduce random
number sequences.

 "github.com/mactsouk/protoapi"
 "google.golang.org/grpc"
 "google.golang.org/grpc/reflection"
)

The import block includes external Google packages as well as github.com/
mactsouk/protoapi, which is the one that we created earlier. The protoapi package
contains structures, interfaces, and functions that are specific to the gRPC service
that is being developed, whereas the external Google packages contain generic code
related to gRPC.

type RandomServer struct {
 protoapi.UnimplementedRandomServer
}

This structure is named after the name of the gRPC service. This structure is going
to implement the interface required by the gRPC server. The use of protoapi.
UnimplementedRandomServer is required for the implementation of the interface—
this is standard practice.

func (RandomServer) GetDate(ctx context.Context, r *protoapi.
RequestDateTime) (*protoapi.DateTime, error) {
 currentTime := time.Now()
 response := &protoapi.DateTime{
 Value: currentTime.String(),
 }

Working with gRPC

[606]

 return response, nil
}

This is the first method of the interface named after the GetDate function found in
the service block of protoapi.proto. This method requires no input from the client,
so it ignores the r parameter.

func (RandomServer) GetRandom(ctx context.Context, r *protoapi.
RandomParams) (*protoapi.RandomInt, error) {
 rand.Seed(r.GetSeed())
 place := r.GetPlace()

The GetSeed() and GetPlace() get methods are implemented by protoc, are related
to the fields of protoapi.RandomParams, and should be used in order to read data
from the client message.

 temp := random(min, max)
 for {
 place--
 if place <= 0 {
 break
 }
 temp = random(min, max)
 }

 response := &protoapi.RandomInt{
 Value: int64(temp),
 }
 return response, nil
}

The server constructs a protoapi.RandomInt variable that is going to be returned to
the client. We end the implementation of the second method of the interface here.

func (RandomServer) GetRandomPass(ctx context.Context, r *protoapi.
RequestPass) (*protoapi.RandomPass, error) {
 rand.Seed(r.GetSeed())
 temp := getString(r.GetLength())

The GetSeed() and GetLength() get methods are implemented by protoc, are related
to the fields of protoapi.RequestPass, and should be used in order to read the data
from the client message.

Chapter 12

[607]

 response := &protoapi.RandomPass{
 Password: temp,
 }
 return response, nil
}

In the last part of GetRandomPass(), we construct the response (protoapi.RandomPass)
in order to send it to the client.

var port = ":8080"

func main() {
 if len(os.Args) == 1 {
 fmt.Println("Using default port:", port)
 } else {
 port = os.Args[1]
 }

The first part of main() is about specifying the TCP port that is going to be used for
the service.

 server := grpc.NewServer()

The previous statement creates a new gRPC server that is not attached to any specific
gRPC service.

 var randomServer RandomServer
 protoapi.RegisterRandomServer(server, randomServer)

The previous statements call protoapi.RegisterRandomServer() to create a gRPC
server for our specific service.

 reflection.Register(server)

It is not mandatory to call reflection.Register(), but it helps when you want to list
the available services found on a server—in our case, it could have been omitted.

 listen, err := net.Listen("tcp", port)
 if err != nil {
 fmt.Println(err)
 return
 }

Working with gRPC

[608]

The previous code starts a TCP service that listens to the desired TCP port.

 fmt.Println("Serving requests...")
 server.Serve(listen)
}

The last part of the program is about telling the gRPC server to begin serving
client requests. This happens by calling the Serve() method and using the network
parameters stored in listen.

Now that we have the gRPC server ready, let us continue by developing the client
that can help us test the operation of the gRPC server.

Developing a gRPC client
This section presents the development of the gRPC client based on the api.proto
file presented earlier. The main purpose of the client is to test the functionality of
the server. However, what is really important is the implementation of three helper
functions, each one corresponding to a different RPC call, because these three
functions allow you to interact with the gRPC server. The purpose of the main()
function of gClient.go is to use these three helper functions.

So, the code of gClient.go is the following:

package main

import (
 "context"
 "fmt"
 "math/rand"
 "os"
 "time"

 "github.com/mactsouk/protoapi"
 "google.golang.org/grpc"
)

The curl(1) utility does not work with binary data and therefore
cannot be used for testing a gRPC server. However, there is an
alternative for testing gRPC services, which is the grpcurl utility
(https://github.com/fullstorydev/grpcurl).

https://github.com/fullstorydev/grpcurl

Chapter 12

[609]

var port = ":8080"

func AskingDateTime(ctx context.Context, m protoapi.RandomClient)
(*protoapi.DateTime, error) {

You can name the AskingDateTime() function anything you want. However, the
signature of the function must contain a context.Context parameter, as well as a
RandomClient parameter in order to be able to call GetDate() later on. The client does
not need to implement any of the functions of the IDL—it just has to call them.

 request := &protoapi.RequestDateTime{
 Value: "Please send me the date and time",
 }

We first construct a protoapi.RequestDateTime variable that holds the data for the
client request.

 return m.GetDate(ctx, request)
}

Then, we call the GetDate() method to send the client request to the server. This
is handled by the code in the protoapi module—we just call GetDate() with the
correct parameters. This is where the implementation of the first helper function
ends—although it is not mandatory to have such a helper function, it makes the code
cleaner.

func AskPass(ctx context.Context, m protoapi.RandomClient, seed int64,
length int64) (*protoapi.RandomPass, error) {
 request := &protoapi.RequestPass{
 Seed: seed,
 Length: length,
 }

The AskPass() helper function is for calling the GetRandomPass() gRPC method
in order to get a random password from the server process. First, the function
constructs a protoapi.RequestPass variable with the given values for Seed and
Length, which are parameters of AskPass().

 return m.GetRandomPass(ctx, request)
}

Working with gRPC

[610]

Then, we call GetRandomPass() to send the client request to the server and get the
response. Finally, the function returns.

Due to the way gRPC works and the tools that simplify things, the implementation
of AskPass() is short. Doing the same using RESTful services requires more code.

func AskRandom(ctx context.Context, m protoapi.RandomClient, seed
int64, place int64) (*protoapi.RandomInt, error) {
 request := &protoapi.RandomParams{
 Seed: seed,
 Place: place,
 }

 return m.GetRandom(ctx, request)
}

The last helper function, AskRandom(), operates in an analogous way. We construct
the client message (protoapi.RandomParams), send it to the server by calling
GetRandom(), and get the server response as returned by GetRandom().

func main() {
 if len(os.Args) == 1 {
 fmt.Println("Using default port:", port)
 } else {
 port = os.Args[1]
 }

 conn, err := grpc.Dial(port, grpc.WithInsecure())
 if err != nil {
 fmt.Println("Dial:", err)
 return
 }

The gRPC client needs to connect to the gRPC server using grpc.Dial(). However,
we are not done yet as we need to specify the gRPC service the client is going to
connect to—this is going to happen in a while. The grpc.Insecure() function that
is passed as a parameter to grpc.Dial() returns a DialOption value that disables
security for the client connection.

 rand.Seed(time.Now().Unix())
 seed := int64(rand.Intn(100))

Chapter 12

[611]

Due to the different seed values generated and sent to the gRPC server each time
the client code gets executed, we are going to get different random values and
passwords back from the gRPC server.

 client := protoapi.NewRandomClient(conn)

Next, we need to create a gRPC client by calling protoapi.NewRandomClient() and
passing the TCP connection to protoapi.NewRandomClient(). This client variable is
going to be used for all interactions with the server. The name of the function that
is called depends on the name of the gRPC service—this allows you to differentiate
among the different gRPC services that a machine might support.

 r, err := AskingDateTime(context.Background(), client)
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Println("Server Date and Time:", r.Value)

First, we call the AskingDateTime() helper function to get the date and time from the
gRPC server.

 length := int64(rand.Intn(20))
 p, err := AskPass(context.Background(), client, 100, length+1)
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Println("Random Password:", p.Password)

Then, we call AskPass() to get a randomly generated password. The length of the
password is specified by the length := int64(rand.Intn(20)) statement.

 place := int64(rand.Intn(100))
 i, err := AskRandom(context.Background(), client, seed, place)
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Println("Random Integer 1:", i.Value)

Working with gRPC

[612]

Then, we test AskRandom() with different parameters to make sure that it is going to
return different values back.

 k, err := AskRandom(context.Background(), client, seed, place-1)
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Println("Random Integer 2:", k.Value)
}

With both the server and client completed, we are ready to test them.

Testing the gRPC server with the client
Now that we have developed both the server and the client, we are ready to use
them. First, we should run gServer.go as follows:

$ go run gServer.go
Using default port: :8080
Serving requests..

The server process does not produce any other output.

Then, we execute gClient.go without any command-line parameters. The output
you get from gClient.go should be similar to the following:

$ go run gClient.go
Using default port: :8080
Server Date and Time: 2021-07-05 08:32:19.654905 +0300 EEST
m=+2.197816168
Random Password: $1!usiz|36
Random Integer 1: 92
Random Integer 2: 78

Apart from the first line, which is the client execution from the UNIX shell, and the
second line, which is about the TCP port that is used for connecting to the gRPC
server, the next line of the output shows the date and time as returned by the gRPC
server. Then we have a random password as generated by the server, as well as
two random integers.

Chapter 12

[613]

If we execute gClient.go more than once, we are going to get a different output:

$ go run gClient.go
Using default port: :8080
Server Date and Time: 2021-07-05 08:32:23.831445 +0300 EEST
m=+6.374535148
Random Password: $1!usiz|36N}DO*}{
Random Integer 1: 10
Random Integer 2: 68

The fact that the gRPC server returned different values proves that the gRPC server
works as expected.

gRPC can do more things than the ones presented in this chapter, such as exchange
arrays of messages and streaming—RESTful servers cannot be used for data
streaming. However, a discussion of these is beyond the scope of this book.

Exercises
• Convert gClient.go into a command-line utility using cobra.
• Try to convert gServer.go into a RESTful server.
• Create a RESTful service that uses gRPC for data exchange. Define the REST

API you are going to support, but use gRPC for the communication between
the RESTful server and the gRPC server—in this case, the RESTful server is
going to act as a gRPC client to the gRPC server.

