

Polished Ruby
Programming

Build better software with more intuitive,
maintainable, scalable, and high-performance
Ruby code

Jeremy Evans

BIRMINGHAM—MUMBAI

Polished Ruby Programming
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Aaron Lazar
Publishing Product Manager: Alok Dhuri
Senior Editor: Rohit Singh
Content Development Editor: Tiksha Lad
Technical Editor: Pradeep Sahu
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Shankar Kalbhor

First published: June 2021

Production reference: 2100821

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-272-4

www.packt.com

http://www.packt.com

To Allyson, Jaden, Ruby, Jennifer, and Veronica, who most shaped my life.

- Jeremy Evans

Contributors
About the author
Jeremy Evans is a Ruby committer who focuses on fixing bugs in Ruby, as well as
improving the implementation of Ruby. He is the maintainer of many popular Ruby
libraries, including the fastest web framework (Roda) and fastest database library (Sequel).
His libraries are known not just for their performance, but also for their code quality,
understandability, documentation, and how quickly any bugs found are fixed. For his
contributions to Ruby and the Ruby community, he has received multiple awards, such
as receiving the prestigious RubyPrize in 2020 and being chosen as a Ruby Hero in 2015.
He has given presentations at over 20 Ruby conferences. In addition to working on Ruby,
he is also a committer for the OpenBSD operating system.

I would like to thank the editors, technical reviewers, and other Packt staff
for their help in creating this book. I would especially like to thank Janko

Marohnić for his reviews and recommendations, which resulted in so many
improvements to this book.

About the reviewers
Jagdish Narayandasani has more than 14 years of experience in software development
and almost a decade of experience in working on Ruby on Rails. He is currently working
as a Technology Specialist with a New York-based Fintech firm. He often contributes as a
echnical reviewer for technical books. He has worked on a variety of technologies, such as
Java, Ruby, Elixir, and the AWS cloud for different companies. He has worked in various
industries, such as finance, retail, healthcare, and wealth management. At the moment, he
is trying his hand at blockchain technology. In his free time, he loves to spend time with
his family, explore new places, and try new food.

Janko Marohnić is a seasoned Ruby developer with big love for open source. He has
authored many Ruby libraries, spoken at conferences, and writes on his blog about his
discoveries in the Ruby ecosystem (most of them are libraries created or maintained by
the author of this book). He values well-tested code, separation of responsibilities, and
doing more with less. Outside of programming, Janko enjoys dancing, acrobatic activities,
and playing the piano.

Table of Contents
Preface

Section 1:
Fundamental Ruby Programming Principles

1
Getting the Most out of Core Classes

Technical requirements � 4
Learning when to use core
classes � 4
Best uses for true, false, and nil
objects � 5
Different numeric types for
different needs � 8
Understanding how symbols
differ from strings � 12

Learning how best to use
arrays, hashes, and sets � 16
Implementing an in-memory database � 16

Working with Struct – one of
the underappreciated core
classes � 21
Summary � 24
Questions � 24
Further reading � 24

2
Designing Useful Custom Classes

Technical requirements � 26
Learning when to create a
custom class � 26
Handling trade-offs in SOLID
design � 29
The single-responsibility principle � 29
The open-closed principle � 32

The Liskov substitution principle � 35
The interface segregation principle � 38
The dependency inversion principle � 38

Deciding on larger classes or
more classes � 42

ii Table of Contents

Learning when to use custom
data structures � 46

Summary � 48
Questions � 48

3
Proper Variable Usage

Technical requirements � 50
Using Ruby's favorite variable
type – the local variable � 50
Increasing performance by adding
local variables � 50
Avoiding unsafe optimizations � 55
Handling scope gate issues � 57
Naming considerations with local
variables � 61

Learning how best to use
instance variables � 65
Increasing performance with instance
variables � 66
Handling scope issues with instance
variables � 71
Naming considerations for instance
variables � 73

Understanding how constants
are just a type of variable � 74
Handling scope issues with constants � 75
Visibility differences between
constants and class instance variables � 79
Naming considerations with constants � 80

Replacing class variables � 81
Replacing class variables with constants � 84
Replacing class variables with class
instance variables using the superclass
lookup approach � 86
Replacing class variables with class
instance variables using the copy to
subclass approach � 88

Avoiding global variables, most
of the time � 89
Summary � 92
Questions � 92
Further reading � 92

4
Methods and Their Arguments

Technical requirements � 94
Understanding that there are
no class methods, only instance
methods � 94
Naming methods � 98
Special method names � 99

Using the many types of
method arguments � 100
Positional arguments � 101
Optional positional arguments � 105
Rest arguments � 108
Keyword arguments � 112
Block arguments � 123

Table of Contents iii

Learning about the importance
of method visibility � 129
Fixing visibility mistakes � 131

Handling delegation � 133

Delegating to other objects � 135

Summary � 138
Questions � 138

5
Handling Errors

Technical requirements � 140
Handling errors with return
values � 140
Handling errors with exceptions
� 145
Considering performance when using
exceptions � 149

Retrying transient errors � 151

Understanding more advanced
retrying � 156
Breaking circuits � 159

Designing exception class
hierarchies � 161
Using core exception classes � 164

Summary � 165
Questions � 165

6
Formatting Code for Easy Reading

Technical requirements � 168
Recognizing different
perspectives of code formatting
� 168
Learning how syntactic
consistency affects
maintainability � 170
Enforcing consistency with RuboCop � 172

Understanding the
consequences of using
arbitrary limits � 173
Checking basic code formatting
with Ruby � 177
Realizing the actual importance
of code formatting � 179
Summary � 179
Questions � 180

iv Table of Contents

Section 2:
Ruby Library Programming Principles

7
Designing Your Library

Technical requirements � 184
Focusing on the user
experience � 184
Library naming � 184
Library first impressions � 186
The simplest possible interface � 186

Determining the appropriate
size for your library � 189
Handling complexity trade-offs
during method design � 191
Fewer but more complex methods � 196

Summary � 201
Questions � 201

8
Designing for Extensibility

Technical requirements � 203
Using Ruby's extensibility
features � 204
Designing plugin systems � 207
Designing a basic plugin system � 209
Handling changes to classes � 214
Plugin modifications to classes � 216
Supporting plugin dependencies � 218

Making plugin loading easier � 219
Handling subclasses in plugin systems � 221
Configuring plugins � 224

Understanding globally frozen,
locally mutable design � 227
Summary � 230
Questions � 230

9
Metaprogramming and When to Use It

Technical requirements � 232
Learning the pros and cons of
abstraction � 232
Eliminating redundancy � 236
Understanding different ways
of metaprogramming methods � 241

Using method_missing
judiciously � 246
Summary � 249
Questions � 249

Table of Contents v

10
Designing Useful Domain-Specific Languages

Technical requirements � 252
Designing your DSL � 252
Configuration DSLs � 252
DSLs for making specific changes � 254
DSLs for reducing the verbosity
of code � 256

Libraries implemented as DSLs � 257

Implementing your DSL � 259
Learning when to use a DSL � 263
Summary � 265
Questions � 265

11
Testing to Ensure Your Code Works

Technical requirements � 268
Understanding why testing is so
critical
in Ruby � 268
Learning different approaches
to testing � 270
Considering test complexity � 276

Understanding the many levels
of testing � 278
Realizing that 100% coverage
means nothing � 281
Summary � 283
Questions � 283

12
Handling Change

Technical requirements � 286
Considering reasons to refactor
� 286
Learning about the refactoring
process � 287
Implementing the most
common Ruby refactoring
techniques � 289
Extracting a method � 289

Extracting a class � 293

Refactoring to add features � 300
Removing features properly � 302
Removing methods � 302
Removing constants � 304

Summary � 305
Questions � 306

vi Table of Contents

13
Using Common Design Patterns

Technical requirements � 308
Learning about the many
design patterns that are built
into Ruby � 308
The object pool design pattern � 308
The prototype design pattern � 309
The private class data design pattern � 310
The proxy design pattern � 312

Handling cases where there can
be only one � 313
Dealing with nothing � 315
Visiting objects � 325
Adapting and strategizing � 329
Summary � 333
Questions � 333

14
Optimizing Your Library

Technical requirements � 336
Understanding that you
probably don't need to
optimize code � 336
Profiling first, optimizing
second � 337

Understanding that no code is
faster than no code � 344
Handling code where
everything is slow � 349
Summary � 352
Questions � 352

Section 3:
Ruby Web Programming Principles

15
The Database Is Key

Technical requirements � 356
Learning why database design
is so important � 356
Deciding on a database to use � 357
Understanding the most
important database design
principles � 358

Considerations when denormalizing
your database design � 358
Other database design principles � 359

Treating the database as not
just dumb storage � 360
Choosing the model layer � 362

Table of Contents vii

Handling database and
model errors � 363
Summary � 365

Further reading � 365
Questions � 366

16
Web Application Design Principles

Technical requirements � 368
Choosing between client-side
and server-side design � 368
Deciding on a web framework � 370
Ruby on Rails � 370
Sinatra � 371
Grape � 372

Roda � 372

Designing URL paths � 373
Structuring with monoliths,
microservices, and island
chains � 376
Summary � 378
Questions � 378

17
Robust Web Application Security

Technical requirements � 380
Understanding that most
security issues in Ruby web
applications are high level � 380
Never trust input � 381
Performing access control at
the highest level possible � 384
Avoiding injection � 387
Script injection � 387
SQL injection � 389

Code injection � 390

Approaching high-security
environments � 391
Limiting database access � 391
Internal firewalling � 392
Randomizing memory layouts � 392
Limiting filesystem access � 393
Limiting system call access � 394

Summary � 396
Questions � 396

Assessments
Other Books You May Enjoy
Index

Preface
The purpose of this book is to teach useful principles for intermediate to advanced Ruby
programmers to follow. The focus is not generally on how to implement solutions, but
on different implementation approaches, the trade-offs between them, and why some
approaches are better in certain situations. While the main focus of the book is teaching
principles, in some cases this book also teaches advanced Ruby programming techniques.

This book starts by teaching some fundamental principles, such as how best to use
the core classes, when and how best to use each variable type, and how best to use the
different types of method arguments. After building on the fundamental principles, the
book teaches principles for better library design, such as how best to design extensible
plugin systems, trade-offs when using metaprogramming and DSLs, and how best to
approach testing, refactoring, and optimization. This book concludes with a few small
chapters that are focused on principles specific to web programming in Ruby, with a
separate chapter each on database design, application design, and web application security.

Who this book is for
The target audience for the book is intermediate to advanced Ruby programmers who are
interested in learning principles to improve their Ruby programming.

What this book covers
Chapter 1, Getting the Most out of Core Classes, focuses on the optimal usage of the
built-in classes.

Chapter 2, Designing Useful Custom Classes, focuses on when it makes sense to implement
a custom class, applying SOLID design to custom classes, and the trade-offs between
having large classes and having a large number of classes.

Chapter 3, Proper Variable Usage, focuses on how best to use each of Ruby's variable types.

Chapter 4, Methods and Their Arguments, focuses on method naming principles, the best
usage of each of the method argument types, and choosing proper method visibility.

x Preface

Chapter 5, Handling Errors, focuses on the trade-offs between using exceptions and
return values for handling errors, handling transient errors, and designing exception class
hierarchies.

Chapter 6, Formatting Code for Easy Reading, focuses on different viewpoints on the
importance of syntactic complexity and the downsides of arbitrary limits.

Chapter 7, Designing Your Library, focuses on designing your library around the user
experience and complexity trade-offs when designing methods for your library.

Chapter 8, Designing for Extensibility, focuses on designing useful plugin systems to allow
for extensibility in libraries.

Chapter 9, Metaprogramming and When to Use It, focuses on the pros and cons of
abstraction, avoiding redundancy, and trade-offs between the two approaches Ruby has
for metaprogramming.

Chapter 10, Designing Useful Domain-Specific Languages, focuses on when and how best
to design DSLs.

Chapter 11, Testing to Ensure Your Code Works, focuses on why testing is so important,
how to approach testing and manage complexity during testing, and the importance of
code coverage.

Chapter 12, Handling Change, focuses on when and how best to implement refactoring
in libraries, and deprecation strategies.

Chapter 13, Using Common Design Patterns, focuses on principles for the best usage of five
common design patterns.

Chapter 14, Optimizing Your Library, focuses on determining when optimization is needed
and how to approach optimization if it is needed.

Chapter 15, The Database Is Key, focuses on why database design is so important in web
programming, how best to use database features, and how best to handle database errors.

Chapter 16, Web Application Design Principles, focuses on trade-offs for different types of
application design, different frameworks, and different URL designs.

Chapter 17, Robust Web Application Security, focuses on important web security
techniques and how to approach designing web applications for high-security
environments.

Preface xi

To get the most out of this book
This book assumes intermediate to advanced knowledge of the Ruby programming
language. There are sections of the book that are accessible to those with only basic
knowledge of Ruby, but most of the book assumes you already understand how Ruby
works and tries to teach principles for more productive usage of Ruby.

While most of the ideas and principles discussed in the book, and most of the code examples
used in the book, apply to any version of Ruby, some of the examples and principles are
specific to Ruby 3.0, the latest release at the time of publication.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Polished-Ruby-Programming. In case there's
an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "As an example of this, consider a SQL database library that needs
to execute INSERT, UPDATE, and DELETE SQL queries to modify data."

https://github.com/PacktPublishing/Polished-Ruby-Programming
https://github.com/PacktPublishing/Polished-Ruby-Programming
https://github.com/PacktPublishing/

xii Preface

A block of code is set as follows:

class Foo

 def self.bar

 :baz

 end

end

Any command-line input or output is written as follows:

Warming up --------------------------------------

MultiplyProf 28.531k i/100ms

Calculating -------------------------------------

MultiplyProf 284.095k (± 0.3%) i/s

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com

Preface xiii

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://packt.com

Section 1:
Fundamental Ruby

Programming
Principles

The objective of this section is for you to understand the fundamental principles and
trade-offs involved in Ruby programming, at the level of individual classes and methods.

This section comprises the following chapters:

•	 Chapter 1, Getting the Most out of Core Classes

•	 Chapter 2, Designing Useful Custom Classes

•	 Chapter 3, Proper Variable Usage

•	 Chapter 4, Methods and Their Arguments

•	 Chapter 5, Handling Errors

•	 Chapter 6, Formatting Code for Easy Reading

1
Getting the Most out

of Core Classes
Ruby is shipped with a rich library of core classes. Almost all Ruby programmers are
familiar with the most common core classes, and one of the easiest ways to make your
code intuitive to most Ruby programmers is to use these classes.

In the rest of this chapter, you'll learn more about commonly encountered core classes,
as well as principles for how to best use each class. We will cover the following topics:

•	 Learning when to use core classes

•	 Best uses for true, false, and nil objects

•	 Different numeric types for different needs

•	 Understanding how symbols differ from strings

•	 Learning how best to use arrays, hashes, and sets

•	 Working with Struct – one of the underappreciated core classes

By the end of this chapter, you'll have a better understanding of many of Ruby's core
classes, and how best to use each of them.

4 Getting the Most out of Core Classes

Technical requirements
In this chapter and all chapters of this book, code given in code blocks is designed
to execute on Ruby 3.0. Many of the code examples will work on earlier versions of
Ruby, but not all. You will find the code files on GitHub at https://github.com/
PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter01.

Learning when to use core classes
Let's consider the following Ruby code:

things = ["foo", "bar", "baz"]

things.each do |thing|

 puts thing

end

If you have come across this code, then you probably have an immediate understanding of
what the code does. However, let's say you come across the following Ruby code:

things = ThingList.new("foo", "bar", " baz")

things.each do |thing|

 puts thing

end

You can probably guess what it does, but to be sure, you need to know about the
ThingList class and how it is implemented. What does ThingList.new do?
Does it use its arguments directly or does it wrap them in other objects? What does
the ThingList#each method yield? Does it yield the same objects passed into
the constructor, or other objects? When you come across code like this, your initial
assumption may be that it would yield other objects and not the objects passed into the
constructor, because why else would you have a class that duplicates the core Array class?

A good general principle is to only create custom classes when the benefits outweigh the
costs. When deciding whether to use a core class or a custom class, you should understand
the trade-off you are making. With core classes, your code is often more intuitive, and
in general will perform better, since using core classes directly results in less indirection.
With custom classes, you are able to encapsulate your logic, which can lead to more
maintainable code in the long term, if you have to make changes. In many cases, you won't
have to make changes in the future, and the benefits of encapsulation are not greater than
the loss of intuition and performance. If you aren't sure whether to use a custom class
or a core class, a good general principle is to start with the use of core classes, and only
add a custom class when you see a clear advantage in doing so.

https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter01
https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter01

Best uses for true, false, and nil objects 5

Best uses for true, false, and nil objects
The simplest Ruby objects are true and false. In general, if true and false will meet
your needs, you should use them. true and false are the easiest objects to understand.

There are a few cases where you will want to return true or false and not other objects.
Most Ruby methods ending with ? should return true or false. In general, the Ruby
core methods use the following approach:

1.kind_of?(Integer)

=> true

Similarly, equality and inequality operator methods should return true or false:

1 > 2

=> false

1 == 1

=> true

A basic principle when writing Ruby is to use true or false whenever they will meet
your needs, and only reach for more complex objects in other cases.

The nil object is conceptually more complex than either true or false. As a concept,
nil represents the absence of information. nil should be used whenever there is no
information available, or when something requested cannot be found. Ruby's core classes
use nil extensively to convey the absence of information:

[].first

=> nil

{1=>2}[3]

=> nil

While true is the opposite of false and false is the opposite of true, nil is sort of
the opposite of everything not true or false. This isn't literally true in Ruby, because
NilClass#! returns true and BasicObject#! returns false:

!nil

=> true

6 Getting the Most out of Core Classes

!1

=> false

However, nil being the opposite of everything not true or false is true conceptually.
In general, if you have a Ruby method that returns true in a successful case, it should
return false in the unsuccessful case. If you have a Ruby method that returns an object
that is not true or false in a successful case, it should return nil in the unsuccessful
case (or raise an exception, but that's a discussion for Chapter 5, Handling Errors).

Ruby's core classes also use nil as a signal that a method that modifies the receiver did
not make a modification:

"a".gsub!('b', '')

=> nil

[2, 4, 6].select!(&:even?)# => nil

["a", "b", "c"].reject!(&:empty?)# => nil

The reason for this behavior is optimization, so if you only want to run code if the method
modified the object, you can use a conditional:

string = "..."

if string.gsub!('a', 'b')

 # string was modified

end

The trade-off here is that you can no longer use these methods in method chaining, so the
following code doesn't work:

string.

 gsub!('a', 'b').

 downcase!

Because gsub! can return nil, if the string doesn't contain "a", then it calls nil.
downcase!, which raises a NoMethodError exception. So, Ruby chooses a trade-off
that allows higher performance but sacrifices the ability to safely method chain. If you
want to safely method chain, you need to use methods that return new objects, which are
going to be slower as they allocate additional objects that need to be garbage collected.
When you design your own methods, you'll also have to make similar decisions, which
you will learn more about in Chapter 4, Methods and Their Arguments.

Best uses for true, false, and nil objects 7

One of the issues you should be aware of when using nil and false in Ruby is that you
cannot use the simple approach of using the ||= operator for memoization. In most cases,
if you can cache the result of an expression, you can use the following approach:

@cached_value ||= some_expression

or

cache[:key] ||= some_expression

This works for most Ruby objects because the default value of @cached_value will
be nil, and as long as some_expression returns a value that is not nil or false,
it will only be called once. However, if some_expression returns a nil or false
value, it will continue to be called until it returns a value that is not nil or false, which
is unlikely to be the intended behavior. When you want to cache an expression that
may return nil or false as a valid value, you need to use a different implementation
approach.

If you are using a single instance variable for the cached value, it is simplest to switch to
using defined?, although it does result in more verbose code:

if defined?(@cached_value)

 @cached_value

else

 @cached_value = some_expression

end

If you are using a hash to store multiple cached values, it is simplest to switch to using
fetch with a block:

 cache.fetch(:key){cache[:key] = some_expression}

One advantage of using true, false, and nil compared to most other objects in Ruby
is that they are three of the immediate object types. Immediate objects in Ruby are objects
that do not require memory allocation to create and memory indirection to access, and as
such they are generally faster than non-immediate objects.

In this section, you learned about the simplest objects, true, false, and nil. In the
next section, you'll learn about how best to use each of Ruby's numeric types.

8 Getting the Most out of Core Classes

Different numeric types for different needs
Ruby has multiple core numeric types, such as integers, floats, rationals, and BigDecimal,
with integers being the simplest type. As a general principle when programming, it's best
if you keep your design as simple as possible, and only add complexity when necessary.
Applying the principle to Ruby, if you need to choose a numeric type, you should
generally use an integer unless you need to deal with fractional numbers.

Note that while this chapter is supposed to discuss core classes, BigDecimal is not a core
class, though it is commonly used. BigDecimal is in the standard library, and you need to
add require 'bigdecimal' to your code before you can use it.

Integers are the simplest numeric types, but they are surprisingly powerful in Ruby
compared to many other programming languages. One example of this is executing
a block of code a certain number of times. In many other languages, this is either done
with the equivalent of a for loop or using a range, but in Ruby, it is as simple as calling
Integer#times:

10.times do

 # executed 10 times

end

One thing that trips up many new Ruby programmers is how division works when both
the receiver and the argument are integers. Ruby is similar to C in how integer division
is handled, returning only the quotient and dropping any remainder:

5 / 10

=> 0

7 / 3

=> 2

Any time you are considering using division in your code and both arguments could
be integers, be aware of this issue and consider whether you would like to use integer
division. If not, you should convert the numerator or denominator to a different numeric
type so that the division operation will include the remainder:

5 / 10r # or Rational(5, 10) or 5 / 10.to_r

=> (1/2)

7.0 / 3

=> 2.3333333333333335

Different numeric types for different needs 9

In cases where your numeric type needs to include a fractional component, you have three
main choices, floats, rationals, or BigDecimal, each with its own trade-offs. Floats are
fastest but not exact in many cases, as shown in the earlier example. Rationals are exact
but not as fast. BigDecimal is exact in most cases, and most useful when dealing with
a fixed precision, such as two digits after the decimal point, but is generally the slowest.

Floats are the fastest and most common fractional numeric type, and they are the type
Ruby uses for literal values such as 1.2. In most cases, it is fine to use a float, but you
should make sure you understand that they are not an exact type. Repeated calculations
on float values result in observable issues:

f = 1.1

v = 0.0

1000.times do

 v += f

end

v

=> 1100.0000000000086

Where did the .0000000000086 come from? This is the error in the calculation that
accumulates because each Float#+ calculation is inexact. Note that this issue does not
affect all floats:

f = 1.109375

v = 0.0

1000.times do

 v += f

end

v

=> 1109.375

This is slightly counter-intuitive to many programmers, because 1.1 looks like a much
simpler number than 1.109375. The reason for this is due to the implementation of
floats and the fact that computers operate in binary and not in decimal, and 0.109375
can be stored exactly in binary (it is 7/64ths of 1), but 1.1 cannot be stored exactly in
binary.

10 Getting the Most out of Core Classes

Rationals are slower than floats, but since they are exact numbers, you don't need to worry
about calculations introducing errors. Here's the first example using the r suffix to the
number so that Ruby parses the number as a rational:

f = 1.1r

v = 0.0r

1000.times do

 v += f

end

v

=> (1100/1)

Here, we get 1100 exactly as a rational, showing there is no error. Let's use the same
approach with the second example:

f = 1.109375r

v = 0.0r

1000.times do

 v += f

end

v

=> (8875/8)

v.to_f

=> 1109.375

As shown in the previous example, rationals are stored as an integer numerator and
denominator, and inspecting the output reflects that. This can make debugging with
them a little cumbersome, as you often need to convert them to floats for human-friendly
decimal output.

While rationals are slower than floats, they are not orders of magnitude slower. They are
about 2-6 times slower depending on what calculations you are doing. So, do not avoid
the use of rationals on a performance basis unless you have profiled them and determined
they are a bottleneck (you'll learn about that in Chapter 14, Optimizing Your Library).

A good general principle is to use a rational whenever you need to do calculations with
non-integer values and you need exact answers. For cases where exactness isn't important,
or you are only doing comparisons between numbers and not calculations that result in an
accumulated error, it is probably better to use floats.

Different numeric types for different needs 11

BigDecimal is similar to rationals in that it is an exact type in most cases, but it is not
exact when dealing with divisions that result in a repeating decimal:

v = BigDecimal(1)/3

v * 3

=> 0.999999999999999999e0

However, other than divisions involving repeating decimals and exponentiation,
BigDecimal values are exact. Let's take the first example, but make both arguments
BigDecimal instances:

f = BigDecimal(1.1, 2)

v = BigDecimal(0)

1000.times do

 v += f

end

v

=> 0.11e4

v.to_s('F')

=> "1100.0"

So, as you can see, no error is introduced when using repeated addition on BigDecimal,
similar to rationals. You can also see that inspecting the output is less helpful since
BigDecimal uses a scientific notation. BigDecimal does have the advantage that it can
produce human-friendly decimal string output directly without converting the object
to a float first.

If we try the same approach with the second example, we can see that it also produces
exact results:

f = BigDecimal(1.109375, 7)

v = BigDecimal(0)

1000.times do

 v += f

end

v

=> 0.1109375e4

v.to_s('F')

=> "1109.375"

12 Getting the Most out of Core Classes

As both examples show, one issue with using a BigDecimal that is created from floats
or rationals is that you need to manually specify the initial precision. It is more common
to initialize BigDecimal values from integers or strings, to avoid the need to manually
specify the precision.

BigDecimal is significantly slower than floats and rationals for calculations. Due to the
trade-offs inherent in BigDecimal, a good general principle is to use BigDecimal only
when dealing with other systems that support similar types, such as fixed precision
numeric types in many databases, or when dealing with other fixed precision areas such as
monetary calculations. For most other cases, it's generally better to use a rational or float.

Of the numeric types, most integer and float values are immediate objects, which is one
of the reasons why they are faster than other types. However, large integer and float values
are too large to be immediate objects (which must fit in 8 bytes if using a 64-bit CPU).
Rationals and BigDecimal are never immediate objects, which is one reason why they are
slower.

In this section, you learned about Ruby's many numeric types and how best to use each.
In the next section, you'll learn how symbols are very different from strings, and when
to use each.

Understanding how symbols differ from
strings
One of the most useful but misunderstood aspects of Ruby is the difference between
symbols and strings. One reason for this is there are certain methods of Ruby that
deal with symbols, but will still accept strings, or perform string-like operations on
a symbol. Another reason is due to the popularity of Rails and its pervasive use of
ActiveSupport::HashWithIndifferentAccess, which allows you to use either
a string or a symbol for accessing the same data. However, symbols and strings are very
different internally, and serve completely different purposes. However, Ruby is focused
on programmer happiness and productivity, so it will often automatically convert a string
to a symbol if it needs a symbol, or a symbol to a string if it needs a string.

A string in Ruby is a series of characters or bytes, useful for storing text or binary data.
Unless the string is frozen, you append to it, modify existing characters in it, or replace
it with a different string.

Understanding how symbols differ from strings 13

A symbol in Ruby is a number with an attached identifier that is a series of characters
or bytes. Symbols in Ruby are an object wrapper for an internal type that Ruby calls
ID, which is an integer type. When you use a symbol in Ruby code, Ruby looks up the
number associated with that identifier. The reason for having an ID type internally is that
it is much faster for computers to deal with integers instead of a series of characters or
bytes. Ruby uses ID values to reference local variables, instance variables, class variables,
constants, and method names.

Say you run Ruby code as follows:

foo.add(bar)

Ruby will parse this code, and for foo, add, and bar, it will look up whether it already
has an ID associated with the identifier. If it already has an ID, it will use it; otherwise,
it will create a new ID value and associate it with the identifier. This happens during
parsing and the ID values are hardcoded into the VM instructions.

Say you run Ruby code as follows:

method = :add

foo.send(method, bar)

Ruby will parse this code, and for method, add, foo, send, and bar, Ruby will also look
up whether it already has an ID associated with the identifier, or create a new ID value to
associate with the identifier if it does not exist. This approach is slightly slower as Ruby
will create a local variable and there is additional indirection as send has to look up the
method to call dynamically. However, there are no calls at runtime to look up an ID value.

Say you run Ruby code as follows:

method = "add"

foo.send(method, bar)

Ruby will parse this code, and for method, foo, send, and bar, Ruby will also look
up whether it already has an ID associated with the identifier, also creating the ID if it
doesn't exist. However, during parsing, Ruby does not create an ID value for add because
it is a string and not a symbol. However, when send is called at runtime, method is
a string value, and send needs a symbol. So, Ruby will dynamically look up and see
whether there is an ID associated with the add identifier, raising a NoMethodError if it
does not exist. This ID lookup will happen every time the send method is called, making
this code even slower.

14 Getting the Most out of Core Classes

So, while it looks like symbols and strings are as interchangable as the method argument
to send, this is only because Ruby tries to be friendly to the programmer and accept
either. The send method needs to work with an ID, and it is better for performance to
use a symbol, which is Ruby's representation of an ID, as opposed to a string, which Ruby
must perform substantial work on to convert to an ID.

This not only affects Kernel#send but also affects most similar methods
where identifiers are passed dynamically, such as Module#define_method,
Kernel#instance_variable_get, and Module#const_get. The general
principle when using these methods in Ruby code is always to pass symbols to them,
since it results in better performance.

The previous examples show that when Ruby needs a symbol, it will often accept a string
and convert it for the programmer's convenience. This allows strings to be treated as
symbols in certain cases. There are opposite cases, where Ruby allows symbols to be
treated as strings for the programmer's convenience.

For example, while symbols represent integers attached to a series of characters or bytes,
Ruby allows you to perform operations on symbols such as <, >, and <=>, as if they
were strings, where the result does not depend on the symbol's integer value, but on the
string value of the name attached to the symbol. Again, this is Ruby doing so for the
programmer's convenience. For example, consider the following line of code:

object.methods.sort

This results in a list sorted by the name of the method, since that is the most useful for
the programmer. In this case, Ruby needs to operate on the string value of the symbol,
which has similar performance issues as when Ruby needs to convert a string to a symbol
internally.

There are many other methods on Symbol that operate on the internal string associated
with the symbol. Some methods, such as downcase, upcase, and capitalize,
return a symbol by internally operating on the string associated with the symbol, and
then converting the resulting value back to a symbol. For example, symbol.downcase
basically does symbol.to_s.downcase.to_sym. Other methods, such as [], size,
and match, operate on the string associated with the symbol, such as symbol.size
being shorthand for symbol.to_s.size.

In all of these cases, it is possible to determine what Ruby natively wants. If Ruby needs an
internal identifier, it will natively want a symbol, and only accept a string by converting it.
If Ruby needs to operate on text, it will natively want a string, and only accept a symbol by
converting it.

Understanding how symbols differ from strings 15

So, how does the difference between a symbol and string affect your code? The general
principle is to be like Ruby, and use symbols when you need an identifier in your code,
and strings when you need text or data. For example, if you need to accept a configuration
value that can only be one of three options, it's probably best to use a symbol:

def switch(value)

 case value

 when :foo

 # foo

 when :bar

 # bar

 when :baz

 # baz

 end

end

However, if you are dealing with text or data, you should accept a string and not a symbol:

def append2(value)

 value.gsub(/foo/, "bar")

end

You should consider whether you want to be as flexible as many Ruby core methods,
and automatically convert a string to a symbol or vice versa. If you are internally treating
symbols and strings differently, you should definitely not perform automatic conversion.
However, if you are only dealing with one of the types, then you have to decide how
to handle it. Automatically converting the type is worse for performance, and results
in less flexible internals, since you need to keep supporting both types for backward
compatibility. Not automatically converting the type is better for performance, and results
in more flexible internals, since you are not obligated to support both types. However,
it means that users of your code will probably get errors if they pass in a type that is not
expected. Therefore, it is important to understand the trade-off inherent in the decision
of whether to convert both types. If you aren't sure which trade-off is better, start by not
automatically converting, since you can always add automatic conversion later if needed.

In this section, you learned the important difference between symbols and strings, and
when it is best to use each. In the next section, you'll learn how best to use Ruby's core
collection classes.

16 Getting the Most out of Core Classes

Learning how best to use arrays, hashes, and
sets
Ruby's collection classes are one of the reasons why it is such a joy to program in Ruby.
In most cases, the choice of collection class to use is fairly straightforward. If you need
a simple list of values that you are iterating over, or using the collection as a queue or
a stack, you generally use an array. If you need a mapping of one or more objects to one
or more objects, then you generally use a hash. If you have a large list of objects and want
to see whether a given object is contained in it, you generally use a set.

In some cases, it's fine to use either an array or a hash. Often, when iterating over a small
list, you could use the array approach:

[[:foo, 1], [:bar, 3], [:baz, 7]].each do |sym, i|

 # ...

end

Or, you could use the hash approach:

{foo: 1, bar: 3, baz: 7}.each do |sym, i|

 # ...

end

Since you are not indexing into the collection, the simpler approach from a design
perspective is to use an array. However, because the hash approach is syntactically simpler,
the idiomatic way to handle this in Ruby is to use a hash.

For more complex mapping cases, you often want to use a hash, but you may need to
decide how to structure the hash. This is especially true when you are using complex keys.
Let's take a deeper look at the differences between arrays, hashes, and sets by working
through an example that implements an in-memory database.

Implementing an in-memory database
While many programmers often use a SQL database for data storage, there are many cases
when you need to build a small, in-memory database using arrays, hashes, and sets. Often,
even when you have the main data stored in a SQL database, it is faster to query the SQL
database to retrieve the information, and use that to build an in-memory database for
the specific class or method you are designing. This allows you to query the in-memory
database with similar speed as a hash or array lookup, orders of magnitude faster than
a SQL database query.

Learning how best to use arrays, hashes, and sets 17

Let's say you have a list of album names, track numbers, and artist names, where you can
have multiple artists for the same album and track. You want to design a simple lookup
system so that given an album name, you can find all artists who worked on any track
of the album, and given an album name and track number, you can find the artists who
worked on that particular track.

In the following examples, you should assume that album_infos is an arbitrary object
that has each method that yields the album name, track number, and artist. However, if
you would like to have some sample data to work with:

album_infos = 100.times.flat_map do |i|

 10.times.map do |j|

 ["Album #{i}", j, "Artist #{j}"]

 end

end

One approach for handling this is to populate two hashes, one keyed by album name, and
one keyed by an array of the album name and track number. Populating these two hashes
is straightforward, by setting the value for the key to an empty array if the key doesn't
exist, and then appending the artist name. Then you need to make sure the artist values
are unique for the hash keyed just by album name:

album_artists = {}

album_track_artists = {}

album_infos.each do |album, track, artist|

 (album_artists[album] ||= []) << artist

 (album_track_artists[[album, track]] ||= []) << artist

end

album_artists.each_value(&:uniq!)

With this approach, looking up values is fairly straightforward, and just involves looking
in the appropriate hash with the appropriate key:

lookup = ->(album, track=nil) do

 if track

 album_track_artists[[album, track]]

 else

 album_artists[album]

 end

end

18 Getting the Most out of Core Classes

An alternative approach would be to use a nested hash approach, with each album having
a hash of tracks:

albums = {}

album_infos.each do |album, track, artist|

 ((albums[album] ||= {})[track] ||= []) << artist

end

With this approach, looking up values is more complex, especially in the case where
a track number is not provided, and you have to dynamically create the list:

lookup = ->(album, track=nil) do

 if track

 albums.dig(album, track)

 else

 a = albums[album].each_value.to_a

 a.flatten!

 a.uniq!

 a

 end

end

In general, the first approach using multiple hashes is going to take significantly more
memory than the second approach if there is a large number of albums, but it will have
a much better lookup performance for albums. The first approach will also take much
more time to populate the data structure. The second approach is much lighter on
memory and has better lookup performance for albums with tracks as it avoids an array
allocation, but will exhibit a far more inferior performance for albums.

Each of these approaches does not depend on the types of objects that album_infos.
each yields. You probably made the reasonable assumption that album and artist
would be strings, and track would be a number. Let's say you knew in advance that the
track number was an integer between 1 and 99. You could use that information to design
a different approach. You could still have a single of hash keyed by album name, with
a value being an array containing arrays of artist names for each track. Since tracks only
go from 1 to 99, you could use the 0 index in the array to store all artist names for the
album. Populating this combination of hash and array of arrays isn't too difficult:

albums = {}

album_infos.each do |album, track, artist|

 album_array = albums[album] ||= [[]]

Learning how best to use arrays, hashes, and sets 19

 album_array[0] << artist

 (album_array[track] ||= []) << artist

end

albums.each_value do |array|

 array[0].uniq!

end

This approach is more memory-efficient than either of the previous approaches, and
looking up values is very simple and never allocates an object:

lookup = ->(album, track=0) do

 albums.dig(album, track)

end

Compared to the previous two approaches, this approach uses about the same amount
of memory as the nested hash approach. It takes slightly more time to populate compared
to the nested hash approach. It is almost as fast as the two hash approach in terms of
lookup performance for albums, and is the fastest approach for lookup performance by
albums with tracks.

Maybe the needs of your application change, and now you need a feature that allows users
to enter a list of artist names, and will return an array with only the artist names that the
application knows are on one of the albums. One way to handle this is to store the artists
in an array:

album_artists = album_infos.flat_map(&:last)

album_artists.uniq!

The lookup can use an array intersection to determine the values:

lookup = ->(artists) do

 album_artists & artists

end

The problem with this approach is that Array#& uses a linear search of the array, so this
approach is very slow for a large number of artists.

20 Getting the Most out of Core Classes

A better performing approach would use a hash, keyed by the artist name:

album_artists = {}

album_infos.each do |_, _, artist|

 album_artists[artist] ||= true

end

The lookup can use the hash to filter the values in the submitted array:

lookup = ->(artists) do

 artists.select do |artist|

 album_artists[artist]

 end

end

This approach performs much better. The code isn't as simple, though it isn't too bad.
However, it would be nicer to have simpler code that performed as well. Thankfully, the
Ruby Set class can meet this need. Like BigDecimal, Set is not currently a core Ruby
class. Set is in the standard library, and you can load it via require 'set'. However,
Set may be moved from the standard library to a core class in a future version of Ruby.
Using a set is pretty much as simple as using an array in terms of populating the data
structure:

album_artists = Set.new(album_infos.flat_map(&:last))

You don't need to manually make the array unique, because the set automatically ignores
duplicate values. The lookup code can stay exactly the same as the array case:

lookup = ->(artists) do

 album_artists & artists

end

Of the three approaches, the hash approach is the fastest to populate and the fastest to
look up. The Set approach is much faster to look up than the array approach, but still
significantly slower than hash. Set is actually implemented using a hash internally, so
in general, it will perform worse than using a hash directly. As a general rule, you should
only use a set for code that isn't performance-sensitive and you would like to use a nicer
API. For any performance-sensitive code, you should prefer using a hash directly.

Working with Struct – one of the underappreciated core classes 21

In this section, you learned about Ruby's core collection of classes, arrays, hashes, and
sets. In the next section, you'll learn about Struct, one of Ruby's underappreciated core
classes.

Working with Struct – one of the
underappreciated core classes
The Struct class is one of the underappreciated Ruby core classes. It allows you to create
classes with one or more fields, with accessors automatically created for each field. So, say
you have the following:

class Artist

 attr_accessor :name, :albums

 def initialize(name, albums)

 @name = name

 @albums = albums

 end

end

Instead of that, you can write a small amount of Ruby code, and have the initializer and
accessor automatically created:

Artist = Struct.new(:name, :albums)

In general, a Struct class is a little lighter on memory than a regular class, but has
slower accessor methods. Struct used to be faster in terms of both initialization and
reader methods in older versions of Ruby, but regular classes and attr_accessor
methods have gotten faster at a greater rate than Struct has. Therefore, for maximum
performance, you may want to consider using regular classes and attr_accessor
methods instead of Struct classes.

One of the more interesting aspects of Struct is how it works internally. For example,
unlike the new method for most other classes, Struct.new does not return a Struct
instance; it returns a Struct subclass:

Struct.new(:a, :b).class

=> Class

22 Getting the Most out of Core Classes

However, the new method on the subclass creates instances of the subclass; it doesn't
create future subclasses. Additionally, if you provide a string and not a symbol as the first
argument, Struct will automatically create the class using that name nested under its
own namespace:

Struct.new('A', :a, :b).new(1, 2).class

=> Struct::A

A simplified version of the default Struct.new method is similar to the following.
This example is a bit larger, so we'll break it into sections. If a string is given as the first
argument, it is used to set the class in the namespace of the receiver; otherwise, it is added
to the list of fields:

def Struct.new(name, *fields)

 unless name.is_a?(String)

 fields.unshift(name)

 name = nil

 end

Next, a subclass is created. If a class name was given, it is set as a constant in the current
namespace:

 subclass = Class.new(self)

 if name

 const_set(name, subclass)

 end

Then, some internal code is run to set up the storage for the members of the subclass.
Then, the new, allocate, [], members, and inspect singleton methods are defined
on the subclass. Finally, some internal code is run to set up accessor instance methods for
each member of the subclass:

 # Internal magic to setup fields/storage for subclass

 def subclass.new(*values)

 obj = allocate

 obj.initialize(*values)

 obj

 end

Working with Struct – one of the underappreciated core classes 23

 # Similar for allocate, [], members, inspect

 # Internal magic to setup accessor instance methods

 subclass

end

Interestingly, you can still create Struct subclasses the normal way:

class SubStruct < Struct

end

Struct subclasses created via the normal way operate like Struct itself, not like
Struct subclasses created via Struct.new. You can then call new on the Struct
subclass to create a subclass of that subclass, but the setup is similar to a Struct subclass
created via Struct.new:

SubStruct.new('A', :a, :b).new(1, 2).class

=> SubStruct::A

In general, Struct is good for creating simple classes that are designed for storing
data. One issue with Struct is that the design encourages the use of mutable data and
discourages a functional approach, by defaulting to creating setter methods for every
member. However, it is possible to easily force the use of immutable structs by freezing the
object in initialize:

A = Struct.new(:a, :b) do

 def initialize(...)

 super

 freeze

 end

end

There have been feature requests submitted on the Ruby issue tracker to create immutable
Struct subclasses using a keyword argument to Struct.new or via the addition of
a separate Struct::Value class. However, as of Ruby 3, neither feature request has
been accepted. It is possible that a future version of Ruby will include them, but in the
meantime, freezing the receiver in initialize is the best approach.

24 Getting the Most out of Core Classes

Summary
In this chapter, you've learned about the core classes. You've learned about issues with
true, false, and nil, and how best to use Ruby's numeric types. You've learned why
the difference between symbols and strings is important. You've learned how best to use
arrays, hashes, and sets, and when it makes sense to use your own custom structs.

In the next chapter, you'll build on this knowledge of the core classes and learn about
constructing your own custom classes.

Questions
1.	 How are nil and false different from all other objects?

2.	 Are all standard arithmetic operations using two BigDecimal objects exact?

3.	 Would it make sense for Ruby to combine symbols and strings?

4.	 Which uses less memory for the same data-hash, or Set?

5.	 What are the only two core methods that return a new instance of Class?

Further reading
These books will also be applicable to all other chapters in this book, but are only listed in
this chapter to reduce duplication:

•	 Comprehensive Ruby Programming: https://www.packtpub.com/product/
comprehensive-ruby-programming/9781787280649

•	 The Ruby Workshop: https://www.packtpub.com/product/the-ruby-
workshop/9781838642365

https://www.packtpub.com/product/comprehensive-ruby-programming/9781787280649
https://www.packtpub.com/product/comprehensive-ruby-programming/9781787280649
https://www.packtpub.com/product/the-ruby-workshop/9781838642365
https://www.packtpub.com/product/the-ruby-workshop/9781838642365

2
Designing Useful

Custom Classes
In the previous chapter, you learned about how to get the most out of Ruby's core classes.
However, outside of small scripts, you'll probably want to create your own classes to
organize your code. How you design and structure your classes has a huge effect on how
intuitive and maintainable your code is. This chapter will help you learn when a new class
is a good idea, how to apply some important object-oriented design principles, how to
determine class size, and whether it is worthwhile to introduce a custom data structure.

In this chapter, you'll learn the following principles for designing custom classes:

•	 Learning when to create a custom class

•	 Handling trade-offs in SOLID design

•	 Deciding on larger classes or more classes

•	 Learning when to use custom data structures

By the end of this chapter, you'll have a better understanding of the principles of Ruby
class design and the trade-offs between different design approaches.

26 Designing Useful Custom Classes

Technical requirements
In this chapter and all the chapters of this book, code given in code blocks is designed
to execute on Ruby 3.0. Many of the code examples will work on earlier versions of
Ruby, but not all. You will find the code files on GitHub at https://github.com/
PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter02.

Learning when to create a custom class
One of the first questions you need to answer before creating a custom class should
probably be, "Do I really need to create a custom class?" Object-oriented design often
involves creating classes for each separate type of object. Functional design does away with
classes completely, instead having functions that operate on immutable data structures.
Procedural design is similar to functional design, but generally involves functions that
operate on mutable data structures. No one design approach is best in all cases, and all
design approaches have trade-offs. Ruby supports both object-oriented design, functional
design, and procedural design, and often maintainable code has a mix of all three.

Choosing to create a custom class is always a trade-off. There is always a cost in creating
a custom class versus using a core class, and that is that all classes result in some amount
of conceptual overhead. That's true of both core classes and custom classes. It's just that
all Ruby programmers have already used most core classes, so they have internalized the
conceptual overhead already. Creating a custom class means that everyone who deals with
the code needs to learn about the class and how it works so that they are able to use it
correctly and be productive while using it.

There are two main benefits of creating a custom class. One is that it encapsulates state, so
that the state of the object can only be manipulated in ways that make sense for the object.
The second benefit is that classes provide a simple way for calling functions related to the
instances of a class (in Ruby, these are called methods). Whether these benefits outweigh
the cost of the conceptual overhead is going to be highly dependent on the code you write.

As a simple example, let's say in your application that you need to store a stack of
objects (last-in, first-out). With core classes, you can implement this using a standard
Array class:

stack = []

add to top of stack

stack.push(1)

https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter02
https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter02

Learning when to create a custom class 27

get top value from stack

stack.pop

That approach is intuitive and maintainable. However, because a standard array is used,
if external code can get a reference to the object, objects can violate the stack design and
do this:

add to bottom to stack!

stack.unshift(2)

If you want to prevent this, you can encapsulate your logic into a custom class:

class Stack

 def initialize

 @stack = []

 end

 def push(value)

 @stack.push(value)

 end

 def pop

 @stack.pop

 end

end

If you are sharing this stack object so that users operate on stacks directly and pass the
stacks to other objects, this encapsulation makes sense. However, if your stack is just
an implementation detail used in another class that has its own encapsulation, then
creating a custom Stack class is probably unnecessary complexity. In addition to being
less intuitive, it results in slower runtime performance due to additional indirection and
slower garbage collection, and greater memory use due to additional allocated objects.

In the previous examples, the only benefit to creating a custom class is information hiding,
since push and pop methods both exist on the array. What if you want to require that the
values in the stack are symbols, and you want to return the time the symbol spent in the
stack when popping the stack? With a custom class, you could implement the behavior by
initializing a SymbolStack class with an empty array:

class SymbolStack

 def initialize

28 Designing Useful Custom Classes

 @stack = []

 end

Then you could define a SymbolStack#push method to check that the object passed
is a symbol:

 def push(sym)

 raise TypeError, "can only push symbols onto stack" unless
 sym.is_a?(Symbol)

 @stack.push([sym, clock_time])

 end

You can define the SymbolStack#pop method to return the symbol and the amount
of time the symbol spent in the stack:

 def pop

 sym, pushed_at = @stack.pop

 [sym, clock_time - pushed_at]

 end

Finally, in order to calculate times correctly, you can define a private
SymbolStack#clock_time method. This is more reliable than using Time.now, as
using Time.now to calculate time duration can be affected by changes to the system time:

 private def clock_time

 Process.clock_gettime(Process::CLOCK_MONOTONIC)

 end

end

In this scenario, where you need both information hiding and custom behavior, defining
a custom class usually makes sense.

One final thing to consider before creating a custom class is how many places you will be
using it. In the previous example with SymbolStack, if you are using SymbolStack
in three separate classes that have similar needs, that's a strong indication that a separate
class is appropriate. However, if you are using SymbolStack in only a single class, and it
doesn't need to be accessed directly by users, you should consider not creating a custom
class for it yet.

In this section, you learned about principles to help you decide whether using a custom
class is appropriate. In the next section, you'll learn about SOLID design and the trade-offs
involved.

Handling trade-offs in SOLID design 29

Handling trade-offs in SOLID design
You may have heard about designing classes around SOLID principles. SOLID is an
acronym for five separate object-oriented design principles:

•	 The single-responsibility principle

•	 The open-closed principle

•	 The Liskov substitution principle

•	 The interface segregation principle

•	 The dependency inversion principle

Using these principles can result in well-structured classes. However, the principles
should not be applied dogmatically. You should always consider whether each principle
represents a good trade-off for the application or library you are building. In this section,
you'll learn about each of these principles and the trade-offs related to each, to help you
decide to what extent you would benefit from using them.

The single-responsibility principle
The basic idea of the single-responsibility principle is that a class should basically serve
one purpose. On the face of it, this is a good general rule, as classes built to serve a single
purpose are fine and easy to use. You've probably designed classes that serve a single
purpose, and haven't had problems using them or working with them.

However, the single-responsibility principle is not generally used for justifying designing
a class to serve a single purpose. It's almost always used to justify splitting a single class
that serves multiple purposes into multiple classes that each serve a single purpose, or at
least a smaller number of purposes. This application of the principle can often result in
increased complexity, especially if you consider the purpose to be small in scope.

Take Ruby's String class as an example. Ruby's String class can serve multiple
purposes. It can represent text and it can also represent binary data. It can be used as
a builder of text or data, or as their modifier. One of the great aspects of Ruby is how
flexible the String class is, the fact that it can handle many different purposes, and how
you don't need to conceptually deal with Text, Data, TextBuilder, DataBuilder,
TextModifier, and DataModifier classes. Your use of the single-responsibility
principle may be the equivalent of starting with the following code:

str = String.new

str << "test" << "ing...1...2"

30 Designing Useful Custom Classes

name = ARGV[1].

 to_s.

 gsub('cool', 'amazing').

 capitalize

str << ". Found: " << name

puts str

And turning it into the following code:

builder = TextBuilder.new

builder.append("test")

builder.append("ing...1...2")

modifier = TextModifier.new

name = modifier.gsub(ARGV[1].to_s, 'cool', 'amazing')

name = modifier.capitalize(name)

builder.append(". Found: ")

builder.append(name)

puts builder.as_string

In such a case, you should probably reconsider whether the additional complexity you
are adding is worth it. In many cases, you can get a design that is more maintainable and
easier to use by having a single class with multiple related purposes, compared to splitting
the class up and having multiple separate classes, each with its own single purpose.

A good question to ask yourself when deciding whether to use the single-responsibility
principle to split up a class is, "Would I be able to use any of the newly split classes in
additional places in my application or library?" If the answer is yes, that is an indication
that it may be a good idea to separate the classes, since separate parts of the current class
are reusable in additional areas. However, if the answer is no, that is an indication that it
may not be a good idea.

Handling trade-offs in SOLID design 31

Another good question to ask yourself is, "Do I want to be able to easily replace certain
parts of this class with alternative parts?" Let's say you have a program that prints reports.
It starts out with the ability to convert a single type of report to a single format. One
design approach is to have a single Report class that holds all of the data for the report
and has all the methods used for formatting the report:

report = Report.new(data)

puts report.format

Alternatively, you could have a ReportContent class and ReportFormatter class,
since the storage of data and the formatting of it into a report are separate purposes:

report_content = ReportContent.new(data)

report_formatter = ReportFormatter.new

puts report_formatter.format(report_content)

Which of these approaches is better depends on whether future changes will be needed.
If, in the future, you may have three different types of reports (say, docx, pdf, and csv),
using separate classes can allow you to easily replace only part of the class:

report_content = ReportContent.new(data)

report_formatter = ReportFormatter.

 for_type(report_type).new

puts report_formatter.format(report_content)

If you know in advance that you will need multiple report formats, separating the design
into ReportContent and ReportFormatter classes upfront is probably a good idea.
However, if you start out with only a single report format, the single Report class design
is probably a better approach. You may never need to deal with multiple report formats,
and burdening your code with excess complexity will make it harder to use. As a general
principle, you should delay increasing complexity in your class designs until you actually
need the complexity. It is far easier to add complexity later if needed than to remove
complexity later if not needed, at least if you care about backward compatibility.

32 Designing Useful Custom Classes

The open-closed principle
The open-closed principle stipulates that a class should be open for extension, but closed
for modification. An extension in Ruby's case would be adding instance variables and
methods, and modification would be modifying or removing existing instance variables
or methods. The open-closed principle was written mostly to address issues with compiled
software written in programming languages that are less expressive than Ruby. In Ruby,
pretty much all classes are open for both extension and modification.

Ruby itself completely ignores the open-closed principle, and actively works to make
sure classes aren't closed for modification. One of the most significant changes to Ruby's
object model happened in Ruby 2.0, with the addition of origin classes. Origin classes
are internal classes used to allow the implementation of Module#prepend. Origin
classes added a huge amount of complexity to Ruby's object model, for the sole purpose
of making modification even easier by programmers to override singleton methods and
call super to get the default behavior.

Let's say you actually wanted to try enforcing the open-closed principle in Ruby. How
would you go about it? Closing a class for extension and modification is as easy as calling
ClassName.freeze, but closing for modification while leaving it open for extension
is harder.

There are three general ways in which to add methods to classes. One is to add them by
including a module that defines them in the class, and another is prepending a module
that defines them to the class. Therefore, if you wanted to prevent modification, you could
override include and prepend and have them raise an exception if any of the modules
passed have instance methods that overlap with the class's instance methods. You'll want
to consider public, protected, and private methods when doing so. You can first create
the OpenClosed class and add a singleton meths method to it, returning all instance
methods in the given class.

Note that instance_methods returns both public and protected methods, so you need
to add the private methods to it:

class OpenClosed

 def self.meths(m)

 m.instance_methods + m.private_instance_methods

 end

Then you can override the include singleton method:

 def self.include(*mods)

 mods.each do |mod|

Handling trade-offs in SOLID design 33

 unless (meths(mod) & meths(self)).empty?

 raise "class closed for modification"

 end

 end

 super

 end

You can alias include as prepend. When using aliases, super method lookup uses the
aliased name, so this doesn't break anything:

 singleton_class.alias_method :prepend, :include

You would probably want to do the same thing for the extend method that you did for
prepend and include, as this will handle changes to the class's singleton methods
instead of the class's instance methods:

 def self.extend(*mods)

 mods.each do |mod|

 unless (meths(mod) & meths(singleton_class)).empty?

 raise "class closed for modification"

 end

 end

 super

 end

The third way to add methods to a class is to define them directly on the class. There isn't
a hook called before adding a method, so unlike overriding include and prepend, you
can't prevent the method from being added.

However, you can use the method_added hook, which is called after the method has
been added, at which point the class or module has already been modified. Since the
method_added hook is called directly after every method, you can undo the addition
of the method and raise an exception as long as you have an alias to the method by
overriding the method just defined with the alias. First, you need to make aliases for all
methods by appending a double underscore for the method:

 meths(self).each do |method|

 alias_name = :"__#{method}"

 alias_method alias_name, method

 end

34 Designing Useful Custom Classes

Then you can define a method_added hook. You only want this hook to run when
someone else adds a method to the class, and not when you are undoing the addition
of the method, so this uses a trick you'll learn more about in Chapter 3, Proper Variable
Usage, by having a local variable defining outside the method that is modified inside the
method:

 check_method = true

 define_singleton_method(:method_added) do |method|

 return unless check_method

If the method starts with the double underscore and is not already defined, someone
is trying to override the aliased methods, so you can overwrite the aliased method by
aliasing the original method again:

 if method.start_with?('__')

 unaliased_name = method[2..-1]

 if private_method_defined?(unaliased_name) ||

 method_defined?(unaliased_name)

 check_method = false

 alias_method method, unaliased_name

 check_method = true

 raise "class closed for modification"

 end

If the method doesn't start with the double underscore and is already defined, you can fix
the issue by aliasing the aliased method back to the original method:

 else

 alias_name = :"__#{method}"

 if private_method_defined?(alias_name) ||

 method_defined?(alias_name)

 check_method = false

 alias_method method, alias_name

 check_method = true

 raise "class closed for modification"

 end

 end

 end

end

Handling trade-offs in SOLID design 35

This approach handles most cases well, but there are still many ways around it. You could
exploit a race condition in the implementation by trying to override methods in different
threads in a loop, either exploiting the time slices where check_method is set to false,
or have one thread override the regular method and another thread override the double
underscore method at the same time. Alternatively, you could remove the whole check
altogether:

OpenClosed.singleton_class.remove_method(:method_added)

Because a user can always find a way to override the methods you are overriding to
attempt to prevent them from modifying the class, it is pointless to try to get Ruby classes
to be open for extension and closed for modification. Your choices are either frozen and
closed for both modification and extension, or unfrozen and open for both modification
and extension.

The Liskov substitution principle
The Liskov substitution principle states that any place in the code where you can use an
object of type T, you can also use an object of a subtype of T. In terms of Ruby, this means
that any place in your code where you are using an instance of a class, you can also use an
instance of a subclass without anything breaking.

In general, this is a good principle to follow. When you subclass an existing class, if you
override a method of the class, you should attempt to ensure that it accepts the same
argument types and returns the same argument type.

For example, say you have a class named Max that stores a maximum value and has an
over? method for whether a given value is greater than the maximum value:

class Max

 def initialize(max)

 @max = max

 end

 def over?(n)

 @max > n

 end

end

36 Designing Useful Custom Classes

Then, overriding over? to require a separate argument in a subclass for an amount
that the value would have to exceed the maximum value by would violate the Liskov
substitution principle:

class MaxBy < Max

 def over?(n, by)

 @max > n + by

 end

end

This is because code that accepts an instance of Max and calls over? on it with a single
argument will break if passed an instance of MaxBy. To be compliant with the Liskov
substitution principle, you could make the argument optional or a keyword:

class MaxBy < Max

 def over?(n, by: 0)

 @max > n + by

 end

end

With this approach, passing an instance of MaxBy will work because the single argument
to MaxBy#over? results in the same behavior as Max#over?, at least assuming that you
initialized the MaxBy instance with a numeric value.

While the Liskov substitution principle is useful to follow in general, you should not be
dogmatic about applying it. In a strict sense, all subtypes that have different behavior than
their supertypes or produce different results could be said to violate Liskov substitutability,
even if they expose the same API. And what would be the point of having a subtype with
exactly the same behavior?

Fundamentally, attempting to adhere to the Liskov substitution principle means limiting
what changes you are willing to allow in a subclass. That may not make sense in all cases.
You may want a subclass with different behavior than a superclass in some cases. Does
that mean that passing an instance of that subclass to code that expects an instance of
a superclass may break? Yes, but that is not necessarily a problem. Just don't pass subclass
instances in that case, and you can still happily use instances of subclasses in other cases.
If you think the MaxBy#over? method, which requires two arguments, is more generally
useful since a second argument should almost always be provided, you are probably
better off using that approach, and just don't pass MaxBy instances to code expecting Max
instances, at least if the over? method will be called on them.

Handling trade-offs in SOLID design 37

Ruby, in general, respects that the programmer will know to do the right thing. It doesn't
prevent behavior simply because there are ways to misuse it. Ruby also uses duck typing
and doesn't generally care about what specific classes of objects you are using anyway, so
Liskov substitutability doesn't really matter all that much.

There is one method in Ruby that will almost always break Liskov substitutability, and that
you should generally avoid, and that is instance_of?. Say you have code that does the
following:

if obj.instance_of?(Max)

 # do something

else

 # do something else

end

Then, all subclasses of Max will break Liskov substitutability, since instead of taking the
if branch, they will take the else branch. The same is true for comparing the values of
using the result of the class method:

if obj.class == Max

 # do something

else

 # do something else

end

These approaches should almost always use kind_of? instead, so that subclasses are
allowed:

if obj.kind_of?(Max)

 # do something

else

 # do something else

end

We have learned that the Liskov substitution principle is useful, but should not be applied
in all cases. Next, we'll learn whether the interface segregation principle makes sense in
Ruby.

38 Designing Useful Custom Classes

The interface segregation principle
The interface segregation principle states that clients should not be forced to depend on
methods they do not use. While this doesn't strictly apply to Ruby directly, since Ruby
will only call methods that are used, a looser interpretation is that this applies to how large
classes should be in terms of methods.

Classes with a large number of methods, where the programmer is only using a few of the
methods, can be more difficult to understand. If 80% of your users use the same 20% of
methods of a class, it may make sense to move many of the methods to a separate module
(assuming that backward compatibility is not an issue). The 20% of users who need the
methods can include the module in the class, while the other 80% can benefit from the
smaller class.

In the real world, it's less likely that you'll have 80% of users using the same 20% of the
methods. More likely, you'll have 80% of users using 20% of the methods, but which 20%
are used varies widely from one user to the next. In that case, there is not an easy way to
separate the code.

Ruby in general does not follow this principle, at least if you consider the core classes.
Classes such as string, array, and hash have large numbers of methods. Some Rubyists
would probably argue that they all have too many methods, but there would probably be
differences in which methods they would vote to remove.

As a general principle, splitting up a module that is large simply because it is large is not
necessarily beneficial. Having three modules with 10 methods each is not necessarily
better than one module with 30 methods. Having multiple modules, where each
programmer only uses which ones they need, does reduce the runtime overhead, but the
trade-off it makes is that it can increase the cognitive overhead for the programmer.

If you are going to split a large interface into smaller interfaces, do not do so just because
the interface is large. Do so if you can clearly separate useful methods in the interface into
separate categories, where some categories will be needed in some applications but not in
other applications. In Chapter 8, Designing for Extensibility, you'll learn more about using
this kind of interface segregation via plugin systems.

The dependency inversion principle
The dependency inversion principle states that high-level modules should not
depend on low-level modules, and both high-level and low-level modules should
depend on abstractions. It also states that abstractions should not depend on concrete
implementations, but that concrete implementations should depend on abstractions.

Handling trade-offs in SOLID design 39

In general, more complex code is harder to understand. Whether an abstraction makes
code more complex by adding unneeded flexibility, or simpler by unifying separate cases,
depends on the abstraction itself. Abstractions are not intrinsically useful; they are only
useful to the extent that they can make other code simpler.

One concrete implementation of the dependency inversion principle is dependency
injection, or the idea that everything an object depends on should be passed into the
object, to allow maximum flexibility. Ruby doesn't require dependency injection as much
as other programming languages due to its flexibility of allowing singleton methods on
almost all objects. However, dependency injection can still be used in Ruby, and there are
Ruby libraries dedicated to it.

Let's say you have a CurrentDay class to represent the current day, and you want to have
a work_hours method that returns the work hours for the current day and a workday?
method that returns whether the current day is a workday or a non-workday. In your
application, you already have a MonthlySchedule class that knows the work schedule
for a given month, which you initialize with the year and month. Here's one simple
approach for implementing this class:

class CurrentDay

 def initialize

 @date = Date.today

 @schedule = MonthlySchedule.new(@date.year,

 @date.month)

 end

 def work_hours

 @schedule.work_hours_for(@date)

 end

 def workday?

 !@schedule.holidays.include?(@date)

 end

end

One issue with this approach is that testing the CurrentDay class becomes difficult. How
can you test the workday? method. If you are testing during a workday, it will always be
true, and if you are testing outside of a workday, it will always be false.

40 Designing Useful Custom Classes

One approach to handling this in the tests without changing the code itself is to override
Date.today:

before do

 Date.singleton_class.class_eval do

 alias_method :_today, :today

 define_method(:today){Date.new(2020, 12, 16)}

 end

end

after do

 Date.singleton_class.class_eval do

 alias_method :today, :_today

 remove_method :_today

 end

end

The problem with this approach is that it prevents you from using multithreaded tests
to speed up your testing. There are various ways to get around this, but in general, the
approach required to allow multithreaded tests is significantly more complex.

In some cases, you could just use instance_variable_set to manually override
the instance variables in the object when testing. Unfortunately, that doesn't work in this
case because the @date instance variable is used to set the @schedule instance variable
inside initialize.

