

Applied
Computational
Thinking with
Python

Design algorithmic solutions for complex and
challenging real-world problems

Sofía De Jesús

Dayrene Martinez

BIRMINGHAM—MUMBAI

Applied Computational Thinking with Python
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have been
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Alok Dhuri
Senior Editor: Rohit Singh
Content Development Editor: Rosal Colaco
Technical Editor: Pradeep Sahu
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Shankar Kalbhor

First published: November 2020

Production reference: 1261120

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83921-943-6

www.packt.com

http://www.packt.com

To my parents, Elia and Miguel, and to my siblings, Rebeca, Graciela, and
Miguelito, without whom I wouldn't be who I am or have been able to have

the experiences that got me here. I love you all. And to Kristen McKeen,
Will Murchison, Teresa Caro, and Joel Socarrás, friends without whom

I couldn't survive this life.

- Sofía De Jesús

To my loving mother, Xiomara Garcia, for the everlasting support and
love, and to my siblings, Karlyn and Junior Martinez, for being great role

models—you guys inspire me every day. And to Samantha Tolentino
Benitez, Noemi Reyes, Rosemary Vergara, Pedro Peralta, Charles Ozuna,

and Gabriel Alatorre for being the best listeners when I needed it most.
I am grateful for all of you.

- Dayrene Martinez

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

Contributors

About the authors
Sofía De Jesús is a computational thinking teacher with a degree from the University
of Puerto Rico with a focus on math. She has a master's degree from the University of
Dayton. Her experience in education and development spans two decades. She has worked
with clients to develop solutions in multiple programming languages. As a teacher, Sofía
helps students incorporate the philosophy of computational thinking in courses such as
game design, circuits, Python, web design, and robotics. She likes to play video games and
spend time with her 11 year-old Yorkie, King Kong. Sofía also enjoys creating materials,
small furniture, and jewelry using CNC machines and laser cutters. She enjoys spending
as much time in Puerto Rico as work and life permits.

I started this book before the world changed in 2020. If it wasn't for
my family, my co-author, Dayrene, Gregg Moses, Emily Joyce, Princess

Harrison, Brooke Marcy, and so many others who stepped up and held me
up, this book would not have been possible. Thank you.

Dayrene Martinez is a systems engineer in the defense industry where she develops
neural networks embedded in real-time software to aid in decision making for aerospace
vehicles. She received a B.S. in electrical engineering from the New Jersey Institute of
Technology (NJIT). Dayrene is passionate about STEM education and spends her free
time in a voluntary capacity inspiring the next generation of engineers. She is an active
supporter and keynote speaker for the non-profit organization Latinas in STEM. She
teaches circuitry, robotic design, and software engineering to middle and high school
students.

I would like to thank my co-author, Sofía, for helping me accomplish one
of my lifetime goals—publishing a book. I would also like to thank Colin

Pouchet and Scott Terhorst for your encouragement and guidance at work.
I would also like to thank Greg Wagner, my boss, for stimulating my interest

in machine learning by giving me challenging work, and Jaz Carvajal,
without whom I would not even be an engineer. Thank you for being the

best and most supportive mentor.

About the reviewer
Dr. Gowrishankar S. is currently working as associate professor in the department
of computer science and engineering at the Dr. Ambedkar Institute of Technology,
Bengaluru, Karnataka, India. His current research interests are mainly focused on data
science, including its technical aspects, as well as its applications and implications.
Specifically, he is interested in the applications of machine learning, data mining, and big
data analytics in healthcare.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Preface

Section 1:
Introduction to Computational Thinking

1
Fundamentals of Computer Science

Technical requirements 4
Introduction to computer science 4
Learning about computers and the
binary system 4

Understanding theoretical
computer science 8
Algorithms 8
Coding theory 10
Computational biology 13
Data structures 13
Information theory 14
Automata theory 16
Formal language theory 16
Symbolic computation 16
Computational geometry 17

Computational number theory 17

Learning about a system's
software 18
Operating systems 19
Application software 19

Understanding computing 20
Architecture 20
Programming languages 22

Learning about data types and
structures 24
Data types 24
Data structures 25

Summary 26

Table of Contents

2
Elements of Computational Thinking

Technical requirements 28
Understanding computational
thinking 28
Problem 1 - Conditions 30

Decomposing problems 33
Recognizing patterns 33

Problem 2 - Mathematical algorithms
and generalization 34

Generalizing patterns 34
Designing algorithms 35
Additional problems 38
Problem 2 - Children's soccer party 39
Problem 3 - Savings and interest 40

Summary 43

3
Understanding Algorithms and Algorithmic Thinking

Technical requirements 46
Defining algorithms in depth 46
Algorithms should be clear and
unambiguous 47
Algorithms should have inputs and
outputs that are well defined 47
Algorithms should have finiteness 48
Algorithms have to be feasible 50
Algorithms are language-independent 50

Designing algorithms 50
Problem 1 – An office lunch 51
Problem 2 – A catering company 54

Analyzing algorithms 56
Algorithm analysis 1 – States and capitals 57
Algorithm analysis 2 – Terminating or
not terminating? 60

Summary 61

4
Understanding Logical Reasoning

Technical requirements 64
Understanding the importance
of logical reasoning 64
Applying inductive reasoning 65
Applying deductive reasoning 69

Using Boolean logic and
operators 76

The and operator 78
The or operator 79
The not operator 80

Identifying logic errors 81
Summary 85

5
Exploring Problem Analysis

Technical requirements 88
Understanding the problem
definitions 88
Problem 5A – Building an online store 88

Learning to decompose
problems 90

Converting the flowchart into an
algorithm 92

Analyzing problems 99
Problem 5B – Analyzing a simple game
problem 100

Summary 107

6
Designing Solutions and Solution Processes

Technical requirements 110
Designing solutions 110
Problem 1 - A marketing survey 111

Diagramming solutions 112

Creating solutions 117
Problem 2 - Pizza order 118
Problem 3 - Delays and Python 122

Summary 125

7
Identifying Challenges within Solutions

Technical requirements 128
Identifying errors in algorithm
design 128
Syntax errors 129
Errors in logic 133

Debugging algorithms 136

Comparing solutions 139
Problem 1 - Printing even numbers 140

Refining and redefining
solutions 144
Summary 146

Section 2:
Applying Python and Computational
Thinking

8
Introduction to Python

Technical requirements 150
Introducing Python 150
Mathematical built-in functions 151

Working with dictionaries and
lists 153
Defining and using dictionaries 154
Defining and using lists 157

Using variables and functions 164
Variables in Python 164
Working with functions 166

Learning about files, data, and
iteration 169

Handling files in Python 169
Data in Python 171
Using iteration in algorithms 173

Using object-oriented
programming 175
Problem 1 - Creating a book
library 178
Problem 2 - Organizing
information 180
Problem 3 - Loops and math 181
Using inheritance 182

Summary 184

9
Understanding Input and Output to Design a Solution
Algorithm

Technical requirements 186
Defining input and output 186
Understanding input and
output in computational
thinking 190

Problem 1 – Building a Caesar cipher 191
Problem 2 – Finding maximums 193
Problem 3 – Building a guessing game 194

Summary 198

10
Control Flow

Technical requirements 200
Defining control flow and its
tools 200
Using if, for, and range() and
other control flow statements 201
Using nested if statements 201

Using for loops and range 205

Using other loops and
conditionals 208
Revisiting functions 212
Summary 217

11
Using Computational Thinking and Python in Simple
Challenges

Technical requirements 220
Defining the problem and
Python 220
Decomposing the problem and using
Python functionalities 221

Generalizing the problem and
planning Python algorithms 228
Designing and testing the
algorithm 232
Summary 236

Section 3:
Data Processing, Analysis, and Applications
Using Computational Thinking and Python

12
Using Python in Experimental and Data Analysis Problems

Technical requirements 240
Defining experimental data 240
Using data libraries in Python 242
Installing libraries 243
Using NumPy and pandas 245
Using Matplotlib 247

Understanding data analysis
with Python 249

Using additional libraries for
plotting and analysis 255
Using the Seaborn library 255
Using the SciPy library 258
Using the Scikit-Learn library 259

Summary 260

13
Using Classification and Clusters

Technical requirements 261
Data training and testing 262
Classifying data example 266
Using the Scikit-Learn library 271
Defining optimization models 275

Implementing data clustering 276
Using the BIRCH algorithm 278
Using the K-means clustering algorithm 280

Summary 281

14
Using Computational Thinking and Python in Statistical
Analysis

Technical requirements 284
Defining the problem and
Python data selection 284
Defining pandas 285
Determining when to use pandas 286

Preprocessing data 290
Data cleaning 290
Transforming data 296

Reducing data 296

Processing, analyzing, and
summarizing data using
visualizations 297
Processing data 298
Analyzing and summarizing data 299
Using data visualization 302

Summary 309

15
Applied Computational Thinking Problems

Technical requirements 312
Problem 1 – Using Python to
analyze historical speeches 312
Problem 2 – Using Python to
write stories 318
Defining, decomposing, and planning a
story 319

Problem 3 – Using Python to
calculate text readability 321

Problem 4 – Using Python to
find most efficient route 323
Defining the problem (TSP) 323
Recognizing the pattern (TSP) 324
Generalizing (TSP) 324
Designing the algorithm (TSP) 324

Problem 5 – Using Python for
cryptography 329
Defining the problem (cryptography) 329
Recognizing the pattern (cryptography) 329

Generalizing (cryptography) 329
Designing the algorithm (cryptography) 329

Problem 6 – Using Python in
cybersecurity 332
Problem 7 – Using Python to
create a chatbot 336
Summary 344

16
Advanced Applied Computational Thinking Problems

Technical requirements 346
Problem 1 – Using Python to
create tessellations 346
Problem 2 – Using Python in
biological data analysis 351
Problem 3 – Using Python
to analyze data for specific
populations 354
Defining the specific problem to
analyze and identify the population 355

Problem 4 – Using Python to
create models of housing data 358
Defining the problem 358

Algorithm and visual representations
of data 359

Problem 5 – Using Python to
create electric field lines 362
Problem 6 – Using Python to
analyze genetic data 367
Problem 7 – Using Python to
analyze stocks 371
Problem 8 – Using Python to
create
a convolutional neural network
(CNN) 377
Summary 382

Other Books You May Enjoy
Index

Preface
Applied Computational Thinking with Python provides a hands-on approach to
implementation and associated methodologies that will have you up and running
and productive in no time. Developers working with Python will be able to put their
knowledge to work with this practical guide using the computational thinking method
for problem solving.

This book will help you to develop logical processing and algorithmic thinking while
solving real-world problems across a wide range of domains. It's an essential skill that you
should possess to keep ahead of the curve in this modern era of information technology.
Developers can apply their knowledge of computational thinking to practice solving
problems in multiple areas, including economics, mathematics, and artificial intelligence.

The book begins by helping you get to grips with decomposition, pattern recognition,
pattern generalization and abstraction, and algorithm design, along with teaching
you how to apply these elements practically while designing solutions for challenging
problems.

We'll find out how to use decomposition for solving problems through visual
representation. We'll also employ pattern generalization and abstraction for designing
solutions and building the analytical skills required to assess algorithmic solutions.
We'll also use computational thinking with Python for statistical analyses.

We will understand the input and output requirements in terms of designing algorithmic
solutions, and use computational thinking to solve data processing problems.
We'll identify errors in logical processing to refine your solution design and apply
computational thinking in various domains, such as cryptography, economics, and
machine learning.

You'll then learn about the various techniques involved in problem analysis, logical
reasoning, algorithm design, classification and clusters, data analysis, and modeling,
and understand how computational thinking elements can be used together with these
aspects to design solutions.

x Preface

We'll also develop logical reasoning and problem-solving skills that will help you tackle
complex problems. We'll also explore core computer science concepts and important
computational thinking elements using practical examples and find out how to identify
the algorithmic solution that is best-suited to your problem.

Toward the end, you will discover how to identify pitfalls in the solution design process
and how to choose the right functionalities to create the best possible algorithmic
solutions.

By the end of this algorithm book, you will have gained the confidence to apply
computational thinking techniques to software development.

Who this book is for
This book is for students, developers, and professionals looking to develop
problem-solving skills and tactics involved in writing or debugging software
programs and applications. Familiarity with Python programming is required.

What this book covers
Chapter 1, Fundamentals of Computer Science, helps you learn about the fundamental
elements of computer science, including theory, design, computational processes and
systems, and computers. The focus of this chapter will be on the software elements of
computer science.

Chapter 2, Elements of Computational Thinking, explains each of the elements of
computational thinking—decomposition, pattern recognition, pattern generalization and
abstraction, and algorithm design—and how the process of computational thinking is not
linear. Rather, a developer can go back through some of these elements at all stages of the
algorithm design process until a solution for a particular problem is reached. This chapter
will include some short, relevant problems that are used to demonstrate the use of the
elements of computational thinking to arrive at the algorithm.

Chapter 3, Understanding Algorithms and Algorithmic Thinking, provides you with
an introduction to algorithms and their definition. You will also review some algorithms
to help you develop the analysis skills necessary when assessing algorithms.

Chapter 4, Understanding Logical Reasoning, explores logical reasoning processes such
as conditional statements, algorithmic reasoning, and Boolean logic. Throughout the
chapter, you will learn basic and intermediate logic processing skills through real and
relevant problem analysis.

Preface xi

Chapter 5, Exploring Problem Analysis, explores topics in problem analysis, focusing
on problem definition, decomposition, and analysis. In order to practice and further
understand the first element of computational thinking, decomposition, you will be
presented with real and relevant problems. You will then be able to define and decompose
the problem into parts, such as identifying input and output, and additional relevant
information needed to begin planning solutions for the problems presented.

Chapter 6, Designing Solutions and Solution Processes, gives you an opportunity to design
solutions to multiple problems using previously learned content in the computational
thinking process and begin to incorporate logical processing to create a visual
representation of the decision process for the solution. Visual representations include
diagrams, flow charts, and other helpful processes.

Chapter 7, Identifying Challenges within Solutions, provides the opportunity to practice
identifying some of the common errors and/or better possible solutions for an existing
problem. While most problems can be solved with a multitude of algorithms that address
the needs of the problem, some solutions are best suited for that particular problem. The
goal of this chapter is to introduce you to the identification of some pitfalls in the solution
design process.

Chapter 8, Introduction to Python, introduces you to basic Python commands and
functionalities while applying them to problems. Using the elements of computational
thinking, you will be able to design solutions by incorporating the concepts learned
earlier.

Chapter 9, Understanding Input and Output to Design a Solution Algorithm, helps you to
assess problems to identify the input and output needed in order to design and implement
a solution algorithm for the problems.

Chapter 10, Control Flow, helps you to learn more about conditional statements and how
to work with for and while loops when solving problems using computational thinking
and the Python programming language. You will apply the logical processing learned
previously to create Python algorithms when solving problems.

Chapter 11, Using Computational Thinking and Python in Simple Challenges, helps you
apply the knowledge acquired previously to complete the computational thinking process
when solving challenges in multiple disciplines, using examples that are real and relevant,
in order to design the best possible algorithms for each scenario.

Chapter 12, Using Python in Experimental and Data Analysis Problems, explains how to
utilize Python capabilities to solve problems that involve experimental data and data
processing. The computational thinking elements will be used to solve real and relevant
problems using advanced functionalities.

xii Preface

Chapter 13, Using Classification and Clusters, covers classification and clusters. You will
use Pandas, Scikit-Learn, and other packages to create training and testing models, and
learn some basic definitions for use in large data analysis, such as machine learning and
neural network models.

Chapter 14, Using Computational Thinking and Python in Statistical Analysis, dives
into further topics relating to statistical analysis, such as importing data, indexing, and
preprocessing data. You will then use data visualizations to make decisions on what
variables to explore for further analysis.

Chapter 15, Applied Computational Thinking Problems, helps you to work through
multiple problems that combine topics from each of the previous chapters in order to
solve a problem and design an algorithm in Python. You will use the computational
thinking elements to determine what functionalities are necessary in order to design
models and create solutions for problems in linguistics, cryptography, and more.

Chapter 16, Advanced Applied Computational Thinking Problems, works through
additional applied problems in a variety of areas, including geometric tessellations,
creating models of housing data, creating electric fields, analyzing genetic data, analyzing
stocks, creating a convolutional neural network (CNN), and more. You will use the
computational thinking elements to solve problems and create different figures and visual
representations for your problems and datasets.

To get the most out of this book
You will need to have Python 3.9 installed on your computer in order to run the codes.
All code examples have been tested on a Windows operating system using Python 3.9 and
should run in subsequent releases. All code has also been tested using the Anaconda virtual
environment.

Additional libraries and packages used in this book include the following:

• NumPy

• Scikit-Learn

• TensorFlow/Keras

• Matplotlib

• Seaborn

Preface xiii

• Cairos

• NLTK

• Pandas

If you would like to run the code using a Spyder environment or Jupyter notebook, you can
install Anaconda, an environment manager for Python and R programming languages.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Applied-Computational-Thinking-
with-Python. In case there's an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781839219436_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Finally, we ask the program to analyze the text using the
Readability function. Notice that we saved that to r."

A block of code is set as follows:

def encrypt(message, key):

 encryptedM = ''

 for letts in message:

https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781839219436_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781839219436_ColorImages.pdf

xiv Preface

 if letts in LETTERS:

 num = LETTERS.find(letts)

 num += key

 encryptedM += LETTERS[num]

 return encryptedM

Any command-line input or output is written as follows:

There once was a citizen in the town of Narnia, whose name was
Malena. Malena loved to hang with their trusty dog, King Kong.

You could always see them strolling through the market in the
morning, wearing their favorite blue attire.

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"As you can see from the preceding screenshot, the deaths column continues to rise,
as does the number of cases, which we will take a look at a little later in this problem."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com

Preface xv

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://packt.com.

Section 1:
Introduction to

Computational Thinking

In this world that we live in, we interact with code without realizing it constantly
throughout our day. When we search for something online, when we use our smartphone,
when we use our fitness trackers or smartwatches, and so much more, there are algorithms
involved. Even our cars have computers that we interact with, some of us daily. We're
going to look at what is behind programming and designing algorithms, starting with
some of the basic fundamentals of computer science, looking at some applications of
computational thinking and algorithm designs with the Python programming language.

In this section, you will gain a clear understanding of computer science, the elements
of computational thinking – namely, decomposition, pattern recognition, pattern
generalization, and abstraction – and algorithm design.

This section comprises the following chapters:

• Chapter 1, Fundamentals of Computer Science

• Chapter 2, Elements of Computational Thinking

• Chapter 3, Understanding Algorithms and Algorithmic Thinking

• Chapter 4, Understanding Logical Reasoning

• Chapter 5, Exploring Problem Analysis

• Chapter 6, Designing Solutions and Solution Processes

• Chapter 7, Identifying Challenges within Solutions

1
Fundamentals of

Computer Science
The world of computer science is a broad and complex one. Not only is it constantly
changing and evolving, but the components we consider part of computer science are
also adapting and adjusting. The computational thinking process allows us to tackle any
problem presented with purpose and focus. No matter what the problem is, we can break
it down, find patterns that will help us find solutions, generalize our solutions, and design
algorithms that can help us provide solutions to the problems.

Throughout this book, we will be looking at the computational thinking process carefully,
tackling problems in multiple areas and using the Python programming language and
associated libraries and packages to create algorithms that help us solve these problems.
Before moving into the problems, however, we will explore some of the important
computer science concepts that will help us navigate the rest of the book.

In this chapter, we will explore the following topics:

• Introduction to computer science

• Theoretical computer science

• Systems software

• Computing

• Data types and structures

4 Fundamentals of Computer Science

Technical requirements
You will need the latest version of Python to run the codes in this chapter. You
will find the full source code used in this chapter here: https://github.com/
PacktPublishing/Applied-Computational-Thinking-with-Python/
tree/master/Chapter01

Introduction to computer science
When looking for a definition of computer science, you will encounter multiple variations,
but all state that computer science encompasses all aspects of computers and computing
concepts, including hardware and software. In computer science, hardware design is
learned in courses offered in engineering or computer engineering, for the most part. The
software side of computer science includes operating systems and applications, among
other programming areas. For the purposes of this book, we will be concentrating on the
software side of computer science.

In this chapter, we'll look at some of the basic definitions, theories, and systems that
are important as we delve deeper into the computational thinking world. Once we
have identified key areas and defined the concepts, we will be ready to move on to the
applications and real-world challenges we face in an ever-changing tech world while
also exploring the elements of computational thinking and the Python programming
capabilities that can help us tackle these challenges.

The wide range of topics available in computer science can be both daunting and exciting
and it is ever evolving. Some of these topics include game design, operating systems,
applications for mobile or desktop devices, the programming of robots, and much more.
Constant and consistent breakthroughs in computers and computing provide new and
exciting opportunities, much of which are unknown to us. Having a basic understanding
of the systems behind computer science can help us interact with technology and tackle
problems more efficiently.

Learning about computers and the binary system
All computers store information as binary data. The binary system reads all information
as a switch, which can be on or off, 0 or 1. The binary system is a base-2 system. You'll
need a basic understanding of binary numbers and the binary system to progress in
computer science.

The binary system translates all data so that it can be stored as strings using only two
numbers: 0 and 1. Data is stored in computers using bits. A bit (which stands for binary
digit) is the smallest unit of data you can find in a computer, that is, a 0 or a 1.

https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter01

Introduction to computer science 5

When counting in the binary system, the first two numbers are 0 (or 00) and 1 (or 01),
much like in the base-10 number system we use in everyday life. If we were to continue
counting in binary, our next number would be 10. Let's compare the first three numbers
in the base-10 system and the binary system before we learn how to convert from one to
the other:

Figure 1.1 – Base-10 and binary comparison

The next number in the base-10 system would be 3. In the binary system, the next number
would be 11, which is read as one one. The first 10 numbers in the base-10 and binary
systems are shown as follows:

Figure 1.2 – Base-10 and binary comparison (cont'd)

As mentioned, the binary system is a base-2 system. This means that each digit of
the base-10 system is paired with a power of 2, so we use those powers to convert
between numbers. Understanding how to convert from base-2 to base-10 and vice
versa can help us have a better understanding of the relationship between numbers
in the different systems.

6 Fundamentals of Computer Science

Converting from binary to base-10
We will start with an example to convert from a binary number to a base-10 number. Take
the number 101101. To convert the number, each digit is multiplied by the corresponding
base-2 power. The binary number given has 6 digits, so the powers of 2 we will use are 5,
4, 3, 2, 1, and 0. This means the number is converted as follows:

The binary number 101101 is equivalent to 45 in the base-10 system. In everyday life,
we write numbers in base-10, so we understand the number 45 as written. However, our
computers convert this information into binary to be able to process it, so the number
becomes the binary number 101101 so that it can be easily read by the computer.

Converting from base-10 to binary
Again, let's start with an example to demonstrate the process of converting from a base-10
number to a binary number. Take the number 591. To convert the base-10 number to
binary, we have to divide the number by 2 iteratively. If the result has no remainder, we
insert a 0 (if it is the first number) or insert a 0 to the left of the existing numbers.

If the result has a remainder of 1, we insert a 1 (if it is the first number) or insert a 1 to the
left of the existing numbers.

When we divide 591 by 2, the result is 295 with a remainder of 1. That means our
right-most number, which is our first number, is 1.

Now divide 295 by 2. The result is 147 with a remainder of 1. So, we insert a 1 to the left
of the 1. Our number is now 11.

Now divide 147 by 2. The result is 73 with a remainder of 1. Our result is now 111. Now
we'll carry out further divisions:

• 73 ÷ 2 = 36 with a remainder of 1. Our number is now 1111.

• 36 ÷ 2 = 18 with no remainder. Our number is now 01111.

• 18 ÷ 2 = 9 with no remainder. Our number is now 001111.

• 9 ÷ 2 = 4 with a remainder of 1. Our number is now 1001111.

• 4 ÷ 2 = 2 with no remainder. Our number is now 01001111.

• 2 ÷ 2 = 1 with no remainder. Our number is now 001001111.

• 1 ÷ 2 = 0 with a remainder of 1. Our number is now 1001001111.

1 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20
= 32+ 0 + 8 + 4 + 0 + 1 = 45

Introduction to computer science 7

The number 591 in base-10 is equivalent to the number 1001001111 in the binary system.

Another way to convert the number is to use a table for the divisions:

Table 1.1 – Conversion of the base-10 number 591 to binary

Using the table, take the numbers from the right-most column and write them starting
with the last row from bottom to top. The result is 1001001111.

Learning how to convert numbers is only a small piece of converting data to binary, but it
is an important piece. All information, including letters and symbols, must be converted
to binary in order to be read by a computer. ASCII (which stands for American Standard
Code for Information Exchange) is a protocol that has been adopted universally to
convert information. That said, some of the protocol is obsolete, so other protocols use
ASCII as a base to expand on its capabilities. Unicode is a widely used 16-bit character
set that is based on ASCII.

As discussed, in this section, we learned that information must be encoded or converted
in order for a computer to read it. Multiple systems and protocols exist, but for now, we
will move on to computer science theory. However, revisiting binary, ASCII, and Unicode
as you work through problems can be helpful.

8 Fundamentals of Computer Science

Understanding theoretical computer science
While you don't need to be a master mathematician to love computer science, these
two subjects are intrinsically tied. Computer science, particularly programming, uses
algorithms, which are algebraic in nature. We will explore algorithms in depth later on, but
again, the important point here is that they are mathematical. The logical processes stem
from the philosophical nature and history of mathematics. Now, if mathematical topics are
not to your liking, don't despair. The logical processes needed to become a programmer
and developer can be used without having to learn higher mathematics. Knowing higher
mathematics just simplifies some concepts for those who have that background.

Theoretical computer science includes multiple theories and topics. Some of the topics
and theories are listed as follows, but keep in mind that other topics are also included in
theoretical computer science that may not be discussed in this book. A short description and
explanation for each of the theories or terms listed as follows are included for your review:

• Algorithms

• Coding theory

• Computational biology

• Data structures

• Cryptography

• Information theory

• Machine learning

• Automata theory

• Formal language theory

• Symbolic computation

• Computational geometry

• Computational number theory

We will look at the aforementioned theories in the following sections.

Algorithms
An algorithm is a set of instructions that a computer can read. Algorithms provide the
rules or instructions in a way that means a computer can logically process the information
provided as input and create an output. In most books, you are introduced to the
algorithm and programming by creating the Hello World! program. I won't make this
book the exception.

Understanding theoretical computer science 9

In Python, the code would require that we print the message to the screen. Because the
Python language is easy to learn and to read, many, if not most, of the code strives to be
logical. So, in order to print a message to the screen, we use the print() command.
Here is the code we'd use:

print("Hello world!")

Similarly, we could use the code given as follows:

print('Hello world!')

Python reads both " and ' as the same thing when it comes to strings.

The result of the preceding code looks like the following screenshot when we run
the algorithm:

Figure 1.3 – The 'Hello World!' Python program

Don't worry, we'll discuss the Python programming language later on in Chapter 2,
Elements of Computational Thinking, and more in depth in Part 2, Applying Python and
Computational Thinking, starting in Chapter 8, Introduction to Python, as well.

While lengthy, the discussion on algorithms is critically important to this book and to your
progression with Python. Consequently, we will be covering this in-depth exploration of
algorithms in Chapter 2, Elements of Computational Thinking, and Chapter 3, Understanding
Algorithms and Algorithmic Thinking, of this book, as algorithms are a key element of the
computational thinking process.

Important Note:
Chapter 2, Elements of Computational Thinking, will focus on the computational
thinking process itself, which has four elements: decomposition, pattern
recognition, pattern generalization and abstraction, and algorithm design.
As you can see, that last element is algorithm design, so we will need to get
more acquainted with what an algorithm is and how we can create them so
that you can then implement and design algorithms when solving problems
with Python. Chapter 3, Understanding Algorithms and Algorithmic Thinking,
will focus on a deeper understanding of algorithm definition as well as an
introduction to the design process.

10 Fundamentals of Computer Science

We'll look at coding theory next.

Coding theory
Coding theory is also sometimes known as algebraic coding theory. When working
with code and coding theory, there are three areas that are studied: data compression,
error correction, and cryptography. We will cover these in more detail in the
following sections.

Data compression
The importance of data compression cannot be understated. Data compression allows us
to store the maximum amount of information while taking up the least amount of space.
In other words, data compression uses the fewest number of bits to store the data.

Important Note:
Remember that a bit is the smallest unit of data you can find in a computer,
that is, a 0 or a 1, while a group of bits is called a byte. One byte usually has
8 bits. We use bytes as a unit of measurement for the size of the memory of a
computer, storage device, such as a memory card or external drive, and more.

As our technology and storage capacities have grown and improved, our ability to store
additional data has as well. Historically, computers had kilobytes or megabytes of storage
when first introduced into households, but they currently have gigabytes and terabytes
worth of storage. The conversions for each of the storage units are shown as follows:

Figure 1.4 – Byte conversions

Understanding theoretical computer science 11

If you look for information online, you may find that some sources state that there are
1,024 gigabytes in a terabyte. That is a binary conversion. In the decimal system, or
base-10 system, there are 1,000 gigabytes per terabyte. To understand conversion better,
it is important to understand the prefixes that apply to the base-10 system and the
prefixes that apply to the binary system:

Table 1.2 – Base-10 and binary prefixes with values

As mentioned, the goal is always to use the least amount of bits for the largest amount
of data possible. Therefore, we compress, or reduce, the size of data in order to use
less storage.

So, why is data compression so important? Let's go back in time to 2000. Back then,
a laptop computer on sale for about $1,000 had about 64 MB of RAM (Random Access
Memory) and 6 GB of hard drive memory. A photograph on our digital phones takes
anywhere from 2 to 5 megabytes of memory when we use its actual size. That means our
computers couldn't store many (and in some cases any) of the modern pictures we take
now. Data compression advances allow us to store more memory, create better games and
applications, and much more, as we can have better graphics and additional information
or code without having to worry as much about the amount of memory they use.

Error correction
In computer science, errors are a fact of life. We make mistakes in our processes, our
algorithms, our designs, and everything in between. Error correction, also known as error
handling, is the process a computer goes through to automatically correct an error or
multiple errors, which happens when digital data is incorrectly transmitted.

12 Fundamentals of Computer Science

An Error Correction Code (ECC) can help us analyze data transmissions. ECC locates
and corrects transmission errors. In computers, ECC is built into a storage space that
can identify common internal data corruption problems. For example, ECC can help
read broken codes, such as a missing piece of a QR (Quick Response) code. A type of
ECC is a hamming code. A hamming code is a binary linear code that can detect up to
two-bit errors.

Important Note:
Hamming codes are named after Richard Wesley Hamming, who discovered
them in 1950. Hamming was a mathematician who worked with coding as
related to telecommunications and computer engineering.

Another type of ECC is a parity bit. A parity bit checks the status of data and determines
whether any data has been lost or overwritten. Error correction is important for all
software developed, as any updates, changes, or upgrades can lead to corruption of
the entire program or parts of the program or software.

Cryptography
Cryptography is used in computer science to hide code. In cryptography, information or
data is written so that it is unreadable by anyone other than the intended recipient of the
message. In simple terms, cryptography takes readable text or information and converts
it into unreadable text or information.

When we think about cryptography now, we tend to think of encryption of data.
Coders encrypt data by converting it into code that cannot be seen by unauthorized users.
However, cryptography has been around for centuries, that is, it pre-dates computers.
Historically, the first uses of cryptography were found around 1900 BC in a tomb in Egypt.
Atypical or unusual hieroglyphs were mixed with common hieroglyphs at various parts
of the tomb.

The reason for the unusual hieroglyphs is unknown, but the messages were hidden
from others with their use. Later on, cryptography would be used to communicate in
secret by governments and spies, in times of war and peace. Nowadays, cryptography is
used to encrypt data, as our information exists in digital format, so protecting sensitive
information, such as banking, demographic, or personal data is important.

We will be further exploring the topics of coding theory through some of the problems
presented throughout this book.

Understanding theoretical computer science 13

Computational biology
Computational biology is the area of theoretical computer science that focuses on the
study of biological data and bioinformatics. Bioinformatics is a science that allows us to
collect biological data and analyze it. An example of bioinformatics is the collection and
analysis of genetic codes. In the study of biology, large quantities of data are explored
and recorded.

Studies can be wide-ranging in topics and interdisciplinary. For example, a genetic
study may include data from an entire state, an entire race, or an entire country. Some
areas within computational biology include molecules, cells, tissues, and organisms.
Computational biology allows us to study the composition of these things, from the most
basic level to the larger organism. Bioinformatics and computational biology provide
a structure for experimental studies in these areas, create predictions and comparisons,
and provide a way to develop and test theories.

Computational thinking and coding allow us to process that data and analyze it. In this
book, problems presented will allow us to explore ways in which we can use Python
in conjunction with computational thinking to find solutions to complex problems,
including those in computational biology.

Data structures
In coding theory, we use data structures to collect and organize data. The goal is to prepare
the data so that we can perform operations efficiently and effectively. Data structures can
be primitive or abstract. Software has built-in data structures, which are the primitive
data structures, or we can define them using our programming language. A primitive data
structure is pre-defined. Some primitive data structures include integers, characters (char),
and Boolean structures. Examples of abstract or user-defined data structures include arrays
and two-dimensional arrays, stacks, trees and binary trees, linked lists, queues, and more.

User-defined data structures have different characteristics. For example, they can be linear
or non-linear, homogeneous or non-homogeneous, and static or dynamic. If we need to
arrange data in a linear sequence, we can use an array, which is a linear data structure.
If our data is not linear, we can use non-linear data structures, such as graphs. When
we have data that is of a similar type, we use homogeneous data structures.

14 Fundamentals of Computer Science

Keep in mind that an array, for example, is both a linear and homogeneous data structure.
Non-homogeneous or heterogeneous data structures have dissimilar data. An example
of a non-homogeneous data structure a user can create is a class. The difference between
a static and a dynamic data structure is that the size of a static structure is fixed, while
a dynamic structure is flexible in size. To build a better understanding of data structures,
we will explore them through problem solving using the computational thinking elements
throughout this book. We will revisit data structures again very briefly at the end of this
chapter, as they relate to data types, which are discussed then.

Information theory
Information theory is defined as a mathematical study that allows for the coding of
information so that it can be transmitted through computer circuits or telecommunications
channels. The information is transmitted through sequences that may contain symbols,
impulses, and even radio signals.

In information theory, computer scientists study the quantification of information, data
storage, and information communication. Information can be either analog or digital in
information theory. Analog data refers to information represented by an analog signal.
In turn, an analog signal is a continuous wave that changes over a given time period.
A digital signal displays data as binary, that is, as a discrete wave. We represent analog
waves as sine waves and digital waves as square waves. The following graph shows the sine
curve as a function of value over time:

Figure 1.5 – Analog signal

Understanding theoretical computer science 15

An analog signal is described by the key elements of a sine wave: amplitude, period,
frequency, and phase shift:

• The amplitude is the height of the curve from its center. A sine curve repeats
infinitely.

• The period refers to the length of one cycle of the sine curve, that is, the length
of the curve before it starts to repeat.

• The frequency and the period of the sine curve have an inverse relationship:

In relation to the inverse relationship, we can also say:

• The phase shift of a sine curve is how much the curve shifts from 0. This is shown
in the following graph:

Figure 1.6 – Phase shift examples

In contrast, digital signal graphs look like bar graphs or histograms. They only have two
data points, 0 or 1, so they look like boxy hills and valleys:

Figure 1.7 – Digital signal

frequency = 1
period

period = 1
frequency

16 Fundamentals of Computer Science

Digital signals have finite sets of discrete data. A dataset is discrete in that it contains
individual and distinct data points. For analog signals, the data is continuous and infinite.
When working with computer science, both types of signals are important and useful.
We will explore digital signals in some of the applications in later problems throughout
the book, and specifically in the problems presented in Chapter 16, Advanced Applied
Computational Thinking Problems.

Automata theory
Automata theory is one of the most fascinating topics in theoretical computer science.
It refers to the study of machines and how calculations can be completed in the most
reliable and efficient way. Automata theory involves the physical aspects of simple
machines as well as logical processing. So, what exactly is automata used for and how
does it work?

Automata are devices that use predetermined conditions to respond to outside
input. When you look at your thermostat, you're working with an automata. You set
the temperature you want and the thermostat reacts to an outside source to gather
information and adjust the temperatures accordingly.

Another example of automata are surgical robots. These robots can improve the outcomes
of surgeries for patients and are being improved upon constantly. Since the goal of
automata theory is to make machines that are reliable and efficient, it is a critical
piece in the development of artificial intelligence and smart robotic machines such
as surgical robots.

Formal language theory
Formal language theory is often tied to automata theory in computer science. Formal
language is the study of the syntax, grammar, vocabulary, and everything involving
a formal language. In computer science, formal language refers to the logical processing
and syntax of computer programming languages. With regard to automata, the machines
process the formal language to perform the tasks or code provided for it.

Symbolic computation
Symbolic computation is a branch of computational mathematics that deals with
computer algebra. The terms symbolic computation and computer algebra are sometimes
used interchangeably. Some programming software and languages are focused on the
symbolic computations of mathematics formulas. Programs using symbolic computation
perform operations such as polynomial factorization, simplifying algebraic functions
or expressions, finding the greatest common divisor of polynomials, and more.

Understanding theoretical computer science 17

In this book, we will use computer algebra and symbolic computation when solving some
real-world problems presented. Python allows us to not only perform the mathematical
computations that may be required for problems, but also explore graphical representations
or models that result from those computations. As we explore solutions to real-world
problems, we will need to use various libraries or extensions to the Python programming
language. More on that throughout Part 2, Applying Python and Computational Thinking,
of this book, where we will explore the Python programming language in greater detail.

Computational geometry
Like symbolic computation, computational geometry lives in the branch of computer
science that deals with computational mathematics. The algorithms we study in
computational geometry are those that can be expressed with geometry. The analysis
of the data is done with geometric figures, geometric analysis, data structures that
follow geometric patterns, and more. The input and output of problems that require
computational geometry are geometric.

When thinking of geometry, we often revert to the figures we mostly associate with that
branch of mathematics, such as polygons, triangles, and circles. That said, when we look at
computational geometry, some of the algorithms are those that can be expressed by points,
lines, other geometric figures, or those that follow a geometric pattern. Triangulation falls
under this branch of computer science.

Triangulation of data is important for applications such as optical 3D measuring
systems. We triangulate GPS signals to locate a phone, for example, which is used in law
enforcement.

There are many uses of triangulation in modern times, some of which we'll explore
through real and relevant problems presented in this book.

Computational number theory
Number theory is the branch of mathematics that studies integers and their properties.
Computational number theory then is the study of algorithms used to solve problems
in number theory. Part of the study of number theory is primality testing.

Algorithms created to determine whether input or output is prime have been used for
many purposes. One of the most critically important uses and applications of primality
testing and number theory is for encryption purposes. As our lives have moved to saving
everything electronically, our most personal information, such as banking information,
family information, and even social security numbers, live in some code or algorithm. It
is important to encrypt such information so others cannot use or access it. Computational
number theory and cryptography are intrinsically tied, as you will be able to explore later.

18 Fundamentals of Computer Science

Some of the theories presented are meant to help you understand how intertwined
computer science theories are, their applications, and their relevance to what we do
each day.

In this section, we learned about theoretical computer science. We also learned about its
various theories.

Throughout this book, we will be using computational thinking (discussed further in
Chapter 2, Elements of Computational Thinking) to help us tackle problems, from the
most basic applications to some complex analyses, by defining and designing adequate
algorithms that use these theories. Theoretical computer science is used to study
a system's software, which we will explore next.

Learning about a system's software
System's software is used to perform multiple functions and communicate between the
operating system (OS) of a computer, peripherals such as a keyboard and mouse, and
firmware, which is permanently saved to a device and is needed for its operation, among
other functions. These are part of the two main types of software: system software and
application software.

System software allows a computer to communicate between the hardware and the
applications. Think of a smartphone. The phone is composed in its most basic form of
the hardware, which includes the battery, cameras, memory, screen, and all the physical
components and peripherals. The OS allows those components to be used by applications.

Take the camera application of a phone. The system's software lets the application
communicate with the phone to use the camera to take a picture, edit it, save it, and share
it. A computer's OS also allows the hardware to communicate with programs. A design
program will use the mouse or other peripheral that can be used to draw, create, use
a touchscreen if available, and more.

If we do not know our system's software, we cannot create applications that can
communicate effectively with our hardware, creating errors that can range from critical,
or rendering a peripheral useless, to minor, where some components may work, say taking
a picture, but others may not, such as saving or sharing the picture. The system's software
is created in a way that provides us with the easiest, most efficient way to communicate
between the hardware and applications.

Learning about a system's software 19

Operating systems
The OS performs multiple tasks. If you recall, error handling is part of an OS that checks
for the most common possible errors in order to fix them without creating a larger
problem or rendering an application worthless. Error handling is one of the operating
system's most important tasks. In addition, the OS is responsible for the security of your
computer or device. If you have a smartphone, you know that many updates to the OS
are done in order to fix a security problem or to prevent a security breach. The OS is
responsible for only allowing an authorized user to interact with the content that is
stored in the device.

In addition to security and error handling, an OS is responsible for allocating memory
for files and organizing them. When we save and delete a file or program, the memory
that had been used is now free. However, there may be something saved immediately
before and immediately after. The OS allocates and reallocates memory in order to
maintain the best performance possible by the device. Memory management not only
refers to user-saved files, but also to the RAM.

The file management of a device is also run by the OS. The OS will allocate the
information as a filesystem, breaking the information into directories that are easily
accessed by the user and by the device. The filesystem is responsible for keeping track of
where files are, both from the OS and from the user, the settings for access to the device,
which are evolving constantly, and how to access the files and understand the status of
the files. Access to devices has changed in recent years.

While computers typically use a username and password, many devices can now
be accessed through a fingerprint, a numerical or alpha-numerical passcode, facial
recognition, images, paths, and more. As any of these topics evolve, the OS evolves as
well and needs to be updated or recreated. The operating system is also responsible for
allowing communication between the applications and the device.

Application software
Application software refers to software applications that perform a particular task. Think
of the applications, or apps, that you can access from a mobile device. There are hundreds
of types of applications, such as static games that live on the device, games that allow you
to play with others remotely, news applications, e-book readers, fitness training apps,
alarms, clocks, music, and so much more! Applications always perform some form of task,
be it for personal use, business use, or educational use.

20 Fundamentals of Computer Science

Application software has multiple functions. You may find suites for productivity, such as
Microsoft (Office) and Google products. When we need to do research on the internet,
we use applications called browsers, which allow us to access the information and index
the information so that we can access it. These browsers include Google Chrome,
Safari, Firefox, Edge, Opera, and others. Browsers are used by both mobile devices and
computers. Keep in mind that the purpose of an app is to perform a specific task for the
end user.

Important Note:
As an aside, applications have grown exponentially since computers became
household tools and phones started being used for other things rather than
just for calling others. Early computers were used for just that: computing,
or calculating mathematical analyses and tasks. That's one of the reasons it
is so important to have an understanding of the development and history of
computer science. Since we cannot completely predict future uses of computer
science and system software, the more we know about them, the more we will
be able to create and adapt when technological advances happen.

In this section, we learned about the system's software. We also learned about OS software
and application software. For the purposes of this book, some applications will be
more important as we sort through some of the problems presented, such as databases,
productivity software, enterprise resource planning, and educational software.

In the next section, we'll learn about computing.

Understanding computing
In computer science, computing refers to the activities that computers perform in order
to communicate, manage, and process information. Computing is usually divided into
four main areas: algorithms, architecture, programming languages, and theory.

Since, we've discussed theory and algorithms in previous sections, we will now focus on
defining architecture and programming languages.

Architecture
Computer architecture refers to the set of instructions that interact with computer
systems. In more basic terms, the architecture includes the instructions that allow
software and hardware to interact. Computer architecture has three main subcategories:
Instruction Set Architecture (ISA), Microarchitecture, and System Design.

Understanding computing 21

Instruction Set Architecture (ISA)
The ISA is the boundary that exists between the hardware and the software. It is classified
in multiple ways, but two common ones are complex instruction set computer (CISC)
and reduced instruction set computer (RISC). These are defined as follows:

• CISC: This is a computer that has explicit instructions for many tasks, such as
simple mathematical operations, and loading something from memory. CISC
includes everything that is not included in RISC.

• RISC: This is a computer with an architecture that has reduced cycles per
instruction (CPI).

CISC tries to complete instructions with fewer steps, while RISC only uses simple
instructions. CISC is multi-step, while RISC is single-step, performing one task at a time.
The CISC process includes the instructions, the microcode conversion, microinstructions,
and execution. By contrast, RISC includes instructions and execution.

In CISC, microcode conversion refers to the interpretation of the language at a lower
level. It takes into consideration the hardware resources to create microinstructions.
Microinstructions are single instructions in microcode. After microcode creates the
microinstructions, the microinstructions can be executed. The following diagram shows
the process for both RISC and CISC:

Figure 1.8 – Difference between RISC and CISC

Both RISC and CISC are necessary for computer programmers. There are advantages and
disadvantages to having a single-step process (RISC) versus a multi-step process (CISC).
RISC reduces the cycles per instruction, doing one thing at a time. CISC reduces the
instructions in a program, but at the cost of cycles per instruction. Depending on what
our needs are, we can choose the best path to take.

22 Fundamentals of Computer Science

Programming languages
Programming languages are the way we write instructions for computers and other
devices. Different languages are used depending on what is needed, ease of use,
and much more. Examples of programming languages include the following:

• Ruby and Python: Ruby is a programming language mostly used for web
applications. Ruby is stable and easy to use; however, many developers choose to use
Python over Ruby because Python is faster. Although Ruby has not been as popular
and had some performance issues, the language is very much alive in 2019 and
continues to grow. Python, on the other hand, is widely used for multiple purposes,
such as web applications, user interface applications, and websites, among others.
We will explore Python in greater depth later on in this book.

• C: The C languages are a critically important part of computer science, as C was the
first language used and is still the most widely used language. C has been around
since 1972, when Dennis Ritchie invented it, but it has been used by others since
1978, when it was first published. While other languages have grown in popularity
since, C is still used in 2019. Some of its uses include operating systems, hardware
drivers, and applications, among others. C is a base-level language, which means it
requires almost no abstraction.

• C++: C++ was developed by Bjarne Stroustrup as an extension of C in 1985. The
goal of the language was to add object-oriented capabilities. The language is still
widely used both in conjunction with the C language in operating systems and for
other software. C++ is an intermediate-level programming language.

• C#: C# (C sharp) is a high-level programming language. Much like C++, it has
object-oriented capabilities and is an extension of the C programming language. One
of the main differences between C++ and C# is that C++ uses machine code while
C# uses bytecode. Machine code can be executed directly by a computer. Bytecode
has to be compiled, so it is considered a low-level code that needs to be interpreted.

• Swift: The Swift programming language was developed by Apple Inc. in 2014.
As programming languages go, Swift is one of the newest. Apple released it as an
open source programming language with version 2.2, which was released in 2015.
The language is considered to be a general-purpose and compiled programming
language.

Understanding computing 23

• Scratch: Scratch was developed as a visual programming, block-coding language in
2002 by MIT Media Lab. As a block programming language, it is used extensively
in schools to teach students of all ages how to code. Scratch is now adapted for
multiple uses, including some robotic applications, such as Vex Code, incorporating
machine learning and artificial intelligence, and much more. It is compatible with
popular classroom peripherals such as the Makey Makey, which is a circuit that
interacts with the computer and can be fully controlled with a Scratch program.
While it is popular for educational purposes, the power of the programming
language cannot be understated and the language itself and its functionalities
continue to grow.

• Java and JavaScript: JavaScript is a scripting language that is used only within
browsers. It is used in the making of websites and web applications. Java, on the
other hand, is a general-purpose programming language. JavaScript helps us make
websites animated or add interactive functionalities to them. Contrastingly, Java is
compiled into bytecode and is widely used in the development of Android devices
and applications.

• PHP: PHP is otherwise known as Hypertext Preprocessor. Much like Java, it is
a general-purpose programming language. It is widely available, as it is open source.
PHP is used in website design and applications and is considered to be easy to learn,
yet has many advanced features. PHP can also be used to write desktop applications.