• Create your own gRPC service that implements integer addition and
subtraction.

• How easy or difficult would it be to convert the Phone Book application into
a gRPC service?

• Implement a gRPC service that calculates the length of a string.

Summary
gRPC is fast, easy to use and understand, and exchanges data in binary format. This
chapter taught you how to define the methods and the messages of a gRPC service,
how to translate them into Go code, and how to develop a server and a client for that
gRPC service.

Working with gRPC

[614]

So, should you use gRPC or stick with RESTful services? Only you can answer that
question. You should go with what feels more natural to you. However, if you are
still in doubt and cannot decide, begin by developing a RESTful service and then
implement the same service using gRPC. After that, you should be ready to choose.

The last chapter of the book is about generics, which is a Go feature that is currently
under development and is going to be officially included in Go in 2022. However,
nothing prohibits us from discussing generics and showing some Go code to better
understand generics.

Additional resources
• gRPC: https://grpc.io/
• Protocol Buffers 3 Language Guide: https://developers.google.com/

protocol-buffers/docs/proto3

• The grpcurl utility: https://github.com/fullstorydev/grpcurl
• Johan Brandhorst's website: https://jbrandhorst.com/page/about/
• The documentation of the google.golang.org/grpc package can be found at

https://pkg.go.dev/google.golang.org/grpc

• Go and gRPC tutorial: https://grpc.io/docs/languages/go/basics/
• Protocol buffers: https://developers.google.com/protocol-buffers

https://grpc.io/
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://github.com/fullstorydev/grpcurl
https://jbrandhorst.com/page/about/
https://pkg.go.dev/google.golang.org/grpc
https://grpc.io/docs/languages/go/basics/
https://developers.google.com/protocol-buffers

[615]

13
Go Generics

This chapter is about generics and how to use the new syntax to write generic
functions and define generic data types. Currently, generics are under development,
but the official release is pretty close and we have a good idea of what features
generics are going to have and how generics are going to work.

Let me make something clear from the beginning: you do not have to use Go generics
if you do not want to and you can still write wonderful, efficient, maintainable, and
correct software in Go! Additionally, the fact that you can use generics and support
lots of data types, if not all available data types, does not mean that you should do
that. Always support the required data types, no more, no less, but do not forget to
keep an eye on the future of your data and the possibility of supporting data types
that were not known at the time of writing your code.

This chapter covers:

• Introducing generics
• Constraints
• Defining new data types with generics
• Interfaces versus generics

The new generics syntax is coming to Go 1.18, which, according
to the Go development cycle, is going to be officially released in
February 2022.

Go Generics

[616]

• Reflection versus generics
• Concluding remarks: what does the future look like for Go developers?

Introducing generics
Generics are a feature that gives you the capability of not precisely specifying the
data type of one or more function parameters, mainly because you want to make
your functions as generic as possible. In other words, generics allow functions to
process several data types without the need to write special code, as is the case with
the empty interface or interfaces in general. However, when working with interfaces
in Go, you have to write extra code to determine the data type of the interface
variable you are working with, which is not the case with generics.

Let me begin by presenting a small code example that implements a function that
clearly shows a case where generics can be handy and save you from having to
write lots of code:

func PrintSlice[T any](s []T) {
 for _, v := range s {
 fmt.Println(v)
 }
}

So, what do we have here? There is a function named PrintSlice() that accepts a
slice of any data type. This is denoted by the use of []T in the function signature in
combination with the [T any] part. The [T any] part tells the compiler that the data
type T is going to be determined at execution time. We are also free to use multiple
data types using the [T, U, W any] notation—after which we should use the T, U, W
data types in the function signature.

The any keyword tells the compiler that there are no constraints about the data type
of T. We are going to discuss constraints in a while—for now, just learn the syntax of
generics.

Now imagine writing separate functions to implement the functionality of
PrintSlice() for slices of integers, strings, floating-point numbers, complex values,
and so on. So, we have found a profound case where using generics simplifies the
code and our programming efforts. However, not all cases are so obvious, and we
should be very careful about overusing any.

But what happens if you want to try generics before the official release? There is a
solution, which is to visit https://go2goplay.golang.org/ and place and run your
code there.

https://go2goplay.golang.org/

Chapter 13

[617]

The initial screen of https://go2goplay.golang.org/ is presented in the next figure.
Just like the regular Go Playground, the upper part is where you write the code,
whereas the bottom part is where you get the results of your code or potential error
messages after pressing the Run button:

Figure 13.1: The Go Playground for trying generics

The rest of this chapter is going to execute the Go code in https://go2goplay.
golang.org/. However, I am going to present the code as usual and the output of
the code by copying and pasting it from https://go2goplay.golang.org/.

The following (hw.go) is code that uses generics, to help you understand more about
them before going into more advanced examples:

package main

import (
 "fmt"
)

func PrintSlice[T any](s []T) {
 for _, v := range s {

https://go2goplay.golang.org/
https://go2goplay.golang.org/
https://go2goplay.golang.org/
https://go2goplay.golang.org/

Go Generics

[618]

 fmt.Print(v, " ")
 }
 fmt.Println()
}

PrintSlice() is similar to the function that we saw earlier in this chapter. However,
it prints the elements of each slice in the same line and prints a new line with the
help of fmt.Println().

func main() {
 PrintSlice([]int{1, 2, 3})
 PrintSlice([]string{"a", "b", "c"})
 PrintSlice([]float64{1.2, -2.33, 4.55})
}

Here we call PrintSlice() with three different data types: int, string, and float64.
The Go compiler is not going to complain about that. Instead, it is going to execute
the code as if we had three separate functions, one for each data type.

Therefore, running hw.go produces the next output:

1 2 3
a b c
1.2 -2.33 4.55

So, each slice is printed as expected using a single generic function.

With that information in mind, let us begin by discussing generics and constraints.

Constraints
Let us say that you have a function that works with generics that multiplies two
numeric values. Should this function work with all data types? Can this function
work with all data types? Can you multiply two strings or two structures? The
solution for avoiding that kind of issue is the use of constraints.

Forget about multiplication for a while and think about something simpler. Let us
say that we want to compare variables for equality—is there a way to tell Go that we
only want to work with values that can be compared? Go 1.18 is going to come with
predefined constraints—one of them is called comparable and includes data types
that can be compared for equality or inequality.

Chapter 13

[619]

The code of allowed.go illustrates the use of the comparable constraint:

package main

import (
 "fmt"
)

func Same[T comparable](a, b T) bool {
 if a == b {
 return true
 }
 return false
}

The Same() function uses the predefined comparable constraint instead of any. In
reality, the comparable constraint is just a predefined interface that includes all data
types that can be compared with == or !=. We do not have to write any extra code for
checking our input as the function signature makes sure that we are going to deal
with acceptable data types only.

func main() {
 fmt.Println("4 = 3 is", Same(4,3))
 fmt.Println("aa = aa is", Same("aa","aa"))
 fmt.Println("4.1 = 4.15 is", Same(4.1,4.15))
}

The main() function calls Same() three times and prints its results.

Running allowed.go produces the next output:

4 = 3 is false
aa = aa is true
4.1 = 4.15 is false

As only Same("aa","aa") is true, we get the respective output.

If you try to run a statement that includes Same([]int{1,2},[]int{1,3}), which tries
to compare two slices, the Go Playground is going to generate the following error
message:

type checking failed for main
prog.go2:19:31: []int does not satisfy comparable

Go Generics

[620]

This happens because we cannot directly compare two slices—this kind of
functionality should be implemented manually.

The next subsection shows how to create your own constraints.

Creating constraints
This subsection presents an example where we define the data types that are allowed
to be passed as parameters to a generic function using an interface. The code of
numeric.go is as follows:

package main

import (
 "fmt"
)

type Numeric interface {
 type int, int8, int16, int32, int64, float64
}

In here, we define a new interface called Numeric that specifies the list of supported
data types. You can use any data type you want as long as it can be used with the
generic function that you are going to implement. In this case, we could have added
string or uint to the list of supported data types.

func Add[T Numeric](a, b T) T {
 return a + b
}

This is the definition of the generic function that uses the Numeric constraint.

func main() {
 fmt.Println("4 + 3 =", Add(4,3))
 fmt.Println("4.1 + 3.2 =", Add(4.1,3.2))
}

The previous code is the implementation of the main() function with the calls to
Add().

Running numeric.go produces the next output:

4 + 3 = 7
4.1 + 3.2 = 7.3

Chapter 13

[621]

Nevertheless, Go rules still apply. Therefore, if you try to call Add(4.1,3), you are
going to get the next error message:

type checking failed for main
prog.go2:16:33: default type int of 3 does not match inferred type
float64 for T

The reason for this error is that the Add() function expects two parameters of the
same data type. However, 4.1 is a float64 whereas 3 is an int, so not the same data
type.

The next section shows how to use generics when defining new data types.

Defining new data types with generics
In this section we are going to create a new data type with the use of generics, which
is presented in newDT.go. The code of newDT.go is the following:

package main

import (
 "fmt"
 "errors"
)

type TreeLast[T any] []T

The previous statement declares a new data type named TreeLast that uses generics.

func (t TreeLast[T]) replaceLast(element T) (TreeLast[T], error) {
 if len(t) == 0 {
 return t, errors.New("This is empty!")
 }

 t[len(t) - 1] = element
 return t, nil
}

replaceLast() is a method that operates on TreeLast variables. Apart from the
function signature, there is nothing else that shows the use of generics.

func main() {
 tempStr := TreeLast[string]{"aa", "bb"}

Go Generics

[622]

 fmt.Println(tempStr)
 tempStr.replaceLast("cc")
 fmt.Println(tempStr)

In this first part of main(), we create a TreeLast variable with the aa and bb string
values and we replace the bb value with cc, using a call to replaceLast("cc").

 tempInt := TreeLast[int]{12, -3}
 fmt.Println(tempInt)
 tempInt.replaceLast(0)
 fmt.Println(tempInt)
}

The second part of main() does a similar thing to the first part using a TreeLast
variable populated with int values. So TreeLast works with both string and int
values without any issues.