For this type of situation, it makes sense to be able to pass in the date to use as an optional
variable. It's probably best to use a keyword argument for this, as it provides flexibility
later in case you want to add another positional argument:

class CurrentDay

 def initialize(date: Date.today)

 @date = date

 @schedule = MonthlySchedule.new(date.year, date.month)

 end

end

Handling trade-offs in SOLID design 41

This begs the question as to whether you should also allow the @schedule instance
variable to be overriden, like this:

class CurrentDay

 def initialize(date: Date.today,

 schedule: MonthlySchedule.new(date.year,

 date.month))

 @date = date

 @schedule = schedule

 end

end

In general, you should probably not do this unless you really need it for some other
reason. For one, this can easily result in a caller passing schedule for a different month
than the month of date. One alternative that fixes that is to pass schedule_class
instead:

class CurrentDay

 def initialize(date: Date.today,

 schedule_class: MonthlySchedule)

 @date = date

 @schedule = schedule_class.new(date.year, date.month)

 end

end

However, even this you should not do unless you need it. Dependency injection makes
code more complex, so you should only do it if you need it for another reason, such as the
ability to mock the work_hours_for or holidays methods in the schedule.

In this section, you learned how the SOLID design principles can be applied to Ruby
programming. In the next section, you'll learn the trade-offs between designing larger
classes or a larger number of smaller classes.

42 Designing Useful Custom Classes

Deciding on larger classes or more classes
One of the decisions you will need to make when designing classes is how many classes
you should have. The advantage of having fewer classes is that, in general, the code
becomes conceptually simpler. The advantage of having more classes is that the code
becomes more modular, and it easier to change parts of it. There is a balancing act
here. Too few classes can result in large God objects that are difficult to change and
refactor. Too many classes can result in conceptual overload, and make it difficult for the
programmer using the classes to figure out which classes they need to use.

Let's say you are building a library to handle the construction of HTML tables. This library
will take an enumerable (rows) of enumerable objects (cells), and construct an HTML
table with table/tbody/tr/td elements, with all the content in the td elements being
HTML escaped. One approach is a single class. You can require a standard library to
handle the HTML escaping, and define an HTMLTable class, which is initialized with the
rows of the table:

require 'cgi/escape'

class HTMLTable

 def initialize(rows)

 @rows = rows

 end

The simplest way to handle this class is to define a to_s method, which will convert the
rows to a string containing HTML:

 def to_s

 html = String.new

 html << "<table><tbody>"

 @rows.each do |row|

 html << "<tr>"

 row.each do |cell|

 html << "<td>" << CGI.escapeHTML(cell.to_s) << "</td>"

 end

 html << "</tr>"

 end

 html << "</tbody></table>"

 end

end

Deciding on larger classes or more classes 43

This single-class approach contains all the logic in a single method, and will probably
perform the best. It does look a little ugly, with the manual concatenation of strings.
Perhaps that could be fixed by using separate classes per element type? Ruby makes it
fairly easy to metaprogram such element types, using a base class with a to_s method
that formats the type, and a subclass for each element type. Then, the HTMLTable#to_s
method can just create elements of each of the type subclasses, and the actual HTML
generation is confined to a single line in the Element#to_s method. You decide to try
that approach. You add an HTMLTable::Element class. This class supports setting
the type of the class, which defines the type method, which is used when the element is
converted to a string via to_s:

class HTMLTable

 class Element

 def self.set_type(type)

 define_method(:type){type}

 end

 def initialize(data)

 @data = data

 end

 def to_s

 "<#{type}>#{@data}</#{type}>"

 end

 end

You can then metaprogram the creation of the four element subclasses, one for each type:

 %i"table tbody tr td".each do |type|

 klass = Class.new(Element)

 klass.set_type(type)

 const_set(type.capitalize, klass)

 end

44 Designing Useful Custom Classes

Then you can define the HTMLTable#to_s method to create instances of each of the
element subclasses, nested appropriately:

 def to_s

 Table.new(

 Tbody.new(

 @rows.map do |row|

 Tr.new(

 row.map do |cell|

 Td.new(CGI.escapeHTML(cell.to_s))

 end.join

)

 end.join

)

).to_s

 end

end

This approach uses six classes: the HTMLTable class, an Element base class, and Table,
Tbody, Tr, and Td classes, which are created via metaprogramming. Each of these
classes is responsible for a single thing, so arguably this does a better job adhering to
the single-responsibility principle. However, each of the Element subclasses is doing
basically the same thing, and you could avoid the use of separate Element subclasses
by passing the type in as a parameter to a method of the Element class.

Definitely, the best part of this design is the fact that all HTML generation happens in
a single place. In addition to being overly complex, probably the worst part of this design
is that it is probably slow, not just for the additional object creation, but also due to all
of the temporary strings. If one of the data cells is large, the memory used will be at
least eight times larger than the size of the large data cell, since the following strings will
contain the large data:

•	 The string containing the large data

•	 The string created by CGI.escapeHTML

•	 The string created in HTMLTable::Td#to_s

•	 The string created in HTMLTable#to_s when joining the array of Td instances

•	 The string created in HTMLTable::Tr#to_s

•	 The string created in HTMLTable#to_s when joining the array of Tr instances

Deciding on larger classes or more classes 45

•	 The string created in HTMLTable::Tbody#to_s

•	 The string created in HTMLTable::Table#to_s

Could you get the benefit of all HTML generation in a single place using a single-class
design, while keeping the performance of the append-only design? It turns out that this
isn't too difficult. You can add a wrap method that takes the HTML string being built
and the element type and uses an append-only design for building the HTML, yielding
between the opening tags and the closing tags:

class HTMLTable

 def wrap(html, type)

 html << "<" << type << ">"

 yield

 html << "</" << type << ">"

 end

Then, the to_s method needs to use nested calls to the wrap method:

 def to_s

 html = String.new

 wrap(html, 'table') do

 wrap(html, 'tbody') do

 @rows.each do |row|

 wrap(html, 'tr') do

 row.each do |cell|

 wrap(html, 'td') do

 html << CGI.escapeHTML(cell.to_s)

 end

 end

 end

 end

 end

 end

 end

end

This approach is slightly more complex than the initial approach, but it performs almost
as well and will make it easier to expand later, for example, to add support for HTML
attributes on the table, tbody, tr, or td tags.

46 Designing Useful Custom Classes

There are still some cases where the separate class approach may make sense; for example,
if you wanted to allow users to use individual tags, such as tr or td, without building
the entire table. It's possible that that may be desired if the table and tbody tags have
already been used in a template.

In this case, the trade-off between the approaches comes down to the many classes
approach offering additional flexibility, with the single-class approach offering greater
simplicity and higher performance. If you need the flexibility, the many classes approach
is beneficial, but if you don't need the flexibility, then the benefits of the many classes
approach are wasted and the single-class approach makes more sense.

In this section, you learned about a couple of aspects to consider when deciding when to
use a more complex class or a greater number of simpler classes. Next, let's learn when it
makes sense to use custom data structures in Ruby.

Learning when to use custom data structures
Ruby only offers two main core data structures for collections, arrays, and hashes.
However, Ruby arrays and hashes are not simple arrays or hash tables; they are complex
internally. Ruby takes care of most of the performance issues when dealing with arrays
and hashes. For example, when adding an element to an array when the array does not
have any room internally, Ruby expands the array not by a single element, but in relation
to how large the array currently is, so that if you keep adding elements to the array, it
doesn't need to resize the array each time. Likewise, for small hash tables, Ruby may store
the hash table as a simple list if it thinks it will be faster to scan the list than use a real hash
table. If the hash table grows, Ruby will internally convert the list into a real hash table, at
the point at which it roughly determines that it will be faster to use a separate hash lookup.

In a lower-level language such as C, the choice of data structure for a particular
application may be even more important than the choice of algorithm. However, Ruby
operates at a high level, and in most cases, trying to recreate a faster data structure than
an array or hash in pure Ruby code is likely to be difficult. Most standard libraries that
implement data structures use arrays and hashes for the underlying storage, such as
Matrix (arrays of arrays) and Set (hash). Exceptions in the standard library would be
database libraries such as dbm and gdbm, which wrap C libraries and are generally used
for storing large amounts of data on disk instead of in memory.

Learning when to use custom data structures 47

In general, you do not need to worry about using custom data structures in Ruby until
you have very large datasets that represent a performance bottleneck in your application.
To get a substantial performance benefit from a custom data structure in a Ruby program,
the custom data structure will probably need to be implemented as a native C extension
instead of as a pure Ruby library, as otherwise, the overhead of the Ruby virtual machine
is likely to outweigh the benefits of a data structure that better fits the needs of the
application.

As an example of the benefits of a custom data structure, you can look at the
subset_sum gem. This is a library that implements a solver for the subset sum
problem. The subset sum problem is as follows: given a set of values and a target amount,
is there a subset of values that sum to the target amount? This is an NP-complete problem,
and it quickly becomes impractical to solve for even a moderate number of elements
(25-100 depending on the algorithm used). The subset_sum gem implements one of
the simpler algorithms for solving this, with two implementations. One implementation is
written in Ruby and uses a plain Ruby hash. The second approach is written in C and uses
a custom AVL tree. The approach written in C with a custom data structure is only around
two times faster than the pure Ruby version that uses a plain Ruby hash.

Another example of performance differences between a plain Ruby hash and a custom
data structure comes from GitHub. The GitHub programming language classifier
(Linguist) was originally written in pure Ruby, and to achieve better performance and
lower memory use, they tested it using an approach written in C with a Judy array for
storage. Their approach written in C with a custom data structure was also about twice as
fast compared to the Ruby version. One advantage in GitHub's case was the fact that their
implementation with a Judy array also used much less memory, about 40% of the memory
of the Ruby implementation.

While only you can determine whether a custom data structure is right for your
application, if you aren't sure whether a custom data structure will help, chances are that
it won't make a huge difference. Unless your code has already been tightly optimized,
there are probably better ways to optimize your application than attempting to use a
custom data structure instead of a Ruby array or hash. You'll learn about other ways to
optimize your application in Chapter 14, Optimizing Your Library.

48 Designing Useful Custom Classes

Summary
In this chapter, you've learned when it is a good idea to create a custom class. You've
learned about the five principles of SOLID design, and the trade-offs involved in applying
them to Ruby classes. You've learned about the important trade-off when deciding how
many classes should make up your application. You've also learned when it is appropriate
to use custom data structures instead of the core data structures. Now you have a better
understanding of the principles of a Ruby class design and the trade-offs between different
design approaches.

In the next chapter, you'll learn all about Ruby's different types of variables, and how best
to use each of them.

Questions
1.	 Does creating a custom class make sense if you need both information hiding and

custom behavior?

2.	 Which SOLID principle is almost impossible to implement in Ruby?

3.	 Is it useful to create classes that the user will not use directly?

4.	 How often does it make sense to use custom data structures in Ruby?

3
Proper Variable

Usage
Anytime you need to store information in a Ruby program and access it later, you will
be using some sort of variable. Which types of variables you use has a significant effect
on your program's performance and maintainability. In this chapter, you'll learn about
Ruby's different variable types and the advantages of using and naming them properly.

We will cover the following topics:

•	 Using Ruby's favorite variable type – the local variable

•	 Learning how best to use instance variables

•	 Understanding how constants are just a type of variable

•	 Replacing class variables

•	 Avoiding global variables, most of the time

By the end of this chapter, you'll have a better understanding of the different types of
variables and how best to use them.

50 Proper Variable Usage

Technical requirements
In this chapter and all chapters of this book, code given in code blocks is designed to
execute on Ruby 3.0. Many of the code examples will work on earlier versions of Ruby,
but not all. The code for this chapter is available online at https://github.com/
PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter03.

Using Ruby's favorite variable type – the local
variable
Ruby's favorite variable type is the local variable. Local variables are the only variable type
that Ruby doesn't require you to use a sigil (for example, @ or $) or use capitalization. This
is not by accident, this is by design, to nudge you toward using local variables as much as
possible.

In this section, you'll learn how to improve performance by adding local variables, when
it's safe to do so, issues involving scope gates, and the importance of local variable naming.

Increasing performance by adding local variables
You may be wondering, Why are local variables better than other types of variables? In
Ruby, all other variable types require more indirection. Local variables require the least
indirection. When you access a local variable in Ruby, the virtual machine knows the
location of the local variable, and can more easily access the memory. Additionally, in
most cases, the local variables are stored on the virtual machine stack, which is more likely
to be in the CPU cache.

Let's say you want to have a TimeFilter class, such that you can pass an instance of it as
a block when filtering:

time_filter = TimeFilter.new(Time.local(2020, 10),

 Time.local(2020, 11))

array_of_times.filter!(&time_filter)

The purpose of the TimeFilter class is to filter enumerable objects such that only times
between the first argument and the second argument are allowed through the filter. You
also want to be able to leave out either of the ends, to only filter the times in one direction.
One other desired usage of the TimeFilter class is to separate the times that are in the
filter from times that are out of the filter, using Enumerable#partition:

after_now = TimeFilter.new(Time.now, nil)

in_future, in_past = array_of_times.partition(&after_now)

https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter03
https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter03

Using Ruby's favorite variable type – the local variable 51

You could implement this as a method on Enumerable, but if you are writing
a general-purpose library, you should not modify core classes unless that is the purpose
of the library. Additionally, by writing a class that can be used as a block, you allow the
class to be used by multiple methods since you could pass the block to filter! and
partition as shown previously, but also to methods such as reject to remove times
that are in the filter.

Here's one way you could implement this class. You need to have a to_proc method that
returns proc, and inside the proc you check whether the value is after the start time and
before the finish time. If there is a start time and it is before the start time, the proc returns
false. As this is a proc and not a lambda, you use next to quickly return a value for the
current block iteration. Likewise, if there is a finish time and it is after the finish time, it
also returns false. Otherwise, it returns true:

class TimeFilter

 attr_reader :start, :finish

 def initialize(start, finish)

 @start = start

 @finish = finish

 end

 def to_proc

 proc do |value|

 next false if start && value < start

 next false if finish && value > finish

 true

 end

 end

end

One issue with this approach is that it is less efficient than it otherwise could be. The
issue is with the implementation of to_proc. Every time the proc is called, it calls an
attr_reader method to get the start time, and if there is a start time, it calls the
attr_reader method again to get the start time to see whether the value is less than it.
Likewise, every time the proc is called, it calls an attr_reader method to get the finish
time, and if there is a finish time, it calls the attr_reader method again to get the finish
time to see whether the value is greater than it.

52 Proper Variable Usage

That's four method calls during every block iteration, just to get the start and finish times.
At least two of these calls are redundant. You can remove the redundancy by caching the
result of the method call in a local variable:

def to_proc

 proc do |value|

 start = self.start

 finish = self.finish

 next false if start && value < start

 next false if finish && value > finish

 true

 end

end

By calling the start method on self and setting it to a local variable, and calling the
finish method on self and setting it to a local variable, you've cut the number of
attr_reader method calls in half. That doesn't quite double the performance of the
proc, since there is definitely time spent in the greater than and less than method calls on
value, and time spent evaluating the if conditionals, but this change could improve
performance by 50% or so.

However, you could definitely improve performance further. One thing to notice here
is that TimeFilter doesn't offer a way to modify the start or finish times. There isn't
a reason to get the start and finish times in every call of the block, since the result will
be the same every time. You can hoist the setting of the local variables before the proc.
Code inside the proc can still access the local variables, since the proc operates as a
closure, capturing local variables in the surrounding environment. With that change,
your TimeFilter#to_proc method now looks like this:

def to_proc

 start = self.start

 finish = self.finish

 proc do |value|

 next false if start && value < start

 next false if finish && value > finish

 true

 end

end

Using Ruby's favorite variable type – the local variable 53

You've now completely removed the attr_reader calls from the created proc, providing
another large speedup. Now, the only method calls inside the proc are the greater than and
less than method calls on value.

There is no reason to stop there, as you can improve the performance even more. Because
you are retrieving the start and finish variables before creating the proc, you can use
them to make the returned proc more efficient. There are actually four separate cases
a TimeFilter instance could represent:

•	 Both start and finish are used (the common case).

•	 Only start is used, finish is nil.

•	 Only finish is used, start is nil.

•	 Both start and finish are nil (unlikely but possible).

You can produce optimal procs for each case. These procs can be even simpler than
the previous case since you don't have to check whether start and finish are valid
inside the proc. If both start and finish are used, the proc checks that value is
greater than or equal to start, and less than or equal to finish. If just start is
used, only the start value is checked. If just finish is used, only the finish value is
checked. If neither is used, there is no filter, and the proc can always return true:

def to_proc

 start = self.start

 finish = self.finish

 if start && finish

 proc{|value| value >= start && value <= finish}

 elsif start

 proc{|value| value >= start}

 elsif finish

 proc{|value| value <= finish}

 else

 proc{|value| true}

 end

end

Using local variables in this way is one of the general principles of writing fast Ruby code.
Anytime you have code that can be called multiple times, using a local variable at the
highest possible level to cache the results of methods will speed the code up.

54 Proper Variable Usage

In the previous example, you used local variables to store the result of attr_reader
method calls. However, local variables can be used to replace not just method calls, but
also constants. For very performance-sensitive code that accesses constants, you can
optimize it by storing constant references in local variables. For example, say you have
a large array where you want to count the number of Array elements in it:

num_arrays = 0

large_array.each do |value|

 if value.is_a?(Array)

 num_arrays += 1

 end

end

Assuming that large_array is large and this code is very performance-sensitive, you
can get a small speed boost by using a local variable for the Array reference:

num_arrays = 0

array_class = Array

large_array.each do |value|

 if value.is_a?(array_class)

 num_arrays += 1

 end

end

As a general rule, you should only use a local variable instead of a constant reference for
code that is very performance-sensitive, as the minimal speed improvement is not worth
the conceptual overhead in other cases.

Another consideration when using local variables to improve performance is to see
whether you can further reduce the need for computation. For example, maybe you are
writing a command-line program that will take a large array of floats, and remove values
that are at least twice as large as the first argument given on the command line:

large_array.reject! do |value|

 value / 2.0 >= ARGV[0].to_f

end

Using Ruby's favorite variable type – the local variable 55

Applying the principles that you've learned in this section, and realizing the
command-line argument is unlikely to change after program execution, you change
this to the following:

max = ARGV[0].to_f

large_array.reject! do |value|

 value / 2.0 >= max

end

This is certainly a large improvement, but you can further improve this by using the
mathematical equivalent of multiplying 2 on both sides:

max = ARGV[0].to_f

large_array.reject! do |value|

 value >= max * 2

end

Then you can further improve performance by moving that calculation into the local
variable:

max = ARGV[0].to_f * 2

large_array.reject! do |value|

 value >= max

end

In this section, you learned how to add local variables to improve the performance of your
code. While this is a great idea most of the time, as you'll see in the next section, it is not
always safe to do so.

Avoiding unsafe optimizations
One thing you need to remember when using local variables to optimize code is that
you can only use this approach if the expression you are storing in the local variable is
idempotent, meaning that it does not have side effects.

For example, consider the following code, where you are processing a large array in order
to set values in a hash:

hash = some_value.to_hash

large_array.each do |value|

56 Proper Variable Usage

 hash[value] = true unless hash[:a]

end

In this case, it looks like you could use a local variable to improve performance:

hash = some_value.to_hash

a_value = hash[:a]

large_array.each do |value|

 hash[value] = true unless a_value

end

It may even be tempting to skip the array call entirely by checking whether hash[:a]
has already been set:

hash = some_value.to_hash

unless a_value = hash[:a]

 large_array.each do |value|

 hash[value] = true

 end

end

Unfortunately, such an optimization is not safe in the general case. One issue is that
large_array could contain :a as an element, and the purpose of the original code is
to stop when :a is found. A less likely but still possible case that could have a problem is
that the hash could have a default proc that sets or removes the :a entry from the hash.
Before using this optimization safely, you would have to be sure that large_array
cannot contain a :a element, and that the hash doesn't have a default proc that deals with
the :a entry.

You should also avoid this approach when dealing with values that change over time,
at least when you cannot ensure how long the values will last. For example, say you are
removing times greater than the current time:

enumerable_of_times.reject! do |time|

 time > Time.now

end

Maybe it appears that you could use a local variable for the Time.now call:

now = Time.now

enumerable_of_times.reject! do |time|

Using Ruby's favorite variable type – the local variable 57

 time > now

end

However, if enumerable_of_times only yields one time value per minute, it's
probably a bad idea, since now will quickly deviate from Time.now.

You should be especially careful when using this approach if you are returning
a proc containing a local variable reference from outside the scope of the proc. In any
long-running program, it's almost always a bad idea to switch from the following:

greater_than_now = proc do |time|

 time > Time.now

end

To this:

now = Time.now

greater_than_now = proc do |time|

 time > now

end

It may not be a bad idea in a small command-line program that runs quickly, but if the
program runs quickly, you probably don't need to optimize it.

Handling scope gate issues
Local variables in Ruby are in scope from the first time Ruby comes across them while
parsing until the end of the scope they are defined in unless they hit a scope gate. In that
case, they are not in scope inside the scope gate. In other words, the scope gate creates
a new local variable scope. While you may not be familiar with the term scope gate,
you already have a lot of experience with scope gates in Ruby, as the def, class, and
module keywords all define scope gates.

The following scope gates show that at the start of each scope gate, there are no local
variables:

defined?(a) # nil

a = 1

defined?(a) # 'local-variable'

module M

 defined?(a) # nil

 a = 2

58 Proper Variable Usage

 defined?(a) # 'local-variable'

 class C

 defined?(a) # nil

 a = 3

 defined?(a) # 'local-variable'

 def m

 defined?(a) # nil

 a = 4

 defined?(a) # 'local-variable'

 end

After the scope gate exits, the previous scope is restored and the value of the local variable,
a, remains the same as before the scope gate was entered:

 a # 3

 end

 a # 2

end

a # 1

Additionally, calling a method defined with def in the same scope does not change the
current local variables:

M::C.new.m

a # 1

All scope gates in Ruby have alternatives that do not add scope gates. The def keyword
can be replaced with define_method, class with Class.new, and module with
Module.new. All replacements accept a block, and blocks in Ruby are not scope gates,
they are closures, which share the existing local variables of their surrounding scopes. Any
local variables newly defined in a block are local to the block and blocks contained inside
of it but are not available to the code outside of the block.

Replacing the scope gates in the previous example with their gateless equivalents, you end
up with the following code:

defined?(a) # nil

a = 1

defined?(a) # 'local-variable'

M = Module.new do

Using Ruby's favorite variable type – the local variable 59

 defined?(a) # 'local-variable'

 a = 2

 self::C = Class.new do

 defined?(a) # 'local-variable'

 a = 3

 define_method(:m) do

 defined?(a) # 'local-variable'

 a = 4

 end

Unlike the code that uses scope gates, after these blocks return, the value of a remains the
same as before the blocks return since each block uses the same local variable. This code
shows the danger of not using scope gates and reusing local variables. You can see that the
class and module definitions override the local variables in the outer scope:

 a # 3

 end

 a # 3

end

a # 3

Even worse than that, calling the m method on the M::C instance overrides the local
variable of the surrounding scope:

M::C.new.m

a # 4

This can result in hard-to-debug issues, especially in the case where define_method is
used to define methods and where such methods are not called deterministically, such as
when they are called based on user input.

The trade-off of using the gateless equivalents is that they can significantly improve
performance. If a method is called often and performs a computation that can be cached,
it can make sense to precompute the result and use define_method instead of using
def. Let's say you are defining a method named multiplier that is based on a constant
value and a command-line argument:

def multiplier

 Math::PI * ARGV[0].to_f

end

60 Proper Variable Usage

This always results in the same value, but Ruby will have to compute it separately every
time the method is called. Using a gateless equivalent allows you to precompute the value:

multiplier = Math::PI * ARGV[0].to_f

define_method(:multiplier) do

 multiplier

end

Note that define_method has additional overhead compared to methods defined with
def, so you should only use it in cases where you can avoid at least one method call inside
the defined method.

Another use case for combining local variables with define_method is for information
hiding. Let's say you want to define a method that is thread-safe, so it uses a mutex:

class T

 MUTEX = Mutex.new

 def safe

 MUTEX.synchronize do

 # non-thread-safe code

 end

 end

end

The problem with this code is users can easily poke around and use the constant directly:

T::MUTEX.synchronize{T.new.safe}

This results in thread deadlock. One way to discourage this behavior is to use a private
constant:

class T

 MUTEX = Mutex.new

 private_constant :MUTEX

 def safe

 MUTEX.synchronize do

 # non-thread-safe code

 end

 end

end

Using Ruby's favorite variable type – the local variable 61

This does make something slightly more difficult for the user, as accessing T::MUTEX
directly will raise NameError. However, just as you can work around private methods
with Kernel#send, you can work around private constants with Module#const_get:

T.const_get(:MUTEX).synchronize{T.new.safe}

In general, users that are accessing private constants deserve what they get, but if you want
to make it even more difficult, you can use a local variable and define_method:

class T

 mutex = Mutex.new

 define_method(:safe) do

 mutex.synchronize do

 # non-thread-safe code

 end

 end

end

It is much more difficult for a user to get access to the local mutex variable that was
defined in the T class than it is for them to access a private constant of the class.

Naming considerations with local variables
How you name your variables has a significant effect on how readable your code is.
While Ruby allows a lot of flexibility when naming local variables, in general, you should
stick to lower_snake_case all-ASCII names. Emoji local variable names are cute
but lead to code that is difficult to maintain. For teams that are working in a single,
non-English language, non-ASCII lower_snake_case names in the local language
can be acceptable, but it will make it difficult for other Ruby programmers, so strong
consideration should be given to whether non-native speakers of the language will ever be
working on the code.

In terms of variable length, if you name all your local variables with a single character,
it becomes almost impossible to keep track of what each variable actually represents.
Likewise, if each of your local variables is_a_long_phrase_like_this, simply
reading your code becomes exhausting. The central trade-off in variable naming is
balancing understandability with ease of reading. Appropriately naming your variables
can make it so your code isn't exhausting to read, but it is still easy to comprehend.

62 Proper Variable Usage

How do you decide what length of variable name is appropriate? The general principle
in local variable naming is that the length of the variable name should be roughly
proportional to the inverse of the size of the scope of the variable, with the maximum
length being the length of the name that most accurately describes the variable.

For example, if you are calling a method that accepts a block, and the block is only a single
line or a few lines, and the receiver of the method or the method name makes it obvious
what block will be yielded, then it may make sense to use a single-letter variable:

@albums.each do |a|

 puts a.name

end

You could also use a numbered parameter in this case:

@albums.each do

 puts _1.name

end

Because album is a fairly small name, it would also be reasonable to use album as a local
variable name:

@albums.each do |album|

 puts album.name

end

However, if the context doesn't make it obvious what is being yielded, then using a single
variable name is a bad idea:

array.each do |a|

 puts a.name

end

Additionally, if the fully descriptive variable name is very long, it's a bad idea to use it for
single-line blocks:

TransactionProcessingSystemReport.each do

 |transaction_processing_system_report|

 puts transaction_processing_system_report.name

 end

Using Ruby's favorite variable type – the local variable 63

Using the full name in this case makes this code harder to read, and the clarity of the
longer name adds no value. In cases like this, you may not want to use a single variable
name, but you should probably at least abbreviate the name:

TransactionProcessingSystemReport.each do |tps_report|

 puts tps_report.name

end

Or even to this:

TransactionProcessingSystemReport.each do |report|

 puts report.name

end

If you have a 10-line method, it's probably not a good idea to use a single-letter variable
throughout the method. Choose a more descriptive variable name. It doesn't have to be
very long, and can certainly use abbreviations, but it should be descriptive enough that
a programmer that is familiar with the code base can look at the method and not have
any question about what the variable represents.

There are some common block variables for certain methods. Integer#times usually
uses i, following the convention of for loops in C:

3.times do |i|

 type = AlbumType[i]

 puts type.name

 type.albums.each do |album|

 puts album.name

 end

 puts

end

While you could use a more descriptive name such as type_id, there is no significant
advantage in doing so.

Likewise, when iterating over a hash, it is common to use k to represent the current key
and v for the current value:

options.each do |k, v|

 puts "#{k}: #{v.length}"

end

64 Proper Variable Usage

However, you should be careful to only use this pattern in single, simple blocks. In blocks
of more than three lines, and when nesting block usage, it's better to choose longer and
more descriptive variable names. Let's look at this code:

options.each do |k, v|

 k.each do |k2|

 v.each do |v2|

 p [k2, v2]

 end

 end

end

You may be able to figure that the options hash has keys and values that are both
enumerable, and this prints out each key/value pair separately, but it's not immediately
obvious. More intuitive variable naming in this case would be something like this:

options.each do |key_list, value_list|

 key_list.each do |key|

 value_list.each do |value|

 p [key, value]

 end

 end

end

In any case where you are using a gateless equivalent to a scope gate, such as using
define_method, be extra careful with your local variable naming, so that you don't
accidentally overwrite a local variable unintentionally.

One case where it can be a good idea to use a single letter or otherwise short variable
name in a longer scope is when there is a defined convention in the library you are using.
For example, in the Roda web toolkit, there is a convention that the request object yielded
to blocks is always named r, and documentation around request methods always shows
calls such as r.path or r.get. The reason for this convention is the request object
is accessed very often inside blocks, and a variable name such as request or even an
abbreviation such as req would make the code more taxing to read. However, in the
absence of a library convention for single-letter or otherwise short variable names, you
should use more descriptive variable names for longer scopes.

Learning how best to use instance variables 65

In this section, you've learned about Ruby's favorite variable type, the local variable.
You've learned how to use local variables for safe optimizations, the issues with using
scope gates, and important principles in local variable naming. In the next section, you'll
learn how best to use instance variables.

Learning how best to use instance variables
Almost all objects in Ruby support instance variables. As mentioned in Chapter 1, Getting
the Most out of Core Classes, the exceptions are the immediate objects: true, false, nil,
integer, floats, and symbols. The reason the immediate objects do not support instance
variables is that they lack their own identity. Ruby is written in C, and internally to Ruby,
all Ruby objects are stored using the VALUE type. VALUE usually operates as a pointer
to another, larger location in memory (called the Ruby heap). In that larger location in
memory is where instance variables are stored directly, or if that isn't large enough, a
pointer to a separate location in memory where they are stored.

Immediate objects are different from all other objects in that they are not pointers, they
contain all information about the object in a single location in memory that is the same
size as a pointer. This means there is no space for them to contain instance variables.

Additionally, unlike most other objects, conceptually there are no separate instances
of immediate objects, unlike other objects. Say you create two empty arrays like the
following:

a = []

b = []

Then a and b are separate objects with their own identity. However, Say you create two
nil objects:

a = nil

b = nil

There is no separate identity for the nil objects. All nil objects are the same as all other
nil objects, so instance variables don't really make sense for nil (and other immediate
objects), because there are no separate instances.

In this section, you'll learn how to increase performance by using instance variables,
about issues with instance variable scope, and how best to name instance variables.

66 Proper Variable Usage

Increasing performance with instance variables
Just as with local variables, you can increase performance by adding instance variables.
The same principles for optimizing with local variables, in general, apply to instance
variables. Most times where you have a method that is likely to be called multiple times
and where the method is idempotent, you can store the result of the calculation in an
instance variable to increase performance.

Let's assume you have an Invoice class that accepts an array of LineItem instances.
Each LineItem contains information about the item purchased, such as the price of the
item and the quantity of items purchased. When preparing the invoice, the total tax needs
to be calculated by multiplying the tax rate by the sum of the total cost of the line items:

LineItem = Struct.new(:name, :price, :quantity)

class Invoice

 def initialize(line_items, tax_rate)

 @line_items = line_items

 @tax_rate = tax_rate

 end

 def total_tax

 @tax_rate * @line_items.sum do |item|

 item.price * item.quantity

 end

 end

end

If total_tax is only called once in the average lifetime of the Invoice instance, then
it doesn't make sense to cache the value of it, and caching the value of it can make things
slower and require increased memory. However, if total_tax is often called multiple
times in the lifetime of an Invoice instance, caching the value can significantly improve
performance.

In the typical case, it's common to store the results of the calculation directly in an
instance variable:

 def total_tax

 @total_tax ||= @tax_rate * @line_items.sum do |item|

 item.price * item.quantity

Learning how best to use instance variables 67

 end

 end

In this particular case, this approach should work fine. However, there are a couple
cases where you cannot use this simple approach. First, this approach only works if the
expression being calculated cannot result in a false or nil value. This is due to the
||= operator recalculating the expression if the @total_tax instance variable is false
or nil. To handle this case, you should use an explicit defined? check for the instance
variable:

 def total_tax

 return @total_tax if defined?(@total_tax)

 @total_tax = @tax_rate * @line_items.sum do |item|

 item.price * item.quantity

 end

 end

This will handle cases where the expression being cached can return nil or false. Note
that it is possible to be more explicit and use instance_variable_defined?
(:@total_tax) instead of defined?(@total_tax), but it is recommended that
you use defined? because Ruby is better able to optimize it. This is because defined?
is a keyword and instance_variable_defined? is a regular method, and the Ruby
virtual machine optimizes the defined? keyword into a direct instance variable check.

The second case where you cannot use this check is when the Invoice instance is frozen.
You cannot add instance variables to frozen objects. The solution in this case is to have an
unfrozen instance variable hash inside the frozen object. Because the unfrozen hash can
be modified, you can still cache values in it. You can modify the Invoice class to make
sure all instances are frozen on initialization but contain an unfrozen instance variable
named @cache, and that the total_tax method uses the @cache instance variable to
cache values:

LineItem = Struct.new(:name, :price, :quantity)

class Invoice

 def initialize(line_items, tax_rate)

 @line_items = line_items

 @tax_rate = tax_rate

 @cache = {}

 freeze

68 Proper Variable Usage

 end

 def total_tax

 @cache[:total_tax] ||= @tax_rate *

 @line_items.sum do |item|

 item.price * item.quantity

 end

 end

end

Like the instance variable approach, the previous example also has issues if the expression
can return false or nil. And you can fix those using a similar approach, with key?
instead of defined?:

 def total_tax

 return @cache[:total_tax] if @cache.key?(:total_tax)

 @cache[:total_tax] = @tax_rate *

 @line_items.sum do |item|

 item.price * item.quantity

 end

 end

The other issue with this approach, and with caching in general using instance variables, is
that, unlike local variables, you probably do not have control over the entire scope of the
instance. When caching in local variables, you know exactly what scope you are dealing
with, and can more easily determine whether using the local variable as a cache is safe.
If any of the objects in the expression being cached are mutable, there is a chance that
the cached value could become inaccurate, as one of the objects in the expression could
be changed.

In the previous example, the Invoice class does not offer an accessor for line_items
or tax_rate. Since it is frozen, you can assume tax_rate cannot be changed, since it
is probably stored as a numeric value, and those are frozen by default, even if they are not
immediate objects. However, consider line_items. While Invoice does not offer an
accessor for it, the values passed in could be modified after they are passed in and the total
tax has been calculated:

line_items = [LineItem.new('Foo', 3.5r, 10)]

invoice = Invoice.new(line_items, 0.095r)

tax_was = invoice.total_tax

Learning how best to use instance variables 69

line_items << LineItem.new('Bar', 4.2r, 10)

tax_is = invoice.total_tax

With this example, tax_was and tax_is will be the same value, even though the
Invoice instances line items have changed. To avoid this issue, there are a couple of
approaches. The first approach is that Invoice could duplicate the line items, so that
changes to the line items used as an argument do not affect the invoice:

def initialize(line_items, tax_rate)

 @line_items = line_items.dup

 @tax_rate = tax_rate

 @cache = {}

 freeze

end

This still allows someone to use instance_variable_get(:@line_items) to get
the array of line items and modify it.

The second approach is freezing the line items:

def initialize(line_items, tax_rate)

 @line_items = line_items.freeze

 @tax_rate = tax_rate

 @cache = {}

 freeze

end

This is a better approach, except that it mutates the argument, and in general it is a bad
idea for any method to mutate arguments that it doesn't control unless that is the sole
purpose of the method. The safest approach is the combination of approaches:

def initialize(line_items, tax_rate)

 @line_items = line_items.dup.freeze

 @tax_rate = tax_rate

 @cache = {}

 freeze

end

70 Proper Variable Usage

This makes sure that the array of line items cannot be modified. However, there is still
a way for the resulting calculation to go stale, and that is if one of the line items is
modified directly:

line_items = [LineItem.new('Foo', 3.5r, 10)]

invoice = Invoice.new(line_items, 0.095r)

tax_was = invoice.total_tax

line_items.first.quantity = 100

tax_is = invoice.total_tax

Here you are modifying the quantity in the first line item, which should result in a change
to the total tax. To avoid this issue, you need to make sure you can freeze the line items.
One approach is to make all LineItem instances frozen:

LineItem = Struct.new(:name, :price, :quantity) do

 def initialize(...)

 super

 freeze

 end

end

However, if you don't want to take that approach, and only want to freeze line items given
on the invoice, in the Invoice#initialize method, you can map over the list of line
items, return a frozen dump of each item, and then freeze the resulting array:

def initialize(line_items, tax_rate)

 @line_items = line_items.map do |item|

 item.dup.freeze

 end.freeze

 @tax_rate = tax_rate

 @cache = {}

 freeze

end

You've now learned that in order to get the maximum benefit of caching inside objects,
you need to be dealing with frozen objects, but where each frozen object has an unfrozen
cache.

Learning how best to use instance variables 71

Handling scope issues with instance variables
Like local variables, instance variables have their own scopes, but unlike local variables,
the scope of instance variables is not lexical. The scope of instance variables is always the
same as the implicit receiver of methods, self. The scope gates that were discussed in
Handling scope gate issues, def, class, and module, also change instance variable scope.
However, the gateless equivalents of define_method, Class.new, and Module.new
also change instance variable scope, since they have a new self.

One of the main issues to be concerned with when using instance variables is using
them inside blocks passed to methods you do not control. Let's assume you were using
the Invoice class from the previous section, but you want to add a method named
line_item_taxes that returns an array of taxes, one for each line item. One way to
implement this would be a map over the line items, with the total price of the line item
multiplied by the tax rate of the invoice:

class Invoice

 def line_item_taxes

 @line_items.map do |item|

 @tax_rate * item.price * item.quantity

 end

 end

end

This would work in most cases, but there is a case where it would fail. In this example,
you are assuming that @line_items is an array of LineItem instances. However,
that doesn't necessarily have to be the case. Instead of a simple array, the passed-in
line_items argument could be an instance of a separate class:

class LineItemList < Array

 def initialize(*line_items)

 super(line_items.map do |name, price, quantity|

 LineItem.new(name, price, quantity)

 end)

 end

 def map(&block)

 super do |item|

 item.instance_eval(&block)

 end

72 Proper Variable Usage

 end

end

Invoice.new(LineItemList.new(['Foo', 3.5r, 10]), 0.095r)

One reason to implement such a class is to make it easier to construct a literal list of
line items, by just providing arrays of name, price, and quantity to the LineItemList
initializer, and having it automatically create the LineItem instances. To make things
even easier for the user, the LineItemList class has a map method that evaluates the
block passed to it in the context of the item, in addition to passing the item as a variable
to the block. This allows for simpler code inside the block, as long as you are only
accessing local variables and methods of the current line item. For example, you can
generate an array of total costs for each line item more easily:

line_item_list.map do

 price * quantity

end

Instead of the following more verbose code:

line_item_list.map do |item|

 item.price * item.quantity

end

The trade-off in this case is that doing this changes the scope of the block from the
caller's scope to the scope of the line item. This breaks the example used earlier, because
the @tax_rate reference is no longer the tax rate of the invoice, but the tax rate of
the line item. As LineItem doesn't have a @tax_rate instance variable, the instance
variable access returns nil, and this likely results in NoMethodError:

class Invoice

 def line_item_taxes

 @line_items.map do |item|

 @tax_rate * item.price * item.quantity

 end

 end

end

Learning how best to use instance variables 73

You can work around this case by assigning the instance variable to a local variable before
the block and accessing the local variable inside the block. As explained in Increasing
performance by adding local variables, that's probably a good idea anyway, as it is likely to
improve the overall performance. This is because accessing local variables is faster than
accessing instance variables. Let's switch the example to store the instance variable in
a local variable for better performance:

class Invoice

 def line_item_taxes

 tax_rate = @tax_rate

 @line_items.map do |item|

 tax_rate * item.price * item.quantity

 end

 end

end

Issues like this are one reason why it's generally a bad idea for code to use methods
such as instance_eval and instance_exec without a good reason. Using
instance_eval or instance_exec on blocks that are likely to be called inside user
code, as opposed to blocks used for configuration, can be a common source of bugs.
In this particular case, the issue shows up with instance variable use, but it also occurs
any place methods of the surrounding scope are called implicitly, or when self is used
directly.

Naming considerations for instance variables
Like local variables, instance variables should be named with @lower_snake_case
with all-ASCII characters. One exception to this is when using instance variables with
anonymous classes and modules (generally when testing), in which @ClassName and
@ModuleName are also acceptable. Like local variables, avoid emoji in instance variable
names, and only use non-ASCII characters with localized names when the code is being
maintained solely in that language.

Since instance variable scope is not lexical, you never know how long the scope will be,
and therefore you should avoid single-letter or other very short instance variable names.
However, because instance variables are internal to the object and easy to refactor later,
you generally should not need to use long descriptive instance variable names.

74 Proper Variable Usage

Using the TransactionProcessingSystemReport example
from Naming considerations with local variables, if you have to store a
TransactionProcessingSystemReport instance in an instance variable, the fully
descriptive name is probably too long:

@transaction_processing_system_report =

 TransactionProcessingSystemReport.new

You should probably use an abbreviated name:

@tps_report = TransactionProcessingSystemReport.new

Or even simpler if the object only deals with a single type of report:

@report = TransactionProcessingSystemReport.new

In this section, you learned how to use instance variables to improve performance, about
issues with instance variable scope, and important principles in instance variable naming.
In the next section, you'll learn that Ruby's constants are really variables in disguise.

Understanding how constants are just a type
of variable
Ruby has constants, but unlike constants in most other languages, Ruby's constants are
actually variables. It's not even an error in Ruby to reassign a constant; it only generates
a warning. Say you try the following code:

A = 1

A = 2

Then you'll see it only generates two warnings:

warning: already initialized constant A

warning: previous definition of A was here

At best, Ruby's constants should be considered only as a recommendation. That being
said, not modifying a constant is a good recommendation. In general, you shouldn't
modify constants unless you have to, especially constants that are in external code such
as libraries.

Understanding how constants are just a type of variable 75

You can think of a constant in Ruby as a variable type that can only be used by modules
and classes, with different scope rules. As both modules and classes are objects, they can
both have instance variables in addition to constants. When a class or module needs to
store information, you should consider whether an instance variable or a constant is more
appropriate.

Handling scope issues with constants
Constant scope in Ruby is different than both local variable scope or instance variable
scope. In some ways, it is lexical, but it's not truly lexical as the constant doesn't have to
be declared in the same lexical scope in which it is accessed. Constant scope and
resolution is one of the more involved parts of Ruby, and even many experienced Ruby
programmers probably forget how it works in detail.

It's easiest to learn Ruby's constant scope rules by examples. You can start by defining class
A, with constants W, X, Y, and Z. You can also define constants U and Y in Object, as it
will be easier to learn constant resolution with them. As A does not specify a subclass,
Ruby will make it a subclass of Object:

class A

 W = 0

 X = 1

 Y = 2

 Z = 3

end

class Object

 U = -1

 Y = -2

end

You can make a subclass of A named B, and define constants X and Z inside B:

class B < A

 X = 4

 Z = 5

end

76 Proper Variable Usage

If you open up the B class in a separate scope, you can check the value of each of U, W, X, Y,
and Z to see how constant resolution works:

class B

 U # -1, from Object

 W # 0, from A

 X # 4, from B

 Y # 2, from A

 Z # 5, from B

end

We see X and Z use the value directly defined in B, while W and Y use the value from
A (the superclass of B), and U uses the value from Object (the superclass of the
superclass of B). From this example, you know that the class lookup will look first at the
class or module for the constant, and only at superclasses of the class or module if the
constant isn't found in the class directly, and if the superclass doesn't contain the constant,
continue recursively up the ancestor chain.

For a single-class definition, that's all you need to worry about in regards to constant
resolution. However, the situation gets significantly more complex when you have a class
or module definition inside another class or module definition. To illustrate this, you can
define another subclass of A named C that just defines a constant, Y:

class C < A

 Y = 6

end

You can also define a class, D, that defines a constant, Z:

class D

 Z = 7

end

And then a subclass of D named E that defines a constant, W:

class E < D

 W = 8

end

Understanding how constants are just a type of variable 77

To further understand constant resolution, we will look at two different possible ways
to nest constants. The first one is where class C is nested under class E. You need to use
class ::C in this case so that you reopen the top-level C class and do not create an
E::C class:

class E

 class ::C

 U # -1, from Object

 W # 8, from E

 X # 1, from A

 Y # 6, from C

 Z # 3, from A

 end

end

From these results, you can see that E takes priority over A (the superclass of C) because
both E and A define the constant W, but the constant resolution of W inside C will find the
constant in E before it finds the constant in the superclass of C. However, for the constant
Z, it is defined in both D (the superclass of E) and A (the superclass of C), but the value
used is from A and not D.

If you switch the nesting, you get different results:

class C

 class ::E

 U # -1, from Object

 W # 8 from E

 X # NameError

 Y # 6, from C

 Z # 7, from D

 end

end

Here, you get NameError for X but not for Z. X is defined in A, which is the superclass
of C, while Z is defined in D, the superclass of E.

78 Proper Variable Usage

Just to make sure you get a more complete understanding, let's nest both C and E under B:

class B

 class ::C

 class ::E

 U # -1, from Object

 W # 8 from E

 X # 4, from B

 Y # 6, from C

 Z # 5, from B

 end

 end

end

Here you can see that X and Z now resolve to the constants in B. Because Z is defined in
both D and B, you can see that the lexical nesting in B takes precedence over the superclass
resolution in E.

From this example, you can probably guess Ruby's constant lookup algorithm:

1.	 Look in the current namespace (W in the previous example).

2.	 Look in the lexical namespaces containing the current namespace (X, Y, and Z in
the previous example).

3.	 Look in the ancestors of the current namespace, in order (U in the previous
example).

4.	 Do not look in ancestors of the lexical namespaces containing the current
namespace.

Stated in four brief rules, the algorithm is not difficult to understand, but constant scope
is still much trickier than class instance variable scope, which is always the same no matter
the nesting:

class C

 @a # instance variable of C

end

class B

 class ::C

 @a # same instance variable of C

Understanding how constants are just a type of variable 79

 end

end

In this section, you've learned that constant scope in Ruby may not be intuitive, but it can
be understood by remembering four simple rules. You also saw how constants and class
instance variables differ in terms of scope. In the next section, you'll learn how constants
and class instance variables differ in terms of visibility.

Visibility differences between constants and class
instance variables
One significant difference between constants and class instance variables is that constants
are externally accessible by default, whereas class instance variables are like all instance
variables and not externally accessible by default. You can make constants not externally
accessible using private_constant:

class A

 X = 2

 private_constant :X

end

A::X

NameError

However, this error occurs only when getting the value of the constant; you can still set the
value of the constant with only a warning:

A::X = 3

warning: already initialized constant A::X

Note that reassigning the constant does not change the external visibility; you still get
a NameError if trying to externally access the constant after reassigning the value:

A::X

NameError

You have to explicitly set the constant as public using public_constant to make it
externally accessible again:

class A

 public_constant :X

80 Proper Variable Usage

end

A::X # 3

For class instance variables, you can make them externally accessible similar to how
you make instance variables accessible for regular objects, by calling attr_reader
or attr_accessor. When making instance variables accessible for other objects,
you generally make them accessible for all instances of the same class, so you define
attr_reader or attr_accessor on the class itself.

However, you don't want to define accessors for class instance variables for all classes
(all instances of the Class class); you only want to define accessors for instance
variables for a specific instance of Class. In this case, you would do the same thing for
a class as you would if you wanted to define accessors for only a specific instance of the
class. You would define the methods on the singleton class of the object:

class A

 @a = 1

 class << self

 attr_reader :a

 end

end

A.a # 1

In this example, attr_reader is called on the singleton class of A, which makes the
A.a method return the value of the @a class instance variable of A.

You'll learn about more differences between constants and class instance variables later
in this chapter, where you'll learn about replacements for class variables.

Naming considerations with constants
The naming of constants depends on whether they are classes/modules or other
objects. Classes and modules should use CamelCase. Other objects should use
ALLCAPS_SNAKE_CASE. Ruby follows these conventions internally. You have class
names such as ArgumentError and BasicObject, and other constant names
such as TOPLEVEL_BINDING and RUBY_ENGINE.

Replacing class variables 81

Like local and instance variables, it's best to keep this to all-ASCII names. Avoid emoji in
constant names, and only use non-ASCII characters with localized names when the code
is being maintained solely in that language.

In general, it's best to keep class and module names long and descriptive. In cases where
the entire class name becomes tedious to use, the class can be stored with a shorter name
in a local variable, instance variable, or other constant.

Similar to local variable names, one case where constant names can be short is when there
is a defined convention in the library being used for short constant names. For example,
in the Sequel database library, the convention is to store the Sequel::Database
instance in a constant named DB, since there is usually only one instance initialized in
each application. All of the documentation for the library uses this convention, and users
are strongly encouraged to follow it. However, in the absence of a library or application
convention for short constant names for specific constants that are used constantly in the
application, constant names should be long and descriptive.

In this section, you learned how constants are just a type of variable, how constant scope
works, how constants differ from class instance variables in terms of scope, and important
principles when naming constants. In the next section, you'll learn about Ruby's class
variables, and what you should use instead.

Replacing class variables
There are a few features in Ruby you should never use, and class variables are one
of them. Class variable semantics are bad enough that the Ruby core team now
recommends against their use, and no longer considers it worth it to even fix bugs in how
class variables are handled. This is a shame because class variables almost have behavior
you want. However, class variable behavior is just different enough from what you want to
not be useful.

At first appearance, class variables have desirable qualities:

•	 You can access them in the class itself.

•	 You can access them when reopening the singleton class in the class itself.

•	 You can access them in the class's methods.

•	 You can access them in all of these places in any of the class's subclasses.

82 Proper Variable Usage

Here's an example:

class A

 @@a = 1

 class << self

 @@a

 end

 def b

 @@a

 end

end

class B < A

 @@a

end

So far, so good. However, what happens when you change the value of the class variable
in B ?

class B

 @@a = 2

end

A.new.b # 2

Changing the class variable in B doesn't affect just the class variable in B as you might
expect, it changes the class variable in A as well. This is because class variables aren't really
specific to a class but to a class hierarchy. Therefore, you can never safely define a class
variable in any class that is subclassed or any module that is included in other classes,
ruling out their safe usage completely in libraries.

That's weird and bad, but it gets worse. Let's say you have a class variable in B:

class B

 @@b = 3

 def c

 @@b

Replacing class variables 83

 end

end

B.new.c # 3

Okay, that works as expected. What happens if, later, you try to access the class variable
from A, the superclass of B?

class A

 @@b # NameError

end

You get NameError. That's good, because you never defined the class variable in A, and
surely you don't want the class variable to propagate up to superclasses?

What happens if, later, you define a class variable with the same name in A?

class A

 @@b = 4

end

Ruby doesn't complain about this; it doesn't even issue a warning. However, what if you
later call that B#c method?

B.new.c

RuntimeError (class variable @@b of B is overtaken by A)

You get RuntimeError. RuntimeError is raised when the class variable is accessed,
instead of when the class variable was overridden in the superclass. This RuntimeError
may not occur when your application is loaded, only later when the method is called.

This means it is never safe to define a class variable in a subclass because if the same class
variable name is added to a superclass, it will break the subclass.

Since you can't safely use a class variable in a subclass, and can't safely use a class variable
in a superclass or module, there really isn't any way to use them safely. That plus the fact
that modifying a class variable in a subclass changes the value of the class variable in the
superclass means that there is no reason to use them.

There are at least three reasonable separate approaches for replacing class variables in
Ruby, which you'll learn about in the following sections.

84 Proper Variable Usage

Replacing class variables with constants
One possible approach to replacing class variables is using constants instead. Constants
have a nice property that they already operate more or less sanely in a class hierarchy:

class A

 C = 1

end

class B < A

 C # 1

end

Accessing a constant will use the constant defined in the superclass, as you saw in
Handling scope issues with constants earlier in this chapter. What happens when you set
the constant in the subclass?

class B

 C = 2

end

class B

 C # 2

end

class A

 C # 1

end

It only sets the constant value in the subclass; it does not propagate the change to the
superclass. That's much better than class variable behavior.

What's the downside of using constants as a replacement for class variables? The main
downside is that, as you learned in Understanding how constants are just a type of variable,
Ruby warns you when you change the value of a constant:

class B

 C += 1 # warning

end

Replacing class variables 85

Also, while you can access a constant inside a method, you can't set a constant inside
a method, at least not using the standard constant setting syntax:

class B

 def increment

 # would be SyntaxError, dynamic constant assignment

 # C += 1

 end

end

You have to use Module#const_set:

class B

 def increment

 self.class.const_set(:C, C + 1)

 end

end

This is still a poor approach as it warns on every call to the method.

Because a constant can refer to a mutable object, it is possible to allow reassignment
behavior without actually reassigning the constant itself:

class B

 C = [0]

 def increment

 C[0] += 1

 end

end

Using a mutable constant to work around constant reassignment warnings is definitely
a hack and not an implementation recommendation. It's a bad idea to use this approach,
for the same reason it is bad to rely on globally mutable data structures in general.

For class variables that do not need to be modified, using a constant instead should work
fine. However, in any case where you will be reassigning the value, it is a bad idea to use
a constant, and you should use one of the next two approaches instead.

86 Proper Variable Usage

Replacing class variables with class instance variables
using the superclass lookup approach
If you cannot replace your class variable with a constant because you are reassigning it,
you should replace it with a class instance variable. However, like all instance variables,
class instance variables are specific to the class itself and are not automatically propagated
to subclasses. One approach to work around this fact is to look in the superclass if you
don't find the instance variable in the current class, called the superclass lookup approach.

To implement this approach, let's continue with our example with class A and subclass B,
but this time class A has an instance variable @c with a value of 1:

class A

 @c = 1

end

class B < A

end

Let's say you want to get the value of @c from B using the superclass lookup approach.
This involves either a recursive or iterative approach to look in superclasses. Here's how
you could code the iterative approach:

class B

 if defined?(@c)

 c = @c

 else

 klass = self

 while klass = klass.superclass

 if klass.instance_variable_defined?(:@c)

 c = klass.instance_variable_get(:@c)

 break

 end

 end

 end

end

If B already defines the instance variable, you just use the defined value. Otherwise, you
look in the superclass of B and see whether it defines the instance variable, and if it is
defined, then you use it, otherwise, you try the next superclass.

Replacing class variables 87

As you can see, this is a lot of code for every time you want to access the instance variable,
so almost always this would be wrapped in a class method of the superclass so that it
works for all subclasses:

def A.c

 if defined?(@c)

 @c

 else

 klass = self

 while klass = klass.superclass

 if klass.instance_variable_defined?(:@c)

 return klass.instance_variable_get(:@c)

 end

 end

 end

end

A.c # 1

B.c # 1

It's still simple to set an explicit class instance variable value inside class B, and the
iterative approach will pick it up:

class B

 @c = 2

end

A.c # 1

B.c # 2

The recursive approach is similar to the iterative approach, it just uses recursion instead of
iteration in the lookup method. This is actually a much simpler approach in terms of code,
and it performs better as well, due to fewer and simpler method calls:

def A.c

 defined?(@c) ? @c : superclass.c

end

88 Proper Variable Usage

One advantage of the superclass lookup approach is that if you change the class instance
variable value in the superclass without changing it in the subclass, calling the lookup
method in the subclass will reflect the changed value in the superclass. Another advantage
is that the superclass approach uses minimal memory. The disadvantage is the variable
lookup can take significantly more time, at least for deep hierarchies, especially if it is
unlikely you'll be changing the value in subclasses. This is a classic processing time versus
memory trade-off. The superclass lookup approach makes the most sense if reduced
memory is more important than processing time.

Replacing class variables with class instance variables
using the copy to subclass approach
The alternative to the superclass lookup approach when replacing class variables with class
instance variables is copying each instance variable into the subclass when the subclass
is created. This approach requires that you set up the support for it before creating
subclasses.

In order to modify each subclass as soon as it is created, you use the inherited
singleton method of the superclass. This method is called with each subclass created
and can be used to modify the created subclass. In your inherited method, for
each of the class instance variables you want to copy into the subclass, you call
instance_variable_set on the subclass:

class A

 @c = 1

 def self.inherited(subclass)

 subclass.instance_variable_set(:@c, @c)

 end

end

class B < A

 @c # 1

end

Avoiding global variables, most of the time 89

This approach has the advantage that you can access the instance variables directly in
subclasses without having to use a special method. This makes accessing the values in the
subclass faster. The disadvantage is that if you change the value of the variable in A without
having modified the value in B, looking up the value in B will reflect the initial value that
was set when B was created, instead of the current value in A. Additionally, the subclass
copy approach requires more memory, especially if you have a large number of instance
variables you need to copy into the subclass and/or a large number of subclasses.

In this section, you learned that you should never use class variables and three approaches
to replacing them. In the next section, you'll learn about Ruby's final variable type, the
global variable.

Avoiding global variables, most of the time
Global variables are available in Ruby, but in general, their use is discouraged unless it
is necessary. Some examples where it may make sense for you to use global variables are
when you are modifying the load path:

$LOAD_PATH.unshift("../lib")

Or when you are silencing warnings in a block (assuming you actually have a good reason
to do that):

def no_warnings

 verbose = $VERBOSE

 $VERBOSE = nil

 yield

ensure

 $VERBOSE = verbose

end

Or lastly, when reading/writing to the standard input, output, or error:

$stdout.write($stdin.read) rescue $stderr.puts($!.to_s)

These are all cases where you are using the existing global variables. It rarely makes sense
to define and use your own global variables, even though Ruby does make it easy to use
global variables since they are global and available everywhere.

90 Proper Variable Usage

The main issues with using global variables in Ruby are the same as using global variables
in any programming language, in that it encourages poor coding style and hard-to-follow
code. Additionally, because there is only one shared namespace for global variables, there
is a greater chance of variable conflicts. Let's say you have code like the following:

class SomeObject

 def current_user

 $current_user

 end

end

And somewhere else in your application is the following:

$current_user = User[user_id]

It's probably going to be a pain to use parts of your application in a script that doesn't
set $current_user. Global variables make this type of setup easy, but in general, this
is a Faustian bargain, as you are trading to get convenient localized access in exchange
for long-term architectural problems. This approach almost always results in significant
technical debt as soon as it is committed.

As you'll learn, it's fairly easy to replace global variables, but using an approach that
avoids global variables while keeping the same architecture does not fix anything. If you
need information in a low-level part of your application that comes from a high-level
part of your application, do not take the shortcut of using a global variable or any similar
approach. Properly pass the data as method arguments all the way from the high level to
the low level. Otherwise, you are just setting yourself up for long-term problems.

That being said, there are cases where you need a global value or some global state. For
example, if you are writing a batch processing system for the invoices discussed earlier in
the chapter and you want to print a period for every 100 invoices processed as a minimal
form of progress indicator, you could use a global variable as a quick way to implement it.
You could initialize your global variable at the start of your program:

$invoices_processed = 0

And then every time you process an invoice:

$invoices_processed += 1

if $invoices_processed % 100 == 0

 print '.'

end

Avoiding global variables, most of the time 91

To avoid the use of a global variable, it's possible to switch to a constant object with some
useful helper methods:

INVOICES_PROCESSED = Object.new

INVOICES_PROCESSED.instance_eval do

 @processed = 0

 def processed

 @processed += 1

 if @processed % 100 == 0

 print '.'

 end

 end

end

And then when you process an invoice, you can use simpler code:

INVOICES_PROCESSED.processed

If you don't want to use a single constant with specialized behavior, you can also just add
an accessor to an existing singleton, such as the Invoice class:

class Invoice

 @number_processed = 0

 singleton_class.send(:attr_accessor, :number_processed)

end

And then your invoice processing code can use similar code as was used for the global
variable:

Invoice.number_processed += 1

if Invoice.number_processed % 100 == 0

 print '.'

end

About the only time to use a global variable instead of a singleton accessor method or
a specialized constant is when you need the absolute maximum performance, as global
variable getting and setting is faster than calling a method. In all other cases, defining your
own global variables should be avoided.

92 Proper Variable Usage

Summary
In this chapter, you learned all about Ruby's different variable types. You learned how
to use local variables whenever possible. You also learned how both local variables and
instance variables can provide substantial performance benefits with intelligent caching.

Moving on, we covered that constants are just another type of variable and that both
constants and class instance variables can replace the use of class variables. Finally, you
learned about global variables and how to replace their usage with constants or accessor
methods on singletons.

Most importantly, in this chapter, you learned when it is appropriate to use each of Ruby's
variable types, and how to properly name them, which are two of the most important
factors in writing Ruby programs that are easy to maintain.

In the next chapter, you'll build on this knowledge, and learn about methods and how best
to use their many types of arguments.

Questions
1.	 Is it always a good idea to use long descriptive names for local variables?

2.	 When using instance variables for caching, why is it important that the object be
frozen?

3.	 A constant named SomeValue probably contains an instance of what type of Ruby
class?

4.	 When should you use class variables?

5.	 Should you always avoid using global variables?

Further reading
Numbered parameters: https://docs.ruby-lang.org/en/3.0.0/Proc.
html#class-Proc-label-Numbered+parameters

https://docs.ruby-lang.org/en/3.0.0/Proc.html#class-Proc-label-Numbered+parameters
https://docs.ruby-lang.org/en/3.0.0/Proc.html#class-Proc-label-Numbered+parameters

4
Methods and Their

Arguments
Methods are where almost all the logic is implemented in Ruby programs. Along with
how you design your classes, how you design your methods makes all the difference
between a library that is a joy to use and one that inspires dread. In this chapter, you'll
learn how to design methods to inspire joy in the users of the methods, even if you are the
only user. You'll learn how limiting the visibility of methods allows for easier refactoring
down the line. You'll also gain a greater understanding of Ruby's object model by learning
what class methods actually are.

In this chapter, we will cover the following topics:

•	 Understanding that there are no class methods, only instance methods

•	 Naming methods

•	 Using the many types of method arguments

•	 Learning about the importance of method visibility

•	 Handling delegation

94 Methods and Their Arguments

By the end of this chapter, you'll have a better understanding of methods in Ruby,
including how to name them, what types of arguments they should take, and whether you
should make them public. With this, you'll be able to write libraries that are easier to use
and applications that are easier to maintain.

Technical requirements
In this chapter and all chapters of this book, the code provided in code blocks was
designed to be executed on Ruby 3.0. Many of the code examples will work on earlier
versions of Ruby, but not all of them. The code for this chapter is available online at
https://github.com/PacktPublishing/Polished-Ruby-Programming/
tree/main/Chapter04.

Understanding that there are no class
methods, only instance methods
Ruby programmers often refer to methods you can call on classes as class methods, and
methods that you can call on modules as module methods. However, Ruby does not have
class methods or module methods as separate concepts – it only has instance methods.
Every method that you would think of as a class or a module method is just an instance
method of the class or module's singleton class. That doesn't mean that you should stop
using the terms class method or module method – it just means you should understand
that these methods are not special and are just like all other methods.

You will often see class methods defined on classes in one of four ways. The most common
way is to use self in front of the method, as shown here:

class Foo

 def self.bar

 :baz

 end

end

https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter04
https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter04

Understanding that there are no class methods, only instance methods 95

This makes it obvious that the method being defined is a singleton method, because
any method definition in Ruby that uses the def expression.name format defines
a singleton method on the object returned by expression. The previous method
definition is basically the same as the following:

class Foo

end

def Foo.bar

 :baz

end

The only difference between these two approaches is that the constant lookup in the
Foo.bar approach would be different from the earlier self.bar approach, as it would
not look in the Foo namespace for the constant.

Ruby is flexible in what expressions are allowed when you're defining a singleton method.
You can provide any expression – it doesn't have to be self, a constant, or a variable.
Please refer to the following code:

def (Foo = Class.new).bar

 :baz

end

The second way that you will commonly see class methods defined in Ruby is via the
<< self singleton class opening syntax:

class Foo

 class << self

 def bar

 :baz

 end

 end

end

The nice aspect of this approach is that this approach reflects what actually happens in
Ruby, where bar is a regular instance method in the Foo singleton class.