• SQL: SQL, or structured query language, is a programming language used to
interact with data. SQL is domain-specific. It has been around for almost as long
as C, making its first appearance in 1974. The main importance of SQL is that it can
interact with databases, where other languages are not able to do so.

In computational thinking, we use many different programming languages, depending
on what our goals are, what information we have or need, and what our application or
software requirements are. Choosing a language is dependent on not just our knowledge
of the language, but the possible functionalities of the language.

We will get to work more extensively with Python in this book because of its open source
nature, ease of use, and the large number of applications it can be used for. However,
Python is not the only option. Knowing about other languages is important, especially
for developers.

In this section, we learned about computing and a few of its areas, namely, architecture
and programming languages. We also learned about the ISA and its types, along with an
introduction to various programming languages. In the next section, we'll look at data
types and structures.

24 Fundamentals of Computer Science

Learning about data types and structures
In computer science, data types and structures are two distinct things:

• A data type is a basic classification. Some data types include integers, float,
and strings.

• Data structures use multiple types of data types. They can organize the information
into the memory and determine how we access the information.

Let's look at these in more detail in the following sections.

Data types
As mentioned, data types are basic classifications. They are variables that are used
throughout a program and can only exist with one classification. There are different classes
of data type. We will focus on primitive and abstract data types for now, but we will revisit
this topic as we move through problems and design solutions.

Primitive data types include byte, short, int, long, float, double, Boolean, and char:

• A byte can store numbers from -128 to 127. While these numbers can be stored as
integers, or int, a byte uses less storage, so if we know the number is between those
values, we can use a byte data type instead.

• A short is a number between -32,768 and 32,767.

• An integer, int, is used to store numbers between -2,147,483,648 and 2,147,483,647.

• Long is used to store numbers from -9,223,372,036,854,775,808 and
9,223,372,036,854,775,807.

• A float allows us to save a decimal number.

• Decimal numbers can also be saved as double, which has more precision than
a float.

• Boolean values are data types that are either True or False. So, a variable can be
saved such that when its value is printed, the result will be saved as true or false.

• Char is used to save a variable as a single character.

We'll look at data structures in the next section.

Learning about data types and structures 25

Data structures
As mentioned under the Coding theory section earlier in this chapter, data structures are
used to collect and organize data in the most efficient and effective way possible. Data
structures can be primitive, such as the built-in data structures in software, or abstract.
Primitive data structures can also be defined using programming languages, but they
are pre-defined. Some of the primitive data structures include the data types listed in
the previous section, such as chars and Boolean structures.

Abstract data types (ADTs) include the information for the structure and design of data
types. Abstract data structures include arrays and two-dimensional arrays, stacks, trees
and binary trees, linked lists, queues, and more, as mentioned in the Coding theory section
earlier in this chapter. Lists can contain multiple instances of the same data values. These
lists are countable, so we can find how many elements are in the list, reorder them, remove
items, add items, and so on. Lists are widely used as linked lists, arrays, or dynamic arrays:

• A linked list means that each data element in the list is connected, or points, to the
next one, regardless of where they are stored within the memory.

• An array is ordered. The elements are read in order to be able to make sense. Think
of an array as reading this sentence. You don't read the sentence as "array an think
reading as this of sentence." We read the sentence in order, from left to right, not in
a jumbled order.

• Dynamic arrays can be resized, which is important when choosing a data type.

A stack ADT is a collection of elements and has two operations – push and pop. A push is
used to add an element to the collection while a pop removes the most recent element.

A queue ADT is a linear data structure. As with a stack, we can add or remove elements.
However, in a queue ADT, the point of deletion and the point of insertion are done at
two different ends.

As mentioned before, the data structures are concrete implementations of data types.
How we add or remove elements from a collection, for example, is the data structure.

This can all be slightly confusing, but we will be learning more about them through
examples in later chapters. For now, understanding the definitions and simple examples
is enough.

26 Fundamentals of Computer Science

Summary
We have learned some fundamentals of computer science in this chapter. We looked at
how to convert from binary to base-10. We also explored topics and theories in theoretical
computer science. We learned about computing and data types and structures. These
sections will allow us to understand the computational thinking process and how to tackle
all types of problems presented, starting in Chapter 2, Elements of Computational Thinking,
of this book.

As we delve deeper into the computational thinking world and process, we will need to
revisit some of the content of this chapter as we look at problems, search for the best way
to solve them, and make decisions about how to write the algorithms.

Problems may have an infinite number of ways to be solved using algorithms.
Understanding how processes work and which data structures are most suitable for our
problems is imperative in creating the best solutions. Identifying the data types needed
for the algorithms and how computers read data will only help us in writing the most
effective and efficient algorithms.

In the next chapter, we will learn about the computational thinking process and how
to break down problems in order to design our algorithmic solutions.

2
Elements of

Computational
Thinking

The previous chapter provided some general information about the fundamentals
of computer science. In this chapter, we will focus more closely on understanding
computational thinking and the elements that make up computational thinking:
decomposition, pattern recognition, pattern generalization or abstraction, and
algorithm design.

The importance of the computational thinking process cannot be understated. Through
the process, we analyze problems to design the best possible solutions based on a set of
conditions. Although many algorithms can be written to answer the same questions, using
the computational thinking process helps us to determine the optimal path to take to
design a clear algorithm that can be generalized.

In this chapter, we will cover the following topics:

• Understanding computational thinking

• Decomposing problems

• Recognizing patterns

28 Elements of Computational Thinking

• Generalizing patterns

• Designing algorithms

• Additional problems

In order to learn more about computational thinking, we will be looking at the elements
through the lens of a problem presented. Keep in mind that we will be doing a deeper
dive into the Python programming language in Chapter 8, Introduction to Python, but you
can go back and forth to that chapter as needed while you dive into this and all the other
chapters of the book.

Technical requirements
You will need the latest version of Python to run the codes in this chapter. You
will find the full source code used in this chapter here: https://github.com/
PacktPublishing/Applied-Computational-Thinking-with-Python/
tree/master/Chapter02

Understanding computational thinking
In its most basic definition, computational thinking is a problem-solving process. Much
like with design thinking, the scientific method, and other similar methods, there are
a number of steps we go through to find solutions. For example, the scientific method has
seven steps. Please keep in mind that there are multiple interpretations of the scientific
method out there and some differ in terms of the number of steps. For the purposes of
this discussion, we will use these seven steps:

1. Question

2. Hypothesis

3. Materials

4. Experiment

5. Results

6. Conclusion

7. Communication of findings

The establishment of the scientific method is a highly debated topic, but most researchers
agree that it dates back to the 10th century.

https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter02

Understanding computational thinking 29

The scientific method made it possible to observe the natural world, create hypotheses
to test observations, and develop tests and results through an established process. The
method itself has some basis in philosophers such as Plato and Aristotle, who promoted
empirical research. However, their methodology was not as developed as what we call the
scientific method today.

The computational thinking elements are similar to the scientific method. Computational
thinking uses fewer steps to tackle problems associated with programming, where the
scientific method is used for experiments. With computational thinking, we generalize the
algorithms, while in the scientific method, we are able to reproduce results and generalize
the conclusions from samples to populations.

In modern times, we have developed other methodologies depending on the fields of
study we pursue and technologies we have developed. Two examples of that are the design
thinking process and computational thinking.

Design thinking has five steps or stages:

1. Empathize

2. Define

3. Ideate

4. Prototype

5. Test

We use these aforementioned stages to understand the needs of a client, class, problem,
situation, or other circumstance that we need to address. Empathizing with the needs of
the user helps us identify and define the problem. The ideation and prototype stages are
where we create possible solutions. Testing the possible solutions is the next required step
in finding the best possible one. After all the stages, we can go back through the cycle if
we need to, since the goal of the design thinking process is not perfection, so additional
work can always be carried out. The goal of design thinking is to provide a solution that
is effective and plausible for a defined problem. This is not the only viable solution, nor is
it perfect.

In computational thinking, we use a similar process that has four elements:

1. Decomposition

2. Pattern recognition

3. Abstraction

4. Algorithm design

30 Elements of Computational Thinking

As with the design thinking process, the problem is not clearly defined in computational
thinking. These problems are sometimes referred to as ill-defined. We are presented with
a set of circumstances and we define or decompose that problem before we start ideating,
or creating possible solutions based on patterns we can see. When we think about the
computational thinking process, what we are really doing is trying to figure out how we
can get a computer to follow a set of steps in order to solve the problem we have been
presented with.

Let's take a look at a simple computational thinking problem.

Problem 1 - Conditions
Let's imagine that a raffle at a radio station has contestants select one of two possible
winning structures: $250 or the height, in quarters, of the contestant in cash.

A computational thinking problem can be as vague as Problem 1, where no question is
even being asked. You are given a set of conditions and it is your job to determine what
the problem is and find solutions for that problem you yourself have defined. If you think
about it, there is no perfect answer for this problem, but there are ways for you to create
conditions that work to determine which option is indeed best, depending on the height
of the contestant.

To decompose this problem, we need to look at what is stated and take into consideration
what is not stated. We need rules.

Simply stated, a winner will choose a monetary payout: either $250 in cash or the
equivalent of their height in quarters. Those things are stated. But what isn't stated
is also important:

• What is the timeline for the raffle? How many winners are there?

• Do we want to track how much we have spent after each contestant has chosen?

• Do we want to use a baseline for comparison purposes?

There are other things that may come to mind, but for now, let's stick to these questions.
We are going to assume that the raffle doesn't have a set start or end date and that the
radio station may choose multiple winners in a given day – or none at all. These are some
of the considerations we will look at when figuring out patterns, generalizing them, and
designing the algorithms.

Given all the information about payouts, we still do not have a way to figure out when the
payout is greater. Is it best to choose the $250? Or is it best to choose the height in quarters?
Can we create an algorithm that tells us which option is best somehow? Yes, we can create
an algorithm that addresses the entire problem.

Understanding computational thinking 31

The pattern for this problem will always be the same: the amount is set for the cash value
and the height of a quarter is set, so we can always use math to figure out what the height
in quarters converts to money-wise based on someone's height.

We can clearly state the winnings based on each choice if we know a few things. This
includes the choice of cash or choice of height in quarters. If height in quarters is chosen,
we need the following:

• The contestant's height

• The thickness of the quarter

What happens next is part of both pattern and abstraction. We do not know the choice
until each contestant decides, but we can find out what each quarter's thickness is ahead of
time. It will be needed later for our algorithm. Each quarter is approximately 0.069 inches,
or 1.75 millimeters, thick.

Important Note:
For the purpose of this book, we will be using customary measurements, for
example, feet and inches. However, the algorithms for metric measurements
will also be provided.

Looking at our problem, we can state the winnings in two ways. The following expressions
included for the height in quarters winnings are mathematical algorithms. They show the
steps needed in order to determine the total winnings given the height of the contestant.

Note that in order to use the customary algorithms, height would need to be given in
customary units. In order to use the metric algorithm, height would need to be given in
metric units. If a contestant chooses the cash, then the total winnings are simply $250.
If the contestant chooses the height in quarters, then the algorithms for both customary
and metric units are as follows:

• Total winnings (customary): (ℎ ÷ 0.069) × $0.25

• Total winnings (metric): (ℎ ÷ 1.75) × $0.25

I like a gamble that is not high stakes. So, I'm going to say that I want to test this out and
use my own height. So instead of taking $250, I choose to find out what my height would
be in quarters. I am 5'10" tall. Let's figure out how many inches that is. Since we have 12
inches in a foot, the algorithm for the total height is as shown:

5 × 12 = 60 inches

32 Elements of Computational Thinking

But I said I am 5'10", so we will need to add those 10 extra inches:

Now, let's use the mathematical algorithm we defined earlier, (ℎ ÷ 0.069) × $0.25 , in order
to find out how much I'd win:

I used the ≈ symbol instead of = because ≈ means this is an approximation. Since
I rounded off, I wanted to make sure I showed it was the best approximation, not the
exact number.

Maybe you are done with the problem now, but in computational thinking, we have to
go through abstraction and design an algorithm that will apply to all instances. We can
create a very simple program that uses simple input from a user, or we can create a more
complex program that provides not just the basic total, but maybe the sums, a graphic,
or whatever else we find relevant to our scenario and that applies to all cases.

We will be designing those algorithms more once we have learned about each part of the
computational thinking process in more depth. We will even go back to this problem
to show how to create that algorithm for the computer to run for us. We can create an
algorithm that lets us use someone's height to make a decision about which winnings
to use.

Or, as mentioned earlier, we could write a baseline using $250 as the winnings for every
contestant and then input what each contestant has chosen in order to see whether we
are below or above the $250 baseline. We can aggregate those results, which means to
continue adding them to see where we end up once the radio station stops the raffle.
We could even have a graphic that shows us where we are over time, if contestants were
choosing differently the longer the radio station ran the raffle, and so on.

In this section, we learned about the elements of computational thinking. We also looked
at a computational thinking problem.

For now, however, let's continue to look at the elements of computational
thinking – that is, decomposition, pattern recognition, pattern generalization
and abstraction, and algorithm design, in more depth.

60 + 10 = 70 inches

(70 ÷ 0.069) × $0.25 ≈ $253.62

Decomposing problems 33

Decomposing problems
Decomposition is the process of breaking down data. It can include a number of
processes or steps necessary in order to solve the problem. By decomposing the problem,
we can identify the components, or smaller parts, of the problem before we generalize
the pattern.

Through decomposition, we can identify and solve one case in order to then generalize
those steps to all possible instances of the problem. In order to really understand
decomposition, we will need to go back to our problem stated earlier, which, simply
stated, is asking the question: Will my height result in more money if I take my height in
quarters or should I take a $250 payout? We can state that we want to know one instance
and do that problem mathematically one time, such as solving the problem for my own
height only. However, we may need the information for other instances. We could create
a program that just identifies which option, $250 or your height in quarters, would be
best. Or we could take into consideration some of the following scenarios, which would
mean a different algorithm:

• We could check the option given the height but also add each item to a list in order
to track all decisions.

• We could also need the array and the sum of the elements in that list to track
spending throughout the contest.

• We could also compare the sum to a baseline, using $250 as a base for each of
the individuals.

• We could also use all of the elements, such as the list, the sum, the comparison,
and a visual graphic display to better understand and track the results.

As you can see, the algorithm will depend on what it is exactly we want to track or answer
for this problem. Our algorithm could be a simple yes or no type of problem, where we'd
just check which option is best, or it could be a much more robust algorithm, with data
and visual representations for the data tracked. Now let's take a look at how we work to
find patterns in our problems.

Recognizing patterns
Pattern recognition is the process of finding similarities, or patterns, once we go
through the decomposition of problems. In Problem 1, we were shown a problem where
a contestant would win $250 or choose to take their height in quarters. This will be the
same for every contestant. The only difference is that the total value changes depending
on the height of the person.

34 Elements of Computational Thinking

In this section, let's take a look at a different problem in order to better understand pattern
recognition.

Problem 2 - Mathematical algorithms and
generalization
Imagine you are preparing a party for a soccer team. This is a community team, so there
are always between 12 and 15 children that stop by. You want to place an order for the
food you will need. You know it will cost you $12 per child from the catering company
you will be using. Now, let's break down the problem:

• Decomposition: I know we have between 12 and 15 children. We also know there
is a cost of $12 per child. Our problem can be thought of as a question: How can we
estimate the cost?

• Pattern recognition: You know the number of children, k, is between 12 and 15.
You know it is going to cost $12. If I had 5 children, for example, the cost would be
$12 × 5 = $60.

• Pattern generalization: The number of children is not known, so we will use the
variable k for that unknown value. That way, we can find out the total cost no matter
how many children we have. We are generalizing from one case, 5 children, to all
cases, k children.

• Algorithm design: We will write the mathematical algorithm for now. We will be
working more with programmable algorithms coming up in Chapter 3,
Understanding Algorithms and Algorithmic Thinking. We will be revisiting these
mathematical algorithms there as well. The total cost will be given by the equation
$12𝑘𝑘 = 𝑇𝑇 , where T is the total cost and k is the number of children.

As you can see from the preceding problem, pattern recognition is important in order
to find a generalized pattern and write our algorithm. Now, let's look more closely at
pattern generalization.

Generalizing patterns
Once we have recognized our pattern, we need to go through pattern generalization and
abstraction. That is, we want to make sure that the solution we come up with can be used
for multiple instances of the problem we have identified. Pattern generalization can be
something as simple as writing a basic linear mathematical algorithm, like we did for the
cost of a party, where the cost per child was $12. So, the cost for any number k of children
would be given by 12k. But pattern generalization can be much more than that.

Designing algorithms 35

If we go back to Problem 1, where you could choose $250 or you could choose your height
in quarters, our pattern generalization would allow us to check for anyone's height
against the $250 in order to determine whether you would get more money by choosing
the cash option or by choosing the quarters.

Abstraction lets us focus on the things we need and discard things we do not need in
order to create the best algorithm for our problem. Now, depending on what we decide
we need, we can add or remove some conditions.

For example, if I am a contestant, I only really want to know what option gives me more
money. I do not care about total wins, who's choosing $250, who's choosing height,
and so on. But if I'm the radio station, I may want to know the sum, the comparison
to the baseline, and much more. I would have to choose that baseline and maybe even
graphically show what has happened over time. That is all part of the abstraction process.
When you are solving a computational thinking problem, you are also determining what
matters and what does not matter to your solution and algorithm.

In the simplest form of this problem, if you are a contestant, you want to know what your
best possible case for winnings is. If you choose $250 but your height makes it so that
your height in quarters is more than $250, you would want to know. If you are working
at the radio station, you may want to track more than just each winning individually.
Abstraction allows you to adapt to all cases, from doing one mathematical problem to
creating an algorithm that could track all the choices from all the contestants. Let's look
now at how we can create those algorithms.

Designing algorithms
As previously mentioned throughout this chapter, an algorithm is a set of instructions.
When we are writing a computer program, the algorithm is a set of instructions given to
the computer so it can provide a solution to a posted problem. We have been sticking to
mathematical algorithms so far only because we haven't done a deeper dive into Python
yet. However, we will now translate some of the algorithms into Python programming.

First, let's take a look at Problem 1. Here, we had a situation where you can win $250 or
your height in quarters. Assuming it is you who's competing, you would want to know
which option gives you the most in winnings.

Let's take a look again at our mathematical algorithms from earlier in this chapter:

• Total winnings (customary): (ℎ ÷ 0.069) × $0.25

• Total winnings (metric): (ℎ ÷ 1.75) × $0.25

36 Elements of Computational Thinking

Remember, if you are using your height in customary units, you'll use the first algorithm.
If you are using metric units, you'll want to adapt the program accordingly.

When we are programming, we need to define our variables. In this case, h is the variable
we are using for height. But think about it; your height may not change if you're an adult,
but for the sake of argument, we will assume it won't always be the same. So, we will need
whoever wants to know what the best option is, $250 or their height in quarters, to input
their height so that the program will provide them with the answer.

Input is something the user can enter. So, when we define our variable, we are going to
ask for input. A good practice in Python and any other language is not to just ask for the
input with no guidance. That is, we want to tell the user the question they are answering.
For example, I can write the following code to ask a user for their height input:

h = input("Enter your height in inches: ")

The preceding code will ask the user to enter some input. It also asks that the user enter
the information in inches. If you were using metric units, you would state that instead.

We also saved the information as the variable h. But we haven't done anything with that
variable yet.

We can just do the basic math and print out the value we get based on height:

h = input("Enter your height in inches: ")

total = (int(h)/0.069)*0.25

print(total)

Notice in the preceding snippet that we used int(h) in the definition of the total
variable. We converted the h value to an integer so we could perform a mathematical
operation using that variable. When we asked for the input, the variable was saved as
a string, which is why we need to convert it to be able to use it.

Running the previous code with my height, which is 70 inches, yields the following result:

253.62318840579707

It would look much better if we rounded that answer, and Python has a way for us
to do that easily. If we adjust the print code shown as follows, our answer will result
in 253.62:

h=input("Enter your height in inches: ")

total = (int(h)/0.069)*0.25

print(round(total,2))

Designing algorithms 37

When I run this program, here's what the window looks like:

Figure 2.1 – Python program output

But sometimes we want the code to do more. Let's remove that print command and
create some conditions. In the next few lines, we will use the value provided to make some
comparisons. For example, we can ask the computer to check some things for us. There
are three possibilities:

• Our height could yield exactly the same as $250.

• Our height could yield less than $250.

• Our height could yield more than $250.

Now, I will ask the computer to tell me what to do based on those conditions. We will
need an if-elif, else statement for this. These are conditions that we will test in order to
receive better output. We will test whether the total is the same as $250. Else, if the total is
less than $250, we will want the computer to do something (that is our elif statement).
Finally, in all other cases, we will use the else command:

h=input("Enter your height in inches: ")

total = (int(h)/0.069)*0.25

total = round(total,2)

if total == 250:

 print("Your height in quarters is the same as $250.")

elif total > 250:

 total = str(total)

 print("Your height in quarters is more than $250. It is $"
+ total)

else:

 print("You're short, so choose the $250.")

Let's see what some test cases look like.

First, let's use a height of 69 inches:

Figure 2.2 – Case 1: Height yields $250

38 Elements of Computational Thinking

So, anyone who is 5'9" cannot go wrong with either choice, since they'll always end up
winning $250.

Now, let's look at my height, 70 inches:

Figure 2.3 – Case 2: Height yields more than $250

Finally, let's look at a height less than 69 inches, so let's use 55 inches:

Figure 2.4 – Case 3: Height yields less than $250

Notice that we can adjust the code to say what we want it to. I chose to use full sentences to
establish the results, but you could adapt and adjust the code as needed to suit your needs
or preferences. Some of the code may be challenging at this point, but we will be doing
a deeper dive with the Python programming language in Chapter 8, Introduction to Python.

As you can see, we have three algorithms that provide us with the same kind of
information. One is more robust than the other two, but how complex or simple our
algorithm is depends on what we need from it. If you were holding this raffle again later
on, you might have forgotten what the algorithm was, how you wrote it, or what everything
meant. However, with the last code, you get a lot of information just by running it, which is
more helpful than the first two. You can also add all that information as comments within
the code too, but we will talk about those in Chapter 8, Introduction to Python.

Also keep in mind that we ran this as if we were the contestants. While that is helpful,
you may want to consider what changes you would make if you were the radio station.
You could write some code that saves all the instances that are run so that you can then
check and add all the winnings. You could even calculate that sum through code. Since
that code is a bit more complex, we will be touching on it more throughout the book and,
more specifically, in Chapter 8, Introduction to Python.

Now, let's take a look at a few more problems and respective algorithms in order to get
more comfortable with the computational thinking process.

Additional problems
Throughout this section, we are going to take a look at additional problems. For Problem
2, we will go right into the algorithm, as we went through the other steps in the problem
earlier in this chapter. The next problem will have the entire computational thinking
process as well.

Additional problems 39

Problem 2 - Children's soccer party
Earlier in this chapter, we were planning a party for a soccer team, where there was a cost
of $12 per child. We stated that the number of children was unknown, so we will use the
variable k to designate the unknown quantity. We also stated that we had a mathematical
algorithm, T = 12k, that gave us the total cost, T, of k children. Let's add a condition
here. If we had a budget of $200, we'd want to know if we are over, under, or right on
that budget.

We can use Python to write an algorithm for this situation as well:

k = int(input("How many children are coming to the party? "))

T = 12 * k

if T == 200:

 print("You are right on budget, at " + str(T))

elif T <= 200:

 print("You are under budget, at " + str(T))

else:

 print("You are over budget, at " + str(T))

Let's test some cases in order to verify that our code is working:

Figure 2.5 – Case 1: 12 children attend the party

Great! We are under budget if 12 children attend. So, what if 20 children attend? Let's have
a look:

Figure 2.6 – Case 2: 20 children attend the party

We do not have enough money for 20 children!

As you can see, the program provides us with some information about the total and
whether we are over or under budget. As with any algorithm, this isn't the only way
we could write the program in order to get this information. Try your hand at different
algorithms to solve this simple problem or add a few conditions of your own and code
them. Practice and adding conditions will allow you to get more comfortable designing
and writing algorithms.

40 Elements of Computational Thinking

Problem 3 - Savings and interest
Now we have a new problem. A bank pays compound interest at a rate of x% per month.
What will be the payout after a number of years if you deposit any given amount?

Let's decompose this problem. First of all, we know interest is compounded monthly.
Let's talk about compound interest. The interest on an investment is the percentage that
is paid out in a time period. Compound interest means that the interest pays out on the
initial amount plus interest each time. Compound interest is a pattern. In fact, a formula
exists for it.

The thing I do not know is what percentage the bank is paying out, or the amount
deposited, or the number of years it'll be deposited for. So, we will need to write a program
that addresses all of the possibilities. This is pattern generalization. What we do know
is that the interest is compounded monthly. There is actually a mathematical formula
for this:

Let's talk about the terms from the preceding equation:

• A is the total amount.

• P is the principal amount, that is, the initial deposit.

• r is the interest rate (keep in mind that for 3%, the interest is written as 0.03,
for example).

• n is the number of times interest is compounded per year.

• t is the number of years the deposit goes untouched.

Because there is a mathematical algorithm, we can now create a program for this using the
formula. However, we will need to make sure whoever runs the program knows what it is
we are asking for with regard to all the inputs. We are asking for a few things:

• What amount is being deposited?

• At what rate is the bank paying?

• For how many years will the money be deposited?

𝐴𝐴 = 𝑃𝑃 (1 + 𝑟𝑟
𝑛𝑛)

𝑛𝑛𝑛𝑛

Additional problems 41

We do know the n in the formula. That n is 12 because this is monthly compound interest.
That means it will compound 12 times each year. So, n = 12.

Now it is time to write the program for this:

Figure 2.7 – Sample program for compound interest

The preceding screenshot shows us the Python program for compound interest. Notice
the comment, which is preceded by the # symbol. It states that we needed to convert the
rate to use the formula. We would have otherwise obtained an incorrect total. In addition,
we used float here because we need to use decimals. The integers, or int, would not give
us the information we needed. Also, we rounded the total to two decimal places. That is
because we use two decimal places when we talk about money. The text for the algorithm
shown in Figure 2.7 is included as follows:

P = float(input("How much are you planning on depositing? "))

r = float(input("At what monthly compound rate will it be paid
out? "))

t = float(input("How many years will the money be deposited?
"))

#Convert the rate to a decimal for the formula by dividing by
100

r = r/100

A = P * (1 + r/12)**(12*t)

A = round(A, 2)

print("Total after " + str(t) + " years: ")

print(A)

42 Elements of Computational Thinking

Using the code from the compound interest algorithm, we can run any possible instance
for compound interest if we have the initial amount, the rate, and the number of years we
will be depositing the amount for. The output of the program given an initial deposit of
$1,000 at a rate of 4.5% for 10 years is provided as follows:

Figure 2.8 – Sample 1: Output for compound interest

As you can see, the total after 10 years for a deposit of $1,000 at 4.5% compounded
monthly is $1,566.99.

Let's test the program one more time. This time, we will deposit $5,000 at a 3.5% rate
compounded monthly for 20 years:

Figure 2.9 – Sample 2: Output for compound interest

Our total after 20 years would be $10,058.51. That means our money doubled!

Having this calculator program allows us to only calculate for interest compounded
monthly. We can create a new program to calculate interest compounded at any rate:
monthly, annually, bi-monthly, and so on. You can try playing with the code in order
to create your calculators. These are helpful if you want to know what to expect when
investing money or depositing in savings accounts. For example, you can determine how
long it would take for your deposits to reach a certain amount. Say you wanted $50,000
for a college education for your children. In this case, you could figure out how much you
would need to deposit in order to have that amount in 18 years, when they'd most likely
be ready to go to college.

Summary 43

Summary
In this chapter, we have gone through the computational thinking process. We learned
about the four major elements of computational thinking: decomposition, pattern
recognition, pattern generalization, and algorithm design. We also learned that problems
in computational thinking are not always clearly defined. It is up to us to interpret and
decompose the information so we can find the patterns. Once we find the patterns and
define what we'd like to generalize, we can then design algorithms in order to solve
our problems.

We also learned that algorithms and solutions are not unique. There are multiple ways to
write an algorithm for each problem we encounter. The computational thinking process
allows us to explore problems in multiple ways and create solutions that align with our
own interpretations and needs.

In the next chapter, we will be learning about algorithms and algorithmic thinking more
in depth, as they are the product of all computational thinking problems. In order to
better understand algorithms, we will take a look at Boolean operators and learn how to
identify and address errors in logic processing. We will write algorithms for problems
presented, as well as analyze given algorithms for possible errors in processing.

3
Understanding
Algorithms and

Algorithmic Thinking
In this chapter, we will focus more closely on understanding algorithms and algorithmic
thinking. While this is the last step in the computational thinking process, it is critical
that we understand how algorithmic thinking helps us plan and understand our problems
better. That is, the more we practice algorithmic design and algorithmic thinking,
the easier it is to understand, decompose, and recognize patterns when problems are
presented to us.

In this chapter, we will cover the following topics:

• Defining algorithms in depth

• Designing algorithms

• Analyzing algorithms

After reading this chapter, you'll understand algorithms better. So, we'll begin by analyzing
the definition of algorithms again, which we covered previously in Chapter 2, Elements
of Computational Thinking, as well as how to design mathematical and computational
algorithms.

46 Understanding Algorithms and Algorithmic Thinking

Technical requirements
You will need the latest version of Python to run the codes in this chapter. You
will find the full source code used in this chapter here: https://github.com/
PacktPublishing/Applied-Computational-Thinking-with-Python/
tree/master/Chapter03

Defining algorithms in depth
As we mentioned in Chapter 2, Elements of Computational Thinking, an algorithm is
simply a set of instructions. We use instructions in everyday life, sometimes consciously,
sometimes unconsciously. Think about the routines you follow in the morning, for
example. The alarm clock sounds. What do you do next? Do you go prepare coffee? Shower?
Brush your teeth first?

Most of us follow the same steps every single morning. You could say we've programmed
ourselves to follow those steps. Now think of a time your schedule changed and your
routine was different. I know I've had to stop and regroup many times because my
program no longer works. I can't wake up at 6 a.m. for a 5 a.m. flight, for example.

Algorithms for computers are similar in that we need to reprogram the set of instructions
if a set of conditions has changed. The programs can only go as far as we have stated
parameters for them. Most programs cannot adjust or adapt to any new information that
is not previously coded into it. That said, machine learning and artificial learning are
evolving. We're not talking about those kinds of programs, but even in those instances,
we'd still need to adjust those programs to do what we need them to.

To design algorithms, we need to make sure that they meet some specific characteristics:

• They are clear and unambiguous.

• They have inputs that are well defined.

• They have outputs that are well defined.

• They have finiteness.

• They are feasible.

• They are language-independent.

Let's look at each of the characteristics in the preceding list and define them.

https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter03

Defining algorithms in depth 47

Algorithms should be clear and unambiguous
An algorithm is clear and unambiguous when every one of the steps can easily be
understood, is easily defined, and has inputs and outputs that are also clear and well
defined. There should also be only one meaning for each component of the algorithm.

Algorithms should have inputs and outputs that are
well defined
The inputs for an algorithm can be user-provided, meaning that the user of the program
enters the data. Input can also mean something that is defined within the program. This
means that I may include a variable with a set value already provided.

For example, if I need a user to tell me the number of tickets they are purchasing, I can
write the algorithm to ask for that input. I can also give that input as a defined variable
with a given value already. An algorithm does not always require an input – zero-input
algorithms do exist – but when the algorithm requires input, defining that input is
important. An example of an input is asking for a user's name in a program. Think about
modern video games. Many of them will prompt the user for a name with phrases such as,
"Hello traveler. What is your name?"

As a user, I'd enter Sofia when given that prompt, which gives me the following:

"Hello Sofia. Welcome to the adventure!"

As you can see, the game will then produce an output and uses my name in that output.

This final line is the output of the program. I can write a simple program to ask that
question in Python as well:

ch3_nameprompt.py

name = input("Hello traveler. What is your name? ")

salutation = "Hello %s. Welcome to the adventure!" % name

print(salutation)

Notice that we used %s and % symbols here. The syntax here is what we call an f-string.
We use the %s syntax to let the program know where we want to insert the information
and then we call that information by using the % symbol. In this case, we saved the input
to the name variable, then called it in the salutation variable.

48 Understanding Algorithms and Algorithmic Thinking

When run, the program looks like this:

Hello traveler. What is your name? Sofia

Hello Sofia. Welcome to the adventure!

This simple algorithm allowed us to save the name as a variable. That variable was used
only once in the output of this simple code. However, in a game, that name variable may
be used in multiple instances, such as during conversations with characters within the
game, and so on.

The output of a program is the information that leaves a system, that is, the product of
your program. Given some information or code, the output is what is produced from the
instructions in the program.

Algorithms should have finiteness
An algorithm has to have finiteness. This means that an algorithm must end. Let's look
at a situation where an algorithm would not end. I don't recommend writing this or
running it! Nonetheless, let's look at the steps we would take to create this algorithm:

1. Define a variable, i, and set it as equal to 0:

i = 0

2. Increase the value by 1. There are a few different ways we can do that:

i = i + 1

i += 1

Both of the preceding lines of code will increase the value of i by 1.

3. Add an error! We're about to create an error in finiteness. Again, I'm only doing this
to prove a point, but this is an error you want to avoid:

i = 0

while i >= 0:

 i += 1

 print(i)

Defining algorithms in depth 49

In this algorithm, I'm telling the program to continue to increase i by 1 so as long
as it is greater than 0, then the computer is supposed to print the value. This will
just continue to go on forever and ever, without stopping, because the condition will
always hold true as given. So, the output for the program will begin at 1, but will
continue printing the next item in the sequence as 2, 3, 4, 5, and so on. The program
simply has no way to end.

Now, a similar program may be done given a few different conditions. Let's say we want to
print all the values of our addition, but only so long as i is less than 15:

ch3_finiteness.py

i = 0

while i < 15:

 i += 1

 print(i)

The preceding program is a terminating program. It now only works for all values while i
is less than 15 (not including 15). We will get an output shown as follows:

Figure 3.1 – Output for finiteness code

I know I said this program did not include 15. It doesn't. Since this happens while i is less
than 15, the last value it will evaluate for is 14. However, it says that while the value is less
than 15, we increase it by 1 (i += 1). So, when i is 14, the printed value is 14 + 1, or 15.
Finiteness allows the program to terminate.

50 Understanding Algorithms and Algorithmic Thinking

Algorithms have to be feasible
An algorithm also has to be feasible. To be feasible, an algorithm needs to be possible with
the available content and resources. When writing algorithms, we have constraints, or
conditions we may write into the steps. If there is no way to meet all the constraints, then
the algorithm isn't feasible. Think of the two conditions, given as follows:

• It is 3:00 p.m.

• It is 5:00 p.m.

If we set both of these constraints on a variable, for example, it would not be possible. It
cannot be both 3:00 p.m. and 5:00 p.m. at the same time. This is what we call infeasible.
While the algorithm can continue, we're still creating a problem by making these two
things true at the same time. Some constraints will never be met, so the algorithm is
considered infeasible. There has to be a way for the algorithm to meet all constraints in
order to be feasible. In addition, if an algorithm is written to depend on future technology,
for example, it is also considered infeasible.

Algorithms are language-independent
Finally, an algorithm must be language-independent. The set of instructions in an
algorithm should be written as simply as possible. A good algorithm will be such that it
can be written in any language easily and produce the same output.

In this section, we learned about algorithms and the characteristics needed to design
them. Keeping in mind the characteristics of a good algorithm will allow us to avoid
errors and create working algorithms for whatever problems we are presented with,
let's now take a look at how to design some algorithms.

Designing algorithms
When designing algorithms, order matters. There are hierarchies that matter when we
are working with programming languages. That includes when we are working with
Python. Think about this as the order of operations in mathematics. If you recall, we use
the mnemonic PEMDAS to remember the order of operations in mathematics. PEMDAS
stands for Parentheses, Exponents, Multiplication/Division, and Addition/Subtraction.

I write Multiplication/Division together like this because multiplication and division
hold the same weight. That is, multiplication does not necessarily need to happen before
division. If I have a division first and then a multiplication from left to right, then the
division happens first. The same is true for addition and subtraction. Neither has more
weight than the other, so we perform them in order of appearance from left to right.

Designing algorithms 51

Let's write a mathematical algorithm for a problem. We'll look at an algorithm in a food
setting. And yes, I know I write about food and food algorithms a lot. I love food almost as
much as I love code.

Problem 1 – An office lunch
An office is ordering catering for employees. Employees were given two lunch options:
sandwiches or salads. Each sandwich meal costs $8.50, while each salad meal costs $7.95.

Office lunch mathematical algorithm
The number of employees who choose each option is unknown. Let's use some variables
to help us in designing the mathematical algorithm. Let's use s for the number of
sandwiches and b for the number of salad bowls. And I know what you're thinking,
those two variables aren't very helpful if you come back to this problem a while from now.
But we'll talk about that in a second. For now, let's just write what our total cost, c, will
look like:

= 8.5 + 7.95

This is a simple mathematical problem that requires two unknown variable inputs, s and b,
in order to get our total, c. Now let's look at a different version of the same lunch scenario.

Office lunch Python algorithm
Now let's think about a few more considerations when writing the program. As we design
a Python algorithm for this problem, we'll need to think about two perspectives: the
programmer and the user.

Sometimes we're both the programmer/developer and the end user for our programs, but
many times, we'll write or develop content for someone else to use. It is important that we
keep those considerations in mind because it may affect how we write our program and
define our variables. In addition, if we're writing a program as part of a company, others
may need to go and edit our programs at some point.

That means we need to write the program in a way that others will be able to understand.
Our variables should be easily understood, so writing a simple one-letter variable may
make it harder for another programmer or user to understand. Let's look at a program for
Problem 1. Recall that in that problem, we're trying to determine the final cost for an office
lunch for employees given two possible options:

• $8.50 for a sandwich meal

• $7.95 for a salad meal

52 Understanding Algorithms and Algorithmic Thinking

Let's create the program for this problem using Python. Let's clarify some variables first.
We'll want to use full words or a series of words separated by _ to define these variables.
Before we start, you may want to recall that for Python variables, some rules need to be
followed so as not to cause an error:

• Variables must start with a letter or an underscore (_).

• Variables can only contain letters, numbers, and underscores.

• Variables cannot start with a number.

• Variables are case sensitive (alpha is not the same variable as Alpha or ALPHA).

For Problem 1, we need three variables:

• The total cost of the lunch

• The number of sandwich meal lunches

• The number of salad meal lunches

Now we need to name them:

• total_cost = the total cost for all lunches

• number_of_sandwiches = the total number of sandwich meals ordered

• number_of_salads = the total number of salad meals ordered

The important thing here is that those variables are easily read and easily understood.
I should make a note that I am partial to lowercase variables when programming. I do
have some exceptions for when I like to use capital letters, but you'll see many examples
with only lowercase letters and underscores. I found a long time ago that even when
capital letters made sense to me at the time I was writing a program, I'd later forget which
letters were capitalized, which was just an added headache that could be avoided if I just
used lowercase letters instead.

In addition, some programmers eliminate the underscores and use variables such as
numberofsandwiches or simply sandwiches, for example. Both of those are
acceptable, of course, and the simple sandwiches will make it easier to write some of
the code. There are both pros and cons to doing this, however. If someone else is looking
at the program, readability will be important. Like I said, I am partial to clear, lowercase
variables and the use of underscores, but it is up to every programmer to make that choice
themselves.

Designing algorithms 53

Now that I have defined my variables, I can begin to write my program. What will I need
to ask the user for? I need inputs from the user for both the number of sandwiches and
the number of salads. What I want as an output, or what the user will want as an output,
is the total cost of the lunch. To ask for input from the user in Python, we need to use
the input command. However, we also need to remember that since we are using this
number in an algorithm that uses a float number (decimals are float characters), we
need to convert the number provided to integer or float. Employees will not be
able to order half a salad, so we can safely save them as integers, or int. As a reminder,
comments in Python start with a # symbol. Write the code in IDLE, shown as follows:

ch3_officelunch.py

#Ask the user for the number of sandwich meals ordered and save
as variable.

number_of_sandwiches = int(input("How many sandwich lunches
were ordered? "))

#Ask the user for the number of salad meals ordered and save as
variable.

number_of_salads = int(input("How many salad lunches were
ordered? "))

#Create total_cost variable and save the algorithm for total
the new variables.

total_cost = 8.50 * number_of_sandwiches + 7.95 * number_of_
salads

#Print the total cost. Don't forget to convert the total_cost
to string.

print("The total cost for the employee lunch is $" + str(total_
cost) + ".")

When running the code, the user can enter the number of each of the options for the
office lunch. The code first asks the user for the number of sandwiches like so:

How many sandwich lunches were ordered?

54 Understanding Algorithms and Algorithmic Thinking

The code will then ask for the number of salad lunches and provide a total cost. The
following sample takes an input of 12 sandwich lunches and 23 salad lunches, which
would be a total cost of $284.85:

How many sandwich lunches were ordered? 12

How many salad lunches were ordered? 23

The total cost for the employee lunch is $284.85.

Now let's take a look at a similar problem, but from a different perspective.

Problem 2 – A catering company
Let's say you start a simple catering company. You begin only selling two options,
a sandwich meal for $8.50 and a salad meal for $7.95. You can create a program that
stores these options using a Python dictionary.

You can find additional information on the Python programming language and
dictionaries in Chapter 8, Introduction to Python, but we'll define a Python dictionary
here as well. A dictionary is used when we want items that are unordered, can be changed,
and are indexed. Here's an example of a dictionary for our catering company in Python:

ch3_cateringdict.py

catering_menu = {

 "sandwiches": 8.50,

 "salads": 7.95

 }

print(catering_menu)

Now, dictionaries are common and very useful for various reasons: primarily, that they are
easy to read and they provide a way to change data as required.

When printed, the dictionary code looks like this:

{'salads': 7.95, 'sandwiches': 8.5}

Designing algorithms 55

Now that you have a dictionary, let's talk about its usefulness to your catering company.
Let's say that there is a cost increase for your salad ingredients that you want to account
for by changing the price of the salads. You can do so in a few different ways. You can
change it in the original program, since it is so short, or you can just tell the program what
you want to change based on the key. This is important because you may have two items
for sale now, but what happens when your menu options become much wider? Would you
want to search for each item every time you change a price? Python makes it easy to identify
what you want to change and then change it.

To do so, you can use the following code:

catering_menu["salads"] = 9.50

Your new code in Python looks like this:

ch3_cateringdict2.py

catering_menu = {

 "sandwiches": 8.50,

 "salads": 7.95

 }

catering_menu["salads"] = 9.50

print(catering_menu)

When printed, the new value for the salads will be shown:

{'salads': 9.5, 'sandwiches': 8.5}

But, what happens if you want to add a menu item? Say you want to add a soup option for
$3.75. In this case, you can add the menu option to your dictionary by using a simple line
of code, as follows:

catering_menu["soup"] = 3.75

56 Understanding Algorithms and Algorithmic Thinking

When you put it all together, the initial code and the changes would look like the
following code block. Notice that you have the initial dictionary, then the two changes
below that. When you print the dictionary, it will include all changes along with the
addition of the soup option:

ch3_cateringdict3.py

catering_menu = {

 "sandwiches": 8.50,

 "salads": 7.95

 }

catering_menu["salads"] = 9.50

catering_menu["soup"] = 3.75

print(catering_menu)

Now that you have added the soup item, you can print your dictionary to see your
full menu:

{'soup': 3.75, 'salads': 9.5, 'sandwiches': 8.5}

We can use the information within the dictionary to create more robust programs, such
as an online menu, an ordering menu option, and much more. In this section, we learned
about designing an algorithm with the help of two problems.

We will take a look at more development using Python through additional problems
in the following chapters of this book, especially in Section 3, Data Processing, Analysis,
and Applications Using Computational Thinking and Python. For now, we'll move on to
analyzing some algorithms.

Analyzing algorithms
As mentioned previously in this chapter, when we design algorithms, they should meet
the following characteristics:

• They are clear and unambiguous.

• They have inputs that are well defined.

• They have outputs that are well defined.

• They have finiteness.

Analyzing algorithms 57

• They are feasible.

• They are language-independent.

In addition to those characteristics, when we are looking at algorithms and analyzing
them, we want to make sure we ask ourselves some questions:

• Does the algorithm do what we want?

• Does the output make sense?

• Is there another way to get the same information in a clearer way?

There are many more questions we can ask ourselves when analyzing algorithms, but
for now, let's take a look at some algorithmic solutions and analyze them based on the
aforementioned characteristics and questions.

Algorithm analysis 1 – States and capitals
A student has created an algorithm that includes a list of US states and the capitals for
each of those states, but only those states she has already studied are included. Her
algorithm is shown as follows:

ch3_statecapitals1.py

Ohio = "Columbus"

Alabama = "Montgomery"

Arkansas = "Little Rock"

print(Ohio)

The program is simple, yet not easy to use, nor helpful when run. Does it contain
the information needed? Yes. Can we organize it in a different way so we can call the
information in other ways? Yes.

Think about states and capitals as key pairs. We can use a dictionary to store the
information. You may recall from earlier in this chapter that a dictionary can be adjusted
and adapted easily, adding a new key with a simple line of code. Let's first convert the
information in the previous code into a dictionary:

ch3_statecapitals2.py

state_capitals = {

 "Ohio" : "Columbus",

58 Understanding Algorithms and Algorithmic Thinking

 "Alabama" : "Montgomery",

 "Arkansas" : "Little Rock"

 }

print(state_capitals["Ohio"])

Notice that we can now access the information for the state capital by simply giving the
state name. The output for this code is simply Columbus. But what if you just want to run
the program and ask for the user to input a state of their choosing? We can also write that in
a line of code with the existing dictionary. Take a look at the following code:

ch3_statecapitals3.py

state_capitals = {

 "Ohio" : "Columbus",

 "Alabama" : "Montgomery",

 "Arkansas" : "Little Rock"

 }

state = input("What state's capital are you looking for today?
")

capital = state_capitals[state]

print("The capital of " + state + " is " + capital + ".")

In this code, the user enters the state for which they want to find the capital. This is
helpful, as you can just run the code each time without having to go into it to change
the line of code to be printed, which we had to do with the algorithm in the
ch3_statecapitals2.py file. The code, when run, looks like this:

What state's capital are you looking for today? Alabama

The capital of Alabama is Montgomery.

Analyzing algorithms 59

Now let's look at the need for the algorithm in the first place. The student wants to
continue to add states to the program. With this program, since it is dictionary-based,
she can simply add a line of code when she needs to add another state. For example, if
she wanted to add the state of Iowa, whose capital is Des Moines, she'd need to use the
following code:

state_capitals["Iowa"] = "Des Moines"

Take a look at the following code block. Note the placement of the code within the
program. It is important that we place that new code before the new variables, otherwise,
if you try to run the program and input Iowa, the code will return an error rather than
providing the capital of Iowa.

In algorithms, logic is extremely important. We cannot use a value we have not defined
in variables that have already been used. That is, if the variables state and capital
are used before identifying the new value for Iowa, then the code ends with an error
when the input is Iowa. However, if we add the key pair values before we run those two
variables, the code runs as expected:

ch3_statecapitals4.py

state_capitals = {

 "Ohio" : "Columbus",

 "Alabama" : "Montgomery",

 "Arkansas" : "Little Rock"

 }

state_capitals["Iowa"] = "Des Moines"

state = input("What state's capital are you looking for today?
")

capital = state_capitals[state]

print("The capital of " + state + " is " + capital + ".")

As you can see, we can adapt and adjust the code to better suit our needs. Now let's take
a look at a few algorithms to determine whether they would run; that is, whether they
would produce an error or run appropriately.

60 Understanding Algorithms and Algorithmic Thinking

Algorithm analysis 2 – Terminating or not terminating?
As we discussed earlier in this chapter, algorithms should be terminating. That is, they
must have a way to end, or they can cause many errors. Let's look at an algorithm and
analyze it to determine whether it will terminate or not:

x = 0

while x >= 3:

x += 1

print(x)

First, let's take a look at the value of the x variable. The x variable starts the program with
a value of 0. The while loop, which states the conditions under which the value of x will
change, states that when the x value is greater than 3, it is incremented by a value of 1.