Running newDT.go produces the next output:

[aa bb]
[aa cc]

The preceding is the output related to the TreeLast[string] variable.

[12 -3]
[12 0]

The final output is related to the TreeLast[int] variable.

The next subsection is about using generics in Go structures.

Using generics in Go structures
In this section, we are going to implement a linked list that works with generics—this
is one of the cases where the use of generics simplifies things because it allows you to
implement the linked list once while being able to work with multiple data types.

The code of structures.go is the following:

package main

import (
 "fmt"
)

Chapter 13

[623]

type node[T any] struct {
 Data T
 next *node[T]
}

The node structure uses generics in order to support nodes that can store all kinds of
data. This does not mean that the next field of a node can point to another node with
a Data field with a different data type. The rule that a linked list contains elements
of the same data type still applies—it just means that if you want to create three
linked lists, one for storing string values, one for storing int values, and a third one
for storing JSON records of a given struct data type, you do not need to write any
extra code to do so.

type list[T any] struct {
 start *node[T]
}

This is the definition of the root node of a linked list of node nodes. Both list and
node must share the same data type, T. However, as stated before, this does not
prevent you from creating multiple linked lists of various data types.

You can still replace any with a constraint in both the definition of node and list if
you want to restrict the list of allowed data types.

func (l *list[T]) add(data T) {
 n := node[T]{
 Data: data,
 next: nil,
 }

The add() function is generic in order to be able to work with all kinds of nodes.
Apart from the signature of add(), all the remaining code is not associated with the
use of generics.

 if l.start == nil {
 l.start = &n
 return
 }

 if l.start.next == nil {
 l.start.next = &n
 return
 }

Go Generics

[624]

These two if blocks have to do with the adding of a new node to the linked list.

 temp := l.start
 l.start = l.start.next
 l.add(data)
 l.start = temp
}

The last part of add() has to do with defining the proper associations between nodes
when adding a new node to the list.

func main() {
 var myList list[int]

First, we define a linked list of int values in main(), which is the linked list that we
are going to work with.

 fmt.Println(myList)

The initial value of myList is nil, as the list is empty and does not contain any nodes.

 myList.add(12)
 myList.add(9)
 myList.add(3)
 myList.add(9)

In this first part, we add four elements to the linked list.

 // Print all elements
 for {
 fmt.Println("*", myList.start)
 if myList.start == nil {
 break
 }
 myList.start = myList.start.next
 }
}

The last part of main() is about printing all the elements of the list by traversing it
with the help of the next field, which points to the next node in the list.

Running structures.go produces the next output:

{<nil>}
* &{12 0xc00010a060}

Chapter 13

[625]

* &{9 0xc00010a080}
* &{3 0xc00010a0b0}
* &{9 <nil>}
* <nil>

Let us discuss the output a little more. The first line shows that the value of the
empty list is nil. The first node of the list holds the value 12 and a memory address
(0xc00010a060) that points to the second node. This goes on until we reach the last
node, which holds the value of 9, which appears twice in this linked list, and points
to nil, because it is the last node. Therefore, the use of generics makes the linked list
able to work with multiple data types.

The next section discusses the differences between using interfaces and generics to
support multiple data types.

Interfaces versus generics
This section presents a program that increments a numeric value by one using
interfaces and generics so that you can compare the implementation details.

The code of interfaces.go illustrates the two techniques and contains the next code:

package main

import (
 "fmt"
)

type Numeric interface {
 type int, int8, int16, int32, int64, float64
}

This is where we define a constraint named Numeric for limiting the permitted data
types.

func Print(s interface{}) {
 // type switch
 switch s.(type) {

The Print() function uses the empty interface for getting input and a type switch to
work with that input parameter.

Go Generics

[626]

Put simply, we are using a type switch to differentiate between the supported data
types—in this case, the supported data types are just int and float64, which has to
do with the implementation of the type switch. However, adding more data types
requires code changes, which is not the most efficient solution.

 case int:
 fmt.Println(s.(int)+1)

This branch is how we handle the int case.

 case float64:
 fmt.Println(s.(float64)+1)

This branch is how we handle the float64 case.

 default:
 fmt.Println("Unknown data type!")
 }
}

The default branch is how we handle all unsupported data types.

The biggest issue with Print() is that due to the use of the empty interface, it accepts
all kinds of input. As a result, the function signature does not help us limit the
allowed data types. The second issue with Print() is that we need to specifically
handle each case—handling more cases means writing more code.

On the other hand, the compiler does not have to guess many things with that code,
which is not the case with generics, where the compiler and the runtime have more
work to do. This kind of work introduces delays in the execution time.

func PrintGenerics[T any](s T) {
 fmt.Println(s)
}

PrintGenerics() is a generic function that can handle all available data types simply
and elegantly.

func PrintNumeric[T Numeric](s T) {
 fmt.Println(s+1)
}

The PrintNumeric() function supports all numeric data types with the use of the
Numeric constraint. No need to specifically add code for supporting each distinct
data type, as happens with Print().

Chapter 13

[627]

func main() {
 Print(12)
 Print(-1.23)
 Print("Hi!")

The first part of main() uses Print() with various types of input: an int value, a
float64 value, and a string value, respectively.

 PrintGenerics(1)
 PrintGenerics("a")
 PrintGenerics(-2.33)

As stated before, PrintGenerics() works with all data types, including string
values.

 PrintNumeric(1)
 PrintNumeric(-2.33)
}

The last part of main() uses PrintNumeric() with numeric values only, due to the use
of the Numeric constraint.

Running interfaces.go produces the next output:

13
-0.22999999999999998
Unknown data type!

The preceding three lines of the output are from the Print() function, which uses the
empty interface.

1
a
-2.33

The previous three lines of the output are from the PrintGenerics() function, which
uses generics and supports all available data types. As a result, it cannot increase
the value of its input because we do not know for sure that we are dealing with a
numeric value. Therefore, it just prints the given input.

2
-1.33

The last two lines are generated by the two PrintNumeric() calls, which operate
using the Numeric constraint.

Go Generics

[628]

So in practice, when you have to support multiple data types, the use of generics
might be a better choice than using interfaces.

The next section discusses the use of reflection as a way of bypassing the use of
generics.

Reflection versus generics
In this section, we develop a utility that prints the elements of a slice in two ways:
first, using reflection, and second, using generics.

The code of reflection.go is as follows:

package main

import (
 "fmt"
 "reflect"
)

func PrintReflection(s interface{}) {
 fmt.Println("** Reflection")
 val := reflect.ValueOf(s)

 if val.Kind() != reflect.Slice {
 return
 }

 for i := 0; i < val.Len(); i++ {
 fmt.Print(val.Index(i).Interface(), " ")
 }
 fmt.Println()
}

Internally, the PrintReflection() function works with slices only. However, as we
cannot express that in the function signature, we need to accept an empty interface
parameter. Additionally, we have to write more code to get the desired output.

In more detail, first, we need to make sure that we are processing a slice (reflect.
Slice) and second, we have to print the slice elements using a for loop, which is
pretty ugly.

Chapter 13

[629]

func PrintSlice[T any](s []T) {
 fmt.Println("** Generics")

 for _, v := range s {
 fmt.Print(v, " ")
 }
 fmt.Println()
}

Once again, the implementation of the generic function is simpler and therefore
easier to understand. Moreover, the function signature specifies that only slices are
accepted as function parameters—we do not have to perform any additional checks
for that as this is a job for the Go compiler. Last, we use a simple for loop with range
to print the slice elements.

func main() {
 PrintSlice([]int{1, 2, 3})
 PrintSlice([]string{"a", "b", "c"})
 PrintSlice([]float64{1.2, -2.33, 4.55})

 PrintReflection([]int{1, 2, 3})
 PrintReflection([]string{"a", "b", "c"})
 PrintReflection([]float64{1.2, -2.33, 4.55})
}

The main() function calls PrintSlice() and PrintReflection() with various kinds of
input to test their operation.

Running reflection.go generates the next output:

** Generics
1 2 3
** Generics
a b c
** Generics
1.2 -2.33 4.55

The first six lines are produced by taking advantage of generics and print the
elements of a slice of int values, a slice of string values, and a slice of float64
values.

** Reflection
1 2 3
** Reflection

Go Generics

[630]

a b c
** Reflection
1.2 -2.33 4.55

The last six lines of the output produce the same output, but this time using
reflection. There is no difference in the output—all differences are in the code found
in the implementations of PrintReflection() and PrintSlice() for printing the
output. As expected, generics code is simpler and shorter than Go code that uses
reflection, especially when you must support lots of different data types.

Exercises
• Create a PrintMe() method in structures.go that prints all the elements of

the linked list
• Create two extra functions in reflection.go in order to support the printing

of strings using reflection and generics
• Implement the delete() and search() functionality using generics for the

linked list found in structures.go
• Implement a doubly-linked list using generics starting with the code found

in structures.go

Summary
This chapter presented generics and gave you the rationale behind the invention of
generics. Additionally, it presented the Go syntax for generics as well as some issues
that might come up if you use generics carelessly. It is expected that there are going
to be changes to the Go standard library in order to support generics and that there
is going to be a new package named slices to take advantage of the new language
features.

Although a function with generics is more flexible, code with generics usually runs
slower than code that works with predefined static data types. So, the price you
pay for flexibility is execution speed. Similarly, Go code with generics has a bigger
compilation time than equivalent code that does not use generics. Once the Go
community begins working with generics in real-world scenarios, the cases where
generics offer the highest productivity are going to become much more evident. At
the end of the day, programming is about understanding the cost of your decisions.
Only then can you consider yourself a programmer. So, understanding the cost of
using generics instead of interfaces, reflection, or other techniques is important.

Chapter 13

[631]

So, what does the future look like for Go developers? In short, it looks wonderful!
You should already be enjoying programming in Go, and you should continue to
do so as the language evolves. If you want to know the latest and greatest of Go as it
is being discussed by the team, you should definitely visit the official GitHub place
of the Go team at https://github.com/golang.

Go helps you to create great software! So, go and create great software!