96 Methods and Their Arguments

You rarely see the singleton class opening syntax being used with an argument that is not
self, but it is completely possible and works the same way:

class Foo

end

class << Foo

 def bar

 :baz

 end

end

The third way that you'll see singleton methods defined is when instance_eval is used
on a class:

Foo.instance_eval do

 def bar

 :baz

 end

end

Unlike class_eval, which is very similar to opening a class with the standard class
Foo syntax, instance_eval on a class is like instance_eval on any other object,
wherein regular methods defined inside the block (without the def expression.
name syntax) are defined on the object's singleton class.

As a general principle, it's a good idea to avoid instance_eval in cases where you
don't need it. In general, it is probably best to use the explicit self method definition:

class Foo

 def self.bar

 :baz

 end

end

The main case where the << self syntax makes more sense is if you are doing more
advanced work in your class, such as modifying method visibility, or when aliasing or
removing methods, as shown here:

class Foo

 class << self

Understanding that there are no class methods, only instance methods 97

 private

 def bar

 :baz

 end

 alias baz bar

 remove_method :bar

 end

end

You can do this without the << self syntax, but it is more cumbersome:

class Foo

 def self.bar

 :baz

 end

 private_class_method :bar

 singleton_class.alias_method :baz, :bar

 singleton_class.remove_method :bar

end

The fourth way to implement class methods is to use define_singleton_method:

class Foo

 define_singleton_method(:bar) do

 :baz

 end

end

As you'll learn in Chapter 8, Designing for Extensibility, sometimes, it's best to skip the
use of class methods completely and use modules that extend the class instead, as that
approach tends to be more flexible.

In this section, you learned that Ruby does not have class methods as a separate concept.
What it calls class methods are just a type of instance method. In the next section, you'll
learn about the importance of proper method naming.

98 Methods and Their Arguments

Naming methods
More than local variable naming, instance variable naming, and most constant naming,
method naming is probably the most important naming in Ruby. The only other naming
that is roughly as important is class and module naming. However, in general, there are
significantly fewer classes and modules than methods, so you will be dealing with method
naming more often.

The Ruby core team recognizes the importance of good method naming, and sometimes
there are Ruby features that are considered desirable by the core team but are not accepted
into the language, simply because a good method name has not been proposed for them.

One reason why method naming is so important is that method names are difficult to
change without breaking backward compatibility, at least if the methods are public.
Another reason is that method names have a large effect on the understandability and
user-friendliness of the code, especially if they are called often.

In Chapter 3, Proper Variable Usage, you learned that one principle for naming local
variables is that the length of a local variable name should be inversely proportional to
the size of the scope of the local variable. There is a similar principle with method names,
and that is that the length of a method name should be inversely proportional to how often
the method will be called.

If a method is called very frequently, you want it to have the shortest possible
understandable name. For example, the method to get the number of elements in an array
is called very frequently, so it has a short name (size or length) as opposed to a longer,
potentially more descriptive name such as number_of_elements. Getting the binary
content of a string is so common in some cases that it has a single character method
name, b. Likewise, debugging by printing an object's inspect output is so common in
Ruby that it has a single-letter method name in all objects, p (and pp for a more nicely
formatted inspect).

When using the frozen-string-literal magic comment to make all the strings
in a file frozen, even dup, a three-letter method name, was considered too long, so they
added the +@ unary operator on strings (+@ doesn't duplicate the string if it isn't frozen,
but it is almost always used on frozen strings).

Naming methods 99

For methods that are not called frequently, or that you want to discourage users
from calling frequently, it's good for them to have long, descriptive names. It's not
recommended to poke around the instance variables of other objects, so instance_
variable_get and instance_variable_set are used instead of something
shorter, such as iv_get and iv_set, respectively. However, it is normal to get and set
instance variables directly when writing C extensions, so the Ruby C API functions are
named rb_iv_get and rb_iv_set. Getting a list of instance methods of a certain
visibility for a class or module isn't a common need, so the method names that are used
here are private_instance_methods, protected_instance_methods, and
public_instance_methods.

For methods that should only be called once during application initialization for
configuring applications, it's a good idea to give them very descriptive names. For
example, the Rodauth authentication framework is configured using a domain-specific
language, and the configuration methods that are used in it are very long and descriptive,
such as two_factor_modifications_require_password? and webauthn_
duplicate_webauthn_id_message. These long names are not a problem because,
in general, these methods are only called once by the user in the application.

In this section, you learned about the importance of naming methods and how method
name length should be inversely proportional to usage. In the next section, you'll learn
about some special method names and why you should take extra care before defining
methods with those names.

Special method names
There are a few methods that you will want to give extra consideration before you use the
method's name.

One of these methods is to_proc. This is because to_proc is called when the &
operator is used, so once you use to_proc for a method, that is how the object will
always act when it's passed as a block. You want to be very sure that you know how the
object should be used as a block before defining the to_proc method on it.

Another method is call. This is because the call method is called whenever the .()
syntax is used on the object, and call is the method that most other objects will use if
they expect a callable object. You should be sure about how you want the object to operate
as a callable object before defining the call method.

Another of these methods is ===. This is because === is called by case when
expressions, and it controls which objects the receiver will match against. You should
wait to define the === method until you are sure how you want the object to work as
a matcher.

100 Methods and Their Arguments

Finally, the [] method is probably the method you should give the most consideration
before using, as it becomes the shortest way to invoke a method on the object (.() is
one more character). While you commonly see this method in collection classes such
as Array and Hash, it can be defined in any class, and intelligent use can result in
a significant decrease in verbosity. The Sequel database library uses the [] method
extensively for creating datasets from databases, returning single rows from datasets or
models, and for wrapping Ruby objects in Sequel-specific objects that can be correctly
literalized into SQL queries.

If you want the row from the database table, b.a, where the id column is 1, you could
use the following code in Sequel:

DB.from(Sequel.identifier(:a).qualify(:b)).

 first(:id=>1)

However, the idiomatic approach in Sequel is to use [] in these cases:

DB[Sequel[:b][:a]][:id=>1]

Such code may be less intuitive to new users of the library, so one consideration before
defining the [] method is whether you want to give users the option for less verbose
code. Allowing less verbose code benefits users who use the code extensively, since writing
the code is less fatiguing. However, allowing less verbose code can hurt new users of the
library as it tends to be less descriptive and thus less intuitive. You should consider that
trade-off before defining the [] method on your objects.

In this section, you learned about the importance of good method naming. In the next
section, you'll learn about the many different types of method arguments that Ruby
supports, and when it is best to use each type.

Using the many types of method arguments
One of the great aspects of Ruby that makes it so flexible and fun to program in is the
many types of method arguments that Ruby supports.

The first thing to consider is whether a method needs arguments at all. If you can get
a method to work without arguments, that is great, because it eliminates a whole class
of possible errors, and you don't even need to think about which types of method
arguments to use. Additionally, the caller of the method doesn't have to worry about
which types of arguments to pass. There's a whole bunch of complexity you can avoid if
your method does not need an argument.

Using the many types of method arguments 101

If you look at the public instance methods of Object, accepting no arguments is the most
common case. 23 Object methods accept no arguments. The next most common cases
are methods that require a single argument, and methods that take a variable number of
arguments. 17 Object methods accept a single argument, and 17 Object methods
accept a variable number of arguments. Here's an example of calculating these numbers:

h = Hash.new(0)

o = Object.new

o.methods.

 each do |m|

 h[o.method(m).arity] += 1

 end

h

=> {0=>23, -1=>17, 1=>17, 2=>1}

Methods that do not accept arguments (zero arity methods) are the fastest for Ruby
to execute, so if you don't need a method to have an argument, it's best to avoid it for
performance reasons.

However, for many methods to work, they need to operate on objects other than the
receiver of the method, so often, it's best to provide those objects as arguments. In this
section, you'll learn about how to use Ruby's many types of arguments.

Positional arguments
Positional arguments are the default method argument types if you just use local variable
names for the method definition:

def method_name(positional_argument)

end

Other than the methods that do not accept arguments, methods that require a single
positional argument are the next simplest. They are simple for the method writer because
only a single variable is passed to the method. You can think of method arguments as local
variables that are defined before the method code is executed. That is actually how Ruby
implements method arguments.

102 Methods and Their Arguments

After method arguments that require a single positional argument, methods that
require two positional arguments are the next simplest. However, introducing a second
argument adds a whole new dimension of complexity, and that is due to argument order.
With methods that take a single argument, you don't have to worry about the order of
arguments. However, for methods that accept more than a single argument, you need to
think carefully about the arguments and what argument order makes sense.

For example, to rename a file in Ruby, you can use File.rename:

File.rename('file1', 'file2')

The big question here is, does this rename file1 to file2, or file2 to file1? On
the command line, mv file1 file2 renames file1 to file2, and Ruby follows
that design. However, even an example like this with a source first, destination second
approach is not universal. memcpy is a famous C function that uses destination first and
source second.

Ruby isn't even internally consistent here since it also has a common method that takes
the destination as the first argument and the source as the second argument:

class C

 alias_method :destination_method, :source_method

end

The destination first, source second argument order from alias_method actually comes
from Ruby's alias keyword, which operates the same way and can alias global variables
in addition to methods:

alias $destination $source

Of the public methods that Ruby defines in the core classes, only about 2% require exactly
two arguments. Kernel#instance_variable_set is available to all objects, and
most of the other methods also set data and accept as arguments the data to set and the
value to set. Some examples of the other methods are Binding#local_variable_
set, Module#const_set, and Module#class_variable_set.

It's even rarer for Ruby core classes to require an exact number of more than two
arguments. Only three methods do that, all of which take exactly three arguments and
are very rarely used: Process.setpriority, Process::Sys.setresuid, and
Process::Sys.setresgid.

Using the many types of method arguments 103

One reason that Ruby avoids methods with many required arguments is that method
ordering issues become even more complex. There are only 2 ways to order 2 elements,
but 6 ways to order 3 elements and 24 ways to order 4 elements. If you are considering
writing a method with many required arguments, strongly consider the argument
ordering issues involved before doing so.

For example, consider a Screen class with a method named draw_box that takes in
coordinates for the box:

class Screen

 def draw_box(x1, y1, x2, y2)

 end

end

This has a classic method argument issue since we don't know whether this should be x1,
y1, x2, y2 or x1, x2, y1, y2.

One alternative to accepting many exactly required arguments is to accept a single object
that has that many accessors, such as a Struct subclass. Please refer to the following
code:

Box = Struct.new(:x1, :y1, :x2, :y2)

class Screen

 def draw_box(box)

 end

end

However, this type of design encourages class proliferation, which leads to higher
cognitive overhead. Additionally, this approach requires object allocation, which, in
general, is going to be bad for performance. Also, if you use the previous example,
you will probably end up with the same issue, since callers would often change from
this code:

screen.draw_box(0, 0, 10, 20)

To the following code:

screen.draw_box(Box.new(0, 0, 10, 20))

104 Methods and Their Arguments

Now, this has the same method argument ordering issue. However, the separate-class
approach does at least allow for a design that avoids this issue, as follows:

box = Box.new

box.x1 = 0

box.x2 = 10

box.y1 = 0

box.y2 = 20

screen.draw_box(box)

In general, the approach to creating a separate class for the argument only really makes
sense if you will be passing instances of the class to multiple methods and not just a single
method, or if there are methods that will be returning instances of the class. In other
words, only create a separate class if creating a class makes sense in the domain model.
Do not create a class just to avoid method argument ordering issues.

Another alternative to avoiding method argument ordering issues is to use required
keyword arguments:

class Screen

 def draw_box(x1:, y1:, x2:, y2:)

 end

end

This has the advantage that it allows the user to explicitly name each method argument,
which avoids the method argument ordering issues:

screen.draw_box(x1: 0, x2: 0, y1: 0, y2: 20)

However, it also forces the users who would like to use a shortcut to then use a more
verbose method calling format. Is it possible to allow either calling format? Thankfully,
as you have learned to expect from Ruby, yes, it is possible:

class Screen

 def draw_box(_x1=nil, _y1=nil, _x2=nil, _y2=nil,

 x1:_x1, y1:_y1, x2:_x2, y2:_y2)

 raise ArgumentError unless x1 && x2 && y1 && y2

 end

end

Using the many types of method arguments 105

This requires a more verbose method definition, and it also requires manual error
checking since you can omit both the positional and keyword arguments and Ruby
won't raise an ArgumentError automatically. This approach allows us to follow both
approaches:

screen.draw_box(0, 10, 0, 20)

screen.draw_box(x1: 0, x2: 0, y1: 0, y2: 20)

Unfortunately, the lunch is not free. This is down to two reasons. The first reason is that
this approach also accepts the following:

screen.draw_box(5, 30, 15, 40,

 x1: 0, x2: 0, y1: 0, y2: 20)

This call makes no sense since the argument values conflict. However, the previous
approach will not raise an ArgumentError. You can handle that and correctly raise an
ArgumentError with a more involved method definition that doesn't have the keyword
argument value default to the positional argument value, but in general, it's probably best
to avoid doing so unless you really need to in order to preserve backward compatibility.
Left as an exercise for the reader, as the saying goes.

The second reason there is no free lunch with this approach is that it performs
substantially worse, so if performance is important, you may want to avoid it.

In terms of internal optimization, methods that only accept required positional
arguments are also very easy for Ruby to optimize, so there is no reason to avoid them
for performance reasons.

Optional positional arguments
So far, you've learned about issues with positional arguments, but most of the positional
arguments shown in the previous examples are required positional arguments. As you
are aware, and as the previous example showed, you can give any positional argument
a default value, and that argument becomes optional. That's not completely accurate
because, as it turns out, you can only make a subset of arguments optional. For example,
you can surround an optional positional argument with two required positional
arguments, as shown here:

def a(x, y=2, z)

 [x, y, z]

end

106 Methods and Their Arguments

a(1, 3)

=> [1, 2, 3]

However, Ruby does not allow you to surround a required positional argument with two
optional positional arguments:

eval(<<END)

 def a(x=1, y, z=2)

 end

END

SyntaxError

Most Ruby programmers probably believe that there are only two types of positional
arguments in Ruby: required positional arguments and optional positional arguments.
However, internally, the reason that you can surround optional positional arguments with
required positional arguments, but not surround required positional arguments with
optional positional arguments, is that there are actually four types of positional arguments
in Ruby (if you consider the rest argument a positional argument), and they must be given
in this order:

1.	 Leading arguments

2.	 Optional arguments

3.	 Rest argument

4.	 Post arguments

Each argument type can have zero arguments, and there can be multiple arguments
of each type, except for the rest argument (which you'll learn more about in the next
section).

In the previous working example, we had the following:

def a(x, y=2, z)

end

The x argument is a leading argument, the y argument is an optional argument, and the
z argument is a post argument.

In the previous syntax error example, we had the following:

eval(<<END)

 def a(x=1, y, z=2)

Using the many types of method arguments 107

 end

END

There are no leading arguments here; the x argument is an optional argument, the y
argument is a post argument, and a SyntaxError is raised when parsing the = sign after
the z argument. This is because Ruby's syntax does not expect a default argument value
for post arguments.

In general, you rarely see methods in Ruby that have post arguments. If a method uses
optional arguments, it will almost always be written as follows:

def a(x, y=nil)

end

It is fairly rare to define methods like so:

def a(x=nil, y)

end

The historical reason behind this is that post arguments were not supported before Ruby
1.9, and if a method supported required and optional positional arguments, the optional
positional arguments were required to come after the required positional arguments. The
other reason you rarely see this format is when you have a method that accepts a required
argument:

def a(y)

end

Here, the callers of this method will use a format similar to the following:

a(2)

Let's say you add an optional argument to the front of the method:

def a(x=nil, y)

end

Here, your users need to add the argument to the start of the method call instead
of the end:

a(1, 2)

108 Methods and Their Arguments

In general, most users are not conditioned to add optional arguments to the front of
the method. They are unlikely to complain about it, but it will probably seem strange
to them. One reason this is strange is that other optional arguments that are added to
methods, such as keyword arguments and blocks, come after the existing arguments
instead of before. In general, it is best to avoid adding optional arguments before required
arguments.

Is there ever a good reason to use optional and post arguments? Yes, but such cases
are rare. One case is when you have a method that can either be called with one or two
arguments, where if one only argument is given, it semantically represents what would
happen if only the second of the two arguments were passed.

For example, in SQL, identifiers can be either qualified or unqualified. Qualified
identifiers look like table.column, while unqualified identifiers look like column.
If you represent this in Ruby, you could have a choice. The first looks like this:

def identifier(column, table=nil)

end

The second looks like this:

def identifier(table=nil, column)

end

Of these two cases, the second one makes more sense, because to create an identifier such
as foo.bar, it is conceptually simpler to call identifier("foo", "bar"), than
it is to call identifier("bar", "foo"), and know that the method will apply the
second argument before the first argument in the generated SQL.

Methods that only accept lead arguments and optional arguments are also easy for Ruby
to optimize. However, Ruby does not optimize methods that accept post arguments to the
same degree, which is another reason to avoid using post arguments in most cases.

Rest arguments
Rest arguments in Ruby are only allowed, at most, once in a method definition, and take
all the positional arguments in the method call that are not taken by the lead, optional,
and post arguments as values. In addition to only being allowed once, they are also
different from the other types of positional arguments in that the rest argument does not
need a name:

def foo(bar, *)

end

Using the many types of method arguments 109

This format can be used if you want to ignore arguments, but that's almost always a sign
of poor method design. The only good use case for this is when you are calling super
with no argument, which will implicitly pass the same arguments:

def foo(bar, *)

 bar = 2

 super

end

More accurately, super passes the same local variables given as arguments to the super
method, which reflects the new values of the local variables. Internally, when you don't
give the rest argument a name, Ruby gives it a name internally that you can't access so that
it can be passed in a super call.

When you're considering whether a method should support a rest argument, you should
always consider whether it is better to accept a single array argument instead. After
all, Ruby will be internally generating an array for you if you use a rest argument. Let's
consider the following:

def a(*bar)

end

Here, you should also consider whether it would be better to accept a single argument
instead:

def a(bar)

end

This requires that the callers pass in an array. If you want to still allow calling without
arguments, you could have the value default to the empty array, like so:

def a(bar=[])

end

This causes an allocation if an array is not provided, but that is not a black mark against it,
as the rest argument allocates an array in all cases. If you want to avoid array allocation in
all cases, you can use a frozen constant, as follows:

EMPTY_ARRAY = [].freeze

def a(bar=EMPTY_ARRAY)

end

110 Methods and Their Arguments

With this approach, calling a never allocates an array. One difference between the two
approaches is that when you're accepting a single array argument, you need to ensure that
you do not mutate the argument:

EMPTY_ARRAY = [].freeze

def a(bar=EMPTY_ARRAY)

 bar << 1

end

This is because it is a bad idea for a method to mutate any arguments unless that is the
purpose of the method. One advantage of using the frozen constant approach, as shown
in the previous example, is that it isn't just a performance optimization – it also catches
cases where you are accidentally mutating the method argument. This is because if no
argument is passed, it will attempt to mutate the frozen constant, and that will result in
the method raising a FrozenError exception. If you want to mutate the argument, you
should dup it first:

EMPTY_ARRAY = [].freeze

def a(bar=EMPTY_ARRAY)

 bar = bar.dup

 bar << 1

end

The corollary to this is that if you are using the rest argument, you know you are dealing
with a newly generated array object, so you should mutate it if you need to as there is no
point in duplicating the array. Another way to look at this is that if you know you will
need to modify the resulting array, there is no performance difference between the two
approaches, so you should choose whichever provides the user with a nicer API.

So, which API is nicer, the rest argument or the single array argument? This depends on
the method, and which arguments will be passed to the method. If the method is typically
called with explicit arguments, the rest approach provides a nicer API:

a(:foo, :bar)

You can compare this to needing to wrap arguments manually in the single array
approach:

a([:foo, :bar])

Using the many types of method arguments 111

However, if most of the calls to the method deal with an existing array of arguments, the
single array approach is actually nicer:

a(array)

You can compare this to the splat argument, which is required in the rest argument
approach:

a(*array)

In addition to requiring an array allocation, Ruby does not optimize methods that accept
an argument splat either, which is another consideration when you're thinking of using
a rest argument.

As we mentioned in the previous section, you can combine rest arguments with other
positional arguments. Most commonly, you will see just leading and rest arguments:

def a(x, *y)

end

In some cases, you will also see rest arguments and optional arguments:

def a(x, y=nil, *z)

end

This form is often a code smell. There are certain cases where it can make sense, but it's
probably best to avoid doing this, unless you need it for backward compatibility. One
strike against it is that you cannot pass values just to the rest argument without also
providing a value for the optional argument.

You can combine rest arguments with post arguments:

def a(*y, z)

end

112 Methods and Their Arguments

This form is fairly rare, but there are cases where it makes sense. One example is when you
are trying to offer an API similar to the mv command. Usually, mv takes two arguments,
the source and destination, but the other usage is an arbitrary number of arguments
and a destination folder to put all of them into. You want to make sure that at least two
arguments are provided in this case. You can mimic this API in Ruby by using a rest
argument for additional sources and a post argument for the destination:

def mv(source, *sources, dir)

 sources.unshift(source)

 sources.each do |source|

 move_into(source, dir)

 end

end

This allows you to offer an API that works with two or more arguments:

mv("foo", "dir")

mv("foo", "bar", "baz", "dir")

While this does mirror the mv command nicely, it might be more friendly for the average
Ruby programmer to use a required keyword argument, which you'll learn about in the
next section.

Keyword arguments
Ruby supports a limited form of keyword arguments for calling methods, all the way
back to at least Ruby 1.6. However, this support was limited to not requiring braces when
passing a hash to a method, so Ruby would accept either of the following:

Hash

foo({:bar=>1})

Hash (without braces)

foo(:bar=>1)

In both these cases, Ruby would pass the argument as a single hash argument. In the
method definition, the argument would be a normal positional argument:

def foo(options)

end

Using the many types of method arguments 113

In most cases, the keyword arguments are optional, so it is common practice to make the
default value of the argument an empty hash:

def foo(options={})

end

However, as you saw in the previous section on rest arguments, this causes a hash
allocation on every call to the method when no options are provided. To optimize this
case and avoid a hash being allocated to every method call without an options argument,
you can take a similar approach as in the previous section and use a frozen hash constant:

OPTIONS = {}.freeze

def foo(options=OPTIONS)

end

With this approach, calling the method without options never allocates a hash. However,
using the keyword syntax when calling the method always allocates a hash, because the
hash is created before the method is called:

foo(:bar=>1)

The only way around the hash allocation on the caller side would be to also use a constant
or some other shared object:

BAR_OPTIONS = {:bar=>1}.freeze

foo(BAR_OPTIONS)

This approach can only be used when the options do not vary per call to the method, and
there are many cases where the options do vary per call, in which case it would not be
possible to avoid the hash allocation.

The other issue with this approach for keyword arguments is that, by default,
unrecognized keywords passed are ignored, instead of triggering an ArgumentError:

def foo(options=OPTIONS)

 bar = options[:bar]

end

:baz keyword ignored

foo(:baz=>2)

114 Methods and Their Arguments

This significantly complicates debugging if there is a typo in a keyword argument, which
is a common error for programmers to make. This can be worked around by checking that
there are no unexpected hash keys:

def foo(options=OPTIONS)

 options = options.dup

 bar = options.delete(:bar)

 raise ArgumentError unless options.empty?

end

However, this approach is fairly slow due to the additional hash allocation and extra logic,
so it's quite cumbersome if it's used in every method that uses an options hash. This is one
reason it is an uncommon approach.

As an alternative to this historical approach to handling keywords via a final positional
hash argument, support for keyword arguments in method definitions was added in
Ruby 2.0:

def foo(bar: nil)

end

This type of keyword argument has nice properties. It offers better performance because
calling the method does not allocate a hash. Please refer to the following code:

No allocations

foo

foo(bar: 1)

This allocates a hash

hash = {bar: 1}

But in Ruby 3, calling a method with a

keyword splat does not allocate a hash

foo(**hash)

More importantly, passing an unrecognized keyword argument will trigger an error:

foo(baz: 1)

ArgumentError (unknown keyword: :baz)

Using the many types of method arguments 115

This makes debugging much simpler in case an unrecognized keyword is used, because
you will get an immediate ArgumentError.

In Ruby 2, there were issues with using keyword arguments, because they were not fully
separated from positional arguments. This especially affected methods that used optional
arguments or rest arguments in addition to keyword arguments. In these cases, Ruby 2
would treat a final positional hash argument as keywords:

def foo(*args, **kwargs)

 [args, kwargs]

end

Keywords treated as keywords, good!

foo(bar: 1)

=> [[], {:bar=>1}]

Hash treated as keywords, bad!

foo({bar: 1})

=> [[], {:bar=>1}]

In some cases, these issues were even worse than the issues with unrecognized keywords
being ignored. Once you found the unrecognized keyword and fixed it, your code worked
correctly. However, if this issue affected your code, there was no good workaround, since
it was a problem with the language itself.

Thankfully, in Ruby 3, these issues have been resolved, and Ruby always separates
positional arguments from keyword arguments:

Keywords treated as keywords, good!

foo(bar: 1)

=> [[], {:bar=>1}]

Hash treated as positional argument, good!

foo({bar: 1})

=> [[{:bar=>1}], {}]

116 Methods and Their Arguments

In Ruby 2, there were also more performance issues with keyword arguments compared
to using a single positional argument with the default value of a frozen empty hash. These
issues were reduced with Ruby 3, except that accepting arbitrary keywords still always
allocates a hash:

Always allocates a hash

def foo(**kwargs)

end

If you are doing keyword argument delegation through multiple methods, this can add up
as it allocates a hash per delegating method:

def foo(**kwargs)

 bar(**kwargs)

end

def bar(**kwargs)

 baz(**kwargs)

end

def baz(key: nil)

 key

end

2 hash allocations

foo

When delegation is used, the positional argument with a default value still performs better
since you can avoid hash allocation completely:

def foo(options=OPTIONS)

 bar(options)

end

def bar(options=OPTIONS)

 baz(options)

end

def baz(options=OPTIONS)

Using the many types of method arguments 117

 key = options[:key]

end

0 hash allocations

foo

It is possible to avoid hash allocations when using keywords, but only if you know which
method you are delegating to, and which keywords the method accepts. This approach
does not work for generic delegation methods, but it is the fastest option if it can be used:

def foo(key: nil)

 bar(key: key)

end

def bar(key: nil)

 baz(key: key)

end

def baz(key: nil)

 key

end

0 hash allocations

foo

The main issue with explicit keyword delegation is that it is significantly more difficult to
maintain, especially with many keywords. If you add keywords to a lower-level method,
you need to add the same keywords to all the methods that delegate to it. If you change
the default value of a keyword in a lower-level method, you need to make the same change
to the default value in every method that delegates to it. It looks ugly and does not bring
joy to the programmer, so it should only be used if the absolute maximum performance is
required. If the absolute maximum performance is required, you should prefer positional
arguments as they are more optimized.

118 Methods and Their Arguments

In most cases, for new code, it is best to use keyword arguments instead of an optional
positional hash argument. One thing to consider for new methods is the use of the
**nil syntax in method definitions, which marks the method as not accepting keyword
arguments:

def foo(bar, **nil)

end

The reason for doing this is to avoid breakage if keywords are added to the method later.
Let's say you don't use **nil and your method definition looks like this:

def foo(bar)

 bar

end

If it is valid to pass a hash to the method, the callers of this method can pass keyword
arguments:

foo(bar: 1)

=> {:bar=>1}

Since the method does not accept keyword arguments, Ruby will convert the keywords
into a positional hash argument for backward compatibility with historical code that
accepts a positional argument. Let's say you add keywords to this method later:

def foo(bar, baz: nil)

 bar

end

By doing this, you break the callers of this method:

foo(bar: 1)

ArgumentError (wrong number of arguments)

Because the foo method now accepts keyword arguments, Ruby no longer performs
keyword to positional hash conversion, thereby breaking the caller. You can avoid this
issue for new methods with the **nil syntax:

def foo(bar, **nil)

 bar

end

Using the many types of method arguments 119

This indicates that no keywords are accepted, so you will never have callers break when
adding keywords later. If the user tries to call the method with keywords before the
keywords have been added, the method will raise an ArgumentError:

foo(bar: 1)

ArgumentError (no keywords accepted)

For existing methods, the decision to add **nil to methods not currently accepting
keywords is more difficult. If you are sure you don't have any callers that are using
keywords, it can be added safely, but often, this isn't needed in those cases since keywords
will only be used if the final positional argument can be a hash. If you have any callers that
are using keywords as a final positional hash argument, it's definitely not desirable to add
as it would break any existing code.

If you are maintaining Ruby code that uses positional arguments with default hash values
as a replacement for keyword arguments, you should consider whether you want to
convert them into keyword arguments. Outside of cases involving delegation, in general,
switching to keyword arguments will improve performance since using explicit keyword
arguments in a method call will not allocate a hash. The main issue with such a conversion
is backward compatibility when unrecognized keys are used. While in simple cases this
can be considered a bug, there are more complex cases where unrecognized keys are
expected. For example, let's say you have a method that delegates the same options hash to
multiple methods:

def foo(options=OPTIONS)

 bar(options)

 baz(options)

end

def bar(options)

 options[:bar]

end

def baz(options)

 options[:baz]

end

120 Methods and Their Arguments

It can be tempting to replace this with keyword arguments, with bar and baz only
defining the keywords they use, like so:

def foo(**kwargs)

 bar(**kwargs)

 baz(**kwargs)

end

def bar(bar: nil)

 bar

end

def baz(baz: nil)

 baz

end

Unfortunately, this simplistic approach completely fails if either :bar or :baz is provided
as a keyword argument. This is because a :bar keyword argument will be rejected by
baz, and a :baz keyword argument will be rejected by bar. There are a few approaches
to handling this type of case. One is explicit keyword delegation, as shown here:

def foo(bar: nil, baz: nil)

 bar(bar: bar)

 baz(baz: baz)

end

def bar(bar: nil)

 bar

end

def baz(baz: nil)

 baz

end

This approach contains all the maintainability problems we discussed previously regarding
explicit keyword delegation.

Using the many types of method arguments 121

Another approach is to ignore the keyword arguments in bar and baz:

def foo(**kwargs)

 bar(**kwargs)

 baz(**kwargs)

end

def bar(bar: nil, baz: nil)

 bar

end

def baz(baz: nil, bar: nil)

 baz

end

This is a code smell and still has maintainability issues similar to explicit keyword
delegation, just to a lesser degree. You don't need to worry about default value changes
for keyword arguments, but you still need to add the same keywords to bar when adding
them to baz and vice versa.

The third approach is ignoring all unrecognized keywords in bar and baz:

def foo(**kwargs)

 bar(**kwargs)

 baz(**kwargs)

end

def bar(bar: nil, **)

 bar

end

def baz(baz: nil, **)

 baz

end

122 Methods and Their Arguments

This makes maintenance simpler but is bad for performance as it requires three hash
allocations for each call to foo. In cases like this, it's probably best to keep to the original
approach of using a positional argument with a default hash value.

When designing your method API, you often have a choice between keyword arguments
and optional arguments. In most cases, it is better to accept a keyword argument than an
optional argument as it allows more flexibility for future changes. If you have a method
that takes no arguments and you want to add support for an optional bar argument, you
could add an optional positional argument or a keyword argument:

Positional

def foo(bar=nil)

end

Keyword

def foo(bar: nil)

end

Let's say that you want to add support for an optional baz argument, which you think will
be a lot more common to use than the bar argument. You can add it to both these cases:

Positional

def foo(bar=nil, baz=nil)

end

Keyword

def foo(bar: nil, baz: nil)

end

The problem with the optional argument approach is that if you want to pass the baz
argument and not the bar argument, you can't really do this and you need to explicitly
pass nil as the value of bar. This is unlike the keyword argument approach, where you
can just pass the bar argument:

Positional

foo(nil, 1)

Keyword

foo(baz: 1)

Using the many types of method arguments 123

This gets progressively worse when you keep adding arguments. Very few programmers
want to pass four nil arguments before the one optional argument they need. If you
want to add an optional argument to an existing method, unless you have a good reason
to add it as an optional positional argument, it is better to add it as an optional keyword
argument.

Block arguments
Blocks are considered by many Ruby programmers to be the best aspect of Ruby. The
simplicity of the block syntax makes passing blocks to methods easy, and many core
methods accept blocks. The flexibility of blocks is wonderful as blocks can be used for
looping (for example, Kernel#loop), resource management (for example, File.
open), sorting (for example, Array#sort), handling missing data (for example,
Hash#fetch), and so many other purposes. The fact that blocks can return out of the
calling scope using return or out of the block scope using next or break is another
reason they are so flexible.

Because blocks are so important to the idiomatic usage of Ruby, and there can only
be one block argument per method, you should give more thought to how a method
should use a block than you should give to any other type of argument. Said another
way, the block argument is the single most important argument that a method accepts.
Why is that? This is because if you want to change the behavior of an existing method
in a backward-compatible manner, it is easy to add an optional positional argument
or optional keyword argument. However, once you have decided how a method will
handle a block, you are committed to keeping the behavior of that block argument the
same unless you want to break backward compatibility.

It is possible to change how the block behaves and still be backward compatible, but you
must trigger the new behavior with another argument, such as a keyword argument.
Let's say you have a method that yields the argument and the current value of one of the
receiver's instance variables to the block:

def foo(bar)

 yield(bar, @baz)

end

This allows callers to do the following:

foo(1) do |bar, baz|

 bar + baz

end

124 Methods and Their Arguments

Later, you determine that it would be more useful to also yield an additional value to the
block, maybe from another instance variable:

def foo(bar)

 yield(bar, @baz, @initial || 0)

end

This still allows callers to do the following:

foo(1) do |bar, baz|

 bar + baz

end

This is because the block will ignore the extra argument that's been passed.

The previous method definition also allows the following block, which uses the extra
argument:

foo(1) do |bar, baz, initial|

 bar + baz + initial

end

Unfortunately, the change that we made to the previous method definition is not
completely backward compatible. It does work correctly for regular blocks, but it will
break if you pass in a lambda proc that expects the previous block API:

adder = -> (bar, baz) do

 bar + baz

end

Worked before, now broken

foo(1, &adder)

Because lambda procs are strict in regard to arity, it is never safe to modify the arity of
what you are yielding to a block if users can pass a lambda proc as the block argument.

As we mentioned earlier, to handle this case safely, you must trigger the new behavior,
and it's probably best to do that via a keyword:

def foo(bar, include_initial: false)

 if include_initial

 yield(bar, @baz, @initial || 0)

Using the many types of method arguments 125

 else

 yield(bar, @baz)

 end

end

This is a safe approach. However, it significantly increases complexity, both for the caller
of the method and for the maintainer of the method. An alternative approach to handling
block argument changes is to check the block's arity:

def foo(bar, &block)

 case block.arity

 when 2, -1, -2

 yield(bar, @baz)

 else

 yield(bar, @baz, @initial || 0)

 end

end

This approach can be easier on the caller, since they can provide a block that accepts
additional arguments without passing a keyword argument. It will work correctly in most
cases, but it will result in the third argument not being passed to a block that accepts an
optional third argument. The advantage of the keyword argument approach is that the
caller has full control over whether the additional argument is passed to the block. The
disadvantage is that you need a keyword argument when just having the block accept an
additional argument will work in most cases.

Whenever you would like to change the arguments that are being passed to the block,
give strong consideration to defining a separate method with the new block arguments,
instead of using either the keyword argument approach or the arity checking approach,
as described previously.

Another consideration for block arguments is that there can be only a single block
argument. What if you have a method where multiple block arguments would be useful?
Well, only one can be the block argument; the other argument needs to be passed as
a callable object in another type of argument (often, a keyword argument).

126 Methods and Their Arguments

Let's say you have a method where you need to listen for a notification from a server. This
involves telling the server you are listening for a notification, waiting for a notification
to be received, then returning the value of the notification while making sure to tell the
server you are no longer listening:

def listen

 server.start_listening

 server.receive_notification

ensure

 server.stop_listening

end

This method doesn't take any arguments or a block – you would just call it to get
a notification:

notification = listen

After this method is in your library for a while, someone requests the ability to run
arbitrary code after the server has started listening, but before a notification has been
received. This is easy to implement with a block:

def listen

 server.start_listening

 yield if block_given?

 server.receive_notification

ensure

 server.stop_listening

end

This allows the user to pass a block, which they could use to measure the amount of time
until a notification is received, but not including the time to start the listening process:

time = nil

notification = listen do

 time = Time.now

end

elapsed_seconds = Time.now - time

This block is used by relatively few users, but it is helpful to those users.

Using the many types of method arguments 127

Later, a different group of users tells you they've been using this API, but it is inefficient
because it only listens for a single notification, and they want to handle many notifications.
They have been using the method in a loop:

while notification = listen

 process_notification(notification)

end

Worse than being inefficient, they have found that they have missed notifications because
once the listen method returns, they are not listening for notifications until listen
is called again. They think it would be much more useful to have listen yield each
notification to a block with the following API:

listen do |notification|

 process_notification(notification)

end

You agree that this approach is much more useful, but unfortunately, because the block is
already being used to run arbitrary code once the server has started listening, you can't
use the block argument for that. The best you can do is add it as a keyword argument,
as shown here:

def listen(callback: nil)

 server.start_listening

 yield if block_given?

 if callback

 while notification = server.receive_notification

 callback.(notification)

 end

 else

 server.receive_notification

 end

ensure

 server.stop_listening

end

128 Methods and Their Arguments

This requires the caller to pass the argument as a keyword argument instead of a block,
which is significantly uglier and does not make the average Ruby programmers happy:

listen(callback: ->(notification) do

 process_notification(notification)

end)

Hindsight being 20/20, you realize it would have been better to design your method like
the following example, because far more users benefit from the looping construct than the
callback after listening:

def listen(after_listen: nil)

 server.start_listening

 after_listen.call if after_listen

 if block_given?

 while notification = server.receive_notification

 yield notification

 end

 else

 server.receive_notification

 end

ensure

 server.stop_listening

end

The moral of this story is to think long and hard about how a method would best use
a block, before adding support for a block to the method. Once you've decided on the
block's behavior, you will be painting yourself into a corner, so make sure you like the
corner first.

In this section, you learned about the different types of method arguments that Ruby
supports. In the next section, you'll learn how to choose an appropriate visibility setting
for your methods.

Learning about the importance of method visibility 129

Learning about the importance of method
visibility
While it is easy to develop code in Ruby without worrying about method visibility,
neglecting to use method visibility wisely tends to result in more difficult long-term
maintenance. If you never use one of Ruby's method visibility methods when developing,
all the methods you define are public methods. When an object has a public method, it
signals to the users of the object that the method is part of the object's supported interface,
which, in general, should only change in a major update to the library containing the
method. When a method is not public, it signals to the users of the object that the method
is an implementation detail, and subject to change at any time.

Whether a method is a supported interface (public method) or an implementation detail
(protected or private method) is critical to the long-term maintenance of a library. In
general, the larger the supported interface for an object, the more difficult it is to maintain
it. An object with 100 public methods basically requires that changes to the object do
not change the desired behavior of 100 methods. Alternatively, an object with one public
method and 99 private methods is much easier to maintain. This is because you only need
to make sure the one public method has the same behavior; you can change the behavior
or even remove any of the 99 private methods as needed.

Whenever you add a method to a class, one of the first questions you should ask yourself
is, Do I want to commit to supporting backward compatibility for this method, at least until
the next major version is released, and potentially forever? If the answer is yes, then it
should be a public method. If not, in most cases, the method should be private.

This discussion of method visibility has an implicit assumption, which is that keeping
backward compatibility for methods is very important. However, it's reasonable to
question this assumption. Is keeping backward compatibility for methods actually
important? Well, that depends on your point of view, but think of the code you currently
maintain in Ruby. You are unlikely to only be using your own code – you are probably
using a library. One day, a new version of the library is released, and unfortunately, it
contains changes that break your code. Think about how that would make you feel, or if
this has happened to you previously, how it made you feel.

The most common feelings people have when a library they are relying on breaks their
code are betrayal and annoyance. Betrayal is a more common feeling for less experienced
programmers, while annoyance is more common for more experienced programmers.
Less experienced programmers feel betrayed because they trusted this code to make their
jobs easier, and the library has betrayed that trust by giving them even more work to do.
More experienced programmers have been betrayed by libraries enough times that they
are used to it, so they only feel annoyance.

130 Methods and Their Arguments

Certainly, breaking backward compatibility in major library releases is somewhat
expected. However, any time you break backward compatibility in a library, even in
a major version, you should have a good reason to. Even if their code breaks, the users
of a library tend to feel less betrayed and annoyed when they can see that such a breakage
was necessary for greater progress.

In general, you should only break backward compatibility in a library when the breakage
is necessary, and when keeping the backward compatibility would significantly harm
future development. Backward compatibility breakage is easier to stomach if the backward
compatibility is small or in an infrequently used part of the library. It is also easier to
stomach if the backward compatibility breakage is only by default, and you are offering
an alternative approach that users can easily switch to if they would like to keep backward
compatibility.

This brings us back to method visibility. Because backward compatibility is so critical
when designing methods, you should do what you can to avoid breaking backward
compatibility, and the best way to do that is to have as few public methods as possible.
Only make a method public if it must be usable by users.

If you aren't sure whether a method should be public or private, make it private. Only
make it public if you are sure it should be public. Later, you may get a request from a
user to change the visibility of a method from private to public, and at that point, you
can reevaluate whether the benefits of making the method public are worth the future
maintenance costs.

What about protected method visibility? In general, you should probably avoid protected
visibility except for one main use case. The main use case for protected visibility is when
you're calling methods internally to the library, where the caller is another method in the
same class, and where you want to avoid the performance overhead of calling send. The
downside of protected visibility is that due to backward compatibility, protected methods
show up in Module#instance_methods and Kernel#methods, even though you
can't call the methods normally:

class MethodVis

 protected def foo

 :foo

 end

end

MethodVis.instance_methods(false)

=> [:foo]

Learning about the importance of method visibility 131

m = MethodVis.new

m.methods.include?(:foo)

=> true

m.foo

NoMethodError

What about the visibility of constants? In general, it's best to use private_constant
for any constant you do not want to expose to users. Only leave a constant public if there
is a good reason for it to be public. It's almost always better to force external users to call
a public method to get a constant value. This is because you can modify the method later
if the internals of your library change. Once a constant is public, it's part of your library's
interface, and you should treat changes that are made to the constant similar to changes
that are made to any public method, so do your best to keep backward compatibility for it.

Fixing visibility mistakes
Let's say you've made a mistake in your library development and have made a method
that should have been a private method public instead. Can this be handled in a way
that doesn't break backward compatibility? Unfortunately, the answer is no, as such a
change always breaks backward compatibility. However, there is a way to break backward
compatibility gradually and warn others of upcoming method visibility changes.

Ruby doesn't provide a way for a method to know if it was called in a public context
(self.method_name) or a private context (method_name or send(:method_
name)). So, how can you implement this warning? Let's look at the previous example,
where we called the protected method directly:

m.foo

NoMethodError

Notice that it raised a NoMethodError, not a MethodVisibilityError (this is not
a real exception class). This is not an accident; this is by design. What method in Ruby,
by default, raises a NoMethodError? If you said method_missing, you are correct!
When you call a private or protected method from a context that does not allow the
method to be called, Ruby calls method_missing internally. It is possible to override
method_missing to issue a warning that the visibility will be changing, and then call
the method directly:

class MethodVis

 private def method_missing(sym, ...)

132 Methods and Their Arguments

 if sym == :foo

 warn("foo is a protected method, stop calling it!",

 uplevel: 1)

 return foo(...)

 end

 super

 end

end

m.foo

foo is a protected method, stop calling it!

=> :foo

Let's say you also made a mistake in your library development and left a constant public
when you should have made it private. Can this be fixed in the same way? The good news
is yes, you can fix it in a similar way. First, let's look at what happens when you access
a private constant:

class ConstantVis

 PRIVATE = 1

 private_constant :PRIVATE

end

ConstantVis::PRIVATE

NameError

Interestingly, you get a NameError, not a ConstantVisibilityError (again,
this is not a real exception class). Similar to the method case, this is not an accident;
this is by design. What method in Ruby raises a NameError by default? If you said
Module#const_missing, you are correct! When you access a private constant from
a context that does not allow constant access, Ruby calls const_missing on the module
internally. It is possible to override const_missing to issue a warning that the visibility
will be changing, and then return the value of the constant:

class ConstantVis

 def self.const_missing(const)

 if const == :PRIVATE

 warn("ConstantVis::PRIVATE is a private constant, " \

 "stop accessing it!", uplevel: 1)

Handling delegation 133

 return PRIVATE

 end

 super

 end

end

ConstantVis::PRIVATE

ConstantVis::PRIVATE is a private constant,

stop accessing it!

=> 1

If you have a lot of methods and constants that are currently public and should be made
private, it is a little tedious to do all this method_missing and const_missing
overriding. In that case, you can use the deprecate_public gem to handle all the hard
work for you:

require 'deprecate_public'

class MethodVis

 deprecate_public :foo

end

class ConstantVis

 deprecate_public_constant :PRIVATE

end

In this section, you learned about choosing the proper method visibility and how to
change method visibility gradually. In the next section, you'll learn about the best
approach for delegating method arguments.

Handling delegation
Delegation refers to taking the arguments that were passed to one method and passing
those arguments to a different method. In Ruby, it's common to use delegation to wrap
calls to other methods in order to add behavior around the method call. Handling
delegation incorrectly can make debugging and refactoring more difficult, so it useful to
learn how best to implement it.

134 Methods and Their Arguments

Let's say you have a public method you want to rename:

def foo(*args, **kwargs, &block)

 [args, kwargs, block]

end

Let's say you just rename the method, as follows:

def bar(*args, **kwargs, &block)

 [args, kwargs, block]

end

Here, you break backward compatibility for users calling foo.

The best way to handle this is to re-add the same method you are renaming, have it issue
a deprecation warning, and then forward all arguments to the renamed method:

def foo(*args, **kwargs, &block)

 warn("foo is being renamed to bar", uplevel: 1)

 bar(*args, **kwargs, &block)

end

Delegating all arguments to another method is such a common pattern in Ruby that they
added a shortcut for it in Ruby 2.7 by using ...:

def foo(...)

 warn("foo is being renamed to bar", uplevel: 1)

 bar(...)

end

In Ruby 2, it was recommended to not use explicit delegation of keywords arguments due
to the lack of separation between positional arguments and keyword arguments, so it is
common to see delegation like this in older Ruby code:

def foo(*args, &block)

 warn("foo is being renamed to bar", uplevel: 1)

 bar(*args, &block)

end

Handling delegation 135

This works fine in Ruby 3, but only if you are sure that the method you are delegating
to does not accept keyword arguments. If you are not sure whether the method accepts
keyword arguments, you should use explicit keyword delegation with **kwargs, or ...
to forward all arguments.

If you are maintaining code that must run correctly on both Ruby 2 and Ruby 3, you
must use the old-style *args delegation in the method, and then mark the method using
ruby2_keywords:

def foo(*args, &block)

 warn("foo is being renamed to bar", uplevel: 1)

 bar(*args, &block)

end

ruby2_keywords(:foo) if respond_to?(:ruby2_keywords, true)

ruby2_keywords marks the method as passing through keywords, so that if keywords
are passed to foo, they will be implicitly passed to bar. You can only mark methods with
ruby2_keywords if they accept a rest argument and no keywords. Internally, Ruby will
wrap the keywords that were passed in a specially flagged hash, and then when an array is
splatted in a method call, if the final argument in the array is a specially flagged hash, the
hash will be passed as keywords.

By using respond_to?(:ruby2_keywords, true) as a guard, the
ruby2_keywords(:foo) method call will not happen on Ruby versions before 2.7.
This is what makes the code backward compatible, even back to Ruby 1.8.

Delegating to other objects
Another common case for method delegation in Ruby is when you are delegating not to
a different method in the same class, but to a different object. For example, let's say you
have class A, which has an attribute, b:

class A

 attr_accessor :b

 def initialize(b)

 @b = b

 end

end

136 Methods and Their Arguments

Let's say you want to delegate A#foo to call b.foo. You can use either of the manual
delegation approaches discussed previously, such as the explicit argument delegation
approach:

class A

 def foo(*args, **kwargs, &block)

 b.foo(*args, **kwargs, &block)

 end

end

Alternatively, you can use the argument forwarding approach:

class A

 def foo(...)

 b.foo(...)

 end

end

Alternatively, you could use the backward-compatible approach with ruby2_keywords:

class A

 def foo(*args, &block)

 b.foo(*args, &block)

 end

 if respond_to?(:ruby2_keywords, true)

 ruby2_keywords(:foo)

 end

end

For a single method, any of these approaches works fine. However, if you must delegate
lots of methods, it can get tedious to write them. Thankfully, Ruby includes a standard
library named forwardable that handles method delegation. Ruby also includes a
standard library named delegate, but that is for creating delegate objects, not for
delegating method arguments.

Handling delegation 137

Using the forwardable library, you can handle this method delegation without defining
a method yourself:

require 'forwardable'

class A

 extend Forwardable

 def_delegators :b, :foo

end

Forwardable is fairly flexible since it also allows delegation to instance variables or
constants:

class A

 extend Forwardable

 def_delegators :@b, :foo

 def_delegators "A::B", :foo

end

One of the main advantages of forwardable is that you can delegate a bunch of
methods in a single call:

class A

 extend Forwardable

 def_delegators :b, :foo, :bar, :baz

end

Forwardable also includes additional ways to delegate methods, such as having A#foo
call b.bar, or setting up delegations for multiple methods to multiple separate objects in
a single method call. For details, see the Forwardable documentation.

In this section, you learned about some good approaches to implementing delegation,
both to different methods in the same object and to methods in a different object.

138 Methods and Their Arguments

Summary
In this chapter, you learned that Ruby doesn't have class methods – it only has instance
methods on singleton classes. You learned that the length of a method name should be
proportional to the inverse of the frequency of calling the method. You then learned about
Ruby's many types of arguments, such as positional arguments, keyword arguments,
and block arguments, and when it is best to use each. You also learned about method
visibility and how important it is for backward compatibility. Finally, you learned how to
implement method delegation in Ruby. With the knowledge you've gained, you'll be able
to design better methods, which will make the libraries and applications you write easier
to use and maintain.

In the next chapter, you'll learn how best to handle errors and other exceptional situations
in your Ruby code.

Questions
1.	 If class methods are instance methods, what class contains those instance methods?

2.	 How are method call frequency and method naming related?

3.	 What's the best argument type to use for an argument that will rarely be used?

4.	 If you make a mistake with method or constant visibility, what gem helps you
convert a public method or constant into a private one, while also issuing warnings
if it's accessed via a public interface?

5.	 What's the best way to delegate all arguments to another method so that it works
correctly in Ruby 2.6, 2.7, and 3.0?

5
Handling Errors

There are multiple ways to handle errors in your code. Most commonly in Ruby, errors are
handled by raising exceptions, but there are other approaches used occasionally, such as
returning nil for errors.

In this chapter, you'll learn about trade-offs in error handling, issues when handling
transient errors with retries, and more advanced error handling such as exponential
backoff and circuit breakers. You'll also learn how to design useful exception class
hierarchies.

In this chapter, we will cover the following topics:

•	 Handling errors with return values

•	 Handling errors with exceptions

•	 Retrying transient errors

•	 Designing exception class hierarchies

By the end of this chapter, you'll have a better understanding of how best to handle errors
in your Ruby programs.

140 Handling Errors

Technical requirements
In this chapter and all chapters of this book, code given in code blocks is designed to
execute on Ruby 3.0. Many of the code examples will work on earlier versions of Ruby,
but not all. The code for this chapter is available online at https://github.com/
PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter05.

Handling errors with return values
In programming languages that do not support exceptions, errors are generally handled
by using a return value that indicates failure. Ruby itself is written in C, and in C,
functions that can fail will often use a return value that is zero on success, and non-zero
on failure. While Ruby has exceptions, there are instances where methods can fail and this
will occasionally return a value instead of raising an exception, even in cases where other
programming languages raise an exception.

For example, in Python, if you have a hash (called a dictionary in Python), and you try to
access a member in the hash that doesn't exist, you get an exception raised:

Python code:

{'a': 2}['b']

KeyError: 'b'

Ruby takes a different approach in this case, returning nil:

{'a'=>2}['b']

=> nil

This shows the two different philosophies between the languages. In Ruby, it is expected
that when you are looking for a value in a hash, it may not be there. In Python, it is
expected that if you are looking for a value in a hash, it should exist. If you want to get the
Ruby behavior in Python, you can use get:

Python code:

{'a': 2}.get('b', None)

=> None (Python equivalent of Ruby's nil)

Likewise, if you want to get the Python behavior in Ruby, you can use fetch:

{'a'=>2}.fetch('b')

KeyError (key not found: "b")

https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter05
https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter05

Handling errors with return values 141

Both Python and Ruby support similar behavior for retrieving data from hashes, but Ruby,
in this case, is permissive, while Python, in this case, is strict.

In other cases, such as which objects are treated as false in conditionals, Python is
permissive, and Ruby is strict. Ruby's permissiveness in either area can be considered
a bug or a feature, depending on your point of view. Most programmers who prefer
to use Ruby probably consider it a feature, since otherwise, they would probably prefer
to use another language.

Ruby's permissiveness in the hash retrieval case is what allows for Ruby's very simple
idiomatic memoization technique:

hash[key] ||= value

This is because this memoization construct is shorthand for the following code:

hash[key] || (hash[key] = value)

If hash[key] raised an exception in Ruby if key wasn't present in hash, this shorthand
wouldn't work, and you would have to write a longer code that is more similar to the type
of code needed in Python:

if hash.key?(key)

 hash[key]

else

 hash[key] = value

end

In general, the Ruby principle for data access via [] is that an exception is not raised if
there is a way the access would work if the receiver included different data. You see this
with arrays in the following code:

ary = [1, 2, 3]

ary[3]

=> nil

ary << 4

ary[3]

=> 4

142 Handling Errors

Accessing the ary array with an index that is beyond the bounds of the array returns nil,
because if the array is expanded later, the same call will be within the bounds of the array,
and will return the value at that index.

You see this with hashes, shown in the following code:

hash = {1 => 2}

hash[3]

=> nil

hash[3] = 4

hash[3]

=> 4

Accessing hash with a key that does not currently exist in the hash returns nil, because
if the key is added to the hash later, the same call will return the value associated with
the key.

If you use the OpenStruct class in the standard library, you see that it operates the
same way:

require 'ostruct'

os = OpenStruct.new

os[:b]

=> nil

os.b = 1

os[:b]

=> 1

As noted previously, the principle only applies if the receiver were to return an expected
result if it included different data. If the call were to always fail regardless of which data
the receiver included, Ruby will raise an exception. You can see this with a Struct
subclass:

A = Struct.new(:a)

a = A.new(1)

a[:a]

=> 1

Handling errors with return values 143

a[:b]

NameError (no member 'b' in struct)

This is because no matter what kind of data the A instance contains, it will not have
a b element, so this call will always fail.

There are two primary benefits of using return values to signal errors:

•	 First, this approach offers much better performance than using exceptions,
with pretty much the same performance in a successful case, and unintuitively,
sometimes much better performance for an unsuccessful case than a successful case.

•	 Second, if the error is common, it's easier for the user to deal with it instead
of forcing them to rescue an exception.

Let's say you have a method that looks up a row in a database by the primary key of the
row. In this case, the primary key is an integer column named id:

def pk_lookup(pk)

 database.first(<<-END)

 SELECT * FROM table where id = #{database.literal(pk)}

 END

end

Assuming database.first returns a hash or some other object when the row exists,
and nil when the row does not exist, this is an example of a method that uses a return
value to handle an error.

One issue with this method is that it will still run a query even if you know that the query
will not return a row, such as when the value passed in is nil. Assuming that this is a case
you want to optimize for, you can use this code:

def pk_lookup(pk)

 return unless pk

 database.first(<<-END)

 SELECT * FROM table where id = #{database.literal(pk)}

 END

end

The preceding code gives you the same behavior. However, it improves the performance of
the case where the pk argument is nil, making it much faster than the success case since
the database query is skipped.

144 Handling Errors

The trade-off in this case is that every time you call pk_lookup, you cannot assume it
will return a valid row. Code such as row = pk_lookup(1) will not raise an exception
when pk_lookup is called if there is no matching row.

However, if row is used later and expected to be a hash or other object, the code will
fail later, which may complicate debugging. In general, that's not a major issue, because
if there is a problem due to not finding a row, you'll probably be alerted to it one way
or another.

A more insidious case is when, in normal use of the method, you do not need the return
value because the method is called for side effects. Consider the case where instead of
looking up an object by primary key, you are updating the database. The following code
demonstrates this:

def update(pk, column, value)

 database.run_update(<<-SQL)

 UPDATE table

 SET #{column} = #{database.literal(value)}

 WHERE id = #{database.literal(pk)}

 SQL

end

You can assume that database.run_update, in this case, returns the number of rows
updated. In the general case, the return value of database.run_update is useful
because an update can affect more than one row. However, because you are passing the
primary key in this case, you are sure that it will never modify more than one row, and the
return value may not be important. You may often call this method and ignore the return
value by using this code:

update(self.id, :name, 'New Name')

The problem, in this case, is that if the database row with the current id doesn't exist, this
method returns 0. However, since you aren't checking the return value, you don't know
whether this code is making the expected changes.

This type of error can linger in code undetected for a long time, especially in code that is
not commonly called. You may only find out months or years later that you have missed
updates, and at that point, there may be nothing you can do to fix the previous cases
affected by the error.

This is not a theoretical case; it can be a common problem when using a database library
where a method such as save returns false for an unsuccessful save instead of raising
an exception.

Handling errors with exceptions 145

The principle here is to be especially wary of using return values to indicate errors when
the caller of the code does not need to use the return value of the method. It is usually
better to raise an exception in this case, which you'll learn more about in the next section.

In this section, you learned how to handle errors using return values, and the trade-offs in
doing so. In the next section, you'll learn about the alternative approach, handling errors
using exceptions.

Handling errors with exceptions
Raising exceptions is the most common way to handle errors in Ruby. All core methods
in Ruby can raise an exception when called incorrectly. The easiest way to get a core
method to trigger an exception is to pass it an incorrect number of arguments, as shown
in the following code:

"S".length(1)

ArgumentError (wrong number of arguments)

We can also get a core method to trigger an exception when passing the wrong type
of argument:

'S'.count(1)

TypeError (no implicit conversion of Integer into String)

In almost all cases, any unexpected or uncommon error should be raised as an exception,
and not handled via a return value. Otherwise, as shown in the previous section, you end
up with a case where the error is silently ignored. In the previous section, you saw an
example where the update method using a return value to signal an error resulted in
data loss. However, there are other cases where the results are even worse than data loss.

Consider a case where you are designing an authorization system. You have a class named
Authorizer, and this has a singleton method named check that takes user and
action, and should indicate whether user is authorized to perform an action. Here
is a simple example of implementing such a class:

class Authorizer

 def self.check(user, action)

 new(user, action).authorized?

 end

 def authorized?

 return true if user.admin?

146 Handling Errors

 return true if action == :view_own_profile

 false

 end

end

One way to use the Authorizer class would be as follows:

if Authorizer.check(current_user, :manage_users)

 show_manage_users_page

else

 show_invalid_access_page

end

Unfortunately, this has similar issues as seen in the previous section, where it can be
misused. If a new programmer doesn't understand the API, they may assume from
a method name such as check that it handles the error by raising an exception, and
writes code such as the following:

Authorizer.check(current_user, :manage_users)

show_manage_users_page

This can be even worse than the data loss case described previously, and result in an
elevation of privilege vulnerability in the application, or possibly even worse depending
on which action is improperly allowed.

In this case, it's generally better for the Authorizer.check method to raise an
exception:

class Authorizer

 class InvalidAuthorization < StandardError

 end

 def self.check(user, action)

 unless new(user, action).authorized?

 raise InvalidAuthorization,

 "#{user.name} is not authorized to perform #{action}"

 end

 end

end

Handling errors with exceptions 147

By raising an exception, as the previous example does, you are forcing the user to
handle the exception, avoiding the case where the failure is accidentally ignored.
If Authorizer.check is implemented as in the previous example, and a new
programmer doesn't understand the API, they may assume that it returns true to
indicate that the action is authorized, and false to indicate that it is not. If they
make that incorrect assumption, they would still have an issue. The following code
demonstrates this:

if Authorizer.check(current_user, :manage_users)

 show_manage_users_page

else

 show_invalid_access_page

end

In the case where the action is authorized, the previous code works fine. However, in the
case where the action is not authorized, an exception will be raised, instead of the invalid
access page being shown. This is certainly a problem, but it's an easily fixable one.

There are two important principles here.

One of the principles is that when you are designing an API, you should not only design
the API to be easy to use, but you should also attempt to design the API to be difficult
to misuse. This is the principle of misuse resistance. A method that does not raise an
exception for errors is easier to misuse than a method that raises an exception for errors.

Another of the principles at play is that of fail-open versus fail-closed design. In
a fail-open design, if there is a problem with checking access, access is allowed. In
a fail-closed design, if there is a problem with checking access, access is not allowed.

In most cases involving security, fail-closed is considered to be the superior model. In the
example where Authorized.check returns true or false, misuse of the method
results in the system failing open, and unauthorized access being allowed.

In the example where Authorized.check raises an
Authorizer::InvalidAuthorization exception, misuse of the method results
in the system failing closed, and unauthorized access not being allowed.

148 Handling Errors

Now, there may be many cases where the user of Authorizer does need a true or
false value for whether an action is authorized. For example, let's say you are showing
a dashboard page and need to know whether to include a link to the page to manage users.
You don't want to write the following code:

begin

 Authorizer.check(current_user, :manage_users)

rescue Authorizer::InvalidAuthorization

 # don't show link

else

 display_manage_users_link

end

The preceding code uses exceptions for flow control, which is, in general, a bad approach.
In a case like this, it's usually better to have multiple methods. The Authorizer.check
method should raise an exception, but if you want a true or false value, you can have
a method such as the Authorizer.allowed? method, as shown in the following code:

class Authorizer

 def self.allowed?(user, action)

 new(user, action).authorized?

 end

end

Isn't this just the same as the first definition of the check method? Yes, it is. However,
because the method name ends in ?, it signals to the user that this method will return
a true or false value, and a user is much less likely to misuse it. With a method name
such as check, it is ambiguous as to whether the method will return true or false or
raise an exception, so misuse is much more likely to happen.

One other advantage of using exceptions to handle errors is that in many cases,
higher-level code wants to handle the same type of error the same way. So, instead
of having one hundred different if/else expressions in your application that use
Authorizer.allowed?, as shown in the following code:

if Authorizer.allowed?(current_user, :manage_users)

 show_manage_users_page

else

 show_invalid_access_page

end

Handling errors with exceptions 149

You can use a much simpler approach with Authorizer.check, as shown in the
following code snippet:

code:Authorizer.check(current_user, :manage_users)

show_manage_users_page

Then, in a single place in your application, you have the following code that rescues the
Authorizer::InvalidAuthorization exception and shows an appropriate page:

begin

 handle_request

rescue Authorizer::InvalidAuthorization

 show_invalid_access_page

end

In this section, you learned about maintainability and usability considerations when
handling errors with exceptions. In the following section, you'll learn that handling errors
with exceptions has performance considerations as well.

Considering performance when using exceptions
One reason to prefer handling errors via return values instead of exceptions is that return
values, in general, perform much better. For simple methods, there isn't a way to get
the exception handling approach even close to the return value approach in terms of
performance.

However, for methods that do even minimal processing, such as a single String#gsub
call, the time for executing the method is probably larger than the difference between
the exception approach and the return value approach. Still, for absolute maximum
performance, you do need to use the return value approach.

One consideration when using exceptions is that they get slower in proportion to the size
of the call stack. If you have a call stack with 100 frames, which is quite common in Ruby
web applications, raising an exception is much slower than if you only have a call stack
with 10 frames.

The reason for this is that when you raise an exception the normal way, Ruby has to do
a lot of work to construct the backtrace for the exception. Ruby needs to read the entire
call stack and turn it into an array of Thread::Backtrace::Location objects.

150 Handling Errors

Constructing that array gets slower in proportion to the size of the call stack. In general,
the time to construct the array of Thread::Backtrace::Location objects is
much longer than executing the non-local return to the appropriate exception handler
(the rescue clause that will handle the exception).