This algorithm terminates because it will print the original value for the variable, 0.
However, this algorithm doesn't really perform any actions, as the condition will never be
met. Also, notice that the print command is not indented. If it were indented, no output
would be given for this algorithm, as the print command would never be called since
the variable will never meet the conditions of the while loop.

Now let's take a look at the following algorithm:

j = 0

while j >= 0:

 j -= 1

 print(j)

In this case, the variable condition is met because j has to be greater than or equal to 0 for
the program to run. Once the condition is met, the value of the variable is decremented
by 1, so the print command will produce an output of -1. The code will not run a
second time because the value of the variable is no longer greater than or equal to 0. This
algorithm is terminating, produces an output, and is feasible.

Finally, let's take a look at the following algorithm with a changed condition:

j = 0

while j <= 0:

 j -= 1

 print(j)

In this case, the algorithm isn't terminating. Because we changed the while loop to be
less than or equal to 0, this algorithm will now continue to run forever.

Summary 61

Analyzing algorithms can be very complex. We have only started to touch on some of
the components of algorithms. As we delve deeper into other computational thinking
problems throughout this book, we will need to keep in mind the characteristics of
a good algorithm in order to analyze our own code effectively. It is also important that we
continue to take into consideration the elements of the computational thinking process:
decomposition, pattern recognition, pattern generalization, and algorithm design.

When we are designing the algorithm and testing it, using the characteristics of
good algorithms will allow us to observe errors, adjust our algorithm for ease of use,
provide better inputs and outputs, and ensure that we are not creating infeasible and
non-terminating algorithms.

Summary
In this chapter, we discussed the definition of an algorithm, which is a set of steps that
allows a computer to complete a process and provide some output. We went through the
characteristics of algorithms.

We designed algorithms based on problem scenarios and then analyzed algorithms to
determine whether they met the characteristics needed to run properly. Understanding
the characteristics of algorithms and how algorithms work will allow us to create
algorithms with far fewer errors than if we were unaware of these characteristics. Notice
that I said fewer errors.

When working with code, errors are a fact of life. We will inevitably make mistakes and
we will accidentally introduce bugs or make some code infinite. Understanding the
characteristics of a good algorithm allows us to reduce those errors, even if we don't fully
eliminate them from our daily lives.

In the next chapter, we will be learning more about logical reasoning. Throughout the
chapter, we will discuss the definition of logic, learn about inductive and deductive
reasoning, add to our knowledge of operators and Boolean logic, and learn more about
logic errors. We will be using elements of computational thinking and the characteristics
of algorithms to further our knowledge of logical reasoning.

4
Understanding

Logical Reasoning
In this chapter, we will explore logical reasoning processes such as conditional statements,
algorithmic reasoning, and Boolean logic. We will explore inductive and deductive
reasoning before delving deeper into some logic operators. We will also learn about logic
errors, how to identify them, and how to correct them.

In addition, we will be looking at writing algorithms using logic to solve computational
thinking problems.

In this chapter, we will cover the following topics:

• Understanding the importance of logical reasoning

• Using Boolean logic and operators

• Identifying logic errors

When solving computational thinking problems, logical reasoning is necessary. We all
know that programming code has steps that are followed linearly. Imagine we have 10
lines of code. If we do not apply logical reasoning, the code reads one line at a time—reads
the first line, reads the second line, and so on until the last one. Using logical reasoning
allows us to compare things before moving on, return to a previous line of code, and much
more. Throughout this chapter, we will learn about logical reasoning in order to create
algorithms that address problems in efficient ways using logic operators.

64 Understanding Logical Reasoning

In order to understand logical reasoning, we will begin by defining logic in general, then
how to use logic when designing and writing algorithms.

Technical requirements
You will need the latest version of Python to run the codes in this chapter. You
will find the full source code used in this chapter here: https://github.com/
PacktPublishing/Applied-Computational-Thinking-with-Python/
tree/master/Chapter04

Understanding the importance of logical
reasoning
As we worked through Chapter 3, Understanding Algorithms and Algorithmic Thinking,
we learned how to design some basic algorithms while solving computational thinking
problems.

In this section, we will understand how important logical reasoning is and how to apply
the types of logical reasoning with the help of examples.

As we write algorithms, we'll need to use logical reasoning to create these algorithms.

In simple terms, logical reasoning is the set of steps followed to reach a conclusion.
In computational thinking, when we design algorithms, the systematic set of steps we
follow are part of the algorithm. The way a computer reads those algorithms depends on
how we write that algorithm. There are two types of logical reasoning arguments, which
are as follows:

• Inductive reasoning

• Deductive reasoning

Before we define those in more depth, let's look at why logical reasoning is so important
and why order matters when we create algorithms.

In order to analyze a problem and provide an algorithm that helps us tackle the problem,
we need to understand what logical reasoning is first. Logic can be daunting for some, but
we use it every day subconsciously.

https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter04

Understanding the importance of logical reasoning 65

Let's look at a simple example. Say you take a shower every morning and go to work. Well,
would you get dressed for work before the shower? No, because that would make absolutely
no sense. Logically, you'd have to shower first before you put on your clothes for work.
Now, I've skipped a ton of steps here, but those steps are logical steps. Other examples of
logic include following recipes, using an umbrella if it's raining (or not), and so on.

Throughout this chapter, we'll weave in and out of logical reasoning and designing
algorithms using logical operators. A logical operator allows a program to make
decisions. We use those too in everyday life without realizing it. For example, if it's sunny
and warm, we may want to go biking, but not if it's sunny and cold. The and here is
a logical operator.

We take a lot of things into consideration when we're making decisions. In computational
thinking, especially in algorithm design, we need to consider those things and provide
a way for the program to test those conditions. We will delve deeper into logical operators
later in this chapter. For now, let's look more closely at the types of logical reasoning and
how to apply them.

Applying inductive reasoning
When we talk about inductive reasoning, we're really working backward. Inductive
reasoning starts from a conclusion, which may be true or not, and works backward to
create the code using the existing data. Let's look at a simple problem first.

Solving an inductive reasoning sample problem
We have a budget of $150 for buying supplies: art pencils and erasers. The art pencils are
$1.75 each and the erasers are $1.50 each.

Remember, in computational thinking, we decompose the problem first, then we identify
the pattern, then we generalize that pattern, and then we create the algorithm. So, let's
recognize that pattern.

Let's look at what we know so far and name some variables:

• The total budget is $150.

• The cost of pencils is $1.75 each.

• The cost of erasers is $1.50 each.

• Let's denote the number of pencils by p.

• Let's denote the number of erasers by n.

66 Understanding Logical Reasoning

Remember that when we get to that algorithm, we may want to rename those variables.
But for now, since we're going to look at mathematical algorithms first, we'll keep the
simple variables.

We can do this in one inequality. Why an inequality and not an equation? Because our
total may not be exactly $150. But it can't be more than $150 because that's all the money
we have.

Because this is a simple problem, we're identifying and generalizing that pattern in
one move.

So, the number of pencils times the cost plus the number of erasers times the cost is less
than or equal to $150:

1.75p + 1.50n ≤ 150

Now let's talk about the algorithm design. Maybe this is something I buy regularly because
I run art classes. I'm going to go off that scenario. Maybe my employer gives me at most
$150, but depending on what I used before, I may need more pencils than erasers and vice
versa. So, I need a program that I can use and reuse at the beginning of every term. Was
this part of my problem? No, this was an ill-defined problem. So, I'm adapting the problem
based on a set of particular needs. In short, I'm defining the problem I want to solve.

Important Note:
As a side note for an inductive and deductive reasoning dilemma, it is
important to understand that conditional statements, such as the if/then
statements we use often in programming, are usually associated with deductive
reasoning. We can go into a debate about whether or not they can be inductive,
but the truth is, inductive reasoning problems will use deductive reasoning. We
will look in depth at deductive reasoning statements in the next section of this
chapter.

So, I want the program to ask me how many pencils I want or I want it to ask me how
many erasers I want. It all depends! Let's look at what the program should do for us.
The following steps show us this:

1. Ask whether your input will be pencils or erasers.

2. Choose an inequality to use based on the input provided.

3. Identify how many of the pencils or erasers are possible (given the input).

4. Give a total cost for the number of pencils and erasers.

Understanding the importance of logical reasoning 67

Please note that, as always, there are a lot of ways to arrive at the same answers in Python.
While some of these programs are longer than what I would normally present, since we're
learning both computational thinking and Python programming, it's important to show
steps that are easy to understand.

For this particular program, we're going to need to import the math functions so that
we can round down. Why do we need to do that? Well, we can't buy parts of erasers and
pencils, only whole pencils and whole erasers. So, if the program says we can buy 19.5
pencils, that really means we can only purchase 19 pencils.

The math.floor() function allows us to round that number down to 19 with the
simple function. We will explore more of the math functions as we go along in this book.
Before we leave this quick topic, you should know that the math module in Python has
built-in functions that align with the C language functions.

Let's go back to the problem. Take a look at the following written program:

ch4_inductiveP1.py

#We need the math module, so don't forget to import it.

import math

#Ask the user if they will input pencils or erasers first.

item1 = input("Will you be entering pencils or erasers? ")

if item1 == "pencils":

 pencils = int(input("How many pencils will you purchase?
"))

 if pencils * 1.75 < 150:

 pencilstotal = pencils * 1.75

 total = 150 - pencilstotal

 total = total / 1.50

 erasers = math.floor(total)

 total2 = pencilstotal + erasers * 1.50

 print("You will be able to purchase " + str(pencils) +
" pencils and " + str(erasers) + " erasers for a total cost of
$" + str(total2) + ".")

 else:

 print("That's too many pencils.")

elif item1 == "erasers":

 erasers = int(input("How many erasers will you purchase?

68 Understanding Logical Reasoning

"))

 if erasers * 1.50 < 150:

 eraserstotal = erasers * 1.50

 total = 150 - eraserstotal

 total = total / 1.75

 pencils = math.floor(total)

 total2 = pencils * 1.75 + eraserstotal

 print("You will be able to purchase " + str(pencils) +
" pencils and " + str(erasers) + " erasers for a total cost of
$" + str(total2) + ".")

#If the input given is too large based on the budget, this line
of code alerts the user.

 else:

 print("That's too many erasers.")

#If the input is incorrect, the program will print a statement
to alert the person that they need to use pencils and erasers
as input first.

else:

 print("Please run the program again and enter erasers or
pencils as your input.")

Remember that the preceding program will run the lines of code in order (sequentially).
So, if a user inputs erasers first, then the first if statement and the nested if statement
are ignored. If the user enters pencils first, then the algorithm runs normally from the
first if statement and goes through the remaining conditions. Here's what the program
does, in order:

1. Asks the user to input whether they are buying pencils or erasers.

2. If the user enters pencils, then the program asks how many pencils they'll purchase.
Then, it calculates the number of erasers they can afford to buy.

3. If the user enters a number of pencils that is too large, they'll get a message that they
can't afford that amount.

4. If the user enters erasers, then the program asks how many erasers they'll purchase,
then calculates the number of pencils the user can afford to buy.

5. If the user enters a number of erasers that is too large, they'll get a message that they
can't afford that amount.

6. If the user enters neither pencils nor erasers, they'll get a message to run the
program again and enter one of those two options.

Understanding the importance of logical reasoning 69

The preceding is an oversimplified inductive reasoning problem. Some inductive
reasoning problems will ask that you look at data, make some probable conclusions,
and then write a program to test those conclusions. In the process of learning logical
reasoning, we are essentially training ourselves to look at decisions and how to process
them in a way that a program can return the output we are looking for.

It is important to note here that there are multiple ways to look at problems and prepare
solutions. While I prefer decision trees and flow-charts, other programmers and
developers work more mathematically. Yet others like to write down what the program
needs to do in simple sentences and/or paragraphs. The point of this process is to allow us
to create a program that produces the necessary output and is easy to follow logically by
both the programmers and developers and the computer running it.

Now, let's take a look at deductive reasoning.

Applying deductive reasoning
We're now at the section of this chapter that focuses on deductive reasoning. Even when
I was a mathematics student, I found deductive reasoning fascinating. I quickly learned
that mathematics taught us how to follow arguments logically in geometry and I fell in
love with all things logic and truth tables.

Logic is taught using proofs and inductive and deductive reasoning. Truth tables help
us analyze conditions. In truth tables, some things are assumed. For example, a statement
is either true or false. The other statement is true or false. A combination of those
statements depends on whether or not the statements are true or false.

Alright, that's a bit complicated. Before I move on to explain deductive reasoning, let's
look at a quick truth table and the logic process it contains.

Truth tables were critical when I first started coding. They helped me understand the
coding processes and how to work with conditions. Not every programmer or coder uses
these tables, but I find them helpful, even if not used explicitly in the decision-making
process. Let's look at one now.

70 Understanding Logical Reasoning

Let's say we have a statement or condition p and that condition is True. Let's say that
we have another statement or condition q and that it is also True. In truth tables, we use
the symbol ¬ to denote NOT. So, ¬ p ¬ is False and ¬ q is also False. That's because
if p is True, then NOT p is NOT True, in other words, False. The symbol is used for
AND, so p AND q is written as p q. The symbol is used for OR, so p OR q is written
as p q. In table format, our truth table looks as follows:

Figure 4.1 – Truth table

Analyzing a truth table and understanding all the possible conditions can take time, but
the process is similar to what we go through in logical reasoning when writing algorithms
for problems. Now, let's take a closer look at deductive reasoning.

Let's first define what deductive reasoning is. Deductive reasoning is the process of going
from a statement or hypothesis to a conclusion. Because deductive reasoning is what we
use in algorithmic design, for the most part, we will need to define some terms associated
with it.

Let's start with conditional statements.

Learning about conditional statements
Conditional statements are if/then statements. Here are a few logical arguments using
conditional statements:

• If it rains, then I'll use an umbrella.

• If I drink water, then I won't be thirsty.

• If my dog needs to go out, then he stands by the door.

• If a quadrilateral has four right angles, then it is a rectangle.

All the preceding statements are examples of conditional statements. The first part of the
statement is called the hypothesis. The second part of the statement is the conclusion.
In the statement If it rains, then I'll use an umbrella, the hypothesis is it rains and the
conclusion is use an umbrella. We do not include if or then in the hypotheses and
conclusions.

Understanding the importance of logical reasoning 71

In Python, as you saw in the example in the Applying inductive reasoning section, we
use if/then statements when writing algorithms often. Here are some of the logical
statements we use in Python:

• if: When using if statements, we ask whether a condition is met, then do
something based on that true or false condition.

• if-else: When using if-else statements, we test one condition and do
something, but if that condition is not met, then we do something else.

• if-elif-else: When using if-elif-else statements, we have one
condition; if that's not met, we test another condition—that is, the else if (elif)
condition—otherwise, we do something else.

All of the preceding statements can be nested. I can test one condition, then another, then
another. I can have multiple elif statements between if and else, and so on. Let's look
at some examples.

if statements
Let's look at a program that only uses one if statement:

ch4_ifStatement.py

number = int(input("What's your favorite number? "))

if number < 100:

 print("That's not a very large number.")

Now, the preceding code is a simple program, and one that only checks one condition.
We could add conditions to test whether number is equal to 100. We can add another
one if number is larger than 100, and so on. In this case, we only cared if number was
below 100.

If we input the number 53, we'll get the following output:

What's your favorite number? 53

That's not a very large number.

If we input the number 100, we won't get any message at all and the program will end:

What's your favorite number? 100

As you see, the program doesn't have anything to add. The condition wasn't met, so it
ended. That's why if-else statements can come in handy.

72 Understanding Logical Reasoning

if-else statements
Let's look at the previous algorithm and add an else statement. The previous program
only checked whether the number provided was less than 100. If we add an else
statement, we can print something else on the screen for all numbers greater than or equal
to 100. Take a look at the following program:

ch4_if-elseStatement.py

number = int(input("What's your favorite number? "))

if number < 100:

 print("That's not a very large number.")

else:

 print("I guess you like large numbers.")

The preceding program now prints out a message regardless of what number the user
gives as input. Let's test out 100 again:

What's your favorite number? 100

I guess you like large numbers.

As you can see, 100 is included in the large numbers category because our condition is
that the numbers are less than 100. That means 100 is not included in the condition.
Testing conditions is how we arrive at conclusions in Python. We write algorithms that
gather information from the program itself or user input, then it tests conditions to make
decisions.

The following chart diagram shows the flow chart for if-else decision-making. We'll
look at additional flowcharts when looking at if-elif-else statements and nested
statements:

Figure 4.2 – if-else statement decision flowchart

As you can see in the preceding diagram, this is a binary decision. The statement will be
tested to check whether it's True or False. If True, an action happens; otherwise, another
action happens. For our number program, if the number was under 100, one message
is printed; otherwise, another message, I guess you like large numbers, is
printed on the screen. Now, let's add multiple conditions.

Understanding the importance of logical reasoning 73

if-elif-else statements
An if-elif-else statement is a simplification of a multi-condition statement—that is,
you can have multiple elif statements. As mentioned earlier, elif stands for else if. Let's
change our program up a bit. We'll allow the user to input a number between 1 and 20.
Here's what we'll program the algorithm to do:

1. Ask for a number between 1 and 20.

2. Test whether the number is between 1 and 10 and print a message.

3. Test whether the number is between 11 and 20 and print a message.

4. Print an error message.

Let's take a look at how we'd program this. We need to remember a few things before we
write this algorithm. To check numbers between 1 and 10 easily, we need to check that
the number is less than 10. That means 10 is not included.

Our elif statement would then check for numbers under 21, since it will only include
numbers we haven't tested yet. That is, if the user inputs 12, the first condition isn't
met, so it moves to the second condition. Yes, that would include all numbers under 21,
but keep in mind that if the number had been less than 10, it will have already met
a condition and the program would have printed the right message.

Finally, if the condition isn't met, we need to let users know they wrote a number that's
not between 1 and 20. The following program demonstrates this:

ch4_if-elif-elseStatement.py

number = int(input("Pick a number between 1 and 20. "))

if number < 10:

 print("That's less than 10.")

elif number < 21:

 print("That's between 10 and 20.")

else:

 print("That number isn't between 0 and 20. Run the program
and try again.")

Let's try to test this with a number under 10. If we run the program with the number 8,
we see the following output:

Pick a number between 1 and 20. 8

That's less than 10.

74 Understanding Logical Reasoning

If we run the program with the number 10, we see the following output:

Pick a number between 1 and 20. 10

That's between 10 and 20.

Finally, if we run the program with the number 21, this is what we see:

Pick a number between 1 and 20. 21

That number isn't between 0 and 20. Run the program and try
again.

As you can see, each condition provides us with the answer for that given condition.
Here's the flowchart for if-elif-else statements:

Figure 4.3 – if-elif-else statements decision flowchart

As you can see in the preceding diagram, elif just presents a new test. If True, we follow
the action from the algorithm. If False, we move on to the else statement. That said, we
can have multiple elif conditions. That means we can continue to test conditions one
after the other unless and until we reach an else statement.

Understanding nested statements
Another type of logic statement we use in Python has to do with nested statements. In
nested conditions, the if statement that is nested is only followed if the previous if
statement is True. This is easier to understand with an example. Let's go back to our
if-elif-else statement and add some nested conditions. We had previously asked
the user to give a number between 1 and 20. Now, let's say we want to subdivide the
conditions further using the following code:

ch4_nestedStatements.py

number = int(input("Pick a number between 1 and 20. "))

if number < 10:

 if number < 6:

Understanding the importance of logical reasoning 75

 print("Why such a small number?")

 else:

 print("Well, less than 10 but greater than 5. I'll take
it.")

elif number < 21:

 if number < 16:

 print("You like values that are greater than 10, but
not too much greater. I guess that's fine.")

 else:

 print("I like larger numbers myself too.")

else:

#Sometimes we make mistakes when providing input in programs.
If you choose a number that's not between 0 and 20, the program
will print this message.

 print("That number isn't between 0 and 20. Run the program
and try again.")

In the preceding code snippet, the code has a message for any time we enter numbers
that do not meet the guidelines. For example, the input requested is between 1 and 20.
But what happens if the user types 0 or 21, or another number not in that range? Then, the
print() statement provides a message that asks the user to run the program again.

In this case, you can see that we have if statements, elif statements, nested if and
else statements, and so on. Let's see a few test cases that test a few conditions to see what
our program says:

• When we input 4, the following output is seen:

Pick a number between 1 and 20. 4

Why such a small number?

• When we input 6, we see the following:

Pick a number between 1 and 20. 6

Well, less than 10 but greater than 5. I'll take it.

76 Understanding Logical Reasoning

• When we input 11, we get this:

Pick a number between 1 and 20. 11

You like values that are greater than 10, but not too much
greater. I guess that's fine.

• When we input 18, we get the following output:

Pick a number between 1 and 20. 18

I like larger numbers myself too.

As you can see from the preceding test cases, we have more outputs based on the
conditions given in the program. While this was a simple number program, we can use
similar logic when we are solving more complex problems.

Let's say you run an online store. The selections a user makes for items are going to be
used in similar algorithms, albeit much more complex ones. The algorithm tests the
conditions, such as items selected, quantities selected, and so on to apply totals, coupons,
and much more. That's why logic and logical reasoning is so important in programming.

Now, as mentioned previously, the logical processing we use can be different for individual
programmers. However, regardless of preference, logical reasoning and logical processing
are absolutely necessary when we are writing algorithms. Rather than diving into the
writing, we process problems, look at the decision-making and which steps need to
happen, and then we design the algorithm. That logical process is critical to creating
effective algorithms. We will continue to look at logical reasoning throughout this book
as we analyze problems, even if we don't explicitly state so.

In this section, you learned about logical reasoning and its two types—inductive and
deductive reasoning. We also learned about the conditional statements that will come in
handy while coding.

Some of the algorithms we write can be simplified using Boolean logic and operators,
which is what we'll take a look at in the next section.

Using Boolean logic and operators
Boolean logic refers to the operators, namely, and, or, and not in Python. You'll recall
seeing this in the brief discussion on truth tables earlier in this chapter. As we'll see next,
we use the same logical processing when writing the algorithms, even if the tables are not
explicitly stated or used. When solving computational thinking problems, we sometimes
have to meet multiple conditions at once. Let's look at this using just language for now.

Using Boolean logic and operators 77

Let's sort some fruit. If the fruit is round and orange, green, or yellow, it will be sorted
into group 1. If the fruit is not round, but is orange, green, or yellow, it will be sorted into
group 2. If the fruit doesn't match those requirements, it goes into group 3. Let's simplify
these groups:

• Group 1: Round AND (orange OR green OR yellow)

• Group 2: Not round AND (orange OR green OR yellow)

• Group 3: All other fruit

I know I stated the round condition first. But if you take a look at groups 1 and 2, the fruits
need to be tested for those colors for both conditions—that is, if that condition is not met
for color, it doesn't matter whether the fruit is round or not, it goes in group 3. So, here's
what I'd write for an algorithm:

1. Test whether fruit is orange, green, or yellow.

2. If yes, test whether round, and sort into group 1 or 2.

3. If no, sort into group 3.

So, if we had a mandarin orange, that falls under group 1. If we had a banana, it would be
in group 2. If we had strawberries, they would be in group 3.

Now, if we were going to write this, we'd need to make sure we've added the characteristics
of the fruits so that we can test them against something. We will be looking at something
like that in further chapters of this book, but for now, to simplify some of the learning,
we'll create a similar algorithm but with numbers.

Before we move on too much, let's take a quick look at the basic operators in Python:

Figure 4.4 – Basic Python operators

78 Understanding Logical Reasoning

We'll go deeper into these operators when we get to Section 2, Applying Python and
Computational Thinking, and take a deeper look at the Python programming language.
However, we will need to use some of these for the next algorithm. First, let's look at the
and operator.

The and operator
To understand the and operator better, it's best to look at a mathematical algorithm.
Let's ask for a number and test whether that number is larger than 100 and a multiple
of 2. To test whether a number is a multiple of 2, we use the modulo operator (mod).
The symbol for mod is % in Python.

So, looking at the code, if number % 2 == 0, then the number is divisible by 2. If
number % 2 == 1, then it is not divisible by 2. We use the equal (==) operator or not
equal (!=) operator to complete these conditions:

ch4_andOperator.py

number = int(input("Give a number between 1 and 200. "))

if number > 99 and number % 2 == 0:

 print("That's a large, even number.")

elif number > 99 and number % 2 != 0:

 print("That's a large, odd number.")

elif number < 100 and number % 2 == 0:

 print("That's a small, even number.")

else:

 print("That's a small, odd number.")

Now, I know we've talked about different ways to write algorithms. Did I need to use an
AND operator for this one? Probably not. I could have just written it as nested statements,
if-elif-else statements, and so on. Some test cases and the results of the algorithm
are shown as follows:

• When we input 104, we see the following output:

Give a number between 1 and 200. 104

That's a large, even number.

Using Boolean logic and operators 79

• When we input 80, we see the following output:

Give a number between 1 and 200. 80

That's a small, even number.

• When we input 31, we get the following output:

Give a number between 1 and 200. 31

That's a small, odd number.

As you can see from the previous test cases, the program tests our cases and provides the
printed messages based on the conditions met. Now, let's take a look at the or operator.

The or operator
As we saw in the fruit example earlier in this chapter, we checked whether the color
of the fruit was orange, green, or yellow. That's how an or operator works. We check
for something or the other. This time, we're going to look at some True and False
statements. Let's say that variable A is True and variable B is False. If we were to use an
or operator to check the result of A or B, then our answer would be True.

Why is that? Because no matter what, the result will be either True or False, which is
a True statement. Confused? Logic can be confusing. Let's go ahead and test A and B
as well as A or B in the following program to help you visualize this:

ch4_orOperator.py

A = True

B = False

C = A and B

D = A or B

if C == True:

 print("A and B is True.")

else:

 print("A and B is False.")

if D == True:

 print("A or B is True.")

else:

 print("A or B is False.")

80 Understanding Logical Reasoning

Now, I added some conditions so that we'd get printouts and you could see that the logic I
stated was right, but we didn't need to do all of this. We could have just printed C and D.

When we run this program, this is the result:

A and B is False.

A or B is True.

As you can see, A and B is False because one of the statements is False, which
means the whole thing is False. A or B is True because one of them is True, so the
condition is True. Now, let's look at the last operator (for now), the not operator.

The not operator
The not operator lets us test the opposite of things. So, if A is set as True, then not A
is False. It's as simple as that. Let's look at a few examples through the following code:

ch4_notOperator.py

A = True

B = False

print(not A)

print(not B)

print(not (A and B))

print(not (A or B))

From the previous code, we've talked about the first printed statement here. Since A is
True, not A is False. For the second print statement, we expect that result to be
True because B is False. Now, we did the A and B and A or B statements previously.
We know that A and B is False, so not (A and B) is True. We also know A or B
is True, so not (A or B) is False.

Let's look at what the program prints:

• It prints the following for not A:

False

• Similarly, for not B, it prints the following:

True

Identifying logic errors 81

• Also, for not (A and B), it prints the following:

True

• Lastly, for not (A or B), it prints the following:

False

In this section, you have learned about a few of the Boolean operators. With Boolean
operators, we can write algorithms that test cases for us and provide outputs based on
those cases. As mentioned, a program will run based on the instructions we write in the
algorithm.

By writing our algorithms using these operators, we can ensure that conditions are applied
only in the circumstances we want them to apply. Rather than having a program run on
incorrect conditions, we can include statements and prompts to help produce the right
outcomes. For example, if an input for distance is accidentally entered as negative, a
Boolean statement could have checked conditions and provided the person with feedback
within the program, then run again. Using Boolean operators provides clear logical
processes and allows better and clearer algorithms.

Now that we've taken a look at the basic operators, it's important that we also look at
errors. Identifying logic errors can help us avoid pitfalls in our algorithms.

Identifying logic errors
Before we talk too much about logic errors, let's talk about why it's important to keep
them in mind. In Python, not all errors lead to a failed or crashed program. Some logic
errors will allow a program to run entirely without crashing at all or alerting the user of an
error. Those errors are hard to identify.

Here are some logic errors that can get us in trouble, but keep in mind that there are many
ways to incorporate logic errors into our programs accidentally:

• Using the wrong variable in an equation or statement

• Using the wrong operator to test conditions

• Using the wrong indentation when checking for conditions

The one I am the guiltiest of is switching my variables, but I do also make mistakes in
indentation often. Usually, those get identified more often when I try to run the program,
because the program may fail to run in some instances.

82 Understanding Logical Reasoning

Let's take a look at a simple algorithm that contains an error in a formula. In this first
algorithm, the goal is to get the total cost after buying a number of orders of fries from
a restaurant at a cost of $1.50 each:

ch4_Error1.py

number = int(input("Type the number of fries you are ordering:
"))

cost = 1.50

total = number * number

print("Your total cost is $" + str(total) + ".")

If we run the preceding program, the program will run without problems/errors and show
the following output for 12 orders of fries:

Type the number of fries you are ordering: 12

Your total cost is $144.

Now, if we're paying attention, we'll realize that the cost for 12 orders of fries is too high
at $144. That's because there is an error in our algorithm. The algorithm should contain
the total = cost * number formula, as follows:

ch4_Error1_fixed.py

number = int(input("Type the number of fries you are ordering:
"))

cost = 1.50

total = cost * number

print("Your total cost is $" + str(total) + ".")

Now that we've fixed that formula, the output is correct:

Type the number of fries you are ordering: 12

Your total cost is $18.0.

As you can see, $18.0 seems a lot more reasonable for 12 orders of fries at $1.50 each.

Errors in formulas can be difficult to find, especially if the program runs without alerting
to the error. If we have a large algorithm with multiple formulas, finding those errors can
become cumbersome and a lengthy process. The best recommendation for this is to test
your algorithm at every step of the process you can. That way, finding errors becomes
a simpler task.

Identifying logic errors 83

Let's now take a look at an error when testing conditions. Much like errors in formula,
errors in condition testing may be hard to spot, as the program may just run anyway:

ch4_Error2.py

number = int(input("Give a number between 1 and 200. "))

if number > 99 and number % 2 == 0:

 print("That's a large, even number.")

elif number > 99 and number % 2 != 0:

 print("That's a large, odd number.")

elif number < 100 or number % 2 == 0:

 print("That's a small, even number.")

else:

 print("That's a small, odd number.")

In the preceding code, there is an error in the algorithm that causes us to get incorrect
feedback when entering some odd numbers. Take a look at the second elif statement.
That or will produce an error.

If we run this program, we get an output. Let's run it with the number 99:

Give a number between 1 and 200. 99

That's a small, even number.

Now, the problem here is that 99 is not an even number. Somewhere in the algorithm,
we introduced an error in the conditions. In this case, instead of using an and operator,
we used or:

elif number < 100 or number % 2 == 0:

 print("That's a small, even number.")

Once we replace the or with and, we can run the program again:

ch4_Error2_fixed.py

number = int(input("Give a number between 1 and 200. "))

if number > 99 and number % 2 == 0:

 print("That's a large, even number.")

elif number > 99 and number % 2 != 0:

 print("That's a large, odd number.")

elif number < 100 and number % 2 == 0:

84 Understanding Logical Reasoning

 print("That's a small, even number.")

else:

 print("That's a small, odd number.")

Using 99 as the input, we get the following output:

Give a number between 1 and 200. 99

That's a small, odd number.

Running the program with 98 as the input, we get the following:

Give a number between 1 and 200. 98

That's a small, even number.

As you can see, unless we're paying attention, we can miss errors in our conditions and
logical operators. Because the program is able to run with these errors in our algorithm,
catching where exactly we made the mistake is harder to do than when we incorporate
errors that stop the program from running.

Finally, let's take a look at an indentation error using the same code for the condition
testing. This time, with an indentation error added, we have the following:

ch4_Error3.py

number = int(input("Give a number between 1 and 200. "))

if number > 99 and number % 2 == 0:

 print("That's a large, even number.")

elif number > 99 and number % 2 != 0:

 print("That's a large, odd number.")

 elif number < 100 and number % 2 == 0:

 print("That's a small, even number.")

else:

 print("That's a small, odd number.")

In this case, we can't run the program. The second elif statement is indented incorrectly.
When we try to run the program, we get an Invalid Syntax error message. Clicking
OK on the message will take us to the code and the indentation error is highlighted, as
shown in the following screenshot:

Summary 85

Figure 4.5 – Indentation error

Notice that the print() code below the elif statement is also indented incorrectly.
Once we fix those two errors, we can run the code, as we did previously in this chapter.

Incorporating errors into our algorithms is a common mistake. As you can see from the
previous examples, identifying some of the errors can be hard to do, since the program
may be running as if there is no problem.

I may not have caught many errors with conditions in my algorithms, but that may just
be because I never realized there was a mistake to begin with. That's one of the reasons
why it's really important to run various instances of our programs to ensure that the
results we get make sense. We will be discussing more errors as we look at programs
and computational thinking problems throughout this book. In the meantime, test your
programs and test them often. Triple check your math, your indentations, and your logic.

Summary
In this chapter, we discussed inductive and deductive reasoning, logical reasoning,
logical operators, and Boolean logic. As we discussed, most of the algorithm designs fall
under deductive reasoning. We learned how to use statements, such as if, if-else,
if-elif-else, and nested statements, to write programs that test conditions.

In addition, we learned that some errors are difficult to identify, so it is important to verify
our programs and test them often.

After going through this chapter, you are now better equipped to write algorithms using
logical reasoning. You also have the understanding to apply inductive and deductive
reasoning when designing and planning algorithms and use Boolean logic and operators
in your algorithms. You are now also able to test your algorithms for errors by identifying
possible mistakes such as indentation errors, conditional errors, and formula errors.

In the next chapter, we will be taking a deeper dive deeper into problem analysis, using
the computational thinking elements to break down problems so that we can create
meaningful and useful algorithms.

5
Exploring Problem

Analysis
In this chapter, we will explore problem analysis in depth while using some of what we
have been learning, such as logical reasoning, Boolean logic, and algorithmic design. We
will work through problem definition, decomposition, and analysis in this chapter.

In this chapter, we will cover the following topics:

• Understanding the problem definitions

• Learning to decompose problems

• Analyzing problems

In order to further understand problems, we'll need to look at a more complex problem
and define it so we can begin the algorithmic design process. In this chapter, you will learn
how to define problems and decompose them in order to design algorithms. In doing so,
you'll also learn about dictionaries in Python. After reading this chapter, you'll be able to
use the computational thinking process in order to design and create an algorithm that
addresses complex problems.

88 Exploring Problem Analysis

Technical requirements
You will need the latest version of Python to run the codes in this chapter. You
will find the full source code used in this chapter here: https://github.com/
PacktPublishing/Applied-Computational-Thinking-with-Python/
tree/master/Chapter05

Understanding the problem definitions
As we discussed in Chapter 2, Elements of Computational Thinking, computational
thinking uses four elements in order to solve problems:

• Problem decomposition: This is the process of breaking down data.

• Pattern recognition: This is the process of finding similarities or patterns.

• Abstraction: This element deals with generalizing the pattern.

• Algorithm design: This is where we define the set of instructions for the solution
to the problem.

In this section, in order to learn more about how to analyze problems, we're going to
analyze a larger problem and work through the steps needed to create the algorithm. To be
able to create algorithms, it is imperative that we analyze the problems and clearly identify
what we are trying to solve. That is, what is our algorithm for? Why do we need to build it?
Looking at the decomposition of problems and then defining what we need will provide
us with a better algorithm at the end.

We will work through a problem in the next section.

Problem 5A – Building an online store
Let's take a look at the following problem. You are starting an online store. It's in its
infancy, but you'll have three different types of item available. They are keychains, water
bottles, and t-shirts. For this particular problem, we will go through a three-step process:

1. Making assumptions

2. Things to consider

3. Building a dictionary

We will look the preceding steps in the upcoming sections.

https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter05

Understanding the problem definitions 89

Making assumptions
Let me state some assumptions about this store that we are going to use:

• This is a company that provides items for clients to share with their customers.

• Each item can have a logo and/or personalized information, such as name, email,
and phone number.

We will now move on to the next section, which is about things to consider.

Things to consider
Now let's take a look at some of the things that you'll need to think about before we even
start working on an algorithm:

• Are the items personalized?

• Will personalization be charged by character, line, or item?

• Will the price be fixed or will it change when customers make bulk purchases?

• Will there be discounts if a client orders more than one type of item?

• How much is the base price-point for each item?

The preceding points are not the only questions that we could go over. But they're the
questions that we'll start taking a look at when we decompose the problem.

Before we do that, let's talk about how we can include the information in a program for
each of the items. If you recall from Chapter 3, Understanding Algorithms and Algorithmic
Thinking, we can use a dictionary in Python to save our menu of items. In this case, we
have keychains, water bottles, and t-shirts.

Building a dictionary
Before we take a look at the complexities presented by this problem and decomposing that
information, we can build our own dictionary. We can make it so that the price for each
item in the dictionary is the base price (the price that does not contain any customizations
or discounts), as follows:

• Cost per keychain: $0.75

• Cost per t-shirt: $8.50

• Cost per water bottle: $10.00

90 Exploring Problem Analysis

Now let's build the dictionary. Remember that you can do this without the dictionary, but
creating a dictionary allows you to update the pricing, if necessary, at a later date. You can
also create functions to solve this problem. We are using logic and the dictionary for this
problem. The following code shows you how to build a dictionary:

ch5_storeDictionary.py

online_store = {

 'keychain': 0.75,

 'tshirt': 8.50,

 'bottle': 10.00

 }

print(online_store)

From the preceding code snippet, keep in mind that the print() function is not
needed here, but I use it often in order to ensure that the code is working properly while I
continue to build the algorithms. Also notice that the names of the variables—keychain,
tshirt, and bottle—are simplified.

Here's what that output will look like:

{'keychain': 0.75, 'tshirt': 8.5, 'bottle': 10.0}

What the output shows me is that the prices are saved correctly for each of the variables.
I'm using that print function to test my dictionary and ensure that it runs correctly
before I start working on what I need from that dictionary.

This helps us when we are writing the code and reuse the variables in multiple areas of
that code. Having these simple and easy-to-identify variables will allow us to change and
add to the algorithm without adding errors.

In this section, we learned that the problem analysis and definitions help us identify how
to best design our solution. Remember, when we are looking at problems, the definitions
we use, both before we write the algorithm and within the algorithm, are critical for our
design and final product. Let's now look at the decomposition of the problem.

Learning to decompose problems
When we decompose problems, we're identifying what we need the algorithm to provide
us with. The end user will need to see something seamless. Look at the flowchart in Figure
5.1; this is a basic decision-making flowchart to help us design our algorithm.

Learning to decompose problems 91

Let's make another assumption first, that is, if the user enters more than 10, the price will
be lower. We're only going to do less than 10 or more than or equal to 10 in this case.
However, if you needed to subdivide this further, you can add more cases, such as the
following:

• Less than or equal to 10

• More than 10 and less than or equal to 50

• More than or equal to 50

You can have as many cases as you need. For the purposes of this algorithm, we're going to
keep it to two cases, since we also have to include personalization costs and we don't want
to create an overly complicated algorithm.

The following diagram shows you the flowchart for the algorithm:

Figure 5.1 – Initial decision-making flowchart

As you can see in the preceding diagram, this isn't a completed flowchart. After we make
the decisions about the t-shirts, we need to move on to the bottles. How we write the
algorithm will depend on what we'd like to output. Right now, we're providing the user the
information they'd get when they check out of the online store that you created.

In the next section, let's use the preceding flowchart to create an algorithm.

92 Exploring Problem Analysis

Converting the flowchart into an algorithm
The diagram in Figure 5.1 allows us to look at the decision-making process for the
algorithm we're writing. We'll want to look at the following key points when writing the
algorithm:

• Dictionary and input: Input can be within the algorithm or user-entered;
dictionaries are built within the algorithm. This means, to use a dictionary, we have
to define it in our algorithm before we are able to use it.

• Cost: This is the base cost for each item.

• Personalization costs: This is added to the base cost.

We'll now look at the preceding points in detail in the upcoming sections.

Building a dictionary and giving inputs
Before we add any of the complications, let's look at how to grab the price of each item
and use it at the base price. We'll need a count for the number of each item. The following
code shows you this:

ch5_storeQuantities.py

online_store = {

 'keychain': 0.75,

 'tshirt': 8.50,

 'bottle': 10.00

 }

keychain = online_store['keychain']

tshirt = online_store['tshirt']

bottle = online_store['bottle']

choicekey = int(input('How many keychains will you be
purchasing? If not purchasing keychains, enter 0. '))

choicetshirt = int(input('How many t-shirts will you be
purchasing? If not purchasing t-shirts, enter 0. '))

choicebottle = int(input('How many t-shirts will you be
purchasing? If not purchasing water bottles, enter 0. '))

print('You are purchasing ' + str(choicekey) + ' keychains, '
+ str(choicetshirt) + ' t-shirts, and ' + str(choicebottle) + '
water bottles.')

Learning to decompose problems 93

From the preceding code snippet, notice that we added the variables under the dictionary.
This will be useful later. These variables are named choicekey, choicetshirt, and
choicebottle. Naming the variables allows us to return to them and change code, as
needed. In this case, each variable asks for input from the person running the program
in order to get the number of keychains, t-shirts, and bottles they are ordering. Again,
there are multiple ways to tackle this problem, but we're using what we've learned so far to
create an algorithmic solution.

When we run the previous code for 3 keychains, 0 t-shirts, and 10 water bottles, this is
our output:

How many keychains will you be purchasing? If not purchasing
keychains, enter 0. 3

How many t-shirts will you be purchasing? If not purchasing
t-shirts, enter 0. 0

How many t-shirts will you be purchasing? If not purchasing
water bottles, enter 0. 10

You are purchasing 3 keychains, 0 t-shirts, and 10 water
bottles.

As you can see, we have a program that takes user input, then confirms to the user the
choices they have made for each of the items.

Let's see the next section about cost.

Making changes to the cost
Now let's add the changes in cost. Let's say that if a customer is purchasing over 10 items,
then the updated costs are as follows:

• Keychains: $ 0.65

• T-shirts: $ 8.00

• Water bottles: $ 8.75

To make the preceding changes, we can make the program update the difference in cost,
which is shown in the following code:

ch5_storeCost.py

online_store = {

 'keychain': 0.75,

 'tshirt': 8.50,

94 Exploring Problem Analysis

 'bottle': 10.00

 }

choicekey = int(input('How many keychains will you be
purchasing? If not purchasing keychains, enter 0. '))

choicetshirt = int(input('How many t-shirts will you be
purchasing? If not purchasing t-shirts, enter 0. '))

choicebottle = int(input('How many t-shirts will you be
purchasing? If not purchasing water bottles, enter 0. '))

print('You are purchasing ' + str(choicekey) + ' keychains, '
+ str(choicetshirt) + ' t-shirts, and ' + str(choicebottle) + '
water bottles.')

if choicekey > 9:

 online_store['keychain'] = 0.65

if choicetshirt > 9:

 online_store['tshirt'] = 8.00

if choicebottle > 9:

 online_store['bottle'] = 8.75

keychain = online_store['keychain']

tshirt = online_store['tshirt']

bottle = online_store['bottle']

print(online_store)

Now that we have updated the code, I'd like to print out my progress to make sure that the
code is working properly and changes take place. In this case, I wanted to make sure that
the costs would update if I had totals greater than 10. (That is, when a customer orders
more than 10 of an item, it updates the cost for each item to the lower cost.) The output of
the preceding code is as follows:

How many keychains will you be purchasing? If not purchasing
keychains, enter 0. 10

How many t-shirts will you be purchasing? If not purchasing
t-shirts, enter 0. 14

How many t-shirts will you be purchasing? If not purchasing
water bottles, enter 0. 10

You are purchasing 10 keychains, 14 t-shirts, and 10 water
bottles.

{'keychain': 0.65, 'tshirt': 8.0, 'bottle': 8.75}

You can now see from the preceding output that the dictionary has updated the values
based on the totals the user provided.

Learning to decompose problems 95

Now we need to go ahead and provide the cost. We can provide the total item cost
or the total cost of the full purchase, or both (let's do both). Take a look at the following
code snippet:

ch5_storeTotals.py

keychain = online_store['keychain']

tshirt = online_store['tshirt']

bottle = online_store['bottle']

print('You are purchasing ' + str(choicekey) + ' keychains, '
+ str(choicetshirt) + ' t-shirts, and ' + str(choicebottle) + '
water bottles.')

The preceding code snippet is added so that we can have a print statement to confirm
the input from the user. By printing that statement at the end of the code, we are checking
with the user whether the program can read the numbers correctly, and whether the user
entered the right numbers.

We can continue the code to add the costs per item:

ch5_storeTotals.py

totalkey = choicekey * keychain

totaltshirt = choicetshirt * tshirt

totalbottle = choicebottle * bottle

grandtotal = totalkey + totaltshirt + totalbottle

print('Keychain total: $' + str(totalkey))

print('T-shirt total: $' + str(totaltshirt))

print('Water bottle total: $' + str(totalbottle))

print('Your order total: $' + str(grandtotal))

The print statements at the end of the preceding code snippet provide the breakdown
of each item total as well as the full order total. After asking for the input for all items, the
code then prints the sub-totals for the cost of each of the items. The result of the preceding
code is as follows:

How many keychains will you be purchasing? If not purchasing
keychains, enter 0. 10

How many t-shirts will you be purchasing? If not purchasing
t-shirts, enter 0. 7

How many t-shirts will you be purchasing? If not purchasing

96 Exploring Problem Analysis

water bottles, enter 0. 14

You are purchasing 10 keychains, 7 t-shirts, and 14 water
bottles.

Keychain total: $6.5

T-shirt total: $59.5

Water bottle total: $122.5

Your order total: $188.5

Now that we have the totals of the items without personalization, we need to be able to
take into account the costs of that personalization, if ordered.

In the next section, let's take a look at what personalization costs are and the decisions
we'll need to make before we move on.

Adding personalization
For now, let's limit the personalization of keychains, t-shirts, and water bottles to binary
questions, that is, either the user wants personalization or not. We are not looking at tiered
costs of personalization, which you may have seen. If you wanted to add tiers, you'd need
to make more decisions, such as cost of choosing fonts, length of the personalization, and
so on. We'll forgo those for now, but feel free to add to this code in order to address those
kinds of customizations. Let's add another assumption for the personalization:

• $1.00 for the keychains

• $5.00 for the t-shirts

• $7.50 for the water bottles

We'll need to create the preceding conditions and then implement them into our
variables. Let's look at the code in parts. The following file contains each of the parts
we'll break down.

Recall that our algorithm first asked for input for the number of items they were
purchasing. The following code snippet takes user input in order to take personalization
into account:

ch5_storePersonalize.py

perskey = input('Will you personalize the keychains for an
additional $1.00 each? Type yes or no. ')

perstshirt = input('Will you personalize the t-shirts for an
additional $5.00 each? Type yes or no. ')

Learning to decompose problems 97

persbottle = input('Will you personalize the water bottles for
an additional $7.50 each? Type yes or no. ')

if perskey == ('yes' or 'Yes'):

 online_store['keychain'] = online_store['keychain'] + 1.00

if perstshirt == ('yes' or 'Yes'):

 online_store['tshirt'] = online_store['tshirt'] + 5.00

if persbottle == ('yes' or 'Yes'):

 online_store['bottle'] = online_store['bottle'] + 7.50

keychain = online_store['keychain']

tshirt = online_store['tshirt']

bottle = online_store['bottle']

totalkey = choicekey * keychain

totaltshirt = choicetshirt * tshirt

totalbottle = choicebottle * bottle

grandtotal = totalkey + totaltshirt + totalbottle

The preceding code snippet asks the user the binary questions on personalization. After
grabbing the input, the code then makes some decisions based on the user input and
defines the keychain, tshirt, and bottle variables and the totals for the choices. The
following snippet then uses the totals to print out the information for each item purchased
as well as the final total:

print('Keychain total: $' + str(totalkey))

print('T-shirt total: $' + str(totaltshirt))

print('Water bottle total: $' + str(totalbottle))

print('Your order total: $' + str(grandtotal))

From the preceding code, notice that the keychain, tshirt, and bottle variables
are defined after all our customizations based on total numbers and personalization.
Remember that in algorithm design, the order matters. If we locate those variables earlier
in the program, the conditions, such as personalization, that follow will not affect those
variables.