Additional resources
• Google I/O 2012—Meet the Go team: https://youtu.be/sln-gJaURzk
• Meet the authors of Go: https://youtu.be/3yghHvvZQmA
• This is a video of Brian Kernighan interviewing Ken Thompson—not directly

related to Go: https://youtu.be/EY6q5dv_B-o
• Brian Kernighan on successful language design—not directly related to Go:

https://youtu.be/Sg4U4r_AgJU

• Brian Kernighan: UNIX, C, AWK, AMPL, and Go Programming from the Lex
Fridman Podcast: https://youtu.be/O9upVbGSBFo

• Why Generics? https://blog.golang.org/why-generics
• The Next Step for Generics: https://blog.golang.org/generics-next-step
• A Proposal for Adding Generics to Go: https://blog.golang.org/generics-

proposal

• Proposal for the slices package: https://github.com/golang/go/
issues/45955

A note from the author

Being a good programmer is hard, but it can be done. Keep
improving and—who knows—you might become famous and
have a movie made about you!

Thank you for reading this book. Feel free to contact me with
suggestions, questions, or maybe ideas for other books!

Soli Deo gloria

https://github.com/golang
https://youtu.be/sln-gJaURzk
https://youtu.be/3yghHvvZQmA
https://youtu.be/EY6q5dv_B-o
https://youtu.be/Sg4U4r_AgJU
https://youtu.be/O9upVbGSBFo
https://blog.golang.org/why-generics
https://blog.golang.org/generics-next-step
https://blog.golang.org/generics-proposal
https://blog.golang.org/generics-proposal
https://github.com/golang/go/issues/45955
https://github.com/golang/go/issues/45955

[633]

Appendix A – Go
Garbage Collector

This Appendix is all about the Go Garbage Collector (GC). This crucial part of Go
can affect the performance of your code more than any other Go component. We will
begin by talking about the heap and the stack.

Heap and stack
The heap is the place where programming languages store global variables—
the heap is where garbage collection takes place. The stack is the place where
programming languages store temporary variables used by functions—each
function has its own stack. As goroutines are located in user space, the Go runtime
is responsible for the rules that govern their operation. Additionally, each goroutine
has its own stack, whereas the heap is "shared" among goroutines.

In C++, when you create new variables using the new operator, you know that these
variables are going to the heap. This is not the case with Go and the use of the new()
and make() functions. In Go, the compiler decides where a new variable is going to
be placed based on its size and the result of escape analysis. This is the reason that you
can return pointers to local variables from Go functions.

If you want to know where the variables of a program are allocated by Go, you can
use the -m GC flag. This is illustrated in allocate.go—this is a regular program
that needs no modifications in order to display the extra output as all details are
handled by Go.

package main

import "fmt"

As we have not seen new() in this book many times, have in mind
that new() returns pointers to initialized memory.

Appendix A

[634]

const VAT = 24

type Item struct {
 Description string
 Value float64
}

func Value(price float64) float64 {
 total := price + price*VAT/100
 return total
}

func main() {
 t := Item{Description: "Keyboard", Value: 100}
 t.Value = Value(t.Value)
 fmt.Println(t)

 tP := &Item{}
 *&tP.Description = "Mouse"
 *&tP.Value = 100
 fmt.Println(tP)
}

Running allocate.go generates the next output—the output is a result of the use
of -gcflags '-m', which modifies the generated executable. You should not create
executable binaries that go to production with the use of -gcflags flags:

$ go run -gcflags '-m' allocate.go
command-line-arguments
./allocate.go:12:6: can inline Value
./allocate.go:19:17: inlining call to Value
./allocate.go:20:13: inlining call to fmt.Println
./allocate.go:25:13: inlining call to fmt.Println
./allocate.go:20:13: t escapes to heap

The t escapes to heap message means that t escapes the function. Put simply, it
means that t is used outside of the function and does not have a local scope (because
it is passed outside the function). However, this does not necessarily mean that the
variable has moved to the heap.

Appendix A

[635]

Another message that is not shown here is moved to heap. This message shows that
the compiler decided to move a variable to the heap because it might be used outside
of the function.

./allocate.go:20:13: []interface {}{...} does not escape

./allocate.go:22:8: &Item{} escapes to heap

./allocate.go:25:13: []interface {}{...} does not escape

The does not escape message indicates that the interface does not escape to the
heap. The Go compiler performs escape analysis to find out whether memory needs
to be allocated at the heap or should stay within the stack.

<autogenerated>:1: .this does not escape
{Keyboard 124}
&{Mouse 100}

The last two lines of the output consist of the output generated by the two fmt.
Println() statements.

If you want to get a more detailed output, you can use -m twice:

$ go run -gcflags '-m -m' allocate.go
command-line-arguments
./allocate.go:12:6: can inline Value with cost 13 as: func(float64)
float64 { total := price + price * VAT / 100; return total }
./allocate.go:17:6: cannot inline main: function too complex: cost 199
exceeds budget 80
./allocate.go:19:17: inlining call to Value func(float64) float64 {
total := price + price * VAT / 100; return total }
./allocate.go:20:13: inlining call to fmt.Println func(...interface {})
(int, error) { var fmt..autotmp_3 int; fmt..autotmp_3 = <N>; var fmt..
autotmp_4 error; fmt..autotmp_4 = <N>; fmt..autotmp_3, fmt..autotmp_4
= fmt.Fprintln(io.Writer(os.Stdout), fmt.a...); return fmt..autotmp_3,
fmt..autotmp_4 }
./allocate.go:25:13: inlining call to fmt.Println func(...interface {})
(int, error) { var fmt..autotmp_3 int; fmt..autotmp_3 = <N>; var fmt..
autotmp_4 error; fmt..autotmp_4 = <N>; fmt..autotmp_3, fmt..autotmp_4
= fmt.Fprintln(io.Writer(os.Stdout), fmt.a...); return fmt..autotmp_3,
fmt..autotmp_4 }
./allocate.go:22:8: &Item{} escapes to heap:
./allocate.go:22:8: flow: tP = &{storage for &Item{}}:
./allocate.go:22:8: from &Item{} (spill) at ./allocate.go:22:8
./allocate.go:22:8: from tP := &Item{} (assign) at ./allocate.
go:22:5

Appendix A

[636]

./allocate.go:22:8: flow: ~arg0 = tP:

./allocate.go:22:8: from tP (interface-converted) at ./allocate.
go:25:13
./allocate.go:22:8: from ~arg0 := tP (assign-pair) at ./allocate.
go:25:13
./allocate.go:22:8: flow: {storage for []interface {}{...}} = ~arg0:
./allocate.go:22:8: from []interface {}{...} (slice-literal-
element) at ./allocate.go:25:13
./allocate.go:22:8: flow: fmt.a = &{storage for []interface {}{...}}:
./allocate.go:22:8: from []interface {}{...} (spill) at ./allocate.
go:25:13
./allocate.go:22:8: from fmt.a = []interface {}{...} (assign) at ./
allocate.go:25:13
./allocate.go:22:8: flow: {heap} = *fmt.a:
./allocate.go:22:8: from fmt.Fprintln(io.Writer(os.Stdout),
fmt.a...) (call parameter) at ./allocate.go:25:13
./allocate.go:20:13: t escapes to heap:
./allocate.go:20:13: flow: ~arg0 = &{storage for t}:
./allocate.go:20:13: from t (spill) at ./allocate.go:20:13
./allocate.go:20:13: from ~arg0 := t (assign-pair) at ./allocate.
go:20:13
./allocate.go:20:13: flow: {storage for []interface {}{...}} = ~arg0:
./allocate.go:20:13: from []interface {}{...} (slice-literal-
element) at ./allocate.go:20:13
./allocate.go:20:13: flow: fmt.a = &{storage for []interface {}
{...}}:
./allocate.go:20:13: from []interface {}{...} (spill) at ./
allocate.go:20:13
./allocate.go:20:13: from fmt.a = []interface {}{...} (assign) at
./allocate.go:20:13
./allocate.go:20:13: flow: {heap} = *fmt.a:
./allocate.go:20:13: from fmt.Fprintln(io.Writer(os.Stdout),
fmt.a...) (call parameter) at ./allocate.go:20:13
./allocate.go:20:13: t escapes to heap
./allocate.go:20:13: []interface {}{...} does not escape
./allocate.go:22:8: &Item{} escapes to heap
./allocate.go:25:13: []interface {}{...} does not escape
<autogenerated>:1: .this does not escape
{Keyboard 124}
&{Mouse 100}

However, I find this output too crowded and complex. Usually, using -m just once
reveals what is happening behind the scenes regarding the program heap and stack.

Appendix A

[637]

Now that we know about the heap and the stack, let us continue by discussing
garbage collection.

Garbage collection
Garbage collection is the process of freeing up memory space that is not being used.
In other words, the GC sees which objects are out of scope and cannot be referenced
anymore and frees the memory space they consume. This process happens in a
concurrent way while a Go program is running and not before or after the execution
of the program. The documentation of the Go GC implementation states the
following:

"The GC runs concurrently with mutator threads, is type accurate (also known as
precise), and allows multiple GC threads to run in parallel. It is a concurrent mark
and sweep that uses a write barrier. It is non-generational and non-compacting.
Allocation is done using size segregated per P allocation areas to minimize
fragmentation while eliminating locks in the common case."