Is there a way in which you can speed up the exception generation process? Thankfully, yes,
there is. Instead of raising the exception the way you would normally, as follows:

raise ArgumentError, "message"

You can include a third argument to raise, which is the array to use for the backtrace. If
you want to make the exception handling as fast as possible, you can use an empty array:

raise ArgumentError, "message", []

Like an empty array in exception arguments, you can make this even faster if you use
a shared frozen constant:

Earlier, outside the method

EMPTY_ARRAY = [].freeze

Later, inside a method

raise ArgumentError, "message", EMPTY_ARRAY

As shown in the preceding example, by using a frozen constant, you can skip the
allocation of an array when raising the exception.

Ruby allows you to construct an exception object manually, using an approach as per the
following example:

exception = ArgumentError.new("message")

raise exception

If you are using the preceding approach, you can add a call to set_backtrace, so that
raise will not try to generate the backtrace, as shown in the following code:

exception = ArgumentError.new("message")

exception.set_backtrace(EMPTY_ARRAY)

raise exception

Retrying transient errors 151

However, this performance benefit has an associated cost. Because the exception being
raised has no backtrace, it is much more difficult to debug if you run into problems. In
general, if you want to use this approach, it is best to only use it for specific exception
types. You should also make sure that you are specifically rescuing those exception
types at some level above any methods you are calling that could raise the backtraceless
exceptions.

Because backtraceless exceptions make debugging much more difficult, you should avoid
using them by default in libraries. If you do want to support backtraceless exceptions in
libraries for performance reasons, you should make the use of backtraceless exceptions
only enabled via an option or setting. For example, if you have a module named
LibraryModule and want to add support for backtraceless exceptions, you could add
a skip_exception_backtraces accessor, as shown in this example:

exception = ArgumentError.new("message")

if LibraryModule.skip_exception_backtraces

 exception.set_backtrace(EMPTY_ARRAY)

end

raise exception

In this section, you learned about dealing with performance issues when raising
exceptions. In the next section, you'll learn how to retry transient errors, using both the
return value approach and exception approach.

Retrying transient errors
It's a fact of life, at least for a programmer, that some things fail all the time, but other
things only fail occasionally. For those things that fail all the time, there is no point in
retrying them. For example, if you call a method and it raises ArgumentError because
you are calling it with the wrong number of arguments, as shown here:

nil.to_s(16)

You probably don't want to retry the preceding code, unless you expect that something
will be redefining the NilClass#to_s method to accept an argument.

152 Handling Errors

However, in many cases, especially those involving network requests, it is very common
to encounter transient errors. In these cases, retrying errors makes sense. When making
a network request, there may be multiple reasons why it may fail. Maybe the program
at the other end of the request crashed and is being restarted. Maybe a construction
crew accidentally cut a network cable between your computer and the computer you are
connecting to, and failover to an alternative route hasn't happened yet. There are a vast
number of possible reasons why transient errors could occur.

Thankfully, Ruby has a built-in keyword for handling transient errors, which is the retry
keyword. Let's say you are writing a program that downloads data from a server using
HTTP, given here:

require 'net/http'

require 'uri'

Net::HTTP.get_response(URI("http://example.local/file"))

The preceding program doesn't handle errors, so any exception raised when trying to
download the file will result in an exception being reported and the program ending.

If one of the requirements for the program is that it absolutely must wait until the data
is available, with no exceptions (pun intended), no matter how long it takes, and that
if a failure happens, the download must be retried again as fast as possible, you could
implement this with a rescue/retry combination, given here:

require 'net/http'

require 'uri'

begin

 Net::HTTP.get_response(URI("http://example.local/file"))

rescue

 retry

end

In general, the preceding approach is a bad idea, for multiple reasons. One reason is that
it is a bad idea to retry on every exception type that could be raised. What happens if you
make a typo in the protocol name, and it will not parse as a valid URI?

Retrying transient errors 153

Well, then you end up with an infinite loop without it ever even attempting network
access. You should almost always limit the errors you are retrying to specific exception
classes. At least in this case, it might be useful to rescue errors related to sockets, system
calls, and bad HTTP responses. It's even better to eliminate possible issues in URI
creation, by moving the URI creation out of the loop. That also increases performance in
the case where retry is needed, as given in the following code:

require 'net/http'

require 'uri'

uri = URI("http://example.local/file")

begin

 Net::HTTP.get_response(uri)

rescue SocketError, SystemCallError, Net::HTTPBadResponse

 retry

end

When combined, the changes to set the uri variable before the begin clause and only
rescue specific exception classes make the preceding code better. However, it still has
issues.

One issue is that just because Net::HTTP.get_response(uri) returns a value and
doesn't raise an exception, it does not mean the value isn't an error. The HTTP protocol
supports both client errors (4xx errors) and server errors (5xx errors), and the returned
response could be one of those errors.

You can check whether the response is an error response by checking whether the
response code is greater than or equal to 400. It would be nice if you could retry this in
this case here:

require 'net/http'

require 'uri'

uri = URI("http://example.local/file")

begin

 response = Net::HTTP.get_response(uri)

 if response.code.to_i >= 400

 # retry # would be nice

 end

rescue SocketError, SystemCallError, Net::HTTPBadResponse

154 Handling Errors

 retry

end

Unfortunately, if you uncomment the first retry line, you'll see that the code raises
SyntaxError. Since the retry keyword is only valid inside rescue clauses, it is not
valid in the begin clause. That's a bummer.

One way around this issue is to raise one of the exceptions you are rescuing, and then have
retry in the rescue clause handling the retry, as shown in the following code:

require 'net/http'

require 'uri'

uri = URI("http://example.local/file")

begin

 response = Net::HTTP.get_response(uri)

 if response.code.to_i >= 400

 raise Net::HTTPBadResponse

 end

rescue SocketError, SystemCallError, Net::HTTPBadResponse

 retry

end

This does work, even if it seems like a code smell to use exceptions for flow control in this
way.

What if your requirements change, and now you only want to retry on an HTTP client
or server error, and not for other errors? In these cases, Net::HTTP does not raise an
exception, so there is no reason to use a begin/rescue approach. One approach is
a simple while loop, as shown in the following code:

require 'net/http'

require 'uri'

uri = URI("http://example.local/file")

while response = Net::HTTP.get_response(uri)

 break unless response.code.to_i >= 400

end

Retrying transient errors 155

This works fine and causes no problems, but determining the intent of the code is much
harder. This looks like a loop that will continuously request the page, not an approach for
retrying on error.

It turns out that Ruby has something that allows retrying outside rescue clauses.
Unfortunately, it has its own limitation, and that is the fact that it is only usable inside
blocks.

The redo keyword is one of the least used keywords in Ruby. If you haven't used it before,
it is similar to the next keyword, but instead of going to the next block iteration, it
restarts the current block iteration. Because it is only usable in blocks, it's a little hacky to
use it for retrying on an error, but it does a better job of showing intent.

The trick is, you need a block that will be called exactly once. Thankfully, you
already know one way to tell a block to execute a given number of times by using
Integer#times. The following code shows you how you could use the redo keyword
to retry on error:

require 'net/http'

require 'uri'

uri = URI("http://example.local/file")

response = nil

1.times do

 response = Net::HTTP.get_response(uri)

 if response.code.to_i >= 400

 redo

 end

end

The advantage of the preceding code is that it conveys intent much better. You can see
that by default, the block will only be called once, and it will only rerun the block if the
response code indicates an error. Note that it's also possible to create a proc or lambda
and just call it, but that generally performs worse as it requires allocating an object, unlike
the approach of passing a block to Integer#times.

In general, procs and lambdas (Proc instances) are among the more expensive object
instances to create, at least compared to other core classes.

156 Handling Errors

Understanding more advanced retrying
In general, retrying an infinite number of times is a bad idea. If that is one of the
requirements you are given, you may want to push back and see whether you can
determine a reasonable limit. For network operations, retrying 2 to 5 times is not
uncommon. Even retrying 100 times is probably better than always retrying.

It's fairly easy to retry a given number of times in Ruby. If you are using the exception
approach to retrying, you can add a local variable for the number of retries, increment
it with each exception, and use raise instead of retry if the local variable is over
a specified number. If you wanted to retry a maximum of three times, the code would
look like this:

require 'net/http'

require 'uri'

uri = URI("http://example.local/file")

retries = 0

begin

 Net::HTTP.get_response(uri)

rescue SocketError, SystemCallError, Net::HTTPBadResponse

 retries += 1

 raise if retries > 3

 retry

end

Similarly, if you are using the loop for retrying without exceptions, or the 1.times block
with redo, you should switch to using Integer#times for the number of retries you
want to allow, plus one for the initial attempt. The following code demonstrates this:

require 'net/http'

require 'uri'

uri = URI("http://example.local/file")

response = nil

4.times do

 response = Net::HTTP.get_response(uri)

Retrying transient errors 157

 break if response.code.to_i < 400

end

Both of the preceding approaches are unfortunately too simple for most production usage.
In general, retrying immediately is unlikely to get useful results in real-world situations.

You are likely to get better results if you wait between each retry attempt. How long you
should wait depends on the situation, but in many network situations, waiting a few
seconds is considered reasonable. If you want to wait a fixed amount of time between
retries, you can add a sleep call before the retry. For example, the following code shows
the case when we want to wait 3 seconds between retries:

require 'net/http'

require 'uri'

uri = URI("http://example.local/file")

retries = 0

begin

 Net::HTTP.get_response(uri)

rescue SocketError, SystemCallError, Net::HTTPBadResponse

 retries += 1

 raise if retries > 3

 sleep(3)

 retry

end

This approach in general is still too simple. In most real-world situations, you increase
the amount of time between each retry. This provides a happy medium between too short
of a retry time and too long of a retry time.

You send the first retry quickly, just in case there is a simple reason for the transient
failure. However, after every retry, it looks less and less likely that the request will succeed
if retried, so you wait longer between each retry. One approach to doing this is to start
at 3 seconds, but double the amount of time in each retry. You can calculate this by
multiplying the number of seconds to initially wait by 2 to the power of the number of
retries already performed. The following code demonstrates this:

require 'net/http'

require 'uri'

158 Handling Errors

uri = URI("http://example.local/file")

retries = 0

begin

 Net::HTTP.get_response(uri)

rescue SocketError, SystemCallError, Net::HTTPBadResponse

 retries += 1

 raise if retries > 3

 sleep(3 * 2**(retries-1))

 retry

end

This approach is decent, but it can result in the times to sleep growing quickly. For only
3 retries, it's probably fine, since you are retrying after 3 seconds, 9 seconds, and 21
seconds. However, if you are retrying 10 times, you will be waiting for close to an hour
before all retries fail.

For a larger number of retries, you may want to decrease the exponentiation base. It's
also a good idea to add some amount of randomness to the process if you have multiple
processes using the same algorithm, to prevent a related problem called the thundering
herd, where a large number of processes are retrying at exactly the same time and
overwhelming the server. The following code is a modified implementation of a classic
exponential backoff algorithm:

require 'net/http'

require 'uri'

uri = URI("http://example.local/file")

retries = 0

begin

 Net::HTTP.get_response(uri)

rescue SocketError, SystemCallError, Net::HTTPBadResponse

 retries += 1

 raise if retries > 3

 sleep(3 * (0.5 + rand/2) * 1.5**(retries-1))

 retry

end

Retrying transient errors 159

With this approach, even with 10 retries, all retries will complete within 3 minutes.

In this section, you learned about advanced approaches to retrying in the face of transient
errors. In the next section, you'll learn about how to avoid trying code that has recently
raised transient errors, using an approach called a circuit breaker.

Breaking circuits
One related problem to retrying exceptions is when you have code you want to run, but
isn't critical to the success of the program.

For example, if you are running a payment processing service, the actual payment
processing is critical to the success of your business, so you want to do everything you
can to make that work. However, your application may be calling an external service
to get recommendations for the user making a request, and an external service to get
advertisements to display on the page, and you would not want a failure of either service
to affect the processing of payments.

Let's say you have code that looks like this:

begin

 @recommendations = recommender_service.call(timeout: 3)

rescue

end

@ads = ad_service.call(timeout: 3) rescue nil

process_payment

In general, it's not a good idea to use rescue nil, but if you really don't care
why a service failed if it has failed, it can be okay to use. In this example, if either
recommender_service or ad_service is temporarily down, payment processing
will take 3 additional seconds. That can significantly affect how many payments you can
process per hour, which can put a large dent in your bottom line.

In cases like this, you probably do not want to call either recommender_service
or ad_service if they have been failing recently. For example, if you get three failing
requests within a minute, you may want to not try the service until a minute after the first
failing request.

160 Handling Errors

You can build a simple class to handle this, called BrokenCircuit. The pattern this
class implements is called a circuit breaker due to its similarity to physical circuit
breakers in electrical engineering. You can start by having the constructor take a number
of failures, and the number of seconds to wait. It will also use an array to store the failure
times, as shown in the following code:

class BrokenCircuit

 def initialize(num_failures: 3, within: 60)

 @num_failures = num_failures

 @within = within

 @failures = []

 end

You can code the circuit breaker implementation by seeing whether the current number of
failures is greater than the number of failures allowed. If it is allowed, then you get a cutoff
time to remove older failures by subtracting the time to wait from the current time, and
then removing any times from the failures array that are before the cutoff time.

Finally, you recheck whether the number of recent failures is still greater than the number
allowed, and if so, you return without yielding to the block. If the number of recent
failures is less than the number allowed, you yield to the block and rescue any exceptions.
If there is an exception, you store the time of failure in the failures array, and return
nil, as shown in this code here:

 def check

 if @failures.length >= @num_failures

 cutoff = Time.now - @within

 @failures.reject!{|t| t < cutoff}

 return if @failures.length >= @num_failures

 end

 begin

 yield

 rescue

 @failures << Time.now

 nil

 end

 end

end

Designing exception class hierarchies 161

Then you can set up your circuit breakers in your application. These are generally
singleton objects, usually implemented as constants:

RECOMMENDER_CIRCUIT = BrokenCircuit.new

AD_CIRCUIT = BrokenCircuit.new

Then you can use the circuit breakers in your code prior to payment processing:

@recommendations = RECOMMENDER_CIRCUIT.check do

 recommender_service.call(timeout: 3)

end

@ads = AD_CIRCUIT.check do

 ad_service.call(timeout: 3)

end

process_payment

Generally speaking, production circuit breaker design is more complex and involved
than all of the preceding examples, and you should probably use one of the many circuit
breaker gems for Ruby instead of trying to implement a circuit breaker in your own code.

In this section, you learned all about retrying transient errors, including the basics of
implementing circuit breakers. In the next section, you'll learn about how to design useful
exception class hierarchies.

Designing exception class hierarchies
In general, if you are writing a library and raising an exception in it, it is useful to have
a custom exception subclass that you use. Let's say you are passing an object to your
method, and the object has to be allowed, or an exception should be raised. Ruby allows
you to do this by using the following code:

def foo(bar)

 unless allowed?(bar)

 raise "bad bar: #{bar.inspect}"

 end

end

162 Handling Errors

However, this is a bad approach, as it raises RuntimeError. In general, it is better to
raise an exception class related to your library, since that allows users of your library to
handle the exception differently from exceptions in other libraries. So if you have a library
named Foo, it's common to have an exception class named something like Foo::Error
that you can use for exceptions raised by the library. The following code demonstrates this:

module Foo

 class Error < StandardError

 end

 def foo(bar)

 unless allowed?(bar)

 raise Error, "bad bar: #{bar.inspect}"

 end

 end

end

It's important that Foo::Error is a subclass of StandardError and not of
Exception. You should only subclass Exception in very rare cases because subclasses
of Exception are not caught by rescue clauses without arguments. Using rescue
with no exception classes given only rescues descendants of the StandardError class.

In general, it is best to keep your exception class hierarchy as simple as possible. If your
code never explicitly raises an exception, do not create an exception class. When your
code first needs to raise an exception, create a general Error class, such as Foo::Error.
Thereafter, in future cases when raising an exception, use the same general Error class.

When should you have multiple exception classes in your library? In general, the only reason
to use a separate exception class is for a type of error that users are likely to want to
handle differently from other types of errors. For example, let's say in your library that
there are two types of errors that can occur, permanent errors and transient errors.

In case of a transient error, it's possible that the same request will succeed in the future.
However, if it is a permanent error, this means the same request will always fail in the
future.

In this case, it makes sense to create a Foo::TransientError class:

module Foo

 class Error < StandardError

 end

 class TransientError < Error

Designing exception class hierarchies 163

 end

end

This way, users calling your library can rescue that particular exception class, and only
retry in that case:

begin

 foo(bar)

rescue Foo::TransientError

 sleep(3)

 retry

end

How will you know which exceptions deserve separate exception classes and which exceptions
do not? In many cases, you won't know. Unless you have a very clear idea that a particular
exception should be treated differently, just use the generic exception class for your library
when raising the exception.

Later, you may get reports for users that they want to treat a particular error case
differently. The following code shows what users will often be doing in this case:

begin

 foo(bar)

rescue Foo::Error => e

 if e.message =~ /\Abad bar: /

 handle_bad_bar(bar)

 else

 raise

 end

end

When you get a report that a user would like a new exception class created, then you can
reanalyze the situation. At that point, you may want to create a subclass of the library
generic exception class for that particular error, as well as change the particular
exception raising location to use the new exception class, as shown in the following
code:

module Foo

 class Error < StandardError

 end

164 Handling Errors

 class TransientError < Error

 end

 class BarError < Error

 end

 def foo(bar)

 unless allowed?(bar)

 raise BarError, "bad bar: #{bar.inspect}"

 end

 end

end

The advantage of using the preceding approach for adding exception classes is that it is
backward-compatible. The previous example, which rescues Foo:Error and checks
e.message, still works. In the future, the user can switch to rescuing Foo::BarError,
similar to this example:

begin

 foo(bar)

rescue Foo::BarError

 handle_bad_bar(bar)

end

The principle when designing exception class hierarchies is similar to the principle of
designing class hierarchies in general, which is, to avoid exception class proliferation, and
create only the exception classes necessary for users to appropriately handle exceptions
raised by your library.

Using core exception classes
Note that in some cases, it may be permissible to use one of the built-in exception
classes. For example, if you only want to accept a certain type of argument, you could
raise TypeError if the passed argument is of the wrong type:

def baz(int)

 unless int.is_a?(Integer)

 raise(TypeError,

 "int should be an Integer, is #{int.class}")

 end

Summary 165

 int + 10

end

While this is an appropriate use of the TypeError exception class, it results in
unidiomatic Ruby code. In general, idiomatic Ruby code avoids defensive programming
based on types, because in Ruby, what matters is what methods the object responds to and
the objects returned by those methods.

In Ruby, it shouldn't matter what actual class the object uses. Except in special cases, it's
best to avoid this type of programming, and just use the object without explicitly checking
its type. In this example, we pass the object directly as an argument to Integer#+:

def baz(int)

 10 + int

end

If Ruby needs to deal with the object internally, where the underlying type actually
matters, Integer#+ will raise TypeError if int is not comparable to an integer. You
don't generally need to do such TypeError checks, because Ruby does it for you.

Summary
In this chapter, you've learned how best to handle errors in your Ruby code. You've
learned about handling errors using return values, handling errors with exceptions,
and the trade-offs between the two approaches.

You've learned how to retry in the case of transient errors when using both approaches,
and you've also learned about more advanced techniques, such as exponential backoff and
circuit breakers. You've also learned how to properly design exception class hierarchies.
Proper error handling is one of the more important aspects of programming, and now you
are better prepared to implement errors properly in your application.

In the next chapter, you'll shift gears a little and learn how code formatting can affect
maintenance.

Questions
1.	 What is the main advantage of using return values to signal errors?

2.	 What is the main advantage of using exceptions to signal errors?

3.	 Why is it important not to retry transient errors immediately?

4.	 When is a good time to add a subclass of an existing exception class?

6
Formatting Code for

Easy Reading
How to format code can be a divisive topic, especially in a language designed for
programmers' happiness. In this chapter, you'll learn about different mindsets for code
formatting, the advantages of consistency, the disadvantages of arbitrary limits, and the
trade-offs of code formatting enforcement. You'll also learn about Ruby's built-in code
formatting checker.

We will cover the following topics in this chapter:

•	 Recognizing different perspectives of code formatting

•	 Learning how syntactic consistency affects maintainability

•	 Understanding the consequences of using arbitrary limits

•	 Checking basic code formatting with Ruby

•	 Realizing the actual importance of code formatting

By the end of this chapter, you'll understand better whether to enforce code formatting
when using Ruby, and how best to do so if you decide to.

168 Formatting Code for Easy Reading

Technical requirements
In this chapter and all chapters of this book, code given in code blocks is designed to
execute on Ruby 3.0. Many of the code examples will work on earlier versions of Ruby,
but not all. The code for this chapter is available online at https://github.com/
PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter06.

Recognizing different perspectives of code
formatting
You've probably realized that not everyone thinks alike. Everyone is different, and has
different opinions on how things should be. Programmers are no different, and in general,
for any decently sized module, if you give two programmers the same specification, you
will usually get quite different implementations. This isn't a problem or a weakness, it is
a strength.

There are many different ways to do almost anything in programming. Some may be
objectively better than others, and some objectively worse, but in many cases, given two
different implementations of the same requirements, one will be better than the other in
some ways, and worse than the other in other ways.

The differences in two different implementations of the same requirements will often vary
at every level, from the higher-level design such as class architecture to the lower-level
design, such as which expressions are used. For example, consider simple conditional
expressions, where you only want to execute bar if foo is true. The most idiomatic way
in Ruby to do this would probably be as follows:

bar if foo

However, for a programmer who comes from another language, these postfix conditionals
may be jarring, and just backward from how they are used to thinking. It's fairly common
in programming to want to think about the condition before the action that depends on
the success of the condition, and for many programmers, the following approach matches
their thinking much better:

if foo

 bar

end

https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter06
https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter06

Recognizing different perspectives of code formatting 169

These two approaches aren't even the only way this conditional can be written. Ruby's
syntax in many ways is based on Perl's syntax, and for former Perl programmers, there is
another common approach to this conditional:

foo and bar

This approach may look strange if you haven't seen it before, but it is logically equivalent.
It has the terseness of the postfix conditional approach, but it puts the condition before the
action that depends on the condition, which in some programmers' minds is the best of
both worlds.

There are many similar cases to the previous example. Let's say you want to return unless
condition is true. The most idiomatic Ruby expression for this is probably the
following:

return unless condition

However, if condition is a long expression, it's probably more common to avoid the
postfix conditional:

unless condition

 return

end

For a programmer with a background in a language that lacks the equivalent of an
unless conditional, it's very common to use if and manually invert the conditional:

if !condition

 return

end

There is also the approach commonly used by former Perl programmers:

condition or return

Each programmer is going to have their own view about which one of these approaches is
best, and there are libraries where the same programmer will use all of these approaches
in different cases. Semantically, all of these approaches do exactly the same thing, so
which approach is used has no effect on the program itself; it only has an effect on the
programmer who has to maintain the code.

170 Formatting Code for Easy Reading

Some programmers are comfortable and even prefer writing and reading a wide variety
of styles when programming. For these programmers, Ruby's syntactic flexibility is
wonderful, as the subtle differences between the different programming styles allow
an almost poetic use of language. For these programmers, reading or writing a library
where every single construct looks exactly the same is bland, and they dislike bland
code the same as a food critic may dislike bland food. For simplicity, we'll refer to these
programmers as poets.

However, other programmers are the exact opposite. They value consistency, and think
that every code construct that does the same thing should look the same way. If they come
across a code construct that works the same way but looks different, it can be jarring to
them, and affect their own productivity. For these programmers, syntactic inconsistency
is as problematic as semantic inconsistency, and should be avoided to the same degree.
For simplicity, we'll refer to these programmers as philosophers.

Most programmers fall somewhere on a spectrum between the poet and philosopher.
They probably have a preferred style that they use most of the time, but they can still deal
with code written in a different style, even if it has a minor adverse effect on their own
productivity.

In this section, you learned how different types of Ruby programmers view syntactic
consistency. In the next section, you'll learn how syntactic consistency can affect
maintainability, depending on the type of programmer working on the code.

Learning how syntactic consistency affects
maintainability
In general, if a single programmer is maintaining the code, whether the code is
syntactically consistent or not does not matter. All that matters is that the programmer
who wrote the code can read it. In general, programmers tend to write code in a way
that makes the most sense to them, even if it may not make the most sense to other
programmers. If you are the sole maintainer of the code, you should write the way that
feels most natural to you, because that is probably the most productive approach.

However, when multiple programmers are working on the same code, syntactic
consistency may become more important, depending on where on the poet-philosopher
spectrum each programmer working on the code is. If all of the programmers working
on the code lean more toward the poet side of the spectrum, syntactic consistency may
still not be important.

Learning how syntactic consistency affects maintainability 171

However, if a significant portion of the programmers working on the code lean more
toward the philosopher side of the spectrum, then a lack of syntactic consistency may
have a significant negative effect on their productivity, and therefore a significant negative
effect on the productivity of the team overall.

In such cases, it is often a good idea to enforce syntactic consistency. Enforcing syntactic
consistency can increase the performance of philosophers. The poets may find such code
boring and not as fun to work on, and it is likely that enforcing syntactic consistency will
affect their enjoyment of working on the code, but it is unlikely that enforcing syntactic
consistency will harm their productivity, as they are, in general, able to read and write
a wide variety of styles.

So, how do you know what types of programmers work on the team? One of the easiest
ways to determine this is to look at previous code reviews. If during a review of the
following code:

if !condition

 return

end

The programmer reviewing it requests changing it to the following:

return unless condition

Or if you have a spec guard such as the following:

it "foo should be true" do

 foo.must_equal true

end if RUBY_VERSION >= '3.0'

A different reviewer requests changing this to the following:

if RUBY_VERSION >= '3.0'

 it "foo should be true" do

 foo.must_equal true

 end

end

Then, you may have philosophers on the team, and enforcing syntactic consistency could
increase productivity in part by decreasing time spent requesting syntax changes during
code review.

172 Formatting Code for Easy Reading

Alternatively, if you are not enforcing syntactic consistency and your code reviews do not
have many requests for syntax changes, there is probably not a significant advantage in
enforcing syntactic consistency, because you are only likely to decrease the enjoyment of
the poets working on the code.

It can be hard for the poet to understand the philosopher's mindset and vice versa. The
poet generally doesn't have a problem reading diverse styles, and may have difficulty
understanding why a philosopher would object to the diversity of style. The philosopher
sees value in things that work the same way looking the same way, and sees syntactic
consistency as increased simplicity, and diversity of style as unnecessary complexity. It
is important to recognize that neither viewpoint can be objectively right or wrong; both
are subjective preferences. What is important is to know where in general, on the poet-
philosopher spectrum, the programming team maintaining the code lies, so you can
choose whether or not to enforce syntactic consistency in the library.

Enforcing consistency with RuboCop
If you do want to enforce syntactic consistency in Ruby, the most common approach to
doing so is to use the rubocop gem. RuboCop can operate both as a linter to alert you of
a syntax that goes against the style you want to enforce in the library, and in some cases as
a tool to automatically rewrite code from a syntax that goes against the enforced style to
syntax in compliance with the enforced style.

RuboCop implements many checks, called cops, and most of the cops are enabled by
default, even those not related to syntax. It can be tempting to use the RuboCop defaults,
since it is otherwise daunting to go through every cop enabled by default and decide
whether you want to enforce it. Thankfully, RuboCop has a solution for this, which is the
configuration parameter, AllCops:DisabledByDefault. Using this configuration
parameter, you can only enable the syntax checks that you believe will be helpful for your
library.

One approach to trying to satisfy the philosophers on the team without undue irritation
to the poets is to start with all of RuboCop's cops disabled, except those related to syntax
issues that have previously been complained about during code review. Then, as future
code reviews happen, if one of the philosophers complains about a new syntax issue that
is available as a RuboCop cop, you can consider enabling that cop. Using this approach,
you avoid many unnecessary syntax checks, and focus on only the syntax checks that your
team finds beneficial.

In this section, you learned how syntactic consistency can affect maintainability, and how
best to enforce consistency when using RuboCop. In the next section, you'll learn how
enforcing arbitrary limits on your Ruby code usually results in worse code.

Understanding the consequences of using arbitrary limits 173

Understanding the consequences of using
arbitrary limits
One major issue with RuboCop's default configuration is that it enables all of the cops
related to metrics. By default, RuboCop complains about the following:

•	 Classes longer than 100 lines

•	 Modules longer than 100 lines

•	 Methods longer than 10 lines

•	 Blocks longer than 25 lines

•	 Blocks nested more than three times

•	 Methods with more than five parameters, including keyword parameters

Enforcing these limits will always result in worse code, not better code. In general, in this
book, there are few principles stated as absolutes. This is one principle that is an absolute,
so to restate it for emphasis—enforcing the previous arbitrary limits on your code will
make the code worse, not better.

The argument against arbitrary limits is simple: if there was a better approach that was
within the limit, it would have already been used. The argument for arbitrary limits is
also simple: the programmer is too stupid, ignorant, or inexperienced to know what
the best approach is, and an arbitrary limit can reduce the possible damage, by forcing
the programmer to restructure their code. A simple counterargument to that is if the
programmer is too stupid, ignorant, or inexperienced to do things correctly within the limit,
why do we trust them to split the code intelligently into smaller parts to get around the limit?

If you have a class that is 300 lines, splitting the methods in it into four separate modules,
each being around 75 lines, and including the four modules in the class is not an
improvement a priori. That doesn't mean it is never an improvement. If you are able to
combine related methods that implement a behavior into a single module that is usable in
other classes, that may be a good reason to create a module. However, splitting up a class
purely to avoid an arbitrary limit is always bad. Do not rearrange the deck chairs.

Take the following code as an example. This implements a XYZPoint class where
we assume that xs, ys, and zs are methods that return arrays of integers. The
all_combinations method yields each combination of elements from xs, ys,
and zs and the given array:

class XYZPoint

 def all_combinations(array)

174 Formatting Code for Easy Reading

 xs.each do |x|

 ys.each do |y|

 zs.each do |z|

 array.each do |val|

 yield x, y, z, val

 end

 end

 end

 end

 end

end

It does absolutely no good to avoid the maximum block limit by adding a private
each_xy method to yield each x and y combination:

class XYZPoint

 private def each_xy

 xs.each do |x|

 ys.each do |y|

 yield x, y

 end

 end

 end

Then, you rewrite your all_combinations method to use it:

 def all_combinations(array)

 each_xy do |x, y|

 zs.each do |z|

 array.each do |val|

 yield x, y, z, val

 end

 end

 end

 end

end

Understanding the consequences of using arbitrary limits 175

Again, that doesn't mean that adding the each_xy method is bad. If there is another
method using the same nested xs.each and ys.each approach, and the each_xy
approach can be used to reduce overall complexity, which is a good reason to add an
each_xy method. However, that's a good reason without an arbitrary limit. If you are
only adding the each_xy method to satisfy the RuboCop block nesting cop, you are
rearranging the deck chairs, and sacrificing performance and code locality for no benefit.

Let's say you have a method such as CSV.new in the standard library, which accepts one
positional argument and over 20 keyword arguments to allow very flexible behavior. You
can use this flexibility to parse many different types of files:

CSV.new(data,

 nil_value: "",

 strip: true,

 skip_lines: /foo/)

or

CSV.new(data,

 col_sep: "\t",

 row_sep: "\0",

 quote_char: "|")

It does absolutely no good to switch to an API where a single options object is passed
as an optional argument:

options = CSV::Options.new

options.nil_value = ""

options.strip = true

options.skip_lines = true

CSV.new(data, options)

or

options = CSV::Options.new

options.col_sep = "\t"

options.row_sep = "\0"

options.quote_char = "|"

CSV.new(data, options)

176 Formatting Code for Easy Reading

One argument for the options object approach is that you can reuse the options in
multiple calls:

options = CSV::Options.new

options.nil_value = ""

options.strip = true

options.skip_lines = true

csv1 = CSV.new(data1, options)

csv2 = CSV.new(data2, options)

However, you can already do this with the approach that CSV.new currently uses,
without hurting the usability in the common case:

options = {nil_value: "", strip: true, skip_lines: /foo/}

csv1 = CSV.new(data1, **options)

csv2 = CSV.new(data2, **options)

Again, is it necessarily a bad idea to use an options object as opposed to many keyword
arguments? No, it is not necessarily a bad idea.

However, it is always a bad idea to change from an API that uses many keyword
arguments to an API that uses an options object for the sole purpose of satisfying
RuboCop's arbitrary limits. As mentioned previously, RuboCop will warn by default when
a method accepts more than five arguments, whether keyword or positional.

In short, don't assume that RuboCop knows better than you do and keep the default
arbitrary limits. Use your judgment on what API makes sense for your library. Do not
refactor a method to reduce the number of lines it contains because RuboCop complains
about it. Only refactor it if you can identify shared code that is usable in other cases and
makes sense on its own merits. Observe the following code and check whether you ever
see a method with numbered private methods for the order in which they are called in
another method:

def foo(arg)

 bar, baz = _foo_1(arg)

 val = _foo_2(bar)

 _foo_3(val, baz)

end

Then, there's a good bet it was to work around arbitrary method length limits, and is less
readable, harder to maintain, and performs worse than the original definition of foo,
which may have had 20 lines or more.

Checking basic code formatting with Ruby 177

In this section, you learned the problems with enforcing arbitrary limits in your Ruby
code. In the next section, you'll learn that Ruby comes with basic code format checking
built-in, and how to use it.

Checking basic code formatting with Ruby
You may not have seen an example of it, but Ruby actually ships with a built-in syntax
checker that will warn about syntax that is almost universally considered problematic.
It can catch issues such as the following:

•	 Unused variables:

def a

 b = 1 # b not used

 2

end

•	 Unreachable code:

def a

 return

 2 # not reachable

end

•	 Mismatched and possibly misleading indentation:

if a

 if b

 p 3

end # misleading, appears to close "if a" instead of "if
b"

end

•	 Unused literal expressions:

def a

 1 # unused literal value

 2

end

178 Formatting Code for Easy Reading

•	 Duplicated keyword arguments and hash keys:

a(b: 1, b: 2) # duplicate keyword argument

 {c: 3, c: 4} # duplicate hash key

•	 Using meth *args when meth is a local variable (which is parsed as
meth.*(args) instead of meth(*args))

•	 Using if var = val conditionals, where val is a static value such as a number
or string (as == was probably intended)

•	 Using a == b expressions when the result is not used

•	 Use of x > y > z syntax (common for former Python programmers)

•	 Using regular expressions that have a] without a matching [

These are a large portion of actually useful syntax checks. Some are purely related to
formatting, such as the mismatched indentation warning, but most exist to highlight code
that has objective problems that should be fixed.

So, how do you use this built-in format checker? You combine two separate Ruby options.
One option is -w, which turns on verbose warnings. Verbose warnings are not limited to
syntax warnings (warnings emitted during Ruby program compilation, before the code
is executed), but many other warnings as well, such as method redefinition warnings.
However, by using the other option (-c), you will limit the warnings to syntax warnings.
The -c option is used to turn on syntax checking mode.

By default, when you use ruby -c file, Ruby will parse file and either print the
Syntax OK string to the standard output if it has valid syntax, or will print any syntax
errors it encounters to the standard error output. However, when combining -w and -c,
such as ruby -wc file, Ruby will parse the error and print syntax warnings to the
standard error output, in addition to either printing Syntax OK to the standard output
or syntax errors to the standard error output.

You can use ruby -wc even without a file. For small snippets of code, you can use ruby
-wce "ruby code here". For larger code snippets, you can run just ruby -wc, in
which case Ruby will wait for code to be entered on standard input. You can either type
the code in or paste the code. After typing or pasting the code in, you can either hit Ctrl
+ D on the keyboard or enter __END__ on a line by itself to have Ruby stop parsing the
code and exit. An alternative approach to setting the -wc option in each call to ruby is to
use the RUBYOPT environment variable.

In this section, you learned how to use Ruby itself to check code formatting. In the next
section, the final section in Section 1 of the book, you'll gain some additional perspective
on code formatting in Ruby.

Realizing the actual importance of code formatting 179

Realizing the actual importance of code
formatting
While code formatting is definitely part of programming, and can definitely affect how
maintainable your code is; in most cases, the actual formatting of code matters far less
than you would initially expect. Outside of egregious cases, you'll probably be able to read
two different pieces of code formatted differently, and determine that they accomplish
the same thing. On the flip side, there's definitely code that is difficult to understand
regardless of how it is formatted.

Focus on the understandability of your code, not the formatting of your code. The main
time you should worry about your code formatting is when it negatively impacts the
understandability of your code. The other time is when you are formatting for artistic
effect:

 def fed

 (p p)

 p?a a?p

 q= p q =p

 p %%.....%% q

 dne end

Since it is unlikely you are formatting for artistic effect, you should focus far more on the
understandability of your code than on how your code is formatted.

Summary
In this chapter, you've learned that Ruby programmers are a diverse group, with different
code formatting preferences. You've learned that some Ruby programmers place great
value on syntactic consistency, whereas syntactic consistency leads to bland code in the
eyes of other Ruby programmers.

Importantly, you've learned that enforcing arbitrary limits on your code style is always
a bad idea. You've learned that Ruby comes with a built-in way to check for common
syntactic and semantic problems that are considered objectively bad, and how to use it.
Finally, you've learned that code formatting is ultimately one of the least important aspects
of your programming, and is it much more important to focus on the understandability
of your code. With all you've learned, you are now better able to make decisions regarding
code formatting for your libraries and applications.

180 Formatting Code for Easy Reading

We'll now move to Section 2 of the book, which focuses on higher-level programming
principles. In the next chapter, you'll learn you'll learn important principles for designing
libraries.

Questions
1.	 Do all Ruby programmers want to enforce syntactic consistency?

2.	 If you are using RuboCop to enforce syntactic consistency, what's one RuboCop
configuration parameter you should definitely use?

3.	 Why does enforcing arbitrary limits usually result in worse code?

4.	 What Ruby command-line option allows you to check a file for common formatting
issues?

5.	 When should you worry about code formatting?

Section 2:
Ruby Library

Programming
Principles

The objective of this section is to have you learn about principles involved in maintaining
larger bodies of code, such as designing libraries and applications.

This section comprises the following chapters:

•	 Chapter 7, Designing Your Library

•	 Chapter 8, Designing for Extensibility

•	 Chapter 9, Metaprogramming and When to Use It

•	 Chapter 10, Designing Useful Domain-Specific Languages

•	 Chapter 11, Testing to Ensure Your Code Works

•	 Chapter 12, Handling Change

•	 Chapter 13, Using Common Design Patterns

•	 Chapter 14, Optimizing Your Library

7
Designing Your

Library
Designing a useful library is hard work, requiring consideration of many important
decisions. In this chapter, you'll learn how to design useful libraries by focusing on the
user experience, deciding how large the library should be, and deciding whether to have
fewer, more complex methods or simpler, more numerous methods.

In this chapter, we will cover the following topics:

•	 Focusing on the user experience

•	 Determining the appropriate size for your library

•	 Handling complexity trade-offs during method design

By the end of this chapter, you'll have a better understanding of the principles of a good
Ruby library design.

184 Designing Your Library

Technical requirements
In this chapter and all chapters of this book, code given in code blocks is designed to
execute on Ruby 3.0. Many of the code examples will work on earlier versions of Ruby,
but not all. The code for this chapter is available online at https://github.com/
PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter07.

Focusing on the user experience
The most important aspect when designing a Ruby library is to understand how the user
will be using it, and trying to simplify that usage as much as possible. Making your library
easy to use actually starts even before the user uses the library. It starts when the user
first hears about the library and wants to learn more about it. In order to learn about the
library, the first thing they'll probably do is search for it using the library name.

Library naming
It may be unfortunate, but one of the most important aspects of your library is its name.
Ideally, the name should be short and easy to pronounce and spell, not be used by any
other Ruby library, and ideally not be used in other remotely popular technology. If your
library name is long or difficult to spell, users may give up looking for it even before they
try it.

If your library name is used by another Ruby library, you won't have any issues creating
a repository, but when the time comes to publish your gem, you may not be able to use
the gem name you want, in which case users will not be able to easily use it. Before
deciding on a library name, always make sure to check https://rubygems.org and
make sure that the gem name you want is available first.

If you forget to check https://rubygems.org first, and it turns out the gem name
you want is already taken, it isn't a huge deal. However, you shouldn't announce a library
until it is available in gem form for people to easily use. If there is a conflict, you just need
to go through your library and rename it before you announce it. This process is tedious,
but not difficult. In general, the process for renaming is easy to automate using search and
replace. Make sure you check that the new gem name is available before renaming.

https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter07
https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter07
https://rubygems.org
https://rubygems.org

Focusing on the user experience 185

The situation is even worse if the library name is not already used as a gem name, but
it is used by another remotely popular technology. This is especially true if the technology
is owned by a commercial entity. The reason for this is you might get a friendly or
not-so-friendly letter from an attorney, asking you to stop using the same name for
a similar or not-so-similar product, lest you create confusion in the marketplace. At this
point, you have a hard choice, but by far the most common result is that you'll end up
renaming your library.

Renaming your library causes significant harm to your library's popularity. No matter how
much you try to publicize it, most of the people using the library won't even know it got
renamed. Often, you don't get told you shouldn't use the name until your library is already
a little popular, because it is only when a library starts getting popular that it gets enough
attention for an attorney to send a letter. So right when your application starts getting
popular, it is back to square one in regards to name recognition. It takes some time, but do
your due diligence upfront and make sure your library name isn't already used elsewhere.

If your library name is also a common English word, chances are it won't be ranked highly
in search engines even if it is very popular. Rack, one of the most popular gems in terms
of downloads, doesn't show up on the first page of Google. Rake, another of the most
popular gems, also doesn't show up on the first page of Google. That's not something to
worry about, as most programmers looking for your library will search for it using Ruby
and the library name. So, it's a good idea to search for Ruby with your desired library
name and see what comes up before deciding on a library name.

If your library is not related to other libraries, then you have a lot of flexibility when
naming. It's fine to have library names that are plain descriptions of what the library
handles. A library that handles warnings could be named warning, and a testing library
based on xUnit principles could be named test-unit. However, it's not uncommon
for Ruby library names to be more whimsical and unrelated to what the library actually
does, such as unicorn (a web server), rainbows (also a web server), and cucumber
(a behavior-driven development specification tool). If your library name can be partially
descriptive and partially whimsical, all the better.

186 Designing Your Library

If your library is closely related to another library, or a plugin or extension for
another library, there is a convention for library naming, which is library_name-
extension_name, with a dash between the two but underscores in the extension
name and the library name. This is unless the library itself has a dash in its name, in
which case you should use the same name. For example, a library that adds a testing
component to the rack gem could be named rack-test. A library that extends the
minitest gem to add must_not_* aliases for the wont_* methods could be
called minitest-must_not. This convention is not universally followed, and you
will see libraries using the library_name_extension_name format and
library-name-extension-name format, but this is the officially recommended
naming convention for gems and it is best if you follow it.

Library first impressions
Assuming a user knows about your library, they'll probably search for your library, maybe
with Ruby added to the search, and generally click the first link that looks reasonable.
That will hopefully be either the website for the library or, if the library doesn't have an
official website (common with smaller libraries), the source code repository.

The most important thing you can do is to have usage examples for your library on the
index page of the library website, if the library has a website, or the home page of the
source control repository website. Users do not want to read class, module, or method
documentation to understand how your library works. It may even be frustrating for you
that we've gotten well into this chapter without a single example! Give the users what they
want. What do users want? Usage examples! When do they want them? Near the top of
the page! If the library has its own website, put a usage example on the index page of the
website. No exceptions!

If the library only has a source code repository and not a separate website, then the
index page for the source code repository will probably show the README file for your
library. Make sure your library has a README file. The top of the README file should
be a paragraph or a short bulleted list describing the library, and it's best if right after that
is a basic usage example. That's not a hard and fast rule, but make sure that somewhere in
the README file there are usage examples that show at least the basics of using the library,
and the earlier in the README file, the better.

The simplest possible interface
Hopefully, after seeing the usage examples, the users like what they see, and they'll install
the gem. The best way to make sure the users like what they see is to make your library as
simple as possible to use. How do you make your library simple to use? Think of what the
library should do, and then what the simplest interface for it would be.

Focusing on the user experience 187

Note that you may have no idea how to implement the interface for the library at this
point. That's perfectly okay. When designing an interface for a library, you don't need to
know how to implement it. It might even be better if you don't have a clear idea of how to
implement the interface, because it could discourage you from writing a better interface
that would be more work to implement, and instead choose a worse interface that is easier
to implement internally.

While it isn't necessary to know upfront how to implement a given interface, it's useful to
have a basic idea of whether it is possible to implement the interface you want. You don't
want to design an interface that is impossible to implement. For example, if your interface
lacks the required input necessary for the desired output, it's not going to be workable. As
long as you have a good idea that the interface is possible, you don't need to know how to
implement it upfront.

As an example of the simplest possible interface, if you have a library that needs to create
CSV output from an enumerable such as an array or hash, the simplest possible interface
is probably adding Enumerable#to_csv:

[[1, 2], [3, 4]].to_csv

=> "1,2\n3,4\n"

Now, ask yourself, is that the best interface? Well, it depends. Many Ruby programmers
are fine with libraries that modify the core classes. If you are also fine with a library that
modifies the core classes, that is probably the best interface. It's incredibly simple. The
method doesn't even need to take arguments, it just needs to assume each entry in the
enumerable is also enumerable.

One issue with using Enumerable#to_csv as the interface is that Ruby's standard
csv library already defines Array#to_csv, which will take precedence over
Enumerable#to_csv for arrays. Worse, Array#to_csv operates differently; it is
designed to convert an array into a single CSV row, instead of assuming the array contains
multiple rows. Such are the hazards of trying to modify the core classes in libraries.

Let's assume that modifying the core classes is not considered acceptable. There are good
reasons why it may not be considered acceptable, the most valid reason being that two
libraries could add conflicting method names, with disastrous results. If you cannot add
a method to an existing class, it's common to wrap the object in another object, and call
a method on that. Because 2CSV isn't a valid constant name, you decide to use ToCSV for
the class name. This allows the following interface:

ToCSV.new([[1, 2], [3, 4]]).csv

188 Designing Your Library

That's not quite as nice as the first interface, but it isn't too bad. It is two method calls
instead of one, though. Let's work on an even simpler interface that only requires a single
method. One simple way to do that is to have a singleton method on ToCSV that creates
the object internally and calls csv on it. You can even name it csv so the singleton
method has the same name as the instance method it uses:

ToCSV.csv([[1, 2], [3, 4]])

There are two straightforward ways the previous example could be syntactically simpler.
One is allowing the use of Ruby's .() syntax, by adding a singleton call method on
ToCSV. This is only one character more than the Enumerable#to_csv approach. The
downside to this is it is a little more cryptic, and not all Ruby programmers are aware that
the .() syntax is the same as call():

ToCSV.([[1, 2], [3, 4]])

The other way to make this syntactically simpler is to use a singleton [] method.
While not as obvious as the ToCSV.csv approach, it is probably less cryptic than
the .() approach, and ends up being exactly the same number of characters as the
Enumerable#to_csv approach:

ToCSV[[[1, 2], [3, 4]]]

Now, most libraries are more complex than an enumerable-to-CSV convertor. But the
general approach for any library remains the same. Design the simplest possible interface
for the user to use and show them examples of using it as soon as possible.

From a user's perspective, there are two main questions they probably ask themselves
when deciding whether to use a library:

•	 How difficult is it for me to do it myself?

•	 How easy would it be if I used a library?

As the library creator, you have no ability to affect the answer to the first question. You
can only affect the answer to the second question. The easier you can make your library to
use, the more likely it would be easier for the user to use it than for the user to program
the same features. The best libraries are the libraries that make it possible to do something
that would be very difficult for the user to do themselves, but make it very easy for the
user to accomplish what they want.

In this section, you learned that you should focus on the user experience when designing
your library. In the next section, you'll learn how to determine what an appropriate size
for your library is.

Determining the appropriate size for your library 189

Determining the appropriate size for your
library
One important consideration when designing your library is how large you want your
library to be. In general, you should have an idea of how large the library could be upfront,
even if you expect that in the initial release, the library will be fairly small.

In the previous example, we had a library that converted an Enumerable object to CSV.
That's a library with a nice, small scope. However, maybe the conversion of Enumerable
to CSV was just our initial need, and we also want to use the same library to support
converting Enumerable objects to HTML tables, Word tables, Excel spreadsheets,
Portable Document Formats (PDFs), and even more formats through external adapters.
Additionally, you want the same library to handle not just Enumerable input but also
arbitrary object input, through configurable input convertors registered using plugins.

Those two libraries are probably going to require at least one order of magnitude
difference in size and will require completely different implementation approaches. The
library dedicated to Enumerable to CSV conversion fits easily in a single file, and if you
are using Ruby's built-in csv library, it can be written in only a few lines. The second
library is more or less an arbitrary input to arbitrary output Extract, Transform, Load
(ETL) framework, with an initial input convertor that handles Enumerable input and an
initial output adapter that outputs CSV.

Both types of libraries have their place. Small libraries are much easier to maintain and
can often go for years without changing and work fine. Small libraries are much easier for
new users to understand. In many cases, your requirements in regards to the library do
not change, and you can happily use a small library for years without problems. However,
in most cases, smaller libraries often have less potential value, since users may not have
much difficulty implementing the support themselves.

Small libraries in general tend to be significantly less flexible than large libraries. Let's
say you've used your Enumerable to CSV library all over your application, with 100
different reports in CSV format. Then one day, you get a new requirement: all places in
the application that offer CSV reports must now offer PDF reports and Excel equivalents
with the same information. In a large framework that supports different output adapters,
this may just be a keyword argument that needs to be switched. Depending on how
you structured your application, you might need to change that keyword argument in
100 places or in a single place, but it's still just a keyword argument. If you are using the
small Enumerable to CSV library, you may now have to scramble to find a large library
that handles both PDF and Excel, and likely end up replacing your usage of the small
Enumerable to CSV library, since the large library probably supports CSV as well.

190 Designing Your Library

It's certainly possible to be wrong about the expected size of your library and still be
successful. You could think your library is going to have tons of features and multiple
input convertors and output adapters, and only implement the Enumerable input
convertor and CSV output adapter because that is only what you need. The worst-case
scenario is you end up with a lot of unnecessary complexity in your library, and it may be
possible to get rid of a lot of that complexity through refactoring.

Similarly, if you design your library for a single input type and a single output type, you
may find that you can make it handle additional input types and output types without
breaking existing backward compatibility. However, even in such cases where that is
possible, it usually results in significant internal complexity. In some cases, a better
approach is to design a new library that is designed to support multiple input convertors
and multiple output adapters, and have the older library use it internally. With this
approach, say we have the following simple code:

ToCSV[[[1, 2], [3, 4]]]

It still works, but internally, instead of the previous code that converted the Enumerable
object to CSV using Ruby's csv library, the implementation is similar to the code shown
here:

def ToCSV.[](enum)

 convertor = AnyToAny.new

 convertor.input_from(enum, type: :enumerable)

 convertor.output_to(:string, type: :csv)

 convertor.run

 convertor.output

end

In this example, we have an input_from method to handle arbitrary input types, and an
output_to method to handle arbitrary output types.

In this section, you learned some principles for determining an appropriate size for your
library. In the next section, you'll learn how best to handle complexity trade-offs when
designing methods.

Handling complexity trade-offs during method design 191

Handling complexity trade-offs during method
design
When designing your library, you have a choice of how many methods you should have
in your library. You also have a choice of how many classes should make up your library,
which you learned about in the The single-responsibility principle section in Chapter 2,
Designing Useful Custom Classes. To implement the exact same features, you can often
implement them using fewer, more complex, and more flexible methods, or more methods
that are less complex and less flexible.

As an example, let's say you are designing a data access library, and one of your
requirements is that you need to return the following types of data, assuming that N and
O are integers, and criteria will be provided as a block that returns true or false
when passed the record:

•	 The first record

•	 The first N records, as an array

•	 The first record matching given criteria

•	 The first N records matching given criteria, as an array

•	 The record at offset O

•	 The N records starting at offset O, as an array

•	 The first record starting on or after offset O matching given criteria

•	 The first N records starting on or after offset O matching given criteria, as an
array

Unfortunately, you are dealing with possibly the worst data backend you can think of,
where the only methods supported by the data backend are next_record and reset.
next_record returns the next record (or nil after the last record), and reset reverts
to the initial setting, so that next_record will return the same record as it returned in
the first call, as long as the data hasn't changed. This API would probably want to make
you pull your hair out, but thankfully you find out that this program will only be executed
as a batch job, and performance isn't a primary concern.

192 Designing Your Library

Less complex, less flexible methods
One approach for this is writing a separate method for each type of access. The method
that returns the first record seems simplest, so you decide to implement that first:

def first_record

 reset

 next_record

end

That turned out well, so this approach is looking good. You decide to work on the first N
records next:

def first_n_records(n)

 reset

 ary = []

 n.times do

 break unless record = next_record

 ary << record

 end

 ary

end

That was a lot more complex than the first example, which was only two simple method
calls, but still not too bad. We store the returned records in an array, iterating the given
number of times to get the appropriate number of records.

You decide to work on the first record matching the given criteria next:

def first_matching_record

 reset

 while record = next_record

 if yield record

 return record

 end

 end

Handling complexity trade-offs during method design 193

 nil

end

Still more complex than the first example, but also not too bad. In this example, instead
of storing retrieved records in an array, we are looping until we find a record that matches
our criteria, which is determined by yielding the record to the block and checking the
return value of the block.

You keep on trekking, happy that you are almost halfway done, and work on the first N
records matching the given criteria, as an array:

def first_n_matching_records(n)

 reset

 ary = []

 while record = next_record

 if yield record

 ary << record

 break if ary.length >= n

 end

 end

 ary

end

That's the most complex one yet. It uses parts of the two previous examples, combining
the storing of returned records in an array with checking for whether the records match
the criteria.

However, you've crossed the halfway point, so you work on the next method, returning
the record at the given offset:

def record_at_offset(o)

 reset

 o.times{next_record}

 next_record

end

194 Designing Your Library

That's a relief. You were worried these were going to get more and more complex, but that
method was simpler than some of the earlier methods. Maybe the first N records starting
at a given offset will also be easy:

def first_n_records_starting_at_offset(n, o)

 reset

 o.times{next_record}

 ary = []

 n.times do

 break unless record = next_record

 ary << record

 end

 ary

end

While significantly more complex than the example directly preceding, that looks
about as complex as some of the earlier examples. However, for some reason, creating it
seemed easier. Also, you are getting an odd sense of déjà vu. However, you push on, and
implement the first record starting on or after offset O matching the given criteria:

def first_matching_record_starting_at_offset(o)

 reset

 o.times{next_record}

 while record = next_record

 if yield record

 return record

 end

 end

 nil

end

Handling complexity trade-offs during method design 195

That also looks complex, but now you are feeling like there must be a pattern here. You
decide to implement the final method, which based on the name is probably the most
complex. Refer to the following code:

def first_n_matching_records_starting_at_offset(n, o)

 reset

 o.times{next_record}

 ary = []

 while record = next_record

 if yield record

 ary << record

 break if ary.length >= n

 end

 end

 ary

end

Well, you've figured it out now. It looks like all of the methods that deal with offsets are
the same as the methods that don't deal with offsets, with the only difference being that
the methods that deal with offsets use this code to skip all records until we reach the
desired offset:

o.times{next_record}

In this section, you learned about implementing multiple methods that are less complex
internally. In the next section, you'll learn about the alternative approach, implementing
fewer methods that are more complex internally.

196 Designing Your Library

Fewer but more complex methods
Armed with this knowledge, you decide to combine methods:

def first_record(offset: 0)

 reset

 offset.times{next_record}

 next_record

end

You use a keyword argument offset for an optional offset. You can default the offset
to 0, since performance isn't the primary concern, and it makes the code simpler. With
this approach, the method for getting the first record or the record at offset O both use
the same implementation. If for compatibility you still need the record_at_offset
method, you can implement it by calling this method:

def record_at_offset(o)

 first_record(offset: o)

end

This keeps the API for the record_at_offset method the same as the initial
implementation shown in the previous section, but internally uses the offset keyword
argument to first_record to simplify the implementation.

Similarly, returning the first N records or the first N records starting at offset O looks
mostly the same:

def first_n_records(n, offset: 0)

 reset

 offset.times{next_record}

 ary = []

 n.times do

 break unless record = next_record

 ary << record

 end

 ary

end

Handling complexity trade-offs during method design 197

You can see how the other two methods will be combined. This leads to the following
questions. First, as a library maintainer, which implementation approach would you
prefer to maintain? Second, as a library user, which interface would you prefer to use?
The answers to those questions can be different. Some programmers prefer the more
explicit method names, while others prefer to use the same method name with different
types of arguments. As you can see with the record_at_offset method calling the
first_record method with the offset keyword argument, it's possible to give
both users the interface they want, as long as you are comfortable maintaining the extra
methods.

In terms of maintenance, there is a clear advantage in combining each method requiring
an offset and method not allowing an offset into a method that accepts an optional offset.
This is because one case is completely handled by the other, since the offset not allowed
case is the same as providing an offset of 0. However, the next question becomes more
interesting, which is do you stop here?

Consider the first_n_records and first_n_matching_records methods.
We can ponder on whether it makes sense to combine them into a single method as
shown here:

def first_n_records(n, offset: 0)

 reset

 offset.times{next_record}

 ary = []

 while record = next_record

 if !block_given? || yield(record)

 ary << record

 break if ary.length >= n

 end

 end

 ary

end

In this case, it looks like it may make sense to combine them, because the matching case
is the same as the case where a matcher isn't provided, as that is the same as the matcher
always being true.

198 Designing Your Library

Similarly, does it make sense to combine the two methods that return a single record,
first_record and first_matching_record, into one method? It turns out you
can apply exactly the same approach:

def first_record(offset: 0)

 reset

 offset.times{next_record}

 while record = next_record

 if !block_given? || yield(record)

 return record

 end

 end

 nil

end

This approach has a lot more code than the initial first_record approach, but since
performance is not a primary concern, it doesn't matter. If this is a network service, the
time spent calling next_record and reset will be way more than the time spent
calling the other methods.

The final question is, now that you only have two methods instead of eight, do you want
to combine these two methods? If you want to do that, you need to make sure that first_
record or equivalent returns a single record or nil, and first_n_records(1)
or equivalent returns an array with at most one record. Well, what would that look like?
Something like this:

def first_n_records(number: (only_one = 1), offset: 0)

 reset

 offset.times{next_record}

 ary = []

 while record = next_record

 if !block_given? || yield(record)

 ary << record

 break if ary.length >= number

 end

 end

Handling complexity trade-offs during method design 199

 only_one ? ary[0] : ary

end

This uses one of the awesome features of Ruby, which is that default argument values
can be arbitrarily complex expressions and define their own local variables. If you call
first_n_records with a number keyword argument, the only_one local variable
will not be set, and you will always get an array. However, if you call first_n_records
without a keyword argument, to get the value for the number keyword argument, it will
evaluate the expression, which will set the only_one local variable to 1 in addition to
setting the number keyword argument to 1. In the last line of the method, the only_one
local variable being set to 1 will be treated as a true value by the ternary operator, so that
the method will return the first element of the array instead of the array itself.

The only issue with the previous approach is that it looks odd to call first_n_records
when you only need the first record, so you may want to consider adding a separate
first_record method:

alias first_record first_n_records

This does allow you to call first_record(number: 1) and have it return an array,
or first_n_records without arguments and have it return a single record. If either
of those possibilities is problematic, you should probably rename first_n_records to
a private method such as _first_n_records, and then implement wrapper methods:

def first_record(offset: 0, &block)

 _first_n_records(offset: offset, &block)

end

def first_n_records(number, offset: 0, &block)

 _first_n_records(number: number, offset: offset, &block)

end

This does require duplicating explicit keyword arguments, but considering the limited
number of keyword arguments, that isn't a problem in this case. More advanced cases
may want to use **kwargs:

def first_record(**kwargs, &block)

 kwargs.delete(:number)

 _first_n_records(**kwargs, &block)

end

200 Designing Your Library

def first_n_records(number, **kwargs, &block)

 kwargs[:number] = number

 _first_n_records(**kwargs, &block)

end

Looking back on the methods you've written, implementation-wise you could get away
with a single method, first_n_records. However, because it looks weird to call
first_n_records without arguments to get a single record instead of an array of
records, you added an alias named first_record. However, there is another possible
way to fix this, and that is to rename the _first_n_records method to first, so
calls look like this:

first

first(number: 3)

first{|rec| rec.id == 10}

first(number: 9){|rec| rec.name == 'Ruby'}

first(offset: 7)

first(number: 3, offset: 1)

first(offset: 14){|rec| rec.id == 29}

first(number: 7, offset: 4){|rec| rec.name == 'Knight'}

The alternative approach would be to have the eight methods originally defined, each of
which took mandatory arguments, and then internally call the _first_n_records
method with the appropriate arguments. The only consideration here is that block
arguments in Ruby are optional and not required by default. Calling first_n_
matching_records_starting_at_offset without a block in the original case
would result in an exception being raised (LocalJumpError). However, with the
refactored implementation, just do as shown here:

def first_n_matching_records_starting_at_offset(n, o, &blk)

 _first_n_records(number: n, offset: o, &blk)

end

Summary 201

Then, calling first_n_matching_records_starting_at_offset without
a block would now be valid and treated as a call to first_n_records_starting_
at_offset. That may be what you want, but if it isn't and you want an exception to be
raised, you have to raise it manually:

def first_n_matching_records_starting_at_offset(n, o, &blk)

 raise ArgumentError, "block required" unless blk

 _first_n_records(number: n, offset: o, &blk)

end

In this section, you learned about complexity trade-offs when designing methods.

Summary
In this chapter, you've learned many principles of good library design. You've learned
that you should focus on the user experience when designing your library. You've learned
how to decide how large a library you want to design, and the trade-offs between defining
many simpler methods compared to fewer, more complex methods.

In the next chapter, you'll learn about designing extensible libraries using plugin systems.

Questions
1.	 What should you focus on when first designing the library?

2.	 If you currently don't have a need for flexibility in your library, is it a good idea to
increase the size of your library to add flexibility?

3.	 What is the main issue with having many similar methods with minor differences
in behavior?

8
Designing for
Extensibility

Most decent-sized libraries benefit from being designed upfront for extensibility. The
larger the library, the more it benefits from extensible design. In this chapter, you'll
learn how to make your libraries extensible, with a full discussion on implementing
a plugin system to do so. You'll also learn how restricting mutability can result in more
maintainable libraries that are easier to understand.

In this chapter, we will cover the following topics:

•	 Using Ruby's extensibility features

•	 Designing plugin systems

•	 Understanding globally frozen, locally mutable design

By the end of this chapter, you'll be close to an expert in plugin system design.

Technical requirements
In this chapter and all chapters of this book, code given in code blocks is designed to
execute on Ruby 3.0. Many of the code examples will work on earlier versions of Ruby,
but not all. The code for this chapter can be found here, https://github.com/
PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter08.

https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter08
https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter08

204 Designing for Extensibility

Using Ruby's extensibility features
One of the great aspects of Ruby is that even if you don't explicitly design your library
for extensibility, the language itself offers ways to make the library extensible. Using the
built-in language features directly makes it possible to extend a library, even if the library
itself wasn't designed for extensibility.

Ruby has many ways to modify the behavior of objects. Other than the immediate objects,
which we discussed in Chapter 1, Getting the Most out of Core Classes, and objects that
are frozen and cannot be modified, all Ruby objects support extension by modifying the
object's singleton class.

Commonly, libraries will define methods in classes. Let's say you are designing a Ruby
library to manage books and users for physical libraries (those that lend out books such
as this book). The physical library has many users, most of whom check out books on
a regular basis. For each user, you want to track the books they have checked out, and for
each book, you want to know to whom the book is checked out. We'll name this library
Libry, since that is nice and short, and as of the time of writing, is not yet used:

class Libry

 class User

 def initialize(id)

 @id = id

 @books = []

 end

 attr_accessor :books

 end

 class Book

 def initialize(name)

 @name = name

 end

 attr_accessor :checked_out_to

 end

end

In the previous example, you start with the basics for the library user, giving each user an
ID and an array to track the books. For books, you want to track the name of the book.

Using Ruby's extensibility features 205

When a user checks out a book, doing so updates the book to keep track of who has
checked the book out, and it updates the list of books the user has checked out:

class Libry

 class User

 def checkout(book)

 book.checked_out_to = self

 @books << book

 end

 end

end

Books are returned to the library via a mail slot. You implement book return, or check-in,
using the following:

class Libry

 class Book

 def checkin

 checked_out_to.books.delete(self)

 @checked_out_to = nil

 end

 end

end

When a book is checked in, it is removed from the list of books checked out to the user,
and then the book is updated to show that it is not checked out to any user.