So, to be able to get everything we need for our variables, we need to define them after
defining some of the conditions that affect them, such as customization. Take a look at the
preceding code to note where the variables are. Feel free to play with the code by changing
where you define the variables to see whether your end results change.

98 Exploring Problem Analysis

Here's a visual flowchart with the keychain decision-making process:

Figure 5.2 – Keychain decision-making flowchart

As you can see from the preceding diagram, this is only for Keychains. We need to repeat
the process for the other two variables. In the diagram, you can see the decision-making
process for the item. First, the user indicates the number of items bought, then whether
they will personalize them or not.

Depending on each answer, the total is calculated by the program. For example, if there
is no personalization, the total is calculated sooner in the decision-making tree. We can
rewrite this program using functions (as I mentioned before) to simplify some of the
processes. For now, we are focusing on learning how to break down problems, analyze
conditions, and how to design algorithms that take into account multiple decisions.
Remember to complete the diagram for the other items so that the decision-making
process is easier to code when designing the algorithm.

In this section, we learned how to use a flowchart to create an algorithm. We also learned
about building a dictionary for our algorithm.

Before we move on, let's look at the process of analyzing problems. While we were creating
this algorithm, we did that while we decomposed the problem. However, there are some
key components of problem analysis that we should consider before our next chapter.

Analyzing problems 99

Analyzing problems
When analyzing problems, there are some steps that we can keep in mind to help us
ensure that we are creating the best possible algorithm:

• Clearly read and understand the problem.

• Identify the main purpose of the solution.

• Identify the constraints of the problem.

• Identify the decision-making flow.

• Establish the possible algorithms that could solve the problem.

• Identify the best possible algorithm tools for the problem.

• Test the algorithm pieces frequently.

• Verify that the algorithm provides the solution for the identified problem.

If we go back to our problem, we went through this process throughout the chapter:

• We had an online store with three items.

• Item cost was dependent on quantity purchased.

• Item price was also dependent on personalization customizations.

• We created flowcharts to help us identify the decision process and how to code it.

• We verified our code through code lines that allowed us to check whether the
algorithm was producing the correct response multiple times.

• We revisited and reordered pieces of code, as needed.

• We verified that the algorithm's output was in line with the problem we had
identified.

The preceding process bears repeating, that is, this is not a linear process. Sometimes we'll
write an algorithm and then revisit the decision flowchart, make adjustments, then tackle
the algorithm again.

The need for analyzing our problems at multiple stopping points becomes even clearer
when we are looking at larger problems. Should we write hundreds of lines of code before
testing? No! Imagine having 300 lines of code, only to find an error on line 20 that is
carried forward throughout the rest of the algorithm.

100 Exploring Problem Analysis

Testing at every possible progress point will allow us to catch the small mistakes that can
cost us in the long run. Remember, it's almost impossible to write a perfect algorithm on
the first try. We all make mistakes, small and large, so it is important that we continue to
test and analyze our progress.

Let's look at one more problem and go through the process again before leaving this
chapter.

Problem 5B – Analyzing a simple game problem
You want to design a number guessing game. The user has to guess a random number.

Let's start by defining our problem, which in this case is a game. Let's identify the known
information:

• The computer will need to randomly select a number.

• The user will need to input a number.

• The computer will have to check whether the input from the user matches the
randomly generated number.

Now, that's not enough! If I don't match on the first try, do I lose? How many chances do I
get? Is the random number a number between 1 and 10 or between 1 and 500? We're going
to have to make some decisions before we start coding this. Let's add some parameters:

• The number is between 1 and 100.

• The user will get 5 chances to guess.

• The computer will tell the user if the answer is too high or too low.

Now that we have those parameters, we can create a decision flowchart:

Figure 5.3 – Decision flowchart for guessing game

Analyzing problems 101

From the preceding diagram you can see that the chart is not complete. That's because we
will use some logic to make the process repeat 5 times. We'll get into that in a moment.
For now, notice the decisions. First, a number is generated by the program (but is not
revealed). The user then inputs a guess, which is either correct or incorrect. If it's correct,
then the user wins the game. If it's incorrect, then the program lets the user know if the
answer was too low or too high and asks for a new guess. The process will then repeat
itself, as needed. Now, let's write the algorithm.

First, let's generate the random number and get the user to guess it. Add a print()
function for both the randomly generated number and the input from the user so that you
can see that the information is working properly. Remember, we'll take those out later, but
it's important to keep checking and rechecking our code as part of our problem analysis
process. The following code will do the same:

ch5_guess1.py

import random as rand

compnumber = rand.randint(1, 100)

print(compnumber)

usernumber = int(input('Choose a number between 1 and 100.
You'll get 5 guesses or you lose! '))

print(usernumber)

You'll notice from the preceding code, the imported random module. We also imported
it as rand. That's just to save time and space. When you import a module in Python, you
can rename it. The random module gives us a way to generate the number in the range
that we had selected.

The rand.randint(1, 100) code line includes 1 and 100. These are the endpoints,
or limits for the random number generator. The rand function refers to the module,
as mentioned, while randint(a, b) refers to a random integer between a and b (including
a and b).

102 Exploring Problem Analysis

Run the code a few times to see how the number generated by the computer changes each
time. The following points show three test cases:

• The following is test case 1 of the preceding code:

27

Choose a number between 1 and 100. You'll get 5 guesses
or you lose! 10

10

As you can see from the preceding output, 27 is the computer-generated random
number and 10 is what the user entered.

• The following is test case 2 results of the previous code:

68

Choose a number between 1 and 100. You'll get 5 guesses
or you lose! 65

65

As you can see from the preceding output of the code, 68 is the value of the
compnumber variable, while the user (me) entered the number 65. So close, yet so
far!

• The following is test case 3 output:

50

Choose a number between 1 and 100. You'll get 5 guesses
or you lose! 23

23

As you can see from the preceding output, the computer chose the number 50,
while the user entered 23.

For our final version of this game, we won't print out the computer number. That would
be cheating! Right now, we're just testing.

Analyzing problems 103

Let's go ahead and add one condition—whether or not the first guess is correct. To do so,
we'll have to verify compnumber == usernumber. We're going to test this again before
going into the additional repetitions and logic, so we'll just say if it's true, then you win; if
it's false, then you lose:

ch5_guess2.py

import random as rand

compnumber = rand.randint(1, 100)

usernumber = int(input('Choose a number between 1 and 100.
You'll get 5 guesses or you lose! '))

if compnumber == usernumber:

 print('You win!')

else:

 print('You lose!')

Let's just say I lost on the first try when I ran it. I'm not going to run this until I do win,
however, because that could take, well, 100 tries or more. Here's what that looks like when
you run the program:

Choose a number between 1 and 100. You'll get 5 guesses or you
lose! 35

You lose!

Now let's talk about repeating a line of code. We're giving the user 5 guesses. How can we
do that in Python?

In Python, we can use for loops to iterate through code. We know we get 5 guesses, so
we'll have to use something like for number in range(5): to get us started with the
logic, which is shown in the following code:

ch5_guess3.py

import random as rand

compnumber = rand.randint(1, 100)

i = 5

for number in range(5):

 usernumber = int(input('Choose a number between 1 and 100.
You have ' + str(i) + ' guesses left. '))

 if compnumber == usernumber:

104 Exploring Problem Analysis

 print('You win!')

 else:

 i = i - 1

print('You're out of guesses! You lose! ')

From the preceding code, did you notice that i variable? We are using that variable so that
the user knows how many guesses they have left. So if we had 5 guesses, the code will start
at i = 5; then, if the user is wrong, it will use the line i = i – 1, which alerts the user
they now have 4 guesses left, and so on. Take a look at what happens when we run that
program:

Choose a number between 1 and 100. You have 5 guesses left. 14

Choose a number between 1 and 100. You have 4 guesses left. 98

Choose a number between 1 and 100. You have 3 guesses left. 48

Choose a number between 1 and 100. You have 2 guesses left. 12

Choose a number between 1 and 100. You have 1 guesses left. 54

You're out of guesses! You lose!

Now, we're not really being fair. As mentioned earlier, we want to give the user a hint each
time they attempt a guess. Now that we have the condition checking whether they are
equal, we can add an elif condition to check whether it's larger or smaller. The following
code shows this:

ch5_guess4.py

import random as rand

compnumber = rand.randint(1, 100)

i = 5

for number in range(5):

 usernumber = int(input('Choose a number between 1 and 100.
You have ' + str(i) + ' guesses left. '))

 if compnumber == usernumber:

 print('You win!')

 exit()

 elif compnumber > usernumber:

 print('Your number is too small!')

 i = i - 1

 elif compnumber < usernumber:

 print('Your number is too large!')

Analyzing problems 105

 i = i - 1

print('You're out of guesses! You lose! ')

The preceding code now provides some feedback to the user. If the number was greater
than the computer-generated number, the user receives the feedback 'Your number
is too large!', and if the user number is less than the computer-generated number,
then they receive the feedback 'Your number is too small!'. We also used an
exit() code if the user wins. That's because we want the game to stop when we win.

This gives us a fighting chance to win this game, take a look at what the output looks like
now:

Choose a number between 1 and 100. You have 5 guesses left. 50

Your number is too small!

Choose a number between 1 and 100. You have 4 guesses left. 75

Your number is too large!

Choose a number between 1 and 100. You have 3 guesses left. 65

Your number is too small!

Choose a number between 1 and 100. You have 2 guesses left. 70

Your number is too large!

Choose a number between 1 and 100. You have 1 guesses left. 68

You win!

Now look at what happens when we lose the game:

Choose a number between 1 and 100. You have 5 guesses left. 10

Your number is too small!

Choose a number between 1 and 100. You have 4 guesses left. 40

Your number is too large!

Choose a number between 1 and 100. You have 3 guesses left. 20

Your number is too small!

Choose a number between 1 and 100. You have 2 guesses left. 30

Your number is too small!

Choose a number between 1 and 100. You have 1 guesses left. 35

Your number is too large!

You're out of guesses! You lose!

106 Exploring Problem Analysis

As you can see, you get a different final message. I confess it took me quite a few tries to
win a game so I could get the output that follows, but you can see the game where the
second guess was correct:

Choose a number between 1 and 100. You have 5 guesses left. 10

Your number is too small!

Choose a number between 1 and 100. You have 4 guesses left. 90

You win!

We are going to stop this game with that last algorithm. We could actually make this game
better if we wanted to, but it does the job that we needed it to do. Some of the changes that
you could consider making to your game are as follows:

• Adding an option that alerts the user of a number already guessed.

• Adding an option that alerts the user that they ignored a previous hint (so if the
user gave a number that was too small and gave one that was even smaller, the
computer would alert them).

I'm sure there are more customizations that you could try. But for now, we went through
that problem and followed the points that we should consider when analyzing problems:

1. We read and understood the problem.

2. We identified the purpose—creating a computer player versus user player guessing
game.

3. We identified the constraints of the problem—the range of numbers, the number
of guesses, and providing hints.

4. We created a decision flowchart.

5. We wrote and established an algorithm for the problem.

6. We looked at how to create a simple algorithm that would iterate rather than having
to write each condition individually.

7. We tested the algorithm at multiple points.

8. We verified that the algorithm ran accurately for both wins and losses.

What you don't get to see here is the number of errors I went through before I got to the
algorithms shown. While writing, I had to use the preceding steps to help me identify
errors, check the best algorithms, and iterate through the programs. This is a process that
we'll continue to use.

Summary 107

Summary
In this chapter, we discussed problem definition, decomposition, and analysis. We used
problems to help us go through the process of identifying problems, decomposing them
into the relevant parts and identifying constraints, and analyzing our algorithms. We used
flowcharts to help us learn about decision-making when designing algorithms and how to
organize ideas.

We learned to test our algorithms often. This provided us with the skills and
understanding to identify errors early rather than wait until we had too many lines of
code, which made it hard to identify those errors. We used an online store and a guessing
game to help us understand some of the functionalities available in Python. Throughout
the process, we used Boolean code to verify inputs, we used nested if statements, and we
learned about how to use dictionaries in solving the problems presented.

In addition, we got a chance to use a dictionary for an algorithm that used user input and
variables. Using the algorithm gave us flexibility for defining some variables and editing
the variables once we run the algorithm or within the algorithm.

In the next chapter, we will go in depth into the solution process and design, delving
deeper into more complex problems and the Python language.

6
Designing Solutions

and Solution
Processes

In this chapter, we will design solutions to multiple problems, using previously learned
content, such as analysis of the problem and the computational thinking process.
We will incorporate logical processing to create visual representations of the decision
process that will guide our algorithm design. Visual representations discussed include
diagrams, flow charts, and other helpful processes. In this chapter, we will learn about
the key elements of solution design; how to create, use, and apply diagrams in our solution
processing and design; and we will look at applying the solution design process to various
problems.

In this chapter, we will cover the following topics:

• Designing solutions

• Diagramming solutions

• Creating solutions

110 Designing Solutions and Solution Processes

In order to further our knowledge of algorithms and solution design, we need to look
more closely at the frontend of problems. We will begin by discussing the process of
designing solutions in depth.

Technical requirements
You will need the latest version of Python to run the codes in this chapter. You
will find the full source code used in this chapter here: https://github.com/
PacktPublishing/Applied-Computational-Thinking-with-Python/
tree/master/Chapter06

Designing solutions
When we are designing solutions, we often use a design thinking model, even if we don't
always realize it. Design thinking is described by different models, but we'll be looking at
the five-step model that is most commonly seen when using design thinking.

In conjunction with computational thinking, the design thinking process can help us
evolve our ideas before we start diagramming solutions. It should be noted that we don't
go through the design thinking process linearly, much like in computational thinking.
Think about the steps in computational thinking:

• Problem decomposition

• Pattern recognition

• Abstraction

• Algorithm design

We have defined all these steps in previous chapters, most recently in the introduction to
Chapter 5, Exploring Problem Analysis. Looking at them again, we know that we can go
back to the decomposition as we're writing and designing the algorithm. That's what we
mean by non-linear processes.

The design thinking model works the same way. It was designed by the Hasso-Plattner
Institute of Design at Stanford University. The main steps of the model include the
following:

• Empathize: Understand the problem from the audience or stakeholder perspective.

• Define: Identify the objectives, the decisions that need to be made, any biases
introduced, and any details pertaining to the problem.

https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter06

Designing solutions 111

• Ideate: Brainstorm ideas, which go with the diagramming we'll be doing in the next
section of this chapter.

• Prototype: Design the algorithm solution and check it often.

• Test: Check your algorithm often throughout the process and go back to previous
steps as needed.

As you can see, I've adapted the design thinking model to align more with a
computational thinking process. The main goal when we're using these models and
combining them is to break down the harder problems into simpler chunks so we can
solve and design the best algorithms. This does not take the place of computational
thinking. It simply provides a better idea of how we can address the process. The following
diagram can help demonstrate how the process may work:

Figure 6.1 – Design thinking model

As you can see, rather than using the linear model most frequently shown, the preceding
model shows the process as cyclical. That said, going back to empathize can happen from
any point, so going back and forth between these steps is the best way to use the design
thinking model.

Let's take a look at a scenario where we are using design thinking in conjunction with
computational thinking.

Problem 1 - A marketing survey
Let's say you're working with a marketing firm and they ask you to put together a survey
to gather feedback about a website. Here are some of the steps you may go through:

1. Identifying stakeholders: This includes the people you'll survey as well as the
people who will use the information after the survey, for example.

2. Identifying questions: This is where you define what information you hope to find
from the survey.

112 Designing Solutions and Solution Processes

3. Designing the survey: This includes not only the questions you identified but the
aesthetics of what the survey will look like.

4. Information gathering: This is where you decide how you will communicate with
the people who will fill out the survey, such as email, a link on a website, or similar.

5. Data analysis: You can write a Python algorithm to help you with data analysis,
including creating tables and graphs based on the data collected.

6. Data sharing: This is where you will plan the visuals, reports, and data presentation
to the original stakeholders.

Let's be clear: this is an oversimplification of the process. But let's say you realize you need
to include another group for the survey. Say you were only initially getting feedback from
students at a school but realized you wanted to add teachers and parents. Well, then you
would go back to step 1 and identify in which ways the rest of your information would be
affected. You may want to change the look of the survey or add a different one for adults
versus children. You may need to add questions that are for only one group, which affects
your decision-making in the algorithm for the survey.

Now let's take a look at these steps within the design thinking process.

For our problem, identifying the stakeholders and questions are part of steps 1, 2, and 3
of the design thinking model: empathize, define, and ideate. Building the algorithm
is both part of prototype and test, which are steps 4 and 5. Adding people to the survey
takes us back to steps 1–3. And the cycle repeats until we have a working algorithm for
our scenarios. Throughout the computational thinking model and using its elements,
you'll use the design thinking process embedded within. It's a natural part of the
decision-making process.

Now that we've looked at the design thinking model, let's take a look at how to visually
represent the decision-making using diagramming solutions.

Diagramming solutions
When we are designing algorithms, we often use diagrams and flowcharts to help us
analyze the process and visually see where our decisions are made. These diagrams allow
us to create better algorithms. You'll remember that we created a flowchart in Chapter 5,
Exploring Problem Analysis, when we were building a store (Figure 5.1 and Figure 5.2).

Diagramming solutions 113

The process of creating these diagrams varies by developer or coder. For example,
I usually create a brainstorm for the problem, then a flowchart from that information.
To look at that process, let's go back to our survey problem from earlier in this chapter.
Look at the following brainstorm. It is not complete, as you can add a lot of sub-topics.
This brainstorm assumes we are surveying stakeholders to evaluate and share feedback
on a school website.

Figure 6.2 – Brainstorm diagram

114 Designing Solutions and Solution Processes

As you can see from the diagram, there are many considerations to be made. The actual
survey design may be provided to us as programmers or we may take part in designing the
survey. If we have the survey, our brainstorm may look different, as we navigate through
the questions and decide how to best place them within the algorithm. This is part of
the empathizing process. We are looking at our information from multiple angles, from
multiple stakeholders' perspectives, and deciding how we'll write an algorithm to help us
get to where we need. The purpose of an informal diagram such as the brainstorm is that
it allows us to begin organizing ideas before trying to create a more detailed and organized
flowchart. When we work on the diagram, we are defining and ideating our algorithm.
That's why it's important to sketch out our plans before beginning to code directly.

With regard to flowcharts, we saw a few in the last chapter when discussing the creation of
a store in Python. Now let's take a look at a flowchart for decision-making based on some
decisions.

It is important to note that surveys can be difficult to create from scratch. Part of the
reason is that there may be questions that depend on each other. For example, let's say you
ask the user to state whether they approve of the color choices or not. If they do, you can
move on. But if they don't, you may want to provide other color schemes for review. That
question would only appear for those who choose the No option. Our flowchart could
be rather complicated if we were to tackle all the information for our brainstorm, so we'll
focus on a few questions within the Look category of the brainstorm. Take a look at the
following flowchart:

Diagramming solutions 115

Figure 6.3 – Flowchart for one element of the survey

116 Designing Solutions and Solution Processes

As you can see from the flowchart, some things are not clearly visible, such as what
happens when you complete one question, where you go after each decision, and so on.
When I create flowcharts, I sometimes add arrows to help me see what happens after each
step. The following flowchart shows some of the arrows added:

Figure 6.4 – Flowchart with arrows

As can be seen from the preceding flowchart, not all arrows are added, but look closely at
Color Scheme. If a user approves of the color scheme, then they go directly to the Fonts
section. If they don't, they are shown options. Assuming one option is shown at a time,
then the user would go to Fonts after they choose one they like. It is also possible to add
a prompt that asks the user if they'd like to see the options again, which would bring them
back to the Alt option 1. Arrows can be added to show those details.

Creating solutions 117

It all depends on what is easiest for you as a developer and programmer to understand
yourself. Think of these as your journal notes if you were a writer. The way you organize
your ideas can be personal, just make sure your end result and algorithm can be easily
used by the people it is intended for.

Now let's take a look at how to put everything together and create solutions to some
problems.

Creating solutions
When we are presented with problems, we want to create solutions that address the
information we have been provided, with an algorithm that provides everything needed
and that is easily understood by the user. In this section, we'll take the content we've been
learning in this chapter in order to design solutions to problems.

As we create these solutions using our brainstorms and flowcharts, we should be
considering the following:

• Does the solution we have planned address the problem?

• Does the solution design show a clear path for the algorithm to be successful?

And if the answers to those questions are yes, then we can start coding the solution.
Remember, we need to test the algorithm as often as we can. Here are some things to keep
in mind when writing the algorithm:

• Add comments to identify sections you may need to go back to and that clearly
help to identify and define your variables, dictionaries, functions, and any key
components.

• Check that you don't have any errors, such as those discussed in Chapter 5,
Exploring Problem Analysis.

• Run your program as often as possible to test for errors.

For the solution process, we're going to use a slightly different problem than the survey
we were working on earlier in the chapter. We will tackle components you can use for that
problem as we go through this book, such as adding images, showing graphics, and more.
But for now, let's stick with some more basic Python in order to practice the process of
creating a solution.

118 Designing Solutions and Solution Processes

Problem 2 - Pizza order
I know – food. But it's one of the best ways to demonstrate logic and algorithm creation,
so bear with me. Let's say we have a pizzeria. We sell only one type of crust because we're
a specialty kind of place. We sell two different sizes of pizza: personal and family. There are
two sauce options: marinara and garlic cream. There are three cheese options: no cheese,
regular cheese, and extra cheese.

There are five toppings to choose from (I'm limiting those because we're just learning the
process): mushrooms, pepperoni, Italian sausage, onions, and peppers. And no, we're not
putting olives anywhere near my pizzeria.

Let's break down that problem. We want an algorithm to capture the options chosen by
the user to order their pizza. Things we're not going to take into consideration right now
are cost and additional items in the order, such as an additional pizza, beverages, desserts,
and so on.

Here's what we know:

• Size: personal or family

• Sauce: marinara or garlic cream

• Cheese: no cheese, regular cheese, extra cheese

• Toppings: mushrooms, pepperoni, Italian sausage, onions, peppers

Now that we have that, let's look at a flowchart with the information:

Figure 6.5 – Flowchart for pizzeria decision-making

As you can see, the figure shows a fairly linear decision-making process for this particular
problem. One thing we haven't considered is asking the user if they wish to make any
changes. That may need to happen at each step. Say you changed your mind while
choosing cheese to go for a marinara instead of a garlic cream sauce. You'll need to have
a way to go back, so we'll need to keep that in mind as we create the algorithm.

Creating solutions 119

Keep in mind that we're sticking to text codes currently, so we'll use input from the user
in numbers and letters for now. However, there are ways to incorporate Python into more
robust algorithms that incorporate images, buttons, and more.

Take a look at the following snippet from the algorithm:

ch6_pizzeria.py

#Get input for your variables for size and sauce first.

size_choice = str(input("Is this a personal or family pizza?
Type personal or family. "))

sauce_choice = str(input("Which sauce would you like? Marinara
or garlic cream? Type m for marinara and g for garlic cream.
"))

if sauce_choice == "g":

 sauce = "garlic cream"

else:

 sauce = "marinara"

#The cheese choice will dictate a few more options. Define the
variable first.

cheese_choice = str(input("Would you like cheese on your pizza?
Type y for yes and n for no. "))

Notice in the snippet that we defined the size and the sauce first. I will reiterate here that
there are other ways to tackle this particular logic process. For example, we can save
some of the variables to dictionaries and work with arrays. For now, we're using what
we've learned so far to create our algorithms, but we'll get a chance to learn about other
approaches later in this book.

The preceding snippet has a final choice of cheese. Regardless of the option here, we
need to make decisions on toppings. That will need to happen twice since we'll need it
for both yes and no.

120 Designing Solutions and Solution Processes

Take a look at the following snippet with those options, which is a continuation of the
preceding code:

ch6_Pizzeria.py

#Toppings need to happen whether or not you want cheese.

if cheese_choice == "y":

 cheese2_choice = str(input("Would you like regular cheese
or extra cheese? Type r for regular and e for extra cheese. "))

 if cheese2_choice == "r":

 cheese = "regular cheese"

 else:

 cheese = "extra cheese"

 toppings1_input = str(input("Would you like mushrooms on
your pizza? Type y for yes and n for no. "))

 if toppings1_input == "y":

 toppings1 = "mushrooms"

 else:

 toppings1 = "no mushrooms"

else:

 cheese = "no cheese"

if cheese_choice == "n":

 toppings1_input = str(input("Would you like mushrooms on
your pizza? Type y for yes and n for no. "))

 if toppings1_input == "y":

 toppings1 = "mushrooms"

 else:

 toppings1 = "no mushrooms"

print("You want a " + size_choice + " pizza with " + sauce + "
sauce, " + cheese + ", and " + toppings1 + ".")

As you can see from the snippet, we only worked with mushrooms. The output for this
particular code after choosing family size, garlic sauce, regular cheese, and mushrooms
looks as follows:

Is this a personal or family pizza? Type personal or family.
family

Which sauce would you like? Marinara or garlic cream? Type m
for marinara and g for garlic cream. g

Creating solutions 121

Would you like cheese on your pizza? Type y for yes and n for
no. y

Would you like regular cheese or extra cheese? Type r for
regular and e for extra cheese. r

Would you like mushrooms on your pizza? Type y for yes and n
for no. y

You want a family pizza with garlic cream sauce, regular
cheese, and mushrooms.

Using the code provided and taking a look at the output, try to put together the rest of
the code for the remaining four ingredients. And I guess that if you are creating your own
pizza, you're welcome to change the options provided here. Just keep the olives to yourself.

Now, as mentioned before, we may need to go back and make changes. Let's take a look at
a snippet that does that for you:

ch6_Pizzeria2.py

ready_end = str(input("Do you need to make any changes? Type y
for yes and n for no. "))

if ready_end == "y":

 size_choice = str(input("Is this a personal or family
pizza? Type personal or family. "))

 sauce_choice = str(input("Which sauce would you like?
Marinara or garlic cream? Type m for marinara and g for garlic
cream. "))

 if sauce_choice == "g":

 sauce = "garlic cream"

 else:

 sauce = "marinara"

 cheese_choice = str(input("Would you like cheese on your
pizza? Type y for yes and n for no. "))

As you can see from the snippet of code, there is a decision that needs to be made about
the changes needed. If yes, then we present the questions again. If no, then we print the
choices for the user. Take a look at the following output with the fully run program:

Is this a personal or family pizza? Type personal or family.
family

122 Designing Solutions and Solution Processes

Which sauce would you like? Marinara or garlic cream? Type m
for marinara and g for garlic cream. g

Would you like cheese on your pizza? Type y for yes and n for
no. n

Would you like mushrooms on your pizza? Type y for yes and n
for no. y

Do you need to make any changes? Type y for yes and n for no. y

Is this a personal or family pizza? Type 1 for personal and 2
for family. family

Which sauce would you like? Marinara or garlic cream? Type m
for marinara and g for garlic cream. m

Would you like cheese on your pizza? Type y for yes and n for
no. n

Would you like mushrooms on your pizza? Type y for yes and n
for no. y

You want a family pizza with marinara sauce, no cheese, and
mushrooms.

As shown in the code, the questions were asked twice because we made a change in our
options. Depending on how often you want to ask that question, you'll need to continue
to repeat some of this code. There are ways to simplify that, so we'll go over those options
in more depth in our Python language program chapter (Chapter 8, Introduction to
Python) and later chapters.

Before we move on, let's take a look at one more problem to go through the design process
again.

Problem 3 - Delays and Python
One of my first problems in Python was to create an algorithm that would react differently
depending on the color chosen. This is similar to what you'd have if you were creating
a traffic light. Each light has a different delay. So let's create an algorithm that addresses
that. We'll make it a user-chosen color between green, yellow, and red, just to keep the
traffic light theme. So let's put some assumptions together:

• Green will mean a 5-second delay

• Yellow will mean a 2-second delay

• Red will mean a 4-second delay

Creating solutions 123

There's no reason for these specific delays; I just wanted to keep them all under 5 seconds.
Now, let's say that we're playing a game and the user has to choose a color. If they choose
yellow or red, they'll get a delay and then will be asked again. The goal is to get a You win!
You can go now message from the program. So let's create a flowchart for this:

Figure 6.6 – Flowchart for traffic light game

As you can see from the flowchart, the game restarts if you choose yellow or red. Now that
we have the basics of what the game will look like, we have to code it.

Important Note:
To be able to use delays, we'll need to import the time library. Use the
code import time to do so. To include a delay, we use the code time.
sleep().

124 Designing Solutions and Solution Processes

Let's take a look at a snippet of our code:

ch6_sleep.py

import time

print("Let's play a game. Choose a color to learn your destiny.
Choose wisely or you'll have to start over. ")

i = 0

while i < 4:

 color = str(input("Choose a color: red, green, or yellow.
"))

 if color == "green":

 print("You must wait 5 seconds to learn your fate.")

 time.sleep(5)

 print("You win! Excellent choice!")

 break

 elif color == "yellow":

 print("You must wait 2 seconds to learn your fate.")

 time.sleep(2)

 print("You lose! You must start over.")

 i = i + 1

 else:

 print("You must wait 4 seconds to learn your fate.")

 time.sleep(4)

 print("You lose! You must start over.")

 i = i + 1

As you can see, the algorithm contains some of the code we've looked at in previous
chapters when talking about loops, Boolean statements, and more. This particular code
returns to the beginning for three rounds if the user has not won the game. We used an
if-elif-else statement to go through the color scenarios. The output of the game
playing three rounds looks as follows:

Let's play a game. Choose a color to learn your destiny. Choose
wisely or you'll have to start over.

Choose a color: red, green, or yellow. yellow

You must wait 2 seconds to learn your fate.

You lose! You must start over.

Choose a color: red, green, or yellow. red

Summary 125

You must wait 4 seconds to learn your fate.

You lose! You must start over.

Choose a color: red, green, or yellow. green

You must wait 5 seconds to learn your fate.

You win! Excellent choice!

As you can see from the game output, all three rounds were played. Each delay happened
according to the statement, which you'll have to test for yourself since I can't show time
delays with text.

Having the flowchart made creating this algorithm simpler than if I'd started coding as
soon as I'd read the problem. It's important to get used to fleshing out the processes you'll
need prior to writing your algorithms. Designing solutions can be a long and tedious
process, but the more organized we are at the start, the better our algorithms will be.

Summary
In this chapter, we discussed how to design, diagram, and create solutions to problems.
We went over the non-linear process of design thinking in order to understand how
to best design solutions. The design thinking model is a five-step process: Empathize,
Define, Ideate, Prototype, and Test. Using this five-step process within the computational
thinking process can help us to avoid many problems and pitfalls.

We also created brainstorms and flowcharts to establish the decision-making process of
our algorithms to solve problems.

In the next chapter, we will use our knowledge of algorithm design and designing
solutions in order to identify challenges within solutions and debug programs.

7
Identifying

Challenges within
Solutions

In this chapter, we will be evaluating algorithms and diagrams as we learn to navigate
through some common errors and to determine whether possible adjustments can be
made to an existing algorithm to simplify it. We will evaluate the solutions based on
the problem description to verify whether the solution aligns with the problem. We will
be learning about identifying pitfalls in the solution design process. As a note, we will
expand on the content of this chapter, later in this book, in Section 2, Applying Python
and Computational Thinking, and Section 3, Data Processing, Analysis, and Applications
Using Computational Thinking and Python, of this book as we dive deeper into the Python
programming language.

128 Identifying Challenges within Solutions

To learn about debugging, let's remind ourselves that the computational thinking
process is not linear. Even when we are working from the original problem, we will
sometimes redefine the problem or need to adjust the generalization due to a change in
the population our algorithm is for or if we want to tweak our design of the algorithm.
But sometimes, we come at problems after an algorithm has been designed and used.
Depending on our roles, we'll be evaluating algorithms for errors, changes needed, and
so on. Understanding how to find and analyze errors can help us, regardless of whether
we are absolute Python beginners or deep in our careers.

Throughout this chapter, you will learn how to identify and fix bugs in your program and
how to avoid pitfalls in the algorithm designs.

In this chapter, we will cover the following topics:

• Identifying errors in algorithm design

• Debugging algorithms

• Comparing solutions

• Refining and redefining solutions

Technical requirements
You will need the latest version of Python to run the codes in this chapter. You
will find the full source code used in this chapter here: https://github.com/
PacktPublishing/Applied-Computational-Thinking-with-Python/
tree/master/Chapter07

Identifying errors in algorithm design
Errors in algorithms are just a fact of life for any coder. It's important to get comfortable
with making mistakes. As mentioned in Chapter 5, Exploring Problem Analysis, and
Chapter 6, Solution Processes and Design, it's good practice to test your algorithm and test
it often. Waiting until you have finished hundreds or thousands of lines of code to test
something is a recipe for disaster. And yes, I was once working on copying a game and
did not test at all. Not until I had all 4,585 lines copied. I was young. Truth be told, I never
found the error I made. I started over and started testing at every corner. The second time
was successful, but I'd wasted weeks copying everything (it was from a book—GitHub
wasn't a thing yet) and then trying to figure out the errors. So please don't be me. Please
test your algorithms.

https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter07

Identifying errors in algorithm design 129

Now, before moving on to debugging and working with codes, let's take a look at the
errors we can encounter when solving problems.

In this section, we'll focus on the following two broad categories of errors: syntax errors
and logic errors.

Syntax errors
Syntax errors are sometimes called parsing errors. They're errors we create when we forget
to indent, add a colon, add quotation marks for strings, and so on. Let's have a look at the
different types of syntax errors in the following sections.

Using colons
Colons are used in Python to separate conditions, create loops, and more. The colon is
a way to tell the algorithm that the next thing is part of this particular block of code.
When we introduce colons in Python, it automatically indents the next line in our
code. But if we forget to include a colon where it is needed, the program will not run
successfully. Let's take a look at a syntax error:

for i in range(1, 10)

 print(i)

If we run this code, we get an error message that says invalid syntax. The following
screenshot shows the pop-up window that appears when we try to run this program:

Figure 7.1 – Error pop-up window

If we run this from the Python shell instead, here's how that error appears:

SyntaxError: invalid syntax

As you can see, the Python program alerts us when we have code that contains errors.

130 Identifying Challenges within Solutions

Notice that there is a colon missing after the range in the code. Now, take a look at the
fixed syntax in the following code:

ch7_syntaxerror1.py

for i in range(1, 10):

 print(i)

When we run the fixed code, the program runs and prints the numbers 1 through 9,
shown as follows:

1

2

3

4

5

6

7

8

9

You may recall that the range function does not include the upper endpoint. If we wanted
to print the number 10, our range would have needed to be range(1, 11).

Now, let's take a look at other punctuation used in Python that can lead to some errors,
namely, parentheses, nested parentheses, and brackets.

Using nested parentheses and brackets
In addition to errors in syntax that involve colons, which are my most common error,
there are also errors when we have nested parentheses. We must always check that every
open parenthesis has a closing parenthesis. The same is true for brackets. Let's look at the
following code, which contains an error with the parentheses:

name = str(input('What is your name? ')

print(name)

Identifying errors in algorithm design 131

As you can see, there are two open parentheses in the name definition, but only
one closing parenthesis. When we run that program, we get an invalid syntax error
from Python. Here's what happens when we run that program in the Python shell or
interpreter:

SyntaxError: invalid syntax

Now here's the same code without the error, notice that we even took the str() out
because it was not needed, which resulted in simplifying our code and eliminating the
error at the same time

ch7_syntaxerror2.py

name = input('What is your name? ')

print(name)

Now when we run the code, the program asks for the name then prints it. The output
looks as follows:

What is your name? Monique

Monique

As you can see, the program now runs without problems.

In Chapter 3, Understanding Algorithms and Algorithmic Thinking, we used a dictionary to
create a menu with pricing for each menu item. Dictionaries contain brackets to denote
when the dictionary begins and when it ends. Let's look at a few lines of code:

cars = {

 "Hyundai": "Kona",

 "Honda": "CR-V",

 "Toyota": "Camry"

print(cars)

132 Identifying Challenges within Solutions

If we look at the program, the dictionary is missing the closing bracket, }, so we get
a syntax error, the same as in our previous examples. The following snippet shows the
corrected program:

ch7_syntaxerror3.py

cars = {

 "Hyundai": "Kona",

 "Honda": "CR-V",

 "Toyota": "Camry"

 }

print(cars)

As you can see, once the bracket has been added, the program will run and print the
following output:

{'Hyundai': 'Kona', 'Honda': 'CR-V', 'Toyota': 'Camry'}

Each entry from the dictionary is printed in one line, divided by a comma. It is helpful to
add print statements as we are writing algorithms to ensure we do not have any errors.
I typically then remove unnecessary print functions once I've tested them, but they do
come in handy when we're writing long algorithms and need to test them to avoid issues.

There are many other errors we can incorporate while writing algorithms in Python. Let's
take a look at a few more syntax errors.

Other syntax errors
There are many other errors in syntax that can be introduced, especially in longer
programs. If you look at the dictionary we just used, forgetting a comma will also create
a syntax error, for example. Generally, these syntax errors are quickly identified when we
try to run a program. Python will highlight where an indentation is expected or when
a bracket is missing. Syntax errors are typically easy to identify, but there are many other
types of errors.

Identifying errors in algorithm design 133

Errors in logic
In Chapter 4, Understanding Logical Reasoning, we discussed logic errors that we can
encounter:

• Using the wrong variable in an equation or statement

• Using the wrong operator to test conditions

• Using wrong indentation when checking for conditions

Now we'll look at other errors in logic that have a specific callout from Python and what
each error represents.

Errors in logic are also called runtime errors. The following table shows some of the
built-in errors in Python and what they represent:

134 Identifying Challenges within Solutions

Table 7.1 - Table of exceptions and causes/descriptions

As you can see, there are many different types of errors that are flagged as exceptions in
Python. You can get the list of Python exceptions by running the following code:

ch7_errors.py

print(dir(locals()['__builtins__']))

When we run that code, the output provides the error values as follows:

['ArithmeticError', 'AssertionError', 'AttributeError',
'BaseException', 'BlockingIOError', 'BrokenPipeError',
'BufferError', 'BytesWarning', 'ChildProcessError',
'ConnectionAbortedError', 'ConnectionError',
'ConnectionRefusedError', 'ConnectionResetError',
'DeprecationWarning', 'EOFError', 'Ellipsis',
'EnvironmentError', 'Exception', 'False', 'FileExistsError',
'FileNotFoundError', 'FloatingPointError', 'FutureWarning',
'GeneratorExit', 'IOError', 'ImportError', 'ImportWarning',

Identifying errors in algorithm design 135

'IndentationError', 'IndexError', 'InterruptedError',
'IsADirectoryError', 'KeyError', 'KeyboardInterrupt',
'LookupError', 'MemoryError', 'ModuleNotFoundError',
'NameError', 'None', 'NotADirectoryError', 'NotImplemented',
'NotImplementedError', 'OSError', 'OverflowError',
'PendingDeprecationWarning', 'PermissionError',
'ProcessLookupError', 'RecursionError', 'ReferenceError',
'ResourceWarning', 'RuntimeError', 'RuntimeWarning',
'StopAsyncIteration', 'StopIteration', 'SyntaxError',
'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError',
'TimeoutError', 'True', 'TypeError', 'UnboundLocalError',
'UnicodeDecodeError', 'UnicodeEncodeError', 'UnicodeError',
'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning',
'ValueError', 'Warning', 'ZeroDivisionError', '__build_
class__', '__debug__', '__doc__', '__import__', '__loader__',
'__name__', '__package__', '__spec__', 'abs', 'all', 'any',
'ascii', 'bin', 'bool', 'breakpoint', 'bytearray', 'bytes',
'callable', 'chr', 'classmethod', 'compile', 'complex',
'copyright', 'credits', 'delattr', 'dict', 'dir', 'divmod',
'enumerate', 'eval', 'exec', 'exit', 'filter', 'float',
'format', 'frozenset', 'getattr', 'globals', 'hasattr',
'hash', 'help', 'hex', 'id', 'input', 'int', 'isinstance',
'issubclass', 'iter', 'len', 'license', 'list', 'locals',
'map', 'max', 'memoryview', 'min', 'next', 'object', 'oct',
'open', 'ord', 'pow', 'print', 'property', 'quit', 'range',
'repr', 'reversed', 'round', 'set', 'setattr', 'slice',
'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple',
'type', 'vars', 'zip']

As mentioned, these are built-in exceptions in Python. There is a way to define our own
exceptions, but we will not be going into them in this particular book.

Please note that these are not the only errors we will encounter when we are
programming. We can have errors due to our own mistakes in calculations, as we
discussed in Chapter 4, Understanding Logical Reasoning. We can introduce errors in our
Boolean logic. The goal is to avoid as many as we can so that our program runs without
problems. And remember, test your algorithms and test them often.

Now let's look at a few algorithms with errors and try to identify the errors so we can
correct them.

136 Identifying Challenges within Solutions

Debugging algorithms
There is a debugger we can run in Python using the breakpoint() function (which is
built-in). We can introduce this code into our program and insert it where we are unsure
of our code. Adding breakpoint() will then check for bugs and errors. When we run
a breakpoint() function, we'll get a pdb output, which stands for Python Debugger.
As a note, this built-in function appears in Python 3.7 and newer versions. The previous
debugger for Python 3.6 and older was pdb.set_trace().

When we run the debugger, we can use four commands:

• c: Continues the execution

• q: Quits the debugger/execution

• n: Steps to the next line within the function

• s: Steps to the next line in this function or a called function

Let's take a look at a code and run each of the commands outlined:

ch7_debugger.py

number = 5

number2 = 'five'

print(number)

breakpoint()

print(number2)

Looking at this code, you can see the breakpoint() command after print(number).
The code will run normally until it reaches the breakpoint() command. At this stage,
the execution stops. If we hit the c key, then it will just continue to run the program. Take
a look at what that output looks like.

Debugging algorithms 137

Notice in the code there are three dots between two slashes, /…/. This is done because the
paths may differ from your computer to mine. Yours will include the full path where the
program is located:

5

> /Users/.../Python/ch7_debugger.py(8)<module>()

-> print(number2)

(Pdb) c

five

As you can see, it went on to print the string, five, as it just continues the program. Now
let's look at the output when we run the q command, which quits the program:

5

> /Users/.../Python/ch7_debugger.py(8)<module>()

-> print(number2)

(Pdb) q

Traceback (most recent call last):

 File "/Users/.../Python/ch7_debugger.py", line 8, in <module>

 print(number2)

 File "/Users/.../Python/ch7_debugger.py", line 8, in <module>

 print(number2)

bdb.BdbQuit

As you can see, once we use the q command, we get a traceback error because the
program quits. It printed the line above the breakpoint() code, but not the second
print(number2) command. Now, let's see what happens when we type n, which
should take us to the next line:

5

> /Users/.../Python/ch7_debugger.py(8)<module>()

-> print(number2)

(Pdb) n

five

--Return--

> /Users/.../Python/ch7_debugger.py(8)<module>()->None

-> print(number2)

(Pdb)

138 Identifying Challenges within Solutions

As you can see, when we typed n, the program continued to run and printed the second
command line. When it does so, you can see the -> None output and the code that ran:
print(number2). Finally, let's look at slightly altered code to see what happens when
we use s while running the debugger:

ch7_debugger2.py

number = 5

number2 = 'five'

print(number)

breakpoint()

print(str(number) + number2)

When we run this program and the debugger, we get the following output if we use s:

5

> /Users/.../Python/ch7_debugger2.py(8)<module>()

-> print(number + " " + number2)

(Pdb) s

TypeError: unsupported operand type(s) for +: 'int' and 'str'

> /Users/.../Python/ch7_debugger2.py(8)<module>()

-> print(number + " " + number2)

(Pdb)

As you can see, the program encountered TypeError and provides more information.
I tried to combine an integer and a string. So, we would need to fix that code to run it
correctly. Before I do so, let's look at what happens when I try to continue the code with c:

5

> /Users/.../Python/ch7_debugger2.py(8)<module>()

-> print(number + " " + number2)

(Pdb) c

Traceback (most recent call last):

 File "/Users/.../Python/ch7_debugger2.py", line 8, in
<module>

Comparing solutions 139

 print(number + " " + number2)

TypeError: unsupported operand type(s) for +: 'int' and 'str'

As you can see, I can get the same information from both commands, with slightly
different responses from the program. To fix the problem, I'd have to convert the number
into a string, which I can do in the print line using the following code:

ch7_debugger3.py

number = 5

number2 = 'five'

print(number)

breakpoint()

print(str(number) + " " + number2)

Now that I've fixed the code so that the items in the print line are all strings, the output
looks as follows when I use c to continue:

5

> /Users/.../Python/ch7_debugger3.py(8)<module>()

-> print(str(number) + " " + number2)

(Pdb) c

5 five

As you can see, the program now printed the correct information, combining the number
as a string, with the five string. The double quotes add a space between them, which
we have seen before, but will discuss again when we look at Python basics in Chapter 8,
Introduction to Python.

Now, let's take a look at some solutions to the same problem so we can analyze them.

Comparing solutions
As we look at problems, I've mentioned that we have multiple ways of doing the same
things in Python. Depending on what we are trying to accomplish, some commands may
be better than others in our algorithms. Let's start by taking a look at a couple of solutions
for one problem.

140 Identifying Challenges within Solutions

Problem 1 - Printing even numbers
You've been asked to write an algorithm that prints even numbers based on a range that
the user provides. That is, if the user enters the range 2 through 20, then the program
would print 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20. Let's assume we want to include the
endpoints if they are even.

Let's take a look at the first of two possible solutions. Remember, one solution may not
be better than the other. A lot will depend on what the goal for your full algorithm is.
Is a list more appropriate? A dictionary? A function? Those questions are important when
we design solutions.

Algorithm solution 1 - Printing even numbers
Recall that we will be taking user input to create a list of even numbers given a range.
Take a look at the following code, which asks the user for the input then prints out the
numbers:

ch7_evenalgorithm1.py

print("This program will print the even numbers for any range
of numbers provided.")

endpoint1 = int(input("What is the lower endpoint of your
range? "))

endpoint2 = int(input("What is the upper endpoint of your
range? "))

endpoint2 = endpoint2 + 1

for i in range(endpoint1, endpoint2):

 if i % 2 == 0:

 print(i)

Notice that endpoint2 was converted into endpoint2 + 1. That is because if
we do not add 1, then the upper endpoint will not be included if it is an even number.
The program also begins with a printed message for the user that states what the
program does.

Comparing solutions 141

When I run this program with the endpoints 2 and 6, I get the following output:

This program will print the even numbers for any range of
numbers provided.

What is the lower endpoint of your range? 2

What is the upper endpoint of your range? 6

2

4

6

As you can see, both endpoints are even and included. If we run the program with the
endpoints 3 and 9, we get the following output:

This program will print the even numbers for any range of
numbers provided.

What is the lower endpoint of your range? 3

What is the upper endpoint of your range? 9

4

6

8

Even though the endpoint is technically 10 now, the upper limit of the range is not
included, so the largest even number below 10 is 8. Now, I can run this program for
a much larger range, but the larger the range, the harder it is to scroll to get all the
numbers. So, let's take a look at a different way to get our even numbers.

Algorithm solution 2 - Printing even numbers
As we saw from the previous example, each even number is being printed to a different
line. Let's see whether we can change that and instead create a list. Lists in Python can
be empty. We use any name for them, then equal them to items inside braces or just the
empty braces.

For example, I can create an empty list called evenNumbers = []. Let's see what that
looks like in the following algorithm:

ch7_evenalgorithm2.py

print("This program will print the even numbers for any range
of numbers provided.")

142 Identifying Challenges within Solutions

endpoint1 = int(input("What is the lower endpoint of your
range? "))

endpoint2 = int(input("What is the upper endpoint of your
range? "))

endpoint2 = endpoint2 + 1

evenNumbers = []

for i in range(endpoint1, endpoint2):

 if i % 2 == 0:

 evenNumbers.append(i)

print(evenNumbers)

You can see that the first few lines of code are the same. The only difference in this
particular code is how the numbers are printed. The list is created before the for loop.
Then, each of the numbers is appended to the list using the evenNumbers.append(i)
code. Finally, we print our list to get the following output:

This program will print the even numbers for any range of
numbers provided.