Fortunately, the Go standard library offers functions that allow you to study
the operation of the GC and learn more about what the GC covertly does. These
functions are illustrated in the gColl.go utility, which can be found in the ch03
directory of the book's GitHub repository. The source code of gColl.go is presented
here in chunks.

package main

import (
 "fmt"
 "runtime"
 "time"
)

You need the runtime package because it allows you to obtain information about the
Go runtime system, which, among other things, includes the operation of the GC.

func printStats(mem runtime.MemStats) {
 runtime.ReadMemStats(&mem)
 fmt.Println("mem.Alloc:", mem.Alloc)
 fmt.Println("mem.TotalAlloc:", mem.TotalAlloc)
 fmt.Println("mem.HeapAlloc:", mem.HeapAlloc)
 fmt.Println("mem.NumGC:", mem.NumGC, "\n")
}

Appendix A

[638]

The main purpose of printStats() is to avoid writing the same Go code multiple
times. The runtime.ReadMemStats() call gets the latest garbage collection statistics
for you.

func main() {
 var mem runtime.MemStats
 printStats(mem)

 for i := 0; i < 10; i++ {
 // Allocating 50,000,000 bytes
 s := make([]byte, 50000000)
 if s == nil {
 fmt.Println("Operation failed!")
 }
 }
 printStats(mem)

In this part, we have a for loop that creates 10-byte slices with 50,000,000 bytes each.
The reason for this is that by allocating large amounts of memory, we can trigger the
GC.

 for i := 0; i < 10; i++ {
 // Allocating 100,000,000 bytes
 s := make([]byte, 100000000)
 if s == nil {
 fmt.Println("Operation failed!")
 }
 time.Sleep(5 * time.Second)
 }
 printStats(mem)
}

The last part of the program makes even bigger memory allocations – this time, each
byte slice has 100,000,000 bytes.

Running gColl.go on a macOS Big Sur machine with 24 GB of RAM produces the
following kind of output:

$ go run gColl.go
mem.Alloc: 124616
mem.TotalAlloc: 124616
mem.HeapAlloc: 124616
mem.NumGC: 0

Appendix A

[639]

mem.Alloc: 50124368
mem.TotalAlloc: 500175120
mem.HeapAlloc: 50124368
mem.NumGC: 9

mem.Alloc: 122536
mem.TotalAlloc: 1500257968
mem.HeapAlloc: 122536
mem.NumGC: 19

The value of mem.Alloc is the bytes of allocated heap objects—allocated are all the
objects that the GC has not yet freed. mem.TotalAlloc shows the cumulative bytes
allocated for heap objects—this number does not decrease when objects are freed,
which means that it keeps increasing. Therefore, it shows the total number of bytes
allocated for heap objects during program execution. mem.HeapAlloc is the same as
mem.Alloc. Last, mem.NumGC shows the total number of completed garbage collection
cycles. The bigger that value is, the more you have to consider how you allocate
memory in your code and if there is a way to optimize that.

If you want even more verbose output regarding the operation of the GC, you can
combine go run gColl.go with GODEBUG=gctrace=1. Apart from the regular program
output, you get some extra metrics—this is illustrated in the following output:

$ GODEBUG=gctrace=1 go run gColl.go
gc 1 @0.021s 0%: 0.020+0.32+0.015 ms clock, 0.16+0.17/0.33/0.22+0.12 ms
cpu, 4->4->0 MB, 5 MB goal, 8 P
gc 2 @0.041s 0%: 0.074+0.32+0.003 ms clock, 0.59+0.087/0.37/0.45+0.030
ms cpu, 4->4->0 MB, 5 MB goal, 8 P
.
.
.
gc 18 @40.152s 0%: 0.065+0.14+0.013 ms clock, 0.52+0/0.12/0.042+0.10 ms
cpu, 95->95->0 MB, 96 MB goal, 8 P
gc 19 @45.160s 0%: 0.028+0.12+0.003 ms clock, 0.22+0/0.13/0.081+0.028
ms cpu, 95->95->0 MB, 96 MB goal, 8 P
mem.Alloc: 120672
mem.TotalAlloc: 1500256376
mem.HeapAlloc: 120672
mem.NumGC: 19

Appendix A

[640]

As before, we have the same number of completed garbage collection cycles (19).
However, we get extra information about the heap size of each cycle. So, for garbage
collection cycle 19 (gc 19), we get the following:

gc 19 @45.160s 0%: 0.028+0.12+0.003 ms clock, 0.22+0/0.13/0.081+0.028
ms cpu, 95->95->0 MB, 96 MB goal, 8 P

Now, let us explain the 95->95->0 MB triplet in the previous line of output. The
first value (95) is the heap size when the GC is about to run. The second value (95)
is the heap size when the GC ends its operation. The last value is the size of the
live heap (0).

The tricolor algorithm
The operation of the Go GC is based on the tricolor algorithm. Note that the tricolor
algorithm is not unique to Go and can be used in other programming languages as
well.

Strictly speaking, the official name for the algorithm used in Go is the tricolor mark-
and-sweep algorithm. It can work concurrently with the program and uses a write
barrier. This means that when a Go program runs, the Go scheduler is responsible
for the scheduling of the application as well as the GC, which also runs as a
goroutine. This is as if the Go scheduler must deal with a regular application with
multiple goroutines!

The primary principle behind the tricolor mark-and-sweep algorithm is that it
divides the objects of the heap into three different sets according to their color,
which is assigned by the algorithm and can be black, gray, or white. The objects
of the black set are guaranteed to have no pointers to any object of the white set.
On the other hand, an object of the white set can point to an object in the black
set because this does not affect the operation of the GC. The objects of the gray
set might have pointers to some objects of the white set. Finally, the objects of the
white set are the candidates for garbage collection.

The core idea behind this algorithm came from Edsger W. Dijkstra,
Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens,
and was first illustrated in a paper named On- the-Fly Garbage
Collection: An Exercise in Cooperation.

Appendix A

[641]

So, when the garbage collection begins, all objects are white, and the GC visits all
the root objects and colors them gray. The roots are the objects that can be directly
accessed by the application, which includes global variables and other things on the
stack. These objects mostly depend on the Go code of a particular program.

After that, the GC picks a gray object, makes it black, and starts looking at whether
that object has pointers to other objects of the white set or not. Therefore, when an
object of the gray set is scanned for pointers to other objects, it is colored black. If
that scan discovers that this particular object has one or more pointers to a white
object, it puts that white object in the gray set. This process keeps going for as long
as objects exist in the gray set. After that, the objects in the white set are unreachable
and their memory space can be reused. Therefore, at this point, the elements of the
white set are said to be garbage collected. Please note that no object can go directly
from the black set to the white set, which allows the algorithm to operate and be able
to clear the objects on the white set. As mentioned before, no object of the black set
can directly point to an object of the white set. Additionally, if an object of the gray
set becomes unreachable at some point in a garbage collection cycle, it will not be
collected at this garbage collection cycle but in the next one! Although this is not an
optimal situation, it is not that bad.

During this process, the running application is called the mutator. The mutator runs
a small function named the write barrier, which is executed each time a pointer in
the heap is modified. If the pointer of an object in the heap is modified, this means
that this object is now reachable, the write barrier colors it gray, and puts it in the
gray set. The mutator is responsible for the invariant that no element of the black set
has a pointer to an element of the white set. This is accomplished with the help of
the write barrier function. Failing to accomplish this invariant will ruin the garbage
collection process and will most likely crash your program in a pretty bad and
undesirable way!

So, there are three different colors: black, white, and gray. When the algorithm
begins, all objects are colored white. As the algorithm keeps going, white objects are
moved into one of the other two sets. The objects that are left in the white set are the
ones that are going to be cleared at some point.

Appendix A

[642]

The next figure displays the three color sets with objects in them.

Figure 1: The Go GC represents the heap of a program as a graph

While object E, which is in the white set, can access object F, it cannot be accessed by
any other object because no other object points to object E, which makes it a perfect
candidate for garbage collection! Additionally, objects A, B, and C are root objects
and are always reachable; therefore, they cannot be garbage collected.

Can you guess what happens next? Well, the algorithm will have to process the
remaining elements of the gray set, which means that both objects A and F will go to
the black set.

Appendix A

[643]

Object A goes to the black set because it is a root element and F goes to the black set
because it does not point to any other object while it is in the gray set.

After object E is garbage collected, object F will become unreachable and will be
garbage collected in the next cycle of the GC because an unreachable object cannot
magically become reachable in the next iteration of the garbage collection cycle.

Go allows you to manually initiate garbage collection cycles by putting a runtime.
GC() statement in your Go code. However, have in mind that runtime.GC() blocks
the caller and it might block the entire program, especially if you are running a
very busy Go program with many objects. This mainly happens because you cannot
perform garbage collections while everything else is rapidly changing, as this will
not allow the GC to clearly identify the members of the white, black, and gray sets.
This garbage collection status is also called a garbage collection safe-point.

You can find the long and relatively advanced Go code of the GC at https://github.
com/golang/go/blob/master/src/runtime/mgc.go, which you can study if you want
to learn even more information about the garbage collection operation. You can even
make changes to that code if you are brave enough!

More about the operation of the Go garbage
collector
This section talks more about the Go GC and presents additional information about
its activities. The main concern of the Go GC is low latency, which basically means
short pauses in its operation in order to have a real-time operation.

Go garbage collection can also be applied to variables such as
channels. When the GC finds out that a channel is unreachable,
which is when the channel variable cannot be accessed anymore, it
will free its resources even if the channel has not been closed.

Note that the Go GC is always being improved by the Go team.
They are trying to make it faster by lowering the number of scans it
needs to perform over the data of the three sets. However, despite
the various optimizations, the general idea behind the algorithm
remains the same.

https://github.com/golang/go/blob/master/src/runtime/mgc.go
https://github.com/golang/go/blob/master/src/runtime/mgc.go

Appendix A

[644]

On the other hand, what a program does is create new objects and manipulate
existing ones with pointers all the time. This process can end up creating objects that
can no longer be accessed because there are no pointers pointing to these objects.
These objects are then garbage and wait for the GC to clean them up and free their
memory space. After that, the memory space that has been freed is ready to be used
again.

The mark-and-sweep algorithm is the simplest algorithm used. The algorithm stops
the program execution (stop-the-world garbage collector) to visit all the accessible
objects of the heap of a program and marks them. After that, it sweeps the inaccessible
objects. During the mark phase of the algorithm, each object is marked as white,
gray, or black. The children of a gray object are colored gray, whereas the original
gray object is now colored black. The sweep phase begins when there are no more
gray objects to examine. This technique works because there are no pointers from
the black set to the white set, which is a fundamental invariant of the algorithm.

Although the mark-and-sweep algorithm is simple, it suspends the execution of the
program while it is running, which means that it adds latency to the actual process.
Go tries to lower that latency by running the GC as a concurrent process and by
using the tricolor algorithm described in the previous section. However, other
processes can move pointers or create new objects while the GC runs concurrently.
This fact can make things difficult for the GC.