This is a fairly simple Ruby library design, with no features designed for extensibility.
However, if you want to modify the behavior of a particular book, you can always just
define a method on the Libry::Book instance as shown here:

book = Libry::Book.new('name')

def book.checked_out_to=(user)

 def user.checkout(book)

 nil

 end

 nil

end

206 Designing for Extensibility

The checked_out_to= method internally creates a singleton class for the book
instance and an instance method in the singleton class. Maybe this book is cursed and
checking it out will curse the user who checks it out. Libry doesn't support cursing users
yet, but you can have the curse make it so the user cannot check out another book.

Let's confirm that a user cannot check out a book after checking out a book that has been
cursed:

user = Libry::User.new(1)

user.checkout(Libry::Book.new('x'))

user.checkout(book)

user.books.length

=> 2

In the preceding example, the user has checked out two books, and everything is working
as expected. However, because the user checked out the cursed book instance, attempts
to check out another book should fail. Let's try that:

user.checkout(Libry::Book.new('y'))

user.books.length

=> 2

The number of books the user has checked out has not increased, showing the user is
now cursed.

This approach does work, and you can extend your library to support book and user
cursing this way, but it's considered a bit of a code smell to manually define singleton
methods on objects, at least if you are defining the same method on multiple objects.
The more idiomatic approach in Ruby is to use modules, as shown here:

module Cursed

 module Book

 def checked_out_to=(user)

 user.extend(User)

 super

 end

 end

 module User

 def checkout(book)

 nil

Designing plugin systems 207

 end

 end

end

In the preceding code, we first design the Cursed module that just acts as a namespace,
with Cursed::Book and Cursed::User modules nested underneath for modifying
the behavior of Libry::Book and Libry::User.

Cursing a book is now as simple as extending the book with the Cursed::Book module.
We can check that after a user checks out the cursed book, they can no longer check out
any additional books, as follows:

user = Libry::User.new(3)

user.checkout(Libry::Book.new('x'))

book = Libry::Book.new('name')

book.extend(Cursed::Book)

user.checkout(book)

user.books.length

=> 2

user.checkout(Libry::Book.new('y'))

user.books.length

=> 2

As you can see, Ruby offers the ability to easily extend classes and objects, even if the
classes were not designed with extensibility in mind. However, what if you design the
classes with extensibility in mind? Can you make the extensibility easier? The answer is yes,
you can, and you'll learn how to do this in the next section on designing plugin systems.

Designing plugin systems
Having a defined plugin system for a library can be a huge advantage. Libraries that do
not have a plugin system usually handle extensions to the library in an ad hoc manner that
differs per extension. With a plugin system, extensions to the library operate in a uniform
manner for each extension. This has the following advantages for everyone involved:

•	 The library creator can create the plugin system that works best for their library,
allowing extensibility in the parts that should be extensible, and not allowing
extensibility in parts that do not need to be extensible.

208 Designing for Extensibility

•	 The plugin creator can review the plugin system to determine how the library
should be extended, such as which extension points exist. They probably also have
many other examples of extensions to the library that they can review, which makes
the process of building their plugin much easier.

•	 The library user knows how to use the plugin system for all of the library's
extensions, they do not have to review the documentation for each extension in
order to determine how to properly use the extension.

Probably the biggest advantage of designing a plugin system for a library is that the library
itself can be built out of plugins. Only the core part of the library that is essential needs
to be loaded by default. All other optional features can be built as optional plugins to the
library that the library user can choose to load. This approach to building libraries has
important advantages.

The first advantage is that in most cases, the core of the library turns out to be a small part
of the library, and only loading that core by default makes things significantly simpler. For
a new user using a monolithic library for the first time, even knowing where to focus in
terms of using the library can be a daunting proposition. Documentation can definitely
help in such cases, but there is simply so much more code available that the new user is
often overwhelmed. A library based on a plugin system, even if the library itself is quite
large, will generally have a small enough core that a new user can read through the core
of the library within a few hours and have a good idea about how it works.

The second advantage is that, at least by default, libraries designed around plugin systems
tend to be significantly faster. The startup time for libraries that only load the core of the
library by default is often significantly faster than startup times for monolithic libraries.
Large monolithic libraries can take seconds to load, whereas large libraries designed
around plugin systems often load in fractions of a second. Additionally, it's not just startup
times that are faster, but performance is often significantly improved. Very few users use
more than a small portion of a large library. However, a large monolithic library has to
have each feature assume that all other features may be in use and account for them. With
a library designed around a plugin system, the core doesn't need to assume any plugins are
in use and can be written to be as fast as possible. Features that may slow the core down
can be implemented as separate plugins, each of which only overrides the part of the core
that it needs in order to function.

That leads to the next advantage. By moving each separate feature into its own plugin,
each user only has to load the plugins they need for their application, and doesn't have to
pay the startup cost of loading any of the other plugins, or the runtime cost of the code
related to the other plugins. This is a good basic principle of library design, which is to
only make the user pay for the features they are using, and not make them pay for features
they are not using.

Designing plugin systems 209

Hopefully this section has persuaded you to consider designing a plugin system in a future
library. In the next section, you'll learn how to design a plugin system that delivers these
advantages.

Designing a basic plugin system
The first thing you need to decide when designing a plugin system is which objects in
your library you would like to be extensible. In the previous example, we were managing
a library with books (Libry::Book) and users (Libry::User). Let's redesign Libry
to use a plugin system.

The first decision point when designing a plugin system is to decide whether you want
to use an include-based or prepend-based plugin system. With an include-based plugin
system, all methods are in modules that are included in the classes in the library, and the
classes themselves are empty. With a prepend-based plugin system, methods are defined
inside classes, and plugins contain modules that are prepended to the classes.

In general, an include-based plugin system is better. With an include-based system,
a user of the library can add normal instance methods to the class and call super to get
the default behavior. With a prepend-based system, methods a user defines directly in the
class may have no effect, and that can be quite confusing to users. With a prepend-based
system, users must prepend a module to the class with the method they want to define
after they have already loaded all of the system plugins, or otherwise loading a plugin can
override the user's custom methods. The rest of this section will focus on include-based
plugin systems.

With an include-based plugin system, the basics of Libry may look something like this,
with empty Libry::Book and Libry::User classes:

class Libry

 class Book; end

 class User; end

The core of the library will itself be a plugin. Usually, you will have a defined namespace
for the plugins, and each plugin will be a module inside that module. So, we'll have a
Libry::Plugins module to hold plugins, and the Libry::Plugins::Core module
for the core plugin:

 module Plugins

 module Core

210 Designing for Extensibility

In the case of Libry, we probably want to allow plugins to modify both Libry::Book
and Libry::User. We'll put the methods for Libry::Book in a BookMethods
module:

 module BookMethods

 attr_accessor :checked_out_to

 def initialize(name)

 @name = name

 end

 def checkin

 checked_out_to.books.delete(self)

 @checked_out_to = nil

 end

 end

We'll put the methods for Libry::User in a UserMethods module:

 module UserMethods

 attr_accessor :books

 def initialize(id)

 @id = id

 @books = []

 end

 def checkout(book)

 book.checked_out_to = self

 @books << book

 end

 end

 end

 end

Designing plugin systems 211

Now, all we need is a method that loads plugins to wire everything up. We'll add the
Libry.plugin method for this:

 def self.plugin(mod)

 if defined?(mod::BookMethods)

 Book.include(mod::BookMethods)

 end

 if defined?(mod::UserMethods)

 User.include(mod::UserMethods)

 end

 end

The plugin method will accept a plugin module and include the plugin's BookMethods
module in Libry::Book and the plugin's UserMethods module in Libry::User,
assuming the plugin defines those modules. Finally, you can load the core plugin into the
library, so that the core behavior is available by default:

 plugin(Plugins::Core)

end

Then, you can check that the plugin-based system works as you expect:

book = Libry::Book.new('b')

user = Libry::User.new 1

user.books.size

=> 0

user.checkout(book)

user.books.size

=> 1

book.checkin

user.books.size

=> 0

212 Designing for Extensibility

If you haven't worked with a plugin system before, it may look like this added complexity
instead of removed complexity. If you only have a single plugin, that will always be the
case. There is some cognitive overhead inherent in a plugin system, and in general, you
should only implement a plugin system in cases where the benefit of the plugin system is
worth the extra cognitive overhead. Most libraries are small enough not to need a plugin
system, after all.

What's the advantage of this plugin system? Well, say you want to offer a book cursing
feature, but most libraries don't need or want to support book cursing. You can design
book cursing as a separate plugin:

class Libry

 module Plugins

 module Cursing

 module BookMethods

 def curse!

 @cursed = true

 end

 def checked_out_to=(user)

 user.curse! if @cursed

 super

 end

 end

In the previous example, we added a curse! method that marks the book as cursed. We
also overrode the checked_out_to= method to curse the user if the book is cursed.

For the user side of book cursing, if the curse! method is called on a user, they are
cursed and no longer able to check out a book:

 module UserMethods

 def curse!

 @cursed = true

 end

 def checkout(book)

 super unless @cursed

 end

 end

Designing plugin systems 213

 end

 end

end

Users of Libry that don't want to support book cursing wouldn't load this plugin. For
users of Libry that want to support this plugin, they can load it:

Libry.plugin(Libry::Plugins::Cursing)

After loading the plugin, you can check whether book cursing works:

book = Libry::Book.new('a')

cursed_book = Libry::Book.new('b')

cursed_book.curse!

user = Libry::User.new 2

user.checkout(cursed_book)

user.books.size

=> 1

user.checkout(book)

user.books.size

=> 1

In the preceding code, after a user checks out a cursed book, we can see that the user
cannot check out additional books.

The value proposition of the plugin system from the user perspective is high. With a single
line of code:

Libry.plugin(Libry::Plugins::Cursing)

The user has loaded the feature. They don't need to worry about which modules need to
be included in which objects. They just need to load the plugin with one line of code, and
the plugin system takes care of the rest.

214 Designing for Extensibility

For the plugin author, the advantages are just as high. They don't need to monkey patch
a class to alias and modify a method or prepend a module to a class and risk overriding
the user's code. They can write regular instance methods as needed, just inside an
appropriately named module. If they are overriding an existing method, they can call
super to get the default behavior of the method. Alternatively, if they want to explicitly
not allow the default behavior, as in the example of a cursed user attempting to check out
a book, they can just avoid calling super in that case.

Handling changes to classes
The plugin system designed in the previous section works well, but it is simpler than one
designed for production use. Thankfully, it doesn't take much additional work to build on
the existing design and add all the features needed for a large library.

What if you want to add a plugin to keep track of all books or users? This isn't related
to a particular Libry::Book or Libry::User instance, it's really a class-level
concern. For tracking class-level information, you wouldn't want to include a module in
Libry::Book and Libry::User, you would want to extend the Libry::Book and
Libry::User classes with a module for that behavior.

Let's start by modifying the Libry.plugin method to support extending the classes
with a module in addition to including a module in the classes. The start of the method
remains the same. Then you add the support for extending the classes if the plugin
includes the appropriately named modules:

class Libry

 def self.plugin(mod)

 # same as before

 if defined?(mod::BookClassMethods)

 Book.extend(mod::BookClassMethods)

 end

 if defined?(mod::UserClassMethods)

 User.extend(mod::UserClassMethods)

 end

 end

end

Designing plugin systems 215

This checks whether the plugin module contains the BookClassMethods or
UserClassMethods modules for defining class-level behavior, and if so, extends the
appropriate classes.

That was pretty easy. It's almost the same code in both cases, just changing from include
to extend and using a different module name. Next, you can add a plugin that will track
created books and users, named Tracking. The good thing about this tracking support
is that it is fairly generic, since you aren't tracking anything specific to books or users, just
that they were created:

module Libry::Plugins::Tracking

 module TrackingMethods

 attr_reader :tracked

 def new(*)

 obj = super

 (@tracked ||= []) << obj

 obj

 end

 end

 BookClassMethods = TrackingMethods

 UserClassMethods = TrackingMethods

end

This adds a TrackingMethods module to the Tracking plugin. It adds an
attribute reader named tracked and overrides new to call super. It then takes the
created instance and adds it to the array of tracked objects, initializing the @tracked
instance variable to the empty array if it doesn't already exist. Then, it aliases the
TrackingMethods module to BookClassMethods and UserClassMethods. This
way, the Libry.plugin call will add this tracking support to books and users.

Then you can test that it works:

Libry.plugin(Libry::Plugins::Tracking)

Libry::Book.new 'a'

Libry::Book.new 'b'

Libry::Book.tracked.size

216 Designing for Extensibility

=> 2

Libry::User.tracked.size

NoMethodError

Well, that worked fine for books, but not users, as you can see that checking the number
of tracked users raised NoMethodError. Why is that? This is because you hadn't created
a user yet, so the tracking attribute for the Libry::User class hadn't been initialized to
the empty array yet. You'll learn how to fix this issue in the next section.

Plugin modifications to classes
In order to fix the previous issue, the plugin system needs to be able to run code after the
plugin modules have been loaded into the appropriate classes. One way to do that is to
have the Libry.plugin method call a singleton method on the plugin module. Since
this is used for running code after loading the plugin, you can call it after_load. You
can first update the Libry.plugin method to support this:

class Libry

 def self.plugin(mod)

 # same as before

 mod.after_load if mod.respond_to?(:after_load)

 end

end

Then you can modify your Tracking plugin to support the after_load method,
setting the instance variable in each class to the empty array:

module Libry::Plugins::Tracking

 def self.after_load

 [Libry::Book, Libry::User].each do |klass|

 klass.instance_exec{@tracked ||= []}

 end

 end

Designing plugin systems 217

This makes the definition of the new method easier, since you can assume the @tracked
instance variable is already set:

 module TrackingMethods

 def new(*)

 obj = super

 @tracked << obj

 obj

 end

 end

end

Then you can test that you get the correct results:

Libry.plugin(Libry::Plugins::Tracking)

Libry::Book.new 'a'

Libry::Book.new 'b'

Libry::Book.tracked.size

=> 2 # or 4

Libry::User.tracked.size

=> 0

Success! You get 0 as the size of the tracked users, instead of NoMethodError. You'll
either get 2 or 4 for the books, depending on whether you were still in the same Ruby
process as when you ran the previous example. This is because the after_load method
did not override an existing array of tracked objects. You should always design your
plugin after_load hook to be idempotent if possible.

Maybe after working on this, you find out your Cursing plugin is a hit, but now you
have requests for an AutoCurse plugin that will automatically curse every newly created
book after the plugin is loaded, and will curse all books currently possessed by the user
when the user is cursed. The plugin itself seems easy enough to design:

module Libry::Plugins::AutoCurse

 module BookMethods

 def initialize(*)

 super

 curse!

218 Designing for Extensibility

 end

 end

 module UserMethods

 def curse!

 super

 books.each(&:curse!)

 end

 end

end

In the previous example, you curse the book in initialize, since initialize
is called for each newly created book. You can override the curse! method for users to
call super for the default behavior, and then call curse! on each book they possess.
Let's try using this plugin:

Libry.plugin(Libry::Plugins::AutoCurse)

Libry::Book.new('a')

NoMethodError: undefined method `curse!'

Assuming you are running this as a process that didn't already load the Cursing plugin,
you end up with NoMethodError, because when you create a book, it calls curse!
on the book, but the Cursing plugin hasn't been loaded, so the curse! method is not
defined on Libry::Book. Here you have a situation where the AutoCurse plugin
depends on the Cursing plugin. How do you fix this? The best to fix it is to add support
for plugin dependencies to the plugin system.

Supporting plugin dependencies
The best way to support plugin dependencies is to make sure the dependencies of the
plugin are loaded before the plugin (loading the dependencies after the plugin will cause
load order issues). One way for you to fix it is to modify the Libry.plugin method to
support a before_load hook in addition to the after_load hook:

class Libry

 def self.plugin(mod)

 mod.before_load if mod.respond_to?(:before_load)

 # same as before

Designing plugin systems 219

 end

end

Then you can define a before_load method in your AutoCurse plugin:

module Libry::Plugins::AutoCurse

 def self.before_load

 Libry.plugin(Libry::Plugins::Cursing)

 end

end

Then you can test that cursing works correctly without explicitly loading the Cursing
plugin before the AutoCurse plugin:

user = Libry::User.new 1

book = Libry::Book.new 'a'

user.checkout(book)

Libry.plugin(Libry::Plugins::AutoCurse)

user.curse!

This plugin system is getting closer to being production-ready! The next change that
would be helpful is to make it easier for the user to load plugins.

Making plugin loading easier
As the plugin system is currently designed, to load a plugin, you have to manually load
the plugin code, often by requiring a file, and then pass the plugin module object to the
Libry.plugin method. In general, it's easier on users if they can just pass a symbol
specifying the plugin to load and have the plugin system find the file containing the
plugin, load the file, and then find the plugin module and use that.

Implementing the aforementioned is a multi-step process:

1.	 The first step is to offer a way to register plugins by symbol. This you can do using
a hash constant, and a singleton method for registering plugins:

class Libry

 PLUGINS = {}

220 Designing for Extensibility

 def self.register_plugin(symbol, mod)

 PLUGINS[symbol] = mod

 end

end

2.	 The second step is registering plugins, which is usually done inside the definition
of the plugin. To register a Libry plugin, such as AutoCurse or Cursing, the
plugin needs to call Libry.register_plugin with the first argument being the
symbol to use, and the second argument being the plugin module. For example, the
AutoCurse plugin would have code similar to the one shown here (the Cursing
and Tracking plugins would have something similar, using :cursing and
:tracking as the symbol):

module Libry::Plugins::AutoCurse

 Libry.register_plugin(:auto_curse, self)

end

3.	 For the third step, you would store this plugin in a specific place under the Ruby
library path. So, if the lib directory is in the Ruby load path, you would place the
Libry::Plugins::AutoCurse module definition in lib/libry/plugins/
auto_curse.rb.

4.	 The final step is modifying the Libry.plugin method to support a symbol being
passed. If a symbol is passed instead of a module, the related file under libry/
plugins in the Ruby library path is required. After requiring the file, the symbol is
used to look into the Libry::PLUGINS hash to find the related module:

class Libry

 def self.plugin(mod)

 if mod.is_a?(Symbol)

 require "libry/plugins/#{mod}"

 mod = PLUGINS.fetch(mod)

 end

 # same as before

 end

end

Designing plugin systems 221

After all of those previous steps, users of Libry can now load the AutoCurse plugin
more easily:

Libry.plugin(:auto_curse)

Allowing loading of plugins using symbols makes things much easier on the user, since
the user no longer needs to worry about loading the plugin file manually, and doesn't have
to worry about passing the full plugin name to the plugin method.

So far, we've been assuming that our plugin system only deals with a single class, Libry.
However, in many cases, it is helpful for plugin systems to deal with subclasses. We'll learn
how to do that in the next section.

Handling subclasses in plugin systems
What if you want to make a subclass of Libry, and want to be able to load plugins
into the subclass, without affecting Libry itself? Since plugins affect Libry::Book
and Libry::User, you cannot do this currently. So, the first order of business is to
make sure that subclasses of Libry use their own subclasses of Libry::Book and
Libry::User. You can override the Libry.inherited method to implement that
support:

class Libry

 def self.inherited(subclass)

 subclass.const_set(:Book, Class.new(self::Book))

 subclass.const_set(:User, Class.new(self::User))

 end

end

Then you need to modify the Libry.plugin method to only modify constants under
the receiver. The first part of the method focused on loading the plugin from the file
system remains the same:

class Libry

 def self.plugin(mod)

 if mod.is_a?(Symbol)

 require "libry/plugins/#{mod}"

 mod = PLUGINS.fetch(mod)

 end

222 Designing for Extensibility

The before_load method needs to be modified to accept the subclass loading the
plugin as an argument:

 mod.before_load(self) if mod.respond_to?(:before_load)

The references to the Book and User constants in the plugin method need to be
qualified to the receiver of the method (self), instead of found using the normal
constant lookup. This is important, because without the self:: qualification, Ruby's
constant lookup will always result in an unqualified reference to Book meaning
Libry::Book, not the Book constant for the Libry subclass (there's a similar issue
for User):

 if defined?(mod::BookMethods)

 self::Book.include(mod::BookMethods)

 end

 if defined?(mod::UserMethods)

 self::User.include(mod::UserMethods)

 end

Handling the plugin modules that extend the classes works similarly:

 if defined?(mod::BookClassMethods)

 self::Book.extend(mod::BookClassMethods)

 end

 if defined?(mod::UserClassMethods)

 self::User.extend(mod::UserClassMethods)

 end

The after_load method also needs to be modified to accept the subclass loading the
plugin as an argument:

 mod.after_load(self) if mod.respond_to?(:after_load)

 end

end

Designing plugin systems 223

With this new approach, the Tracking plugin's after_load method would need to
be modified to take the subclass as an argument and use the subclass to qualify constant
references:

module Libry::Plugins::Tracking

 def self.after_load(libry)

 [libry::Book, libry::User].each do |klass|

 klass.instance_exec{@tracked ||= []}

 end

 end

The Tracking plugin also needs to make sure that it handles class instance variables
for subclasses. Options here are either copying the values from the parent class into the
subclass or setting initialized values in the subclass:

 module TrackingMethods

 def inherited(subclass)

 subclass.instance_variable_set(:@tracked, [])

 end

 end

end

As shown in the previous example, it's probably best for subclasses to have their own list
of tracked books, so you can set the list of tracked objects to the empty array.

You also need to modify the before_load method in the AutoCurse plugin to take
the subclass, and only load the Cursing plugin into that subclass:

module Libry::Plugins::AutoCurse

 def self.before_load(libry)

 libry.plugin(:cursing)

 end

end

224 Designing for Extensibility

You can now test that loading the plugin into a subclass works:

libry = Class.new(Libry)

user = libry::User.new 1

book = libry::Book.new 'a'

user.checkout(book)

libry.plugin(:auto_curse)

user.curse!

You can also test that this doesn't affect the superclass:

user = Libry::User.new 1

user.respond_to?(:curse!)

=> false

We have almost completed the design of the plugin system. One final useful feature for the
plugin system is to allow for configuration.

Configuring plugins
While some plugins do not require any configuration, many plugins need to be
configured with user-specific values in order to be useful. The easiest way to allow for
plugin configuration is to allow the user to pass arguments when loading the plugin. For
example, maybe you want to allow the Tracking plugin to accept a block that is yielded
each tracked object. You could use this to automatically check out a book to each user
when the user is created.

To implement this feature, you can have the Libry.plugin method accept arguments
and pass them to the before_load and after_load methods:

class Libry

 def self.plugin(mod, ...)

 # plugin loading code

 if mod.respond_to?(:before_load)

 mod.before_load(self, ...)

 end

Designing plugin systems 225

 # include/extend code

 if mod.respond_to?(:after_load)

 mod.after_load(self, ...)

 end

 nil

 end

end

In your Tracking plugin, you can update the after_load method to save a passed
block:

module Libry::Plugins::Tracking

 def self.after_load(libry, &block)

 [libry::Book, libry::User].each do |klass|

 klass.instance_exec do

 @tracked ||= []

 @callback = block

 end

 end

 end

You'll also want to set the callback when subclassing Book and User:

 module TrackingMethods

 def inherited(subclass)

 callback = @callback

 subclass.instance_exec do

 @tracked = []

 @callback = callback

 end

 end

226 Designing for Extensibility

Additionally, you'll want to make sure that the class new method calls the block used
when loading the plugin, if a block was passed when loading the plugin:

 def new(*)

 obj = super

 @tracked << obj

 @callback&.(obj)

 obj

 end

 end

end

Now you can use this feature to automatically check out a book to users that you know
they will cherish forever:

book = Libry::Book.new('Polished Ruby Programming')

Libry.plugin(:tracking) do |obj|

 if obj.is_a?(Libry::User)

 obj.checkout(book)

 end

end

After loading the plugin with this block, you can test to see whether it works. Only at the
end here does it look like it would have been useful to add attr_reader for the book's
name:

user = Libry::User.new 1

user.books.map do |book|

 book.instance_variable_get(:@name)

end

=> ["Polished Ruby Programming"]

In this section, you learned all about designing useful plugin systems for libraries. In the
next section, you'll learn about globally frozen, locally mutable design, and how to achieve
it in Ruby.

Understanding globally frozen, locally mutable design 227

Understanding globally frozen, locally mutable
design
You learned in Chapter 3, Proper Variable Usage, about the benefits of frozen objects
with an unfrozen internal cache. It is usually a good idea to freeze an object you do
not plan to modify. This principle extends not just to regular objects, but to classes and
modules as well.

In general, when you first load a library, you don't want it to be frozen, because then you
cannot modify it. When Ruby starts up, it doesn't have any frozen classes; it allows the
programmer to modify every class. This flexibility is very important during application
setup. During application setup, before you start accepting user input, you generally want
to have complete control to modify any part of the program.

However, in general, after application setup, this flexibility is unnecessary and can be
actively harmful. In most cases, you don't want the classes or modules in your application
to be modified at runtime. Modifying instances of those classes may be fine if the class
does not use frozen instances, but you generally don't want your application code adding
or removing methods from classes at runtime, except possibly to define singleton methods
on instances.

As a user of a library, it's a good idea to freeze classes after you have completed the setup.
Using the Libry example from the previous section, that could be as simple as freezing
after setup:

class MyLibry < Libry

 # application setup/plugin loading

 plugin(:tracking)

 Book.freeze

 User.freeze

 freeze

end

However, for libraries that are not prepared for this, doing so can break the library. If you
want your library to be compatible with globally frozen, locally mutable design, you need
to analyze all of the classes in your library and see how they should handle freeze. If the
class doesn't have any constants or instance variables, it probably doesn't need changes.
However, for every constant and instance variable, you need to analyze how it should be
handled if the class is frozen.

228 Designing for Extensibility

This also extends to plugins that add instance variables to the class, such as the Tracking
plugin. The Tracking plugin adds @tracked and @callback instance variables to the
related MyLibry::Book or MyLibry::User constants. In this case, @tracked is an
array of all instances created. If you freeze the @tracked array, you will no longer be able
to create new instances of MyLibry::Book or MyLibry::User. That's probably not
what you want, so you probably shouldn't freeze it. @callback is either nil or a Proc
instance, and in either case, it's already immutable, so it doesn't need to be frozen either.
After performing the analysis, it looks like the Tracking plugin doesn't need changes
after all. That's good.

However, there may be good reasons to freeze a MyLibry::Book or MyLibry::User
instance, but freezing those instances does not work correctly. This is because a frozen
user can still check out a book:

user = MyLibry::User.new(1)

user.freeze

user.checkout(MyLibry::Book.new('b'))

That should probably fail because it modifies the books the user has checked out. Make
sure to define freeze methods appropriately in your classes, and if you are building
plugins and the plugins add instance variables, they should probably also define a freeze
method to handle the instance variables appropriately, then call super to get the default
behavior.

This issue doesn't just affect your library classes, it also potentially affects any class or
module in Ruby. Let's say you are using a library that uses autoload:

class Foo

 autoload :Object, 'foo/object'

end

None of your code references Foo::Object, except this rarely used case in an error
condition, which unfortunately you don't have covering tests for. Also, unfortunately,
Foo::Object is itself not tested well by the library author, because almost nobody uses
it. The foo/object.rb file it loads looks like this:

Foo.class_eval do

 class Object

 def initialize(object)

 @object = object

 end

Understanding globally frozen, locally mutable design 229

 def method_missing(meth, ...)

 @object.send(:run, meth, ...)

 end

 def respond_to_missing?(meth)

 true

 end

 end

end

Unfortunately, when Foo::Object is referenced, the autoload triggers, foo/object.
rb is loaded, a few warnings are printed, and then everything stops. The intent of the
code was to define a Foo::Object class, but because Foo.class_eval doesn't
change the current module nesting, the class Object definition inside modifies the
::Object class. Modifying Object#initialize, Object#method_missing, or
Object#respond_to_missing can cause an infinite loop, which is why everything
stops.

One approach to handling this case is to freeze all core classes. That way, if someone
makes a mistake like this during application runtime, FrozenError will be raised,
which is certainly better than an infinite loop. You can do this manually:

Object.freeze

Kernel.freeze

...

However, there are a lot of core classes and modules (over 300), at least if you are using
Rubygems, so this approach is probably not desired. Thankfully, there is a gem named
refrigerator that handles freezing all core classes, and you can use that:

require 'refrigerator'

Refrigerator.freeze_core

Using refrigerator in your application may be difficult if you are using libraries that
modify the core classes at runtime. Thankfully, refrigerator has support for skipping
those core classes, assuming you really do need to modify them.

Using globally frozen, locally mutable design can improve the robustness of your library,
especially in cases where your library will be used by multiple threads in the same process.

230 Designing for Extensibility

Summary
In this chapter, you've learned how to design libraries for extensibility, and you are
probably close to an expert on plugin system design. You've also learned about globally
frozen, locally mutable design, and how to properly freeze your libraries and runtime
environment. With your knowledge of these topics, you are now much better able to
design flexible and robust libraries.

In the next chapter, you'll learn about metaprogramming, and when an appropriate time
to use it is.

Questions
1.	 What is the idiomatic way to add behavior to an individual object in Ruby?

2.	 If you have a medium or large library, what's the advantage of designing a plugin
system for it?

3.	 What is the advantage of freezing the core classes when running a Ruby application?

9
Metaprogramming
and When to Use It

Ruby has powerful metaprogramming capabilities, which is a double-edged sword. In
the hands of a principled programmer, metaprogramming capabilities result in simpler,
less verbose code. However, when misused, metaprogramming can result in code that is
difficult to work with and hard to debug.

In this chapter, you'll learn about principles of responsible metaprogramming, so you can
put metaprogramming to appropriate use in your libraries.

We will cover the following topics:

•	 Learning the pros and cons of abstraction

•	 Eliminating redundancy

•	 Understanding different ways of metaprogramming methods

•	 Using method_missing judiciously

By the end of this chapter, you'll have a better understanding of Ruby metaprogramming
and how best to take advantage of it.

232 Metaprogramming and When to Use It

Technical requirements
In this chapter and all chapters of this book, code given in code blocks is designed to
execute on Ruby 3.0. Many of the code examples will work on earlier versions of Ruby,
but not all. The code for this chapter is available online at https://github.com/
PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter09.

Learning the pros and cons of abstraction
Unlike in many other programming languages, metaprogramming in Ruby isn't that much
different than regular programming. Many other programming languages implement
metaprogramming with a preprocessor before compilation or a macro processor during
compilation, and there are things you can do in the metaprogramming environment that
you cannot do in the runtime environment and vice versa. Thankfully, Ruby has no such
restrictions on its metaprogramming. You use the same syntax for metaprogramming that
you use for regular programming, and you can do metaprogramming at any time.

The main difference between programming and metaprogramming in Ruby is conceptual.
Conceptually in Ruby, metaprogramming operates at a higher realm of abstraction than
regular programming. If regular programming in Ruby uses classes to create objects and
modify the data in those objects, metaprogramming in Ruby creates new classes and
modifies the methods in those classes. Looking at metaprogramming this way, you could
say that simply defining a class or a method is metaprogramming. Refer to the following
code:

class A

 def b

 nil

 end

end

https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter09
https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter09

Learning the pros and cons of abstraction 233

However, normal class definition is not really thought of as metaprogramming, even
though it is equivalent to something like the following, which would generally be
considered metaprogramming:

def_class = ->(sym, method_hash) do

 c = Object.const_set(sym, Class.new)

 method_hash.each do |meth, val|

 c.define_method(meth){val}

 end

end

def_class.call(:A, b: nil)

So why is a normal class definition not considering metaprogramming, when the
equivalent approach using Class.new, const_set, and define_method is
considered metaprogramming? The main difference between the two cases is that one is
a concrete approach and one is an abstract approach. With a normal class definition,
inside the class, you know exactly what class you are dealing with, and inside the method,
you know what method you are defining. With the def_class approach, inside
the lambda, you do not know what class is being defined, since that depends on the
arguments. You don't know what methods you are defining.

In the example, method_hash is a hash, but it could be any object that responds to
each, and that could involve reading a file, or a network call, or getting input from
the user.

Abstraction has both advantages and disadvantages. Consider a class definition such as
the following:

class MetaStruct

 def self.method_missing(meth, arg=nil, &block)

 block ||= proc{arg}

 define_method(meth, &block)

 end

end

234 Metaprogramming and When to Use It

This use of method_missing can make defining simple methods less verbose, shown
as follows:

class A < MetaStruct

 b

 foo 1

 bar{3.times.map{foo}}

end

A.new.b

=> nil

A.new.foo

=> 1

A.new.bar

=> [1, 1, 1]

This programing does DRY (short for Don't Repeat Yourself) up the method definitions,
but at what cost? Calling a method on the class that the class does not respond to now
results in a method being defined instead of NoMethodError being raised, which is
almost assuredly going to be the source of confusing bugs. This is an abstraction, but it's
an abstraction that adds negative value to your code.

While there are negative uses of abstractions, there are many positive uses of abstractions.
For example, if you want to write a method caching abstraction, you could have a module
named Memomer that prepends a module to a class that extends Memomer, and keeps
track of that module. Refer to the following code:

module Memomer

 def self.extended(klass)

 mod = Module.new

 klass.prepend(mod)

 klass.instance_variable_set(:@memomer_mod, mod)

 end

Learning the pros and cons of abstraction 235

The module can have a memoize method that will define a method in the module that is
prepended to the class. The memoize method will see whether a cached value is already
set, and return it if so. If not, it will call super to get the value, and cache it, as shown in
the following code block:

 def memoize(arg)

 iv = :"@memomer_#{arg}"

 @memomer_mod.define_method(arg) do

 if instance_variable_defined?(iv)

 return instance_variable_get(iv)

 end

 v = super()

 instance_variable_set(iv, v)

 v

 end

 end

end

You can also use this with your previous class of A, as follows:

class A < MetaStruct

 extend Memomer

 memoize :bar

end

This will cache calls to bar, even if the definition of foo changes:

a = A.new

a.bar

=> [1, 1, 1]

A.foo 2

A.new.bar

=> [2, 2, 2]

a.bar

=> [1, 1, 1]

236 Metaprogramming and When to Use It

As you can see, there are both good and bad uses of abstraction, and you can use both in
the same class. The goal is to be able to see the difference between two cases, and in the
real world, the difference may not be as obvious.

In this section, you learned about the pros and cons of implementing abstractions in your
Ruby programs using metaprogramming. In the next section, you'll learn about one of the
best reasons to use metaprogramming in Ruby, which is to eliminate redundant code.

Eliminating redundancy
One of the best reasons to use metaprogramming is to eliminate redundancy. No Ruby
programmer wants to write the same or similar code over and over, after all, unless they
are getting paid by the line. Imagine programming in Ruby without attr_accessor,
as shown in the following example:

class Foo

 def bar

 @bar

 end

 def bar=(v)

 @bar = v

 end

 def baz

 @baz

 end

 def baz=(v)

 @baz = v

 end

end

Eliminating redundancy 237

It would definitely suck to have to define accessor methods this verbosely. It's hard to
believe, but there are programming languages where you still have to do that, even some
that were originally released after Ruby. Ruby realizes that no programmer likes that sort
of repetitive coding, and being designed around programmer happiness, Ruby includes
attr_accessor and similar methods so you can just do the following:

class Foo

 attr_accessor :bar, :baz

end

Pretty much anytime you see yourself writing repetitive methods, see whether there is
a way you can eliminate the redundancy via metaprogramming. For example, imagine
you were storing data in an internal hash like this:

class FooStruct

 def initialize(**kwargs)

 @values = kwargs

 end

And you wanted to write accessors that read and write common data to the hash:

 def bar

 @values[:bar]

 end

 def bar=(v)

 @values[:bar] = v

 end

 def baz

 @values[:baz]

 end

 def baz=(v)

 @values[:baz] = v

 end

end

238 Metaprogramming and When to Use It

Since all of these accessor methods are the same, try to metaprogram them. If this
is the only place you are using methods like this in your library or application, it's
best to metaprogram directly in the class to avoid unnecessary indirection and keep
the definitions local to the class (keeping the same initialize method as defined
previously):

class FooStruct

 %i[bar baz].each do |field|

 define_method(field) do

 @values[field]

 end

 define_method(:"#{field}=") do |v|

 @values[field] = v

 end

 end

end

You can then test that this works correctly, as follows:

foo = FooStruct.new

foo.bar = 1

foo.baz = 2

foo.bar

=> 1

foo.baz

=> 2

However, if you plan on needing methods like these in multiple classes, it's best to move
the metaprogramming code into a module. Maybe different classes need different instance
variables, so you need to accept the instance variable to use as an argument:

module HashAccessor

 def hash_accessor(iv, *fields)

 fields.each do |field|

 define_method(field) do

 instance_variable_get(iv)[field]

Eliminating redundancy 239

 end

 define_method(:"#{field}=") do |v|

 instance_variable_get(iv)[field] = v

 end

 end

 end

end

Then you can extend your class with the module, and then define the methods similarly to
how attr_accessor works (again, using the initialize method for FooStruct
given previously):

class FooStruct

 extend HashAccessor

 hash_accessor :@values, :bar, :baz

end

You can then test that this works correctly:

foo = FooStruct.new

foo.bar = 1

foo.baz = 2

foo.bar

=> 1

foo.baz

=> 2

The advantage of extracting this feature is that you can use it in multiple places. Let's say
you are writing a Bar class that keeps its data in a class instance variable, as follows:

class Bar

 @options = {:foo=>1, :baz=>2}

end

240 Metaprogramming and When to Use It

Let's say you want to add class-level accessors for Bar, so that you can change the values
of the :foo and :baz options. Can you use your HashAccessor module to do that?
Yes, you can. However, if you use the same approach as you did for FooStruct, it won't
work correctly. Refer to the following code:

class Bar

 extend HashAccessor

 hash_accessor :@options, :foo, :baz

end

Bar.foo

NoMethodError

This is because hash_accessor defines instance methods in the receiver. In this case,
you don't want to define instance methods in Bar, you want to define methods you
can call on Bar itself (class/singleton methods). Therefore, you need to operate on the
singleton class of Bar:

class Bar

 singleton_class.extend HashAccessor

 singleton_class.hash_accessor :@options, :foo, :baz

end

Then you can test that this works:

Bar.foo = 1

Bar.baz = 2

Bar.foo

=> 1

Bar.baz

=> 2

The most interesting part here is how this line of metaprogramming works:

Bar.singleton_class.extend HashAccessor

Understanding different ways of metaprogramming methods 241

If you remember that extend is shorthand for singleton_class.include, what
this code is actually doing is the following:

Bar.singleton_class.singleton_class.include HashAccessor

This code includes a module in the singleton class of the singleton class of Bar, so that
it can use metaprogramming in the singleton class of Bar in order to define methods you
can call on Bar itself. This is one of the only cases where you need singleton classes of
singleton classes, but Ruby will support as many levels of singleton classes as you need for
your metaprogramming.

In this section, you learned about eliminating redundant code using metaprogramming.
In the next section, you'll learn how there are different approaches to metaprogramming
methods in Ruby, and the trade-offs of each approach.

Understanding different ways of
metaprogramming methods
There are two separate approaches to metaprogramming in Ruby. The two separate
approaches each have advantages and disadvantages, so the most appropriate one to use
depends on the specific situation.

So far in this chapter, you've seen examples of using define_method, which
is one of the methods used in block-based metaprogramming. There are other
block-based metaprogramming methods, such as Class.new, Module.new, and
Kernel#define_singleton_method:

Class.new do

 # class-level block metaprogramming

end

Module.new do

 # module-level block metaprogramming

end

define_singleton_method(:method) do

 # singleton-method defining block metaprogramming

end

242 Metaprogramming and When to Use It

Using these block-based metaprogramming methods is the recommended approach in
most cases. The main flexibility advantage of using the block-based metaprogramming
approach is that you can easily operate with external data and even external code blocks.
For example, let's say you are working on a module named Rusty, for writing rusty code.
Rusty code strives to be one-third more efficient than Ruby code by defining methods
using only two characters, fn, instead of the normal three you need in Ruby (def). It also
supports defining methods that return static values using a vl method, in keeping with
the two-character approach. Finally, because manually using extend Rusty in your
existing classes could be a burden, you can use Rusty.struct to define classes that use
Rusty. Refer to the following code snippet:

module Rusty

 def self.struct(&block)

 klass = Class.new

 klass.extend(self)

 klass.class_eval(&block)

 klass

 end

 def fn(meth, &block)

 define_method(meth, &block)

 end

 def vl(meth, value)

 define_method(meth){value}

 end

end

With the Rusty module, you can now be more efficient when writing code in your other
classes by using Rusty.struct:

Baz = Rusty.struct do

 fn :rand do

 Time.now.usec/1000000.0

 end

 vl :class_name, :Baz

end

Understanding different ways of metaprogramming methods 243

You can then check that your metaprogramming works as intended:

Baz.new.rand

some float between 0.0 and 1.0

Baz.new.class_name

=> :Baz

In general, if you are doing metaprogramming in Ruby, the block-based approach is the
approach you want to reach for first. However, there is another approach, a dangerous
approach, called the eval-based approach. With the eval-based approach, instead of
metaprogramming with Ruby objects, you metaprogram by building a string of Ruby
code.

To get some experience with the eval-based approach, you decide to switch Rusty to it.
First, you modify the fn method. This cannot take a block, since there is no way to get
the Ruby code to use from the block. You need to pass in a string for the Ruby code, or
something that when converted to a string is valid Ruby code. It turns out, the vl method
can be implemented exactly the same way as the fn method. Both will append the string
to themselves, which looks odd, but you'll see why it works in just a bit. Have a look at the
following code block:

module Rusty

 def fn(meth, code)

 self << "def #{meth}; #{code}; end;"

 end

 alias vl fn

The next step is to modify Rusty.struct. There are many ways to implement this, but
one of the simpler approaches involves the following:

•	 Using an array to hold the code

•	 Extending the array with the Rusty module

•	 Using instance_eval on the block in the context of the array

244 Metaprogramming and When to Use It

With this approach, self in the fn method is an array, so calling fn appends the code to
the array. After the block returns, you add an eval string that creates a class and defines
the methods inside the class:

 def self.struct(name, &block)

 meths = []

 meths.extend(self)

 meths.instance_eval(&block)

 klass = eval(<<-END)

 class ::#{name}

 #{meths.join}

 self

 end

 END

 klass

 end

end

Using this new Rusty module, you can redefine the Baz class. You need to pass a string
of Ruby code instead of a block for the rand method you are defining.

For the class_name method, you need to pass a string with the symbol for the class you
want to return inside it. You can't pass the symbol itself, because that will result in def
class_name; Baz; end, which returns the class, not the name of the class:

Rusty.struct(:Baz) do

 fn :rand, "Time.now.usec/1000000.0"

 vl :class_name, ":Baz"

end

You can check that this still works:

Baz.new.rand

some float between 0.0 and 1.0

Baz.new.class_name

=> :Baz

Understanding different ways of metaprogramming methods 245

Now, why on earth would you want to metaprogram this way? There is only one good
reason, and that is performance. Metaprogramming with the block-based approach often
requires methods such as Module#const_get, Kernel#instance_variable_
get, and Kernel#send, and these are about 2.5 times slower than directly using normal
constant access (Foo::CONST), normal instance variable access (@iv), and normal
method calling (self.meth). If you need the absolute fastest approach when using
metaprogramming, then you need to use the eval-based approach.

In addition to much clunkier code, the eval-based approach is far less safe. Because
eval evaluates arbitrary Ruby code, it can do things such as delete every file you have
access to. It is very risky to use the eval-based approach with any untrusted data. In
general, you should avoid using the eval-based approach with any untrusted data, but if
you absolutely must have the fastest possible performance and need to deal with untrusted
data, you can use a whitelisting approach.

For example, if you need to define a method using an untrusted name (provided by the
user), this is probably a code injection vulnerability:

Baz.class_eval "def #{name}; :foo end"

That's because the value of the name variable could be "x; end; File.delete(__
FILE__); def y; ", as some users might just think it is funny to delete the file
running the code.

If you want to be safe, you need to check that name is a valid method name
(such that it can be defined directly using def). With modern versions of Ruby,
it's actually fairly difficult to do that, considering you can use most Unicode codepoints
in method names. However, assuming you only really want to optimize for names that
use ASCII alphanumeric characters and the underscore, you can check whether the name
matches a whitelist regular expression, and use the fast approach in that case. If it doesn't
match, you can fall back to the slower block-based approach. In the following example, we
use match? to see whether the given method name is safe to use with the eval-based
approach. If it is, we use class_eval and def to define the method. If it isn't, we use
the slower define_method approach:

if /\A[A-Za-z_][A-Za-z0-9_]*\z/.match?(name)

 Baz.class_eval "def #{name}; :foo end"

else

 Baz.define_method(name){:foo}

end

246 Metaprogramming and When to Use It

This approach gets you increased performance for the common case when it is safe to do
so and works in the uncommon case without allowing a vulnerability.

In this section, you learned different approaches for metaprogramming methods
and the trade-offs of each. In the next section, you'll learn when you should use
method_missing, and when you shouldn't.

Using method_missing judiciously
In general, you should only use method_missing in cases where it is required. Overuse
of method_missing in cases where it isn't necessary often leads to code that is difficult
to understand and refactor. If you have a use case where literally any method can be called
and should work, that is a good case for method_missing.

Let's say you want a method where you can just type random words in, and it will return
a list of symbols:

words{this is a list of words}

=> [:this, :is, :a, :list, :of, :words]

This is a case where method_missing makes sense because any method could be
called. Implementing this particular example is interesting. You want words to be a valid
method you can call anywhere, but you want words inside the block to call method_
missing. You can implement this by having instance_eval the block in the context
of a BasicObject instance. It would be great to use define_singleton_method
or singleton_class.define_method, but both define_singleton_method
and singleton_class are defined in Kernel and not BasicObject. You could use
a combination of Kernel#instance_method and UnboundMethod#bind_call
to work around the inability to call define_singleton_method directly, with the
following code:

obj = BasicObject.new

meth = Kernel.instance_method(:define_singleton_method)

meth.bind_call(obj, :foo){:bar}

obj.foo

=> :bar

Using method_missing judiciously 247

However, another approach is to create a subclass of BasicObject and override
method_missing in it, then instance_exec the block in the context of an instance
of that BasicObject subclass. This is shown in the following code block:

def words(&block)

 array = []

 Class.new(BasicObject) do

 define_method(:method_missing) do |meth, *|

 array << meth

 end

 end.new.instance_exec(&block)

 array.reverse

end

However, unless you absolutely must accept any method name, it's better to only define
the methods you actually need. For example, let's say you have 50 fields and you want to
define methods for each. The lazy way using method_missing is something like the
following:

class Struct50

 def method_missing(meth, *)

 @fields.fetch(meth){super}

 end

end

The alternative and recommended approach is to define actual methods this way:

class Struct50

 valid_fields.each do |field|

 define_method(field){@fields[field]}

 end

end

248 Metaprogramming and When to Use It

Defining actual methods is much better for performance. In addition, with actual
methods, calling Struct50.instance_methods returns all of the methods, which
is much better when you need to figure out which methods instances of the class
respond to. In the previous example, it also has the nice effect that if the @fields
hash for the instance is missing a field, calling the method for the field does not raise
NoMethodError. The flipside of this is that in the define_method approach, you
cannot call a method for fields that exist in the @fields hash for a particular instance,
but are not in the class's valid_fields.

If you absolutely must use method_missing, make sure you also define
respond_to_missing? as follows:

class Struct50

 def respond_to_missing?(meth, *)

 @fields.include?(meth)

 end

end

Otherwise, code that uses respond_to? will return incorrect results:

Struct50.new.respond_to?(:valid_field)

false when using method_missing without

respond_to_missing?

While it's almost always better to use define_method over method_missing
when you know the valid methods upfront, there is a case where you still want to use
method_missing. That is when you have a very large number of valid methods, say
over 1,000. The reason to prefer method_missing, in that case, is that each method
defined with define_method has a cost in terms of memory used, with a related
performance cost for the garbage collector. With method_missing, there are no
separate methods, so there is no memory or garbage collector cost.

In this section, you learned when it may make sense to use method_missing, and more
importantly, when you should probably use a different approach.

Summary 249

Summary
In this chapter, you learned about metaprogramming and when to use it. You learned
about the pros and cons of abstraction, and how to use metaprogramming to eliminate
redundancy. You learned about the block-based and eval-based approaches to
metaprogramming, and when to use each. You also learned about the trade-offs involved
in deciding whether to use method_missing or define_method.

In the next chapter, you'll use this metaprogramming knowledge to design useful
domain-specific languages.

Questions
1.	 When is it a bad idea to implement an abstraction via metaprogramming?

2.	 What is the most common reason to deal with singleton classes of singleton classes?

3.	 When should you use eval-based metaprogramming instead of block-based
metaprogramming?

4.	 When should you use method_missing?

10
Designing Useful
Domain-Specific

Languages
Ruby makes it easy to implement domain-specific languages (DSLs), and many popular
libraries offer DSLs to improve their usability.

In this chapter, you'll learn how to design and implement a DSL, which problems are
handled well by DSLs, and both the advantages and disadvantages of using DSLs in your
libraries.

We will cover the following topics:

•	 Designing your DSL

•	 Implementing your DSL

•	 Learning when to use a DSL

By the end of the chapter, you'll have a better understanding of not only how to design
a DSL, but why it may or may not be a good idea to do so.

252 Designing Useful Domain-Specific Languages

Technical requirements
In this chapter and all chapters of this book, code given in code blocks is designed to be
executed on Ruby 3.0. Many of the code examples will work on earlier versions of Ruby,
but not all. The code for this chapter is available online at https://github.com/
PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter10.

Designing your DSL
The most important thing to think about when designing a DSL is to focus on how the
DSL will be used. Some DSLs are designed to configure a library. Some DSLs are used
for making specific changes using the library. Some DSLs exist purely to reduce the
verbosity of the code. Sometimes the library exposes a DSL as its only interface, and
the library and DSL are basically the same thing. Let's focus first on DSLs designed for
configuring a library.

Configuration DSLs
DSLs designed to configure libraries are often referred to as configuration DSLs. They
are often initiated from a singleton method on the library's main module or class, often
straightforwardly named configure. RSpec, a popular Ruby library for testing, uses
a configuration DSL like this:

RSpec.configure do |c|

 c.drb = true

 c.drb_port = 24601

 c.around do |spec|

 DB.transaction(rollback: :always, &spec)

 end

end

RSpec uses this DSL to configure itself. It passes in a configuration object, and you call
methods on the configuration object to configure the library, in this case setting it to use
drb (short for distributed Ruby, a standard library) on port 24601. It also calls the
around configuration method with a block, which is yielded a proc (named spec in this
example), which is passed as a block to DB.transaction for wrapping the entire test
case in a database transaction that is always rolled back.

https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter10
https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter10

Designing your DSL 253

This type of configuration DSL is very helpful for users because it gives the user a single
place to look for configuring the library. This is instead of the user looking through all of
the RSpec documentation to determine how to configure settings such as the following:

RSpec::Core::DRbRunner.new(port: 24601)

RSpec::Core::Hooks.register(:prepend, :around) do |spec|

 DB.transaction(rollback: :always, &spec)

end

The user now has a single place they can look—the configuration DSL documentation—to
determine all of the supported ways to configure the libraries. This makes configuration
much easier. If your library has significant configuration options, strongly consider adding
a configuration DSL for it. You don't necessarily have to use a separate method that takes
a block.

For many libraries, the DSL can be as simple as singleton methods you can call on the
library's main module. For example, if RSpec used this approach, a possible configuration
DSL would be the following:

module RSpec

 self.drb = true

 self.drb_port = 24601

 around do |spec|

 DB.transaction(rollback: :always, &spec)

 end

end

This simpler approach has some disadvantages compared to the block-based approach,
though. First, you need to know whether RSpec is a module or class because using
module RSpec when RSpec is a class will result in a TypeError exception being
raised. Second, writer methods (methods ending in =) are more awkward to call with this
approach since they require an explicit self.

Suppose that you forget the explicit self, and you do the following:

module RSpec

 drb = true

 drb_port = 24601

end

254 Designing Useful Domain-Specific Languages

Then you end up defining unused local variables, and this has no effect on the library.
The general principle here is to avoid writer methods in cases where you will naturally
call them on self. In these cases, it may be better to offer aliases such as set_drb and
set_drb_port:

module RSpec

 set_drb true

 set_drb_port 24601

end

An alternative to this is having multipurpose drb and drb_port methods, which when
called without arguments act as reader methods, but when called with one argument act
as writer methods. Refer to the following code block:

module RSpec

 drb true # Set the value

 drb_port 24601 # Set the value

end

RSpec.drb

=> true

RSpec.drb_port

=> 24601

Any of these approaches for configuration will work fine, the important principle is to
make sure that you have a simple and well-documented way to configure your library,
assuming your library is complex enough to require configuration.

In this section, you learned about DSLs for configuring a library, using a real-world
example from RSpec. In the next section, you'll learn about DSLs for making complex
changes using a library.

DSLs for making specific changes
For libraries that need to make complex changes atomically, there are three common
approaches. The first is passing arrays or hashes or some nesting of the arrays or hashes
to a single method, often with keyword arguments to influence the command. Refer to
the following code:

Foo.process_bars(

 [:bar1, :baz2, 3, {quux: 1}],

 [:bar2, :baz4, 5],

Designing your DSL 255

 # ...

 skip_check: ->(bar){bar.number == 5},

 generate_names: true

)

This type of API is often hard for users to use. Manually making sure each of the arrays
or hashes being passed in is the right format can be challenging by itself. It's best to avoid
defining methods that require users to pass many complex objects if you can, as such
methods are more difficult for users to use correctly.

Another approach is creating objects and individually attaching them to a command
object, which is passed in. You often see this pattern in less powerful and expressive
languages, where objects are explicitly instantiated and then passed to methods:

bar1 = Bar.new(:bar1, :baz2, 3, quux: 1)

bar2 = Bar.new(:bar2, :baz4, 5)

command = ProcessBarCommand.new

command.add_bar(bar1)

command.add_bar(bar2)

...

command.skip_check{|bar| bar.number == 5}

command.generate_names = true

Foo.process_bars(command)

This approach is better than the previous approach in most cases, as it is easier for users
to use. However, it is a bit verbose, and not idiomatic Ruby. For this type of command, an
idiomatic approach in Ruby would be to use a DSL inside a block, such as the following
code:

Foo.process_bars do |c|

 c.bar(:bar1, :baz2, 3, quux: 1)

 c.bar(:bar2, :baz4, 5)

 # ...

 c.skip_check{|bar| bar.number == 5}

 c.generate_names = true

end

256 Designing Useful Domain-Specific Languages

This retains the benefits of the command object approach but decreases the verbosity.
Unlike the command object approach, it contains the logic for the command processing
inside the block, which is an important conceptual difference. It also makes things easier
for the user, as the user doesn't need to reference other constants manually, they just need
to call methods on the yielded object.

Note that there are cases when the command object approach is probably better, and
that is when you are passing the object to multiple separate methods. While you can
pass blocks to methods using the & operator, it's probably not a good general approach,
because the block will get evaluated separately by each method. With the command
object approach, the command can be self-contained and you do not need to recreate
the command every time you are calling a method. When using the command object
approach, it is often a good idea for the command object initializer to use a DSL, shown
as follows:

command = ProcessBarCommand.new do |c|

 c.bar(:bar1, :baz2, 3, quux: 1)

 c.bar(:bar2, :baz4, 5)

 # ...

 c.skip_check{|bar| bar.number == 5}

 c.generate_names = true

end

Foo.process_bars(command)

With some extra work, you can have your library support the same configuration block
both directly passed to Foo.process_bars and when using the command object
approach with ProcessBarCommand.new. This gives you the best of both worlds.
You'll learn how to implement this technique in a later section.

In this section, you learned about DSLs for making complex changes in a library. In the
next section, you'll learn about using DSLs to reduce the verbosity of code.

DSLs for reducing the verbosity of code
Sequel, a popular database library for Ruby, uses a DSL designed purely for reducing the
verbosity of code. If you want to express an inequality condition in one of your database
queries, you can use a long approach such as the following:

DB[:table].where(Sequel[:column] > 11)

generates SQL: SELECT * FROM table WHERE (column > 11)

Designing your DSL 257

In this case, Sequel[:column] returns an object representing the SQL identifier, which
supports the > method. This type of usage occurs very often in Sequel, so often that it is
desirable to have a shortcut. Sequel has multiple shortcuts for this, but the one enabled
by default uses a simple DSL:

DB[:table].where{column > 11}

This uses an instance_exec DSL, where methods inside the block are called on
an object different than the object outside the block. Inside the block, methods called
without an explicit receiver return Sequel identifier objects, so column inside the
block is basically translated to Sequel[:column] (which itself is a shortcut for
Sequel::SQL::Identifier.new(:column)). One issue with this approach is that
if users are not familiar with the method and do not know the block is executed using
instance_exec, they may do something like the following:

@some_var = 10

DB[:table].where{column > @some_var}

This doesn't work because the block is evaluated in the context of a different object. The
need to reference methods or instance variables in the surrounding scope is common
enough that the DSL also supports this approach, by yielding an object instead of using
instance_exec if the block accepts an object:

@some_var = 10

DB[:table].where{|o| o.column > @some_var}

In this section, you learned about DSLs designed to reduce code verbosity, using
a real-world example from Sequel. In the next section, you'll learn about libraries
implemented purely as DSLs.

Libraries implemented as DSLs
Some libraries are implemented purely as DSLs, in that the expected use of the library
is only via the DSL, and you as a user are never expected to manually create the library's
objects. One library designed like this is minitest/spec, which is another popular
Ruby library for testing.

258 Designing Useful Domain-Specific Languages

With minitest/spec, all use of the library is via a DSL. You use describe to open
a block for test examples. Inside the block, before is used for the code run before every
example, and after for the code run after every example. You use it to define test
examples. Notice in the following example, you never create any minitest objects:

require 'minitest/autorun'

describe Class do

 before do

 # setup code

 end

 after do

 # teardown code

 end

 it "should allow creating classes via .new" do

 Class.new.must_be_kind_of Class

 end

end

Another library implemented as a DSL is Sinatra, which was the first Ruby web
framework showing you could implement a web application in a few lines of code, and an
inspiration for many minimal web frameworks in Ruby and other languages. With Sinatra,
after requiring the library, you can directly call methods to handle HTTP requests. This
simple web application will return Index page for GET requests to the root of the
application and File Not Found for all other requests, as shown here:

require 'sinatra'

get "/" do

 "Index page"

end

not_found do

 "File Not Found"

end

Implementing your DSL 259

This type of DSL is not for every library. It is best left for specific environments, such as
testing for minitest/spec, or for simple cases, such as only handling a few routes in
Sinatra. For both minitest and Sinatra, there is an alternative API that is not a pure
DSL, where classes are created in the standard Ruby way.

In this section, you learned about designing different types of DSLs. In the next section,
you'll learn how to implement the DSLs you learned about in this section.

Implementing your DSL
One of the best aspects of Ruby is how easy Ruby makes it to implement a DSL. After
programmer friendliness, probably the main reason you see so many DSLs in Ruby is the
simplicity of implementation. There are a few different DSL types you learned about in the
previous sections, and you'll learn how to implement each in this section.

The first type is the most basic type, where the DSL method accepts a block that is
yielded as an object, and you call methods on the yielded object. For example, the RSpec
configuration example could be implemented as follows:

def RSpec.configure

 yield RSpec::Core::Configuration.new

end

In this case, the configuration is global and always affects the RSpec constant, so the
RSpec::Configuration instance may not even need a reference to the receiver.

For the Foo.process_bars example given previously, assuming the
ProcessBarCommand uses the add_bar method and the DSL uses the simpler bar
method, you need to implement a wrapper object specific to the DSL. Often the name
of this object has DSL in it. Since the skip_check and generate_names methods
are the same in both cases, you can cheat and use method_missing, though it is often
better to define actual methods, as you learned in Chapter 9, Metaprogramming and When
to Use It. In this example, we'll use the method_missing shortcut:

class ProcessBarDSL

 def initialize(command)

 @command = command

 end

 def bar(...)

 @command.add_bar(...)

260 Designing Useful Domain-Specific Languages

 end

 def method_missing(...)

 @command.send(...)

 end

end

With the ProcessBarDSL class created, you can implement Foo.process_bars
by creating the ProcessBarCommand object, and yielding it wrapped in the
ProcessBarDSL instance. After the block completes processing, you can implement
the internal processing of the bars by calling a private internal method, here named as
handle_bar_processing:

def Foo.process_bars

 command = ProcessBarCommand.new

 yield ProcessBarDSL.new(command)

 handle_bar_processing(command)

end

If you want to support an API where you can either pass a block to Foo.process_bars
or pass an already created ProcessBarCommand object, that is also easy to implement.
Refer to the following code block:

def Foo.process_bars(command=nil)

 unless command

 command = ProcessBarCommand.new

 yield ProcessBarDSL.new(command)

 end

 handle_bar_processing(command)

end

Implementing your DSL 261

For the Sequel example with the where method, because it allows both the
instance_exec approach and the block argument approach, it's slightly tricky. You
need to check the arity of the block, and if the block has arity of 1, then the block
expects an argument, and you yield the object to it. If the block does not have arity of
1, the block doesn't expect an argument, and you evaluate the block in the context of the
object with instance_exec. Refer to the following code:

def where(&block)

 cond = if block.arity == 1

 yield Sequel::VIRTUAL_ROW

 else

 Sequel::VIRTUAL_ROW.instance_exec(&block)

 end

 add_where(cond)

end

The Sequel::VIRTUAL_ROW object uses a method_missing approach since all
methods are treated as column names. Simplified, it is similar to the following code,
though the actual implementation is more complex at it also supports creating a SQL
function object if arguments are passed:

Sequel::VIRTUAL_ROW = Class.new(BasicObject) do

 def method_missing(meth)

 Sequel::SQL::Identifier.new(meth)

 end

end.new

In the minitest/spec example, the describe method is added to Kernel. It creates
a class, sets a name for the class based on the argument, and passes the block given to
class_eval. Simplified, it looks as follows:

module Kernel

 def describe(name, *, &block)

 klass = Class.new(Minitest::Spec)

 klass.name = name

 klass.class_eval(&block)

 klass

262 Designing Useful Domain-Specific Languages

 end

end

The before and after methods inside the describe block both define methods.
before defines setup and after defines teardown. Simplified, they could be
implemented by code as follows:

class Minitest::Spec

 def self.before(&block)

 define_method(:setup, &block)

 end

 def self.after(&block)

 define_method(:teardown, &block)

 end

end

The it method is similar, but the method it defines starts with test, and includes the
description given. It also includes an incremented number so that two specs with the same
description end up defining different test methods. It's a very common mistake to copy an
existing test, modify the copy to test an additional feature, and forget to change the name.
With a manual test name definition, that results in the second test method overriding the
first. This can be caught if running tests in verbose warning mode (the ruby -w switch),
as in that case Ruby will emit method redefinition warnings, but otherwise, it is easy to
miss and results in you not testing everything you think you are testing.

Simplified, the it method could be implemented with an approach such as the following:

class Minitest::Spec

 def self.it(description, &b)

 @num_specs ||= 0

 @num_specs += 1

 define_method("test_#{@num_specs}_#{description}", &b)

 end

end

One issue with the minitest/spec implementation of describe is that it adds the
method to Kernel, so it ends up being a method on every object. You can call it inside
other classes and methods. This adds to the flexibility, and it's probably a good choice for
minitest/spec, but it may not be the best decision for DSLs in general.

Learning when to use a DSL 263

The Sinatra DSL works differently. It doesn't want to define methods such as get and
not_found on every object, but it still wants you to be able to call them at the top level,
outside of any classes and methods. It does this by calling extend in the top-level scope
with a module. The top-level scope runs in the context of an object called main, and just
like any other object, if you extend main with a module, the methods in the module are
only added to main and not any other object. A simplified version of the Sinatra DSL is
similar to the following:

module Sinatra::Delegator

 meths = %i[get not_found] # ...

 meths.each do |meth|

 define_method(meth) do |*args, &block|

 Sinatra::Application.send(meth, *args, &block)

 end

 end

end

extend Sinatra::Delegator

In this section, you've learned the basics of implementing a variety of different types
of DSLs. In the next section, you'll learn about which use cases lend themselves to DSL
usage, and which use cases don't.