What is the lower endpoint of your range? 2

What is the upper endpoint of your range? 10

[2, 4, 6, 8, 10]

As you can see, the even numbers are all included in one list, which is easier to read than
if printed one at a time, one line at a time. Imagine if you had to print even numbers in the
range 300–1,000. A list would make that easier to read when we run the program. The
output would look as follows for the second algorithm:

This program will print the even numbers for any range of
numbers provided.

What is the lower endpoint of your range? 300

What is the upper endpoint of your range? 1000

[300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, 322,
324, 326, 328, 330, 332, 334, 336, 338, 340, 342, 344, 346,
348, 350, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370,
372, 374, 376, 378, 380, 382, 384, 386, 388, 390, 392, 394,

Comparing solutions 143

396, 398, 400, 402, 404, 406, 408, 410, 412, 414, 416, 418,
420, 422, 424, 426, 428, 430, 432, 434, 436, 438, 440, 442,
444, 446, 448, 450, 452, 454, 456, 458, 460, 462, 464, 466,
468, 470, 472, 474, 476, 478, 480, 482, 484, 486, 488, 490,
492, 494, 496, 498, 500, 502, 504, 506, 508, 510, 512, 514,
516, 518, 520, 522, 524, 526, 528, 530, 532, 534, 536, 538,
540, 542, 544, 546, 548, 550, 552, 554, 556, 558, 560, 562,
564, 566, 568, 570, 572, 574, 576, 578, 580, 582, 584, 586,
588, 590, 592, 594, 596, 598, 600, 602, 604, 606, 608, 610,
612, 614, 616, 618, 620, 622, 624, 626, 628, 630, 632, 634,
636, 638, 640, 642, 644, 646, 648, 650, 652, 654, 656, 658,
660, 662, 664, 666, 668, 670, 672, 674, 676, 678, 680, 682,
684, 686, 688, 690, 692, 694, 696, 698, 700, 702, 704, 706,
708, 710, 712, 714, 716, 718, 720, 722, 724, 726, 728, 730,
732, 734, 736, 738, 740, 742, 744, 746, 748, 750, 752, 754,
756, 758, 760, 762, 764, 766, 768, 770, 772, 774, 776, 778,
780, 782, 784, 786, 788, 790, 792, 794, 796, 798, 800, 802,
804, 806, 808, 810, 812, 814, 816, 818, 820, 822, 824, 826,
828, 830, 832, 834, 836, 838, 840, 842, 844, 846, 848, 850,
852, 854, 856, 858, 860, 862, 864, 866, 868, 870, 872, 874,
876, 878, 880, 882, 884, 886, 888, 890, 892, 894, 896, 898,
900, 902, 904, 906, 908, 910, 912, 914, 916, 918, 920, 922,
924, 926, 928, 930, 932, 934, 936, 938, 940, 942, 944, 946,
948, 950, 952, 954, 956, 958, 960, 962, 964, 966, 968, 970,
972, 974, 976, 978, 980, 982, 984, 986, 988, 990, 992, 994,
996, 998, 1000]

The reason I only printed this one versus the first algorithm is that the first algorithm
would take pages, and we don't want to waste printed pages in this book. You can see that
one is just easier to use and more appropriate than the other due to the ease of reading the
larger group of numbers.

This is why we need to look at all of our algorithms and determine whether they are the
best possible way to express what we need. While some algorithms work, they may not
be the best solution, and sometimes that's okay. But other times, making some changes,
sometimes as subtle as adding a couple of lines of code, as we did with algorithm 2, can
change our output fairly dramatically and be much more helpful for us.

As we compared these two algorithms, we were also refining and redefining our solution,
which we will do more of in the next section.

144 Identifying Challenges within Solutions

Refining and redefining solutions
If we look at algorithms long enough, we can always find ways to refine them and redefine
them. Think about how many updates we get for apps on our phones. Someone is always
playing with the apps, making them more secure, adding levels to games, updating the art
files, and so on. As programmers/coders, we are always trying to make our work better.

We are going to start this section with an algorithm. The following program prints out the
names of three pets:

ch7_pets1.py

cat = "Whiskers"

dog = "King Kong"

bird = "Pirate"

print("The cat's name is " + cat + ", the dog's name is " + dog
+ \

 ", and the bird's name is " + bird + ".")

This simple code has everything within it, so there's no user input this time. You can see
the \ character used after dog + in the print() command. This backslash allows us to
add the remaining code in the next line so we can more easily read it.

The output for the code looks as follows:

The cat's name is Whiskers, the dog's name is King Kong, and
the bird's name is Pirate.

As you can see, it's a simple sentence with the pet names.

Now, let's say we have a cat, dog, and bird, but their names are not the same. We can
instead use a function that takes three arguments. Keep in mind we will go into all of the
definitions and information on functions in Chapter 8, Introduction to Python. For now,
let's look at what that algorithm could look like with a function. We'll name the function
myPets(). Take a look at the following algorithm:

ch7_pets2.py

def myPets(cat, dog, bird):

 print("The cat's name is " + cat + ", the dog's name is " +
dog +\

 ", and the bird's name is " + bird + ".")

Refining and redefining solutions 145

myPets(cat = "Whiskers", dog = "King Kong", bird = "Pirate")

The algorithm looks very similar to the previous one, except the definitions of the names
are in the last line of the code. The function is called, using the information from that line
to fill in the blanks from the definition in the algorithm lines above it. The output looks
the same as the previous code:

The cat's name is Whiskers, the dog's name is King Kong, and
the bird's name is Pirate.

Now, as you can see, this only printed one function because we only provided information
for one, but we can call the function as many times as we want to with as many values as
we want. Take a look at this algorithm:

ch7_pets3.py

def myPets(cat, dog, bird):

 print("The cat's name is " + cat + ", the dog's name is " +
dog +\

 ", and the bird's name is " + bird + ".")

myPets(cat = "Whiskers", dog = "King Kong", bird = "Pirate")

myPets(cat = "Mimi", dog = "Jack", bird = "Peyo")

myPets(cat = "Softy", dog = "Leila", bird = "Oliver")

As you can see, the function will now be called three times. We only have one print()
command, but the function definition means that print() command will be used any
time the function is called. Take a look at what the output looks like:

The cat's name is Whiskers, the dog's name is King Kong, and
the bird's name is Pirate.

The cat's name is Mimi, the dog's name is Jack, and the bird's
name is Peyo.

The cat's name is Softy, the dog's name is Leila, and the
bird's name is Oliver.

Notice that three different sentences were printed with the three sets of pet names
provided when we called the function.

146 Identifying Challenges within Solutions

When we're writing algorithms, it's important to take into consideration what we need
now and what we might need later. Using the first algorithm was fine for one instance,
but if we wanted to run the algorithm for every person in a community or every student
in a classroom, for example, the second algorithm is more helpful. Redefining what we
need and refining our algorithms helps us to improve what we get out of our programs.

Note that, as mentioned, we will talk about functions more in Chapter 8, Introduction
to Python. One of the things we'll address is creating a function for an unknown number
of arguments. For example, what if I only had a dog and a bird? We can address that with
a few changes to the algorithm. We will look into that soon. For now, we know just a little
more about why we need to sometimes compare algorithms and redefine and redesign
them to better fit our needs.

Summary
In this chapter, we discussed errors in algorithm design and how to debug solutions. We
also learned how to compare solutions and refine and redesign solutions when needed.
After reading this chapter, you should know more about syntax errors in algorithms and
how to use the debugger using the breakpoint() command in Python 3.7 and above.
The built-in debugger provides you with four courses of action: c = continue, q = quit,
n = next line, and s = step.

Using the debugger allows us to identify pieces of code where we may have made
mistakes. We can add this line to any place in our code to determine the issue.

We also looked at algorithms that provide the same output but using different code.
By comparing algorithm solutions, we can identify which of them are more useful,
what better suits our problem or situation, and why we should use one over the other.
Remember that algorithms are lists of instructions. Knowing which instructions to use
given the broader use of the algorithm is critical. Some solutions may be more appropriate
for your problem than others. Take into consideration the algorithm's purpose, the
snippets in the algorithm, and how they will be used within the bigger algorithm and
make your determinations accordingly. Each problem and each solution is unique.

As we finish out Section 1, Introduction to Computational Thinking, of this book, we have
learned about the computational thinking process, always looking at possible scenarios
to help us to understand the usefulness of the process, how to brainstorm and create
flowcharts for decisions, and how to design our algorithms. In Section 2, Applying Python
and Computational Thinking, we will begin looking at the Python language more in depth
so we can tackle more complex problems, such as those dealing with data and functions.
We'll also take a more in-depth look at the Python programming language, and we'll apply
the knowledge to multiple types of problems in the further chapters.

Section 2:
Applying Python and

Computational Thinking

There are multiple options when it comes to programming languages. The Python
programming language is a powerful, open source, object-oriented programming
language. It is a high-level programming language with an ever-growing number of
libraries and packages that continue to expand its capabilities. We can use Python to
program things from simple mathematical algorithms to complex data science algorithms,
and even machine learning. Understanding Python also means understanding multiple
areas of computational thinking.

In this section, you will learn how to use the computational thinking process when solving
problems using the Python programming language.

This section comprises the following chapters:

• Chapter 8, Introduction to Python

• Chapter 9, Understanding Input and Output to Design a Solution Algorithm

• Chapter 10, Control Flow

• Chapter 11, Using Computational Thinking and Python in Simple Challenges

8
Introduction to

Python
In this chapter, we will be learning about the Python commands and functionalities
while applying them to problems. As we delve into the first chapter of Section 2,
Applying Python and Computational Thinking, we will be using more complex Python
programming. In this chapter, we will focus more on language, while the remaining
chapters will focus on application.

In this chapter, we will cover the following topics:

• Introducing Python

• Working with dictionaries and lists

• Using variables and functions

• Learning about files, data, and iteration

• Using object-oriented programming

As we dig deeper into the Python programming language, remember that some of the
content has been covered in previous chapters as we looked at the computational thinking
process, such as the use of dictionaries and functions. This chapter will allow you to
find critical information more easily when looking for Python commands to meet your
computational thinking problem needs.

150 Introduction to Python

Technical requirements
You will need the latest version of Python to run the codes in this chapter. You
will find the full source code used in this chapter here: https://github.com/
PacktPublishing/Applied-Computational-Thinking-with-Python/
tree/master/Chapter08

Introducing Python
Python is one of the fastest-growing programming languages due to its ease of use. One
of the draws of Python is that we can write the same programs we do with languages
such as C, C++, and Java, but with fewer lines of code and simpler language and syntax.
Another big draw of Python is that it is extensible, which means we can add capabilities
and functionalities to it.

While not all functionalities are inherently built in, we can use libraries to add what
we need. Those libraries are available to download and use. For example, if we wanted
to work with data and data science, there are a few libraries we can download, such as
Pandas, NumPy, Matplotlib, SciPy, Scikit Learn, and more. But before we get into those
libraries, let's look at how the Python language works and learn its basics.

Python has some built-in reference functions. The following table shows the functions
in alphabetical order:

Table 8.1 – Python built-in functions

https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter08

Introducing Python 151

While we won't go over all the functions in this book, we will use some of them as we
look at Python and its algorithms. Let's start with some of the mathematical functions
listed here.

Mathematical built-in functions
In Python, some of the mathematical functions are already built in, such as the abs(),
eval(), max(), min(), and sum() functions. These are not the only mathematical
functions built in, but we'll take a closer look at these particular ones in order to
understand how Python deals with them.

The abs() function will help us find the absolute value of a number, either an integer or
a float. Take a look at the following code snippet:

ch8_absFunction.py

x = abs(-3.89)

print(x)

When we run this program, we'll get the absolute value of –3.89. Remember that the
absolute value of a number is its distance from 0. Take a look at the output when we run
this program:

3.89

Since the absolute value is always positive, when we run abs(–3.89), we get 3.89.

Another helpful mathematical function is the eval() function. We can define a variable
in this function and then call for Python to evaluate an algebraic expression using that
value. In the Python shell, we can first define the variable as follows:

>>> p = 2

Now that the variable is defined, we can call the eval() function with any expression.
For example, take a look at the following input and output:

>>> eval('2 * p - 1')

As you can see, Python used the previously defined p value of 2, and substituted then
evaluated the expression to produce this output:

3

152 Introduction to Python

The Python program also works as a calculator, so you can perform mathematical
operations as you normally would. Here are a few examples:

>>> 10-8

As you can see, Python knows to read the dash as a subtraction and produces the result of
the mathematical expression:

2

In the next case, Python interpreted + as a mathematical symbol and provided the result
of the sum expression:

>>> 4+5

The output is:

9

Notice the last expression, 10**5. In Python, we can use two stars (**) to denote
exponents:

>>> 10**5

The output is:

100000

Now, let's take a look at the max() function. This function can be used on an iterable list,
but we can test it with just two numbers:

>>> max(12, 30)

You can clearly see what the output is:

30

Let's take another example:

>>> max(100, 10)

This is the output:

100

Working with dictionaries and lists 153

As you can see from the output, the function always chooses the largest item. You can
add a third item and the function will still choose the maximum value. These built-in
functions are smart in a way that they are coded to work with what is provided – two or
three items, for example – without having to tell Python explicitly how many items we'll
be introducing:

>>> max(230, 812, 109)

The output obtained is:

812

As you can see, we did not have to add anything to the built-in function to find the
maximum of three values.

The min() function is the opposite; it chooses the minimum value. Take a look at the
following minimum function:

>>> min(230, 812, 109)

This is the output:

109

As you can see, the function used the same list we used for the maximum function, but
this time the output is 109, which is the minimum value of that group of numbers.

There are other mathematical functions, such as sum(). If you're a Python beginner,
it's recommended that you play around with those functions to learn how they work.
These functions will be key to your algorithms as you design solutions for computational
thinking problems. We will also use some of these functions as we look at other Python
functionalities, such as dictionaries and arrays.

Working with dictionaries and lists
Before we get too deep into dictionaries and lists, it's important to note that Python
does not contain arrays in the built-in functions. We can use lists and perform a lot
of the traditional functions on lists that we'd use for arrays. However, for more robust
functionalities with arrays, a library is needed, such as NumPy.

154 Introduction to Python

Python has four collection data types, which are as follows:

• Lists: Ordered and changeable; can have duplicates

• Tuples: Ordered and unchangeable; can have duplicates

• Sets: Unordered and unindexed; cannot have duplicates

• Dictionaries: Unordered, changeable, and indexed; cannot have duplicates

As noted, we won't be going into NumPy libraries or other data libraries just yet. For now,
we're going to focus on dictionaries and lists.

Defining and using dictionaries
You may recall that we used dictionaries in Chapter 3, Understanding Algorithms and
Algorithmic Thinking, when we created a menu of items. Dictionaries in Python are
collections that have the following three characteristics:

• They are unordered.

• They are changeable.

• They are indexed by keys.

Dictionaries are organized as value pairs. For example, we can have a dictionary with
value pairs of states and their capitals. Take a look at the following dictionary:

ch8_dictionary1.py

states = {

 'Ohio':'Columbus',

 'Delaware':'Dover',

 'Pennsylvania':'Harrisburg',

 'Vermont':'Montpelier'

 }

print(states)

If we were to print this dictionary without any conditions to the print statement, we
would get the following output:

{'Ohio': 'Columbus', 'Delaware': 'Dover', 'Pennsylvania':
'Harrisburg', 'Vermont': 'Montpelier'}

Working with dictionaries and lists 155

As you can see, each value pair is printed at once. Just like we built the dictionary in this
way, Python also has a built-in dict() function. The same dictionary can be built using
that function, as follows:

ch8_dictionary2.py

states = dict([

 ('Ohio','Columbus'),

 ('Delaware','Dover'),

 ('Pennsylvania','Harrisburg'),

 ('Vermont','Montpelier')

])

print(states)

You can see that the dictionary is constructed very similarly in both examples, with some
changes in syntax, such as the use of colons in the first instance, versus parentheses and
commas in the second one. However, the print statement produces the same result.

Dictionaries are said to be key-value pairs because the first item is the key and the second,
paired item is the value. So, for Ohio and Columbus, Ohio is the key while Columbus is
the value. We can use the key to call any value. For example, I can call states['Ohio']
and it should return 'Columbus'. Take a look at the code:

>>> states['Ohio']

This is the output:

'Columbus'

We can do that for any key-value pair in the dictionary. But if we try to call a key that's not
in the dictionary, such as Alabama, then we get the following error:

>>> states['Alabama']

This leads to the following error being displayed:

Traceback (most recent call last):

 File "<pyshell#23>", line 1, in <module>

 states['Alabama']

KeyError: 'Alabama'

156 Introduction to Python

Notice that this gives a KeyError, mentioned in the list of errors in Chapter 7, Identifying
Challenges within Solutions, in the Errors in logic section. But let's say we do want to add
Alabama and the capital, which is Montgomery. We can use the following code to do so:

>>> states['Alabama'] = 'Montgomery'

We can call the dictionary again after entering the following code:

>>> print(states)

This gives us the following output:

{'Ohio': 'Columbus', 'Delaware': 'Dover', 'Pennsylvania':
'Harrisburg', 'Vermont': 'Montpelier', 'Alabama': 'Montgomery'}

Notice that the dictionary added the 'Alabama':'Montgomery' key-value pair at the
end of the dictionary.

We can also delete key-value pairs using the del code, as shown:

>>> del states['Delaware']

Now, if we go ahead and print the states dictionary, Delaware is no longer on the list:

>>> print(states)

This is the output after deleting the state:

{'Ohio': 'Columbus', 'Pennsylvania': 'Harrisburg', 'Vermont':
'Montpelier', 'Alabama': 'Montgomery'}

Now, you can continue to add items or delete them without having to go into the main
algorithm.

With dictionaries, you can also add multiple values to one key. Let's say I play three sports
(I don't). I could list those in a dictionary and match them to one key value. Take a look
at the following algorithm:

ch8_dictionary3.py

miscellaneous = {

 'sports' : ['tennis', 'bowling', 'golf'],

 'age' : '40',

Working with dictionaries and lists 157

 'home' : 'lake'

 }

We can print the full dictionary using print(miscellaneous), as follows:

>>> print(miscellaneous)

This is how we get the output:

{'sports': ['tennis', 'bowling', 'golf'], 'age': '40', 'home':
'lake'}

As you can see, the printed dictionary includes all the values. If I want to print only the
sports, then I can use the miscellaneous['sports'] code:

>>> miscellaneous['sports']

This is the output:

['tennis', 'bowling', 'golf']

Notice that we did not use the print() function at all. We used the dictionary, which we
called miscellaneous, and called the 'sports' key. Note that we were able to get this
result because we called the dictionary in the IDLE command window in Python. If you
want to include this in your algorithm, you'll still need to use the print() function.

While we won't go into all the functionalities of dictionaries here, you can see how they
can be helpful in creating algorithms that contain key-value pairs. Python allows us to add
and alter the dictionary, call values, and more with the use of simple code without having
to access the entire dictionary to do so.

Next, we'll take a look at lists.

Defining and using lists
Lists in Python are ordered and changeable. We can create lists for anything, such as types
of animals, colors, fruit, numbers, or really whatever we want. Since we can have duplicate
values, we could have a list for three apples that just says apple, apple, apple. For
example, take a look at the list shown:

ch8_list1.py

fruits = ['apple','apple','apple']

print(fruits)

158 Introduction to Python

When we print this list, all the items are included. The output is as follows:

['apple', 'apple', 'apple']

As you can see, we have the same value three times. We would not be able to do that with
a dictionary, which does not allow duplicate members.

Now, let's take a look at what we can do with lists. Let's start with the following list of
animals:

ch8_list2.py

animals = ['dog', 'cat', 'bird', 'lion', 'tiger', 'elephant']

The first item in the list is 'dog'. Lists have indexes, starting at 0. So, if we printed
animals[0], we'd get dog. We can check it here:

>>> print(animals[0])

This is the output with index 0:

dog

There are six items on the list, but the last index is [5]. So, to print elephant, we'd need
to print using that index:

>>> print(animals[5])

elephant

You can also use negative numbers for indexes in lists. The [–1] index refers to the last
index, so it represents elephant, the same as index [5]:

>>> print(animals[-1])

elephant

The [–2] index refers to the second-to-last index, so tiger, and so on.

We can also print multiple items from a list by specifying a range of indexes. Take a look
at the following code:

>>> print(animals[1:4])

Working with dictionaries and lists 159

This is the output:

['cat', 'bird', 'lion']

As you can see, we printed the second item on the list, which corresponds to index [1],
and the next two items.

With lists, we can also add items, replace items, delete items, check for the length, and
more. To add an item, we need to use the append() method. Let's add the duck item
to our list:

>>> animals.append('duck')

>>> print(animals)

Here is the added item:

['dog', 'cat', 'bird', 'lion', 'tiger', 'elephant', 'duck']

Notice that our list now has duck at the end of the list. But let's say we want to remove
bird and substitute it with butterfly:

First, we have to identify the index for bird. That index is 2, as it is the third item on
the list:

>>> animals[2] = 'butterfly'

>>> print(animals)

Here is the output, with bird replaced:

['dog', 'cat', 'butterfly', 'lion', 'tiger', 'elephant',
'duck']

The list now contains butterfly.

Removing an item is fairly straightforward, as we just use the remove() method and the
item we want to remove:

>>> animals.remove('lion')

>>> print(animals)

As you can see, lion has been removed from the list:

['dog', 'cat', 'butterfly', 'tiger', 'elephant', 'duck']

160 Introduction to Python

We can also remove an item by index using the pop() method. Using index 1 removes
the second item on the list. Refer to the following code:

>>> animals.pop(1)

'cat'

Then, we can try the following:

>>> print(animals)

['dog', 'butterfly', 'tiger', 'elephant', 'duck']

Notice that Python identifies the item at index 1 that was popped out of the list. When we
print the list again, the item is no longer there. If we want to remove the last item, we do
not have to specify an index. Refer to the following code:

>>> animals.pop()

'duck'

Then, we can try the following:

>>> print(animals)

['dog', 'butterfly', 'tiger', 'elephant']

As mentioned, when no index is specified, the last item on the list is popped and removed
from the list.

There is yet another way to remove an item from the list, by using the del keyword:

>>> del animals[1]

>>> print(animals)

This is the output:

['dog', 'tiger', 'elephant']

Our list lost the second item on the list. We can also use the del keyword to delete the
list entirely:

>>> del animals

>>> print(animals)

Working with dictionaries and lists 161

This error is the output here:

Traceback (most recent call last):

 File "<pyshell#49>", line 1, in <module>

 print(animals)

NameError: name 'animals' is not defined

As you can see, I can no longer print the list because it is not defined. Notice we received
a NameError description of name 'animals' is not defined. This is one of the
other errors mentioned in Chapter 7, Identifying Challenges within Solutions.

Important Note:
For the next few code examples, I ran my original code from the
ch8_list2.py file again to get my original list.

We can clear an entire list without eliminating the actual list by using the clear()
method, as follows.

>>> animals.clear()

>>> print(animals)

This is the output we get:

[]

In this case, the list now prints as an empty list without giving an error message. That's
because the list is still there and defined, it's just empty.

Now, let's say I wanted the length of my list. We can find the length of the list by using
len(). Again, I went back to the original list to run the following code:

>>> print(len(animals))

We get the following output:

6

Our original list contained six elements – that is, six animals.

162 Introduction to Python

Now, let's define another list that contains colors:

ch8_list3.py

animals = ['dog', 'cat', 'bird', 'lion', 'tiger', 'elephant']

colors = ['blue', 'red', 'yellow']

print(animals)

print(colors)

The output for this algorithm is two lists. Now, if we wanted to combine the two lists, we
could do so using the extend() method.

Let's take a look at how we can append colors to the animals list:

>>> animals.extend(colors)

>>> print(animals)

This is the appended list:

['dog', 'cat', 'bird', 'lion', 'tiger', 'elephant', 'blue',
'red', 'yellow']

Our list now includes all our animals and all our colors. We could have also used the
following method to extend colors with animals. The difference is that the colors
would appear first on our list:

>>> colors.extend(animals)

>>> print(colors)

This is how the list now appears:

['blue', 'red', 'yellow', 'dog', 'cat', 'bird', 'lion',
'tiger', 'elephant']

We can also sort lists, which is helpful when we want to have an alphabetical list or if we
want to sort a list of numbers. Take a look at the two lists in the following algorithm:

ch8_list4.py

animals = ['dog', 'cat', 'bird', 'lion', 'tiger', 'elephant']

numbers = [4, 1, 5, 8, 2, 4]

Working with dictionaries and lists 163

print(animals)

print(numbers)

This is how they appear unsorted:

['dog', 'cat', 'bird', 'lion', 'tiger', 'elephant']

[4, 1, 5, 8, 2, 4]

Let's sort both lists and see what happens:

>>> numbers.sort()

>>> print(numbers)

We will get this output:

[1, 2, 4, 4, 5, 8]

Then, we can try the following:

>>> animals.sort()

>>> print(animals)

We get this as the output:

['bird', 'cat', 'dog', 'elephant', 'lion', 'tiger']

As you can see, the numbers were sorted from smallest to largest, while the animals were
sorted in alphabetical order.

Let's talk for a second about why this is so helpful. Imagine that you have a list of items
displayed on your website that come from a Python list. They are all sorted and perfectly
displayed. But let's now say you want to add more items. It's easier to add them in any
order to your list using the methods we have discussed, then we can sort them so that they
continue to be in alphabetical order.

Of course, these are not the only things we can do with lists. Python allows us to work
with lists in many ways that are user-friendly and function similar to what arrays do in
other programming languages. When we need to use them in other ways, we can search
for libraries that contain those functionalities.

164 Introduction to Python

Both lists and dictionaries are important in the Python programming language. In this
section, you saw that dictionaries use key-value pairs, while lists include values. Both can
be edited using methods and functions built into the Python programming language.
You'll see them again when we apply Python to more complex computational thinking
problems in Section 3, Data Processing, Analysis, and Applications Using Computational
Thinking and Python, of this book.

Now, we'll take a look at how we use variables and functions in Python.

Using variables and functions
In Python, we use variables to store a value. We can then use the value to perform
operations, evaluate expressions, or use them in functions. Functions give sets of
instructions for the algorithm to follow when they are called in an algorithm. Many
functions include variables within them. So, let's first look at how we define and use
variables, then take a look at Python functions.

Variables in Python
Python does not have a command for declaring variables. We can create variables by
naming them and setting them equal to whatever value we'd like. Let's take a look at an
algorithm that contains multiple variables:

ch8_variables.py

name = 'Marcus'

b = 10

country_1 = 'Greece'

print(name)

print(b)

print(country_1)

As you can see, we can use a letter, a longer name, and even include underscores in
naming our variables. We cannot, however, start a variable name with a number. When we
run this program, we get the following output:

Marcus

10

Greece

Using variables and functions 165

Each variable was printed without any problems. If we had used a number to begin any
variable name, we would have gotten an error. However, if I had named the country_1
variable as _country, that would be an acceptable variable name in Python.

Now, let's take a look at what we can do with variables.

Combining variables
One thing variables allow us to do is combine them in a print statement. For example,
I can create a print statement that prints Marcus Greece. To do so, I can use the +
character, as follows:

>>> print(name + ' ' + country_1)

Notice that between the two + characters, there's ' '. This is done to add a space so that
our print statement won't look like MarcusGreece. Now, let's combine b and name in
a print statement:

>>> print(b + name)

This will give us an error message:

Traceback (most recent call last):

 File "<pyshell#70>", line 1, in <module>

 print(b + name)

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Notice that the error states TypeError: unsupported operand types for +.
It also states that we have 'int' and 'str', which means we are combining two
different data types.

To be able to combine those two data types in a print statement, we can just convert
int, which is our b variable, to str. Here's what that looks like:

>>> print(str(b) + ' ' + name)

This easily gives us the desired result:

10 Marcus

Now that we've made them both strings, we can combine them in the print function.

166 Introduction to Python

Sometimes, we'll want to create many variables at once. Python allows us to do that with
one line of code:

ch8_variables2.py

a, b, c, d = 'John', 'Mike', 'Jayden', 'George'

print(a)

print(b)

print(c)

print(d)

When we run this algorithm, we get the following output:

John

Mike

Jayden

George

As you can see, when we print the a variable, the first value to the right of the equals sign
is printed. The first line of the algorithm assigned four different values to four different
variables.

Let's now look at functions, as we'll need them to further our variables conversation.

Working with functions
In Chapter 7, Identifying Challenges within Solutions, we wrote an algorithm that printed
even numbers for any given range of numbers. We're going to revisit that by defining
a function to do that work for us. Let's take a look at an algorithm for the even numbers
problem:

ch8_evenNumbers.py

def evenNumbers(i, j):

 a = i - 1

 b = j + 1

 for number in range(a, b):

 if number % 2 == 0:

Using variables and functions 167

 print(number)

 a = a + 1

If we run this program in Python, there is no output; however, we can now run the
function for any range of numbers. Notice that we have added an a and b variable within
this function. That's so that the endpoints are included when the program runs.

Let's see what happens when we run the program for the ranges (2, 10) and (12,
25):

>>> evenNumbers(2, 10)

The output is as follows:

2

4

6

8

10

Then, we can try the following:

>>> evenNumbers(12, 25)

The output is as follows:

12

14

16

18

20

22

24

168 Introduction to Python

As you can see, instead of having to go inside the algorithm to call the function, once
we've run the function, we can just call it for any range in the Python shell. As before, if
our range is too large, the shell will show a really long list of numbers. So, we can define
another variable, this time a list, and append the values to that list within the function:

ch8_evenNumbers2.py

listEvens = []

def evenNumbers(i, j):

 a = i - 1

 b = j + 1

 for number in range(a, b):

 if number % 2 == 0:

 listEvens.append(number)

 a = a + 1

 print(listEvens)

Notice that we defined the list outside of the function. We can do it either way. It can live
within the function or outside. The difference is that the list exists even if the function is
not called; that is, once I run the algorithm, I can call the list, which will be empty, or call
the function, which will use the list. If outside the function, it's a global variable. If inside,
it only exists when the function is called.

Let's try to run that now for the range (10, 50):

>>> evenNumbers(10, 50)

This is the output:

[10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38,
40, 42, 44, 46, 48, 50]

As you can see, the even numbers between and including 10 and 50 are now included in
the list and printed.

Let's look at another example of a function that takes a (name) string argument:

ch8_nameFunction.py

def nameFunction(name):

 print('Hello ' + name)

Learning about files, data, and iteration 169

Once we run this algorithm, we can call the function for any name. Take a look:

>>> nameFunction('Sofia')

We get this output:

Hello Sofia

Let's input another name:

>>> nameFunction('Katya')

We will see the following output:

Hello Katya

As you can see, once a function is defined in an algorithm and the algorithm is run, we
can call that function, as needed.

Now, we did use an iteration in the previous example with even numbers, so it's time we
started looking more closely at files, data, and iteration, so let's pause and take a look at
that. As we get to iteration, we'll run into a few more function examples.

Learning about files, data, and iteration
In this section, we're going to take a look at how to handle files, data, and iteration with
Python. This will give us information on how to use an algorithm to open, edit, and run
already-existing Python files or new files. With iteration, we'll learn how to repeat lines
of code based on some conditions, limiting how many times or under what conditions
a section of the algorithm will run for. We'll start with files first.

Handling files in Python
In Python, the main function associated with files is the open() function. If you are
opening a file in the same directory, you can use the following command line:

fOpen = open('filename.txt')

If the file is in another location, you need to find the path for the file and include that in
the command, as follows:

fOpen = open('C:/Documents/filename.txt')

170 Introduction to Python

There are a few more things we can tell the program to do in addition to opening the file.
They are listed as follows:

• r: Used to open the file for reading (this is the default, so it does not need to be
included); creates a new file if the file does not exist.

• w: Used to open the file for writing; creates a new file if the file does not exist.

• a: Used to open a file to append; creates a new file if the file does not exist.

• x: Used to create a specified file; if the file already exists, returns an error.

There are two more things that can be used in addition to the methods listed. When used,
they identify how a file needs to be handled – that is, as binary or text:

• t: Text (this is the default, so if not specified, it defaults to text)

• b: Binary (used for binary mode – for example, images)

Take a look at the following code. Since this code is a single line and specific to each path,
it is not included in the repository:

fOpen = open('filename.txt', 'rt')

The preceding code is the same as the previous code, fOpen = open('filename.
txt'). Since r and t are the defaults, not including them results in the same execution
of the algorithm.

If we wanted to open a file for writing, we could use the fOpen = open('filename.
txt', 'w') code. To close files in Python, we use the close() code.

Some additional methods for text files are included in the following list. This is not an
exhaustive list, but contains some of the most commonly used methods:

• read(): Can be used to read lines of a file; using read(3) reads the first 3 data.

• tell(): Used to find the current position as a number of bytes.

• seek(): Moves the cursor to the original/initial position.

• readline(): Reads each individual line of a file.

• detach(): Used to separate the underlying binary buffer from TextIOBase and
return it.

• readable(): This will return True if it can read the file stream.

• fileno(): Used to return an integer number for the file.

Learning about files, data, and iteration 171

As you can see, you can use Python to manipulate and get information from text files. This
can come in handy when adding lines of code to an existing text file, for example. Now,
let's look at data in Python.

Data in Python
Before we get into data, let's clarify that we're not talking about data types, which we
discussed in Chapter 1, Fundamentals of Computer Science. For this chapter, we're looking
at data and ways to interact with it, mostly as lists.

Let's look at some of the things we can do with data.

First, grab the ch8_survey.txt file from the repository. You'll need it for the next
algorithm.

Say you asked your friends to choose between the colors blue, red, and yellow for a group
logo. The ch8_survey.txt file contains the results of those votes. Python allows us to
manipulate that data. For example, the first line of the file says Payton – Blue. We can
make that line print out Payton voted for Blue instead. Let's look at the algorithm:

ch8_surveyData.py

with open("ch8_survey.txt") as file:

 for line in file:

 line = line.strip()

 divide = line.split(" - ")

 name = divide[0]

 color = divide[1]

 print(name + " voted for " + color)

Let's break down our code to understand what is happening:

• The first line opens the survey file and keeps it open.

• The next line, for line in file, will iterate through each line in the file to
perform the following commands.

• The algorithm then takes the information and splits it at the dash. The first part is
defined as the name (name = divide[0]) and the second is defined as the color
(color = divide[1]).

• Finally, the code prints out the line with the voted for text added.

172 Introduction to Python

Take a look at the following output:

Payton voted for Blue

Johnny voted for Red

Maxi voted for Blue

Jacky voted for Red

Alicia voted for Blue

Jackson voted for Yellow

Percy voted for Yellow

As you can see, you now have each line adjusted to remove the dashes and include
the voted for phrase. But what if you wanted to count the votes? We can write an
algorithm for that as well:

ch8_surveyData2.py

print("The votes for Blue are in.")

blues = 0

with open("ch8_survey.txt") as file:

 for line in file:

 line = line.strip()

 name, color = line.split(' - ')

 if color == "Blue":

 blues = blues + 1

print(blues)

As you can see, we are counting the votes by verifying each line and using the if color
== "Blue" code. When we run this algorithm, we get the following output:

The votes for Blue are in.

3

As you can see, the algorithm prints out the initial print() command, then prints the
counted votes for Blue.

Learning about files, data, and iteration 173

We can also work with data to find things such as the mean, median, and mode, but we
won't go over those now. If we need them in the future for one of our applied problems,
we'll go ahead and use them. However, most of those data-specific problems will use
libraries to simplify some of the algorithms and computations.

Now, let's talk a bit more about iteration, which we've been using but will need to define
further to better understand its use.

Using iteration in algorithms
Before we go into iteration, let's define the term. Iteration means repetition. When we
use iteration in algorithms, we are repeating steps. Think of a for loop , which we've used
in problems before, such as the even numbers problem—the algorithm iterated through
a range of numbers. It repeated for all the numbers in our range.

Let's take a look at another example:

ch8_colorLoop.py

colors = ['blue', 'green', 'red']

for color in colors:

 print(color)

The iteration in this algorithm is that it will repeat the print process for each of the
colors in the original colors list.

This is the output:

blue

green

red

As you can see, each of the colors was printed.

We can also get input from a user, then iterate to perform some operation. For example,
take a look at the following algorithm:

ch8_whileAlgorithm.py

ask = int(input("Please type a number less than 20. "))

while ask > 0:

174 Introduction to Python

 print(ask * 2)

 ask = ask – 1

As you can see, we defined ask as the input variable. Then, we printed double the number
and reduced the number by 1 as long as ask was greater than 0.

The output looks like this:

Please type a number less than 20. 8

16

14

12

10

8

6

4

2

The output shows the list created by doubling the initial number, which is 8 x 2 = 16, then
continues until the ask variable is no longer greater than 0.

Next, let's take a look at how we can iterate through multiple lists. The algorithm uses two
lists and then prints a single statement using information from both:

ch8_Iterations.py

jewelry = ['ring', 'watch', 'necklace', 'earrings',
'bracelets']

colors = ['gold', 'silver', 'blue', 'red', 'black']

for j, c in zip(jewelry, colors):

 print("Type of jewelry: %s in %s color. " %(j, c))

When we run the algorithm, we get the following output:

Type of jewelry: ring in gold color.

Type of jewelry: watch in silver color.

Type of jewelry: necklace in blue color.

Type of jewelry: earrings in red color.

Type of jewelry: bracelets in black color.

Using object-oriented programming 175

Take a look at the print statement: print("Type of jewelry: %s in %s
color." %(j, c)). The %s symbols will be replaced by the (j, c) values, respectively.
So, the first %s symbol gets the items from j and the second %s symbol gets the items
from c, where j is the item from the jewelry list and c is the color from the colors list.

As you can see, we can iterate through lists in multiple ways. These are only a few
examples to get comfortable with loops and how to use information in our algorithms.
As we dive deeper into more complex problems, the algorithms will get more
sophisticated, so we'll revisit many of the topics in this chapter and earlier chapters.

Before moving on to the next chapter, we need to look at Object-Oriented
Programming (OOP).

Using object-oriented programming
OOP is a way to structure data into objects. The Python program is an object-oriented
program in that it structures algorithms as objects in order to bundle them based on
properties and behaviors. To learn about OOP, we will need to know how to do the
following:

• Create classes

• Use classes to create objects

• Use class inheritance to model systems

In Python, we use classes to bundle data. To understand classes, let's create one:

>>> class Books:

 pass

We can then call the Books() class and get the location where the class is saved on
our computer. Notice that my output will not match yours, as the class will be saved in
different locations:

>>> Books()

This is my output:

<__main__.Books object at 0x000001DD27E09DD8>

Now that we've created the class, we can add book objects to the class:

>>> a = Books()

>>> b = Books()

176 Introduction to Python

Each of these instances is a distinct object in Books(). If we were to compare them, since
they are distinct, a == b would return False.

Now, let's take a look at a class that creates an address book. By creating the class, we can
add entries as needed:

ch8_addressBook.py

class Entry:

 def __init__(self, firstName, lastName, phone):

 self.firstName = firstName

 self.lastName = lastName

 self.phone = phone

In this algorithm, we've created an Entry class that stands for items in an address book.
Once we run the algorithm, we can add entries to the address book and call information
on them. For example, take a look at the following code:

>>> Johnny = Entry('John', 'Smith', '201-444-5555')

This code enters Johnny into the address book. Now, we can call Johnny's first name,
last name, and phone number separately, as follows:

>>> Johnny.firstName

This is my output:

'John'

We can call the last name:

>>> Johnny.lastName

This is the obtained output:

'Smith'

We can also call for phone number:

>>> Johnny.phone

Using object-oriented programming 177

We can see the output for this:

'201-444-5555'

We can add as many entries as we'd like, then call them as needed:

>>> max = Entry('Max', 'Minnow', '555-555-5555')

>>> emma = Entry('Emma', 'Dixon', '211-999-9999')

>>> emma.phone

This is our output:

'211-999-9999'

After adding the entries, we can call a last name:

>>> max.lastName

We get this output:

'Minnow'

As you can see, we added two new entries, then called Emma's phone number and Max's
last name.

Once we have classes, we can have one class that inherits methods and attributes for other
classes. Because the classes are inheriting the attributes and methods, the original class is
called the parent class, while the new class is called a child class.

Going back to our address book, we can create a child class by passing the class to the new
one. I know, it sounds confusing, but take a look at the algorithm:

>>> class Job(Entry):

 pass

We can now add more items using that child class as well. See the following example:

>>> engineer = Job('Justin', 'Jackson', '444-444-4444')

We can do more with classes, but let's try to pull this chapter together by solving
a problem and designing an algorithm that uses at least some of the components
learned about.

178 Introduction to Python

Problem 1 - Creating a book library
Let's say you have a lot of books and want to create an algorithm that stores information
about the books. You want to record each book's title, author, publication date, and
number of pages. Create an algorithm for this scenario.

First, let's think about the problem:

• The number of books I own changes constantly, so I'd want to create something that
I can add information to, as needed.

• I also want to be able to remove books that I no longer own.

While we could use a library, the best solution for this particular problem would be
a class. Let's start by creating a class called Books:

ch8_BookLibrary.py

class Books:

 def __init__(self, title, author, pubDate, pages):

 self.title = title

 self.author = author

 self.pubDate = pubDate

 self.pages = pages

book1 = Books('The Fundamentals of Fashion Design', 'Sorger &
Udale', '2006', '176')

book2 = Books('Projekt 1065: A Novel of World War II', 'Gratz',
'2016', '309')

As you can see, we have our class defined. The class has four arguments: title, author,
pubDate, and pages. After the definition, two books have been added. When we run
this program, nothing happens, really, but we can then call information on either book:

>>> book1.title

Problem 1 - Creating a book library 179

We will get this output:

'The Fundamentals of Fashion Design'

We will call the publishing date of book2:

>>> book2.pubDate

We obtain this output:

'2016'

You can see that I can now call any of the elements saved for each of the books after I've
run the algorithm.

Now, take a look at how a third book can be added within the Python shell, as follows:

>>> book3 = Books('peanut butter dogs', 'Murray', '2017',
'160')

Since the book has been added, we can call information about this book as well:

>>> book3.title

We get this output:

'peanut butter dogs'

We can call the total pages of book3:

>>> book3.pages

We will get the following output:

'160'

As you can see, we can add books to our class from within the algorithm, or after running
the algorithm in the Python shell. Now, let's take a look at another problem.

180 Introduction to Python

Problem 2 - Organizing information
We've been asked to create an algorithm that takes three numbers as input and provides
the sum of the numbers. There are multiple ways we can do this, but let's look at using the
eval() function:

ch8_Sums.py

a = int(input("Provide the first number to be added. "))

b = int(input("Please provide the second number to be added.
"))

c = int(input("Provide the last number to be added. "))

print(eval('a + b + c'))

Notice that we defined each of the input variables as an int type. This is defined so that
the evaluation is done correctly.

Here is the output for our algorithm:

Provide the first number to be added. 1

Please provide the second number to be added. 2

Provide the last number to be added. 3

6

If we had forgotten to add the type for each of the numbers, the function would have
evaluated that as 123 instead because it just adds each string to the next one. So, if our
input had been John, Mary, Jack, our output would have been JohnMaryJack.

We previously didn't go into the sum() function. Let's take a look at using that function
instead:

ch8_Sums2.py

a = int(input("Provide the first number to be added. "))

b = int(input("Please provide the second number to be added.
"))

c = int(input("Provide the last number to be added. "))

numbers = []

Problem 3 - Loops and math 181

numbers.append(a)

numbers.append(b)

numbers.append(c)

print(sum(numbers))

Using sum in this case requires that we add our inputs to a list, as sum() works with
iterables, such as lists. Although this solution has more code, the output is exactly the
same as our eval() function, as you can see here:

Provide the first number to be added. 1

Please provide the second number to be added. 2

Provide the last number to be added. 3

6

As you can see, we get the same answer as before using a different Python function. Let's
look at one more problem before we move on to the next chapter.

Problem 3 - Loops and math
For this problem, we have to create an algorithm that prints out the squares of all the
numbers given a range of two numbers. Remember, we can print each individually,
but if the range is large, it's best we have a list instead. We'll also need to iterate in the
range, and we have to add 1 to the maximum if we want to include the endpoints.

Take a look at the following algorithm:

ch8_SquareLoops.py

print("This program will print the squares of the numbers in a
given range of numbers.")

a = int(input("What is the minimum of your range? "))

b = int(input("What is the maximum of your range? "))

Numbers = []

b = b + 1

for i in range(a, b):

 j = i**2

 Numbers.append(j)

182 Introduction to Python

 i = i + 1

print(Numbers)

Notice that we added a j variable to our algorithm. We didn't use i = i**2 because that
would change the value of i, which would affect our iteration in the algorithm. By using
j, we can then use i to iterate through the range given. Let's look at our output:

This program will print the squares of the numbers in a given
range of numbers.

What is the minimum of your range? 4

What is the maximum of your range? 14

[16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196]

This algorithm prints out our list of squares for the range provided. It also has an initial
print statement that explains what the code will do.

Now that we've looked at a few examples, let's look at parent classes and child classes and
how inheritance works.

Using inheritance
In Python, we can pass methods and properties from one class to another using
inheritance. The parent class has the methods and properties that will be inherited. The
child class inherits from the parent class. The parent class is an object and the child class is
an object, so we are defining the properties of classes.

Let's see how that works using a science example. We're going to create a class called
mammals. Not all mammals are viviparous. A mammal is viviparous when it gives birth
to live young. A mammal that is not viviparous is the platypus. The platypus lays eggs
instead of giving birth to live young. If we were writing an algorithm for this, we would
want the animals to inherit the characteristics of the parent – in this case, mammals.
Let's take a look at the following snippet of code:

ch8_mammals.py

class mammals:

 def description(self):

 print("Mammals are vertebrate animals.")

 def viviparous(self):

Problem 3 - Loops and math 183

 print("Mammals are viviparous, but some are not.")

class monkey(mammals):

 def viviparous(self):

 print("Monkeys are viviparous.")

class platypus(mammals):

 def viviparous(self):

 print("The platypus is not viviparous. It's an egg-
laying mammal.")

obj_mammals = mammals()

obj_monkey = monkey()

obj_platypus = platypus()

obj_mammals.description()

obj_mammals.viviparous()

obj_monkey.description()

obj_monkey.viviparous()

obj_platypus.description()

obj_platypus.viviparous()

From the preceding code, notice that the mammals() class uses a description and
then information about mammals and viviparity. monkey is defined using the same
description as the mammals class, but then includes a different statement for viviparity.
The same thing happens with platypus. The monkey and platypus classes are child
classes of the mammals class.

The three classes, the parent and the two children, are then simplified into a variable so
that they can be used by calling that variable. Finally, the algorithm prints the description
and viviparity statements for the parent and the two children. Let's take a look at that
output:

Mammals are vertebrate animals.

Mammals are viviparous, but some are not.

Mammals are vertebrate animals.

Monkeys are viviparous.

184 Introduction to Python

Mammals are vertebrate animals.

The platypus is not viviparous. It's an egg-laying mammal.

As you can see, all three classes used the same description. That's because we didn't make
any changes to the description for the children. When we defined the classes, we only
changed the parts we wanted to be different from the parent class. Everything else is
inherited from the parent class.

Parent classes and children are widely used in Python for multiple purposes. For
example, in gaming, you may have enemies that all have some of the same characteristics.
Rather than defining each enemy with all the characteristics separately, we can create
a parent class that includes all the common characteristics, then change the individual
characteristics of all the enemies as child classes. This is just one of the ways in which
inheritance can be used. There are many other uses and it helps us save time and avoid
errors by only defining them with the parent classes.

Now that we've had some experience with classes and learned about OOP, let's wrap up
the chapter.

Summary
In this chapter, we discussed the basics of Python programming. We looked at some of
the built-in functions, worked with dictionaries and lists, used variables and functions,
learned about files, data, and iteration, and learned about classes and OOP.

As we mentioned in this chapter and when solving previous problems, Python provides
multiple ways for us to solve the same problems. One example of that is provided in the
Problem 2 - Organizing information section of this chapter, where we used the eval()
and sum() functions in two different algorithms to produce the same result. As we
continue to learn about Python and how to write our algorithms, choosing which
functions, variables, arguments, and more to use will start to become second nature. Some
of the more challenging concepts and content in this chapter have to do with data analysis,
such as the survey we used when introducing data in Python in the Data in Python section
of this chapter, and classes. It's important to get some practice in those areas so that you
can get a better understanding of those topics.