As a result, the basic principle that will allow the tricolor algorithm to operate
concurrently while maintaining the fundamental invariant of the mark-and-sweep
algorithm is that no object of the black set can point to an object of the white set.

The solution to this problem is fixing all the cases that can cause a problem to
the algorithm. Therefore, new objects must go to the gray set because this way,
the fundamental invariant of the mark-and-sweep algorithm cannot be altered.
Additionally, when a pointer of the program is moved, you color the object that the
pointer points to as gray. The gray set acts like a barrier between the white set and
the black set. Finally, each time a pointer is moved, some Go code gets automatically
executed, which is the write barrier mentioned earlier, which does some recoloring.
The latency introduced by the execution of the write barrier code is the price we
have to pay for being able to run the GC concurrently.

Please note that the Java programming language has many GCs that are highly
configurable with the help of multiple parameters. One of these Java GCs is called
G1 and it is recommended for low-latency applications. Although Go does not
have multiple GCs, it does have knobs that you can use to tune the GC for your
applications.

Appendix A

[645]

The section that follows discusses maps and slices from a garbage collection
perspective because sometimes the way we handle variables influences the operation
of the GC.

Maps, slices, and the Go garbage collector
In this section, we discuss the operation of the Go GC in relation to maps and slices.
The purpose of this section is to let you write code that makes the work of the GC
easier.

Using a slice
The example in this section uses a slice to store a large number of structures. Each
structure stores two integer values. This is implemented in sliceGC.go as follows:

package main

import (
 "runtime"
)

type data struct {
 i, j int
}

func main() {
 var N = 80000000
 var structure []data
 for i := 0; i < N; i++ {
 value := int(i)
 structure = append(structure, data{value, value})
 }

 runtime.GC()
 _ = structure[0]
}

The last statement (_ = structure[0]) is used to prevent the GC from garbage
collecting the structure variable too early, as it is not referenced or used outside of
the for loop. The same technique will be used in the three Go programs that follow.

Appendix A

[646]

Apart from this important detail, a for loop is used for putting all values into
structures that are stored in the structure slice variable. An equivalent way of doing
that is the use of runtime.KeepAlive(). The program generates no output—it just
triggers the GC using a call to runtime.GC().

Using a map with pointers
In this subsection, we use a map for storing pointers. This time, the map is using
integer keys that reference the pointers. The name of the program is mapStar.go
and contains the following Go code:

package main

import (
 "runtime"
)

func main() {
 var N = 80000000
 myMap := make(map[int]*int)
 for i := 0; i < N; i++ {
 value := int(i)
 myMap[value] = &value
 }

 runtime.GC()
 _ = myMap[0]
}

The operation of the program is the same as in sliceGC.go from the previous section.
What differs is the use of a map (make(map[int]*int)) for storing the pointers to int.
As before, the program produces no output.

Using a map without pointers
In this subsection, we use a map that stores integer values directly instead of pointers
to integers. The important code of mapNoStar.go is the following:

func main() {
 var N = 80000000
 myMap := make(map[int]int)
 for i := 0; i < N; i++ {

Appendix A

[647]

 value := int(i)
 myMap[value] = value
 }
 runtime.GC()
 _ = myMap[0]
}

Once again, the program produces no output.

Splitting the map
In this last program, we used a different technique called sharding, where we split
one long map into a map of maps. The implementation of the main() function of
mapSplit.go is as follows:

func main() {
 var N = 80000000

 split := make([]map[int]int, 2000)
 for i := range split {
 split[i] = make(map[int]int)
 }

 for i := 0; i < N; i++ {
 value := int(i)
 split[i%2000][value] = value
 }
 runtime.GC()
 _ = split[0][0]
}

The code uses two for loops, one for creating the map of maps and another one for
storing the desired data values in the map of maps.

As all four programs are using huge data structures, they are consuming large
amounts of memory. Programs that consume lots of memory space trigger the
Go GC more often. The next subsection presents an evaluation of the techniques
presented.

Appendix A

[648]

Comparing the performance of the presented
techniques
In this subsection, we compare the performance of each one of these four
implementations using the time command of zsh(1), which is pretty similar to the
time(1) UNIX command.

$ time go run sliceGC.go
go run sliceGC.go 2.68s user 1.39s system 127% cpu 3.184 total
$ time go run mapStar.go
go run mapStar.go 55.58s user 3.24s system 209% cpu 28.110 total
$ time go run mapNoStar.go
go run mapNoStar.go 20.63s user 1.88s system 99% cpu 22.684 total
$ time go run mapSplit.go
go run mapSplit.go 20.84s user 1.29s system 100% cpu 21.967 total

It turns out that the map versions are slower than the slice version. Unfortunately for
maps, the map version will always be slower than the slice version because of the
execution of the hash function and the fact that the data is not contiguous. In maps,
data is stored in a bucket determined by the output of the hash function.

Additionally, the first map program (mapStar.go) may be triggering some garbage
collection slowdown because taking the address of &value will cause it to escape to
the heap. Every other program is just using the stack for those locals. When variables
escape to the heap, they cause more garbage collection pressure.

Additional resources
• Go FAQ: How do I know whether a variable is allocated on the heap or the

stack? https://golang.org/doc/faq#stack_or_heap
• The list of available -gcflags options: https://golang.org/cmd/compile/
• If you want to learn more about garbage collection, you should visit http://

gchandbook.org/

Accessing an element of a map or a slice has O(1) runtime, which
means that the access time does not depend on the number of
elements found in the map or the slice. However, the way these
structures work affects the overall speed.

https://golang.org/doc/faq#stack_or_heap
https://golang.org/cmd/compile/
http://gchandbook.org/
http://gchandbook.org/

[649]

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
 ● Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals
 ● Improve your learning with Skill Plans built especially for you
 ● Get a free eBook or video every month
 ● Fully searchable for easy access to vital information
 ● Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://packt.com
http://www.packt.com

[651]

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in this other book by Packt:

Git for Programmers

Jesse Liberty

ISBN: 9781801075732

 ● Create and clone repositories
 ● Understand the difference between local and remote repositories
 ● Use, manage, and merge branches back into the main branch
 ● Utilize tools to manage merge conflicts
 ● Manage commits on your local machine through interactive rebasing
 ● Use the log to gain control over all the data in your repository
 ● Use bisect, blame, and other tools to undo Git mistakes

https://www.packtpub.com/product/git-for-programmers/9781801075732

[652]

Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.
com and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share your thoughts
Now you've finished Mastering Go, Third Edition, we'd love to hear your thoughts! If
you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the
site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-801-07931-5
https://packt.link/r/1-801-07931-5

[653]

Index
Symbols
3D shapes

sort.Interface interface,
implementing 168-172

A
abstract types 148
anonymous function 189, 190, 323
Apache 381
arrays

characteristics and limitations 71
slices, connecting to 86-88

automated testing 571

B
benchmark functions

wrongly defined 552, 553
benchstat utility

about 551
benchmark results, comparing with 551, 552

binary files
downloading 527-532
uploading 527-532

black box testing 576
black set 640
buffered channel 331, 343-345
buffered writing and reading

benchmarking 547-551
byte slice 80-82

C
Caddy 381
capacity 75

channels 5, 28, 317, 329, 342, 343, 643
as function parameters 334, 335
buffered channels 343
nil channels 345, 346
reading from 330-333
signal channels 350
worker pools 346
writing to 330-333

closed channel
receiving from 333, 334

closure 189
closured variables 364-366
cobra

commands 518
cobra package 293-295

command aliases, creating 297
command-line flags, adding 296
subcommands, creating 297, 298
utility, with three commands 295, 296

code
documentation, generating 231-239
characteristics 13
Cleanup() function 573-575
compiling 10
formatting and coding rules 11, 12
iterating, with for loops 19-21
iterating, with range 19-21
program flow, controlling 16-18
running 10
TempDir function 573
testing 571
testing/quick package 576, 577
tests, timing out 578
user input, obtaining 21
using, like scripting language 11
variables, defining 13

[654]

variables, printing 14, 15
variables, using 13

code profiling 553
code annotations 533
code benchmarking 545

main() function, rewriting 546, 547
code coverage

testing 578-581
code optimization 544
command-line application

profiling 553-556
command-line arguments

working with 22-25
command-line client

structure, creating 519
compiled regular expression 115
composition 6
concurrency 322
concurrent TCP servers

developing 453-455
configuration file

final version 242-247
initial version 240, 241

constant generator iota 68-70
constraints 618

creating 620, 621
context package 366-370

using, as key/value store 370-372
continuation 319
copy() function 88-90
critical section 353
cross-compilation 591, 592
CSV file formats

working with 172-175
cursor 212
custom log file

writing 36-38

D
database

exploring 209-213
package, for working with 208
working with 502-507

data types
creating, with generics 621, 622
grouping 71

dates and times
utility, for parsing 63-66
working with 62, 63

default Go router 383
defer keyword 200, 201
deferred functions 200
DELETE handler

testing 518
Denial of Service (DoS) 432
desired metrics

exposing 402-405
destination port fields 436
Docker image

creating, for Go server 400, 402
duck typing 148

E
Echo service 461
empty interface 135, 148, 152-154
encapsulation 6, 176
error data type 48-51, 162, 164, 166
error variables

using, to differentiate between
input types 26, 27

escape analysis 633
example functions

creating 595-597

F
fair scheduling strategy 319
fields 108
file

writing to 272-275
file descriptors 254
file servers

creating 424-426
finite automaton 114
fork-join concurrency 319
full-duplex communication channel 460
functional RESTful server

creating 499
functions 189

anonymous functions 189
other functions, returning 194, 195
returning, multiple values 190, 191

[655]

return value, naming 191-194
variadic functions 196

fuzzing 590, 591
advantages 590
reference link 591

G
garbage collection 637-640

operation 643, 644
tricolor algorithm 640-643

garbage collection safe-point 643
generics 137, 230, 616-618

facts 41
overview 39, 40
used, for creating data types 621, 622
using, in Go structures 622-625
versus interfaces 625-627
versus reflection 628, 630