Learning when to use a DSL
There are some use cases in Ruby where using a DSL makes a lot of sense, and other cases
where using a DSL increases complexity and makes the code worse instead of better.
The best cases for DSL use in Ruby are where using the DSL makes the library easier to
maintain and makes it simpler for a user to use the library. If you find yourself in that
situation, then a DSL definitely sounds like the right choice. However, in most cases,
a DSL is a trade-off.

In most cases, you design a DSL to make things easier in some way for the user, but it
makes the internals more complex and makes your job as the maintainer of the library
more difficult. It is possible but less likely for the opposite to be true, where you design
a DSL to make your life as a maintainer easier, but the DSL makes the use of the library
more difficult.

264 Designing Useful Domain-Specific Languages

Of the DSL examples given previously, the RSpec configuration example may be an
example of the best case for a DSL. It definitely makes it easier for the user to configure
the library since they only need to look in one spot for configuration. Implementation of
the DSL is fairly simple, and having all configurations run through a single configuration
object may make it easier to maintain the library.

For the Foo.process_bars example, the DSL is definitely more idiomatic Ruby code,
and likely to be easier for the user to use than the alternatives. In this case, it definitely
adds maintenance work, since it requires creating a class specifically for the DSL.
However, the DSL should be reasonably easy to maintain, so it's probably a good trade-off.

For the Sequel example with the where method that takes a block and either yields
an object or uses instance_exec, it's definitely questionable whether the benefits
outweigh the costs. This DSL only saves a little bit of typing for the user, and the fact that
it can yield an object or use instance_exec is often a source of confusion, especially
for users not familiar with the library. In general, using instance_exec for short blocks
often results in user confusion, since most Ruby programmers are used to calling methods
with blocks and using instance variables of the surrounding scope inside the blocks, and
breaking that is often a bad idea.

In regards to the Sequel virtual row DSL, the DSL was designed back when the
alternative approach was much more verbose (Sequel::SQL::Identifier.
new(:column) > 11) than the current alternative approach (Sequel[:column]
> 11), so the benefit of the DSL was higher back then than it is now. However, since the
DSL is now widely used, it must continue to be supported. The principle to remember
here is you will often need to support any DSL for a long time, so implementing a DSL
just to reduce code verbosity is often a bad idea. Try hard to think of alternative
approaches to using a DSL if you are using it just to reduce code verbosity.

For minitest/spec, the benefit of using the DSL is huge. For basic usage, you don't
need to know about any minitest specific classes, you only need to know about four
methods, describe, before, after, and it. This greatly simplifies the interface for
the user and is one reason minitest/spec is such a pleasure to use. This does have an
implementation cost, as minitest/spec has extra complexity on top of minitest
itself, so there is a significant amount of maintenance involved. However, this is another
case where the benefit outweighs the cost.

In the Sinatra case, the DSL is really what showed how simple web applications could
be if you focused only on what was absolutely necessary to implement them. The actual
DSL implementation in terms of extending main doesn't add much maintenance effort,
so it is also a case where the benefit outweighs the cost.

Summary 265

As you have learned, there are some situations where implementing a DSL can be useful,
and other situations where implementing a DSL can make a library worse.

Summary
In this chapter, you've learned that focusing on how the DSL will be used is the key to
designing a good DSL. You've seen many examples of DSL usage from a user perspective,
and how to implement each of these possible DSLs. Finally, you've learned when it is
a good idea to implement a DSL, and when it may not be a good idea. With all you've
learned in this chapter, you are better able to decide when a DSL makes sense for your
library, and if you decide it does make sense, how better to design and implement it.

In the next chapter, you'll learn all about testing your Ruby code.

Questions
1.	 What is the main advantage of using a DSL for configuring libraries?

2.	 How can you implement a DSL that works both as a normal block DSL and an
instance_exec DSL?

3.	 Of the various reasons given in this chapter for using a DSL, which is the most likely
to cause problems for the user and the least likely to add value?

11
Testing to Ensure
Your Code Works

Testing is more critical in Ruby than in most other programming environments, partly
because of the power and flexibility Ruby offers, and also because of Ruby's dynamic
typing. With proper testing, you can have confidence that your code works the way you
expect, which is critical whenever you are making changes to it.

In this chapter, you'll learn that there are a lot of important considerations when testing,
such as at what levels you want to test, how much abstraction should be used in your tests,
and how thorough your tests need to be.

We will cover the following topics in this chapter:

•	 Understanding why testing is so critical in Ruby

•	 Learning different approaches to testing

•	 Considering test complexity

•	 Understanding the many levels of testing

•	 Realizing that 100% coverage means nothing

By the end of this chapter, you'll have a better understanding of testing in Ruby, and be
better able to choose appropriate tradeoffs when designing your tests.

268 Testing to Ensure Your Code Works

Technical requirements
In this chapter and all chapters of this book, code given in code blocks is designed to
execute on Ruby 3.0. Many of the code examples will work on earlier versions of Ruby,
but not all. The code for this chapter is available online at https://github.com/
PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter11.

Understanding why testing is so critical
in Ruby
Testing is critical to ensure proper behavior in every programming language, but it is
especially critical in Ruby. In many other programming languages, the programming
language has a type system that will catch errors related to improper use of types when the
program is compiled, before the program is run. Ruby uses a dynamic type system, so it
will not catch many errors related to the improper use of data types. Ruby programs are
also generally not compiled until you try to run them, so even simple syntax errors will
not be caught unless you try to load the related code. Combined, these two qualities make
testing in Ruby more critical than in many other programming languages.

When talking about testing, the lack of type checking is often considered a missing
feature. However, one of the best things about Ruby is that it doesn't require you to specify
types for variables and methods. Unlike most languages, Ruby doesn't focus on the types
of objects, only on what methods the objects respond to. That flexibility is what makes
Ruby such a joy to program in.

Similarly, not having a separate compilation step before running Ruby code is one of the
qualities that makes Ruby easy to use. Ruby does ship with the ability to just compile
programs and not actually run them, it's just not commonly used. This feature is very
useful with large libraries if you just want to check that there are no syntax errors in any
of the source files. You can access this feature using the -c command-line option, such as
ruby -c file_name.

If you want to do this for all .rb files under a given directory, you can find all files under
a given directory using Dir.[], then run ruby -c on each of the resulting files. In this
case, it's a very good idea to use the --disable-gems flag in addition to the -c flag,
because a huge part of Ruby startup time is spent loading rubygems, and you don't need
rubygems at all if you are just checking syntax. Here's an example of how you could
syntax check all Ruby files:

Dir['/path/to/dir/**/*.rb'].each do |file|

 print file, ': '

https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter11
https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter11

Understanding why testing is so critical in Ruby 269

 system('ruby', '-c', '--disable-gems', file)

end

This is useful, but it could be better. The previous example prints one line for every file,
but it would better if it just reported files with invalid syntax. That's not a hard change to
make. We'll print a period for each file as a simple way to indicate progress, and if a file
has a syntax error, we'll print the error. We don't actually need to print the filename when
printing the error because syntax errors generally include the filename at the start of the
error message:

Dir['/path/to/dir/**/*.rb'].each do |file|

 read, write = IO.pipe

 print '.'

 system('ruby', '-c', '--disable-gems', file,

 out: write, err: write)

 write.close

 output = read.read

 unless output.chomp == "Syntax OK"

 puts

 puts output

 end

end

This book was developed using ruby -c to check all source code examples. All source
code in this book should at least have valid syntax.

For other programming languages that have a separate compilation step, in addition to
compilation errors showing you that you have a problem in your code, there are often
compilation warnings, showing things that may be wrong, but are not technically errors
and do not stop the compilation process. This is basically the compiler being your friend,
trying to point out things that may be wrong even if the compiler isn't sure. Thankfully,
Ruby has something similar.

270 Testing to Ensure Your Code Works

As we learned in Chapter 6, Formatting Code for Easy Reading, Ruby has a verbose
warnings feature that prints additional warnings about cases that are not technically errors
but still look wrong. You can enable this support using the ruby -w flag, and even better,
you can combine it with the ruby -c flag to check source files for both syntax errors and
compilation warnings. When used in this mode, the -w flag will only print compilation
warnings, it won't print warnings for questionable behavior that can only be caught at
runtime. Still, it's useful to include the -w flag whenever you are scanning code for syntax
errors. You can update the previous example code to include reporting warnings instead
of just reporting errors. Since files with warnings are still going to print Syntax OK at
the end of the output, you need to remove that from the output before printing the output:

Dir['/path/to/dir/**/*.rb'].each do |file|

 read, write = IO.pipe

 print '.'

 system('ruby', '-wc', '--disable-gems', file,

 out: write, err: write)

 write.close

 output = read.read

 unless output.chomp == "Syntax OK"

 puts

 puts output.sub(/Syntax OK\Z/, '')

 end

end

Scanning all files with ruby -wc is a great idea, but it only does some fairly basic checks
on the file. To actually verify whether your code works the way you expect, you need to
test it, and you'll learn different approaches to doing that in the next section.

Learning different approaches to testing
There are many approaches to testing in Ruby. It's possible to use any of them or
potentially all of them successfully on the same project, though most Ruby projects stick
to a single approach.

One approach to testing is manual testing. This is where you just run the program or use
the library, and make sure the results are as expected. It was common in older software for
this to be the only method of testing. Applied vigorously enough, with strict checklists on
everything in the system that had to be tested, manual testing can result in high-quality
software. There were entire careers based not on writing software, but only manually
testing software that was written by others.

Learning different approaches to testing 271

While it is possible to be successful purely with manual testing, it is very labor-intensive
to manually test code, compared to having a computer automatically test code. Back when
programs were much simpler, programming took much longer, and software releases were
years apart, having a separate quality assurance department manually testing software
before release was a reasonable approach.

Times have changed since then, and it's almost always a bad idea to rely purely on manual
testing. However, that doesn't mean that manual testing has no place. For some software,
there may be small parts that are too complex or unreliable to test automatically, and you
have to rely on manual testing for those. For example, if you are writing a Ruby program
to generate pleasing music to listen to, you may be able to automatically test most of the
pieces that make up the software. However, automatically testing whether the generated
music is actually pleasing to listen to is probably harder to write than the software to
generate pleasing music. For situations like that, incorporating manual testing into your
testing approach is critical.

Other than manual testing, there are three major approaches to testing in Ruby. One
approach is called test after development (sometimes abbreviated TAD). With this
approach, you develop the code first without any automated tests. After you have the
software mostly working the way you want, you then go back and add tests for it. This
is probably the most popular form of testing, and it generally works well, even though
proponents of other automated testing approaches often look down on it.

Another approach is called test-driven development (often abbreviated TDD). With
TDD, you write the tests for your code before you write the code itself. How does this
work? Well, first you write a test for a simple piece of code. Then you run the test and it
fails. Then you write just enough code to make the test pass. Then you write another test
for new behavior. You run the tests again and the first test passes and then the new test
fails. Then you write just enough code to make the second test also pass, without breaking
the first test. Then you refactor any code as needed while still keeping all tests passing. You
repeat this process until the tests cover all desired functionality.

The third approach is called behavior-driven development (often abbreviated BDD).
With BDD, the tests (called specs) are written in a reduced form of English, often by
a non-programmer, possibly even a project manager. Then a programmer writes code
to transform this reduced form of English into executable Ruby code that can be used
for testing. Then the programmer implements the features needed to get that executable
Ruby test code to pass. Then the cycle repeats, writing additional specs in the reduced
form of English, having that translated into executable Ruby code, and then writing the
code to make sure the tests pass.

272 Testing to Ensure Your Code Works

All three approaches have different tradeoffs. With both TDD and BDD, you might end up
with tests that are infeasible to implement, either because they are too difficult or the tests
or specifications have bugs and it is actually impossible to have correct answers returned
due to missing input. With TAD, since the tests are written after the library is developed,
and the programmer is usually doing basic manual testing as they are writing the library,
you end up writing fewer tests that you don't need.

For an example of this, say the project manager has worked all week on learning the
BDD syntax, which sort of reads like English but is far less flexible. Near the end of the
week, they are thrilled that they are finally able to submit a valid specification such as the
following:

bdd_specification = <<END

Feature: Check whether program finishes

 Scenario: User submits program

 Given the User submits a program with a "loop"

 When the User clicks a button to check

 whether the program will finish

 Then the system outputs whether the program will finish

END

The junior programmer in charge of maintaining the testing infrastructure gets this
feature, then writes the necessary code to translate this sort-of English into executable
Ruby code, which takes another week. Then this shows up on the feature board for
another junior programmer to work on. After a week of working on it, the junior
programmer has a partially working implementation, but it still has a lot of bugs
they cannot fix. They decide to ask for help from their team leader, who looks at the
specification, tries to stifle his laughter, and tells the junior programmer not to worry
about it, and that he'll talk with the project manager. Then the tech lead has to have
a difficult conversation with the project manager about how their seemingly simple
request is actually a restatement of the halting problem, which is provably unsolvable.

The previous example is, hopefully, an exaggeration of what could happen in the real
world. In general, the only way to know whether it is possible to implement a complex
feature is to try to implement it. If it is impossible to implement the feature, or infeasible
due to an unexpected difficulty that was discovered during development, any time spent
on testing the feature is wasted. In the previous example, two of the three weeks involved
getting the testing set up, and one week was spent on implementation, so using a TAD
approach, only one week would have been wasted instead of three weeks.

Learning different approaches to testing 273

TAD is not without its problems. The main issue with TAD is you can end up
implementing a feature that works, but the interface to use it is hard to use or testing it
is difficult. If you use a TAD approach, you need to realize this while you are writing the
feature, and constantly remind yourself to think of how the user will use the feature, make
sure to keep that usage as simple as you can and avoid unnecessary complexity. Otherwise,
it is common for code developed using the TAD approach to be implemented in a manner
that makes the implementation as easy as possible, but that makes testing difficult.

With TDD, you can have the opposite problem. Because you are writing the test code first,
you tend to design interfaces that are very easy to test but may be difficult to implement.
Additionally, the needs when testing, especially when using mocked or stubbed objects,
are often quite different than the needs of the average user of the library, so the interface
you end up with when using a TDD approach might be easy for the use cases of the testing
system, but not optimized for common user actions.

Let's see an example of that. Let's say you are writing a method that times the execution
of two different callable objects and returns whichever callable object is faster. With
a TAD approach, you may design the code similar to the following example. This adds
a faster_one method, which will time the calls to both the first argument and the
second argument, and return the argument that takes the least time to call:

class WhichFaster

 def faster_one(callable1, callable2)

 t1 = time{callable1.call}

 t2 = time{callable2.call}

 t1 > t2 ? callable2 : callable1

 end

 private def time

 t = clock_time

 yield

 clock_time - t

 end

 private def clock_time

 Process.clock_gettime(Process::CLOCK_MONOTONIC)

 end

end

274 Testing to Ensure Your Code Works

This is a reasonably simple implementation, but testing it is quite challenging,
mostly because of the usage of Process.clock_gettime(Process::CLOCK_
MONOTONIC). Testing the implementation robustly probably requires mocking at least
the clock_time method, which means it isn't actually testing what happens inside that
method. Alternatively, you could just pass in two callable objects, and you are sure that
one is faster than the other. However, that approach is less robust, because which callable
object is faster may change depending on time and the execution environment.

When using TDD, the test code is written first, and maybe written in the way simplest
for testing. For testing, it's probably easier to create an object to set the callable objects
as attributes of the object, and then provide a couple of implementations for the timer,
calling it with each timer implementation to make sure that the returned callable matches
the one with the lowest time. Refer to the following code:

describe WhichFaster do

 it "returns faster callable" do

 which = WhichFaster.new

 c1 = which.callable1 = ->{a}

 c2 = which.callable2 = ->{b}

 which.timer = {c1=>1, c2=>2}

 _(which.faster_one).must_equal c1

 which.timer = {c1=>2, c2=>1}

 _(which.faster_one).must_equal c2

 end

end

This is super simple to test. The implementation turns out to be much simpler as well. Just
have attributes for the callable objects and the timer, get the times for each callable, and
return the faster callable object. Check out the following code:

class WhichFaster

 attr_accessor :callable1, :callable2, :timer

 def faster_one

 t1 = timer[callable1]

 t2 = timer[callable2]

 t1 > t2 ? callable2 : callable1

Learning different approaches to testing 275

 end

end

While both the tests and implementation are simple, this is much more difficult to use.
The complexity is removed from the library and forced onto to the user, who now has to
do the following:

which = WhichFaster.new

which.callable1 = callable1

which.callable2 = callable2

which.timer = ->(callable) do

 t = Process.clock_gettime(Process::CLOCK_MONOTONIC)

 callable.call

 Process.clock_gettime(Process::CLOCK_MONOTONIC) - t

end

which.faster_one

This is much more complex compared to the TAD approach. This is likely because the
TAD approach focused on implementing a design, and not simply on passing a test. Just
as you need to focus on the user experience and not just use the easiest implementation
approach with TAD, you need to focus on the user experience and not just use the easiest
testing approach with TDD.

Another advantage of TAD is that since you've already implemented the library, you know
where the most complex and error-prone sections of the implementation are, and you can
focus on extra testing in those areas. With TDD, you are designing tests mostly around the
proper use of the library, without knowing where the complex parts of the implementation
will be. This makes it difficult to correctly expand the testing so that the most complex
parts of the implementation have the appropriate testing. By writing tests up front, you
can end up over-testing the simpler parts of the implementation and under-testing the
more complex parts. Make sure if you use a TDD approach that you also review the
implementation after it is finished, and make sure to add extra tests for more complex
implementation areas, which you may not have known were needed originally.

276 Testing to Ensure Your Code Works

In deciding whether to use BDD, the primary consideration will be whether
non-programmers will be assisting the programming team in writing specifications and
the quality of the generated specifications. If non-programmers will not be assisting
the programming team by writing specifications, BDD generally ends up being mostly
wasted effort. Similarly, even if the non-programmers are writing specifications, if the
specifications are buggy or are taking significant time for the programming team to
automatically translate into executable Ruby code, the costs of BDD may exceed the
benefits.

In this section, you've learned about different approaches to testing. In the next section,
you'll learn about test complexity, and the tradeoffs involved with making the tests more
complex.

Considering test complexity
When programming, you tend to reach for abstractions to simplify code and reduce
complexity. Since automated testing is just another form of programming, there is
a natural tendency to use the same approach when writing tests. However, with
abstraction comes indirection, and often complexity. For example, you may have three
tests that do similar things, like in the following code snippet:

describe Foo do

 it "should have bar return a Bar instance" do

 _(Foo.new.bar).must_be_kind_of(Bar)

 end

 it "should have baz return a Baz instance" do

 _(Foo.new.baz).must_be_kind_of(Baz)

 end

 it "should have quux return a Quux instance" do

 _(Foo.new.quux).must_be_kind_of(Quux)

 end

end

The programmer's natural inclination is to see the pattern and create an abstraction for it:

describe Foo do

 def method_must_return_kind_of(meth, instance)

Considering test complexity 277

 _(Foo.new.send(meth)).must_be_kind_of(instance)

 end

The programmer would later use that abstraction to attempt to simplify the test code:

 it "should have bar return a Bar instance" do

 method_must_return_kind_of(:bar, Bar)

 end

 it "should have baz return a Baz instance" do

 method_must_return_kind_of(:baz, Baz)

 end

 it "should have quux return a Quux instance" do

 method_must_return_kind_of(:quux, Quux)

 end

end

The issue with this approach to abstraction is that it decreases code locality by moving
what is being tested away from the inside of the test block. If two of these tests pass, and
the third fails inside the method_must_return_kind_of method, debugging the
problem is more difficult. This is because the failing line will usually show inside the
abstracted method, instead of inside the spec that called it. The other issue here is that
someone looking at the specs may not know what method_must_return_kind_of
does. The naming doesn't indicate whether it is a class or instance method, for example.
By abstracting specs in this way, you are increasing how much context is needed by the
programmer trying to fix failing tests.

In general, tests are designed to help avoid and debug problems in library code. The more
abstractions you use in your test code, the more likely you are to be debugging your test
code instead of your library code. Once you reach a certain level of test abstraction,
a failing test gives you no confidence about whether the bug is in the library or the tests
themselves, and that is a bad situation to be in.

That does not mean that all abstractions in tests are bad. If you have 10 lines of test code
that are called in 100 different specs for a specialized setup, having a method the specs can
call for that setup that performs those 10 lines can be hugely helpful. Abstracting setup
code in the tests is probably fine, as long as the setup code is identical or at least very
similar between all cases. However, attempt to avoid abstracting the parts of the specs that
are performing the actual testing, as opposed to setting up for the actual testing.

278 Testing to Ensure Your Code Works

There is often an alternative to the previous abstraction example, and that is defining
multiple test methods using an enumerable, as follows:

describe Foo do

 {bar: Bar, baz: Baz, quux: Quux}.each do |meth, klass|

 it "should have #{meth} return a #{klass} instance" do

 _(Foo.new.send(meth)).must_be_kind_of(klass)

 end

 end

end

This reduces the duplication of the test methods without the loss of code locality. Assume
there is a failure in one of the specs, where the method does not return an object of the
expected class. In that case, the test library will report the line inside the spec that failed.
That makes it much easier to determine what was actually not working as expected,
reducing the amount of time you need to spend debugging.

In this section, you learned about tradeoffs in test complexity and the problems with
excessive abstractions in tests. In the next section, you'll learn about the many levels at
which you can test code in Ruby.

Understanding the many levels of testing
There are many levels at which you can test code in Ruby. The lowest level of testing is
unit testing, where you are testing the smallest possible amount of code in your library,
such as a single method in a single class, with all dependencies of the method mocked
or stubbed. The highest level of testing is some form of acceptance testing, which can be
automated or manual. In a web application, manual acceptance testing can be just using
the development version of the application in a browser and trying different features.
Automated acceptance testing of web applications tries to imitate this by running an
actual browser and programmatically controlling it by telling it which links to click on
and which buttons to press.

There are multiple levels in between. Model testing runs at a higher level than unit testing,
testing individual methods of objects, but with none of the method's dependencies
mocked or stubbed. Integration testing involves testing that all parts of the system work
together, also without mocking or stubbing anything. Usually, this involves accessing the
highest part of the system and get the expected results, which gives reasonable assurance
that the lower levels are working correctly. In terms of web applications, integration
testing usually involves using the web application's Ruby interface to submit requests.

Understanding the many levels of testing 279

In general, unit testing Ruby software tends to result in very brittle test code, where
changes to the code that will not affect a user's use of the library will break unit tests.
This is because unit tests are designed around mocking or stubbing all dependencies
of a method. Imagine you have a method such as the following:

class Foo

 singleton_class.alias_method(:build, :new)

 def build_foo(arg)

 Foo.build(arg)

 end

end

Unit testing the Foo#build_foo method would involve ensuring that it calls
Foo.build with the argument, because Foo.build is an external dependency of
the method. With the minitest library, this can be handled by combining the use of
stubbing the Foo.build method, and returning the result by calling a mock object.
Later, you verify the mock object was called with the expected arguments, as follows:

describe Foo do

 it "#build_foo should call Foo.build" do

 mock = Minitest::Mock.new

 mock.expect :call, :foo, [1]

 Foo.stub :build, mock do

 _(Foo.new.build_foo(1)).must_equal :foo

 end

 mock.verify

 end

end

280 Testing to Ensure Your Code Works

This issue here is, say you later decide you don't need the Foo.build method and
change the implementation to use Foo.new as follows:

class Foo

 def build_foo(arg)

 Foo.new(arg)

 end

end

If you do this, you end up breaking the test, even though the functionality is exactly the
same. That's because the test is testing what messages the method is sending other objects.
In most cases, which messages a method is sending to other objects is an implementation
detail of the method, and something not worth testing. This brittleness is a natural,
unavoidable consequence of unit testing. You can try to avoid the problem by not stubbing
and/or mocking all dependencies of the method, just the ones you think are problematic,
but that moves the test from a pure unit test to a hybrid of a unit test and a model test.

The situation is even worse if you keep the Foo.build method, but change the behavior
to be different. For example, maybe you change it to return a different type of object. In
that case, the unit test still passes, even though it should break because the method now
returns a different object than it did before. You would have to hope that you have other
unit tests of the Foo.build method explicitly in order to catch the error.

If unit tests are brittle and miss changes in stubbed and mocked methods by their nature,
why do programmers use them? In one word, speed. By stubbing and/or mocking all
dependencies, pure unit tests are extremely fast. In cases where you have slow tests that
are testing important aspects of the system, having a set of very fast unit tests that execute
in a second or a few seconds at most can be valuable. However, unless you are sure you
need the extra speed, it's best to stick to model tests. Slow and reliable tests are in general
much better than fast tests that break without reason (false positives) and don't catch
actual breakage (false negatives).

For web applications, by far the most important tests to have are acceptance tests. You
want to be sure as much as possible that high-level usage of your application returns
the results you expect. It's also a good idea to have a robust set of model tests, especially
for any cases not covered by the acceptance tests. However, if you only have time to
implement and maintain a single type of test in your web application, focus on acceptance
tests first.

In this section, you learned about the many levels of testing Ruby libraries and
applications. In the next section, you'll learn about test coverage and its importance
in Ruby.

Realizing that 100% coverage means nothing 281

Realizing that 100% coverage means nothing
Code coverage allows you to check what part of your library or application is actually
run. Coverage measurement is generally used as a rough gauge of how thorough your test
suites are. There are multiple types of code coverage for Ruby. Using the built-in coverage
library, line coverage, branch coverage, and method coverage are all supported.

Line coverage is the simplest type of coverage. It allows you to check whether a line of code
was ever executed during the testing process. This is important because any line without
coverage during testing means the line was never tested at all. Now, just because the line
was covered doesn't mean that the result of the line was actually tested. All it means is that
at some point during testing, code somewhere on the line was executed.

Branch coverage takes the same idea as line coverage but takes it a step farther. It ensures
that all branches in the code were taken. Suppose if you have the following Foo class with
a method named branch:

class Foo

 attr_accessor :bar

 def branch(v)

 v > 1 ? bar : baz

 end

 def baz; raise; end

end

And you add a test for the method as follows:

describe Foo do

 it "#branch should return the value of bar" do

 foo = Foo.new

 foo.bar = 3

 (foo.branch(2)).must_equal 3

 end

end

282 Testing to Ensure Your Code Works

This test is OK, but it is incomplete. From a line coverage perspective, this will show
100% line coverage, as all lines are covered. This will even consider the line with the baz
definition covered, even though baz is never called. This is because the line is executed
when the Foo class definition is evaluated. The line v > 1 ? bar : baz will also
show as covered, even though the test only executes the bar call and not the baz call.
This is where branch coverage comes in. With branch coverage enabled, the coverage
will show that the else branch of code on the line was not covered (the branch taken when
v is not greater than 1).

Method coverage is similar to branch coverage, but it only tells you whether the method
was executed during the tests. Method coverage with the previous test would be able
to tell you that the baz method was never called.

Just like line coverage only means the line was executed at one point, branch coverage only
tells you the branch was executed at one point. You can write a test that gets full coverage
without actually testing anything. Refer to the following code:

describe Foo do

 it "#branch should return the value of bar" do

 Foo.new.branch(0) rescue nil

 Foo.new.branch(2) rescue nil

 end

end

This code executes all lines, branches, and methods, but provides no useful testing. The
tests indicate that either method could raise an exception but doesn't test that either
method does, and doesn't test what the return value of either method is.

This brings us to the critical concept in regards to code coverage, which is that 100%
coverage means nothing. The corollary to this concept is even more important, and that
is that less than 100% coverage means something. Having 100% code coverage does not
tell you anything, but having less than 100% code coverage tells you something. At the
very least, having less than 100% code coverage means that there are certain parts of your
code that you are not testing at all.

Now, maybe you are OK with having untested code in your application. Maybe if you
are testing the most important parts of your application, not testing other parts is an
appropriate tradeoff. In general, there is limited time for testing, and testing time has
to be prioritized, and focusing on code coverage testing may result in a failure to test
more important code. However, if you've ever had to add covering tests to a library or
application, you will probably quickly see that it finds bugs.

Summary 283

Most of the time adding testing to improve code coverage will feel like boring drudge
work. The tests covering the code may not be very valuable. However, what is very
valuable is the process of going through the untested code. You'll find that some lines
cannot be executed and can be deleted. You'll find that an if statement is not necessary,
since it is tested in earlier code, and you can eliminate the unnecessary conditional and
make your code faster. You'll find cases where error handling was buggy and resulted in
an unexpected exception being thrown. You may even find security vulnerabilities. While
100% code coverage itself may not be valuable, the journey to get there often is.

Summary
In this chapter, you've learned why testing in Ruby is more critical than in many other
programming languages. You've learned about different approaches to testing, such as
manual testing, test after development, test-driven development, and behavior-driven
development. You've learned that is important to limit the complexity of your tests by
limiting the types of abstractions you use in your tests. You've learned about different
levels of testing, and the tradeoffs between them. Finally, you've learned about different
types of code coverage, and what 100% coverage means.

Testing your library often alerts you to things you need to change in your library, and in
the next chapter, you'll learn about how best to handle change in your libraries.

Questions
1.	 How do you check the syntax of a Ruby file and report errors and warnings?

2.	 Is behavior-driven development a good idea if the programmers are going to be
writing the specifications?

3.	 Is it always bad to use abstractions in test code?

4.	 Why might you prefer model testing to unit testing?

5.	 What does 100% code coverage mean?

12
Handling Change

As most libraries change over time, refactoring is an important tool during library
development. Even in the best-written libraries, external requirement changes generally
force changes in order for the library to continue to be useful. Some of these requirement
changes can come from changes in Ruby itself.

In this chapter, you'll learn about many different aspects of refactoring. You'll learn how
to answer important refactoring questions, such as why you should refactor, when you
should refactor, and how best to go about refactoring.

We will cover the following topics in this chapter:

•	 Considering reasons to refactor

•	 Learning about the refactoring process

•	 Implementing the most common Ruby refactoring techniques

•	 Refactoring to add features

•	 Removing features properly

By the end of this chapter, you'll understand better not just how to refactor, but why
refactoring may or may not be a good idea for your library.

286 Handling Change

Technical requirements
In this chapter and all chapters of this book, code given in code blocks is designed to
execute on Ruby 3.0. Many of the code examples will work on earlier versions of Ruby,
but not all. The code for this chapter is available online at https://github.com/
PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter12.

Considering reasons to refactor
There are some common reasons you may want to refactor your library. One of the
primary reasons is to simplify your library. Simplifying libraries can take a multitude of
different forms, but a couple of common simplifications are realizing that in two or more
places in your library, you are making the same change for the same reason. This is a case
where you may want to add an abstraction for that type of change. Such an abstraction
could be a new method, a new class or module, or possibly a modification of an existing
method.

Simplification can also work in the opposite direction, where you have a completely
unnecessary abstraction that now makes sense to remove, and then inline the behavior
into the places where the abstraction is currently used. This often occurs when the
abstraction was created before there was a real need for it, or when the need for it
previously existed, but there is no longer a need for it. For example, say you originally
designed your library to work with multiple databases, but later you realize everyone is
only using the library with the same database and the cost of maintaining support for
multiple databases is not worth the benefits.

Another common reason to want to refactor is to improve performance. When you are
first implementing a new feature, the focus is on making sure the feature works for basic
cases. Then, usually, you focus on making sure the feature handles corner cases correctly.
Often, that's where you stop. If a feature works but doesn't operate as fast as it possibly
could, that's usually not a problem. In general, unless the feature is in a critical path in
your library or applications using your library, performance probably isn't much of
a concern. However, in the cases where it is a concern, you may want to attempt to
optimize performance. You'll learn more about refactoring to optimize performance in
Chapter 14, Optimizing Your Library.

A third common reason to refactor is to add extensibility points in your library. This is
especially the case if your library exposes a class that is designed to be subclassed, or a
module designed to be included in other classes or modules. Refactoring to add support
for extensibility often adds a slight maintenance cost and performance overhead, but the
additional flexibility is often worth it.

https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter12
https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter12

Learning about the refactoring process 287

While these are probably the main three primary reasons, there are plenty of additional
reasons. You may have just inherited a complete mess of buggy code. The worst is when
you inherited such code from a less experienced version of yourself, and you have nobody
else to blame. Sometimes, the refactoring change is not caused by anything under your
control, but by changes in one of the libraries you are depending on, new requirements
imposed by external entities, such as your boss, or even changes in the programming
language itself. For example, if you had older Ruby code and relied on the difference
between Fixnum, Bignum, and Integer, starting in Ruby 2.4 you probably had a bad
time, since from Ruby 2.4, they are all the same (except that Fixnum and Bignum cause
deprecation warnings).

In this section, you learned about common reasons to refactor your code. In the next
section, you'll learn more about the refactoring process.

Learning about the refactoring process
In general, the process of refactoring existing code is similar to writing code in the first
place. In many cases, it's even easier. Assuming you've followed the advice in Chapter 11,
Testing to Ensure Your Code Works, you already have a good set of tests for the behavior
you are refactoring. If you've inherited code without tests or with tests that don't give
you good confidence that they will catch bugs that can be introduced during refactoring,
before you start refactoring, the goal should be to get the tests in a good enough shape
that you are comfortable that they will catch you if you fall. If you are in a position where
you refactor some code and run the tests and everything passes, and your first thought is,
"Maybe I am missing a case where this fails," then you probably don't have enough tests.
You can add tests at that point, but that's not the best time. What if you add the tests after
refactoring and they pass, but with the code before refactoring the tests would have failed?
This is a case where behavior has changed, which could be a bug. If possible, make sure
your test suite is solid and confidence-inspiring before starting any refactoring.

After you have confidence in your test suite, the simplest way to refactor is the same as the
way to write code originally, which is do the simplest thing that could possibly work. Let's
walk through a pure refactoring situation, where no behavior should change. Let's say you
are eliminating an unnecessary internal abstraction, such as a private method that could
be replaced with an instance variable access. The simplest thing that could possibly work
would involve the following steps:

1.	 Find the first remaining use of the abstraction.

2.	 Deabstract, by inlining the code from the abstraction into the code where the
abstraction is used.

288 Handling Change

3.	 Run tests for the library and make sure they all pass.

4.	 If there are no remaining uses, you are done; otherwise, go to step 1.

Following this exact process sounds easy, but it is actually hard. Almost always, the
programmer's natural instinct is a different set of steps, such as the following:

1.	 Find all uses of the abstraction.

2.	 Deabstract each case by inlining the code from the abstraction into the code where
the abstraction is used.

3.	 Run tests for the library and hope they all pass.

If you take that approach and all tests pass, great! However, if not all tests pass, you have
a lot more work cut out for you since now you need to figure out where the error is. If
your tests take a long time to run, there can definitely be an incentive to take the shortcut
of making all changes first, especially if the refactoring itself is very simple. However, in
this case, it's often best to test after the first change, after the third change, and once again
at the end. In general, if a refactoring causes issues, it will usually show up after the first
change, and in rarer cases in one of the first three changes. There are certainly cases where
breakage can happen after the first three, but they are less common.

In general, before you start the refactoring process, ask yourself whether you really need
the refactoring. Make sure you have a good reason to refactor code. Do not refactor just
because you don't like the design. You should be able to clearly state the problems with
the current design and why refactoring is needed before starting the refactoring process.
Refactoring can be a source of subtle bugs that are not caught without extensive testing.
If the code you are refactoring is already known to be full of bugs, the risk of refactoring
and adding bugs may be offset by the bugs it could fix. However, often the currently
known bugs in the code already have known workarounds, and changing which bugs are
present in the code, such as a refactoring that fixes two bugs but adds one, can actually
result in a worse experience for users.

In some programming languages, simple refactoring approaches can be automated, but
due to the dynamic nature of Ruby, automatic refactoring is rarely robust. There are
automated refactoring tools for Ruby, but they usually don't catch cases when using
Ruby features such as send, instance_variable_get, const_missing, and
method_missing.

Maybe you think your code could benefit from refactoring, but you don't have a pressing
need to refactor now. In this case, it's usually better to wait to refactor until you really
know you need to refactor. A good general principle is to refactor as late as possible and
only as needed to solve actual issues you are experiencing in your use of the code.

Implementing the most common Ruby refactoring techniques 289

In this section, you learned about the refactoring process. In the next section, you'll learn
from examples of two of the most common Ruby refactoring techniques.

Implementing the most common Ruby
refactoring techniques
Two refactoring techniques are very common in Ruby, extracting a method and extracting
a class. Let's focus first on extracting a method, as that is more common.

Extracting a method
Extracting a method is generally done when you have found the same code or same
pattern of code in multiple places that is being executed for the same reasons.

As an example of this, consider a SQL database library that needs to execute INSERT,
UPDATE, and DELETE SQL queries to modify data.

You have a Database class with separate methods to handle each type of query. The
insert method checks out a connection, executes the SQL for the INSERT statement
on the connection, and uses ensure to make sure the connection is checked back
in, because you do not want to leak connections if an exception is raised. Refer to the
following code block:

class Database

 def insert(*args)

 conn = checkout_connection

 conn.execute(insert_sql(*args))

 ensure

 checkin_connection(conn) if conn

 end

The update and delete methods are implemented similarly, checking out a connection,
executing the appropriate SQL on the connection, and then checking the connection
back in:

 def update(*args)

 conn = checkout_connection

 conn.execute(update_sql(*args))

 ensure

 checkin_connection(conn) if conn

290 Handling Change

 end

 def delete(*args)

 conn = checkout_connection

 conn.execute(delete_sql(*args))

 ensure

 checkin_connection(conn) if conn

 end

end

Due to the repetitive nature of the code, this seems like a natural candidate for method
extraction. By extracting the repetitive behavior of a method, you can reduce the
duplication and make it so future enhancements can occur in one place.

When starting the method extraction, the most important thing to consider is what you
want the extracted method to do. Ideally, the extracted method would extract all the
repetitive behavior, and still allow for easy use. Since the place in each method where the
code differs is in the middle of the method, one way to extract a method is to extract the
connection checkout and check-in parts. Since checkout_connection is already used,
you could call a new method, checkout, and have it use a block-based API, as follows:

class Database

 private def checkout

 conn = checkout_connection

 yield conn

 ensure

 checkin_connection(conn) if conn

 end

This allows you to simplify the insert, update, and delete methods, which
eliminates a lot of the repetitive code:

 def insert(*args)

 checkout do |conn|

 conn.execute(insert_sql(*args))

 end

 end

 def update(*args)

 checkout do |conn|

Implementing the most common Ruby refactoring techniques 291

 conn.execute(update_sql(*args))

 end

 end

 def delete(*args)

 checkout do |conn|

 conn.execute(delete_sql(*args))

 end

 end

end

However, this result is still rather unsatisfying, as there is still a substantial amount of
duplication left. Since conn.execute is the same in each method, that could be moved
into the extracted method. Alternatively, it may be a good idea to leave the currently
extracted method, since a method that just handles connection checkouts and check-ins
using a block definitely sounds useful. You decide to extract a Database#execute
method that handles the connection checkout and execution, and just yields to get the
SQL to execute:

class Database

 private def execute

 checkout do |conn|

 conn.execute(yield)

 end

 end

This allows you to simplify the insert, update, and delete methods even more, with
very little repetitive code left:

 def insert(*args)

 execute{insert_sql(*args)}

 end

 def update(*args)

 execute{update_sql(*args)}

 end

 def delete(*args)

 execute{delete_sql(*args)}

292 Handling Change

 end

end

This works fine, but looks a little strange, mostly due to the fact that the block is no longer
called with an argument, but the SQL is still generated inside of the block. Taking another
look at the code, SQL generation does not depend on the connection itself, so there is
no reason to use a block in the execute method. It would probably be best to have the
execute method take the SQL to execute as an argument:

class Database

 private def execute(sql)

 checkout do |conn|

 conn.execute(sql)

 end

 end

Then, the insert, update, and delete methods just need to change to pass the SQL
to use as a positional argument:

 def insert(*args)

 execute(insert_sql(*args))

 end

 def update(*args)

 execute(update_sql(*args))

 end

 def delete(*args)

 execute(delete_sql(*args))

 end

end

This is probably the best way to extract the method. Actually, you extracted two methods.
Maybe you don't need to extract both methods, and you can combine the extracted
methods into a single method:

class Database

 private def execute(sql)

 conn = checkout_connection

 conn.execute(sql)

Implementing the most common Ruby refactoring techniques 293

 ensure

 checkin_connection(conn) if conn

 end

end

Whether it's better to keep both execute and checkout as extracted methods or to
combine them into a single execute method depends on whether you have a use for
calling checkout separately. If there are places in your class where you are checking out
a connection but not executing a SQL statement on it, or places where you are checking
out a connection and executing multiple SQL statements on it, then it's probably best to
keep checkout as a separate method. However, if you would never be calling checkout
separately, it probably does not make sense to keep it as a separate method, and you could
make your code faster by having a single execute method.

Extracting a class
Extracting a class is less common than extracting a method, but there are still places
where it makes sense to do so. As you learned in Chapter 2, Designing Useful Custom
Classes, classes that deal with only a single responsibility are often easier to maintain, so
one reason to extract a class is to take a class that has many responsibilities and break it
into separate classes. As you learned, it's not always a good idea to break a large class into
smaller classes. You should carefully consider the benefit of using a single class versus the
extra cognitive overhead that an extra class entails.

Let's say you are designing a system for tracking clients of a shipping business in the
United States named Shippers Pack Urgently (SPU for short). For each client, you need
to keep track of their first and last name, their address, and their phone number. Due to
formatting requirements for address label printing, you must keep track of the portions
of the address as separate fields. These fields are the street, city, state, and ZIP code. You
decide to design a Client class to hold client information and initialize instances by
assigning all arguments given to instance variables. Refer to the following code:

class Client

 def initialize(first_name, last_name, street, city,

 state, zip, phone)

 @first_name = first_name

 @last_name = last_name

 @street = street

 @city = city

 @state = state

294 Handling Change

 @zip = zip

 @phone = phone

 end

As you learned in Chapter 4, Methods and Their Arguments, this isn't a particularly good
approach as the method takes seven positional arguments, but we'll ignore that for now.
Clients occasionally need to change either their phone number or their address, so you
have the update_phone and update_address methods to handle updating the
phone number and address information:

 def update_phone(phone)

 @phone = phone

 end

 def update_address(street, city, state, zip)

 @street = street

 @city = city

 @state = state

 @zip = zip

 end

In the normal course of business, the business sends letters to clients, either thanking
them for being customers or promoting new services. To handle formatting of address
labels for these letters, there is a format_address_label method:

 def format_address_label

 <<~END

 #{@first_name} #{@last_name}

 #{@street}

 #{@city}, #{@state} #{@zip}

 END

 end

end

Implementing the most common Ruby refactoring techniques 295

SPU makes money by packing and shipping high-priority items for clients. They are
a little unusual as every package they pack they ship as soon as it is packed, due mainly
to the urgency. In other words, each package is a separate shipment, and you decide to
use a Shipment class for tracking shipments. For each shipment, you need to track the
contents of the shipment, the date it was shipped, who the item is being shipped to, and
the address information for the shipment. Similar to the Client class, you initialize the
Shipment instances by assigning the arguments to instance variables:

class Shipment

 def initialize(contents, ship_date, ship_to,

 street, city, state, zip)

 @contents = contents

 @ship_date = ship_date

 @ship_to = ship_to

 @street = street

 @city = city

 @state = state

 @zip = zip

 end

Unlike the address of a client, the address of a shipment never changes, so there is no
method to update the address of a shipment. However, all shipments have a label placed
on them, so that SPU employees can look at the package at any point to determine where
it is going. Similar to the Client class, the Shipment class uses format_address_
label for this:

 def format_address_label

 <<~END

 #{@ship_to}

 #{@street}

 #{@city}, #{@state} #{@zip}

 END

 end

end

296 Handling Change

In this example, we are storing address information in both the Shipment and Client
classes. Both Shipment and Client have a need for address formatting, even if the
formatting is slightly different. This is a situation where extracting an Address class can
be beneficial. The Address class will need to store the same street, city, state, and ZIP
information that you were storing in Shipment and Client:

class Address

 def initialize(street, city, state, zip)

 @street = street

 @city = city

 @state = state

 @zip = zip

 end

end

At this point, you need to decide whether you want to change Shipment and Client
in a backward-compatible manner, or whether you can drop backward compatibility. If
this code is in a library used in other applications, and you cannot change all applications
using the library at the same time, you probably need to keep backward compatibility.
Changing Client#initialize while keeping backward compatibility would look like
the following:

class Client

 def initialize(first_name, last_name, street, city,

 state, zip, phone)

 @first_name = first_name

 @last_name = last_name

 @address = Address.new(street, city, state, zip)

 @phone = phone

 end

end

Similarly, changing Shipment#initialize would look like this:

class Shipment

 def initialize(contents, ship_date, ship_to,

 street, city, state, zip)

 @contents = contents

 @ship_date = ship_date

Implementing the most common Ruby refactoring techniques 297

 @ship_to = ship_to

 @address = Address.new(street, city, state, zip)

 end

end

However, if this is a separate application and it is not too difficult to change all callers of
Client.new and Shipment.new, backward compatibility is not an issue, and it may
be a better idea to change the API for Client and Shipment to accept an Address
instance:

class Client

 def initialize(first_name, last_name, address, phone)

 @first_name = first_name

 @last_name = last_name

 @address = address

 @phone = phone

 end

end

class Shipment

 def initialize(contents, ship_date, ship_to, address)

 @contents = contents

 @ship_date = ship_date

 @ship_to = ship_to

 @address = address

 end

end

In this case, dropping backward compatibility makes the code more flexible. For example,
if SPU decides to expand to different countries that use different address formats, it is
much easier if Client and Shipment only deal with Address objects and not create
Address objects themselves. This is because the Address class may need to change
to handle different address formats, and it is easier to make those changes just in the
Address class, as opposed to making them in the Address, Client, and Shipment
classes. It may even be easier to handle foreign addresses using a new Address class
per country or region that uses a unique addressing format. By accepting an Address
instance and not the different parts of the address, Client and Shipment can more
easily handle possible future changes in addressing.

298 Handling Change

A similar issue affects Client#update_address. To keep backward compatibility,
you could have it continue to accept the four separate arguments, and create an Address
instance:

class Client

 def update_address(street, city, state, zip)

 @address = Address.new(street, city, state, zip)

 end

end

Likewise, if backward compatibility is not important, you could change it to accept an
Address instance:

class Client

 def update_address(address)

 @address = address

 end

end

Since you'll also need to format labels for addresses, you have a couple of options. One
option is just formatting the address part:

class Address

 def format_label

 <<~END

 #{@street}

 #{@city}, #{@state} #{@zip}

 END

 end

end

With this approach for only formatting the address part and not including the addressee,
the Client and Shipment code to format an address label would look similar to the
following:

class Client

 def format_address_label

 <<~END

 #{@first_name} #{@last_name}

 #{@address.format_label}

Implementing the most common Ruby refactoring techniques 299

 END

 end

end

class Shipment

 def format_address_label

 <<~END

 #{@ship_to}

 #{@address.format_label}

 END

 end

end

This isn't terrible, but it may not be the best approach. An alternative approach would be
having Address#format_label take an argument for the addressee:

class Address

 def format_label(addressee)

 <<~END

 #{addressee}

 #{@street}

 #{@city}, #{@state} #{@zip}

 END

 end

end

The advantage of this code is that the Client and Shipment code for formatting the
address labels can be simpler:

class Client

 def format_address_label

 @address.format_label("#{@first_name} #{@last_name}")

 end

end

class Shipment

 def format_address_label

 @address.format_label(@ship_to)

 end

end

300 Handling Change

Having simpler and less verbose code is definitely good, but the larger conceptual
improvement, in this case, is that Address is now completely responsible for handling
label formatting. If SPU decides to print a barcode or QR code at the top of each
label, it can now be accomplished by modifying the code in a single place,
Address#format_label.

In this section, you learned about the most common Ruby refactoring techniques,
extracting a method and extracting a class. In the next section, you'll learn how to
approach refactoring when you need to add a new feature that requires refactoring.

Refactoring to add features
One common reason to refactor is to add features that are infeasible to implement with
the current design. There are two ways to go about this. We'll call the first way the cowboy
approach. With the cowboy approach, you just start implementing the new feature and
refactor the existing application as needed while you are developing the feature. When you
are done implementing the feature, you stop the refactoring.

In the best-case scenario, the cowboy approach saves time. It can also result in the least
refactoring changes needed since you only refactor as much as you need to in order to
implement the feature you are adding. However, it may result in a partially implemented
refactoring, if a full refactoring was not needed to implement the new feature. For the
optimistic programmer, the cowboy approach fits better with their natural desire to just
get stuff done. It's easy to understand why it is a fairly common approach. Proponents of
the cowboy approach mostly have the "What could go wrong?" attitude.

Unfortunately, at least two common things can go wrong. First, you could break existing
code during the process of refactoring and implementing the new feature. The problem,
in this case, is you may not know whether the failure was caused by the refactoring itself
or by the implementation of the new feature. Debugging the issue becomes much more
difficult because the new feature changes and the refactoring changes are both present and
may be hard to separate. You can try backing out only the new feature changes to attempt
to isolate the problem, but depending on the complexity of the new feature, that may be
difficult by itself. You could also try backing out just the refactoring changes, but then the
new feature would break. That may also be difficult to do.

Refactoring to add features 301

Second, you could run into problems with the new feature. In this case, existing tests
pass, but the tests for the new feature do not. In this case, it is probably due to the
implementation of the new feature itself, but it's hard to rule out the refactoring changes
causing it. Maybe the new feature is exercising parts of the refactored code that the
existing code base was not exercising. Even if you are pretty sure the problem is in the
new feature implementation, it becomes more difficult to debug simply due to there being
more outstanding changes, and it being harder to find the possible bugs in them.

If the cowboy approach isn't the best way to go about implementing a new feature when
refactoring is required, what should be done instead? We'll call the alternative approach
the methodical approach. In the methodical approach, you always refactor first. It doesn't
matter how much refactoring is needed or how large the new feature being added is, you
always refactor first. Once you've completed the refactoring, you run the tests to make
sure the refactoring didn't break anything. At this point, it's a good idea to get updated
test coverage information, and add any covering tests needed for the newly refactored
code, as you learned about in Chapter 11, Testing to Ensure Your Code Works.

After you have fully tested the newly refactored code, you can commit those changes, and
then you can begin implementing the feature you need. If during the process you find that
additional refactoring is needed, you stash or stage your changes to implement the feature,
and then implement and test the refactoring needed. Only after that refactoring has been
completed, tested, and committed do you go back to implementing the new feature. After
implementing the feature, you can run the tests for the feature and see whether they pass.
If one of the existing tests fails at this point, you know something in the new feature is
causing the test to fail. You also know that the failure was not caused by the refactoring.
Likewise, if one of the new tests fails at this point, you also know it is likely due to the new
feature itself and not the refactoring.

Using the methodical approach will probably take a little longer in the best-case scenario.
However, it is likely to result in a more complete refactoring, since you complete the
refactoring before starting the implementation of the new feature, instead of refactoring
just enough to implement the new feature. The greatest advantage of the methodical
approach over the cowboy approach is that if something goes wrong, the problem space
is significantly reduced, and it is in general much easier to find and fix any bugs found.

In this section, you learned about the methodical and cowboy approaches to adding
a feature that requires refactoring. In the next section, you'll learn how to properly
remove features from your library.

302 Handling Change

Removing features properly
Removing features sounds like a bad thing for most new programmers, but it is probably
one of the happiest moments for experienced programmers. One important thing to
understand is that while most users think of features as assets if you are maintaining
a library, features are best thought of as liabilities because every feature has a maintenance
cost. When you add a new feature to a library you maintain, you are only increasing your
future maintenance burden. By removing a feature in a library that you maintain, you are
ridding yourself of a liability. This is one reason removing features is one of the happiest
moments for experienced programmers.

Obviously, a library with no features is worthless, so an important quality for a library to
have is that the features it contains are useful, and not useless, or worse, actively harmful.
However, it is often not possible to foresee when adding a feature whether it will continue
to be useful in the years to come. In some cases, a new feature that seems like a great idea
when originally implemented turns out to be a major problem in 5 years. The reason that
experienced programmers are so happy to get rid of features is the features they generally
get rid of are features that are holding the library back or causing the most significant
maintenance burden. Simply the knowledge that they will no longer have to deal with the
maintenance of the problematic feature is enough to cause significant joy for the remover.

As a responsible library maintainer, you can't just remove features from your library
anytime you want, as you are likely to break the code of people relying on your library.
In order to ease the burden on your users, for whom feature removal may cause as much
pain as removing the feature brings you joy, you need to properly deprecate the feature.
How you deprecate the feature depends on what the feature is.

Removing methods
If the feature is a method, the simplest way to deprecate it is to call the warn method
inside the feature. Make sure to include the name of the method called, which you can
get by calling __callee__. Also, make sure to use the :uplevel keyword argument
to warn, which will include the caller's filename and line number in the error message.
In Ruby 3, it's also a good idea to include the :category keyword argument use the
:deprecated category, as this marks the warning as a deprecation warning. This allows
the users of your library to more easily see what method needs to be fixed. Observe the
following code:

def method_to_be_removed

 warn("#{__callee__} is deprecated",

 uplevel: 1, category: :deprecated)

Removing features properly 303

 # ...

end

Things become more complicated if you still need to call the method internally until it is
removed. In this case, it's best to have an internal private alias to the method that doesn't
raise a warning, and change all internal callers to use it:

def method_to_be_removed

 warn("#{__callee__} is deprecated",

 uplevel: 1, category: :deprecated)

 _method_to_be_removed

end

private def _method_to_be_removed

 # ...

end

If the feature being removed is a required positional argument to a method, first you make
the required argument optional, and then you only issue the warning if the argument is
given. To check whether the argument was given, you can use the technique you learned
in Chapter 7, Designing Your Library, of setting a local variable inside a default argument
value. Say you are planning to remove the argument in this method:

def arg_to_be_removed(arg)

 # ...

end

You would change this to the following:

def arg_to_be_removed(arg=(arg_not_given=true; nil))

 unless arg_not_given

 warn("Passing deprecated argument to #{__callee__}",

 uplevel: 1, category: :deprecated)

 end

 # ...

end

304 Handling Change

Adding a required positional argument is very similar, so we'll give an example here even
though it isn't related to removing a feature. If you wanted to add a required argument to
the method instead, you use the local variable in the default argument technique, but flip
the conditional, as follows:

def arg_to_be_added(arg, arg2=(arg2_not_given=true; nil))

 if arg2_not_given

 warn("Should now pass 2 arguments to #{__callee__}",

 uplevel: 1, category: :deprecated)

 end

 # ...

end

The technique for removing optional positional arguments or keyword arguments is the
same as for removing a required positional argument.

Removing constants
If the feature being removed is a constant and not a method, you can use deprecate_
constant:

class Foo

 BAR = 1

 deprecate_constant :BAR

end

With this approach, any access to the constant will trigger a deprecation warning.

If you still need internal access to the constant until it is removed, you can alias the
constant before deprecating it, mark the aliased constant private, and change all
internal access to use the private constant:

class Foo

 BAR = 1

 BAR_ = BAR

 private_constant :BAR_

 deprecate_constant :BAR

end

Summary 305

Notice that the underscore here goes after the constant name and not before because using
an underscore first defines a local variable and not a constant.

This doesn't apply just to constants you define in your custom classes; this same approach
can be used if you want to deprecate a top-level class, since top-level classes are just
constants in Object. To deprecate the Foo class itself, while keeping Foo_ for internal
reference, use the following:

class Object

 Foo_ = Foo

 private_constant :Foo_

 deprecate_constant :Foo

end

Note that in Ruby 3, deprecation warnings are not shown by default, even when we
have $VERBOSE = true. You need to use the -w flag when starting Ruby, or set
Warning[:deprecated] = true if you want deprecation warnings to be displayed.

In general, you should keep the features with the deprecation warnings in your library
until you release the next major version of your library. When you release the next major
version, you can then feel the joy of removing the deprecated features.

Summary
In this chapter, you've learned how to handle change in your libraries. You've learned
reasons to refactor your library, and how to handle the refactoring process. You've learned
about implementing the two most common Ruby refactoring techniques, extracting
a method and extracting a class. You've learned how important it is to refactor before
adding features requiring refactoring. You've also learned about how to properly remove
features from your libraries, and the joy of doing so. With all you've learned about
refactoring, you are hopefully better able to successfully make appropriate changes to your
libraries.

In the next chapter, you'll learn about using common design patterns in your Ruby
libraries.

306 Handling Change

Questions
1.	 What are three common reasons to refactor in a library?

2.	 What is the most important prerequisite before starting refactoring?

3.	 When does it make sense to extract multiple methods instead of a single method?

4.	 In the best case, what's the fastest approach to implementing a feature that requires
refactoring?

5.	 What keyword arguments should you pass to Kernel#warn for deprecation
warnings?

13
Using Common

Design Patterns
In the last chapter, you learned how best to handle change in your libraries. A couple
of common changes are to implement new design patterns or to remove inappropriate
design patterns. While design patterns are not as necessary in Ruby as they are in less
powerful languages, they are still a useful tool to have in your toolbox. When dealing
with design patterns, it is important to understand when it is useful to apply them, and
when it is best to abstain from doing so. So in this chapter, you'll also learn when it is
appropriate to use specific design patterns.

In this chapter, we will cover the following topics:

•	 Learning about the many design patterns that are built into Ruby

•	 Handling cases where there can be only one

•	 Dealing with nothing

•	 Visiting objects

•	 Adapting and strategizing

By the end of this chapter, you'll better understand design patterns that are built into
Ruby, and how and why to implement other common design patterns in your libraries
and applications.

308 Using Common Design Patterns

Technical requirements
In this chapter and all chapters of this book, code given in code blocks is designed to
execute on Ruby 3.0. Many of the code examples will work on earlier versions of Ruby,
but not all. The code for this chapter is available online at https://github.com/
PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter13.

Learning about the many design patterns that
are built into Ruby
Ruby internally uses many design patterns, supports design patterns in the core classes,
and implements design patterns in some standard libraries. In this section, you'll learn
about some common design patterns that Ruby uses by default.

The object pool design pattern
With the object pool design pattern, if you need a certain type of object, instead of
allocating memory to create a new object, you can reuse an existing object. Ruby's garbage
collection system is designed this way. Ruby would be significantly slower and much more
prone to memory problems than it already is if it had to manually allocate memory from
the operating system each time you created an object. Internally, Ruby uses the object pool
pattern to improve object creation speed.

Other than immediate objects such as true, false, nil, symbols, and most integers
and floats, all other Ruby objects are stored in an object pool that is referred to as the
Ruby heap. The Ruby heap is broken up into many sections called heap pages, and each
of these pages is made up of slots. Each object you create in Ruby is stored in one of these
slots. When Ruby needs to create an object and there are no free slots left in any heap
page, Ruby runs the garbage collector to see if it can free any slots. If it cannot find a free
slot after running the garbage collector, then Ruby will need to create a new heap page,
and store the object in that new heap page.

By using the object pool design pattern, Ruby reduces the performance and memory
fragmentation issues that commonly occur when using malloc to allocate and free
memory for small objects.

https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter13
https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter13

Learning about the many design patterns that are built into Ruby 309

The prototype design pattern
Ruby is often considered to use a class-based object system, but it also supports a
prototype-based object system. In a class-based object system, classes and objects
(instances of classes) are separate concepts. Classes define the structure, or what types
of values are contained in each instance of the class. Objects provide the values for each
of those types. In a prototype-based system, there are no classes. Each new object is
created by making a copy of an existing object and modifying it.

Most Ruby users use its class-based object system. Ruby nudges you in the direction of
using the class-based object by providing special syntax for creating classes:

class Foo

end

If you ignore this syntax, however, Ruby basically treats the class-based object system and
prototype-based object system the same way. You use the class-based object system by
creating classes using Class.new, and instances of those classes by calling new on the
resulting class:

foo_class = Class.new

foo_class.define_method(:bar) do

 2

end

foo_instance = foo_class.new

foo_instance.bar

=> 2

You use the prototype-based object system by taking an empty object and cloning it, then
modifying the clone, then creating clones of that object:

foo_proto = Object.new

foo_proto.define_singleton_method(:bar) do

 2

end

foo_clone = foo_proto.clone

310 Using Common Design Patterns

foo_clone.bar

=> 2

Ruby can support both a class-based object system and a prototype-based object system
through the use of singleton classes. It even supports combining both the class-based
object system and the prototype-based object systems:

foo_class = Class.new

foo_class.define_method(:bar) do

 2

end

foo_class_clone = foo_class.clone

foo_class_clone_instance = foo_class_clone.new

foo_class_clone_clone = foo_class_clone_instance.clone

foo_class_clone_clone.bar

=> 2

Being able to support both class-based object systems and prototype-based object systems
is a huge advantage of Ruby, and the design of some Ruby libraries, such as Sequel, is
only possible by using a mix of the two. In Sequel, each database adapter has its own
Sequel::Dataset subclass (the class-based object system), and Sequel::Dataset
instances are frozen and use clone to create modified copies of instances, including
copies of the dataset's singleton class (the prototype-based object system).

The private class data design pattern
The private class data design pattern reduces the exposure of class-level data so that it
cannot be manipulated. Ruby has built-in support for this design pattern using class
instance variables:

class Foo

 @bar = 1

end

Learning about the many design patterns that are built into Ruby 311

Unless encapsulation is deliberately broken through the use of instance_variable_
get, instance_variable_set, or calling a method such as class_eval, the @bar
instance variable is private to this class. It is not available to other objects, to instances of
the class, or subclasses of the class.

For methods of the class that should only be accessed by the class itself, you can use
private_class_method:

class Foo

 def self.bar

 2

 end

 private_class_method :bar

end

Similarly, unless encapsulation is deliberately broken via Kernel#send, this method is
not callable by other objects or instances of the class. However, it is available to subclasses
of the class. Preventing subclasses of the class from calling the method is possible, but
does not happen by default. If you want to prevent a subclass from calling the method,
you can do so by checking the value of self inside the method:

class Foo

 def self.bar

 raise TypeError, "not Foo" unless Foo == self

 2

 end

 private_class_method :bar

end

For constants of the class that should be private, you can use private_constant:

class Foo

 BAR = 3

 private_constant :BAR

end

Unless encapsulation is deliberately broken via Module#const_get, this constant is not
accessible by other objects or instances of the class. However, it is accessible by subclasses
of the class, and there isn't a way in Ruby to prevent subclasses from accessing it inside the
subclass.

312 Using Common Design Patterns

The proxy design pattern
The proxy pattern involves creating wrapper objects for objects and calling methods on
those wrapper objects. The wrapper, or proxy, objects, can add useful behavior, such as
metrics (the number of calls for each method), caching, or only exposing a subset of the
object's methods.

Ruby provides two standard libraries that implement the proxy pattern in a couple
of different ways. As you learned in Chapter 4, Methods and Their Arguments, the
forwardable library can be used to proxy specific methods to other objects:

require 'forwardable'

class Proxy

 extend Forwardable

 def initialize(value)

 @value = value

 end

 def_delegator :@value, :to_s

end

Proxy.new(1).to_s

=> "1"

forwardable is useful for wrappers that only wrap a subset of the target object's
methods. However, if you want to wrap all or almost all of a target object's methods,
it is tedious to implement that with forwardable.

For wrapping all or almost all of a target object's methods, Ruby has a separate standard
library, delegate. With the delegate library, you can use the SimpleDelegator
class to return a proxy object that delegates all methods to the target object, other than
those methods defined in the SimpleDelegator class:

require 'delegate'

class Proxy2 < SimpleDelegator

 def add_3

 self + 3

 end

Handling cases where there can be only one 313

end

Proxy2.new(1).add_3

=> 4

However, SimpleDelegator subclasses can wrap any object, not just specific types of
objects, so they aren't as useful when you want to deal with proxies for specific types of
objects. For more specific proxy types, you can use Kernel#DelegateClass, which is
also added by the delegate library:

class HashProxy < DelegateClass(Hash)

 def size_squared

 size ** 2

 end

end

HashProxy.new(a: 1, b: 2, c: 3).size_squared

=> 9

In this section, you've learned that Ruby implements the object pool design pattern
internally. You've also learned that Ruby offers either core class or standard library support
for the prototype, private class data, and proxy design patterns. In the next section, you'll
learn how to implement the singleton design pattern in Ruby.