After this chapter, you can now work with built-in functions, distinguish between lists,
dictionaries, and classes, and solve problems that combine multiple different concepts,
such as variables, iterations, and lists. In the next chapter, we will be looking at input and
output in more depth to help us when designing algorithms.

9
Understanding

Input and Output
to Design a Solution

Algorithm
In this chapter, we will take a deeper look at problems in order to identify the input
and output necessary to design an algorithm for the problems. We will use concepts
we learned in Chapter 8, Introduction to Python, where we discussed object-oriented
programming, dictionaries, lists, and more. As you practice getting input and using it in
your algorithm, you'll be able to see that the output of an algorithm is dependent on the
input information.

In this chapter, we will cover the following topics:

• Defining input and output

• Understanding input and output in computational thinking

186 Understanding Input and Output to Design a Solution Algorithm

In this chapter, we will focus on understanding different types of input and how output is
used in programming using the Python programming language. To be able to get a better
understanding of these topics, we have to first look at their definitions.

Technical requirements
For this chapter, you will need to have the latest Python version installed.

You can find the source code used in this chapter here: https://github.com/
PacktPublishing/Applied-Computational-Thinking-with-Python/
tree/master/Chapter09

Defining input and output
We will begin this section by studying input and its definition, which, in turn, is used to
provide a result, or output.

Input is what is put into a system or machine. In computers, we have input devices
that the computer then interprets to provide a result, or output. As we look at the types
of inputs and how we use input in algorithms, you'll see the output we get from those
algorithms. Let's take a look at some examples of input devices:

• Keyboard: When we use a keyboard, the computer interprets the keys and uses that
interpretation in various programs, such as document writing and search bars.

• Mouse: The mouse is used to navigate our physical screens, helping us click through
content and scroll through pages.

• Joystick: A joystick can be used to play computer games.

• Microphone: In more modern machines, microphones are not only used to
communicate through phone and video apps, but also to take verbal commands
for Artificial Intelligence (AI) assistants such as Cortana and Siri, as well as
voice-to-text commands.

All of the aforementioned inputs are programmed into our computers in order to be
useable. In Python, we write algorithms that use inputs such as these. User input is when
a program asks the user for information that will then be used to produce the output.
Keep in mind that input and output can happen at any time within the algorithm. We can
also provide output feedback that requires additional input from the user, and so on. Let's
take a look at how we can get user input from Python.

https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter09

Defining input and output 187

Python has one main prompt for users, the input() function. This function is used to
take user input, and then it automatically converts the input into the user expected output.

We have used these main prompts before in multiple programs, such as the store example
in Chapter 5, Exploring Problem Analysis. Let's take a look at what some input commands
look like in algorithms. Take a look at the following code snippet:

ch9_input1.py

name = input("What is your name? ")

print("Nice to meet you " + name + ".")

The snippet asks the user for their name, and then prints a statement using the
information from the input. The result of this code is as follows:

What is your name? Mikayla

Nice to meet you Mikayla.

Now, we could just ask for input without using any prompting questions, but the user will
not know what is being asked or how it will be used. Take a look at the snippet without the
prompts, shown as follows:

ch9_input2.py

name = input()

print("Nice to meet you " + name + ".")

When we run the preceding program, nothing prints out in our shell. However, I knew
there was something I needed to type, so take a look at what happened when I just typed
a letter:

d

Nice to meet you d.

As you can see, the user wouldn't have known what to do because the window doesn't ask
anything; it just gives a blank space and the user has to assume that's where you type the
input. But that can cause a lot of confusion, since there's nothing telling the user whether
it needs input or what kind of thing they have to enter.

188 Understanding Input and Output to Design a Solution Algorithm

We can alleviate some of that confusion by using print statements, for example, by
providing the user with information about what input we'll be asking for. We can also
include a statement as part of the input() function. For example, we could use a line
of code such as name = input('What is your name?'), which would show
the statement in quotations first so that the user knows what we are asking. Either way,
providing a statement so that the user knows what is needed is really important when we
design our algorithms.

As you saw in the preceding example, the input() function took a string, and then used
the string in a print() statement. Let's look at what a list would look like using the
input command:

ch9_input3.py

#Create the list

names = []

#Ask user how many names will be added

name = int(input("How many names will be in the list? "))

#Iterate to add each name to the list

for i in range(0, name):

 people = str(input())

 names.append(people)

print(names)

In the preceding snippet, we first create the list, which is not shown to the user. The user is
then asked how many names will be added to the list. After that, we iterate through the list
so that the user can input each name separately. Finally, the names are appended and the
list printed. Take a look at the output for this algorithm:

How many names will be in the list? 4

Manny

Lisa

John

Katya

['Manny', 'Lisa', 'John', 'Katya']

Defining input and output 189

Notice that the names don't have a prompt, so the algorithm assumes the user will know
what to do after inputting the value 4. That can be alleviated with a simple addition within
the iteration. Take a look at the following code snippet:

ch9_input4.py

#Create the list

names = []

#Ask user how many names will be added

name = int(input("How many names will be in the list? "))

#Iterate to add each name to the list

for i in range(0, name):

 people = input("Type the next name on the list. ")

 names.append(people)

print(names)

As you can see, each name will now have a prompt that asks to type the next name, which
looks like the following output when the algorithm is run:

How many names will be in the list? 4

Type the next name on the list. Milo

Type the next name on the list. Sonya

Type the next name on the list. Gabriel

Type the next name on the list. Maxine

['Milo', 'Sonya', 'Gabriel', 'Maxine']

The preceding output shows the completed list and the prompts for each of the names
that were added to that list. Simple additions for those prompts within the algorithm can
alleviate confusion on the part of users when entering the inputs.

As you can see from the previous snippets in this section, the inputs were read as integers,
strings, and lists. Python automatically converted the information so it could be used by
the algorithm.

190 Understanding Input and Output to Design a Solution Algorithm

In Python, there's also a way to define multiple variables with separate inputs from one
line of code. Take a look at the following code snippet:

ch9_input5.py

name1, name2 = input("Enter First Name: "), input("Enter Last
Name: ")

print(name1 + " " + name2)

As you can see in the preceding code, the quotations (" ") in the middle of the print()
command are used to separate the inputs. Take a look at the output for this algorithm:

Enter First Name: John

Enter Last Name: Doe

John Doe

As you can see, the program asks for the first and last names, which were called in the first
line of the algorithm. This is by no means the only way that we can use for getting inputs
from users, nor the only input we'll use.

In this section, we looked at some of the ways in which we can define input within an
algorithm. We also learned how we can get input from a user to use later in the algorithm.
Now let's move to the next section, where we'll look at input and output within some
computational thinking problems.

Understanding input and output in
computational thinking
In order to better understand input and output, we will take a look at computational
thinking problems in this section. As we go through the design process of the algorithms,
we will focus on identifying the inputs needed and what output we require from our
algorithms. Let's take a look at our first problem.

Understanding input and output in computational thinking 191

Problem 1 – Building a Caesar cipher
A Caesar cipher is a system of cryptography used to code messages. Cryptography is used
to secure information so that only the intended users can read the messages. The Caesar
cipher uses a shift in the letters to encode the messages. For example, the letter a shifted
3 places would be d. To build an algorithm that does this for us, we'll need a few things
on hand:

• A message that will be coded

• How much we'll shift each letter

• A printed coded message

Let's think about what the aforementioned points mean. The message will need to be an
input from the user. The shift will also be an input, as we don't want the program to always
use the same code. Otherwise, it will be easy to figure out the original message once you
know the shift. The printed coded message is our output. Here are some of the steps to
help create the algorithm:

1. We first need to input the message.

2. Then we need to define the input shift.

3. After that, we need to iterate through each letter.

4. After iteration, we adjust each letter with the shift we defined.

5. Finally, we print out the new, coded message.

We will exemplify the preceding steps with the help of the following cipher algorithm
snippet:

ch9_problem1.py

#Print initial message for the user

print("This program will take your message and encode it.")

#Ask for the message

msg = input("What message would you like to code? ")

#Ask for shift

shift = int(input("How many places will you shift your message?
"))

msgCipher = ""

192 Understanding Input and Output to Design a Solution Algorithm

#Iterate through the letters, adjusting for shift

for letter in msg:

 k = ord(letter)

 if 48 <= k <= 57:

 newk = (k - 48 + shift)%10 + 48

 elif 65 <= k <= 90:

 newk = (k - 65 + shift)%26 + 65

 elif 97 <= k <=122:

 newk = (k - 97 + shift)%26 + 97

 else:

 newk = k

 msgCipher += chr(newk)

print("Your coded message is below.")

print(msgCipher)

Notice that in the iteration, we're doing some math to figure out the value for each letter in
the alphabet. We use some conditional statements to define what each letter's value is after
using the user-defined shift value.

Take a look at the output that results when we run this algorithm:

This program will take your message and encode it.

What message would you like to code? Code this message

How many places will you shift your message? 2

Your coded message is below.

Eqfg vjku oguucig

As you can see from the preceding output, notice the first word in the message and the
coded message – Code:

• The C, moved two letters, is now an E.

• The o is now q, and so on.

For each letter in the message, the letters have shifted two places. The output
is our print() statement plus the coded message, which is given by the line
print(msgCipher). Our output includes both statements for clarity. Is the first message
necessary? No. However, in some algorithms, it's best to have some lines that allow the
user to know what is happening with the algorithm.

Understanding input and output in computational thinking 193

Let's take a look at another problem.

Problem 2 – Finding maximums
You are asked to create a program that finds the maximum value from a list of numbers.
The list of numbers is provided by the user. So, create an algorithm for this problem.

First, we need to identify the inputs and output for this particular problem. They are listed
as follows:

1. Number of items in the list (input)

2. Numbers in the list (input)

3. Maximum value in the list (output)

Recall from earlier in this chapter, in the Defining input and output section, that we can
define an empty list, and then ask the user to let the program know how many items will
be entered into the list. The following program exemplifies the same:

ch9_problem2.py

#Define the list name

maxList = []

#Ask user how many numbers will be entered

quant = int(input("How many data points are you entering? "))

#Iterate, append points, and find maximum

for i in range(0, quant):

 dataPoint = int(input("Enter number: "))

 maxList.append(dataPoint)

#Print maximum value

print("The maximum value is " + str(max(maxList)) + ".")

Notice from the preceding code that we used the max() function to find the maximum
value within the list. In addition, we had to add int() types in order to have the
algorithm correctly identify the values as numbers. The code goes through each number
from 0 to the number of data points we received from the user input, which we defined
as the quant variable. As the algorithm iterates through the numbers, it compares them
and finds the maximum value.

194 Understanding Input and Output to Design a Solution Algorithm

 Let's take a look at what the output looks like:

How many data points are you entering? 6

Enter number: 1

Enter number: 2

Enter number: 8

Enter number: 4

Enter number: 5

Enter number: 7

The maximum value is 8.

As you can see from the preceding output, the user stated that 6 numbers would be
entered. The algorithm then prompted the user for each of the values. Finally, the
maximum value was identified.

Let's now look at how we can build a guessing game.

Problem 3 – Building a guessing game
You've been asked to build a game where a user gets as many chances as needed to identify
the digits of a four-digit number in the correct order. When a user inputs a guess, the
algorithm will state whether any numbers are correct.

The algorithm will identify whether the numbers are in the correct location, but will
not identify which of the numbers are correct or which are in the correct location. If the
player guesses the correct number, the game ends. You may find this game similar to
a popular game called Mastermind, where a player sets four color pins into the game and
a second player guesses.

In this case, we're using numbers rather than colors, and the computer program will help
us identify whether we have any numbers correct and whether they are in the correct
location.

To build this game, let's look at the inputs and outputs that we'll need:

• A randomly generated 4-digit number (input)

• The user's guesses (input)

• Feedback about numbers and locations from the algorithm (output)

• A message finalizing the game after the number is guessed (output)

Understanding input and output in computational thinking 195

When we generate the number, we'll need to find a way to compare the digits of that
number to the digits that the user inputs. Note that we need to import the random library
for this particular algorithm so we can generate the random four-digit number. Let's take
a look at the code snippet:

ch9_problem3.py

import random as rand

number = rand.randint(1000,10000)

guess = int(input("What's your first guess? "))

#Algorithm checks if number is correct.

if (guess == number):

 print("That's right! You win!")

else:

 i = 0

As you can see, this is one instance where we'll need input from the user. However, this
is only the first guess, so we'll need to get more input from the user and provide some
output that provides feedback. Take a look at the following code snippet from the same
algorithm:

#Condition so that user keeps guessing until they win.

 while (guess != number):

 i = i + 1

 #Remember you can also write as i += 1

 j = 0

 guess = str(guess)

 number = str(number)

 #Check which numbers are correct and mark incorrect
with 'N'

 guessY = ['N']*4

 #Make sure you check each digit, so run loop 4
times

 for q in range(0, 4):

 if (guess[q] == number[q]):

 j += 1

196 Understanding Input and Output to Design a Solution Algorithm

 guessY[q] = guess[q]

 else:

 continue

 #If only some digits are correct, run next
condition

 if (j < 4) and (j != 0):

 print("You have " + str(j) + " digit(s)
right.")

 print("These numbers were correct.")

 for m in guessY:

 print(m, end = " ")

 #Ask for next input

 guess = int(input("What is your next guess?
"))

Notice that we need to ask for each guess after a failed attempt. The algorithm needs to
know what the next guess is in order to continue running if the user hasn't identified the
correct four-digit number. That's why the guess input value happens in multiple places
within the algorithm.

Once the user guesses correctly, the program needs to print a final statement, and in this
case, we'll let the user know how many attempts it took to guess:

 #If only some digits are correct, run next
condition

 if (j < 4) and (j != 0):

 print("You have " + str(j) + " digit(s)
right.")

 print("These numbers were correct.")

 for m in guessY:

 print(m, end = " ")

 #Ask for next input

 guess = int(input("What is your next guess?
"))

 #No digits correct

 elif (j == 0):

 print("None of these digits are correct.")

Understanding input and output in computational thinking 197

 guess = int(input("What is your next guess?
"))

 if guess == number:

 print("It took you " + str(i)+ " tries to win!")

As you can see, this algorithm has input at multiple places based on conditions met,
as well as output. The outputs include print statements and feedback on correct or
incorrect digits. Let's take a look at what the output looks like when the program is
executed:

What's your first guess? 1111

None of these digits are correct.

What is your next guess? 2222

None of these digits are correct.

What is your next guess? 3333

You have 1 digit(s) right.

These numbers were correct.

3 N N N What is your next guess? 3444

You have 3 digit(s) right.

These numbers were correct.

3 4 N 4 What is your next guess? 3454

You have 3 digit(s) right.

These numbers were correct.

3 4 N 4 What is your next guess? 3464

You won in 6 attempts.

Notice that after the third attempt, we had one correct digit, which was denoted as 3 N
N N. That means that the first digit is 3. We had to then guess the rest of the numbers.
Providing feedback within the program, or output, allows the user to continue this game.

As you can see, understanding input and output allows us to create programs that can
provide feedback, iterate based on conditions, and much more.

In this section, we learned how to use input and output when solving problems. We
were provided with scenarios that allowed us to explore some of the types of inputs,
such as user-defined inputs and algorithm-defined inputs. We also learned how to write
algorithms that provide clear output for the users.

198 Understanding Input and Output to Design a Solution Algorithm

Summary
In this chapter, we discussed input and output in Python algorithms. Input is how we get
information for the algorithm to respond to. For example, a user can provide input to
an algorithm that has prompts for that information, as we saw in the sample problems.
Python and other programming languages can also get input from a mouse, scanners,
cameras, and other devices that the program interacts with.

In order to write our algorithms, it is important to identify what inputs we need, when
we need them in the design, and what we need as output from the program. In Chapter 3,
Understanding Algorithms and Algorithmic Thinking, we used user input to find the cost
of lunches. We had created a dictionary to help us find that information. Similarly, after
reading this chapter, you now have the skills required to build algorithms to solve some
additional problems, such as our digit guessing game and our maximum finder.

Identifying input and output is critical before we design algorithms, as the conditions and
decisions we make in our algorithms depend on what is entered as input and what we
need the program to provide as output.

In the next chapter, we will discuss control flow, which is critical in understanding how an
algorithm is read and how the instructions are performed. We will also look more closely
at functions while exploring control flow in algorithms.

10
Control Flow

In this chapter, we will take a deeper look at problems and identify the input and output
necessary to design an algorithm for our problems. Throughout this chapter, you will
learn how algorithms are read and the order in which instructions are carried out. You
will also learn how to use functions and loops to manipulate the control flow in your
algorithms.

We will cover the following topics in this chapter:

• Defining control flow and its tools

• Using if, for, and range() and other control flow tools

• Using loops and conditionals

• Revisiting functions

By the end of the chapter, we will learn how control flow is defined, how we use the if,
for, and range() functionalities when designing algorithms in computational thinking,
and how to incorporate these functionalities into function definitions in our algorithms.
Let's take a look at what control flow is first.

200 Control Flow

Technical requirements
You will need the latest version of Python to run the codes in this chapter. You
will find the full source code used in this chapter here: https://github.com/
PacktPublishing/Applied-Computational-Thinking-with-Python/
tree/master/Chapter10

Defining control flow and its tools
Simply defined, control flow is the order in which an algorithm reads and executes
instructions, functions, and statements. Control flow means the computer will make
a decision. Think about it this way: when I go outside my building, I'll either use an
umbrella or I won't use an umbrella. That depends on whether or not it is raining
(and whether or not I remembered my umbrella, I guess). Depending on that condition,
we make a decision. That process is the control flow process in algorithm design.

Let's look at some of the control flow statements available in the Python programming
language:

• while

• if

• for

• range()

• break

• continue

• list comprehensions

• The pass statement

• The try statement

These tools allow the algorithm to do things such as run so long as a certain condition
or set of conditions is met, stop or break when a condition happens, continue for a range
of values only, and so on. Let's take a closer look at some of these tools.

https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter10

Using if, for, and range() and other control flow statements 201

Using if, for, and range() and other control
flow statements
Let's start with if statements, which we first discussed in Chapter 4, Understanding
Logical Reasoning. These are probably the most commonly used and known statements in
algorithm design. You may recall learning about conditional statements in geometry as
you studied reasoning and proofs. In those classes, you would write statements in if-then
format. Take the following statement:

When it rains, I wear a raincoat.

This is not a conditional statement, at least not yet. If we were going to write it as a
conditional sentence, then we'd have to have the if-then format, much like this sentence.
Take a look at the converted statement that follows:

If it rains, then I wear a raincoat.

As you can see, we use conditions as part of our everyday lives. We just don't point
them out.

When writing algorithms, we have to explicitly state what we need the algorithm to
do, so we have to explicitly state these statements. In programming, we have to state
each condition. Additionally, if we have a series of conditions that need to be met, we
sometimes need to nest the statements. This is best explained with some examples.
Let's start with how we use nested statements.

Using nested if statements
Even in our everyday lives, some conditions depend on others. For example, if it's
Monday, we have to go to work. If we have to go to work and it's raining, we may need
an umbrella. But if we're not going to work (and assuming we're staying home), we won't
need to check whether we need an umbrella. That's the same with nested statements. We
use them to check one condition, then another, which is nested.

Let's say we are playing a dice game. You roll a die and get points as follows:

• 2, 4, or 6 = 10 points

• 1 or 3 = 5 points

• 5 = 0 points and removes all previous points

202 Control Flow

Each round, a player has to roll twice. Let's look at a flowchart with the first roll shown,
as follows:

Figure 10.1 – Flowchart of first roll scores

As you can see from the flowchart, the score depends on the number rolled. Now, let's say
you had rolled a 1. Then, let's take a look at what your second roll could look like in the
following diagram:

Figure 10.2 – Flowchart of the second roll after rolling 1

As you can see, we have three possible total points by the player. To translate this into an
algorithm, we'll need to do a few things:

1. Define the roll.

2. Determine the score based on the number rolled.

3. Roll again.

4. Determine the final score based on the second roll.

Using if, for, and range() and other control flow statements 203

Let's first define that roll. We'll need to virtually roll the dice. That means that we'll need
the program to choose a number between 1 and 6. Let's take a look at how we code that.
Keep in mind that this is just a snippet of the larger code contained in this file. We'll use
the second ready (ready2) in a subsequent snippet:

ch10_rollDice.py

import random as rand

print("Let's play a game. ")

print("You get 5 points for rolling 1 or 3. You get 5 points
for rolling 2, 4, or 6.")

print("You lose all points if you roll a 5 in either round.")

ready = input("Are you ready to begin? Type r to roll. ")

score = 0

if ready == 'r':

 roll = rand.randint(1, 6)

 print('You rolled a ' + str(roll) + '.')

 if (roll == 1) or (roll == 3):

 score = 5

 elif (roll == 5):

 score = 0

 else:

 score = 10

 ready2 = input('Your round 1 score is ' + str(score) + '.

Notice in the preceding snippet that we had to import the random library for this
particular algorithm. Importing it as rand instead of random allows us to truncate
a bit of the code so that we type less. So, instead of random.randint(), we use
rand.randint(). We need the random library because we want to have access to
the random integer function so that the algorithm can choose a number between 1 and 6
(including both endpoints). Let's take a look at the output as it stands now:

Let's play a game.

You get 5 points for rolling 1 or 3. You get 5 points for
rolling 2, 4, or 6.

You lose all points if you roll a 5 in either round.

Are you ready to begin? Type r to roll. r

204 Control Flow

You rolled a 3.

Your round 1 score is 5.

Notice from the preceding output that the instructions were provided first, then once the
player chose to roll by pressing the r key, the game chose a random integer and displayed
it. It also displayed the current score after round 1. Now, let's take a look at the next part of
the algorithm, which does the second roll. Notice that the indentations follow the previous
code snippet. This snippet is contained in the previous larger file as well:

ready2 = input('Your round 1 score is ' + str(score) + '. Type
r to roll again. ')

 roll2 = rand.randint(1, 6)

 print('You rolled a ' + str(roll2) + '.')

 if (roll2 == 1) or (roll2 == 3):

 score += 5

 elif (roll2 == 5):

 score = 0

 else:

 score += 10

 print('Your final score is ' + str(score) + '.')

When we run the new code, it shows the first-round score, both rolls, and a final score for
the game. Remember, if we roll a 5 in the second round, we lose all our points:

Let's play a game.

You get 5 points for rolling 1 or 3. You get 5 points for
rolling 2, 4, or 6.

You lose all points if you roll a 5 in either round.

Are you ready to begin? Type r to roll. r

You rolled a 2.

Your round 1 score is 10. Type r to roll again. r

You rolled a 6.

Your final score is 20.

As you can see, the program printed a few things for us. First, we rolled a 2 and a 6, so we
did not lose our points. Second, both 2 and 6 carry a score of 10 each, for a final score of
20. But let's look back at the nested if statements.

Using if, for, and range() and other control flow statements 205

To even begin the game, we had to verify whether the player was ready to roll. That first
if statement is necessary to carry on to the rest of the decisions. Could we have rolled
without the go-ahead? Yes. But think of all the games out there, including app versions of
traditional board games. In those apps, the player always hits a button or the die to play.
This is a similar scenario.

After we have said we are ready to roll, decisions have to be made about the points. We
needed if, elif, and else statements again to loop through the various options. Now,
let's take a look at when we can use for loops and range.

Using for loops and range
The first thing we need to discuss with for loops is that there can sometimes be some
confusion over variables and for loop conditions. To see what I mean, let's look at an
example:

ch10_forLoop1.py

for letter in 'mountain':

 print(letter)

In the preceding snippet of code, letter isn't a variable. It's just telling Python that we
want to iterate over each character in the word mountain. However, I could have called it
anything. The program will do the exact same thing if I wrote it as follows:

for pin in 'mountain':

 print(pin)

In each case, using letter, or pin, or whatever word makes me happy at that moment,
the output of the program looks like this:

m

o

u

n

t

a

i

n

206 Control Flow

As you can see, Python iterated through each letter in the word mountain and printed
it to the console. This same thing can be done with numbers in a range. For example,
if I wanted to print the numbers 1 through 10, I could use a for loop, as follows:

ch10_forLoop2.py

for num in range(1, 11):

 print(num)

Wait, I said I wanted the numbers 1 through 10, so why is there an 11 in the range function?
That's because the range() function always includes the minimum value in the range,
but not the upper boundary. So, we need to add 1 to whatever our top number is. Let's
take a look at what the output for this program looks like:

1

2

3

4

5

6

7

8

9

10

As you can see, each number is printed on a separate line. So, let's look at what we can do
if we just wanted to add those same numbers to a list instead. Instead of printing them one
at a time, we could append them to a new list, then print out the list. This is really helpful
for some kinds of algorithms and games. But before I get into those, let's first look at how
we append the numbers with just a few more lines of code:

ch10_forLoop3.py

myNumbers = []

for num in range(1, 11):

 myNumbers.append(num)

print(myNumbers)

Using if, for, and range() and other control flow statements 207

Now, pay close attention to when you print the list. If you have it indented in correctly,
it will print the list every single time you append a new number. But if your indentation
is correct, you'll only print the final list so that the output looks as follows:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

As you can see, we now have representations of the same information. In this case, we
printed out the list of numbers. This is helpful if you're trying to append specific things
to a list, even if it is with user input. We'll look at another list problem in the next section
as we look at while loops, but before we move on, let's look at one more for loop
problem and algorithm.

Let's say you wanted an algorithm that will print out the cubes of a range of numbers.
There is one condition: the range will vary depending on user input. Let's take a look at
an algorithm that does this:

ch10_forLoop4.py

print('This program will provide a list of cubes for you. ')

minRange = int(input('What\'s the minimum for your range? '))

maxRange = int(input('What\'s the maximum for your range? '))

listOfCubes = []

for value in range(minRange, maxRange+1):

 number = value**3

 listOfCubes.append(number)

print('Your list of cubes in the range(' + str(minRange) + ', '
\

 +str(maxRange) + ') is: ')

print(listOfCubes)

Let's note a few things from the preceding program:

• We converted the inputs into int types. We did this so that we can use the number
in the mathematical expression inside the for loop.

• We have an empty list so we can append the cubes to it.

• We added 1 to maxRange because if not, the number would not be included in
our result.

208 Control Flow

• We have a range based on two variables, which are the user input.

• We have a printed list of the values.

Here is what that program looks like when we enter the range(3, 6):

This program will provide a list of cubes for you.

What's the minimum for your range? 3

What's the maximum for your range? 6

Your list of cubes in the range(3, 6) is:

[27, 64, 125, 216]

As you can see, the program took the input provided, a minimum of 3 and a maximum
of 6, and created a list of the cubes of the numbers in that range.

Important Note:
Remember that to get the exponents, we use the ** symbol in Python. So, 2**2
is 4, 3**4 is 81, and so on.

Remember, the control flow is the order in which things are done. With for loops and
range, we are asking the program to repeat things without having to enter each line
separately, effectively manipulating the control flow to do things in loops rather than one
line after another after another.

Now that we've looked at for loops and range, let's take a look at other ways we can
iterate in Python.

Using other loops and conditionals
Python offers a variety of ways to iterate through information in addition to the for
loop. One of the commonly used loops is a while loop. When using a while loop,
we're checking for a condition constantly. Again, it's easier to understand this by looking
at an example.

Let's say we were playing a game and ask the user to provide as many animals as they can.
We'd want to be able to do a few things:

1. Check whether the player has animals to add.

2. If yes, append each animal to a list.

3. If no, end the program and provide the final list.

4. Provide the final list and a count for how many animals the player was able to enter.

Using other loops and conditionals 209

Let's take a look at an algorithm that does the basics for this game:

ch10_whileLoop1.py

myAnimals = []

print('Let\'s see how many animals you can name. Get ready!')

readyPlayer = input('When you are ready to begin, type y. ')

while readyPlayer == 'y':

 if readyPlayer == 'y':

 animalAdd = input('Name an animal. ')

 myAnimals.append(animalAdd)

 readyPlayer = input('Ready for the next one? Type y for
yes or n for no. ')

howMany = len(myAnimals)

print('You were able to name ' + str(howMany) + ' animals.
Here\'s your list: ')

print(myAnimals)

Let's break this code down a bit:

1. We created an empty list, myAnimals.

2. We then asked the player whether they were ready.

3. If the answer was yes, we asked for an animal.

4. Then, we checked whether they had more to add.

5. We checked how many items were added to the list.

6. We printed the list.

Notice that we had to use a while loop and if statements. That's because we want to
continue asking the player to add animals until they are done or can't think of any more
to add. So, while the player can still add items, we want the program to keep asking
the question. But if the player is done, then they can say no to adding another animal,
therefore ending the program.

Now, I want to be clear, this program can be made a lot better. We could add a timer to see
how many items can be entered in 30 seconds. We could also add a conditional that breaks
the program and explains why it does so when the player tries to enter an animal instead
of saying yes first. You could add a condition for when the player tries to enter an animal
that's already on the list. A challenge for you would be to try to add those components to the
existing program!

210 Control Flow

But let's take a look at what this program looks like when we run it:

Let's see how many animals you can name. Get ready!

When you are ready to begin, type y. y

Name an animal. bird

Ready for the next one? Type y for yes or n for no. y

Name an animal. dog

Ready for the next one? Type y for yes or n for no. y

Name an animal. cat

Ready for the next one? Type y for yes or n for no. y

Name an animal. mouse

Ready for the next one? Type y for yes or n for no. y

Name an animal. elephant

Ready for the next one? Type y for yes or n for no. n

You were able to name 5 animals. Here's your list:

['bird', 'dog', 'cat', 'mouse', 'elephant']

Notice that the way this program is written requires us to answer whether we want to add
an animal each time. That's because the conditions will run if we answer yes for as long
as we answer yes. But once we answer no, the program ends, giving us the list of animals
and how many we were able to name.

Now, let's take a look at another while loop. This time, we'll check whether or not the
condition is True. Take a look at the following snippet:

ch10_whileLoop2.py

while True:

 num = int(input('Please enter an integer 0 through 9. '))

 if num in range(0, 10):

 print(num)

 else:

 print('That\'s not in range. ')

 break

Using other loops and conditionals 211

In the preceding algorithm, the control flow dictates that we get asked for a number
between 0 and 9 repeatedly. The program will continue to ask until we make a mistake.
That's because it will continue to be True if I give it a number between 0 and 9. Let's look
at a sample output for this:

Please enter an integer 0 through 9. 0

0

Please enter an integer 0 through 9. 1

1

Please enter an integer 0 through 9. 2

2

Please enter an integer 0 through 9. 3

3

Please enter an integer 0 through 9. 4

4

Please enter an integer 0 through 9. 39

That's not in range.

Notice that the program kept asking the same question over and over again. This is
unhelpful sometimes if the user doesn't know how to break the cycle. We could potentially
add a line to our statement so that it asks the question but provides a hint. Take a look at
the edited code:

ch10_whileLoop3.py

while True:

 num = int(input('Please enter an integer 0 through 9.
Tired? Type a number out of range. '))

 if num in range(0, 10):

 print(num)

 else:

 print('That\'s not in range. ')

 break

As you can see, we are now telling the user that if they get tired of providing ranges, then
they can opt out by providing an input outside of the range. While this example doesn't
seem very useful, think of all the applications you could have. This type of algorithm can
be used for card games, for example. You could also use something like this to check input
against an existing list.

212 Control Flow

Now, let's take a look at functions again, but now combining some of our loops and
adding some capabilities.

Revisiting functions
If you recall from Chapter 8, Introduction to Python, we looked at built-in functions, but
we also looked at how we can define our own functions. We are now going to talk about
arguments in functions and loops, as we delve deeper into how control flow works in
Python.

Let's think about problems that involve range. The range takes two arguments: a minimum
and a maximum. However, in Python, I should note that you can just give one argument,
which then assumes your minimum is 0. For example, if I write range(8), that's the
same as range (0, 8). Take a look at what happens if you type range(2) in the
Python shell:

Figure 10.3 – Python range interpretation with one argument

In Figure 10.3, you can see that the program interpreted the code as range(0, 2).
But let's say you are always changing your range. Think of the range algorithm we wrote
earlier. We are now going to rewrite it using a function. This function now has a for loop
inside it as well:

ch10_functions1.py

minNum = int(input('What\'s your minimum number? '))

maxNum = int(input('What\'s your maximum number? '))

def myNumbers(minNum, maxNum):

 myList = []

 for num in range(minNum, maxNum + 1):

 myList.append(num)

 print(myList)

myNumbers(minNum, maxNum)

Revisiting functions 213

Notice that we are calling the function based on user input. When this program runs, it
calls the function based on that input. We will revisit that and run the program by calling
multiple ranges within the algorithm in a second, but take a look at what the preceding
snippet gives as the output:

What's your minimum number? 3

What's your maximum number? 9

[3, 4, 5, 6, 7, 8, 9]

Notice how we also adjusted the maximum number in the range in the for loop to
include the top number provided. That's so that we get the full list of numbers.

Now, let's take out the input completely. We are going to call the function multiple times
using different ranges within the algorithm. Take a look at the updated snippet:

ch10_functions2.py

def myNumbers(minNum, maxNum):

 myList = []

 for num in range(minNum, maxNum + 1):

 myList.append(num)

 print(myList)

myNumbers(4, 9)

myNumbers(1, 3)

myNumbers(9, 17)

The final three statements are where we call the function. Since we defined the function to
take two arguments, it uses both the arguments to run the function. Because we called the
function three times, we should see three lists as output. Let's take a look:

[4, 5, 6, 7, 8, 9]

[1, 2, 3]

[9, 10, 11, 12, 13, 14, 15, 16, 17]

214 Control Flow

As you can see, we printed each range on a separate line. That's one of the most useful
things functions can do for us. If we were working with images, for example, which we
can do with libraries, then we could create a shape, then define a function with loops that
changes some parameters. With one function and a few loops, we can create multiple
circles in different locations with different radiuses based on calling the function and
using some loops.

Functions are also not limited to two arguments. We can have multiple arguments and
define them within the functions. Let's look at a function that uses three arguments:

ch10_functions3.py

def menu(appetizer, entree, dessert):

 print('Your appetizer is %s.' %(appetizer))

 print('You entree is %s.' %(entree))

 print('Your dessert is %s.' %(dessert))

menu('street tacos', 'chilaquiles', 'sopapillas')

In this case, we're calling the function with the values already given. I love, and I mean
love, Mexican food. So, that menu would make me extremely happy! Here's what that
output looks like:

Your appetizer is street tacos.

You entree is chilaquiles.

Your dessert is sopapillas.

As you can see, the function uses each argument in the print statements. The %s
statements are used to let the program know where the values will be substituted. The %()
statements let the program know which value to grab from the call function.

Now, let's look at the code if we wanted to get input from the user:

ch10_functions4.py

appetizer = input('What would you like as an appetizer? ')

entree = input('What would you like as an entree? ')

dessert = input('what would you like for dessert? ')

def menu(appetizer, entree, dessert):

Revisiting functions 215

 print('Your appetizer is %s.' %(appetizer))

 print('You entree is %s.' %(entree))

 print('Your dessert is %s.' %(dessert))

menu(appetizer, entree, dessert)

As you can see, our definitions and arguments are repeated. We use input statements to
get information from the program user, then print out statements. Here's what that looks
like now in the Python shell:

Figure 10.4 – User input in function with three arguments

As you can see, the first three lines take the user input, then the last three lines incorporate
the inputs into the function definition. Depending on what you are looking to create, this
matters. If you are building an online menu for a store, for example, you would want user
input, but you would also want to be able to confirm purchases. Same with online libraries
if you wanted to confirm an e-book being lent out, and so on. We use confirmation
statements often in algorithms. After looking at these, go check out some of your favorite
websites and see where there are confirmation statements based on user input. You'll see
that the use is widespread. Functions allow us to simplify that process.

Before we move on, let's work with a few algorithms that provide the same information
using our different loops and functions. Remember, we're looking at iterations because
control flow means order. The iterations, functions, range, and more are ways in which we
tell the program how it should respond to the instructions in the algorithm and when to
repeat or move on from our program.

Let's look at a function that prints the triple of the given user maximum input:

ch10_functions5.py

numItem = int(input('What is your maximum number for the list
of triples? '))

def cost(numItem):

 while numItem > 0:

 print(numItem * 3)

 numItem -= 1

216 Control Flow

cost(numItem)

Notice that the while loop and function definitions depend on the user input. The
program will then print the triple of the value provided by the user, then reduce that
number by one and find the triple of that number. Let's take a look at what that means:

What is your maximum number for the list of triples? 4

12

9

6

3

As you can see, the program found the triple of 4, which is 12, then the triple of 3, which
is 9, and so on. It stopped because we told it to run the loop while the number was greater
than 0. But recall that we can also just add those to a list, and we can use a for loop
instead.

Let's take a look at a similar program with a function, but a for loop rather than the
while loop and using range:

ch10_functions6.py

numItem = int(input('What is your maximum number for the list
of triples? '))

myList = []

def cost(numItem):

 for x in range(1, numItem + 1):

 newNum = 3 * x

 myList.append(newNum)

 print(myList)

cost(numItem)

Summary 217

Notice we defined some more things and added an empty list to the algorithm. While
it has a few more lines of code, it does essentially the same thing as the previous code.
Notice too that we started the range at 1; otherwise, it would also include 0 in the list.
Take a look at the output for this algorithm:

What is your maximum number for the list of triples? 4

[3, 6, 9, 12]

We have the same information but organized from least to greatest and in a list. From
our algorithm, the order of things happening is important, of course. We first gathered
the user input. The algorithm then defined the empty list, before defining a function. The
function then used a for loop that uses the input to create a range and iterate over the
range of numbers. Each iteration was then appended to the list. Finally, the algorithm
printed the list.

As you can see, there are multiple ways to get to the same information. We just have to
look at what works best for our scenarios, how to organize the information so that the
program can read it, and write an algorithm that will organize the information in a way
that can be read when running the program.

Summary
In this chapter, we discussed control flow and order by looking at for loops, range,
while loops, and functions. Control flow refers to the order a program reads an
algorithm. Typically in Python, one line is read right after the other. In this chapter, we
learned how you can control that order. Specifically, we learned that we could do so by
iterating through data. Here are some important points to remember: while loops run
so long as a condition is met, for loops iterate over a sequence (string, numerical, list,
dictionary, set, or tuple), and range is used to create a sequence of numbers.

We also learned that we can combine these things when creating conditions, defining
functions, and designing our algorithms. The most important thing to continue keeping
in mind is that order matters, so we need to be careful about when we define necessary
variables and how to write the algorithms so that they don't run infinitely or break before
they should. Control flow is important so that our algorithms work without errors.

In the next chapter, we will use the knowledge gained so far to complete the
computational thinking process when solving challenges in multiple disciplines.

11
Using

Computational
Thinking and Python
in Simple Challenges

In this chapter, we will take a look again at the computational thinking process and apply
it to design algorithms that help us solve various scenarios and problems. As we wrap up
Section 2, Applying Python and Computational Thinking, of this book, we will combine
some of the knowledge about Python capabilities with the computational thinking process
to solve these problems.

In this chapter, we will cover the following topics:

• Defining the problem and Python

• Decomposing the problem and using Python functionalities

• Generalizing the problem and planning Python algorithms

• Designing and testing the algorithm

220 Using Computational Thinking and Python in Simple Challenges

By the end of this chapter, you will be able to design algorithms that best fit the scenarios
presented. You will also be able to identify Python functions that best align with the
problems presented and generalize your solutions.

Technical requirements
You will need to install the latest version of Python to run the code in this chapter.

The source code used in this chapter can be found in the GitHub repository here:
https://github.com/PacktPublishing/Applied-Computational-
Thinking-with-Python/tree/master/Chapter11

Defining the problem and Python
We are going to dive into our first scenario. You are launching a campaign for a product
you've designed. You're looking for investments that add up to $100,000 in pledges. You
want to create an algorithm that saves information on the pledges made for you, while also
providing information about the products each pledge provides. There are some things
you need to identify before you write an algorithm:

• How many types of pledges will you run in your campaign?

• Will there be a donation-only pledge? Do donations get anything at all, such as
a sticker, electronic certificate, or other product swag?

• What will each of the pledges give the person pledging?

All of these questions will help us plan. But we also have to take into account other things,
such as what we need from the algorithm. Is it simply to list the number of pledges or will
it also be used to check against an inventory or to create that inventory? Will it count down
from a set number of pledges available for each level? Will it automatically update every time
someone makes a pledge?

As you know, when we are presented with a problem, it is critical that we identify what
the problem really is. We need to set our parameters for the problem in order to provide
a solution. In this section, we're going to want to answer a lot of these questions first.
In order to do that, we need to decompose the problem and identify which functionalities
in Python would help us solve this problem.

https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter11

Defining the problem and Python 221

Decomposing the problem and using Python
functionalities
We can create an algorithm that is used to design those pledges. We'd be designing
an algorithm that tells us how many items we need of each type based on a set number
of pledges.

For example, say we have three tiers of pledges and a donation-only pledge. For the
highest tier, let's call that Tier 1, you get the following:

• Double the item you are selling at a 20% discount

• An accessories bundle for the item, which includes four items

• A carrying case for the item and accessories

• Access to a 1-year membership for the site

The middle tier, or Tier 2, gets you the following items:

• The item you are selling at a 20% discount

• A carrying case for the item

• Access to a 6-month membership for the site

The lowest tier, or Tier 3, gets you the following:

• The item you are selling at a 20% discount

• A carrying case for the item

Let's say we want an algorithm that will give us the number of items we'd need depending
on how many pledges we allow for each tier. The fourth tier, which is donation only,
would not affect our algorithm, since this algorithm would be used simply to determine
how many of each item we'd need depending on the number of pledges.

But things aren't as simple as just the numbers. Let's say that you need $100,000 in
pledges, as mentioned earlier in this chapter. Then you'd need to figure out how much
you'd charge for the tiers and put a price point on them. You'd need to make enough
pledges available to at least reach that goal of $100,000.

222 Using Computational Thinking and Python in Simple Challenges

You have identified the retail price of your item as $800. Here are the costs for each of
the items:

• $640 for the item itself (given a 20% discount, and only applicable to Tiers 1, 2,
and 3)

• $100 in accessories (Tier 1 only)

• $40 carrying case (applicable to Tiers 1, 2, and 3)

• Membership costs will be passed at $10 a month (let's say the original cost is $35
a month)

For Tier 1, the pledge would need to be a minimum of $1,540:

• 640 × 2 = 1280

• 12 × 10 = 120

• 1280 + 120 + 100 + 40 = 1540

For Tier 2, the pledge would need to be a minimum of $740:

• 640 + 40 = 680

• 6 × 10 = 60

• 680 + 60 = 740

For Tier 3, the pledge would need to be a minimum of $680, that is, 640 + 40 = 680.

Now we have to figure out how many of each tier would be available for purchase. But
first, let's round out some of these numbers: Tier 1 will be $1,600, Tier 2 will be $800,
and Tier 3 will be $700.

We can write an algorithm to let us know how many pledges we need for each tier. But
before we do, let's talk about Python and the functionalities that we could use. We can
create the Tier-3 pledge first, making it a parent group. Then we can create two child
classes, Tiers 1 and 2, that have slightly different characteristics and costs. The question
we ask ourselves is whether we need to be that detailed on the algorithm or can we just
add each tier's cost/value.

That's a good question. And the answer is that it depends on what you need this algorithm
for. If you're looking to do the early yet simple calculations and need an algorithm you can
run every so often based on current sales/pledges, then you can create something simple
with a dictionary or a function. But if you want to use the algorithm for multiple purposes
or need to be able to adjust some costs later on, then you may want to code that into the
algorithm with all the details.

Defining the problem and Python 223

Why would you need that? Take some of the successful campaigns available. Oftentimes,
the original pledges sell out for those campaigns. New pledge tiers then become available
and you may want to adjust the price point of those tiers. For example, rather than a 20%
discount on the item, the pledge may be for a 15% discount. Other changes may happen,
such as selling swag instead of the accessories due to inventory limitations and so on.

The more detailed your algorithm is, the more you can do with it in the long run. But
if you do not need all that information, then you may not want to spend as much time
creating the algorithms.

Let's get to work on this algorithm. Take a look at the snippet shown as follows:

ch11_pledgesA.py

import math

tier1 = 1600

tier2 = 800

tier3 = 700

perc = int(input("What percentage of the 100,000 do you

 expect will be Tier 1? Type a number between 1 and

 100. "))

percentage = perc/100

Tier1 = (100000*percentage)/1600

totalTier1 = math.ceil(Tier1)

print("You will need to sell %s Tier 1 pledges if you want

 %s percent of your sales to be in Tier 1."

 %(totalTier1,perc))

Let's take a look at some of the things we used in the preceding snippet. We had to import
the math module so we could use the math.ceil() math function. We used this
function in order to round the number of Tier-1 pledges needed up. That's because if
we rounded down, we would not be able to cover the desired percentage. By doing this,
we are finding the smallest integer we'll need to cover the percentage.

In addition, we used the %s placeholders in our print statement to call our strings, then
stated the strings to be used.

When we run that program, this is what the output looks like:

What percentage of the 100,000 do you expect will be Tier 1?
Type a number between 1 and 100. 45

224 Using Computational Thinking and Python in Simple Challenges

You will need to sell 29 Tier 1 pledges if you want 45 percent
of your sales to be in Tier 1.

Notice that our print statement uses the percentage entered by the user, in part to
ensure that the information matches what was expected. For 45% of the funding to come
from Tier-1 pledges, we'd need to sell at least 29 Tier-1 pledges. If we run the math just to
verify that this is correct, we see that this information is true:

As you can see, if we sell 29 Tier-1 pledges, we'll make slightly more than 45% of 100,000.

But let's say that you also want the algorithm to tell you how many items you need based
on the number of Tier-1 pledges. Let's take a look at the adjusted algorithm:

ch11_pledgesB

import math

tier1 = 1600

tier2 = 800

tier3 = 700

perc = int(input("What percentage of the 100,000 do you

 expect will be Tier 1? Type a number between 1 and

 100. "))

percentage = perc/100

Tier1 = (100000*percentage)/1600

totalTier1 = math.ceil(Tier1)

print("You will need to sell %s Tier 1 pledges if you want

 %s percent of your sales to be in Tier 1."

 %(totalTier1,perc))

print("You will need %s items, %s accessories kits, %s

 carrying cases, and %s year-long memberships."

 %(totalTier1*2, totalTier1, totalTier1, totalTier1))

29 × 1600 = 46,400
100,000 × 0.45 = 45,000

Defining the problem and Python 225

Notice that I only added one more print statement. There are pros and cons to using this
algorithm in this way. In this case, I'm only outputting the numbers for each of the tiers.
I'm not saving how many items I need anywhere in the algorithm. If we want to do that
for future reference, we'll need to adjust how we get that information and how we save it
in the algorithm.

For this algorithm, the output is as follows:

What percentage of the 100,000 do you expect will be Tier 1?
Type a number between 1 and 100. 45

You will need to sell 29 Tier 1 pledges if you want 45 percent
of your sales to be in Tier 1.

You will need 58 items, 29 accessories kits, 29 carrying cases,
and 29 year-long memberships.

Notice that we got the information we wanted. We'll need 58 items, 29 accessories
kits, 29 carrying cases, and 29 year-long memberships. Again, this would
be helpful if we were doing a one-off thing or if we didn't expect any changes. But let's be
clear, that's almost never the case. We'll want to make changes. We'll also need to know
information based on Tier-2 and Tier-3 selections. So what can we do?

First, we'll want to save our numbers. So, we'll need to add some variables for the items,
the accessories kits, the carrying cases, and two variables for the memberships, one for the
year-long and one for the 6-month-long memberships. We'll also need to make a decision
about how we want the rest of the pledges broken up. Do we want the other percentage
equally split between Tiers 2 and 3? Do we want one-third of what's left to be Tier 2 and
two-thirds to be Tier 3? Let's go with those numbers. Here's where we stand now:

• The Tier-1 percentage is chosen by the user as the program is run.

• The Tier-2 percentage will be one-third of the remaining percentage.

• Tier 3 will be two-thirds of the remaining percentage.