GET handlers
testing 515, 516

GitHub
secrets, storing 245
used, for storing Go packages 206, 207

GitHub Actions 244, 245
GitLab Runners 239
global variables 14
Go 2, 3

advantages 5, 6
applications, developing 2
disadvantages 6
go doc utility 7
godoc utility 7
history 3, 4
installation link 4
object-oriented programming 176-179
URL 2, 7, 417
usecases 6
which(1) utility, developing 30-32

Go 1.16
DirEntry 305, 306
features 302
files, embedding 302, 304
io/fs package 307-309
ReadDir 305, 306

go2go Playground
URL 616, 617

Go concurrency model 28, 29
Go constants 67
go*generate

using 592-595
Go interface

using 166, 167
Go Language Specification document

reference link 206
GOMAXPROCS environment variable 321
Go profiler

web interface 559, 561
Go race detector 335-337
Go regular expression 114, 115
gorilla/mux package

matching examples 501
using 501

goroutines 5, 28, 255, 317, 318, 323, 640
Add() calls, and Done() call

differences 327, 328
creating 323
memory, sharing with 361-364
multiple files, creating with 328, 329
order of execution, specifying 350-353
timing out 339
timing out, inside main() 340, 341
timing out, outside main() 341, 342
waiting, for completion 325, 326

Go scheduler 317-321
concurrency 322
GOMAXPROCS environment variable 321
parallelism 322

Go server
Docker image, creating 400, 402

go statement 364, 366
Go structures

internal structure 138-140
generics, using 622-625

go-swagger binary
installation link 533

go tool trace utility 561, 562
Grafana

Prometheus metrics, visualizing 411, 413
gray set 640
gRPC 599, 600

protocol buffer (protobuf) 600
gRPC client

developing 608-612

[656]

gRPC server, testing with 612, 613
gRPC server

developing 604-608
testing, with gRPC client 612, 613

H
Haskell programming language 576
Heap 633-636
Hello World program 8

functions 9
packages 9

HTTP connections
SetDeadline() function, using 428, 429
timeout period, setting on

client side 429-432
timeout period, setting on

server side 432, 433
timing out 428

http.NewRequest() function
used, for improving web clients 415-417

HTTP protocol
reference link 479

HTTP request multiplexer 383
http.Response type

reference link 378
HTTP server

endpoints, listing 480
performing, operations 478
profiling 557, 559

HTTP server, with database backend
testing 584-590

HTTP status code 479

I
implicit data conversions 15
init() function 203, 204

converting, to string() function 57
interface definition language file

defining 601-604
interfaces 147-149

use 135
versus generics 625-627
writing 166

Internet Protocol (IP) 436
I/O, Go 259

buffered file I/O 265

io.Reader and io.Writer, misusing 260-264
io.Reader and io.Writer, using 260-264
io.Reader interfaces 259, 260
io.Writer interfaces 259, 260
unbuffered file I/O 264

io/ioutil package
reference link 259

IPv4 436
IPv6 436

J
JavaScript

used, for implementing WebSocket
server 466-470

JSON
and structures 277, 278
converting, to XML 283, 284
Marshal(), using 275-277
Unmarshal(), using 275-277
working with 275

JSON data 491
reading, as streams 278, 279
writing, as streams 278, 279

JSON records
pretty printing 280, 281

K
key and value pairs 107

L
lambdas 189
last in, first out (LIFO) 200
line numbers

printing, in log entries 38, 39
local flags 293
log entries

line numbers, printing 38, 39
log.Fatal() function 35, 36
logging information

writing 32, 33
log.Panic() function 35, 36

M
m:n scheduling 319

[657]

maps 104, 105
advantages 104
iterating over 107
nil value 105, 106
splitting 647

map[string]interface{} map 158-162
map, without pointers

using 646, 647
map, with pointers

using 646
marshaling 275
methods on types 135, 147
metrics

exposing 397-400
pulling, in Prometheus 407-409
reading 405-407

Modules 229, 502
reference link 229

monitor goroutine 361
multiple goroutines

creating 324
mutator 641
mutual exclusion variable (mutex) 353

atomic package 359-361
forgetting, to unlock 355, 356
sync.Mutex type 354, 355
sync.RWMutex type 357-359

N
nc(1) command-line utility 437
nested route 502
net.Dial()

used, for developing TCP client 438-440
net.DialTCP()

used, for developing TCP client 440-442
net/http package 378

http.Request type 379
http.Response type 378
http.Transport type 379, 380

net.Listen()
used, for developing TCP server 442-445

net.ListenTCP()
used, for developing TCP server 445-447

net package 437
Nginx 381
nil channels 345

nil map
data, storing to 105, 106

non-numeric data types 54
characters 54-57
dates 54-57
dates and times 62, 63
runes 54-57
string 54-57
time 54-57

numeric data types 51-54

O
object-oriented programming

in Go 176-179
generating 538, 539

order of execution 204-206

P
Packages 186, 239, 244, 245

creating 208
design 214-217
developing 202, 230, 231
downloading 186-189
GitLab Runners 239
implementation 217-225
storing 214
storing, with GitHub 206, 207
testing 225-229

parallelism 322
pattern matching 114

integers, matching 117
names and surnames, matching 116
record field, matching 118

persistent flags 293
phone book application

API, defining 385
cobra, using 309, 310
CSV files, working with 119-123
CSV file value, setting up 180, 181
delete command, implementing 311, 312
developing 41-45
handlers, implementing 386-394
improving 119
index, adding 124
insert command, implementing 312

[658]

JSON data, storing 311
list command, implementing 312
search command, implementing 313, 314
shortcoming 41
sort package, using 182, 183
updating 100, 101, 180, 309, 384
version 125-133
web clients, downloading 426, 427

phone book service
web clients, creating for 418-424

pipeline 317, 330
plain text data 384
plugins

reference link 203
pointers 5, 92-96
pointer variables 109
polymorphism 5, 148, 176
POST handlers

testing 516
predefined comparable constraint 619
presented techniques

performance, comparing 648
process 318
process ID 255
program 318
Prometheus

configuring, to pull metrics 407-409
metrics, exposing to 394, 395
runtime/metrics package 395-397

Prometheus metrics
visualizing, in Grafana 411, 413

protocol buffer (protobuf) 600
PUT handler

testing 517

R
race conditions 336

as function parameters 335
random numbers

generating 97, 98
random strings

generating 98, 99
recognizer 114
ReDoc 539
reflection 136, 137

disadvantages 142

structure values, changing with 140, 141
versus generics 628, 630

regular expression 114
regular function 143
regular variables 109
REpresentational State Transfer (REST) 478
REST API 500

documenting 534-538
parameters 500, 501
supported endpoints 500, 501
supported HTTP methods 500, 501

REST API documentation
Swagger, using for 532-534

REST API versions
working with 526, 527

restdb package
testing 508, 509

RESTful client commands
implementing 520-524

RESTful clients 490-499
creating 518, 519
developing 480
using 525, 526

RESTful servers 481-490
developing 480
implementing 510-514
testing 514, 515

RESTful service
architecture 478

routers 436
rune data type 55

S
secure random numbers

generating 99
select keyword 338, 339
selectors 143
semantic versioning 229
semaphore package 372-375
sharding 647
shared memory 317, 353
shared variables 353
short assignment statement 13
signal channels 350
single data type 42
slices 72-74

[659]

byte slice 80-82
connecting, to arrays 86-88
copy() function 88-90
element, deleting from 82-85
length and capacity 75-78
part, selecting of 78-80
sorting 90-92
using 645, 646

sort.Interface interface 150-152
implementing, for 3D shapes 168-172

source port fields 436
Stack 633-636
standard error (stderr) 254
standard input

reading 21, 22
standard input (stdin) 254
standard output (stdout) 254
stop-the-world garbage collector 644
String() function

init() function, converting from 57
strings standard Go package 58-62

reference link 61
structure literal 109
structures 108

defining 108, 109
new() keyword, using 109-111
slice 112, 113

structure values
changing, with reflection 140, 141

subrouters
using 502

Swagger
using, for REST API documentation 532-534

Swagger file
serving 539, 540

T
table tests 547
tags 275
TCP client

developing 438
developing, with net.Dial() 438-440
developing, with net.DialTCP() 440-442

TCP packets 436
TCP server

developing 442

developing, with net.Listen() 442-444
developing, with net.ListenTCP() 445-447

tests
writing, for ./ch03/intRE.go 571, 572

text files
reading 265
reading, character by character 268, 269
reading, from /dev/random 269, 270
reading, line by line 265, 267
reading, word by word 267, 268
specific amount of data, reading

from 271, 272
thread 318
time package

reference link 63
time zones

working with 67
Transmission Control Protocol (TCP) 436
Transmission Control Protocol (TCP)/

Internet Protocol (IP) 436
tricolor algorithm 640-643
tricolor mark-and-sweep algorithm 640
trim function 61
type assertion 154-158
type identity 109
type method 135, 142

creating 143, 144
using 144-147

type switches 154-158

U
UDP client

developing 447-449
UDP server

developing 450-453
unbuffered channel 331
unicode standard Go package 57
UNIX

versus Windows 4
UNIX domain sockets

client 458-460
server 455-457
working with 455

UNIX file system
cycles, finding 299-301

UNIX logging service

[660]

logging facility 33, 34
logging level 33, 34

UNIX processes 254, 255
daemon processes 255
kernel processes 255
user processes 255

UNIX signals
handling 255-258
multiple signals, handling 258

UNIX symbolic links 299
unmarshaling 275
unreachable Go code

finding 581-583
User Datagram Protocol (UDP) 437
user input

obtaining 21
utilities

versioning 248-250

V
variadic functions 196-199

rules 196
viper package 286

command-line flags, using 287-289
JSON configuration files, reading 290-293

W
web clients

creating, for phone book service 418-424
developing 413, 414
improving, with http.NewRequest()

function 415-417
web server

creating 380-384
routes, visiting 566-570
tracing, from client 563-565

websocat
used, for implementing WebSocket

server 465, 466
WebSocket client

creating 470-474
WebSocket protocol

reference link 460
WebSocket server

creating 460, 461
implementation 461-465

implementing, with JavaScript 466-470
implementing, with websocat 465, 466

which(1) utility
developing, in Go 30-32

white set 640
Windows

versus Unix 4
worker pools 346-350
work-stealing strategy 319
write barrier 640, 641