Handling cases where there can be only one
In cases where an application using your library should only have a single instance of
the object, you usually would reach for the singleton design pattern. Ruby actually has
a standard library for the singleton pattern, appropriately named singleton. This
library defines the Singleton module, which you can include in other classes to turn
those classes into singletons. A class that includes Singleton no longer has a public new
method, since you should not be creating multiple instances. Instead, it provides a class
method named instance, which returns the only instance of the class:

require 'singleton'

class OnlyOne

 include Singleton

314 Using Common Design Patterns

 def foo

 :foo

 end

end

only1 = OnlyOne.instance

only2 = OnlyOne.instance

only1.equal?(only2)

=> true

The singleton library does implement the singleton pattern. So why wasn't it discussed
in the previous section, since it is a standard library? This is because, due to the expressive
power of Ruby, there is rarely a reason to use it. If you have an existing object where it
makes sense to keep the methods, it is better to define the methods as singleton methods
on that object or to extend the object with a module that includes the methods. If you
need to have a separate object to store the methods, it is usually better in Ruby to instead
create an Object instance as a constant:

OnlyOne = Object.new

Then, to define behavior for that object, you would do the same thing you do for every
other object in Ruby, which is to define methods directly on this object:

def OnlyOne.foo

 :foo

end

One of the other aspects of the standard singleton design pattern is called lazy
initialization, where the singleton instance is not created until access to it is first
created by calling the method to access the instance. The implementation of singletons
via constants doesn't support this directly, but you can implement this in Ruby using
autoload. To use autoload for lazy initializing, you would put the assigning and setup
of the singleton in its own file, and then set Ruby to autoload that file on the first reference
to the constant:

Object.autoload :OnlyOne, 'only_one'

Dealing with nothing 315

One advantage of the autoload approach for lazy initialization over using the singleton
library (without autoload) is that you pay no memory penalty for the singleton definition
if the constant is not accessed. However, as you'll learn about in Chapter 17, Robust Web
Application Security, the use of autoload is problematic in environments that implement
filesystem access limiting after application initialization.

Note that you can use autoload even if using the singleton library, as the lazy
initialization approach used by autoload is orthogonal to the lazy initialization
approach used by the singleton library.

In this section, you learned why it is better to implement the singleton pattern using
a standard object as opposed to using the singleton standard library. In the next
section, you'll learn about using the null object pattern in Ruby, which has been
recommended by some Ruby programmers in recent years.

Dealing with nothing
The null object pattern has gained increased popularity in some parts of the Ruby
community in recent years. With the null object pattern, when you deal with another
object that may or may not be available, instead of using nil to represent the case where
the other object is not available, you use a separate object that implements the same
methods.

As an example of this, let's say you are writing an internal application for a company, and
you need to represent employees using an Employee class. For each employee, you are
tracking the name, position, phone, and supervisor of the employee:

class Employee

 attr_reader :name

 attr_reader :position

 attr_reader :phone

 def initialize(name, position, phone, supervisor)

 @name = name

 @position = position

 @phone = phone

 @supervisor = supervisor

 end

316 Using Common Design Patterns

There is a common need to print information about the employee, such as the employee's
name, position, and phone number, and their supervisor's name, position, and phone
number:

 def employee_info

 <<~END

 Name: #{@name}

 Position: #{@position}

 Phone: #{@phone}

 Supervisor Name: #{@supervisor.name}

 Supervisor Position: #{@supervisor.position}

 Supervisor Phone: #{@supervisor.phone}

 END

 end

end

Then we can check that this works the way we expect, assuming the employee has
a supervisor:

supervisor = Employee.new("Juan Manuel", "CEO",

 "246-011-0642", nil)

subordinate = Employee.new("Aziz Karim", "CTO",

 "707-405-9260", supervisor)

print subordinate.employee_info

Name: Aziz Karim

Position: CTO

Phone: 707-405-9260

Supervisor Name: Juan Manuel

Supervisor Position: CEO

Supervisor Phone: 246-011-0642

Unfortunately, this does not work if the employee does not have a supervisor:

print supervisor.employee_info

NoMethodError

Dealing with nothing 317

This is because the employee_info method tries to call the name method on
@supervisor, and @supervisor is nil. Ruby has built-in support for skipping
method calls on nil values using the lonely operator (&.). One way to work around the
issue is to use the lonely operator when calling any method on an object that may be nil:

class Employee

 def employee_info

 <<~END

 Name: #{@name}

 Position: #{@position}

 Phone: #{@phone}

 Supervisor Name: #{@supervisor&.name}

 Supervisor Position: #{@supervisor&.position}

 Supervisor Phone: #{@supervisor&.phone}

 END

 end

end

This allows you to call employee_info on an Employee instance even if the employee
doesn't have a supervisor:

print supervisor.employee_info

Name: Juan Manuel

Position: CEO

Phone: 246-011-0642

Supervisor Name:

Supervisor Position:

Supervisor Phone:

One issue with this approach of using the lonely operator is that you need to remember
to add it to every method call on the object that may be nil. If you forget one place, you
have a NoMethodError waiting to be raised. If that sounds problematic, then the null
object pattern is right up your alley.

318 Using Common Design Patterns

With the null object pattern, instead of using nil for the missing object, you use
a separate object that supports the same API as the missing object. In this case, to
implement the null object pattern, you could add a NullEmployee class that uses an
empty string for the name, position, and phone, shown as follows:

class NullEmployee

 def name

 ""

 end

 def position

 ""

 end

 def phone

 ""

 end

end

In order to implement the null object pattern correctly, both of the following conditions
must be met:

•	 The null object needs to implement the same methods as the missing object.

•	 Calling methods on the null object should return objects of the same type as calling
the same methods on the missing object, assuming the same arguments are passed.

The name, position, and phone methods shown previously meet these criteria,
because the Employee class returns strings for these methods, and so does the
NullEmployee class.

We can test out this null object by explicitly passing a NullEmployee instance as the
supervisor when the employee doesn't have a supervisor:

supervisor = Employee.new("Juan Manuel", "CEO",

 "246-011-0642",

 NullEmployee.new)

Dealing with nothing 319

Then we can test that the Employee#employee_info method works correctly with the
NullEmployee instance, even when using the original employee_info method that
didn't use the lonely operator:

print supervisor.employee_info

Name: Juan Manuel

Position: CEO

Phone: 246-011-0642

Supervisor Name:

Supervisor Position:

Supervisor Phone:

We're actually missing something here, and that is that NullEmployee doesn't
implement the employee_info method, in violation of the null object pattern.
However, since there is no method you can call to get a NullEmployee object, that's not
currently a problem. However, as soon as you add a supervisor method to Employee,
you have this issue:

Employee.attr_reader :supervisor

If we wanted to implement employee_info in NullEmployee, we could actually
define it the same way as we define the Employee#employee_info method. However,
that just leads to duplication. For this and similar reasons, it's often recommended to
make the null object class and the actual object class both be subclasses of the same
abstract class. If we want to do that, we can create an AbstractEmployee class almost
exactly the same way we created the Employee class. It defines the same attributes and
employee_info method:

class AbstractEmployee

 attr_reader :name

 attr_reader :position

 attr_reader :phone

 def employee_info

 <<~END

 Name: #{@name}

 Position: #{@position}

 Phone: #{@phone}

 Supervisor Name: #{@supervisor.name}

 Supervisor Position: #{@supervisor.position}

320 Using Common Design Patterns

 Supervisor Phone: #{@supervisor.phone}

 END

 end

end

Employee can be a subclass of AbstractEmployee, with an initialize method
the same as it was defined previously:

class Employee < AbstractEmployee

 attr_reader :supervisor

 def initialize(name, position, phone, supervisor)

 @name = name

 @position = position

 @phone = phone

 @supervisor = supervisor

 end

end

Similarly, you can define the NullEmployee class to be a subclass of
AbstractEmployee, but instead of defining the methods separately, we can just
override initialize to set the null object values. A simple approach would be to do
the following:

class NullEmployee < AbstractEmployee

 def initialize

 @name = ''

 @position = ''

 @phone = ''

 @supervisor = NullEmployee.new

 end

end

This has an advantage over the previous approach that did not subclass from
AbstractEmployee, and that is that the name, position, and phone methods
return the same object every time you call them on the same object, so the following code
works the same way on both Employee and NullEmployee:

employee.phone << "x1008"

Dealing with nothing 321

Unfortunately, there's a problem with this approach, and that is it actually causes
a SystemStackError:

NullEmployee.new

SystemStackError

This is because calling NullEmployee.new ends up calling NullEmployee.new
recursively until the stack is exhausted. To prevent this approach, you need to define
supervisor as a separate method:

class NullEmployee

 def initialize

 @name = ''

 @position = ''

 @phone = ''

 end

 def supervisor

 @supervisor ||= NullEmployee.new

 end

end

This allows you to create a NullEmployee instance without raising an exception:

null_employee = NullEmployee.new

Unfortunately, you still can't call employee_info on the null employee without an
exception being raised:

null_employee.employee_info

NoMethodError

322 Using Common Design Patterns

This is due to the same issue we had before the null object pattern was introduced, and
that is because the null employee's supervisor is nil. One way to work around this
would be to switch the employee_info method to call the supervisor method
instead of accessing the @supervisor instance variable. However, that approach will
make all calls to employee_info slower, even in Employee. We could have different
implementations of employee_info in both Employee and NullEmployee, but that
leads to duplication. A third approach, probably the best way to handle this, would be to
override employee_info in NullEmployee, load the supervisor, then call super:

class NullEmployee

 def employee_info

 supervisor

 super

 end

end

With that change, you can call employee_info on the null employee, finally
implementing the null object pattern correctly:

null_employee.employee_info

Name:

Position:

Phone:

Supervisor Name:

Supervisor Position:

Supervisor Phone:

Even though it took a while to set up, you can see the advantage of the null object
pattern, in that you don't have to use the lonely operator when calling methods, and
everything still works. You can confidently call methods on the employee, and it doesn't
matter whether the employee is an Employee instance or a NullEmployee instance,
everything still works.

Knowing the advantages of the null object pattern, does it make sense to use a null
object instead of nil for all cases where you are dealing with missing data? In general,
no, it does not. The null object pattern is only suited to specific cases such as the previous
one, where you want to be able to treat the absence of an object the same as the presence
of an object.

Dealing with nothing 323

Let's say you had a smarter version of employee_info that only included the
supervisor's information if there was a supervisor. First, you can simplify the code
by extracting a specific_employee_info method that only prints information
for a specific employee:

class Employee

 def specific_employee_info

 <<~END

 Name: #{@name}

 Position: #{@position}

 Phone: #{@phone}

 END

 end

Then you can override employee_info to call the specific_employee_info
method on both the current employee and the supervisor if the supervisor exists,
or just the employee if it does not:

 def employee_info

 if @supervisor

 specific_employee_info +

 @supervisor.specific_employee_info

 else

 specific_employee_info

 end

 end

end

This results in cleaner output if the employee doesn't have a supervisor:

supervisor = Employee.new("Juan Manuel", "CEO",

 "246-011-0642", nil)

supervisor.employee_info

Name: Juan Manuel

Position: CEO

Phone: 246-011-0642

324 Using Common Design Patterns

In this case, where you actually care whether you have a real employee or a null employee,
the null object pattern adds complexity instead of removing complexity. If you were using
the null object pattern, you need to use a more complex construction of checking whether
the supervisor is actually an object you expect:

class Employee

 def employee_info

 if @supervisor.is_a?(Employee)

 specific_employee_info +

 @supervisor.specific_employee_info

 else

 specific_employee_info

 end

 end

end

In general, if you have even a small percentage of cases where you are checking for a real
object or a null object, you should avoid the null object pattern, and just use the lonely
operator to guard calls against the missing object. The null object pattern should only be
used if you can always or almost always treat the null object as a real object.

The other issue with using the null object pattern instead of nil is the null object pattern
tends to be much slower. nil is an immediate object in Ruby and does not consume any
memory, while each null object needs to be allocated before use and garbage collected
after use. It's possible to mitigate this issue by using a shared null object, but then the null
object needs to be frozen, and that can make it not work the same way as an unfrozen
version of a regular object. In general, it is best to avoid the null object pattern in
performance-sensitive code, even if it would otherwise be a good fit.

In this section, you learned about applying the null object design pattern to Ruby. In the
next section, you'll learn about applying the visitor pattern.

Visiting objects 325

Visiting objects
The visitor pattern is most commonly used when you have many objects of separate
classes that you need to handle in some manner. You have a class called a visitor that
processes, or visits, each object and does something with the object. Often when using
the visitor pattern, you actually have multiple different types of operations that all need to
deal with the same objects, so you have multiple visitor classes. However, you do not want
to add methods for each visitor class to each of those separate classes. After all, while it is
possible to define methods on any class in Ruby, it's generally considered bad practice to
define methods on classes that are not part of your library, unless that is the sole purpose
of your library.

The visitor pattern is a way around the problem of defining per-visitor methods in each
class that is being visited. A classic approach to the visitor pattern results in a ton of
complexity and still requires adding a method to the classes being visited. Since you
should probably avoid that, you decide to implement a modified visitor pattern. With this
modified pattern, the visitor class handles the method dispatch instead of relying on the
class being visited.

One approach to implementing the visitor pattern in Ruby is to have a single visit
method that uses a case expression to dispatch each type of supported object to a specific
private method. We'll call this example class ArbitraryVisitor, since the visiting
class just performs some arbitrary actions:

class ArbitraryVisitor

 def visit(obj)

 case obj

 when Integer

 visit_integer(obj)

 when String

 visit_string(obj)

 when Array

 visit_array(obj)

 else

 raise ArgumentError, "unsupported object visited"

 end

 end

326 Using Common Design Patterns

Then you can define those private methods for the behavior you want for each object
being visited:

 private

 def visit_integer(obj)

 obj ** obj

 end

 def visit_string(obj)

 obj + obj.reverse

 end

 def visit_array(obj)

 obj.size

 end

end

Then you can make sure ArbitraryVisitor works:

av = ArbitraryVisitor.new

av.visit(4)

=> 256

av.visit("palindrome")

=> "palindromeemordnilap"

av.visit([:a, :b, :c])

=> 3

The main advantage of this approach is that it is simple and works well for small case
expressions. Unfortunately, as case expressions are linear in nature, they don't scale
well to a large number of different patterns. However, up to about 20 or so patterns,
it is probably fine.

Visiting objects 327

When you have a very large number of patterns, it makes sense to switch to a different
approach. One such approach stores the methods to dispatch to in a hash keyed by the
class itself. Assuming you want the same behavior as the ArbitraryVisitor class,
you can create a HashedArbitraryVisitor class to show how to implement this
approach:

class HashedArbitraryVisitor < ArbitraryVisitor

 DISPATCH = {

 Integer => :visit_integer,

 String => :visit_string,

 Array => :visit_array,

 }.freeze

 def visit(obj)

 if meth = DISPATCH[obj.class]

 send(meth, obj)

 else

 raise ArgumentError, "unsupported object visited"

 end

 end

end

This approach works fine if all objects are direct instances of those classes, and not
instances of subclasses of those classes. However, since it calls the class method on the
object, it violates the Liskov substitution principle that you learned about in Chapter 2,
Designing Useful Custom Classes:

hav = HashedArbitraryVisitor.new

hav.visit([:a, :b, :c])

=> 3

hav.visit(Class.new(Array)[:a, :b, :c])

ArgumentError

328 Using Common Design Patterns

In order to get it to work with instances of subclasses, you can use a while loop until you
find an appropriate class:

class HashedArbitraryVisitor

 def visit(obj)

 klass = obj.class

 if meth = DISPATCH[klass]

 send(meth, obj)

 else

 while klass = klass.superclass

 if meth = DISPATCH[klass]

 return send(meth, obj)

 end

 end

 raise ArgumentError, "unsupported object visited"

 end

 end

end

With that change, you can implement the Liskov substitution principle and support
subclass instances:

hav = HashedArbitraryVisitor.new

hav.visit([:a, :b, :c])

=> 3

hav.visit(Class.new(Array)[:a, :b, :c])

=> 3

There are variations to the hash approach. One updates the hash storing the methods for
each new class it finds that is not already in the hash, speeding up method lookup access
for future instances of the same class. This approach requires you to use a mutex when
accessing the hash in order to support thread safety. Another approach uses methods such
as visit_Array, visit_String, and visit_Integer, and calls methods based
on the name of the class. This basically uses the internal hash table of method names to
support the method dispatching, and in some cases can perform faster.

Adapting and strategizing 329

In this section, you've learned a couple of approaches to implementing the visitor pattern,
and some issues with each approach. In the next section, you'll learn about implementing
the adapter and strategy patterns in Ruby.

Adapting and strategizing
The adapter and strategy patterns are often thought of as separate patterns, but in Ruby,
they are almost the same pattern, and the naming mostly depends on how the pattern is
being applied. The adapter pattern is used for cases where you have one interface that you
want to use, but you need to deal with various other objects that implement a different
interface. With the adapter pattern, you write an adapter with the interface you want to
use that wraps the objects that use a different interface. The strategy pattern is almost the
same, except that instead of wrapping an object with a different interface, it implements
a different approach for the same type of operation.

Let's say you want to implement a database library that needs to connect to multiple
databases. You want the database library to use the execute method for calling an SQL
query on each database and getting results back. However, the driver for database M uses
the method exec, the driver for database P uses execute_query, and the driver for
database S uses exec_sql. To unify the interface, you want to have your database library
use separate adapter classes. You first implement a base Adapter class that initializes the
adapter with the underlying driver connection object:

class Adapter

 def initialize(conn)

 @conn = conn

 end

end

Then you add subclasses for each adapter:

class Adapter::M < Adapter

 def execute(sql)

 @conn.exec(sql)

 end

end

class Adapter::P < Adapter

 def execute(sql)

 @conn.execute_query(sql)

 end

330 Using Common Design Patterns

end

class Adapter::S < Adapter

 def execute(sql)

 @conn.exec_sql(sql)

 end

end

By using the adapter pattern, you've allowed your database library to consistently use
the execute method for executing database queries, regardless of what the underlying
database driver actually uses. This makes it easy to add support for a new driver, by
subclassing the Adapter class and overriding the execute method as appropriate.

The strategy pattern is almost the same as the adapter pattern, except that you don't
wrap another object. Instead, you provide different implementations, or strategies, for
performing the same operation.

For example, as you continue to develop your database library, you realize that not all
databases support the same types of operations. For example, some databases support
inserting multiple rows in a single INSERT statement, and some do not. If the database
doesn't support inserting multiple rows in a single INSERT statement, you need to use
a different strategy, which is to issue separate INSERT statements per row inserted. You
can implement these separate strategies the same way you implemented the adapter
pattern. First, you start with a base MultiInsert class that is initialized with the table
name and the rows, which should be an enumerable of enumerables:

class MultiInsert

 def initialize(table, rows)

 @table = table

 @rows = rows

 end

end

Just like the adapter pattern, you have a separate subclass per strategy, with the
implementation for that strategy. The multiple queries strategy is simpler to implement,
so you implement that first:

class MultiInsert::MultipleQueries < MultiInsert

 def format_sqls

 prefix = "INSERT INTO #{@table} VALUES ("

 @rows.map do |row|

 ["#{prefix}#{row.join(', ')})"]

Adapting and strategizing 331

 end

 end

end

The single query approach is more complex, at least if you want to implement it for high
performance, so you implement that next:

class MultiInsert::SingleQuery < MultiInsert

 def format_sqls

 sql = "INSERT INTO #{@table} VALUES "

 first_row, *rows = @rows

 sql << "(#{first_row.join(', ')})"

 rows.each do |row|

 sql << ", (#{row.join(', ')})"

 end

 [sql]

 end

end

This allows you to pick the appropriate strategy for each database:

MultiInsert::MultipleQueries.new('a', [[1], [2]]).

 format_sqls

=> [["INSERT INTO a VALUES (1)"],

["INSERT INTO a VALUES (2)"]]

MultiInsert::SingleQuery.new('a', [[1], [2]]).

 format_sqls

=> ["INSERT INTO a VALUES (1), (2)"]

In a lot of cases, you can mix the adapter and strategy patterns, since different
adapters may require different strategies. For example, your Adapter class can
expose a multi_insert method, which accepts the table and rows. You can call
multi_insert_strategy to get the strategy class to use, then create an instance of it,
and then call format_sqls to execute each SQL statement:

class Adapter

 def multi_insert(table, rows)

 sqls = multi_insert_strategy.

332 Using Common Design Patterns

 new(table, rows).

 format_sqls

 sqls.each do |sql|

 execute(sql)

 end

 end

end

Maybe all databases support the multiple query strategy, but only database P supports the
faster single query strategy. In that case, your default for multi_insert_strategy in
the main Adapter class is MultiInsert::MultipleQueries:

class Adapter

 def multi_insert_strategy

 MultiInsert::MultipleQueries

 end

end

You can override the multi_insert_strategy method in Adapter::P to use the
faster MultiInsert::SingleQuery method:

class Adapter::P

 def multi_insert_strategy

 MultiInsert::SingleQuery

 end

end

In this section, you've learned about implementing the adapter and strategy patterns, how
they are similar, and how to integrate the use of the two strategies.

Summary 333

Summary
In this chapter, you've learned about many design patterns and how they apply to Ruby.
You've learned that some design patterns are built into Ruby, and others are implemented
by core classes and standard libraries. You've also learned how best to implement the
singleton, null object, visitor, adapter, and strategy patterns in Ruby. With this knowledge,
you are now better able to apply these design patterns correctly in your libraries and
make them more maintainable. Additionally, you may be able to recognize and remove
inappropriate use of these design patterns from your libraries, also making them more
maintainable.

In the next chapter, the last chapter of Section 2, you'll learn about optimizing your library.

Questions
1.	 What design pattern does Ruby's garbage collector use?

2.	 How do you implement lazy evaluation if using the constant approach to
implementing the singleton pattern?

3.	 When is it not a good idea to implement the null object pattern?

4.	 Why would you want to use the hash approach to the visitor pattern instead of the
case approach?

5.	 What's the significant difference between the adapter and strategy patterns?

14
Optimizing Your

Library
Optimization is often not needed in Ruby, but when it is needed, it should be approached
in a principled manner, lest you waste time optimizing the wrong code. Nobody likes slow
code, but there is a reason that premature optimization is considered the root of all evil.

In this chapter, you'll learn the importance of profiling in order to decide what to
optimize, how the best optimization is deleting code or delaying the execution of code,
and what to do when it looks like all parts of your application are slow.

We will cover the following topics in this chapter:

•	 Understanding that you probably don't need to optimize code

•	 Profiling first, optimizing second

•	 Understanding that no code is faster than no code

•	 Handling code where everything is slow

By the end of this chapter, you'll have a better understanding of when and how to optimize
your application.

336 Optimizing Your Library

Technical requirements
In this chapter and all chapters of this book, code given in code blocks is designed to
execute on Ruby 3.0. Many of the code examples will work on earlier versions of Ruby,
but not all. The code for this chapter is available online at https://github.com/
PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter14.

Understanding that you probably don't need
to optimize code
Programmers in general, and new programmers in particular, often have the idea that all
code needs to be fast. Now, there are certainly some environments where super-fast code
is a requirement. If you are designing high-frequency trading software, modeling complex
astrodynamics or fluid mechanics, or programming in a real-time environment where
code must execute in a given number of microseconds, you want to make sure your code
is as fast as it can be.

However, if you are using Ruby, that's unlikely to be the case. For one, compared to many
other programming languages, Ruby is slow. This isn't a complaint about Ruby. To be fair
to Ruby, no language that is as dynamic, easy to use, and programmer-friendly as Ruby is
as fast as Ruby. However, Ruby is not known for its performance, at least not in a positive
light. If you are using Ruby, it is likely in an environment where the flexibility and ease of
use of Ruby outweigh the potential performance issues.

Even in cases where performance is important, such as many business cases, often Ruby's
default performance will be fast enough. You should try to avoid implementing a more
complex approach that you think will be faster, instead of using a simpler approach that
you think will be slower. In many cases, the performance difference will not matter, and
either the simpler approach or the more complex approach will perform adequately.
In that case, it's usually better to use the simpler approach in order to reduce the
maintenance cost.

In many other cases, you are guessing incorrectly that the more complex case will perform
better, and it actually performs worse. This can happen even to expert Ruby programmers
with many years of experience dealing with the internals of Ruby. Ruby has a lot of
internal complexity, and when comparing the performance of a complex case to the
performance of a simple case, there is a fair chance that even an expert will be surprised at
which is faster.

https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter14
https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter14

Profiling first, optimizing second 337

Often the slow part of the library is not in Ruby itself but in another part of the library.
For libraries that access a database, often the slowest part is inside the database, and only
by modifying the database queries used can you significantly improve performance. For
libraries that make network requests to external servers, the slowest part is usually in the
network request, and the time spent executing Ruby code is far less.

A good general principle is to assume that your library will be fast enough, and only if
it's proven to be too slow should you attempt to optimize it. Other than bragging rights,
having the most optimized library is rarely a significant selling point in Ruby. After all,
there is probably a more popular library that is already fast enough. Focus first on making
your library easy to use and adding unique and compelling features. Don't worry about
performance until you need to.

In this section, you learned that optimization is often not needed in Ruby, since your
current implementation is probably fast enough. In the next section, you'll learn what to
do in cases where it isn't fast enough.

Profiling first, optimizing second
It's better to never guess where the slow parts of your library are, since you will often
be incorrect. There is one way to know where the slow parts of your library are, and
that is to profile your library. There are a couple of good options for profiling libraries
in Ruby, ruby-prof and stackprof. There are other profilers for Ruby, such as
rack-mini-profiler and rbspy, but they mostly focus on profiling production
applications and not libraries, so we won't discuss them further. However, you may want
to remember them if you need to profile a production application.

ruby-prof is one of the oldest profiling libraries for Ruby, and still one of the best. It is
a tracing profiler, meaning that it keeps track of every single method call Ruby is making,
so it generally results in the most accurate profiling. However, because of this, it's the
slowest profiler, about two to three times slower than running standard Ruby. This means
it's generally not suitable for profiling actual production applications, but it is usually fine
for profiling libraries. ruby-prof installs as a gem and allows the profiling of specific
blocks of code, so it is fairly flexible.

338 Optimizing Your Library

stackprof is not as old as ruby-prof, but it still has been around for many years. It is
a sampling profiler, which means that instead of tracing method calls, it only checks and
sees what method Ruby is running every so often, and if you give it a long enough amount
of time, statistically it should give a reasonable estimation of what methods are running
the majority of the time. Being a sampling profiler, while it may not have the highest
accuracy, it has low overhead, so adding profiling to existing code does not slow it down
much. stackprof also installs as a gem and allows the profiling of specific blocks of
code, so it is also fairly flexible.

In the rest of this section, we'll use ruby-prof for examples, but the principles of
profiling will largely apply to stackprof as well.

To learn how to use ruby-prof, after installing the gem, you decide to build a simple
example class named MultiplyProf that can calculate powers of integers, floats, and
rationals. Refer to the following code block:

class MultiplyProf

 def initialize(vals)

 @i1, @i2 = vals.map(&:to_i)

 @f1, @f2 = vals.map(&:to_f)

 @r1, @r2 = vals.map(&:to_r)

 end

 def integer

 @i1 * @i2

 end

 def float

 @f1 * @f2

 end

 def rational

 @r1 * @r2

 end

end

First, before profiling any code, you need to make sure that it works:

mp = MultiplyProf.new([2.4r, 4.2r])

mp.integer

=> 8

Profiling first, optimizing second 339

mp.float

=> 10.08

mp.rational

=> (252/25)

That looks reasonable. The result for integer does not match the result for float
and rational because integer doesn't contain the required precision. However, for
experimenting with profiling, this example should be fine.

Profiling with ruby-prof is easy. After you require the library, surround the block of
code you want to test in RubyProf.profile, and then print the results. Before running
this, see whether you can guess what method will take the most time:

require 'ruby-prof'

result = RubyProf.profile do

 1000.times do

 mp = MultiplyProf.new([2.4r, 4.2r])

 mp.integer

 mp.float

 mp.rational

 end

end

print a graph profile to text

printer = RubyProf::FlatPrinter.new(result)

printer.print(STDOUT, {})

Here is an abridged version of the results that will be readable. Hopefully you made a
guess before looking at this:

%self name location

25.26 Array#map

16.84 Integer#times

16.69 MultiplyProf#initialize t.rb:4

7.08 Rational#*

6.05 Class#new

340 Optimizing Your Library

5.79 MultiplyProf#rational t.rb:15

5.06 Rational#to_f

4.34 Rational#to_i

4.08 Rational#to_r

3.94 MultiplyProf#integer t.rb:9

3.93 MultiplyProf#float t.rb:12

0.94 [global]# t.rb:2

So, how accurate was your guess? Did you guess correctly that Array#map and
Integer#times would take up so much time? It probably appeared originally that
this was a profile of which of the integer, float, and rational methods of
MultiplyProf was the fastest. Instead, it actually shows that you need to be careful with
what you are profiling.

If your library tends to create a lot of MultiplyProf instances and calls
integer, float, or rational only once on each, then you want to make
MultiplyProf#initialize as fast as possible. If your library instead creates a
small number of MultiplyProf instances and calls integer, float, or rational
many times on each, you don't care about MultiplyProf initialization speed, but you
care to make the integer, float, and rational methods as fast as you can. Make
sure what you are profiling matches what your library is typically doing; otherwise, you
may optimize for the wrong use case, and make performance worse. If you profile using
the previous example but your library only creates a single MultiplyProf instance,
you may take an approach that makes initialization faster and calling methods on the
MultiplyProf instance slower, resulting in an overall decrease in the performance of
your library.

Let's assume the previous profile is an accurate picture of how your library is typically
used. Before you do any optimization, you need a benchmark to produce a baseline of
current performance. ruby-prof actually does print out the total time taken, but that is
with tracing enabled, so there are potential cases where it isn't accurate. You always want
a real benchmark both before and after optimization to make sure optimization improved
performance.

Profiling first, optimizing second 341

Ruby has a benchmark library built in that could be used for benchmarking. When
actually benchmarking, you should probably use many more iterations, ideally enough
so the benchmark takes at least 5 seconds. Here's how you could use Ruby's benchmark
library to benchmark this code:

require 'benchmark'

Benchmark.realtime do

 2000000.times do

 mp = MultiplyProf.new([2.4r, 4.2r])

 mp.integer

 mp.float

 mp.rational

 end

end

=> 6.9715518148150295

Having to manually adjust the number of iterations is kind of a pain. There's a better
approach, and that is using the benchmark-ips gem. The API is not as simple, as the
gem is designed mostly for the comparative benchmarking of different implementation
approaches, but it is still easy to use:

require 'benchmark/ips'

Benchmark.ips do |x|

 x.report("MultiplyProf") do

 mp = MultiplyProf.new([2.4r, 4.2r])

 mp.integer

 mp.float

 mp.rational

 end

end

342 Optimizing Your Library

The abridged version of the previous code output is as follows:

Warming up --------------------------------------

MultiplyProf 28.531k i/100ms

Calculating -------------------------------------

MultiplyProf 284.095k (± 0.3%) i/s

The first number in the Warming up section is a short test that benchmark-ips runs
to warm up the code, which is designed to run enough iterations of the library to generate
the fastest possible implementation either via manual caching inside the method or via
the Ruby implementation JIT compiler. In most cases, you should ignore the number in
the Warming up section, and only pay attention to the number in the Calculating
section. The number in the Calculating section basically tells you that it can execute
about 284,000 iterations every second. This becomes your baseline, and you'll measure
your optimization attempts against it.

So, with the profiling data and the baseline created, now you can start optimizing! How do
you do that? You start by looking at the profile. Array#map is at the top of the list, so you
should start there. All usage is inside MultiplyProf#initialize:

class MultiplyProf

 def initialize(vals)

 @i1, @i2 = vals.map(&:to_i)

 @f1, @f2 = vals.map(&:to_f)

 @r1, @r2 = vals.map(&:to_r)

 end

end

It turns out Array#map is completely unnecessary here and can be eliminated
completely:

class MultiplyProf

 def initialize(vals)

 v1, v2 = vals

 @i1, @i2 = v1.to_i, v2.to_i

 @f1, @f2 = v1.to_f, v2.to_f

 @r1, @r2 = v1.to_r, v2.to_r

 end

end

Profiling first, optimizing second 343

You can skip the Integer#times call, as that isn't used inside the MultiplyProf
library; it comes from the use of 1000.times inside the profile and benchmark block.
For more accurate profiling, it's actually better to skip the use of Integer#times and
instead use a manual while loop:

result = RubyProf.profile do

 i = 0

 while i < 1000

 mp = MultiplyProf.new([2.4r, 4.2r])

 mp.integer

 mp.float

 mp.rational

 i += 1

 end

end

MultiplyProf#initialize is the next highest in terms of time spent inside the
method. Unfortunately, after the Array#map elimination, it's about as fast as it can get.
Let's try reprofiling after the changes to MultiplyProf#initialize and by using the
while loop:

%self name location

30.88 MultiplyProf#initialize t.rb:4

24.13 [global]# t.rb:22

7.58 Class#new

7.41 MultiplyProf#rational t.rb:16

6.29 Rational#to_f

5.23 Rational#to_i

5.12 Rational#to_r

5.00 MultiplyProf#float t.rb:13

4.99 MultiplyProf#integer t.rb:10

3.37 Rational#*

Over half of the time is still spent inside MultiplyProf.new, either directly or
indirectly. After that, most of the remaining time is spent inside the loop itself. Less than
a quarter of the time is spent in the methods doing the multiplication.

344 Optimizing Your Library

At this point, you can check against the baseline by running exactly the same benchmark
code as we did previously, using benchmark-ips. This time you get the following:

Warming up --------------------------------------

MultiplyProf 47.691k i/100ms

Calculating -------------------------------------

MultiplyProf 480.311k (± 0.2%) i/s

From the benchmark output, you can see that the simple change to the
MultiplyProf#initialize method sped up the block of code by around 70%!
That's a huge difference for such a small change, and probably not a place you would have
considered optimizing if you hadn't reviewed the profile output.

In this section, you learned the importance of profiling before attempting to optimize. In
the next section, you'll attempt to further optimize the example in this section, using the
principle of No code is faster than no code.

Understanding that no code is faster than no
code
The phrase No code is faster than no code was the motto of the old Ruby web framework
named Merb, which focused heavily on performance. Another, less poetic way of phrasing
the same principle is, If you can get the same result without executing any code, any
approach that requires executing code will be slower. A simplification of the principle would
be, The fastest code is usually the code that does the least. In general, if you want the code to
be as fast as possible, you need to find a way to get the same results while doing less work.

There are cases where doing less work can require an algorithmic change, such as
changing from a linear scan of an array to using a hash table lookup. There are other
cases where doing less work can be accomplished by caching results. Sometimes, doing
less work can be accomplished by restructuring your code to delay computation until it is
needed, or even better, figuring out computation is not needed at all and eliminating it.

With the previous example, there's not a good way to apply this principle, since
each instance method of MultiplyProf is called exactly once. You were working
under that assumption in the previous section, but that's probably not realistic.
In most cases, you will be creating a MultiplyProf instance many times and
only calling one of the methods on it, or you will be creating a MultiplyProf
instance during application initialization and calling methods on it at runtime, so the
MultiplyProf#initialize performance isn't important. Let's look at how to
optimize both cases.

Understanding that no code is faster than no code 345

You decide to first optimize the case where MultiplyProf instances are created at
runtime but only one of the MultiplyProf methods is called. In this case, you want to
execute the least code possible in the MultiplyProf#initialize method. As shown
in the previous section, you should first look at the profiling information for your case,
and then the benchmark to create a baseline performance. In the interests of space, we'll
skip the profiling output and only show an abridged version of the benchmark output:

Benchmark.ips do |x|

 x.report("MultiplyProf") do

 MultiplyProf.new([2.4r, 4.2r]).integer

 MultiplyProf.new([2.4r, 4.2r]).float

 MultiplyProf.new([2.4r, 4.2r]).rational

 end

end

189.666k i/s

This is a slower baseline than the previous baseline, even with the more optimized code
that does not use Array#map, because we are creating three MultiplyProf instances
instead of one. Do not worry if your baseline for a different benchmark is slower than
a previous baseline. What matters is the speedup between the baseline performance and
the performance after optimization for the same benchmark.

Since you are calling MultiplyProf#initialize three times as often in this
benchmark, you need to optimize that method as much as possible, and the best way to do
that, in this case, is to avoid executing as much code as possible inside the method. What's
the absolute simplest initialize method you could write? Well, the absolute simplest
initialize method with the same API is probably the following:

class MultiplyProf

 def initialize(vals)

 # do nothing

 end

end

However, that throws away the argument and won't allow you to calculate the results. At
the very least, you need to store the argument somewhere:

class MultiplyProf

 def initialize(vals)

 @vals = vals

 end

346 Optimizing Your Library

If the initialize method looks like this, then you need to adjust the integer,
float, and rational methods to handle the fact that the only instance variable is now
@vals. Each method needs to access the appropriate argument in vals and run the
to_i, to_f, or to_r conversion on it:

 def integer

 @vals[0].to_i * @vals[1].to_i

 end

 def float

 @vals[0].to_f * @vals[1].to_f

 end

 def rational

 @vals[0].to_r * @vals[1].to_r

 end

end

With this new implementation that optimizes the initialize performance, we can
rerun the benchmark to compare it to the baseline. Running the exact same benchmark
with the new implementation, we get the following:

363.114k i/s

With this new approach, there is over a 90% increase in performance! That's a great result,
though if you think about it, you did have to rewrite the entire class to achieve it.

Now you decide to try to optimize the second case. This is a case where you create a
MultiplyProf instance during application initialization, and only call methods on the
MultiplyProf instance at runtime. You would want to create the baseline, not with the
previous implementation with the @vals instance variable, but with the implementation
that used v1, v2 = vals inside initialize. A good benchmark for this would look
like this:

mp = MultiplyProf.new([2.4r, 4.2r])

Benchmark.ips do |x|

 x.report("MultiplyProf") do

 mp.integer

 mp.float

 mp.rational

 end

Understanding that no code is faster than no code 347

end

2.130M i/s

This baseline result is way faster than the previous baseline, but again, remember that the
baseline number means nothing; all that matters is the difference between the baseline
result and the result after optimization.

With this benchmark, we can see that we don't need to care about the
MultiplyProf#initialize performance; we only need to care about the
performance of the integer, float, and rational methods. The important
realization here is that the methods are idempotent and the results of the methods will
not change at runtime. You can actually precalculate all results upfront and create the
integer, float, and rational methods using attr_reader. The Ruby virtual
machine executes attr_reader methods faster than methods defined with def, so you
should use them when speed is important. This approach appears as in the following code
block:

class MultiplyProf

 attr_reader :integer

 attr_reader :float

 attr_reader :rational

 def initialize(vals)

 v1, v2 = vals

 @integer = v1.to_i * v2.to_i

 @float = v1.to_f * v2.to_f

 @rational = v1.to_r * v2.to_r

 end

end

With this new implementation that optimizes integer, float, and rational
performance, we can rerun the benchmark to compare it to the baseline. Running the
exact same benchmark with the new implementation, we get the following:

5.022M i/s

348 Optimizing Your Library

That's an increase of over 135%, your best performance improvement yet! With the
important realization that the methods are idempotent, you could reoptimize the
approach where you were optimizing for performance by caching results:

class MultiplyProf

 def initialize(vals)

 @vals = vals

 end

 def integer

 @integer ||= @vals[0].to_i * @vals[1].to_i

 end

 def float

 @float ||= @vals[0].to_f * @vals[1].to_f

 end

 def rational

 @rational ||= @vals[0].to_r * @vals[1].to_r

 end

end

You test this approach using the earlier benchmark:

Benchmark.ips do |x|

 x.report("MultiplyProf") do

 MultiplyProf.new([2.4r, 4.2r]).integer

 MultiplyProf.new([2.4r, 4.2r]).float

 MultiplyProf.new([2.4r, 4.2r]).rational

 end

end

301.952k i/s

You can see this is actually slower than the previous optimized approach, which resulted
in 363.114k iterations per second. That's because the benchmark doesn't actually use the
cached value. You could design a benchmark where it is probably the best performing
approach, such as a benchmark where you created a few MultiplyProf instances
without calling methods on them, and then created a single MultiplyProf instance
and called the integer, float, and rational methods a few times on it.

The most important aspect of a benchmark is how well the benchmark reflects how
the library is actually used. When possible, try to create benchmarks that are actual
production use cases or similar to production use cases.

Handling code where everything is slow 349

In this section, you learned how to optimize by trying to avoid computation in the parts of
your code that are called most often. In the next section, you'll learn what to do when all
parts of the profile are equally slow, and you don't have a good idea of how to optimize.

Handling code where everything is slow
Sometimes you have a ball of mud, where everything is slow and you cannot figure out
why. This is an unfortunate situation to be in. Unfortunately, there is no general advice
that will work in all cases. However, there are a few approaches that you can try.

The best place to look first is code that allocates a lot of objects. Allocating too many
objects is probably the most common reason that Ruby code is slow. If you can figure out
a way to allocate fewer objects, that can improve performance. This is especially true if
you can remove allocations of complex objects that themselves allocate a lot of objects.
One library that can help you figure out which places to start reducing object allocations is
called memory_profiler, which can show how much memory and how many objects
are allocated and retained by gem, by file, and even by line.

Next, see whether there is a way to move code around so that code that is currently
executed in the most common code paths in your library can be moved to less common
code paths. In some cases, this is possible, and in other cases, it isn't. However, in cases
where it is possible, moving code from commonly used code paths into only the code
paths that require the code will generally improve performance. As a specific application
of this, look at the initialize methods for all of your classes. If you find any code
that can be moved from the initialize method to a separate method, moving the
code to the separate method will improve performance in most cases. There are certainly
cases where it will make performance worse, though, so always run a benchmark before
optimization to create a baseline, then compare against the baseline after optimization.

If you remember the techniques you learned for using local variables and instance
variables for caching back in Chapter 3, Proper Variable Usage, now would be a great time
to apply them. The proper use of local variables and instance variables for caching can
often improve the performance of unoptimized code by three times or more.

For further performance improvements, you can try applying micro-optimizations, such
as using the following:

array[0]

and

array[-1]

350 Optimizing Your Library

Instead of using the following:

array.first

and

array.last

This is because the [] method is better optimized internally by Ruby's virtual machine,
for array and hash. Additionally, in Ruby 3.0, it's faster to use the following to create a new
hash object:

Hash[hash]

Instead of using the following:

hash.dup

However, the internal optimizations in the virtual machine can change from version to
version. For example, before Ruby 2.5, it was significantly faster to merge hashes using
the following:

Hash[hash].merge!(hash2)

Instead of using the following:

hash.merge(hash2)

However, since 2.5, the Hash#merge approach is faster. If you are going to use these
types of micro-optimizations, recheck that they are still faster with each new Ruby release.

One way to find code that you don't need at all is to use the knowledge you gained
about branch coverage from Chapter 11, Testing to Ensure Your Code Works. By using
branch coverage, you can find branches in your code that you must have thought were
necessary, but were actually not necessary. By eliminating these branches, you can speed
up your code.

There's one cool micro-optimization related to eliminating unnecessary branches. It's kind
of a crazy hack, and should only be used in the most performance-sensitive cases, but it's
useful to know about. Let's say you have a method with an optional argument where you
want different behavior depending on whether the optional argument is given:

def foo(bar=(bar_not_given = true))

 return :bar if bar_not_given

 :foo

end

Handling code where everything is slow 351

Assuming this call to foo is very performance-sensitive, there is a way to eliminate the
conditional. You can move return into the default argument. However, you cannot use
the straightforward approach:

Doesn't work:

#def foo(bar=(return :bar))

:foo

#end

This approach is invalid syntax. You have to fool Ruby's parser to accept it. One way is
adding a separate expression after return:

def foo(bar=(return :bar; nil))

 :foo

end

However, this results in a statement not reached warning if run in verbose
warning mode (ruby -w). If you want to avoid verbose warnings, you can use another
hack:

def foo(bar=nil || (return :bar))

 :foo

end

This is valid syntax that doesn't cause the statement not reached verbose warning,
and Ruby's optimizer optimizes out the conditional. If you have a case where you can use
this hack, it is the fastest way to implement the conditional, since the conditional logic is
moved out of slower, pure Ruby code and into faster virtual machine handling of default
arguments. If you do use return from the default argument hack, make sure you have
a comment near it explaining what the code does and exactly why performance is so
important for this method that the approach is justified.

352 Optimizing Your Library

If all else fails and your code is still slower than you need it to be, one possible route to
speed it up is to implement the code as a C extension. This approach is not for the faint
of heart. Programming in C is a whole different ballgame than programming in Ruby.
However, especially in cases where you are doing a lot of calculations, switching from pure
Ruby code to a C extension can speed your code up by a significant amount. Be aware that
programming a C extension can result in memory leaks, program crashes (as opposed to
Ruby exceptions), and security issues if not done properly. Additionally, programming
a C extension takes a lot longer than programming in Ruby, since C is definitely not as
programmer-friendly as Ruby. If it is at all possible when programming in C, use Ruby's
C API for managing memory, instead of manually attempting to manage memory, as
otherwise, it is very easy to introduce a memory leak.

If you are lucky, you won't find yourself in a situation where everything is slow. However,
if you get unlucky enough to encounter such a situation, you now have some strategies for
handling it.

Summary
In this chapter, you learned all about optimization in Ruby. You learned that you should
only optimize if you have identified a bottleneck in your application. You learned that you
should profile and benchmark a specific use case before attempting to optimize the use
case, so you can test that your optimization actually improved performance. Next, you
learned that the best way to improve performance is by running the least amount of code
possible. Finally, you learned some techniques and tricks for optimizing when the profile
output isn't helpful in alerting you to the cause of the performance issue in your library.

You've now finished Section 2 of the book, and are ready to move on to the final part of
the book, which focuses on principles of Ruby web programming, starting with the most
important part, the database. In the next chapter, we will learn why the database is crucial
to the design of web applications.

Questions
1.	 What's the most important thing to do before optimizing your library?

2.	 After you have identified a bottleneck, what steps should you take before optimizing
your library?

3.	 If you are creating a lot of instances of a specific class, what is the fastest general way
to speed that up?

4.	 If profiling your use case does not help you identify the slow code, where's the best
place to look first?

Section 3:
Ruby Web

Programming
Principles

The objective of this section is for you to learn important principles that are specific to
web programming, and how to apply them.

This section comprises the following chapters:

•	 Chapter 15, The Database Is Key

•	 Chapter 16, Web Application Design Principles

•	 Chapter 17, Robust Web Application Security

15
The Database Is Key

The database is the backbone and most important part of almost all web applications,
regardless of the programming language used. This is because the database is where
all of an application's data is stored, and in most cases, an application's data is more
important than the application itself. In this chapter, you'll learn why proper database
design is so important, some important database design principles, and why it is best to
use the database's full capabilities. You'll also learn how to choose a model layer for your
application, and how to handle database errors when using that model layer.

We will cover the following topics:

•	 Learning why database design is so important

•	 Understanding the most important database design principles

•	 Treating the database as not just dumb storage

•	 Choosing the model layer

•	 Handling database and model errors

By the end of this chapter, you'll have a better understanding of database design and usage
as it applies to Ruby web applications.

356 The Database Is Key

Technical requirements
In this chapter and all chapters of this book, code given in code blocks is designed to
execute on Ruby 3.0. Many of the code examples will work on earlier versions of Ruby,
but not all. The code for this chapter is available online at https://github.com/
PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter15.

Learning why database design is so important
In most cases, while your code is important, your data is far more important than your
code. Let's say you have an online shop. If you have a bug in your code that prevents you
from accepting orders, you are definitely losing money. However, at least the customer
that is attempting to order realizes the order didn't go through. They might be annoyed,
but they'll probably just shop somewhere else. However, if you suffer data loss or data
corruption after accepting an order, that could be way worse. In that case, you have
customers that expect to receive orders that they won't be receiving, and they will
probably become very irate. It's even worse if the data loss or data corruption happens
after the customer was charged, or the data corruption results in orders for customer A
being shipped to customer B. Instead of just loss of goodwill, you may have an expensive
lawsuit on your hands. For almost all businesses and applications, the data stored is more
valuable than the application code itself.

In addition to data being more important than code, data almost always lasts far longer
than code. It's not unusual for a business application to be completely rewritten in a new
programming language, while the database remains exactly the same. For many large
organizations, there is often a wide variety of separate applications that access the same
data. The specific applications used may come and go with the ebb and flow of time.
However, the data remains stored in the same database and is of primary importance.

Not only is the data more important and longer-lasting than code, but in most cases, the
performance of applications is more dependent on how data is stored and structured
than on the code itself. In the majority of applications, proper database design and
indexing will make a larger performance difference than how code is written in a
particular programming language, and often a larger performance difference than which
programming language is used. An application written in Ruby using intelligent database
design and indexing will often outperform an application written in C with less intelligent
database design and improper indexing.

Often, you have a limited amount of time when designing your application, due to
external constraints. It's wise to spend the majority of time thinking about the data you
will be storing and how best to store it, what your access patterns will be, and how best to
design your database indexes to make those access patterns as fast as possible.

https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter15
https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter15

Deciding on a database to use 357

Because data is so important, the database you use is probably the most important
decision you will make for your application, even more than the choice of programming
language. A poorly chosen database almost dooms an application to failure. In general,
you should choose the most robust database that meets the needs of your application.
Let's see how to decide that in the next section.

Deciding on a database to use
The first decision to make is what type of database to use, such as a relational (SQL)
database, a schemaless document database, a key-value database, a graph database, or
a more specialized database such as a time-series database. If you value your data at all
and your database has any structure at all, a schemaless document database is usually
a poor choice that you will end up regretting later when you discover anomalies in your
data, far too late to fix them. Most key-value databases are too limited for the use of
structured data unless they are treated as document databases, in which case they have
the same issues as document databases. Unless you have studied and have had experience
with graph databases and are sure they are the best database type for your application,
they probably aren't. Similarly, unless you have very specialized needs, a specialized
database such as a time series database is probably the wrong choice for your application.

For the vast majority of applications, the best database choice will be a relational database.
Because a relational database requires that you explicitly design the schema you will be
using, using a relational database requires more upfront thinking about the data you will
be storing and how you will be accessing it. It is always worth spending the time thinking
upfront about your data. Almost all the time you spend upfront designing a good database
structure will be paid back in spades over the life of your application.

Assuming you will be using a relational database, you have to choose which one to use.
In terms of open source databases, for the majority of applications, the best choice is
PostgreSQL. PostgreSQL is the most robust open source database and has greater support
for advanced data types and indexes. It is possible to be successful with MySQL, but you
need to be careful to configure MySQL in a way that will not result in silent data loss.

For cases where you must use an embedded database and cannot use a client-server
database, SQLite is the natural choice. However, be aware the SQLite does not enforce
database types, treating database types as recommendations. If you must use SQLite, make
sure to use CHECK constraints as much as possible to actually enforce database types.
Another thing to be aware of with SQLite is that SQLite's support for altering tables is very
limited. Making most changes to a table other than adding a column requires creating a new
table with the structure you want, and copying all data from the old table into the new table,
then dropping the old table and renaming the new table with the old table's name.

358 The Database Is Key

In this section, you learned why database design is so important, and how to decide on
a database to use for your application. In the next section, you'll learn the most important
principles of good database design.

Understanding the most important database
design principles
In general, when designing a database structure, you want it to be normalized. Very
briefly, here are the basic rules regarding data normalization:

•	 Each row can be uniquely referenced by a single column or combination of columns
(that is, always have a primary key).

•	 Each column should contain a single value, not a collection of values (that is, avoid
columns such as artist_names that contain column-separated names of multiple
artists).

•	 Each column should contain different data than contained in other columns
(that is, avoid columns such as artist_name_1, artist_name_2, and so on).

•	 Each column in the table is only dependent on the primary key, and not dependent
on another column (that is, avoid an artist_name and artist_country
column in a tracks table).

There are a lot of books that cover database normalization. Please see the Further reading
section at the end of the chapter for some examples. In general, it's best to start with a
normalized database design. Normalized database designs are usually the simplest to
insert, update, and delete.

Considerations when denormalizing your database
design
There are cases where a normalized database design may not provide the necessary
performance for the application. In some cases, that can be worked around with intelligent
caching or the use of materialized views, but in some cases it cannot and you need to at
least partially denormalize your database design. Denormalizing your database should
only be done as a form of performance optimization. As you learned from reading
Chapter 14, Optimizing Your Library, performance optimization should only be done if
you are sure it is necessary.

Understanding the most important database design principles 359

If you are sure that performance optimization is necessary, you should profile the code
beforehand and determine that the reason that performance is not up to the necessary
level is due to database queries, and not other factors. Then you should benchmark to
determine a baseline of current performance. When profiling and benchmarking, try to
use a copy of the production database, because database performance is often dependent
on what data is being stored in the database. After you have determined a baseline of
performance, you can try denormalizing the design and see if it performs better.

As an example of such denormalization, let's say you have three database tables, one
for tracks, one for artists, and one joined table named artists_tracks with
a foreign key for tracks and a foreign key for artists. In order to retrieve a selection
of tracks and artists, you either need:

•	 A three-way join between the tracks, artists_tracks, and artists tables

•	 Three separate queries: one for tracks, one for related rows in
artists_tracks, and one for the related rows in artists

•	 Two separate queries: one for tracks, and the other with a join between the
artists_tracks and artists tables

If retrieving tracks with the associated artists is critically important to performance,
you could switch to storing an array of artist names in the tracks table. Then you
do not need the artists_tracks join table, and you can retrieve the desired
information in a single query without a join. However, by denormalizing, updating artist
information becomes more difficult. Instead of updating an artist's name in one place,
you need to update it in every track the artist worked on. That's much more difficult and
performance-intensive than the normalized approach. However, in the real world, artist
names are unlikely to change for existing tracks, so this particular denormalization is
unlikely to cause problems. Remember that denormalizing is always a tradeoff to get
increased performance in particular cases while making other cases more difficult.

Other database design principles
In general, you should design your database tables to be as small as possible. Only collect
the information you will need for your application. Do not blindly add created_at
and updated_at columns to every table, only add them to the tables that really need
both. By limiting the size of your database tables, you'll make access to those tables faster.
Remember that you can always add columns later if you determine you really need the
information. Do not assume you will need information in the future that you currently
don't need, because in most cases, you probably won't need it.

360 The Database Is Key

Spend time thinking about how you are going to access your data, and design your
database indexes around those use cases. If you are going to be accessing tracks by name,
you'll want an index on the name column. If you will be accessing tracks by release date,
you'll want an index on the release_date column. If you are going to be accessing
tracks by release date, but then showing them in order by name, you'll want a composite
index on the release_date column and the name column in that order, because that
will allow the database to avoid a separate sort step when retrieving the data. Similarly,
if you are accessing data by name and then showing the matching tracks by release date,
a composite index on the name column and the release_date column in that order is
what you want.

Every index you add has a cost. Each index added to a table will make inserting, updating,
and deleting slower. So, only add the indexes you need. Remember that a single index
can serve multiple purposes. With one composite index on the release_date column
and the name column, and another composite index on the name column and the
release_date column, you can optimize all four of the cases described previously.
When adding an index on a single column, always consider whether it is a better idea to
add a composite index with that column as the first column and an additional column
added after. Such composite indexes are in general more flexible and can optimize more
types of queries, though they may not optimize a specific query as well.

You should enforce referential integrity whenever you can by using foreign keys. It's
almost a guarantee that if you do not enforce referential integrity in your database, you'll
eventually have foreign key columns that point to rows that no longer exist. You should
avoid any feature that does not allow the enforcement of referential integrity, such as
polymorphic associations. There are only rare exceptions where referential integrity
shouldn't be enforced with foreign keys, such as audit logs stored in the database where
you need to allow the deletion of rows but still retain the audit logs.

In this section, you've learned important database design principles. In the next section,
you'll learn how to use all of a database's features to maximize the value it brings to
your application.

Treating the database as not just dumb
storage
You should avoid treating your database as just a place to store and retrieve your data,
as a good relational database offers so much more.

Treating the database as not just dumb storage 361

In general, retrieving rows from a database table, performing operations on each row, and
saving the modified row back to the database is relatively slow. If it is possible, it is much
faster to write a database function for performing the same operation, and issue a single
UPDATE statement to update all rows at once. This is usually at least one order of magnitude
faster, and sometimes multiple orders of magnitude faster.
Even in cases where you aren't updating data, you can use database operations to improve
performance. For example, let's say you have a table with first names and last names, and
you want to return a single string combining the first and last names. Do the concatenation
in the database via a query such as this:

SELECT first_name || ' ' || last_name FROM names;

The preceding command is going to be significantly faster than a query such as this:

SELECT first_name, last_name FROM names

And then doing the concatenation in Ruby via code such as this:

"#{row[:first_name]} #{row[:last_name]}"

One of the most important benefits of a database is enforcing data consistency. However,
enforcing specific data types is only part of consistency. As much as possible, you should use
database constraints to enforce consistency.
NOT NULL constraints allow you to enforce that database columns cannot have NULL
values. You should use NOT NULL constraints on any column that will not need to contain
NULL values. You should almost always default to using NOT NULL on all columns, and
only skip adding a NOT NULL constraint if you are sure that you will need to store NULL
values. If you actually have to deal with missing data, consider moving the column or
columns to a separate table. That way if the data is not available, there is no row in the
related table. In addition to avoiding NULL storage, this makes access to the main table
faster, at the expense of requiring a separate query to get the column or columns from
a separate table.
CHECK constraints enforce that a column meets particular criteria, such as being in a certain
range. You should use CHECK constraints to enforce specific values for a single column or
a combination of columns. If a number column should only have values between 1 and 99,
use a CHECK constraint to enforce that. If you have a release_date column for tracks,
you probably don't want to support tracks released in the year 200 or the year 20000, so
a CHECK constraint to enforce a specific date range will add benefits later when someone
leaves off a zero or adds a zero when updating the release_date column. Avoid trying
to enforce consistency for column values solely using application layer rules such as model
validations, as that will not catch cases where the model is not used to modify the data.

362 The Database Is Key

To enforce uniqueness on a single column, use a UNIQUE constraint or unique index
on that column. To enforce uniqueness on a combination of columns, use a composite
UNIQUE constraint or a unique index on the combination of columns. There are some
cases where you want to enforce uniqueness, but only when certain criteria are met. For
example, if you have a table of employees, and you want to enforce that the username
column for the employee is unique, but only for active employees, you cannot just add a
unique index on the username column. This is because if a previous employee had that
user name 10 years ago, a new employee wouldn't be able to use it. For this case, use a
partial unique index, where you enforce uniqueness on username, but only when the
active column is true.

To enforce consistency across multiple tables, use database triggers. For example, if you
have a database of albums and tracks, and want to have a num_tracks column in the
albums table automatically updated when you add or remove a track for the album, that
is the perfect case for a database trigger. Avoid trying to solely enforce consistency across
multiple tables using application layer rules such as model hooks, since they cannot catch
all cases and are prone to race conditions. Always use a database-level trigger to ensure
data consistency across multiple tables.

In this section, you learned to not treat the database as dumb storage, and instead to use
database features to improve the consistency of your data. In the next section, you'll learn
how to choose a model layer for your application.

Choosing the model layer
Except in rare cases where you need the absolute maximum performance and are coding
directly against the database driver, you will almost always want to use a model layer or
other database abstraction layer in your application. Which model layer you choose can
have significant performance effects on your application, as well as influence what other
libraries you can use in your application.

For SQL database model layers in Ruby, there are only two libraries with significant
popularity (that is, over one million downloads), Active Record and Sequel. Active
Record is by far the most popular option, due to it being the default model layer for the
most popular web framework, Ruby on Rails. Outside of usage in Ruby on Rails, Sequel is
probably slightly more popular than Active Record, but there is still a lot of Active Record
use outside of Ruby on Rails.

Due to Active Record's popularity, many more libraries integrate with Active Record than
integrate with Sequel. Similarly, many more developers have experience of using Active
Record than Sequel. In cases where you need to find other developers that already have
experience with the model layer or other libraries that need to integrate with the model
layer, Active Record provides many more options.

Handling database and model errors 363

On the other hand, the advantage of using Sequel is that it is usually significantly faster, often
multiple times faster for the same operation. In general, it is considered technically superior,
easier to use, and less prone to bugs. When bugs are found and reported in Sequel, they tend
to be fixed much quicker than bugs found and reported in Active Record. Sequel has a much
more regular release cycle than Active Record so that after a bug is fixed, you never need to
wait more than a month for it to appear in a released version.

One of the largest interface differences between Active Record and Sequel is that Active
Record is designed to work with SQL string fragments, while Sequel is designed to work
with Ruby expressions. For example, in Active Record, to retrieve records with more than
10 tracks, you would use an SQL string fragment like the following:

tracks = 10

Album.where("num_tracks > ?", tracks).to_a

Whereas in Sequel, you would typically use a Ruby expression:

tracks = 10

Album.where{num_tracks > tracks}.all

By avoiding SQL strings fragments, applications using Sequel are less prone to SQL
injection attacks than applications using Active Record. Active Record does offer similar
support for using Ruby expressions that Sequel does, using an internal library called Arel.
However, it is considered a private API and it is not officially supported. It is also more
cumbersome to use and more prone to breakage in new versions.

In this section, you learned the principles of choosing a model layer for your application.
In the next section, you'll learn how best to handle database errors.

Handling database and model errors
In the previous section, you learned some differences between Active Record and Sequel.
One additional difference is their default approach to error handling. By default in Active
Record, saving a model instance can return false if the model is not valid:

model_instance.save

=> true or false

364 The Database Is Key

This is different than Sequel, where saving a model instance by default raises an exception:

model_instance.save

=> model

or raise Sequel::ValidationFailed

Both Active Record and Sequel have options for either behavior, but this shows the
philosophical difference between the two libraries. With Active Record, you need to be
diligent to make sure you check every call to save to determine whether it succeeded or
failed. If you forget to check a call to save, your code will continue running, and you may
not realize your model instance was never saved. As you learned in Chapter 5, Handling
Errors, this is a fail-open design. With Sequel, because exceptions are raised for every
failure, you do not need to worry about missing an error. If you do miss handling an error,
you end up with an unhandled exception, which you will probably be alerted to. Sequel
uses a fail-closed design by default.

In general, when dealing with database access, it's best to catch errors as soon as possible,
ideally identifying problems before sending a query to the database. In the model layer,
the way you do this is generally by validating the model object before saving it. This
validation happens automatically when calling the save method, before sending a query
to the database.

With Active Record, you are encouraged to manually define model validations for each of
the columns in your model, and avoid the use of database constraints. If you miss defining
a validation with Active Record, you often will end up with bad data in the database, since
there is no database constraint to enforce consistency. With Sequel, you are encouraged to
use database constraints as the primary method of enforcing data consistency, with model
validations only being used to provide nicer error messages. The advantage of Sequel's
approach is that if you modify the database without going through the model layer, data
consistency issues will still be caught by the database.

Sequel is shipped with multiple plugins that work with the database to add validations
automatically, such as the following:

•	 The auto_validations plugin, which adds type validations, presence
validations, uniqueness validations, and max length validations based on the
database schema.

•	 The constraint_validations plugin, which defines constraints in your
database for each validation, with metadata stored in the database to automatically
set up model validations for each constraint.

Summary 365

•	 The pg_auto_constraint_validations plugin, which will handle constraint
violation exceptions raised when sending the database query, and automatically
translate them into validation failures (this plugin is PostgreSQL specific).

When saving a model instance, your code always needs to be prepared to handle
exceptions raised by the database driver. In many cases, there may be nothing you can do
other than report the error. If you can translate the exception and provide a nice validation
error to the user, that is best, but is often not possible.

Summary
In this chapter, you learned that database design is probably the most important part
of your application. You've learned important database principles such as only storing
information that is actually needed, and when to use a denormalized design. You've
learned to take advantage of database features such as functions, triggers, constraints,
and unique indexes. You've learned some differences between popular Ruby libraries
for database modeling, and some principles for choosing the library that is best for your
application. Finally, you've learned how to handle database and model errors in your
application. With all of the information you've learned, you are now better able to design
an appropriate data storage layer for your application.

In the next chapter, you'll learn important principles for designing your web application at
levels above the database.

Further reading
•	 The SQL Workshop: https://www.packtpub.com/product/the-sql-

workshop/9781838642358

•	 Learn SQL Database Programming: https://www.packtpub.com/product/
learn-sql-database-programming/9781838984762

https://www.packtpub.com/product/the-sql-workshop/9781838642358
https://www.packtpub.com/product/the-sql-workshop/9781838642358
https://www.packtpub.com/product/learn-sql-database-programming/9781838984762
https://www.packtpub.com/product/learn-sql-database-programming/9781838984762

366 The Database Is Key

Questions
1.	 Why is database design the most important part of your application design?