Let's teach this to the algorithm. The following file contains the full, uninterrupted code.
We added some text to explain certain sections, as follows:

ch11_pledgesC.py

tier1 = 1600

tier2 = 800

tier3 = 700

perc = int(input("What percentage of the 100,000 do you

226 Using Computational Thinking and Python in Simple Challenges

 expect will be Tier 1? Type a number between

 1 and 100."))

percTier1 = perc/100

percTier2 = (100-perc)/3/100

percTier3 = (100-perc-percTier2)/100

Notice in the following snippet we are adding some variables, such as totalTier1,
itemsTier1, accTier1, and cases1. These variables will help us save the numbers
of each tier ordered. We'll do the same for Tiers 2 and 3:

Tier1 = (100000*percTier1)/1600

totalTier1 = math.ceil(Tier1)

itemsTier1 = totalTier1*2

accTier1 = totalTier1

cases1 = totalTier1

yearMemb = totalTier1

Tier2 = (100000*percTier2)/800

totalTier2 = math.ceil(Tier2)

itemsTier2 = totalTier2

cases2 = totalTier2

sixMemb = totalTier2

Tier3 = (100000*percTier3)/700

totalTier3 = math.ceil(Tier3)

itemsTier3 = totalTier3

cases3 = totalTier3

totalItems = itemsTier1 + itemsTier2 + itemsTier3

totalAccessories = accTier1

totalCases = cases1 + cases2 + cases3

print("You will need to sell %s Tier 1 pledges if you want

 %s percent of your sales to be in Tier 1."

 %(totalTier1, perc))

print("You will need %s Tier 2 pledges and %s Tier 3

 pledges to meet or exceed your $100,000 funding goal."

 %(totalTier2, totalTier3))

Defining the problem and Python 227

While we haven't printed the details yet for the number of total items or the total cases,
we now have them saved into variables. This is what our output looks like now:

What percentage of the 100,000 do you expect will be Tier 1?
Type a number between 1 and 100. 50

You will need to sell 32 Tier 1 pledges if you want 50 percent
of your sales to be in Tier 1.

You will need 21 Tier 2 pledges and 72 Tier 3 pledges to meet
or exceed your $100,000 funding goal.

We should note that we exceed our funding goal because we've always been rounding up.
That is, rather than using $1,540 for Tier 1, we used $1,600. For the percentage, we've been
rounding up. All of these will add up to give us a total above $100,000.

Let's extend the algorithm a little more. The following is only the new snippet from the
algorithm we've already seen, which contains the total for the items we'll need:

print("These percentages are equivalent to %s total items,

 %s total cases, %s accessories kits, %s year-long

 memberships, and %s six-month memberships." \

 %(totalItems, totalCases, totalAccessories,

 yearMemb, sixMemb))

Notice that we can now call those variables we added in our print function to get the
counts we need for our inventory. We would not be able to get those details if we had not
defined those items in our algorithm.

Also notice that in our previous snippet, some of the items have the exact same value.
However, we still defined them with different variables. Take a look, for example, at
cases2 = totalTier2 and sixMemb = totalTier2. Although both have the
same values, we want to identify them separately. And maybe that's not important now,
but later on, maybe we'll run out of cases. Then we'd only want to change the value for the
cases and not the 6-month memberships.

Since they're already split, we can change one without affecting the other. Let's take a look
at what the output looks like for the new print statement:

These percentages are equivalent to 157 total items, 125 total
cases, 32 accessories kits, 32 year-long memberships, and 21
six-month memberships.

228 Using Computational Thinking and Python in Simple Challenges

Looking at this, you may realize that you only get one carrying case but two items in
Tier 1, which is why there's a different count for those. The accessories and year-long
memberships only happen in Tier 1, so it makes sense that those two numbers are the
same. The 6-month memberships are only for Tier 2, so that number matches the number
of Tier-2 pledges.

As we consider this problem further, we may realize that we may want to save information
differently. Maybe rather than asking the user for the percentage of Tier-1 pledges they
want, we could ask how many total items they have and then break down the tiers based
on that. All of that is possible, so how we define the problem is critical. How we save the
information or request input from the user is also just as important. Decomposing
a problem is just part of the process of creating and designing the algorithms we need.

In this section, we learned how to address problems with multiple solutions depending
on our goals. As we define our problems, we are often also identifying the variables
we'll need and determining what kinds of functions are most useful depending on what
we'll want to get out of the algorithm. Unless we have a very simple and straightforward
problem, the decomposition and definition of the problem are critical in order to
successfully define an algorithm.

Now let's take a look at generalizing the problem in the next section.

Generalizing the problem and planning Python
algorithms
In the previous section, we were working with an algorithm designed for use in a funding
campaign. The algorithm we looked at was problem-specific.

Now let's try to generalize this problem and understand how we could potentially design
a different algorithm. Why would we need that? Think of it as a template. If you run
multiple funding campaigns for start-ups, you may want to create a general algorithm that
you can then adapt based on the needs of each campaign rather than having to start each
campaign over.

Generalizing the problem and planning Python algorithms 229

You would need to set up some clear parameters and make some decisions. In order
to keep this scenario manageable for the book's purposes, we're going to limit our
choices a bit:

• Every campaign will have between 3 and 5 tiers of pledges, not including
donation-only.

• Every tier will ask for the items needed for each tier.

• Each tier option will have a set percentage built in.

If there are three tiers, Tier 1 will be 50% of pledges, Tier 2 will be 30%, and Tier 3 will be
20%. If there are four tiers, Tier 1 will be 40% of pledges, Tier 2 will be 30%, Tier 3 will be
20%, and Tier 4 will be 10%. If there are five tiers, Tier 1 will be 40% of pledges, Tier 2 will
be 30%, Tier 3 will be 15%, Tier 4 will be 10%, and Tier 5 will be 5%.

Take a look at the following diagram, which shows the breakdown of the tiers:

Figure 11.1 – Tier percentage breakdown

Because we are using one algorithm for many possible scenarios, we'll break
down that algorithm piece by piece. The full algorithm can be found in the
ch11_pledgesTemplate.py file on GitHub.

In this first snippet, we ask for the initial input, then save our percentages:

import math

numberTiers = int(input("How many tiers of pledges will you

 offer? Enter a number between 3 and 5 inclusive. "))

#Number of tiers percentages

if numberTiers == 3:

 tier1 = .50

 tier2 = .30

 tier3 = .20

elif numberTiers == 4:

 tier1 = .40

 tier2 = .30

 tier3 = .20

230 Using Computational Thinking and Python in Simple Challenges

 tier4 = .10

elif numberTiers == 5:

 tier1 = .40

 tier2 = .30

 tier3 = .15

 tier4 = .10

 tier5 = .05

else:

 print("Please try again and enter the numbers 3, 4,

 or 5. ")

As you can see, there are three conditions after we ask for input. Notice that we converted
the input to an integer. This is important, otherwise the conditions will run but the else
condition will also run.

The preceding snippet won't give us any output except for asking for that input. So,
we'll show more output after our next snippet.

Important Note:
Notice the use of comments in this code. Because of the length of the code,
we'll be using comments in order to find spots in our code where we need to
edit it. It is always a good idea to use comments in all code, but especially in
lengthy code. Otherwise, finding the particular lines we want to change can be
very tricky.

Once we have the number of tiers, we'll need to know the number of items in each
tier. We'll need to ask how many items are chosen for each tier. Let's take a look at the
continuation of the preceding code:

#Number of items per tier

if numberTiers == 3:

 numTier1Items = int(input("How many items will be

 provided for a Tier 1 pledge? "))

 numTier2Items = int(input("How many items will be

 provided for a Tier 2 pledge? "))

 numTier3Items = int(input("How many items will be

 provided for a Tier 3 pledge? "))

elif numberTiers == 4:

 numTier1Items = int(input("How many items will be

Generalizing the problem and planning Python algorithms 231

 provided for a Tier 1 pledge? "))

 numTier2Items = int(input("How many items will be

 provided for a Tier 2 pledge? "))

 numTier3Items = int(input("How many items will be

 provided for a Tier 3 pledge? "))

 numTier4Items = int(input("How many items will be

 provided for a Tier 4 pledge? "))

Notice that we're only showing the conditions for when the tiers are 3 or 4. The code file
will also have the information for the 5 tiers, but it follows what is shown in the preceding
code. Notice that the algorithm asks for input for each of the tiers. This will be important
when we need to work with numbers and percentages.

In addition, we can include an else statement that allows us to ask the questions again
if there is an error in the input. You can add these kinds of conditions to the existing
template if you wish. For now, we're going to continue with the next pieces of information
we'll need to get from the user, such as the price point for each tier.

Now let's think back to what we could need. We'll need price points for each tier, which
will also be the input requests for a template kind of algorithm. Since each of those will
be different for each campaign, we'll need to leave that up to the user to enter. The input
lines will look very similar to the previously shown snippets. Here is what it looks like for
3 tiers:

#Price points for each Tier

if numberTiers == 3:

 priceTier1 = int(input("What is the price point of Tier

 1? Enter dollar amount without dollar sign. "))

 priceTier2 = int(input("What is the price point of Tier

 2? Enter dollar amount without dollar sign. "))

 priceTier3 = int(input("What is the price point of Tier

 3? Enter dollar amount without dollar sign. "))

Again, notice that we're using comments to separate each section of the code. As you can
see, we are adding information about how much we are charging for each pledge level. The
code then continues to do this for the number of tiers, 3, 4, or 5.

232 Using Computational Thinking and Python in Simple Challenges

As was previously discussed, you may also want to test for errors or provide an alternative
to continue running the code after an error is added by the user. We are not addressing
those errors in this code but they can certainly be added to improve the user experience
with this algorithm. As you can see, we've started working on how to generalize this
algorithm for multiple scenarios.

In this case, we're generalizing for multiple uses. But we've used a lot of algorithms and
seen a lot of scenarios in this book where the generalization of the patterns is much
simpler. Generalization can be something as simple as writing an equation with one
variable. Or it can be creating an algorithm for a number of circumstances and conditions.
That's why it's important to identify what our problem is and what exactly we want to
accomplish.

In this section, we looked at how and when to get input from the user. We also worked
through defining variables in order to store the input and use it in our equations for the
algorithm to output the necessary information.

To complete the algorithm, we'll go to the next section, which is focused on the design and
testing of the algorithm.

Designing and testing the algorithm
In the previous section, we got a lot of input from the user because we were creating an
algorithm that was used as a template for many campaigns. Now we need to use that input
in a variety of ways. Here's what we have so far:

• The number of tiers of pledges

• The percentage breakdown of the tiers

• The number of items for each tier

• The cost of each tier

Now we can do something with all that information. First, let's talk about what we could
want. We could want to test how much we'd make selling a specific quantity of the tiers.
We could also break down how many of each tier we'd need based on a funding goal,
much as we did in the first part of this chapter.

What would be most helpful? Well, that really depends on what you need. I'm going to say
that I want the breakdown based on the funding goal. I want to know how many of each
pledge type I will need to make available. So now I have to figure out how I'm going to get
that information from the variables I've already defined.

Designing and testing the algorithm 233

We'll need to have three conditions here as well. And because the variable and how many
there are of each variable differs per tier type, we'll need to make sure we're accounting for
that information. Let's think about three tiers first. Given the funding goal, here are some
of the outputs that can be helpful:

• The number of each tier of pledges to be made available

• The number of items per tier that will need to be in inventory

So how do we figure that out?

Let's say that we had $50,000 as our funding goal and let's assume that the Tier-1 cost is
$500. Then, we can take the following steps to find the number of Tier-1 pledges needed:

1. Multiply the funding goal by the percentage, that is, 50,000 × 0.50 = 25,000.

2. Divide the resulting number by the cost of the pledge, that is, 25,000 ÷ 500 = 50.

That means that we'll need to post 50 pledges for Tier 1. Now let's assume that the user
entered that there were 3 items in Tier 1. Then, this means 50 × 3 = 150 items.

Now let's see that in our code. Remember, this is the same file as the previous snippets
(ch11_pledgesTemplate.py). We're continuing with the discussion using pieces
of the code:

#Breakdown of number of Tiers based on funding goal

fundGoal = int(input("What is the funding goal for this

 campaign? Enter dollar amount with no symbols. "))

if numberTiers == 3:

 Tier1Total = math.ceil(fundGoal*tier1/priceTier1)

 Tier2Total = math.ceil(fundGoal*tier2/priceTier2)

 Tier3Total = math.ceil(fundGoal*tier3/priceTier3)

 print("For a funding goal of %s with %s tiers, you'll

 need %s Tier 1 pledges, %s Tier 2 pledges, and %s

 Tier 3 pledges. " % (fundGoal, numberTiers,

 Tier1Total, Tier2Total, Tier3Total))

234 Using Computational Thinking and Python in Simple Challenges

In the preceding snippet, we have a print function with the number of pledges for each
tier, but they're also saved as functions in our conditional statement. Notice that we'll now
have some output here. We'll get the number of pledges we'll need from this snippet, but
not the number of items per tier. We'll add that shortly. For now, here's what that output
looks like when we run the program:

How many tiers of pledges will you offer? Enter a number
between 3 and 5 inclusive. 3

How many items will be provided for a Tier 1 pledge? Enter a
number between 1 and 3 inclusive. 3

How many items will be provided for a Tier 2 pledge? Enter a
number between 1 and 3 inclusive. 2

How many items will be provided for a Tier 3 pledge? Enter a
number between 1 and 3 inclusive. 1

What is the price point of Tier 1? Enter dollar amount without
dollar sign. 500

What is the price point of Tier 2? Enter dollar amount without
dollar sign. 400

What is the price point of Tier 3? Enter dollar amount without
dollar sign. 350

What is the funding goal for this campaign? Enter dollar amount
with no symbols. 50000

For a funding goal of 50000 with 3 tiers, you'll need 50 Tier 1
pledges, 38 Tier 2 pledges, and 29 Tier 3 pledges.

As you can see, we now know that we need to list 50 Tier-1 pledges at $500, 38 Tier-2
pledges at $400, and 29 Tier-3 pledges at $350 to reach our funding goal. Now we have
to figure out how many items we need for each tier given the number of items per tier
provided. Here's what that code will look like:

if numberTiers == 3:

 Tier1Total = math.ceil(fundGoal*tier1/priceTier1)

 Tier2Total = math.ceil(fundGoal*tier2/priceTier2)

 Tier3Total = math.ceil(fundGoal*tier3/priceTier3)

 print("For a funding goal of %s with %s tiers, you'll

 need %s Tier 1 pledges, %s Tier 2 pledges, and %s

 Tier 3 pledges. " % (fundGoal, numberTiers,

 Tier1Total, Tier2Total, Tier3Total))

 Tier1Items = numTier1Items*Tier1Total

 Tier2Items = numTier2Items*Tier2Total

Designing and testing the algorithm 235

 Tier3Items = numTier3Items*Tier3Total

 print("For %s Tier 1 pledges, you'll need %s items. For

 %s Tier 2 pledges, you'll need %s items. For %s

 Tier 3 pledges, you'll need %s items. "

 %(Tier1Total, Tier1Items, Tier2Total, Tier2Items,

 Tier3Total, Tier3Items))

As you can see, now we have another three math equations and a print statement
that breaks down the information for us. We'll get the number of pledges for each tier
as well as the number of items we'll need for each of the tiers. If you wanted even more
information from this template, you could include pieces from the first example in this
chapter, where we broke down the types of items per pledge. We'll leave that up to you
as a challenge.

For now, here's what our final output would look like for three tiers and a funding goal
of $50,000:

How many tiers of pledges will you offer? Enter a number
between 3 and 5 inclusive. 3

How many items will be provided for a Tier 1 pledge? 3

How many items will be provided for a Tier 2 pledge? 2

How many items will be provided for a Tier 3 pledge? 1

What is the price point of Tier 1? Enter dollar amount without
dollar sign. 500

What is the price point of Tier 2? Enter dollar amount without
dollar sign. 400

What is the price point of Tier 3? Enter dollar amount without
dollar sign. 350

What is the funding goal for this campaign? Enter dollar amount
with no symbols. 50000

For a funding goal of 50000 with 3 tiers, you'll need 50 Tier 1
pledges, 38 Tier 2 pledges, and 29 Tier 3 pledges.

For 50 Tier 1 pledges, you'll need 150 items. For 38 Tier 2
pledges, you'll need 76 items. For 29 Tier 3 pledges, you'll
need 29 items.

As you can see, we not only have the information we needed, but we also have variables
set up to use if we need to adapt this information. Thinking back to previous chapters and
notes that we've been discussing, let's try to determine how else we could now save the
information.

236 Using Computational Thinking and Python in Simple Challenges

The first thing that comes to mind is that we could create a dictionary that stores the
information for us. If we did that, then we could recall the information we needed from
that dictionary, such as the number of items for one tier, for example. We could also adjust
the key-value pairs if we needed to without having to enter the entire thing all over again.
Say our initial cost for Tier 1 was $500 but we now need it to be $600, yet the other tiers
wouldn't change. Then we could just adjust that one value.

This scenario would allow you to explore many of the functionalities of the Python
programming language we've discussed. Take some time to study the code, then make
some adjustments and try to use some of your knowledge to improve upon it based on
different conditions.

Remember, we are always given problem situations that can be interpreted in different
ways. It is up to us to write algorithms that meet our needs and the needs of our clients.
Sometimes, we'll get clarification from our stakeholders directly. Other times, we'll have to
ask for that clarification and/or make some of the assumptions ourselves. What is critical
is that we design the algorithms and document our progress so that we can adjust, adapt,
and change pieces of our work without having to start over if we don't get what we need.

Summary
In this chapter, we went over the computational thinking process one more time by
working through a more complex scenario and interpretations of that scenario.
We learned how to decompose the problem provided, then identify the patterns,
generalize them, and design the algorithms. We used some of what we've learned
throughout the book to write an algorithm that provided the information we needed.

The computational thinking process helps us develop skills that make our algorithm
planning much easier. By walking through that process, we learn more about what Python
capabilities and functions may help us in particular scenarios. We also learned how to
generalize patterns, sometimes in simple equations for a problem, but other times in
creating algorithms that can help us in multiple scenarios without having to recreate
them each time. As we got to learn more about Python, we got more comfortable with
the computational thinking process in this last chapter of Section 2, Applying Python and
Computational Thinking.

In Section 3, Data Processing, Analysis, and Applications Using Computational Thinking
and Python, we will move on to other capabilities of Python in order to deal with data
processing, analysis, and applications using computational thinking elements. In the next
chapter, we'll start to look at data and how we can use Python to analyze data, create visual
representations, and write algorithms that work with experimental data.

Section 3:
Data Processing, Analysis, and

Applications Using Computational
Thinking and Python

Data is all around us. We use data to inform decisions about policies, such as how many
resources are provided for a school district, how large the budget for a county or state's
Medicare program will be, how much we pay for housing in an area, and the trends of the
real estate market. Data is embedded in the way that we interact with advertisements too.
Simply put, understanding more about data and how to use Python to analyze this data is
a really important skillset.

In this section, you will be introduced to advanced functionalities of the Python
programming language associated with data analysis and other applications, such as
cryptography, experimental data, data mining, and machine learning. We will use
computational thinking to design solutions and algorithms for many real-world, applied
problems, from those in language and historical analysis to some machine learning
applications.

This section comprises the following chapters:

• Chapter 12, Using Python in Experimental and Data Analysis Problems

• Chapter 13, Using Classification and Clusters

• Chapter 14, Using Computational Thinking and Python in Statistical Analysis

• Chapter 15, Applied Computational Thinking Problems

• Chapter 16, Advanced Applied Computational Thinking Problems

12
Using Python in

Experimental and
Data Analysis

Problems
In this chapter, we will take a look at how Python can help us understand and analyze
data using algorithms and libraries created specifically for data analysis and data science.
We will first go through experimental data and then move on to algorithms that use two
main libraries: NumPy and pandas.

In this chapter, we will cover the following topics:

• Defining experimental data

• Using data libraries in Python

• Understanding data analysis with Python

• Using additional libraries for plotting and analysis

240 Using Python in Experimental and Data Analysis Problems

By the end of this chapter, you will be able to define types of experiments, data gathering,
and how computational thinking helps when designing models and solutions. You will
also learn how to use data libraries, particularly, NumPy, pandas, and Matplotlib, to help
in analyzing and displaying data. Finally, you'll be able to design algorithms that help with
data analysis in order to learn from existing data.

Technical requirements
You will need to install the latest version of Python for running the code in this chapter.

You will also need to have a few libraries installed, including NumPy, pandas, Matplotlib,
and Seaborn.

You may choose to use an integrated environment to run Python, such as Anaconda,
which can simplify the library dependencies and is helpful in organizing your algorithm
in notebooks.

The source code used in this chapter can be found in the GitHub repository here:
https://github.com/PacktPublishing/Applied-Computational-
Thinking-with-Python/tree/master/Chapter12

Defining experimental data
We're finally at the data chapter of this book. We all have our biases and areas where we just
love to live in. This is one of mine. There are many reasons why data is so important, but
let's start with the fact that data, how we collect it, how we analyze it, and how we present
it has a massive impact on our daily lives.

When writing algorithms to display information, we have a responsibility to share
that data in the least biased way possible, making sure that our data is inclusive and
representative of our communities and our people. I wanted to make sure I said that
before we talk about the topic in as much depth as a chapter will allow me to. For me,
this is how I fell in love with code and Python.

In this section, we're going to go over experimental data, defining what it is as well as key
terms used when working with experimental data.

https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter12

Defining experimental data 241

Now, let's get started. Experimental data is a term that gets its use from science and
engineering. However, we also use experimental data in other areas, such as education,
civics, and much more. Experimental data includes the methodology, how we measure
data, the design of the experiments we are conducting, and how we present the data
we gather and analyze from those designs. For the purposes of this chapter, we're not
designing the experiments. We're going to be focusing on how we use Python to analyze
existing data. But it is important to note that, if we have a say in the experiment, we need
to make sure we are designing it fairly.

If the experimental design and the data collection methods are sound, then the data
we use and analyze will be much more helpful than if we begin with a biased experiment.
While we can never eliminate bias completely, as researchers and developers, it is our
responsibility to present data with the least amount of bias possible. Why is this important?
Think of all the policy changes that happen based on data, graphs, and information
presented from experiments. If the experiments are biased to begin with, the results
will lead to policies that may not adequately encompass the needs of a community, for
example.

When working with data, we are always using computational thinking elements. As we
tackle problems, we have to define what the problems are, what we want to study, how
we want to measure it, how we'll be able to create and generalize the patterns, and what
algorithm we'll need to use to produce the best representations of our data. Everything we
do in data analysis benefits from us using computational thinking elements.

Data science is a growing field in STEM. In 2017, it was named the fastest-growing field
in the US. The US Bureau of Labor Statistics stated that there is an estimated 11.5 million
new jobs expected in data science and statistics by 2026. Currently, there are more jobs
available than qualified candidates.

Now, let's look at how Python lets us tackle data.

In experimental data, we want to gather information using independent, dependent, and
control variables:

• Independent variables are variables that are changed or controlled by the
researcher.

• Dependent variables are variables that are being measured or tested by the
researcher; dependent variables depend on independent variables.

• Control variables are variables or factors in the experiment that must remain
the same.

242 Using Python in Experimental and Data Analysis Problems

Let's look at a simple example of these variables in an experiment. A common example
involves the study of plant growth. The independent variables can be one or multiple
variables. For our example, our independent variable will be the amount of fertilizer
we add to the plants. The plant growth will be a dependent variable. The control will not
get any fertilizer, just water. So, in our experiment, let's say we have five plants that we will
be measuring. One plant will only get water. That's our control. The other four will have
varying levels of fertilizer added to them. Those are our experimental plants. The growth
is dependent on the amount of fertilizer.

When we design experiments, there are three things we want to be true: that they are
reliable, valid, and can be generalized. Here's what each of these things means:

• Reliable relates to the consistency of the measurements. This means that if we
mimic the conditions, our results should be reliably similar.

• Valid relates to whether or not the experiment measured what it intended to
measure.

• Generalizable relates to the results being something that can be generalized and
applied to other settings.

There is a lot more detail and depth we could go into about experiments, but we are
only looking at what happens once we have the data for this chapter. It is important to
understand these basic terms for when we are involved in the design of the experiments.
As developers, depending on our roles, that may be the case. For example, in a start-up,
everyone may be involved in all aspects of product development. So, in those instances,
we could be working on the experiment and also the subsequent analysis algorithms.

For now, let's move on to what we can do with data analysis and how Python libraries can
help us achieve what we need when analyzing the experiment results.

Using data libraries in Python
In this section, we're going to take a look at some libraries and packages that we can use
with the Python programming language. We refer to packages and libraries, using both
terms interchangeably sometimes, but for clarity, a package contains modules, while
a library is a collection of packages.

Using data libraries in Python 243

We use Python libraries much like we use modules that are built-in, such as the math
module we first used in Chapter 4, Understanding Logical Reasoning. In our source code,
we imported the math module by using import math before creating the algorithm.
In the example under the Applying inductive reasoning section of Chapter 4, Understanding
Logical Reasoning, we used the math.floor() function of the module, which allowed
us to round a number down, regardless of what the decimal value was. When we import
modules or libraries in Python, we are tapping into additional functions and capabilities
that allow us to take the programming language much further.

So, what is a library? In Python, a library refers to chunks of code that can be reused.
Libraries contain a collection of modules. There are many libraries available for Python,
and like Python itself, a large number of the libraries are open source, which means they
can be downloaded and used by anyone. Because we're going to be working with data in
this chapter, we're going to stick with pandas, NumPy, and Matplotlib for now. However,
there are many other libraries and many types of libraries. For example, there are
Graphical User Interface (GUI) frameworks, such as Kivy, tkinter, PyQt, PySimpleGUI,
and others. For gaming, there are other libraries, such as Pygame and Pyglet. In machine
learning, the TensorFlow library is a popular tool developed by Google in collaboration
with the Brain team. But these are only some examples of the libraries available and the
areas that use them.

Installing libraries
Although the math module is built into the Python language, libraries need to be
installed. In Python 3.9, the program we use to install libraries is the pip installer. This
is a command built into Python and run from the Command Prompt window. One
caveat I will mention here is that permissions and where we install Python matter, so if
your computer belongs to your employer, make sure that the Python program paths are
adapted as needed so that you can access all modules and install libraries. The permissions
may vary.

In my case, while my main computer does not belong to me, I have administrator access
to it, so I can run my Command Prompt as an administrator and run pip from there.

244 Using Python in Experimental and Data Analysis Problems

The following screenshot shows an installation of the sympy Python library. As you can
see, using the pip install sympy command installs the library onto our system.
For the record, sympy is a symbolic math library available for Python. Since I have the
other libraries we'll be using already installed, I had to show the installation for a package
I hadn't yet installed on my machine:

Figure 12.1 – Installing a Python library

If you're trying to install a library that you've already installed—for example, if I tried to
install pandas again—you'll get a Requirement already satisfied message, such as the one
shown in the following screenshot. Notice that the user information will be filled in with
your user, not blacked out as shown in the screenshot, and this also shows the location
where the library package can be found on your system:

Figure 12.2 – Requirement already satisfied message

You may also wish to use Anaconda, which is an open source distribution of the Python
and R programming languages. When Anaconda is installed, you can use the CMD.exe
prompt window to install your libraries using conda install or pip install. The
Jupyter notebook included in the Anaconda navigator can run and save your Python
programs.

Using data libraries in Python 245

There are more programs and packages included in the Anaconda distribution program
and they can simplify how we interact with the Python programming language. It's a great
resource if you are doing extensive coding.

If you haven't done so already, this would be a good time to install the NumPy, pandas,
and Matplotlib libraries before we start using them in analyzing and displaying data and
creating models.

Using NumPy and pandas
NumPy, like so many of the libraries in Python and the Python programming language
itself, is an open source library. NumPy is used for multi-dimensional arrays and matrix
data structures. Python itself doesn't have arrays; it has lists. So, libraries can be used to
provide that capability for our algorithms. When we have multiple elements of the same
type, we can use a data structure to save them – that is, an array.

The pandas library is used to analyze data and is built on the numpy package. The
pandas and NumPy libraries are often used together. When we need graphical models,
we add a third library, Matplotlib, or another similar library. In this chapter, we're going
to stick with Matplotlib.

When we import libraries, we can import them as the whole name, numpy in this case,
or we can shorten them for ease of use. If we want to import the library, we can use
import numpy. Let's say we wanted to create an array of the numbers from 0 to 11.
We can use numpy to organize that by combining the arange and reshape functions.
Let's take a look at the code snippet:

ch12_abbreviate.py

import numpy as np

myArray = np.arange(0, 12).reshape(2, 6)

print(myArray)

Notice that we imported numpy as np instead of just numpy. That means that I can
now call the NumPy functions using np instead of having to type numpy each time.

Tip:
Please note that np is a standard abbreviation of NumPy, so you may see it
often. You can import NumPy as anything, any name, but np is the standard
convention.

246 Using Python in Experimental and Data Analysis Problems

In the preceding snippet, we are asking the algorithm to split the list of numbers from 0 to
11 into 2 rows of 6 elements each. Then, we print the array to see our result. Take a look
at the output:

[[0 1 2 3 4 5]

 [6 7 8 9 10 11]]

As you can see, we start at 0, which is our lower bound in the range 0 to 12. We have two
rows now, with six numbers in each of the two rows. We do not include 12. If we had tried
to do 0 to 13, we wouldn't be able to reshape our array because we cannot evenly split 13
numbers. We would have gotten the following traceback error (most recent call last):

 File "C:/Users/… /ch12_abbreviate.py", line 3, in <module>

 myArray = np.arange(0, 13).reshape(2, 6)

ValueError: cannot reshape array of size 13 into shape (2,6)

Recall that your information will be different where you see the ellipses (…). It will
have your file location, or path, based on how your Python is set up. For example,
your file location may be something like C:/Users/JohnSmith/Documents/
ch12_abbreviate.py. This should replace the file location in the preceding code.

As you can see from the ValueError message, we cannot reshape an array into the
(2, 6) shape because we'd have one number left over.

Now, let's take a look at a pandas DataFrame. We use DataFrames so that we can
manipulate our data in rows and columns. Let's take a look at an example:

ch12_pdDataFrame.py

import pandas as pd

myAddressBook = {'names': ['Susan', 'Malena', 'Isabel',

 'Juan', 'Mike'],

 'phoneNumbers':['333-333-3333',

 '444-444-4444',

 '555-555-5555',

 '777-777-7777',

 '888-888-8888']}

addressBook = pd.DataFrame(myAddressBook)

print(addressBook)

Using data libraries in Python 247

Notice that we created a dictionary with value pairs for the names and numbers of our
contacts. After doing so, we saved our address book as DataFrame, which will organize
our information in tabular form. Finally, we printed our address book. Take a look at
the output:

 names phoneNumbers

0 Susan 333-333-3333

1 Malena 444-444-4444

2 Isabel 555-555-5555

3 Juan 777-777-7777

4 Mike 888-888-8888

Notice that pandas used the information from the dictionary to create the labels for our
columns. We did not give it information for labeling our rows, so the numbers 0 to 4 were
automatically used by Python and pandas. The algorithm resulted in a table that provides
the names and numbers in our address book.

As you can see, pandas and NumPy simply add more capabilities to Python. Before
we move on to Matplotlib, notice that we haven't really seen actual data analysis yet.
We'll get to that soon. Right now, we know how to use our libraries and that we can use
them to organize and analyze data. Let's talk quickly about Matplotlib and then move on
to an example where we can use a data file to do some analysis.

Using Matplotlib
As we mentioned in the previous section, pandas and NumPy do not provide a visual
representation or visual model for our data. In order to create graphs from our data,
we can use the Matplotlib library in Python. Much like we imported the pandas and
NumPy libraries as pd and np, respectively, we can also shorten Matplotlib. The full
library contains multiple modules. We'll use the pyplot module a lot. The most
commonly used abbreviation for Matplotlib.pyplot is plt. If we're calling
Matplotlib, we usually abbreviate that as mlt. Let's take a look at a quick sample:

ch12_matplotlib.py

import matplotlib.pyplot as plt

plt.plot([0, 3, 6], [4, 5, 6])

plt.show()

248 Using Python in Experimental and Data Analysis Problems

Notice that this particular library has an even longer name than matplotlib. To import
the library, we have to import it using matplotlib.pyplot. Imagine having to write
all that every time we need it in an algorithm. No thanks! Instead, we import it as plt.

Now, let's take a look at the second line in the code snippet. We're creating a plot that
matches each of the numbers in the first list to the numbers in the second list. So, we have
three coordinate pairs: (0, 4), (3, 5), and (6, 6). The output when using this code
isn't just a line of output; it's a plot. Now, the algorithm creates that plot in the second line
of the preceding code snippet.

But it won't show it to you unless you tell it that's what you want. Think of the show()
function as our print() function in Python. Unless we tell the algorithm that we want
to see something, the algorithm will perform the task in the background but won't show
it to us. The following graph shows the output for this algorithm:

Figure 12.3 – Matplotlib sample graph

Now, as you can see, the graph itself is already helpful. We can see that this is a linear
relationship defined by those points. But notice that the bottom of the screen gives
you some options. The home icon at the bottom left will reset your graph at any time
to its original window. The Zoom function, shown in the following screenshot, allows us
to select a piece of the graph that we want to look at more closely:

Understanding data analysis with Python 249

Figure 12.4 – Zoom feature of Matplotlib

Notice that the left graph shows our selection for the piece of the graph we wanted to take
a closer look at. Then, the graph on the right is only showing us the values we selected.
Matplotlib also allows us to configure subplots and navigate with the arrows back and
forth between multiple representations. For example, if I were to click on the left arrow on
the graph after zooming, it would take me back to the previous representation. Clicking
the Home button takes me back to the original graph.

Of course, this is not the only type of graph or representation Matplotlib allows. This is
just a tiny glimpse into visual representations.

Tip:
An additional resource for the types of plots available is available
here: https://matplotlib.org/3.3.2/tutorials/
introductory/sample_plots.html.

In this section, we learned about the Matplotlib library. We learned how to create a simple
plot and how we can zoom into sections of our graphs from the outputs when we create
our graphics.

Now that we know how to access our libraries and what each can do for us, let's take
a look at how we use them to analyze data.

Understanding data analysis with Python
In the previous section, we introduced some of the libraries that we can use to analyze
data in Python. In this section, we will be looking at one example and multiple code
snippets to build a bar graph using real data and Matplotlib, but before we do so,
let's review why Python is so important with regard to data analysis.

https://matplotlib.org/3.3.2/tutorials/introductory/sample_plots.html
https://matplotlib.org/3.3.2/tutorials/introductory/sample_plots.html

250 Using Python in Experimental and Data Analysis Problems

As Python is object-oriented, it allows us to streamline really complex and/or large
datasets. This allows great readability of the data and using the libraries can produce data
representations such as tables and visual models that allow us to predict where our data
is going, create regression analyses, and much more. As mentioned in the introduction of
this chapter, data analysis is also critical for decision-making. A well-designed experiment
produces data that we can rely on and that is generalizable. Data analysis can be a tool for
more equality and equity in our society.

All that being said, we are going to look more at the mechanical aspects of what we can do
with Python rather than how we interpret it so that we can understand how Python does
data analysis and presents results using our libraries. That said, we'll use more examples in
Chapter 15, Applied Computational Thinking Problems, and Chapter 16, Advanced Applied
Computational Thinking Problems, in various areas that will not only use some of these
tools but will also provide us with an opportunity to explore what data analysis means in
the context of those samples.

It's time to take a look at an example that can help us further understand the capabilities
of these tools and how we can write algorithms that solve some of the presented problems.

Before we begin, we'll be using a data file, ch12_data.csv, which can be found in the
GitHub repository. This file contains graduation rates for degree-seeking students from
1996 through 2012 by race/ethnicity, time to completion, sex, control of institution, and
the percentage of applications accepted. The data was downloaded from the National
Center for Education Statistics here: https://nces.ed.gov/programs/digest/
d19/tables/dt19_326.10.asp.

The data file in our repository only contains the data for all four-year institutions rather
than the entire file. Some of the headings are also simplified.

When we want to work with a data file, it is important that we tell Python where it can
locate it so that it knows what to use when running the algorithm. To do so, we use the
os module, which allows our algorithm to interact with our operating system (OS).
Notice that our snippet already includes the other libraries as well (we'll use them later):

ch12_csvAnalysis.py

import pandas as pd

import matplotlib as mlp

import matplotlib.pyplot as plt

import os

#Let Python know correct directory for file.

https://nces.ed.gov/programs/digest/d19/tables/dt19_326.10.asp
https://nces.ed.gov/programs/digest/d19/tables/dt19_326.10.asp

Understanding data analysis with Python 251

os.chdir('C:\\Users\\...\\Program Files\\Chapter 12')

print('Current directory', os.getcwd())

As we've done previously, make sure you replace the ellipses in the user information with
your own location. In the algorithm provided in the repository, you'll also need to adjust
that location in order to run this algorithm, as the location for that algorithm would be for
my own path.

Now that we've told Python where to find the file, we can use it in the algorithm. If we run
this algorithm, we'll see that the output should match the path we noted in the line that
starts with os.chdir:

Current directory C:\Users\...\Program Files\Chapter 12

Notice again that our paths will not match. That will all depend on where you have your
files saved.

The following figure shows the same data and file as our .csv file in .xls format, as
it is easier to point out what we need from it. Note that we will use the .csv file for the
analysis:

Figure 12.5 – Data to be used in Python formatted as an .xls file

252 Using Python in Experimental and Data Analysis Problems

If we only want to pull the rows shown, we can use the following code snippet to get that
information from our .csv file:

ch12_csvAnalysis_2.py

import pandas as pd

graduates = pd.read_csv('ch12_data.csv', index_col = 0)

print(graduates[0: 16])

Notice that our algorithm imported the pandas library. The read_csv() function tells
Python that we'll be using the filename and the index of the column we want to start
working with. That index gives us the values we'll use as row headers. If the index wasn't
in the first column, we could change that to a different value. Then, we print the rows
we want to see. Because our data is wide, our output is shown as follows:

Figure 12.6 – Output of ch12_csvAnalysis.py algorithm

Notice that we are only seeing the first two columns, then we have ellipses. That shows
us that there are more columns between the second column and the third shown. That
doesn't mean that Python didn't read the rest of the information, it's just not visible to us.
The last output line, [13 rows x 10 columns], actually tells us how many rows and
columns are in the data we pulled.

Understanding data analysis with Python 253

Let's say I wanted to see data for one group, say Hispanic, as a comparison using a bar
chart for the years between 1996 and 2012. Then, I can use the bar chart plot from the
Matplotlib library. Let's take a look at the adjustments made to the following algorithm:

ch12_csvAnalysis_3.py

import pandas as pd

import matplotlib as mlp

import matplotlib.pyplot as plt

import os

#Let Python know correct directory for file.

os.chdir('C:\\Users\\sofia.dejesus\\OneDrive - Hawken

 School\\03_book\\Program Files\\Chapter 12')

graduates = pd.read_csv('ch12_data.csv', index_col = 0)

print(graduates[0:13])

fig, ax = plt.subplots()

ax.bar(graduates.index, graduates['Hispanic'])

ax.set_xticks(graduates.index)

ax.set_xticklabels(graduates.index, rotation = 60,

 horizontalalignment = 'right')

ax.set_title('Number of Hispanic graduates from 1996-2012',

 fontsize = 16)

ax.set_ylabel('Number of Graduates')

plt.show()

There are some things we should look at closely from our preceding code. The first thing
we did was add the fig, ax = plt.subplots() line. This line allows us to create
the plot, but also allows us to create multiple plots in a figure if we wanted to. If we were
adding four plots, we'd use fig, ax = plt.subplots(2, 2), which would tell
the algorithm that we're creating four plots in two rows and two columns. If we leave the
parentheses empty, as we did in the preceding code, we have just one subplot.

254 Using Python in Experimental and Data Analysis Problems

Next, we are identifying the figure we'll create, which is a bar graph. We want to just
compare the numbers for the Hispanic population over the years, so we identify that in
our ax.bar(graduates.index, graduates['Hispanic']) line.

I should note here that many developers use dataframe as their variable. I prefer to
name my DataFrame descriptively instead, so instead of calling my DataFrame df,
I've called it graduates in the algorithm. Whatever your preference is, this is the
DataFrame that we are currently working with to create a readable plot.

Notice the ticks and tick labels in the code; we first identify where we'll get the data from
for the ticks and what the labels will be. Then, we can add more formatting to our plot by
adding rotation (if we want to tilt our labels), alignment, and so on. We could also change
the font size here. Finally, we set the y -axis title and the bar graph title before we show the
plot. The following screenshot shows the plot for this algorithm:

Figure 12.7 – Plot of Hispanic graduates for ch12_csvAnalysis_3.py

Notice that our graph has labels and shows the data clearly, and we were able to modify
our formatting so that it was legible. As we analyze the information, we also notice the gap
between the first year and the year 2000, and between 2000 and 2002. The data for those
years is not included in the data file.

Using additional libraries for plotting and analysis 255

This is only one of the plots possible using Matplotlib. We'll have a chance to explore a few
more in Chapter 15, Applied Computational Thinking Problems, and Chapter 16, Advanced
Applied Computational Thinking Problems, which are solely dedicated to samples in
multiple areas using everything we've discussed throughout earlier chapters of this book.
For now, let's move on to some other applications of data and Python libraries.

Using additional libraries for plotting and
analysis
Before we end this chapter on experimental data, the use of libraries, and plotting and
analyzing data, let's look at three more libraries that are helpful in data analysis and
plotting. These are not the only libraries for analysis and plotting, nor will they be the only
ones we explore throughout the rest of this book:

• Seaborn is a library used for data visualization; built on top of Matplotlib.

• SciPy is a library used for linear algebra, optimization, statistics, and more; built on
top of NumPy.

• Scikit-Learn is a library used in machine learning; part of the SciPy stack.

In the following chapters, we'll go deeper into the use of some of these libraries as we
tackle some of the application problems that require their use. For now, let's take a quick
look at what each of these libraries can help us with when looking at datasets.

Using the Seaborn library
The Seaborn library provides us with more features on top of the Matplotlib visualization
features. There are many things we can do with the Seaborn library, which we usually
import as sns for simplification of the code. Here are some of the common uses of the
library:

• Correlations

• Aggregate statistics (observation of categorical values)

• Linear regression plots for dependent variables

• Creating abstractions and grids with multiple plots

One of the greatest things about Seaborn is that it also works well with pandas. Creating
statistical representations of data and visualizations is easy when combining with pandas
DataFrames.

256 Using Python in Experimental and Data Analysis Problems

Seaborn has some sample datasets that can be accessed – that is, they are built-in – if
we know the name of the dataset. We can then call the built-in dataset with a simple line
of code. Let's take a look at the following snippet of code and resulting graphics:

ch12_seabornSample.py

Import seaborn

import seaborn as sns

sns.set_style('darkgrid')

Load an example dataset

exercise = sns.load_dataset("exercise")

#Create the plot

sns.relplot(

 data=exercise,

 x='id', y="pulse", col="time",

)

From the preceding code, you can see that we've set a style for our plots. We are adding
a 'darkgrid' style to our plots and called it after importing the library. Seaborn has
a few built-in styles: white, whitegrid, dark, darkgrid, and ticks. The following
screenshot shows the resulting plot from Seaborn:

Figure 12.8 – Graph of exercise sample dataset with darkgrid style

As you can see from the graphs, we would be able to analyze whether or not there are
correlations between pulse and time or any other variables.

Using additional libraries for plotting and analysis 257

We can also use pair plotting to show whether there are correlations between the variables.
Let's use another built-in dataset, flights, to see what the pair plotting does:

ch12_pairplotSNS.py

Import seaborn

import seaborn as sns

sns.set_style('darkgrid')

Load an example dataset

flights = sns.load_dataset("flights")

#Create the plot

sns.pairplot(

 data=flights,

)

The preceding snippet of code is very similar to the previous one for the exercise data. The
difference is that we call the pairplot() function in this case. The following screenshot
shows our resulting grid of plots:

Figure 12.9 – Pair plotting using Seaborn

258 Using Python in Experimental and Data Analysis Problems

Notice that the number of passengers and the years seem to be positively correlated.
That is, there are more passengers in later years than in the early years of flight. When
analyzing this dataset, we would probably want to make a prediction, such as stating that
more passengers would be flying in modern times.

We could use the graphs to help us make predictions. That said, this data is fairly old,
so we'd need more updated data to make accurate predictions. The more data we have,
the better. For massively large amounts of data, we can also use machine learning, which
we will briefly explore in Chapter 13, Using Classification and Clusters, and Chapter 14,
Computational Thinking and Python in Statistical Analysis, so that we can learn how to
manipulate and learn from the data.

Before we move on to another library, one more thing about the pair plots—if there are
10 columns of data, the pair plot will compare each column with itself, then every other
column available, creating a pretty large display with all the compared variables. We
will look at some more pair plotting in Chapter 14, Computational Thinking and Python
in Statistical Analysis. There are also problems in Chapter 15, Applied Computational
Thinking Problems, and Chapter 16, Advanced Applied Computational Thinking Problems,
that will allow us to practice more with those graphs and what we can get from them.

The Seaborn library is helpful to visualize statistical data, much like Matplotlib. The ease
of some of the built-in functions in Seaborn makes it a great tool for visualization and
analysis.

Now, let's look at the SciPy library.

Using the SciPy library
The SciPy library is mostly used to solve scientific and mathematical problems. Some of
the helpful sub-packages and their uses are as follows:

• cluster is used for clustering algorithms.

• constants contains physical and mathematical constants and units, such as
golden (the golden ratio) and mu_0 (the magnetic constant).

• fftpack utilizes fast Fourier transform routines.

• integrate is used for differential equation solvers.

• interpolate contains interpolation and smoothing splines.

• io relates to input and output.

• linalg is associated with linear algebra.

• ndimage is used for processing N-dimensional images.

Using additional libraries for plotting and analysis 259

• odr is used for orthogonal distance regression.

• optimize is used for optimization and root-finding routines.

• signal is used for signal processing.

• sparse is used for sparse matrices and associated routines.

• spatial is used for spatial data structures and algorithms.

• special is used for special functions (such as elliptic functions and integrals).

• stats is used for statistical distributions and functions.

Within each of the sub-packages, SciPy contains many functions to aid in the visualization
and optimization of scientific data. Because it was created specifically with that purpose,
it is a common tool used in the scientific area. That said, the statistical packages are also
robust, so the library is helpful to use even in non-scientific statistical analyses.

Let's now look at the Scikit-Learn library, which we'll use in the following chapters of
this book.

Using the Scikit-Learn library
Scikit-Learn is probably the most important library for machine learning available in
Python. We will explore this library in samples in the following chapters as we explore
some of the problems that would be suitable for machine learning, so we won't go too
deep into the functionalities here. That said, here are some of the functionalities that
Scikit-Learn gives us:

• Clustering helps with grouping data that is unlabeled.

• Regression measures the relationship between the variable (the mean of the
variable) and the values of the other variables.

• Classification has multiple classifiers within Scikit-Learn, similar to regression.
Some of the classifiers are linear discrimination analysis, bagging classifiers,
K-nearest neighbors classifiers, and more.

• Model selection has tools for creating training and testing models in machine
learning.

• Preprocessing contains tools to standardize the dataset (more details on data
preprocessing can be found in Chapter 14, Computational Thinking and Python
in Statistical Analysis).

260 Using Python in Experimental and Data Analysis Problems

The Scikit-Learn library is something we will become fairly familiar with in the upcoming
examples in Chapter 14, Computational Thinking and Python in Statistical Analysis,
Chapter 15, Applied Computational Thinking Problems, and Chapter 16, Advanced Applied
Computational Thinking Problems, so we'll leave some of that discussion for those
chapters.

The libraries and packages that we have available in Python allow us to perform detailed
analysis for our dataset and create a wide array of useful plots that aid in data analysis.

Summary
In this chapter, we went over the definitions of experimental data and validity, reliability,
and generalizability in the context of experiments. We also discussed how to install and
use the pandas, NumPy, and Matplotlib libraries so that we could use them to organize
and display data. Some of the skills you learned include defining an experiment, data
gathering, and how computational thinking helps us define problems and design what
we'd use to display our results.

In addition, we learned about data analysis and data science and its growth and
importance in our current world. We were able to use the libraries to produce a plot that
represented a subset of a data file using a Matplotlib bar chart.