X
XML

JSON, converting to 283, 284
working with 281, 282

Y
YAML

working 284-286

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Chapter 1: A Quick Introduction to Go
	Introducing Go
	The history of Go
	Why UNIX and not Windows?
	The advantages of Go
	The go doc and godoc utilities

	Hello World!
	Introducing functions
	Introducing packages

	Running Go code
	Compiling Go code
	Using Go like a scripting language
	Important formatting and coding rules

	Important characteristics of Go
	Defining and using variables
	Printing variables

	Controlling program flow
	Iterating with for loops and range
	Getting user input
	Reading from standard input
	Working with command-line arguments

	Using error variables to differentiate between input types
	Understanding the Go concurrency model

	Developing the which(1) utility in Go
	Logging information
	log.Fatal() and log.Panic()
	Writing to a custom log file
	Printing line numbers in log entries

	Overview of Go generics
	Developing a basic phone book application
	Exercises
	Summary
	Additional resources

	Chapter 2: Basic Go Data Types
	The error data type
	Numeric data types
	Non-numeric data types
	Strings, Characters, and Runes
	Converting from int to string
	The unicode package
	The strings package

	Times and dates
	A utility for parsing dates and times
	Working with different time zones

	Go constants
	The constant generator iota

	Grouping similar data
	Arrays
	Slices
	About slice length and capacity
	Selecting a part of a slice
	Byte slices
	Deleting an element from a slice
	How slices are connected to arrays
	The copy() function
	Sorting slices

	Pointers
	Generating random numbers
	Generating random strings
	Generating secure random numbers

	Updating the phone book application
	Exercises
	Summary
	Additional resources

	Chapter 3: Composite Data Types
	Maps
	Storing to a nil map
	Iterating over maps

	Structures
	Defining new structures
	Using the new keyword
	Slices of structures

	Regular expressions and pattern matching
	About Go regular expressions
	Matching names and surnames
	Matching integers
	Matching the fields of a record

	Improving the phone book application
	Working with CSV files
	Adding an index
	The improved version of the phone book application

	Exercises
	Summary
	Additional resources

	Chapter 4: Reflection and Interfaces
	Reflection
	Learning the internal structure of a Go structure
	Changing structure values using reflection
	The three disadvantages of reflection

	Type methods
	Creating type methods
	Using type methods

	Interfaces
	The sort.Interface interface
	The empty interface
	Type assertions and type switches
	The map[string]interface{} map
	The error data type
	Writing your own interfaces
	Using a Go interface
	Implementing sort.Interface for 3D shapes

	Working with two different CSV file formats
	Object-oriented programming in Go
	Updating the phone book application
	Setting up the value of the CSV file
	Using the sort package

	Exercises
	Summary
	Additional resources

	Chapter 5: Go Packages and Functions
	Go packages
	Downloading Go packages

	Functions
	Anonymous functions
	Functions that return multiple values
	The return values of a function can be named
	Functions that accept other functions as parameters
	Functions can return other functions
	Variadic functions
	The defer keyword

	Developing your own packages
	The init() function
	Order of execution

	Using GitHub to store Go packages
	A package for working with a database
	Getting to know your database
	Storing the Go package
	The design of the Go package
	The implementation of the Go package
	Testing the Go package

	Modules
	Creating better packages
	Generating documentation
	GitLab Runners and Go
	The initial version of the configuration file
	The final version of the configuration file

	GitHub Actions and Go
	Storing secrets in GitHub
	The final version of the configuration file

	Versioning utilities
	Exercises
	Summary
	Additional resources

	Chapter 6: Telling a UNIX System What to Do
	stdin, stdout, and stderr
	UNIX processes
	Handling UNIX signals
	Handling two signals

	File I/O
	The io.Reader and io.Writer interfaces
	Using and misusing io.Reader and io.Writer
	Buffered and unbuffered file I/O

	Reading text files
	Reading a text file line by line
	Reading a text file word by word
	Reading a text file character by character
	Reading from /dev/random
	Reading a specific amount of data from a file

	Writing to a file
	Working with JSON
	Using Marshal() and Unmarshal()
	Structures and JSON
	Reading and writing JSON data as streams
	Pretty printing JSON records

	Working with XML
	Converting JSON to XML and vice versa

	Working with YAML
	The viper package
	Using command-line flags
	Reading JSON configuration files

	The cobra package
	A utility with three commands
	Adding command-line flags
	Creating command aliases
	Creating subcommands

	Finding cycles in a UNIX file system
	New to Go 1.16
	Embedding files
	ReadDir and DirEntry
	The io/fs package

	Updating the phone book application
	Using cobra
	Storing and loading JSON data
	Implementing the delete command
	Implementing the insert command
	Implementing the list command
	Implementing the search command

	Exercises
	Summary
	Additional resources

	Chapter 7: Go Concurrency
	Processes, threads, and goroutines
	The Go scheduler
	The GOMAXPROCS environment variable
	Concurrency and parallelism

	Goroutines
	Creating a goroutine
	Creating multiple goroutines
	Waiting for your goroutines to finish
	What if the number of Add() and Done() calls differ?
	Creating multiple files with goroutines

	Channels
	Writing to and reading from a channel
	Receiving from a closed channel
	Channels as function parameters

	Race conditions
	The Go race detector

	The select keyword
	Timing out a goroutine
	Timing out a goroutine – inside main()
	Timing out a goroutine – outside main()

	Go channels revisited
	Buffered channels
	nil channels
	Worker pools
	Signal channels
	Specifying the order of execution for your goroutines

	Shared memory and shared variables
	The sync.Mutex type
	What happens if you forget to unlock a mutex?

	The sync.RWMutex type
	The atomic package
	Sharing memory using goroutines

	Closured variables and the go statement
	The context package
	Using context as a key/value store

	The semaphore package
	Exercises
	Summary
	Additional resources

	Chapter 8: Building Web Services
	The net/http package
	The http.Response type
	The http.Request type
	The http.Transport type

	Creating a web server
	Updating the phone book application
	Defining the API
	Implementing the handlers

	Exposing metrics to Prometheus
	The runtime/metrics package
	Exposing metrics
	Creating a Docker image for a Go server
	Exposing the desired metrics

	Reading metrics
	Putting the metrics in Prometheus
	Visualizing Prometheus metrics in Grafana

	Developing web clients
	Using http.NewRequest() to improve the client
	Creating a client for the phone book service

	Creating file servers
	Downloading the contents of the phone book application

	Timing out HTTP connections
	Using SetDeadline()
	Setting the timeout period on the client side
	Setting the timeout period on the server side

	Exercises
	Summary
	Additional resources

	Chapter 9: Working with TCP/IP and WebSocket
	TCP/IP
	The nc(1) command-line utility

	The net package
	Developing a TCP client
	Developing a TCP client with net.Dial()
	Developing a TCP client that uses net.DialTCP()

	Developing a TCP server
	Developing a TCP server with net.Listen()
	Developing a TCP server that uses net.ListenTCP()

	Developing a UDP client
	Developing a UDP server
	Developing concurrent TCP servers
	Working with UNIX domain sockets
	A UNIX domain socket server
	A UNIX domain socket client

	Creating a WebSocket server
	The implementation of the server
	Using websocat
	Using JavaScript

	Creating a WebSocket client
	Exercises
	Summary
	Additional resources

	Chapter 10: Working with REST APIs
	An introduction to REST
	Developing RESTful servers and clients
	A RESTful server
	A RESTful client

	Creating a functional RESTful server
	The REST API
	Using gorilla/mux
	The use of subrouters
	Working with the database
	Testing the restdb package
	Implementing the RESTful server
	Testing the RESTful server
	Testing GET handlers
	Testing POST handlers
	Testing the PUT handler
	Testing the DELETE handler

	Creating a RESTful client
	Creating the structure of the command-line client
	Implementing the RESTful client commands
	Using the RESTful client
	Working with multiple REST API versions

	Uploading and downloading binary files
	Using Swagger for REST API documentation
	Documenting the REST API
	Generating the documentation file
	Serving the documentation file

	Exercises
	Summary
	Additional resources

	Chapter 11: Code Testing and Profiling
	Optimizing code
	Benchmarking code
	Rewriting the main() function for better testing
	Benchmarking buffered writing and reading
	The benchstat utility
	Wrongly defined benchmark functions

	Profiling code
	Profiling a command-line application
	Profiling an HTTP server
	The web interface of the Go profiler

	The go tool trace utility
	Tracing a web server from a client
	Visiting all routes of a web server

	Testing Go code
	Writing tests for ./ch03/intRE.go
	The TempDir function
	The Cleanup() function
	The testing/quick package
	Timing out tests
	Testing code coverage
	Finding unreachable Go code

	Testing an HTTP server with a database backend
	Fuzzing
	Cross-compilation
	Using go:generate
	Creating example functions
	Exercises
	Summary
	Additional resources

	Chapter 12: Working with gRPC
	Introduction to gRPC
	Protocol buffers

	Defining an interface definition language file
	Developing a gRPC server
	Developing a gRPC client
	Testing the gRPC server with the client

	Exercises
	Summary
	Additional resources

	Chapter 13: Go Generics
	Introducing generics
	Constraints
	Creating constraints

	Defining new data types with generics
	Using generics in Go structures

	Interfaces versus generics
	Reflection versus generics
	Exercises
	Summary
	Additional resources

	Appendix A – Go Garbage Collector
	Heap and stack
	Garbage collection
	The tricolor algorithm
	More about the operation of the Go garbage collector
	Maps, slices, and the Go garbage collector
	Using a slice
	Using a map with pointers
	Using a map without pointers
	Splitting the map

	Comparing the performance of the presented techniques

	Additional resources

	Packt Page
	Other Book You May Enjoy
	Index