2.	 When should you consider denormalizing your database?

3.	 What is a good reason to use a database trigger?

4.	 If your primary consideration when developing is how many external libraries you
can use to save development time, which model layer is probably best?

5.	 Which model layer uses a fail-closed design for handling model errors during
saving?

16
Web Application

Design Principles
One of Ruby's most common uses is programming web applications, and there are
some design principles that are specific to web applications. Which web framework you
use, how you structure your application, and whether you choose a mostly client-side
or mostly server-side design all have a large effect on the maintainability of your web
application. Likewise, it is important to understand the trade-offs of flat and nested
URL designs before deciding which URL design works best for your web application.

In this chapter, we will cover the following topics:

•	 Choosing between client-side and server-side design

•	 Deciding on a web framework

•	 Designing URL paths

•	 Structuring with monoliths, microservices, and island chains

By the end of this chapter, you'll have a better understanding of Ruby web development
principles, which will allow you to design better web applications.

368 Web Application Design Principles

Technical requirements
In this chapter and all chapters of this book, the code provided in code blocks was
designed to be executed on Ruby 3.0. Many of the code examples will work on earlier
versions of Ruby, but not all. The code for this chapter is available online at https://
github.com/PacktPublishing/Polished-Ruby-Programming/tree/
main/Chapter16.

Choosing between client-side and server-side
design
Probably the most critical decision when designing a web application, after choosing
a database, is determining whether you'll be building a mostly client-side application
or a mostly server-side application. With a mostly client-side application, most of the
application logic runs in the user's browser, and the backend that runs on the server tends
to be fairly minimal and focused on data storage and retrieval. With a mostly server-side
application, most of the application logic runs on the server, and the logic that runs on the
client is minimal and potentially non-existent if you can design your application to avoid
the use of JavaScript.

With a mostly client-side web application, the data that's transmitted between the backend
server to the client tends to be in JSON format. The client code takes the JSON data and
uses it to update various parts of the page that's displayed to the user. When the user
makes a change to the page, the client code may send a request to the server to save the
client's change or to request more data, depending on the change.

With a mostly server-side web application, the backend server generally transmits
HTML to the client. When the client makes a change, it sends a request to the server
usually in x-www-form-urlencoded or multipart/form-data format, and the
server returns a new HTML page or updates the database, and then redirects the request
to a separate page.

It's certainly possible to have a mix of the two. You can have a mostly server-side web
application that still has some pages where more dynamic behavior is needed, and where a
small client-side application is used to handle updates on that page, transmitting JSON to
and from the server. It's also possible to have a mostly client-side application that requests
HTML from the server to replace parts of the page, as opposed to requesting JSON.

https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter16
https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter16
https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter16

Choosing between client-side and server-side design 369

The advantage of designing a mostly client-side application is that it tends to be more
responsive once it is fully loaded. Because most of the logic is client-side, it only needs
to wait for the server on the occasions where it needs to save data or load additional data.
For pages that require a high level of interactivity, a client-side application is usually
necessary. For example, if you are designing a game, a photo editing application, a word
processor, or a spreadsheet, then a client-side application is the way to go.

The advantage of designing a mostly server-side application is that it tends to load faster
and tends to be faster to develop, since almost all the logic lives on the server. Unlike a
mostly client-side application, you generally do not have to design two applications. You
may only need to implement JavaScript on the few pages that actually need dynamic
behavior. Server-side applications are generally easier to debug, especially for errors that
only occur in production. This is because you will generally get a full backtrace of where
the error occurred so that you can determine the complete environment that the error
occurred in, making it easier to reproduce the error.

The downsides of a mostly client-side application are that it tends to take longer to load,
it tends to be much more complex, and it tends to be more difficult to debug, especially
for errors that occur in production. For errors that occur in production, because they
occur in the user's browser, you will not even be aware of them unless you set up a
separate service to handle error reports. If the error affects the use of that service, you may
never find out about it.

One of the largest downsides to designing a client-side application is that you cannot
program it in Ruby; you have to use JavaScript. Now, recent versions of JavaScript are
certainly much better than older versions of JavaScript. However, Ruby is, in general,
a superior language for application development, in addition to being much more
programmer-friendly.

It is possible to write client-side web applications in Ruby and translate the Ruby code
into JavaScript using a Ruby implementation named Opal. However, if you do run into
any problems, you'll need to be able to handle debugging Ruby, JavaScript, and Opal
yourself. Additionally, while the Opal implementation itself is not that large, considering
the features it adds, it still has some overhead, so it only makes sense to use Opal if you
are planning to build your entire client-side application around it. In other words, using
Opal for a small part of the application does not make much sense – you need to be fully
invested in Opal for using it to make sense.

370 Web Application Design Principles

With any client-side web application, you must actually design two applications, both
the client side and the server side. The server-side part of a mostly client-side application
may be smaller than the server-side part of a mostly server-side application, but it is
still of reasonable size and complexity. All the database access and anything that's
security-sensitive must be implemented on the server side, since the client cannot be
trusted. In general, a client-side web application is probably at least twice as difficult to
implement as a similar server-side web application.

The main downside of mostly server-side application development is that you are limited
in terms of what types of applications you can reasonably build. For most line-of-business,
form-based applications, server-side applications work well, but applications that require
a high level of dynamism are not a good fit.

In this section, you've learned about what you should take into consideration when you're
choosing whether to develop a client-side or server-side web application. In the next
section, you'll learn how to decide what web framework to use for your application.

Deciding on a web framework
Once you've decided on whether to build a client-side or server-side application, the next
most important decision is which web framework you should use. There are four Ruby
web frameworks with significant popularity (that is, over one million downloads) – Ruby
on Rails, Sinatra, Grape, and Roda. All web frameworks ship with basic support for
handling requests and returning responses. Each has advantages and disadvantages,
all of which you'll learn about in the following sections.

Ruby on Rails
Ruby on Rails, or Rails for short, is the most popular Ruby web framework. It is
a full-stack framework, which means it comes with many features in addition to being
able to handle requests. In Chapter 15, The Database Is Key, you learned about Active
Record, the model layer that comes with Rails.

Rails come with many additional features, including the following:

•	 Action Cable: A framework for real-time communication between the server and
client using WebSockets

•	 Action Mailbox: A framework for processing incoming emails

•	 Action Mailer: A framework for sending emails

•	 Action Text: A framework for editing and displaying rich text in web pages

Deciding on a web framework 371

•	 Active Job: A framework for abstracting the handling of background jobs

•	 Active Storage: A framework for processing uploaded files and media

In addition to these features, Rails also supports integration with webpack and sprockets
for asset packaging for JavaScript and CSS files.

Rails' largest advantage is due to its popularity. Most Ruby programmers are familiar with
Rails and have worked with Rails. Most Ruby libraries that deal with the web in some way
work with Rails, and a good portion only work with Rails and not with other frameworks.
If you have a problem with Rails and search for it, you'll probably find other people who
have had that same problem and found a good fix, or at least a decent workaround.

Another advantage of Rails is that it focuses on convention over configuration. Rails is
very much designed around the concept of staying on the rails, or doing things the way
Rails wants you to do them. If you deviate from that approach, or go off the rails, you
will have a significantly more difficult time using Rails. Productive use of Rails involves
structuring your application to fit Rails, not the other way around.

One disadvantage of Rails is that Rails is very large and complex. It can take a long time
to understand. It's also known for being fairly slow. While it does include many features
and does a decent job of implementing them, some of these features have superior
counterparts outside the framework, such as Shrine for handling uploaded files. While
upgrading from one version of Rails to the next has gotten much easier as Rails has
matured, it can still be challenging to upgrade, as Rails tends to deprecate features faster
than most other frameworks.

Sinatra
Sinatra is the second most popular Ruby web framework. It was the first web framework
that showed how simple you could make web applications, such as the two-line Hello
World application:

require 'sinatra'

get('/'){'Hello World'}

Sinatra is fairly minimal. It supports a large variety of templating libraries through its
use of the tilt gem. However, request handling and response generation via templates
is basically all Sinatra provides. Everything else, such as email sending or processing, a
database or model layer, or processing of uploaded files, must come from external sources.

Sinatra's strength is in how easy it is to get started. By distilling web application
development to the most minimal API possible, Sinatra makes it possible to focus on just
building your application.

372 Web Application Design Principles

One of the limitations of using Sinatra is that it doesn't give you much to work with.
Many people who have used both Rails and Sinatra report that they need to reimplement
a lot of what Rails gives them inside their Sinatra applications, which slows down their
development compared to having the functionality built-in. Additionally, Sinatra's router
uses a linear search of the available routes, which means it doesn't scale well for a large
number of routes.

Grape
Grape is significantly less popular than both Sinatra and Rails. Unlike Rails, Sinatra, and
Roda, Grape does not focus on generic web application development; instead, it focuses
specifically on designing web applications to serve REST-like APIs. For example, Grape
was designed to be the backend to a client-side application or to deal with non-web
applications that use HTTP to communicate with a server.

As Grape was designed purely for building REST-like APIs, it has built-in support for
things such as API versioning, automatically generating API documentation, per-route
parameter validation and typecasting, and support for a wide variety of content types,
including XML, JSON, and plain text. If you are building a pure REST-like API and need
these features, it is a solid choice.

One disadvantage of Grape is that it tends to be even slower than Rails. For
performance-critical applications, you will probably want to use a different library.

Roda
Roda is much less popular than the other libraries, barely making it over the one million
download threshold. It is significantly faster than Rails, Sinatra, and Grape – often
multiple times faster – mostly due to its design, which reduces per-request overhead as
much as possible. Roda applications can perform similarly to applications written in faster
programming languages.

Roda tries to combine the ease of use of Sinatra with a large number of available but
optional features. A basic Hello World app in Roda is almost as small as it would
be in Sinatra:

require 'roda'

Roda.route do |r|

 r.root{'Hello World'}

end

Designing URL paths 373

Roda is unique among the four frameworks we've discussed as it uses a routing tree, where
all the requests that are received by the web application are yielded to the route block, and
the routing and request handling are combined, instead of being separated. This allows
you to easily share code between different routes in a manner more understandable and
less repetitive than in other web frameworks.

Roda uses a plugin system very similar to the plugin system you learned about in
Chapter 8, Designing for Extensibility. This allows Roda to have a very small, fast, and
easy-to-understand core, and use plugins to implement additional features. Roda ships
with over 100 plugins, including the following:

•	 mail_processor : A plugin for processing incoming emails

•	 mailer : A plugin for sending emails

•	 assets : A plugin for asset packaging of JavaScript and CSS files

While Roda is not shipped with all of the features that Rails is shipped with, most of
the features Roda does not ship with are available in other libraries that integrate with
Roda and are superior to the support included in Rails, such as Shrine for handling
uploaded files.

One disadvantage of Roda is that due to its lower popularity, fewer Ruby programmers
are familiar with it. Additionally, the use of a routing tree to integrate routing and request
handling is foreign to many Ruby programmers, and it may take some time for Ruby
programmers to adjust to it.

In this section, you learned about the advantages and disadvantages of the four most
popular Ruby web frameworks. In the next section, you'll learn about designing URL
paths.

Designing URL paths
Once you've selected a web framework, the next important decision to make is how to
design the URL path structure for your application. Now, you might be wondering, why
does a URL path structure matter for my application, as long as requests are handled
as I want them to be handled? Well, how you structure URL paths can affect how your
application is designed.

Let's say you have a discussion forum application that deals with forums, topics, and posts.
Each forum, such as Ruby Programming Books, can have topics such as Which is the Best
Ruby Programming Book?, and each topic can contain many posts from the members of
the forum with their thoughts on that topic. There are many possible ways to design a
URL path structure for such a forum application.

374 Web Application Design Principles

You could call one approach the flat approach, where each separate type has its own
top-level path. For example, you could have the following three URL paths for the forum
application:

•	 /forums/123, which shows all the topics for the forum with a primary key value
of 123.

•	 /topics/345, which shows all the posts for the topic with a primary key value
of 345.

•	 /posts/567, which shows a specific post with a primary key value of 567.

You could call another approach the nested approach, where the URL path includes the
dependency information encoded in it:

•	 /forums/123, the same as for the flat approach.

•	 /forums/123/topics/345, which shows all posts for the topic with a primary
key of 345 in the forum with a primary key value of 123.

•	 /forums/123/topics/345/posts/567, which shows the specific post with
a primary key value of 567 in the topic with a primary key of 345 in the forum
with a primary key value of 123.

In some cases, you may prefer the flat approach, while in other cases, the nested approach
may make more sense. For example, if the forum doesn't have any specific authorization
code, no user can moderate another user, and any user can post in any forum, then the flat
approach may be easier.

However, if the forum application has specific authorization requirements, such as the
currently logged-in user can only have access to specific forms or specific topics, the
nested approach can have advantages. This is especially true if you are handling the
request while the request is being routed, which is possible when using Roda. Let's say
the logged-in user tries to navigate to /forums/123/topics/345, but does not have
access to the forum with a primary key of 123. If you were using Roda, you could handle
this by doing the following:

class App < Roda

 route do |r|

 r.on 'forums', Integer do |forum_id|

 forum = Forum[forum_id]

 unless forum.allow_access?(current_user_id)

 response.status = 403

 r.halt

Designing URL paths 375

 end

 # ...

 end

 end

end

With this approach, as soon as Roda has routed the /forums/123 part of the path, it can
determine that the current user does not have access to the forum with a primary key of
123. This means it can immediately stop processing the request, regardless of the rest of
the path.

With the flat approach, you need to be more involved. You still need to check whether the
user has access to the forum if accessing a route such as /forums/123:

class App < Roda

 route do |r|

 r.on 'forums', Integer do |forum_id|

 forum = Forum[forum_id]

 unless forum.allow_access?(current_user_id)

 response.status = 403

 r.halt

 end

 # ...

 end

However, to handle the /topics/345 route, you also need to add almost the same code
to check whether the user has access to the forum when accessing a topic. Since you don't
have the forum's primary key, you need to get the topic first, and from there, get the forum
for the topic, before determining whether the user has access to the forum:

 r.on 'topics', Integer do |topic_id|

 topic = Topic[topic_id]

 unless topic.forum.allow_access?(current_user_id)

 response.status = 403

 r.halt

 end

376 Web Application Design Principles

 unless topic.allow_access?(current_user_id)

 response.status = 403

 r.halt

 end

 # ...

 end

 end

end

In cases where access checks need to be done at multiple levels, using a nested approach
for the URL path structure generally makes more sense than using the flat approach.

In this section, you learned about some principles for designing the URL path structure in
your applications. In the next section, you'll learn about how to structure your application
as a monolith, as a number of separate microservices, or as an island chain.

Structuring with monoliths, microservices,
and island chains
All applications have structures, whether they're intentional or not. In general, it's best to
choose an intentional structure based on specific application requirements. In terms of
structuring your application processes, there are two common approaches. One approach
is using a single monolith, while another is using many separate microservices. There's
also a less common approach that can work well in some application types, which we'll
refer to as the island chain approach.

With the monolith approach, all application code is managed in the same repository, all
application data is stored in the same database, and all parts of the application run in the
same process. This is the simplest approach in terms of management. It requires little to
no coordination to handle changes to other parts of the system since, in a monolithic
system, any change to any place in the system can usually occur atomically. However, it
may require a high level of coordination with other people working in the system, since
they could be modifying a section of the system that you are also modifying, which can
result in merge conflicts that are challenging to fix.

Structuring with monoliths, microservices, and island chains 377

With the microservices approach, separate parts of the system are managed in separate
repositories, each microservice stores data in its own database, and all of the separate
microservices that make up the application run in separate processes. Microservices do
not directly access data from the database of a separate microservice; instead, they make
an internal request to that microservice to obtain the data if they need it. Making internal
changes to a microservice requires very little to no coordination with other developers
unless they are also working in the internals of that microservice, since each microservice
is independent. However, changes to the external interface of a microservice requires
a high level of coordination with all the other microservices that interact with that
microservice, to ensure that those microservices do not break.

With the island chain approach, all application code is stored in the same repository
and all application data is stored in the same database. However, different parts of the
application run in different application processes. Unlike in the microservice approach,
where the microservices in the application are separated based on the type of data
they deal with, in the island chain approach, the separate processes that make up the
application are usually separated based on different security domains.

There are a couple of advantages to the island chain approach compared to the monolith
approach, but they depend on specific usage conditions. For the island chain approach
to make sense, you must generally have different types of users. For example, in a simple
case, you may have admin users and regular users. In this case, admin users may need an
entirely different interface than regular users. However, there could be substantial benefits
from sharing the same models in both the regular interface and admin interface.

Because separate processes are used for different types of applications in the island chain
approach, you can scale the number of processes up and down as needed for each type of
process. For example, in most cases, you need far fewer admin processes than regular user
processes.

Where the island chain approach shines most is when you can use the separate processes
to strictly enforce separate security domains. For example, the process that's exposed to
the general public can be locked down, with limited access to the database and filesystem.
However, the process running the admin interface, which is only exposed to internal staff,
can have more capabilities, since the risk of attack is generally lower. You'll learn more
about this defense-in-depth approach to security in Chapter 17, Robust Web Application
Security.

When using the monolith approach, all the frameworks we discussed previously will
work. However, due to the overhead and design of Rails, it is really not conducive to the
microservice or island chain approach. You should only use Rails if you want to commit
to the monolith approach.

378 Web Application Design Principles

Summary
In this chapter, you learned about the important principles of designing web applications.
You learned about what you should consider when deciding between the client-side
and server-side approach to application design. You then learned about some of the
advantages and disadvantages of using the four most popular Ruby web frameworks. You
also learned how URL path structure is important in web application design, especially
when routing is integrated with request handling. Finally, you learned about the trade-offs
between using a monolith, microservice, or island chain approach to application structure.
After reading this chapter, you are hopefully able to make better choices when building
and structuring your web applications.

In the next chapter, you'll learn about handling common web application security issues,
and using a defense-in-depth approach to integrate database and operating system
security features.

Questions
1.	 Is it better to use a client-side or server-side development approach when designing

an application that most involves data input via HTML forms?

2.	 Of the four most popular Ruby web frameworks, which is the fastest?

3.	 When should you prefer to use the nested approach for designing URL paths?

4.	 If your application only has a single user interface, should you consider using the
island chain approach to structure the application?

17
Robust Web

Application Security
Security is one of the most important considerations when developing a web application.
In this chapter, you'll learn about techniques for avoiding common security issues in web
applications. Then, you'll learn how to leverage the advanced security techniques provided
by the operating system and database to increase the difficulty of attacks, minimize the
attack surface, and mitigate damage in the case of a successful attack.

In this chapter, we will cover the following topics:

•	 Understanding that most security issues in Ruby web applications are high level

•	 Never trust input

•	 Performing access control at the highest level possible

•	 Avoiding injection

•	 Approaching high-security environments

By the end of this chapter, you'll have a greater understanding of possible security issues
in Ruby web applications, as well as how to use both common and advanced techniques
to avoid or mitigate them.

380 Robust Web Application Security

Technical requirements
In this chapter and all chapters of this book, the code provided in code blocks was
designed to be executed on Ruby 3.0. Many of the code examples will work on earlier
versions of Ruby, but not all. The code for this chapter is available online at https://
github.com/PacktPublishing/Polished-Ruby-Programming/tree/
main/Chapter17.

Understanding that most security issues in
Ruby web applications are high level
For applications written in C, most security issues tend to be low-level security issues.
These security issues are caused by things such as buffer overflows, integer overflows or
underflows, and use-after-free (UAF) vulnerabilities. Ruby itself is mostly written in C,
so a bug in Ruby itself could result in one of the previous security issues affecting Ruby.
In addition, some Ruby gems include C extensions, either for performance reasons and/or
because they need to interface with other libraries written in C. Ruby gems that include C
extensions can also experience all these security issues.

Because of how many people use Ruby, low-level vulnerabilities in Ruby itself, while not
impossible, are less likely. However, Ruby gems that include C extensions do not generally
receive the same level of scrutiny as Ruby itself, so you should be careful when using gems
that include C extensions. Really, it helps to be careful when using any gem at all, as any
gem that you use could introduce a security issue in your application.

Note that the phrase low-level vulnerabilities refers to the type of code it usually affects.
Be careful not to think of low-level vulnerabilities as vulnerabilities of low importance,
because most of the low-level vulnerabilities mentioned previously are actually critical
vulnerabilities that can result in code execution, where your program starts running code
that's been submitted by an attacker.

Because Ruby is a high-level language that contains strings that resize as needed, uses an
Integer type that can handle arbitrary-sized integers, and provides automatic memory
management via garbage collection, most Ruby programs are less susceptible to the
low-level security issues listed previously. Because of this, most of the security issues that
Ruby applications are susceptible to are higher-level issues. However, that doesn't mean
these security issues are any less important.

In this section, you learned why most security issues in Ruby are high-level security issues.
In the next section, you'll learn why you should never trust input given by a user in a web
application.

https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter17
https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter17
https://github.com/PacktPublishing/Polished-Ruby-Programming/tree/main/Chapter17

Never trust input 381

Never trust input
One of the most common vulnerabilities in Ruby web applications comes from trusting
input given by the user. Let's say you have a Struct subclass named Fruit. This keeps
track of individual pieces of fruit, such as the type of fruit, the color of the fruit, and the
price of the fruit:

Fruit = Struct.new(:type, :color, :price)

You store all your Fruit instances in a hash named FRUITS, keyed by a number
assigned to the fruit:

FRUITS = {}

FRUITS[1] = Fruit.new('apple', 'red', 0.70)

FRUITS[2] = Fruit.new('pear', 'green', 1.23)

FRUITS[3] = Fruit.new('banana', 'yellow', 1.40)

You have a web application where you want to allow the user to ask for either the type, the
color, or the price of a specified piece of fruit. You decide to try the Roda web framework
to implement this application and find it is very simple to get started with:

Roda.route do |r|

 r.get "fruit", Integer, String do |fruit_id, field|

 FRUITS[fruit_id].send(field).to_s

 end

end

This seems to work fine. A request for /fruit/1/type returns apple, a request
for /fruit/2/color returns green, and a request for /fruit/3/price returns
1.4. You deploy this to the web and find that your application has stopped. It doesn't
seem to stop right away, but it always stops within a day or so. Confused as to what is
going on, you look at the logs and see that the last line in the log shows the final request:

GET /fruit/1/exit

Some clever but not-so-nice person on the internet decided to spoil your nice little web
application by calling exit, which immediately caused the application to shut down.
From this, you have learned one valuable lesson, which is that that you should never
trust input.

382 Robust Web Application Security

So, how can you avoid this issue? The well-meaning, but deeply silly person uses
a blacklist approach to security and decides to prevent this issue by forbidding what
is known to cause a problem. They change the web application so that it does the
following:

Roda.route do |r|

 r.get "fruit", Integer, String do |fruit_id, field|

 next if field == "exit"

 FRUITS[fruit_id].send(field).to_s

 end

end

Unfortunately, the application still shuts down after a little while. You check the log again
and another clever but also not-so-nice user has changed the request slightly:

GET /fruit/1/exit!

This calls the exit! method, which also exits the application (unlike exit, it doesn't run
hooks such as at_exit or finalizers). This teaches you the next valuable lesson, which
is that you should never try to forbid what is known to be bad (the blacklist approach
to security). Instead, you should only allow what you know to be good (the whitelist
approach). You change the code one more time to the following:

Roda.route do |r|

 r.get "fruit", Integer, String do |fruit_id, field|

 next unless %w[type color price].include?(field)

 FRUITS[fruit_id].send(field).to_s

 end

end

Thankfully, after making this change, your application stops exiting.

In more advanced cases, you cannot whitelist all possible valid input. For example, let's
say you expand your web application, which allows you to update the type or color of
a fruit by submitting a POST request to the same location, which will update the field to
the given value and redirect:

Roda.route do |r|

 r.is "fruit", Integer, String do |fruit_id, field|

 r.get do

 next unless %w[type color price].include?(field)

Never trust input 383

 FRUITS[fruit_id].send(field).to_s

 end

 r.post do

 next unless %w[type color].include?(field)

 FRUITS[fruit_id].send("#{field}=", r.params['value'])

 r.redirect

 end

 end

end

This appears to work OK, but you find out that pretty soon, fruit 1 has nil for type and
color, while fruit 2 has a hash as the value of type and an array as the value of color.
This is because r.params (which comes from the rack gem) performs parameter
parsing, which will return a hash, and the values of that hash can be arrays or hashes in
addition to plain strings. If you want to ensure the values are strings, you need to convert
the values into the expected types. One simple way to do that is by calling to_s on the
value of the parameter:

r.post do

 next unless %w[type color].include?(field)

 FRUITS[fruit_id].send("#{field}=",

 r.params['value'].to_s)

 r.redirect

end

However, usually, a better approach is to have the web framework perform typecasting for
you. Grape supports built-in parameter requirements, while Roda supports typecasting
parameters to the expected type via its typecast_params plugin. Unfortunately,
neither Rails nor Sinatra support parameter typecasting as part of the framework, though
there are external libraries that support parameter typecasting for Rails.

In general, you always want to make sure you convert the parameters that are received
in the web application into the expected type. If you don't enforce parameter types, and
accidentally pass an array or hash when you're expecting a string, you may end up with
security issues, depending on how you programmed your application.

In this section, you learned to never trust user input. In the next section, you'll learn why
it is best to perform access control at the highest level possible.

384 Robust Web Application Security

Performing access control at the highest level
possible
Many security issues in Ruby web applications are due to missing authentication or
authorization checks when processing a request. This is especially common in web
frameworks that separate routing from request handling and use some type of conditional
before hook for performing access control. Let's say you have a Rails controller that uses
a before hook for access control:

class FooController < ApplicationController

 before_action :check_access

 def index

 # ...

 end

 def create

 # ...

 end

 # ...

 private def check_access

 # ...

 end

end

This is probably not likely to result in access control vulnerabilities since the access is
checked for every action. However, let's say you set the before_action hook so that
it's conditional, like so:

class FooController < ApplicationController

 before_action :check_access, only: [:create]

 # ...

end

Performing access control at the highest level possible 385

Here, you really need to be careful when adding any request handling methods to
FooController. If they require access control and you don't add them to the :only
option, then you have probably introduced a security vulnerability. This is because the
before_action :only option uses a fail-open design. It's much better to use the
before_action :except option instead:

class FooController < ApplicationController

 before_action :check_access, except: [:index, :bars]

 # ...

end

It's still bad if you do not update the :except option when adding a request handling
method to the controller. However, if you forget, you will end up requiring access control
for a page that does not need it, which is a fail-closed design.

Similarly, let's say you are implementing a global access control hook in
ApplicationController:

class ApplicationController < ActionController::Base

 before_action :require_login

 # ...

end

If you need to have actions in other controllers that do not require a login, you can use the
skip_before_action method to skip the login requirement. In these cases, make sure
you use the :only option if the skip_before_action call needs to be conditional:

class BarController < ApplicationController

 skip_before_action :require_login, only: [:index, :bars]

 # ...

end

This is because when skipping a before action, :only will only skip based on a whitelist,
which uses a fail-closed design, as opposed to :except, which will skip based on
a blacklist, which is a fail-open design.

386 Robust Web Application Security

This issue also affects before hooks in Sinatra. If you have a conditional access check for
a subset of paths in Sinatra, you can do something like the following:

before '/foos/(create|bazs)' do

 check_access

end

Unfortunately, this is similar to Rails' :only option, so it uses a fail-open design. Sinatra
doesn't have the direct equivalent of Rails' :except option for a fail-closed design,
though it is still possible to implement a fail-closed design with some work:

before '/foos/:x' do |segment|

 case segment

 when 'index', 'bars'

 else

 check_access

 end

end

Roda's routing tree design handles this type of issue more simply. Because routing and
request handling are integrated, you can put the access check after the routes that do
not need the access check, and before the routes that need the access check. Then, when
you're adding your routes, you just need to put them either before or after the access
check, depending on whether access control is needed. Refer to the following code:

Roda.route do |r|

 r.on "foo" do

 r.get "index" do

 # ...

 end

 # ...

 check_access

 r.get "create" do

 # ...

 end

 # ...

Avoiding injection 387

 end

end

In this section, you learned about performing access control at the highest level possible.
In the next section, you'll learn about techniques for avoiding injection.

Avoiding injection
Injection vulnerabilities occur when an attacker can inject code into your application.
There are three common types of injection vulnerabilities in Ruby web applications: script
injection, SQL injection, and code injection (remote code execution). We'll look at these
in more detail in the following subsections.

Script injection
Script injection, otherwise known as cross-site scripting or XSS for short, is a
vulnerability where an attacker can cause their code to be used in your web pages. It's
not nearly as bad as SQL injection and code injection, but it can still cause significant
problems. For example, let's say you are using Sinatra or Roda for your application, and
you have the following code in one of your views:

In your ERB code:

<p>Added by: <%= params['name'] %></p>

Here, an attacker can redirect someone they know who uses your site with a path such as
/path/to/action?name=%3Cscript%3EDo+bad+things%3C%2Fscript%3E.
This will result in the attacker's JavaScript running on your site. Because the attacker's
JavaScript is executed in the context of whoever is viewing the page, it can take any action
the user could take on the page and possibly the entire website. For example, if you have
a banking site that allows users to transfer money from their account to someone else's
account, an attacker could potentially use this vulnerability to transfer money from the
person viewing the page to the attacker's account.

This doesn't only happen with parameters that are submitted to the current page. Let's say
you are reading the name from an Account model, which is backed by a database table:

In your ERB code:

<p>Last update by: <%= Account.last_update_by.name %></p>

The same script injection vulnerability still exists. It's actually worse in this case, because
if the attacker can get their JavaScript code stored in the database, then every person who
views the page could be vulnerable.

388 Robust Web Application Security

Both Roda and Sinatra support the <%== tag for automatically escaping output in ERB,
thus preventing the script injection:

In your ERB code:

<p>Added by: <%== params['name'] %></p>

Additionally, both Roda and Sinatra support making the default behavior <%= to escape
the output, and only allow unescaped output via <%==. In Sinatra, you can use the
following code:

require 'erubi'

set :erb, escape_html: true

In Roda, you can use the following:

Roda.plugin :render, escape: true

It is highly recommended that you use this approach to automatically escape output by
default if you are using either Roda or Sinatra.

Rails handles escaping differently. Instead of making escaping or not escaping a decision
when data is included in the template output, Rails tracks whether the strings in your
application are marked as being HTML safe or not. If the strings are marked as HTML
safe, they do not get escaped when being output via <%= tags. If the strings are not marked
as HTML safe, then they get escaped when being output via <%= tags. This means that
you can use <%= for both escaped and unescaped data, but you cannot tell from looking
at your templates whether such usage is safe. You must trust that every string you are
outputting in your templates has been correctly marked for HTML safety. Verifying that
requires tracing the source of every string through the code to make sure it was marked
correctly.

One way to mitigate the damage that a script injection attack can do is to set a strict
Content-Security-Policy header for all the pages that are served by your
application. For example, a Content-Security-Policy header with script-src
self; will allow you to load JavaScript files from your site, but will not allow the use of
inline JavaScript code. With a strict Content-Security-Policy header, the only
way for an attacker to get their JavaScript running on your site would be to find a separate
vulnerability that allows them to serve the JavaScript as a separate file from your site,
which, in general, is much more difficult than exploiting a script injection vulnerability.

Avoiding injection 389

SQL injection
A SQL injection vulnerability occurs when an attacker can get their SQL code running in
your database. These vulnerabilities are usually very bad because unless you have taken
steps to limit the access the database user has, an attacker can generally make any change
they want to any table in the database.

This typically happens when you're using Active Record improperly, such as when you're
providing an already interpolated string to Active Record, where the string contains input
provided by the attacker:

Foo.where("bar > #{value}").first

This is warned about in the Active Record documentation, and most seasoned Rails
programmers know to avoid it, but it still causes vulnerabilities on a regular basis because
of how easy it is to introduce. With Active Record, you need to be careful that you always
have Active Record do the interpolation safely:

Foo.where("bar > ?", value).first

Sequel tries to make it more difficult to introduce SQL injections into your application.
First, it provides fairly complete support for expressing any SQL expression as a Ruby
expression, such as the following:

Foo.where(Sequel[:bar] > value).first

Second, if you do make a mistake and try to provide an already interpolated string, Sequel
will raise an exception:

Foo.where("bar > #{value}").first

raises Sequel::Error, Invalid filter expression

Sequel makes you really go out of your way to be vulnerable to SQL injection. It does
this by forcing you to wrap any string you would like to use directly as SQL code using
Sequel.lit.

390 Robust Web Application Security

Code injection
Code injection, otherwise known as remote code execution, occurs when an attacker
provides executable code that is run directly by your Ruby application. Let's say you have
 a metaprogramming method for defining methods, and for performance, you use
class_eval:

class Bar

 def self.column_accessor(name)

 class_eval(<<-END, __FILE__, __LINE__+1)

 def #{name}

 columns.#{name}

 end

 END

 end

end

If there is any way for an attacker to call the Bar.column_accessor method and
provide a value for the name argument, then they can run any Ruby code they want in
the context of your application. This is worse than the other two vulnerabilities as because
once an attacker has this access, they can execute whatever SQL they want on the database
and return whatever JavaScript they want to the user.

Thankfully, these vulnerabilities are much less common. Additionally, they are generally
much easier to search for. If you search your application for the following:

•	 eval

•	 instance_eval

•	 module_eval

•	 class_eval

You can probably find every place where you are evaluating Ruby code. Make sure there
is no case where these methods can be called with user input. Consider switching any
metaprogramming that uses the previous methods with metaprogramming that uses
Class.new, Module.new, define_method, or define_singleton_method
instead, unless you really need the extra performance.

In this section, you learned about three types of injection vulnerabilities and how to avoid
them in your application. In the next section, you'll learn how to approach Ruby web
applications that need to run in high-security environments.

Approaching high-security environments 391

Approaching high-security environments
In a high-security environment, you need to take all the precautions described previously
in this chapter. What separates high-security environments from other environments is
that you generally need to go further.

In a high-security environment, you should assume that no matter what steps you take,
your application will be compromised at some point. Your job is to make this compromise
as difficult as possible for the attacker, as well as to take whatever steps you can to
mitigate the damage that an attacker can do if they can successfully compromise the
application. In this section, you'll learn the basics of the following five techniques which
can make compromise more difficult and which can mitigate the damage if compromise is
successful:

•	 Limiting database access

•	 Internal firewalling

•	 Randomizing memory layouts

•	 Limiting filesystem access

•	 Limiting system call access

Let's go through each of them in the following subsections.

Limiting database access
To limit the damage an attacker can do to the database, the best approach is to limit what
the application itself can do to the database. You can do this by running the application
using a database user with limited permissions to the database, ideally only allowing the
minimal database access necessary for the application to function.

It's fairly easy to set up separate database users, but if your application has not been
designed to deal with limited database access, it's tedious to go through the application to
find every case where it accesses the database and allow that type of access. Additionally,
in monolithic applications, you may find that this approach does not actually add
much database security, since the database user needs full access to almost all tables. To
fully benefit from limited database access, you may need to break up your monolithic
application into separate security domains and use the island chain design approach
you learned about in Chapter 16, Web Application Design Principles. If you can separate
the application into separate security domains and give each security domain only the
minimal database access it needs to function, you can significantly mitigate possible
damage.

392 Robust Web Application Security

In some cases, you may have a database user that needs partial access to a database table,
but you want to limit the type of access they have to the table. For example, you may want
to grant them access to summary information for the table, or make a specific type of
update to the table, without allowing other updates to the table. For this type of access,
it is often best to define a SECURITY DEFINER database function. With a SECURITY
DEFINER database function, the database user who creates the function has the necessary
access to the table, and programs the function to only perform a specific action on the
table, and marks the function as using SECURITY DEFINER. The database user who
creates the function then grants access to execute the function to the database user that
the application uses. When the application user calls the function, they operate with the
permissions of the user who defined the function during function execution, but once
the function returns, they lose that access. For specific types of operations, SECURITY
DEFINER database functions allow specific necessary access without elevating general
access.

Internal firewalling
With internal firewalling, you make sure your application can only access network
locations that are specifically allowed. If your application does not need to access external
network services, then it may be possible to only allow the application to receive incoming
connections and disallow the application from making any outgoing connections. If you
do need to make outgoing connections, it's best to limit those connections to specific IP
address ranges, domain names, or ports, and only allow the minimum of what is needed.

It is especially important to use internal firewalling if your application runs in an
environment that has access to other internal servers that are not accessible to the internet
in general, either directly or via a VPN. If your application is compromised, you want to
avoid it being used to attack other internal servers.

Randomizing memory layouts
When using a forking web server to serve your application, it can be beneficial to security
to use an approach where each forked process that handles requests has a unique memory
layout. When forking, the child inherits the memory layout of its parent. However, in
cases where all the following are true:

•	 An attacker can find a low-level vulnerability in your application.

•	 Successfully exploiting that vulnerability requires knowledge of the memory layout
of the application.

Approaching high-security environments 393

•	 Unsuccessful exploit attempts result in the application crashing.

•	 The parent process will respawn crashed child processes.

Then, having a child process use the same memory layout as the parent process can result
in a vulnerability. An attacker can use an attack technique called blind return-oriented
programming (BROP) to determine the possible memory layouts in the application and
construct a successful exploit.

Both Unicorn and Puma are Ruby web servers that fork child processes to handle
requests, and both are potentially vulnerable to the BROP attack technique by default.
With Unicorn, you can add the following to your Unicorn configuration file to make each
Unicorn child process use a separate exec system call after forking to generate a new
memory layout for the process:

worker_exec true

However, this approach does not allow the use of application preloading, which can result
in it taking much more memory than when application preloading is used. This is because
each worker process has a completely separate copy of the application in memory. Even
in cases where application preloading was not used, using worker_exec requires some
additional memory. However, in most high-security environments, the security benefits
outweigh the cost of the extra memory.

Limiting filesystem access
To further mitigate potential damage in the case of a compromised application, it can be
very helpful to limit what filesystem access is allowed to the application. There are a couple
of ways to go about this.

A historical way to implement some filesystem access limiting that works on most
Unix-like operating systems is to use Process.chroot, which will change the root
directory of the process to a given directory, such as the directory that contains the
application. This will prevent the application from accessing anything else on the system
other than what is under the application directory.

One issue with the Process.chroot approach is that you can only use it if you have
superuser permissions to the system. Therefore, using Process.chroot requires
starting your application as root. Then, once your application has been loaded, but before
it starts accepting requests, you should use Process.chroot to limit filesystem access,
and then drop superuser permissions and switch to the user the application runs as.

394 Robust Web Application Security

The other issue with using Process.chroot is that if you are loading any libraries
that use autoload or other forms of runtime requires, they will generally break. Worse,
they will only break when the specific path is taken to access the autoloaded constant
or trigger the other form of a runtime require. While such a breakage is fail-closed and
doesn't introduce a security issue, it's still annoying to figure out which autoload is being
attempted, as well as either working around the issue so the autoload doesn't trigger or
performing the autoload or other runtime require before calling Process.chroot.

Unfortunately, other than using Process.chroot, there are no simple ways to
implement filesystem access limiting for Ruby web applications on common operating
systems. It may be possible to do so on Linux using deep kernel knowledge and seccomp
with eBPF, but at the time of writing, it is far out of reach for Ruby web application
programmers. However, one way to do so is to use OpenBSD, an operating system known
for its security focus. OpenBSD provides a feature known as unveil, which implements
support for only allowing specific filesystem access, and there is a gem named pledge
that supports using it.

Let's say you wanted to limit filesystem access after application startup to just reading
template files from the views directory, and not allowing any other filesystem access.
Using the pledge gem, you could do the following:

require 'unveil'

Pledge.unveil('views' => 'r')

This allows access to only read files in the views directory. This prevents opening any
of the files in the views directory for writing, creating any new files under the views
directory, and opening any other files on the system. With this approach, an attacker who
can compromise the application cannot modify any files at all on the filesystem, and they
can only gather information from the files inside the views directory.

Limiting system call access
The final technique we'll cover for mitigating potential damage is to limit system call
access. Most operating system kernels have hundreds of system calls that programs can
call, and each system call adds a potential attack surface that an attacker can exploit. If you
can limit which system calls the program is allowed to use, you can reduce the possible
ways an attacker could attempt to elevate their access.

Approaching high-security environments 395

Unfortunately, similar to filesystem access limiting, there are no simple ways to implement
system call limiting for Ruby web applications on common operating systems. Thankfully,
similar to unveil for filesystem access limiting, OpenBSD provides a feature named
pledge, which is designed for limiting the allowed system calls. As you would expect, the
pledge gem supports this feature as well.

While the application is being loaded, it may need a lot of access to the system to read
files, open or create log files for writing, or set up filesystem access limiting using unveil.
However, once the application has been loaded, it may not need much access to the
system. It may still need to read files, at least the files in the views directory. It may need
network access, both to communicate with requests that come into the web server and to
communicate with the database. However, it may not need other access.

Let's say you want to limit the system calls that are allowed once your program has been
loaded to just those necessary to read files on the filesystem and make network requests.
Using the pledge gem, you could do the following:

require 'pledge'

Pledge.pledge('rpath inet unix')

If an attacker compromises the system, one of the first things they may try is writing
to a file on the system. With pledge, as soon as they try to write to a file, the program
immediately exits. Due to the design of pledge, any attempt to perform a system call
that's not allowed results in the program immediately exiting. pledge uses a fail-closed
design, and it fails closed hard. Assuming you are monitoring your application processes,
you will hopefully immediately be notified that a web server process has crashed due to a
pledge violation, and you can then determine if it is something that should be allowed,
or if it is an early warning that an attacker was able to compromise your system, at which
point you can shut the system down before any additional access is gained.

In this section, you learned about five separate techniques that can be implemented
in high-security environments to make your Ruby web application more difficult to
compromise, as well as to mitigate damage that an attacker can do if they can successfully
compromise your application.

You've now finished your journey through this book, and hopefully you've learned
a lot of valuable Ruby programming principles, which allow you to write truly polished
Ruby code. Best of luck continuing on your journey as a Ruby programmer. May Ruby
be with you.

396 Robust Web Application Security

Summary
In this chapter, you learned about many ways to implement security in your web
application.

You learned that most of the vulnerabilities in Ruby web applications are high-level
vulnerabilities, not low-level vulnerabilities. You learned that you should never trust user
input and that you should use a whitelist approach instead of a blacklist approach when
handling user input. You also learned how to implement access control at the highest level
possible and use a fail-closed design to avoid security issues. Then, you learned techniques
for avoiding script injections, SQL injections, and code injections. Finally, you learned
about high-security environments and defense-in-depth techniques that make system
compromise more difficult and mitigate possible damage in case it occurs.

With the knowledge you've gained in this chapter, you can design secure Ruby web
applications.

Questions
1.	 Why are integer overflow and underflow vulnerabilities less likely in Ruby

compared to C?

2.	 Why should you prefer whitelist security to blacklist security?

3.	 Why is conditional access control challenging when you're using Sinatra?

4.	 What response header should you use to mitigate script injection vulnerabilities?

5.	 For high-security environments where filesystem access limiting and system call
limiting are required, what's the best operating system to use when deploying Ruby
web applications?

Assessments

Chapter 1
1.	 nil and false are the only objects Ruby treats as false in conditional expressions.

2.	 No. Division is not exact if the division results in a repeating decimal.

3.	 No. Symbols represent identifiers and strings represent text or data, so they serve
different purposes.

4.	 Hash, but only slightly. Set in Ruby 3.0 is implemented internally using a hash.

5.	 Class.new and Struct.new.

Chapter 2
1.	 In most cases, yes.

2.	 The open-closed principle is almost impossible to implement in Ruby.

3.	 This depends. If it simplifies the implementation of a class the user uses, then yes.

4.	 Rarely. In most cases, you should use arrays and hashes, at least until you are
dealing with a very large amount of data.

Chapter 3
1.	 No. However, it is generally a good idea if the scope of the local variable is very

long, such as a local variable defined at the top of a long method or class definition
containing many blocks.

2.	 Because if the object is not frozen, the cached value could become invalid, showing
the previous value instead. It is possible to handle this by clearing caches when the
object is modified.

3.	 A Module or Class.

398 Assessments

4.	 Never.

5.	 Not always, but it is best to only use the built-in global variables and not add your
own global variables.

Chapter 4
1.	 The class's singleton class, or a module that is included in it (for example, via

Object#extend) or prepended to it.

2.	 Methods called most frequently should generally have shorter names.

3.	 An optional keyword argument, because using an optional positional argument will
make adding future optional positional arguments awkward.

4.	 The deprecate_public gem.

5.	 Accept *args and pass *args to the other method. After method definition, mark
the method using ruby2_keywords if supported.

Chapter 5
1.	 Better performance, and it can be simpler if you always remember to check for

errors.

2.	 Unlike using return values, you must handle the error via an exception handler,
so you won't silently ignore errors.

3.	 In general, most errors that are transient will happen again if retried immediately.
By waiting and then retrying, you are more likely to be successful.

4.	 When you need to handle a particular type of error differently than other raised
exceptions that currently use the same exception class.

Chapter 6
1.	 No.

2.	 AllCops:DisabledByDefault.

3.	 If there was a better approach that was within the arbitrary limit, it would have
already been used.

4.	 ruby -wc.

5.	 When it negatively impacts the understandability of your code.

Chapter 7 399

Chapter 7
1.	 You should focus on how the user will use your library.

2.	 In most cases, it does not make sense. You should not increase library size and
complexity until you need to.

3.	 It increases cognitive complexity for the user of the library.

Chapter 8
1.	 Using extend to include the module in the object's singleton class.

2.	 It allows the user to only load the features they need, so they don't pay a
performance or memory cost for features they don't use. Additionally, it generally
makes maintenance easier for the library's maintainer.

3.	 It ensures that no code attempts to modify the core classes while the application
is running.

Chapter 9
1.	 When it makes the code more difficult to understand, instead of easier to

understand.

2.	 When you need to do metaprogramming in a singleton class.

3.	 Only when you must for performance reasons.

4.	 Only when the instances of the class need to respond to any method or the number
of methods they must respond to is very large.

Chapter 10
1.	 It simplifies configuration for both the user and the maintainer by centralizing all

configuration aspects in a single block.

2.	 By checking the arity of the block, and if the block accepts an argument, yielding the
DSL object. Otherwise, using instance_exec to evaluate the block in the context
of the DSL object.

3.	 Implementing a DSL purely to avoid code verbosity is the most likely to cause
problems and the least likely to add value.

400 Assessments

Chapter 11
1.	 ruby -wc filename.

2.	 In general, using behavior-driven development is a waste of time if the
programmers are writing the specifications, since the programmers could more
easily write the executable test code directly, compared to writing the specifications
and maintaining the code that converts the specification to executable test code.

3.	 Not always, it depends on the type of abstraction. Moving setup code to methods
and using enumerables to define multiple test methods are both good uses of
abstractions in test code.

4.	 Model testing is in general more reliable and less likely to result in false positives
and false negatives compared to unit testing.

5.	 Nothing. But less than 100% code coverage means some code is not being tested
at all.

Chapter 12
1.	 To simplify the library, to improve performance, and to add extensibility points.

There are other good answers, such as being forced to deal with changes forced by
external dependencies or to clean up buggy code.

2.	 A thorough test suite that you can rely on.

3.	 When the multiple methods being extracted are called in separate places, and one
extracted method is not the only place the other extracted method is called.

4.	 The cowboy approach of refactoring while implementing the feature. However, this
approach is also the riskiest.

5.	 uplevel: 1 to show the caller's location and category: :deprecated to
flag the warning as a deprecation warning.

Chapter 13
1.	 The object pool pattern.

2.	 Use autoload to ensure the constant isn't loaded and evaluated until it is
referenced.

3.	 Whenever you want to treat the null object differently than the real object, or when
performance is critical.

Chapter 14 401

4.	 For a large number of different types, the hash approach will perform better.

5.	 The adapter pattern wraps another object, while the strategy pattern does not. Both
are designed to provide a unified interface to a different implementation.

Chapter 14
1.	 Make sure you really need to optimize. Only optimize after you have identified

a bottleneck.

2.	 First, create a use case, then profile it to determine why it is slow, then create
a benchmark to determine baseline performance.

3.	 Move as much code as possible out of the class's initialize method.

4.	 The best place to start optimizing if profiling doesn't help is to try to avoid object
allocation as much as possible.

Chapter 15
1.	 Because data is in general far more important than code and lasts longer than code.

2.	 Only when you absolutely must for performance reasons.

3.	 There are many good answers to this question, but the most common is to enforce
data consistency in related tables.

4.	 ActiveRecord.

5.	 Sequel.

Chapter 16
1.	 A server-side development approach.

2.	 Roda.

3.	 When you can use information from earlier parts of the path during routing and/or
request handling.

4.	 No.

402 Assessments

Chapter 17
1.	 Ruby has an Integer type that supports integers of arbitrary sizes.

2.	 Blacklist security is a fail-open design that is likely to lead to future security
vulnerabilities, while whitelist security is a fail-closed design.

3.	 Because Sinatra does not offer a simple way to implement a fail-closed design.

4.	 The Content-Security-Policy header, with a strict script_src setting
that does not allow inline JavaScript.

5.	 OpenBSD, since the pledge gem can be used to enforce both limited filesystem
access and limited system call access.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

404 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Becoming an Agile Software Architect

Rajesh R V

ISBN: 978-1-80056-384-1

•	 Acquire clarity on the duties of architects in Agile development

•	 Understand architectural styles such as domain-driven design and microservices

•	 Identify the pitfalls of traditional architecture and learn how to develop solutions

•	 Understand the principles of value and data-driven architecture

•	 Discover DevOps and continuous delivery from an architect's perspective

https://www.packtpub.com/product/becoming-an-agile-software-architect/9781800563841

Why subscribe? 405

•	 Adopt Lean-Agile documentation and governance

•	 Develop a set of personal and interpersonal qualities

•	 Find out how to lead the transformation to achieve organization-wide agility

Supercharge Your Applications with GraalVM

A B Vijay Kumar

ISBN: 978-1-80056-490-9

•	 Gain a solid understanding of GraalVM and how it works under the hood

•	 Work with GraalVM's high performance optimizing compiler and see how it can be
used in both JIT (just-in-time) and AOT (ahead-of-time) modes

•	 Get to grips with the various optimizations that GraalVM performs at runtime

•	 Use advanced tools to analyze and diagnose performance issues in the code

•	 Compile, embed, run, and interoperate between languages using Truffle on
GraalVM

•	 Build optimum microservices using popular frameworks such as Micronaut and
Quarkus to create cloud-native applications

https://www.packtpub.com/product/supercharge-your-applications-with-graalvm/9781800564909

406 Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com
http://authors.packtpub.com

Index

A
abstraction

cons 232-236
pros 232-236

acceptance testing 278
Active Record 362
adapter and strategy patterns

implementing, in Ruby 329-332
application

structuring, with island chain
approach 376, 377

structuring, with microservices
approach 376, 377

structuring, with monolith
approach 376, 377

arbitrary limits
using, consequences 173-176

arrays
using 16

B
behavior-driven development

(BDD) 271, 276
BigDecimal 9, 11, 12

blind return-oriented programming
(BROP) 393

block-based metaprogramming 241
branch coverage 281, 282

C
circuit breaker 159, 160
circuits

breaking 159-161
class

extracting 293-300
simple, versus complex 42-46

classic exponential backoff algorithm
implementing 158

class instance variables
versus constants 79, 80

class methods 94-97
class variables

replacement, with class instance
variables using copy to
subclass approach 88, 89

replacement, with class instance
variables using superclass
lookup approach 86-88

408 Index

replacing 81-83
replacing, with constants 84, 85

client-side design
versus server-side design 368-370

code
handling 349-352

code coverage 281-283
code formatting

checking, with Ruby 177, 178
importance, realizing 179
perspectives, recognizing 168-170

code injection 390
code optimization

need for 336, 337
configuration DSLs 252-254
constants

about 74
naming considerations 80, 81
removing, from library 304, 305
scope issues, handling 75-79
used, for replacing class variables 84, 85
versus class instance variables 79, 80

cops 172
copy to subclass approach

used, for replacing class variables with
class instance variables 88, 89

core classes
using 4

core exception classes
using 164, 165

cowboy approach 300
cross-site scripting (XSS) 387
custom class

creating, scenario 26-28
custom data structures

usage scenario 46, 47

D
database

design principles 358-360
handling 363-365
selecting 357
significance 360-362

database design
denormalizing, considerations 358, 359
need for 356, 357

delegation
handling 133-135

dependency inversion principle 38-41
design patterns

about 308
object pool design pattern 308
private class data design

pattern 310, 311
prototype design pattern 309, 310
proxy design pattern 312, 313

dictionary 140
distributed Ruby 252
domain-specific languages (DSLs)

designing 252
implementing 259-263
need for 263, 264
used, for making complex

changes 254-256
used, for reducing verbosity

of code 256, 257
DRY (Don't Repeat Yourself) method 234

E
eBPF 394
errors

handling, with exceptions 145-149
handling, with return values 140-144

Index 409

eval-based approach 243
exception class hierarchies

designing 161-164
exceptions

performance considerations 149-151
extensibility features

using 204-207
Extract, Transform, Load (ETL)

framework 189

F
fail-closed design principle 147
fail-open design principle 147
false objects

uses 5-7
floats 9, 10

G
globally frozen 227-229
global variables

avoiding 89-91
Grape 372
graph database 357

H
hashes

using 16
heap pages 308
high-security environments

approaching 391
database access, limiting 391, 392
filesystem access, limiting 393, 394
internal firewalling 392
memory layouts, randomizing 392, 393
system call access, limiting 394, 395

I
injection vulnerabilities

avoiding 387
injection vulnerabilities, types

code injection 390
script injection 387, 388
SQL injection 389

in-memory database
implementing 16-20

instance methods 94-97
instance variables

naming considerations 73
performance, increasing 66-70
scope issues, handling 71-73
using 65

integers 8
integration testing 278
interface segregation principle 38
island chain approach

about 376
used, for structuring

application 376, 377

K
key-value database 357

L
lambda 155
lazy initialization 314
libraries

as domain-specific languages
(DSLs) 257-259

library
constants, removing from 304, 305
features, removing from 302

410 Index

methods, removing from 302-304
naming 184
size, determining 189, 190

line coverage 281
Liskov substitution principle 35-37
locally mutable design 227-229
local variable

naming considerations 61-64
performance, increasing 50-55
scope gate issues, handling 57-61
unsafe optimizations, avoiding 55-57
using 50

M
Matrix 46
Merb 344
metaprogramming methods 241-246
method arguments, types

block arguments 123-128
keyword arguments 112-123
optional positional arguments 105-108
positional arguments 101-105
rest arguments 108-112
using 100, 101

method coverage 282
method design

complexity trade-offs, handling 191
complex methods 196-200
flexible methods 192-195

methodical approach 301
method_missing

using 246-248
methods

extracting 289-293
removing, from library 302-304

method visibility
importance 129-131
mistakes, fixing 131-133

microservices approach
used, for structuring

application 376, 377
misuse resistance principle 147
model errors

handling 363-365
model layer

selecting 362, 363
model testing 278
monolith approach

used, for structuring
application 376, 377

MySQL 357

N
naming methods

defining 99, 100
importance 98, 99

nil objects
uses 5-7

no code is faster than no code
principle 344-348

null object pattern
using, in Ruby 315-324

numeric types
about 8
BigDecimal 9-12
floats 9, 10
integers 8
rationals 10

Index 411

O
object

delegating 135-137
object pool design pattern 308
OpenBSD 394
open-closed principle 31-35

P
Perl 169
permanent errors 162
plugin systems

changes, handling to classes 214-216
classes, modifying 216-218
configuring 224-226
dependencies, supporting 218, 219
designing 207-214
loading, supporting 219, 220
subclasses, supporting 221-224

polymorphic associations 360
Portable Document Formats (PDFs) 189
PostgreSQL 357
private class data design pattern 310, 311
proc 155
profiling libraries 337-344
prototype design pattern 309, 310
proxy design pattern 312, 313

R
Rack 185
Rake 185
rationals 10
redundancy

eliminating 236-241

refactoring
learning 287, 288
need for 286, 287
used, for adding features 300, 301

relational database 357
remote code execution 390
return values

errors, handling with 140-144
using, to signal errors 143

Roda 372, 373
RuboCop

about 172
consistency, enforcing 172

Ruby
about 185
adapter and strategy patterns,

implementing 329-332
globally frozen 227-229
locally mutable design 227-229
null object pattern, using 315-324
singleton design pattern,

implementing 313-315
testing, criticality 268-270
used, for checking code

formatting 177, 178
versus Python 141

Ruby heap 308
Ruby on Rails 370, 371
Ruby refactoring techniques

class, extracting 293-300
implementing 289
method, extracting 289-293

Ruby web applications
access control, performing 384-387
input 381-383
security issues 380

412 Index

S
schemaless document database 357
script injection 387, 388
semantic inconsistency 170
Sequel 362
server-side design

versus client-side design 368-370
sets

using 16
Shippers Pack Urgently (SPU) 293
Sinatra 258, 371, 372
single-responsibility principle 29-31
singleton design pattern

implementing, in Ruby 313-315
SOLID principles

dependency inversion principle 38-41
handling 29
interface segregation principle 38
Liskov substitution principle 35-37
open-closed principle 31-35
single-responsibility principle 29-31

SQL injection 389
SQLite 357
Struct

working with 21-23
superclass lookup approach

about 86
used, for replacing class variables with

class instance variables 86-88
symbols

versus strings 12-15
syntactic consistency

affect, on maintainability 170-172
syntax checking mode 178

T
test after development (TAD) 271-275
test complexity

considering 276-278
test-driven development (TDD) 271-275
testing

approaches 270-276
criticality, in Ruby 268-270
levels 278, 280

thundering herd 158
time series database 357
transient errors

about 162
advanced retrying 156, 157
retrying 151-155

true objects
uses 5-7

U
unit testing 278
URL path

designing 373-376
use-after-free (UAF) 380
user experience

about 184
interface 186-188
library 186
library naming 184-186

V
verbose warnings 178
visitor pattern

applying 325-328

Index 413

W
web framework

deciding 370
Grape 372
Roda 372, 373
Ruby on Rails 370, 371
Sinatra 371, 372

whitelisting approach 245

X
xUnit principles 185

	Cover
	Title Page
	Copyright and Credits
	Dedicated
	Contributors
	Table of Contents
	Preface
	Section 1:
Fundamental Ruby Programming Principles
	Chapter 1: Getting the Most out of Core Classes
	Technical requirements
	Learning when to use core classes
	Best uses for true, false, and nil objects
	Different numeric types for different needs
	Understanding how symbols differ from strings
	Learning how best to use arrays, hashes, and sets
	Implementing an in-memory database

	Working with Struct – one of the underappreciated core classes
	Summary
	Questions
	Further reading

	Chapter 2: Designing Useful Custom Classes
	Technical requirements
	Learning when to create a custom class
	Handling trade-offs in SOLID design
	The single-responsibility principle
	The open-closed principle
	The Liskov substitution principle
	The interface segregation principle
	The dependency inversion principle

	Deciding on larger classes or more classes
	Learning when to use custom data structures
	Summary
	Questions

	Chapter 3: Proper Variable Usage
	Technical requirements
	Using Ruby's favorite variable type – the local variable
	Increasing performance by adding local variables
	Avoiding unsafe optimizations
	Handling scope gate issues
	Naming considerations with local variables

	Learning how best to use instance variables
	Increasing performance with instance variables
	Handling scope issues with instance variables
	Naming considerations for instance variables

	Understanding how constants are just a type of variable
	Handling scope issues with constants
	Visibility differences between constants and class instance variables
	Naming considerations with constants

	Replacing class variables
	Replacing class variables with constants
	Replacing class variables with class instance variables using the superclass lookup approach
	Replacing class variables with class instance variables using the copy to subclass approach

	Avoiding global variables, most of the time
	Summary
	Questions
	Further reading

	Chapter 4: Methods and Their Arguments
	Technical requirements
	Understanding that there are no class methods, only instance methods
	Naming methods
	Special method names

	Using the many types of method arguments
	Positional arguments
	Optional positional arguments
	Rest arguments
	Keyword arguments
	Block arguments

	Learning about the importance of method visibility
	Fixing visibility mistakes

	Handling delegation
	Delegating to other objects

	Summary
	Questions

	Chapter 5: Handling Errors
	Technical requirements
	Handling errors with return values
	Handling errors with exceptions
	Considering performance when using exceptions

	Retrying transient errors
	Understanding more advanced retrying
	Breaking circuits

	Designing exception class hierarchies
	Using core exception classes

	Summary
	Questions

	Chapter 6: Formatting Code for Easy Reading
	Technical requirements
	Recognizing different perspectives of code formatting
	Learning how syntactic consistency affects maintainability
	Enforcing consistency with RuboCop

	Understanding the consequences of using arbitrary limits
	Checking basic code formatting with Ruby
	Realizing the actual importance of code formatting
	Summary
	Questions

	Section 2:
Ruby Library Programming Principles
	Chapter 7: Designing Your Library
	Technical requirements
	Focusing on the user experience
	Library naming
	Library first impressions
	The simplest possible interface

	Determining the appropriate size for your library
	Handling complexity trade-offs during method design
	Fewer but more complex methods

	Summary
	Questions

	Chapter 8: Designing for Extensibility
	Technical requirements
	Using Ruby's extensibility features
	Designing plugin systems
	Designing a basic plugin system
	Handling changes to classes
	Plugin modifications to classes
	Supporting plugin dependencies
	Making plugin loading easier
	Handling subclasses in plugin systems
	Configuring plugins

	Understanding globally frozen, locally mutable design
	Summary
	Questions

	Chapter 9: Metaprogramming and When to Use It
	Technical requirements
	Learning the pros and cons of abstraction
	Eliminating redundancy
	Understanding different ways of metaprogramming methods
	Using method_missing judiciously
	Summary
	Questions

	Chapter 10: Designing Useful Domain-Specific Languages
	Technical requirements
	Designing your DSL
	Configuration DSLs
	DSLs for making specific changes
	DSLs for reducing the verbosity of code
	Libraries implemented as DSLs

	Implementing your DSL
	Learning when to use a DSL
	Summary
	Questions

	Chapter 11: Testing to Ensure Your Code Works
	Technical requirements
	Understanding why testing is so critical
in Ruby
	Learning different approaches to testing
	Considering test complexity
	Understanding the many levels of testing
	Realizing that 100% coverage means nothing
	Summary
	Questions

	Chapter 12: Handling Change
	Technical requirements
	Considering reasons to refactor
	Learning about the refactoring process
	Implementing the most common Ruby refactoring techniques
	Extracting a method
	Extracting a class

	Refactoring to add features
	Removing features properly
	Removing methods
	Removing constants

	Summary
	Questions

	Chapter 13: Using Common Design Patterns
	Technical requirements
	Learning about the many design patterns that are built into Ruby
	The object pool design pattern
	The prototype design pattern
	The private class data design pattern
	The proxy design pattern

	Handling cases where there can be only one
	Dealing with nothing
	Visiting objects
	Adapting and strategizing
	Summary
	Questions

	Chapter 14: Optimizing Your Library
	Technical requirements
	Understanding that you probably don't need to optimize code
	Profiling first, optimizing second
	Understanding that no code is faster than no code
	Handling code where everything is slow
	Summary
	Questions

	Section 3:
Ruby Web Programming Principles
	Chapter 15: The Database Is Key
	Technical requirements
	Learning why database design is so important
	Deciding on a database to use
	Understanding the most important database design principles
	Considerations when denormalizing your database design
	Other database design principles

	Treating the database as not just dumb storage
	Choosing the model layer
	Handling database and model errors
	Summary
	Further reading
	Questions

	Chapter 16: Web Application Design Principles
	Technical requirements
	Choosing between client-side and server-side design
	Deciding on a web framework
	Ruby on Rails
	Sinatra
	Grape
	Roda

	Designing URL paths
	Structuring with monoliths, microservices, and island chains
	Summary
	Questions

	Chapter 17: Robust Web Application Security
	Technical requirements
	Understanding that most security issues in Ruby web applications are high level
	Never trust input
	Performing access control at the highest level possible
	Avoiding injection
	Script injection
	SQL injection
	Code injection

	Approaching high-security environments
	Limiting database access
	Internal firewalling
	Randomizing memory layouts
	Limiting filesystem access
	Limiting system call access

	Summary
	Questions

	Assessments
	About Packt
	Other Books You May Enjoy
	Index