In the next chapter, we'll be learning more about data and other applications of data
science and data analysis.

13
Using Classification

and Clusters
In this chapter, we will use the classification and clustering capabilities of the Python
programming language. We will use the computational thinking elements to define the
necessary components for problems when working with clusters and classification.

In this chapter, we will cover the following topics:

• Defining training and testing

• Implementing data clustering

By the end of this chapter, you will be able to design algorithms that are the best fit for
the scenarios presented. You will also be able to identify the Python functions that are the
most aligned with the problems presented and generalize your solutions.

Technical requirements
We will need the latest version of Python and Scikit-Learn to execute the code in this
chapter.

You will find the code used in this chapter here: https://github.com/
PacktPublishing/Applied-Computational-Thinking-with-Python/
tree/master/Chapter13

https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter13

262 Using Classification and Clusters

You will find the Pima Indians Diabetes Database from Kaggle here: https://www.
kaggle.com/uciml/pima-indians-diabetes-database

Data training and testing
In this section, we're going to learn how to create models for training and testing
data using Python tools and libraries. When working with data and data science, we
sometimes want to train the algorithm to continue gathering and learning from the data.
Data training is then used for data mining and machine learning. First, let's define the
training dataset:

• It is a sample of data used to fit the model.

• It is an actual dataset that is used to train the model (weights and biases, in the case
of a neural network). The training model sees and learns from this data.

In computing, a neural network is a system of computing that is created using biological
neural networks in human and animal brains as inspiration. When using training datasets,
such as when we are creating machine learning models, the models depend heavily on
the data. But what is machine learning? Machine learning, or ML, is an application of
artificial intelligence (AI) that allows a machine to learn automatically using a program
without explicitly being programmed to do so.

Without a top-quality foundation of data training, an algorithm is useless. Data training in
ML refers to the initial data used to develop models. They find relationships and develop
understanding and discover patterns and trends. Input data is fed into the ML algorithm
and also to all the techniques associated to produce an output. That output is also fed back
into the models as updated feedback, which in turn provides feedback data that is used
as input again. The process is cyclical, continuously adapting and learning. The following
diagram shows a simple ML graphic with the processes that happen:

Figure 13.1 – Machine Learning and its relationships with input and output

https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://www.kaggle.com/uciml/pima-indians-diabetes-database

Data training and testing 263

In ML, data is combined with statistical tools to predict an output. The machines receive
input data and use an algorithm to construct answers. This is similar to data mining,
where large datasets are used to find anomalies, correlations, patterns, and so on to predict
an outcome.

In data mining, we extract information but using methods that pull the necessary,
relevant, error-free data points. That is, with data mining, we extract what we need from
the dataset without extracting those anomalies while also looking at correlations and
patterns within our data. The difference between data mining and ML is that ML analyzes
both input data and output data. So once the output is processed, it goes back to the
algorithm, where it's fed back to the input data, and reprocessed. The cycle is ongoing,
as you can see from the preceding diagram.

Important Note:
There are four groups of ML algorithms, but in this book, we are only going
to introduce two. While this is not an ML book, Python's applications in the
ML arena continue to grow, so it is relevant to our goal of understanding the
applications of the programming language and how we use computational
thinking to solve problems.

In ML, we use two types of important techniques:

• Supervised learning maps data pairs, using input data and expected output
(training data) so that the model can find underlying patterns.

• Unsupervised learning uses unlabeled training data to make conclusions.

In addition, there are two other techniques we won't go into in this book: semi-supervised
learning and reinforcement learning.

In supervised learning, the learning algorithm is presented with a set of inputs along with
their desired outputs (also called labels). The goal is to discover a rule that enables the
computer to re-create the outputs, or in other words, map the input and output. On the
other hand, unsupervised learning allows us to approach problems with little or no idea
what our results should look like. The output variables are unlabeled. With unsupervised
learning, an algorithm is presented with a set of inputs but no desired outputs, which
means the algorithm must find structures and patterns on its own.

264 Using Classification and Clusters

The following diagram shows a roadmap to follow for supervised and unsupervised
learning:

Figure 13.2 – Types of machine learning

As you can see from the preceding figure, we have two types of supervised learning.
When we are given the training data and desired outputs, we use regression or
classification. With regression, we predict a continuous-valued output. With
classification, we get a discrete-valued output (0 or 1). An example of regression would
be predicting how much rainfall we'd get on a given day, while with classification, we'd be
looking to know whether it would rain or not.

For unsupervised learning, the preceding figure contains the example of clustering.
In clustering, we get the training data, but only a few desired outputs. An example
of clustering is grouping, which would take items from large collections of data and
group them.

We can apply these types of learning styles to artificial neural networks. The training of
a neural network is usually conducted by determining the difference between the
processed output of the network (often a prediction) and a target output. This is the error,
so the network then adjusts its weighted associations according to a learning rule and
using this error value to adapt. Neural networks are typically organized in layers. Layers
are made up of several interconnected nodes that contain an activation function.

Data training and testing 265

An activation function is used to make decisions about whether a neuron is activated
or not. To do so, a weighted sum is calculated and further bias is added. We use activation
functions to provide outputs of a neuron with non-linearity. The three most common
activation functions are as follows:

• Sigmoid can be formulated as
1

1 + −
 , where the input of the real number is x.

It returns a value between –1 and 1.

• Tanh is given by tanh(x). It is a hyperbolic tangent function with real number input
x; it returns a value between –1 and 1.

• Rectified Linear Unit (ReLU) is a piecewise linear function. Its output is the same
as the input if the input is positive or 0 otherwise.

The following diagram shows the graphs associated with each of the aforementioned
activation functions:

Figure 13.3 – Activation functions

266 Using Classification and Clusters

Patterns are presented to the network via the input layer, which communicates to one
or more hidden layers, where the actual processing is done via a system of weighted
connections. The hidden layers then link to an output layer where the answer is output
as shown in the following diagram:

Figure 13.4 – Artificial Neural Network (ANN) model

As you can see, the summation operator (Σ) takes the input values and moves through
the network and creates an output. They must be summed and return a single value when
entering a new node. An activation function essentially squashes the input and transforms
it into an output value that represents how much a node should contribute (that is, when
a node should fire). A node is considered to be fired up when it is activated. It takes the
output value and converts it so the next node can take it as input. This is called firing up.

Now let's take a look at how we classify data using pandas.

Classifying data example
Now let's take a look at an example where we are classifying data. The following screenshot
shows an example of using supervised learning. To produce the output that can be seen in
the screenshot, we used an existing dataset from www.kaggle.com. The dataset is called
Pima Indians Diabetes Database. It describes whether or not a Pima Indian patient was
diagnosed with diabetes:

http://www.kaggle.com

Data training and testing 267

Figure 13.5 – Sample of unsupervised learning

As you can see, the attributes from the table, also known as the input variables (x), are
as follows:

• Number of times pregnant

• Plasma glucose concentration for 2 hours in an oral glucose tolerance test

• Diastolic blood pressure (mm Hg)

• Triceps skinfold thickness (mm)

• 2-hour serum insulin (mu U/ml)

• Body mass index (weight in kg
height in m2)

• Diabetes pedigree function

• Age (years)

For the output variable (y), we have the class variable (0 or 1). From the dataset, each
row represents a patient and whether or not that person received a diagnosis of diabetes
in the past 5 years. As you can see, there are eight input variables and one output variable
(the last column) as shown in the preceding figure.

We will be using the binary classification model (1 or 0), which maps the rows of input
variables (x) to the output variable (y). This will summarize y = f(x). The following code
snippet uses this information to get our outputs. Please note we will be discussing the full
file in snippets throughout this example:

ch13_diabetesA.py

import pandas as pd

import matplotlib.pyplot as plt

268 Using Classification and Clusters

import numpy as np

dataset = pd.read_csv('diabetes.csv')

As you can see from the preceding snippet, we are uploading the dataset called
diabetes.csv (from Kaggle). If you need a reminder of how to save the file and locate
the path needed, take a look at Chapter 12, Using Python in Experimental and Data
Analysis Problems, in the Understanding data analysis with Python section. There are many
ways to upload datasets.

As we did in Chapter 12, Using Python in Experimental and Data Analysis Problems,
we are using the very popular pandas and importing it as pd. Pandas is used for data
manipulation and analysis. It offers data structures and operations for manipulating
numerical tables and time series. The read_csv() function from pandas deals with
importing data from Comma-Separated Values (CSV) values.

Important Note:
We need to find the correct directory. When you're calling the .csv file
make sure you're in the correct directory (where the .csv file is located) to
avoid error codes. Use os.chdir() after using import os, then use
print('Current directory', os.getcwd()). See Chapter
12, Using Python in Experimental and Data Analysis Problems, for more
information.

Once you run the preceding snippet of code, you can look at your variable explorer to see
the item shown in the following screenshot. Note that the variable explorer is a tool that
allows you to browse and manage objects associated with and used in your code. This tool
is part of the Spyder environment, which runs Python with additional functionalities and
editing tools, such as the variable explorer. The variable explorer is found in Spyder at the
top on the right-hand side of our environment. The following screenshot shows the view
of our database in the variable explorer:

Figure 13.6 – Variable explorer sample

As you can see, Size describes the dataset. It shows the number of patients, 786, and the
total number of variables, 9. Now we have a better understanding of our dataset.

Data training and testing 269

But let's say you don't know what type of learning you will be needing. You can type this
function in the console to get a full picture of the data and outputs:

dataset.describe(include='all')

The following screenshot shows the information we receive after using the preceding line
of code in our algorithm:

Figure 13.7 – Display of information after running a description algorithm

As you can see from the preceding figure, we are able to get all the numerical features and
know that there is no categorical data. We want that information, so the following line of
code can be used to see the correlation between the variables:

dataset.corr()

This simple line of code helps us get the information shown in the following screenshot.
Please note that the following screenshot may look different depending on the
environment you are using. When running this code, using environments like Spyder or
Jupyter, depending on your theme settings and choices, the table may look different, with
different color schemes (or no color schemes):

Figure 13.8 – Dataset correlation graphic

270 Using Classification and Clusters

We can see the correlation between all the variables with the outcome (output (y)). The
preceding screenshot shows us that plasma glucose has the strongest correlation with the
outcome, and insulin has the lowest.

Now that we have a better understanding of the dataset, let's separate the input variables
and output variables to put in the model. Let's take a look at the following code snippet
from our ch13_diabetesA.py file, which exemplifies this for us:

#Split dataset into input(x) and output(y) variables

x_variables = dataset.iloc[:,0:8]

y_variable = dataset.iloc[:,8]

We use the print function to check our values:

print(x_variables)

print(y_variable)

Once you have run the preceding snippet of code, the output data will look as shown in
the following screenshot. Note that the result shows what we've defined as the variables
x_variables and y_variable, which are in turn defined as parts of the dataset,
as noted in the preceding code:

Figure 13.9 – Training the dataset output for algorithm printing input and output values

Data training and testing 271

Now we have to split the data into a training dataset and a test dataset. The purpose of the
split technique is to evaluate the performance of an ML algorithm. It is only meant for any
type of supervised learning algorithm. The first set (the training dataset) is used for the
purpose of fitting the model.

The main goal is to fit it on available data with known inputs and outputs, then make
predictions on new examples in the future where we do not have the expected output
or target values.

Using the Scikit-Learn library
Another important library when working with data and ML is the scikit-learn
(sklearn) library. This library is particularly useful for classification, regression,
clustering, model selection, dimensionality reduction, and more. You may recall from
Chapter 12, Using Python in Experimental and Data Analysis Problems, under the Using
data libraries in Python section, that you can use pip install from your Command
Prompt window to install the required libraries. Once you have the library, you can
import it into the code, as shown in the following snippet, which uses sklearn to split
the data. As a note, this snippet is part of the larger ch13_diabetesA.py file:

from sklearn.model_selection import train_test_split

X_train,X_test, y_train,y_test = train_test_split(

 x_variables, y_variable, test_size = 0.20,

 random_state = 10)

Here are the known parameters:

• x_variable and y_variable as previously defined.

• test_size: The test size will be 20% of the dataset.

• random_state: It sets a seed to the random generator so your train and test
splits are always deterministic. If it is set to none, then a randomly initialized
RandomState object is returned.

272 Using Classification and Clusters

The following diagram shows the process and how each element interacts with others in
the cycle:

Figure 13.10 – Data cycle in ML

Note that we'll use a sequential model in the algorithm. In addition, we are using the
keras library, which is used with Python so we can run deep learning models with our
algorithms. Make sure you have the keras library available to use for this algorithm.
If you have TensorFlow installed, you should already have access to the Keras library.

When working with machine learning problems and algorithms, you'll have a choice of
libraries. We chose Keras for this particular problem. Keras is open source, and is useful in
creating artificial neural networks. TensorFlow is a platform that contains many machine
learning components and tasks.

Keras works on top of TensorFlow and makes it easier to interact with it in the Python
programming language. Keras is a higher-level API, which we'll discuss further. Because
of its capacity, it can sometimes be slower than usual. PyTorch is another library used
for artificial neural networks. It's a lower-level API, and therefore runs faster. Keras is
supported by Google, while PyTorch is supported by Facebook. Both are helpful, so
deciding on which to use is typically a developer's preference. Personally, I prefer the
Keras library.

The sequential API allows you to create models layer by layer in a step-by-step fashion.
There are two other available models, the functional API and model sub-classing.
We'll use the sequential API because it's the easiest architecture, while the functional
API is used for deep learning (complex models) and model sub-classing.

Data training and testing 273

There are a few things we should note about using Keras:

• The model class is the root class and is used to define the architecture for the model.

• Like Python itself, Keras uses object-oriented programming, which means we can
add subclasses.

• The subclasses in the model are customizable.

All that said, it should also be noted that sub-classing is more challenging than if we were
to use the sequential or functional API. Now let's take a look at an updated algorithm
using our Keras library. Remember to include the directory of your file or save the .csv
file to the necessary directory to run the algorithm correctly:

ch13_diabetesB.py

from sklearn.model_selection import train_test_split

from keras import Sequential
from keras.layers import Dense

#Defining the Model

model = Sequential()

model.add(Dense(12, input_dim=8, activation='relu'))

model.add(Dense(15, activation='relu'))

model.add(Dense(8, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

From the preceding snippet, we can see that we added four layers that are densely
connected.

The first layer is built as follows:

• 12 neurons

• input_dim = 8 (that is, input values that are coming into the network)

• activation 'relu'

As you can see, we have added multiple models and defined them. To compile the model,
we use the following snippet of code, contained in the same code file. We can also set
model.fit to use our libraries and the following code, which is part of our
ch13_diabetesB.py file:

#Compile the model

model.compile(loss='binary_crossentropy', optimizer='adam',

274 Using Classification and Clusters

 metrics=['accuracy'])

#Fit the model on the dataset

model.fit(x_variables, y_variable, epochs=95,

 batch_size=25)

#Evaluate the model

_, accuracy = model.evaluate(x_variables, y_variable)

print('Accuracy: %.2f' % (accuracy*100))

model.summary()

The preceding code compiles the Adam optimizer. The Adam optimizer is used for
stochastic gradient descent and updates network weights iteratively using the training
data. Once we run our code, our output provides the information shown as follows:

Figure 13.11 – Output of model run using the Keras library

Note that the accuracy may be different as you run the algorithm. Test the algorithm a few
times to see changes in your window. After we've run our accuracy model, we print the
model summary using model.summary(), shown as follows:

Figure 13.12 – Model summary of the algorithm

Data training and testing 275

Now that we've seen how to run our algorithms using the diabetes data file, let's look
briefly at some optimization models that will help us evaluate the algorithm. We will
not be going into these algorithms, but we do want to mention a few of the various tools
available to us. When we are working with modeling, we use optimization models, such as
binary cross-entropy, the Adam optimization algorithm, and gradient descent.

Defining optimization models
Let's take a look at the types of models. Note that we are not diving deep into the use
of these models, but further exploration into their application to our algorithm is
recommended.

The binary cross-entropy model
In binary classification, we use cross-entropy as the default loss function. The loss
function is a method that helps us evaluate how our algorithm models the data. With the
loss function, we can use optimization in order to produce more accurate results, that is,
it helps reduce the prediction error. We use the loss function when target values are in
the binary set.

Cross-entropy is a loss function that calculates the difference between two probability
distributions. We can use cross-entropy when optimizing classification models using
logistic regression and artificial neural networks.

The Adam optimization algorithm
The Adam algorithm is a method for stochastic optimization. Stochastic optimization is
used when there is randomness in a function, to maximize or minimize the value of the
function. The Adam optimization algorithm is appropriate for some simple optimization
problems that are non-convex. It is efficient and uses little memory but can be applied to
large datasets.

The gradient descent model
The gradient descent algorithm is a first-order optimization algorithm. First-order refers
to linear local errors. We use gradient descent on functions that can be differentiated to
find a local minimum.

The confusion matrix model
The confusion matrix is also known as the error matrix. The confusion matrix is visually
helpful, as it presents the performance of the algorithm in a table format, which allows
better visualization of that performance. It is typically used in supervised learning.

276 Using Classification and Clusters

As stated, this is just some base information as you start working on the optimization of
your algorithms. Additional information on ML can be found in other Packt books, such
as Python Machine Learning and Exploratory Data Analysis with Python.

Before we move on to an introduction to clusters, let's do a quick recap of what we learned
in this section on using the Keras package and model:

• Loading data

• Defining a neural network in Keras

• Compiling a Keras model using the efficient numerical backend

• Training a model on data

• Evaluating a model on data

• Making predictions with the model

Now let's move on to data clusters.

Implementing data clustering
In this section, we're going to take a look at how to approach data clustering. First, let's
define what we mean by data clustering. Data clustering refers to how we partition
data into groups or clusters. Clusters can be meaningful if they provide an expanded
understanding of domain knowledge. We use clustering for many applications, such
as medicine, where clustering can help identify how a group of patients responds to
treatment, or market research, where clustering is used to group consumers in order to
appeal to that group based on that particular group's characteristics.

For the purpose of this discussion, we are going to look at synthetic clusters rather than
applied clusters. In Chapter 16, Advanced Applied Computational Thinking Problems,
you'll see some examples of clusters in context. A synthetic cluster is made from
a synthetic dataset. That is, we generate the dataset using an algorithm. Let's take a look
at the following code snippet:

ch13_syntheticDataset.py

from numpy import where

from sklearn.datasets import make_classification

from matplotlib import pyplot

#Create a synthetic dataset

Implementing data clustering 277

X, y = make_classification(n_samples = 1800,

 n_features = 2, n_informative = 2, n_redundant = 0,

 n_clusters_per_class = 1, random_state=4)

#Scatterplot

for class_value in range(2):

 row_ix = where(y == class_value)

 pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

#Display plot

pyplot.xlabel('variable 1')

pyplot.ylabel('variable 2')

pyplot.title('Synthetic data graph')

pyplot.show()

Notice from the preceding snippet that we establish the number of samples, the number
of features, and the number of clusters, among other things. In addition, we then create
a scatterplot of the synthetic data and plot the result. The following graph shows the
results of our synthetic dataset plotted as a scatterplot:

Figure 13.13 – Synthetic dataset scatterplot

Note that the number of samples for this synthetic dataset was 1800. Try to change the
number of samples to see the changes in the scatterplot. Now that we have a dataset,
we can start applying clustering algorithms. Here are some of the more common
clustering algorithms:

• The BIRCH algorithm

• The K-means clustering algorithm

278 Using Classification and Clusters

We will look at the aforementioned algorithms in the following sections.

Using the BIRCH algorithm
Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) is a clustering
algorithm that uses the cluster centroids as long as there is enough available memory and
time. For the BIRCH and K-means clustering algorithms, we will share an algorithm and
the corresponding plot in order to better understand them.

The following snippet shows us the BIRCH algorithm:

ch13_BIRCH.py

from numpy import unique

from numpy import where

from sklearn.datasets import make_classification

from sklearn.cluster import Birch

from matplotlib import pyplot

#Synthetic dataset definition

X, _ = make_classification(n_samples = 1800,

 n_features = 2, n_informative = 2, n_redundant = 0,

 n_clusters_per_class = 1, random_state = 4)

#Define the BIRCH model

model = Birch(threshold = 0.01, n_clusters = 2)

model.fit(X)

yhat = model.predict(X)

#Clusters

clusters = unique(yhat)

#Display

for cluster in clusters:

 row_ix = where(yhat == cluster)

 pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

pyplot.show()

Implementing data clustering 279

Note that we arbitrarily chose two clusters in this sample, as you can see in the line
model = Birch(threshold = 0.01, n_clusters = 2). We are sticking with
our sample of 1800 so that we can compare our output figures. The following screenshot
shows two sample BIRCH models. The first (on the left) shows the algorithm run as
provided in the preceding snippet. The second (on the right) shows the same algorithm
run but for three clusters.

To run the second graph, we changed the model line code to the following:

model = Birch(threshold = 0.01, n_clusters = 3)

Take a look at the following figure with both plots shown, n_clusters = 2 and n_
clusters = 3:

Figure 13.14 – BIRCH models using 2 and 3 clusters, respectively

Notice that on the left of the preceding screenshot, two clusters are clearly shown. When
compared to Figure 13.13, you can see some data points have been converted to fit each
of the clusters identified. The scatterplot on the right of the preceding screenshot divides
the data into three distinct clusters. To get more familiar with the clustering algorithms,
change the parameters to see what happens when you change the number of clusters, the
sample size, and other parameters.

Now let's take a look at the K-means clustering algorithm.

280 Using Classification and Clusters

Using the K-means clustering algorithm
The K-means clustering algorithm is one of the most widely used clustering algorithms.
The algorithm assigns examples so that the variance is minimized in each of the identified
clusters. Much like with the BIRCH algorithm, we set the number of clusters within the
algorithm. Let's take a look at the K-means code snippet:

ch13_KMeans.py

from numpy import unique

from numpy import where

from sklearn.datasets import make_classification

from sklearn.cluster import KMeans

from matplotlib import pyplot

#Dataset definition

X, _ = make_classification(n_samples = 1800,

 n_features = 2, n_informative = 2, n_redundant = 0,

 n_clusters_per_class = 1, random_state = 4)

#Model identification and fit

model = KMeans(n_clusters = 2)

model.fit(X)

#Clusters

yhat = model.predict(X)

clusters = unique(yhat)

#Display

for cluster in clusters:

 row_ix = where(yhat == cluster)

 pyplot.scatter(X[row_ix, 0], X[row_ix, 1])

pyplot.show()

Again, notice that we're using the same number of clusters (2) and the number of samples
(1800) so that we can compare our displays. The following screenshot shows the K-means
scatterplot output resulting from the preceding algorithm:

Summary 281

Figure 13.15 – K-means algorithm output

Notice that the data is still exactly the same, however, when we compare the displays
we got from the BIRCH algorithm and the K-means algorithm, you can see that our
algorithms produced very different results for our clusters.

There are many other clustering algorithms we can use and test. Learning about them
and comparing the results is imperative in determining which ones to use based on real
datasets. The results from the K-means algorithm, in this case, do not really fit the model
well. The BIRCH model seems more suited when using two clusters because the variance
in the K-means algorithm is unequal.

As we move on from the clustering examples, please note that, as for much of data science
and ML, the more we use the models and algorithms, the more we understand their uses
and when the models are appropriate, and we can learn to visually identify whether an
algorithm fits our data or not.

Summary
In this chapter, we learned how to use some of the packages available for the Python
programming language to create models of large sets of data. We used packages, such as
Keras, to upload data and define neural networks. We trained the model and evaluated the
model. We used the model to make predictions. We also learned about the classification
and testing of data and how to work with data clusters. After reading this chapter, you can
now define data training and how Python is used in data training. You can also define and
use a clustering algorithm.

We will continue to explore some of the topics discussed here in the next chapter. We will
also see some of these applications in the examples provided in Chapter 16, Advanced
Applied Computational Thinking Problems.

14
Using

Computational
Thinking and

Python in Statistical
Analysis

In this chapter, we will use Python and the elements of computational thinking to
solve problems that require statistical analysis algorithms. We will use pandas
DataFrames to create statistical analysis algorithms within the Python environment.
Additional packages in Python will be needed to create statistical analyses, such as
NumPy, pytz, and more. We will use those packages when they are needed for the code
we will work with and when learning what the libraries help us do, such as organizing data
with pandas, for example.

284 Using Computational Thinking and Python in Statistical Analysis

In this chapter, we will cover the following topics:

• Defining the problem and Python data selection

• Preprocessing data

• Processing, analyzing, and summarizing data using visualizations

By the end of this chapter, you will be able to design algorithms that best fit the scenarios
you are presented with. You will also be able to identify Python functions that best align
with the problems presented and generalize your solutions.

Technical requirements
You will need the latest version of Python for running the code in this chapter.

You will need to have the pandas, NumPy, SciPy, and Scikit-Learn packages installed for
the problems in this chapter.

You can find the full source used in this chapter here: https://github.com/
PacktPublishing/Applied-Computational-Thinking-with-Python/
tree/master/Chapter14

Defining the problem and Python data
selection
Before we look at the pandas library, let's define what data analysis is. When we talk about
data analysis, we are talking about the process of inspecting, cleansing, transforming,
and modeling data with the intent of discovering useful data, notifying conclusions, and
supporting decision-making. Decision-making is critical. We don't just want to see what
the data says has happened in the past. We want to use data in order to make informed
decisions for the future.

Take a look at some of the uses of data analysis:

• Business: It helps when making decisions based on customer trends and behavior
prediction, increasing business productivity, and driving effective decision-making.

• Weather forecasting: Data about the atmosphere (temperature, humidity, wind, and
more) is collected and analyzed to understand atmospheric processes (meteorology)
to determine how the atmosphere will evolve in the future.

https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter14

Defining the problem and Python data selection 285

• Transportation: Data can be used to determine trends, including traffic, accidents,
and more, helping us make decisions about traffic patterns, traffic light durations,
and much more.

The aforementioned uses are only some of the possible applications, of course. Data
analytics is used for a very wide range of things, and by businesses and educational
organizations to make critical decisions, provide resources to the community, fund our
schools and colleges, and so much more.

So, let's take a look at what tools we have available to analyze that data. One of the main
libraries used in data analysis in Python is the pandas package. The greatness of pandas
lies in its ease of use, easy data structure, and high performance. Using pandas simplifies
our work in data analysis.

Defining pandas
One thing that's important to note is that pandas is built on top of NumPy. NumPy is
a package that helps us work with arrays. Python doesn't have arrays per se, so the
packages allow us to create them, use them, and then build upon that capability.

Pandas provides a flexible and easy data structure to simplify your work in data analysis.
It is a great tool for big data. When we talk about big data, we're talking about structured
and unstructured datasets that are analyzed so that we can get better insights and aid
in decision making or strategies for businesses and organizations. pandas can handle
importing different formats, such as .csv files, SQL, and JSON, as well as all sorts of
manipulation, such as selecting data, merging, reshaping, and cleaning the data.

There are two different ways to store data in pandas—series and DataFrames:

• Series are one-dimensional arrays that hold any data type (integer, string, or float);
series represent one column of data.

• DataFrames are two-dimensional objects that can have multiple columns and data
types. They take inputs such as dictionaries, series, lists, and other DataFrames.

Let's now learn when to use pandas.

286 Using Computational Thinking and Python in Statistical Analysis

Determining when to use pandas
Pandas is extremely useful in general, but it is really a great tool when we are looking at
large data and working with comma-separated values (CSV) files. These files are stored
as tables, such as spreadsheets. The other thing is that we can establish chunks in pandas.
Yes, there's a chunksize parameter in pandas that helps us break down our data. Let's
say we have 5,000,000 rows. We can decide to use chunksize to break that down by
1,000,000 rows.

In addition, we sometimes have massive data files but only want to look at some of the
components. Pandas allows us to identify the columns we want to include and those we
want to ignore.

Working with pandas series
As mentioned in the previous section—Defining pandas—series are one-dimensional.
We can create an empty pandas series using some simple code. Note that we are importing
the pandas library first, as is usual when working with packages and libraries, as follows:

import pandas as pd

demo_series = pd.Series()

print(demo_series)

The default series created will have a type of float because we didn't establish any other
type in our algorithm. However, the console prints a warning that in the future, empty
series dtypes will be set as an object rather than float. dtype stands for data type; in
this case, it's a float. Take a look at the following screenshot, which shows the output when
we run our algorithm:

Figure 14.1 – Output when creating empty series in pandas without identifying dtype

As you can see, there really isn't an error, just a warning about how the data was stored.

Now, let's create a series with defined elements. To do that, we'll need to import both
pandas and numpy so that we can create the arrays and then the series. Take a look at the
following snippet of code:

ch14_seriesDemo.py

import pandas as pd

Defining the problem and Python data selection 287

import numpy as np

dataset = np.array(['yellow', 'green', 'blue', 'violet',
'red'])

data_series = pd.Series(dataset)

print(data_series)

As you can see from the preceding code, we stored our array using numpy, then created
a series using that array. Finally, we printed the series. The output is a table, as follows:

0 yellow

1 green

2 blue

3 violet

4 red

dtype: object

We can also get the exact same thing if we created a list first. Take a look at this snippet
of code:

ch14_seriesDemo2.py

import pandas as pd

import numpy as np

myList = ['yellow', 'green', 'blue', 'violet', 'red']

data_series = pd.Series(myList)

print(data_series)

Notice that we created the series directly from the list. We're not going to show the output
for this particular snippet of code because it's exactly the same as the previous snippet's
output.

We can also get a series from a dictionary. Let's take a look at that in the following snippet
of code:

ch14_seriesDemo3.py

import pandas as pd

myDictionary = {

 'Name' : 'Miguel',

 'Number' : 42,

288 Using Computational Thinking and Python in Statistical Analysis

 'Age' : 'unknown'

 }

mySeries = pd.Series(myDictionary)

print(mySeries)

The preceding code is just a demo, but we do get a table series that contains the values
of our dictionary when we run the algorithm. Let's take a look at that output:

Name Miguel

Number 42

Age unknown

dtype: object

As you can see, we have the two columns based on the key-value pairs, and the type,
which is object. One thing that will become important is that series don't have column
titles. For that, we'll need to use DataFrames.

What if we want to access a specific element in a series? Well, to access the first element,
let's use the following snippet of code:

ch14_demo4.py

import pandas as pd

myDictionary = {

 'Name' : 'Miguel',

 'Number' : 42,

 'Age' : 'unknown'

 }

mySeries = pd.Series(myDictionary)

print(mySeries[0])

The output of the preceding code is simply Miguel. That's because we used index 0
to identify what we wanted from that dictionary, so it'll give us the value for the first
key-value pair. If we wanted the value pairs for the first two key-value pair elements,
we'd replace (mySeries[0]) with (mySeries[:2]). Then, the output would be
as follows:

Name Miguel

Number 42

dtype: object

Defining the problem and Python data selection 289

There are many other things that can be done with series, so play around with the indexes
and creating different types of series using lists, dictionaries, or NumPy arrays. For now,
let's move on to DataFrames.

Working with pandas DataFrames
Now, let's take a look at how we work with DataFrames. First, let's take a look at a .csv
file with pandas. We're going to use the demo.csv file in the snippet of code that follows.
Please replace the location of the file to match the location where you have saved the file,
which can be found in the GitHub repository:

ch14_csvDemo.py

import pandas as pd

data_set = pd.read_csv('C:\\...\\demo.csv')

data_set.head()

The preceding code does three things. It imports the pandas package so that we can
use the data capabilities we need, it tells the program to open the data file we'll be working
with, and then it gives us the first few rows of data in the file so that we can see what
we're working with. The following screenshot shows the result, or output, from the
preceding code:

Figure 14.2 – Output showing the first few rows of the dataset

As you can see from the preceding screenshot, the table does not show all the values
included in our file. While our file is not full of big data, it does include more rows of
information. This is just a way for us to get a preview of our data.

But this is a clean dataset. What happens if we have a dataset with rows or columns that
are missing information? Well, pandas allows us to work with the file to prepare it for us.
DataFrames also prepare our data so that we can create visual representations. These
visuals, or plots, will allow us to see trends, make predictions, determine what values
we can use for training, and much more. The DataFrame is really just the backbone of
everything else we can then do with a dataset.

290 Using Computational Thinking and Python in Statistical Analysis

In this section, we learned about problems, how to work with pandas, and some of the
capabilities of pandas series and DataFrames.

As a note, for the rest of this chapter, we'll be a lot more focused on DataFrames than
series. But before we get into an application, let's take a look at how we can avoid errors
and pitfalls by preprocessing our DataFrame.

Preprocessing data
Preprocessing data is a technique that transforms raw data into a useable and efficient
format. It is, in fact, the most important step in the data mining and machine learning
process.

When we are preprocessing data, we are really cleaning it, transforming it, or doing a data
reduction. In this section, we will take a look at what these all mean.

Data cleaning
Data cleaning refers to the process of making our dataset more efficient. If we go through
data cleaning in really large datasets, we can expedite the algorithm, avoid errors, and get
better results. There are two things we deal with when data cleaning:

• Missing data: This can be fixed by ignoring the data or manually entering a value
for the missing data.

• Noisy data: This can be fixed/improved by using binning, regression, or clustering,
among other processes.

We're going to look at each of these things in more detail.

Working with missing data
Let's take a look at how we deal with missing data. First, we're going to learn how to
ignore missing data. We can use pandas to find rows with missing values. When we do
that, we're cleaning our dataset. Now, we're not going to go through every method we can
use, just one where we get rid of rows with missing values. As always, the dataset used is
available in our GitHub repository and you'll need to update your file location. Let's look
at the following code snippet:

ch14_cleaningDemo1.py

import pandas as pd

myData = pd.read_csv('C:\\...\\demo_missing.csv')

Preprocessing data 291

print(myData)

cleanData = myData.dropna(axis = 0, how = 'any')

print(cleanData)

In the preceding code, the first print statement is for our own sake so that we can see
what our dataset looks like. You'll never want to do that with huge files! The following
screenshot shows the first print output:

Figure 14.3 – First print statement, the original dataset

Notice that the 1, Blue column has a value of NaN under Countries and the next column
(2, Yellow) has a missing value under the Numbers column. When we use dropna(),
the algorithm will drop the rows with missing values. The following screenshot shows the
printed statement with the altered dataset:

Figure 14.4 – Printed clean dataset

As you can see from the preceding screenshot, the two rows that were missing values
were eliminated in our new dataset. Now, we could run whatever analysis we wanted to
for this data.

292 Using Computational Thinking and Python in Statistical Analysis

If you wanted to check only one column to verify whether missing values exist, you could
use the following code snippet:

ch14_cleaningDemo2.py

import pandas as pd

myData = pd.read_csv('C:\\...\\demo_missing.csv')

print(pd.isna(myData['Countries']))

Notice in the preceding algorithm that we used the Countries column heading to verify
that particular column. When we run the algorithm, here's what our output looks like:

0 False

1 True

2 False

3 False

4 False

5 False

6 False

7 False

8 False

9 False

Name: Countries, dtype: bool

As you can see, the second row in our dataset has a missing value in the Countries
column.

While we're not going to go into every method, you can also remove columns. You can
choose to remove rows and/or columns with a certain number of missing values. For
example, you could choose to remove only rows or columns that have more than two
missing values. If you did that, you'd still need to worry about the values that may still be
missing in columns or rows that were not removed because there was only one missing
value. For those, you may choose to replace the missing values with something.

Preprocessing data 293

Let's say you want to replace a value given the column. To do so, let's take a look at the
following code snippet:

ch14_cleaningDemo3.py

import pandas as pd

myData = pd.read_csv('C:\\...\\demo_missing.csv')

print(myData.fillna(0))

From the preceding code, notice that we are filling each empty cell with the value 0. When
we run the algorithm, we get the following output:

Figure 14.5 – Replaced missing values

Notice the highlighted values in the preceding screenshot. Those are the values replaced
by our algorithm. Now, let's take a look at how we deal with noisy data.

Working with noisy data
First, let's define what we mean by noisy data. When we have a really large amount of data
and some of it is not useful for our analysis, we say it is noisy data. Noisy data is also used
to refer to data corruption. Really, it's just useless data.

Three of the ways that we deal with noisy data are binning, regression, and clustering:

• Binning uses neighboring data to smoothen a sorted data value. The sorted values
go in bins, which are groups created within the algorithm.

• The clustering method identifies and removes outliers in a dataset.

• The regression method smoothens data by fitting it into regression functions.

The purpose of binning is to reduce some errors. In binning, data is divided into small
buckets or bins. The data is then replaced with a calculated bin value. When we go
through the binning process, we are smoothing the data.

294 Using Computational Thinking and Python in Statistical Analysis

Here's an example with a simple, numerical dataset in the algorithm. The following
snippet of code will create bins with equal frequency:

ch14_binning1.py

#Binning with equal frequency

def equal_frequency(array1, m):

 l = len(array1)

 n = int(l / m)

 for i in range(0, m):

 array = []

 for j in range(i * n, (i + 1) * n):

 if j >= l:

 break

 array = array + [array1[j]]

 print(array)

#Input dataset

dataset = [3, 6, 7, 9, 11, 14, 10, 15, 19, 35, 38, 45, 48, 49,
76]

#Input number of bins

m = 5

print("Equal Frequency Binning: ")

equal_frequency(dataset, m)

When looking at the preceding code, you can see that the number of bins is defined as 5,
so the data will be binned into five lists. Binning really is a way to group information.
We tell the algorithm we want to do it and how many bins we want, and it provides the
data in those bins, or groups. In this case, we get those five lists. Take a look at the output:

Equal Frequency Binning:

[3, 6, 7]

[9, 11, 14]

[10, 15, 19]

[35, 38, 45]

[48, 49, 76]

Preprocessing data 295

As you can see, the algorithm created five bins with three values in each of the bins.

Important Note:
Note that the binning process doesn't organize our data for us. So, if we
reordered our values, they would still be binned in the order that the data was
entered.

Now, let's take a look at a binning algorithm that uses equal width:

ch14_binning2.py

#Binning with equal width

def equal_width(array1, m):

 w = int((max(array1) - min(array1)) / m)

 min1 = min(array1)

 array = []

 for i in range(0, m + 1):

 array = array + [min1 + w * i]

 arrayi=[]

 for i in range(0, m):

 result = []

 for j in array1:

 if j >= array[i] and j <= array[i+1]:

 result += [j]

 arrayi += [result]

 print(arrayi)

#Input dataset

dataset = [3, 6, 7, 9, 11, 14, 10, 15, 19, 35, 38, 45, 48, 49,
76, 81, 208, 221]

#Input number of bins

m = 3

print("\nEqual Width Binning:")

equal_width(dataset, m)

296 Using Computational Thinking and Python in Statistical Analysis

The preceding snippet of code breaks down our data into three bins. The goal of equal
width binning is to divide the dataset into bins of equal size, which in the case of equal
width binning means equal range. The data will be split, but it is important to note that
we're talking about range here, so the bins won't have the same number of elements in
each of them for this particular dataset. The output for the preceding snippet of code is
as follows:

Equal Width Binning:

[[3, 6, 7, 9, 11, 14, 10, 15, 19, 35, 38, 45, 48, 49], [76,
81], [208]]

As you can see, the binning produces an output that doesn't look quite as clean as the
equal frequency output, but is actually more popular.

Now, let's talk about transforming data.

Transforming data
Pandas allows us to transform data. Here are some of the ways that we can transform it:

• Normalization transforms values into new range; the most popular is min-max
normalization, given as follows:

• Attribute selection is the process of transforming data by replacing an attribute
with a different attribute or attributes.

• Concept hierarchy is actually a transformation done by reducing data. It is done
by replacing concepts such as numbers (10, 15, 40) with higher-level concepts, such
as qualifiers (short, lengthy, extremely lengthy).

In the next section, we will glance through the reduction of data.

Reducing data
Data reduction refers to a process that allows us to get similar or even the same results
from a dataset but only after having reduced the representation of the data in volume.

𝑥𝑥scaled =
𝑥𝑥 −min(𝑥𝑥)

max(𝑥𝑥) − min(𝑥𝑥)

Processing, analyzing, and summarizing data using visualizations 297

We won't go into too much depth with all the concepts here because they are much easier
to look at in examples, but here are some of the ways that data reduction is done:

• Removing invalid data from the dataset

• Creating summaries for the data at different levels

Think of removing invalid data as taking care of any outliers. The data may have been
entered incorrectly, conditions may have not been optimal, or similar. When we have
a data point that doesn't fit the entirety of the dataset, especially where we have a large
number of data points to compare it to, we can remove that data point as invalid or as
an outlier.

When creating summaries at different levels, we are aggregating the dataset and testing
and producing summaries at each of those levels. Say you had 100 data points (datasets
will often be in the thousands, but it's easier to explain with smaller numbers). We could
create a summary for the first 20 data points. Then, we could do the same for the first
40, then the first 60, and so on. When compared, we could see the trends and use those
smaller sub-sections of our dataset to make our predictions if the trends hold true. That's
what data reduction helps with, simplifying our dataset while still getting accurate results.

In this section, we learned how to work with data that needs to be cleaned. We learned
some of the ways that we can clean data, such as eliminating missing data or replacing
missing points. We also learned about noisy data and how to address problems with noisy
data in our datasets. Finally, we learned about data reduction and how we can get accurate
results by removing invalid data and creating aggregate summaries of our data.

This is just an introduction to the types of things we do when we're working with data.
So, let's look at an example so that we can put some of this into context.

Processing, analyzing, and summarizing data
using visualizations
We're working in real estate now, and since we want to do well, we really want to
build an algorithm that helps us analyze data and predict housing prices. But let's think
about that for a second. We can define that problem very broadly or narrowly. We can
do a pricing analysis for all houses in a state or houses with three bedrooms or more in
a neighborhood. Does performing the analysis matter? Maybe. But isn't that why we want
to look at this problem?

Let's take a look at how we can process the data first.

298 Using Computational Thinking and Python in Statistical Analysis

Processing data
Let's start by gathering some data. For this problem, we're using the
kv_house_data.csv dataset, which is available in our GitHub repository.
To look at this dataset, we'll need quite a few libraries. We've been talking about
pandas mostly, yes, but we want to also do visualizations and perform some analysis,
so we'll need Seaborn, SciPy, and Scikit-Learn. The full algorithm can be found in the
ch14_housePrice_prediction.py file. We'll look at it in snippets to discuss what
we're doing along the way:

ch14_housePrice_prediction.py

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

So, what are all these libraries? Pandas we know about. We're using that for organizing
our data. NumPy helps us with the arrays. Seaborn and Matplotlib are both used for
visualizations. If we were taking this further to create models by training using the dataset,
we'd also need Scikit-Learn. For this example, we're going to stick with some of the plots
we can get before training.

Now, let's import our dataset. Remember from Chapter 12, Using Python in Experimental
and Data Analysis Problems, that you can set the directory of your file directly. You can
also provide the entire path to the data file, as we have done previously in this chapter,
such as in the cleaning demo. You can use os.chdir() to establish the directory, adding
the location of your file in parentheses, then use the following code snippet to read the
.csv file:

housing_data= pd.read_csv("kc_house_data.csv")

We are using a pandas function here. See that pd.read_csv()? That pd is pandas, since
we imported pandas as pd, and read_csv() is the function that allows the algorithm to
get the information in the file.

If you forget to enter your directory or include the wrong location for it, you will receive
an error code, as seen in the following screenshot:

Figure 14.6 – Path to file error

Processing, analyzing, and summarizing data using visualizations 299

As you can see, Python will make sure you know that you've made a mistake. That can get
aggravating at times, but it is certainly helpful.

Now that we have our data, we'll need to check it and clean it. This is where all the content
we shared previously in the chapter comes into play. Let's see what that looks like in
practice.

Analyzing and summarizing data
Now, there's something we haven't really talked about much, and that's Python's variable
explorer. More specifically, it's Spyder's Python variable explorer. Spyder is an integrated
environment and is free of charge. It works with Python, running Python as usual, but
also provides us with better editing tools. The following screenshot shows how it should
look when you import your dataset from the variable explorer in Python. When we run
the ch14_housePrice_prediction.py Python algorithm in Spyder, we can see our
variables in the variable explorer. The following screenshot shows the data we get from the
variable explorer when we run this algorithm:

Figure 14.7 – Variable explorer view in Spyder

When we are dealing with a lot of data and larger algorithms, this tool becomes really
critical. We can get a lot of information from just this tool. For example, let's look at the
housing_data variable. In Figure 14.7, you can see that the type for this variable in our
algorithm is DataFrame with a size of (21613, 21).

300 Using Computational Thinking and Python in Statistical Analysis

If you double-click on the variable in the variable explorer, you get what's shown in the
following screenshot (please note that the screenshot may look different depending on the
environment you are using. When running this code using environments such as Spyder
or Jupyter, depending on your theme settings and choices, the table may look different,
with different color schemes or no color schemes):

Figure 14.8 – DataFrame variable view in Spyder

This is only one way to get some of the information for our DataFrame. Spyder allows us
to resize the window as well, so we can take a look at more columns, scroll through them
to find values, and so on. It's not that easy if we're in the Python console. You can get the
information, just not as easily.

Here's the code that can give us some of the information:

housing_data.head()

The preceding code will show us the first five rows of our dataset. Take a look at the
following screenshot; we have ellipses (…) between price and long. That's because Python
wants to let us know that there are additional columns between those two:

Figure 14.9 – First few rows of the DataFrame

Processing, analyzing, and summarizing data using visualizations 301

As you can see, the rows help us see what our dataset looks like, but nothing else. So, we
can also take a look at the size of our DataFrame by using the following code:

housing_data.shape

When we run the preceding code, we get the following output:

(21613, 21)

As you can see, now we have the shape or size of our DataFrame. What does it mean? It
means we have 21,613 rows of data in 21 columns. Regardless of whether you were in
Spyder, the Python console, or another environment of your choice, you can see that your
data was successfully imported.

Now that we have the raw data imported, let's see whether we can get more information.
We can use the following code to get a summary:

housing_data.describe()

The describe() function generates a summary that includes details such as the mean,
standard deviation, and percentile. This percentile is a part of your five-number summary
for datasets, used to create boxplots. While we won't create a boxplot in this problem, that
visual representation can be helpful depending on our goals for our algorithms. Take a
look at the following screenshot for the results of using the describe() function:

Figure 14.10 – Using the describe() function

Now, we should note that the function analyzes numeric values from the DataFrame.
It excludes NaN values. NaN stands for Not a Number values in Python and represents
any value that is undefined or unrepresentable. NaN can also represent missing numbers.
We talked about those missing numbers earlier in the Working with missing data section
and some of the ways we could tackle them. Let's look at that in context now. We want to
find our missing values. For that, we can run the following code snippet:

housing_data.isnull().sum()

302 Using Computational Thinking and Python in Statistical Analysis

The preceding snippet will let us know if there are missing data points in each of the
columns in our dataset. Then, it will aggregate the values as a sum. So, if we had two
missing values under the date column, we'd expect to see a 2 there. Our results can be
seen in the following screenshot:

Figure 14.11 – Results from running the isnull() and .sum() functions

We don't have to clean this dataset! That's a clean dataset. However, learning how to
identify whether or not we would need to do so is really important. Now that we know
that we have a clean dataset, we can start working on building some visualizations.

Using data visualization
Remember that this is still part of our initial algorithm file,
ch15_housePrice_prediction.py. If you open that file, the code that
follows starts at line 25. We have added comments for descriptions between the
lines of code:

names=['price','bedrooms','bathrooms','sqft_living','sqft_
lot','floors','waterfront','view','condition','grade','sqft_
above','sqft_basement','zipcode','lat','long']

df=housing_data[names]

Processing, analyzing, and summarizing data using visualizations 303

The first thing we're doing is identifying the columns that we'll be using for our plot. After
we do that, we'll make a DataFrame and save it as df:

correlations= df.corr()

The preceding code snippet creates the correlations for our DataFrame. In the next code
snippet from the file, we'll create our figure; that is, we'll work on the data visualization:

fig=plt.figure()

ax=fig.add_subplot(111)

cax=ax.matshow(correlations,vmin=-1,vmax=1)

fig.colorbar(cax)

In the preceding code, we named our figure, added the subplot, and identified our colors.
Next, we'll have to set some of our properties, such as tick marks, the distance between
tick marks, and labels for axes and tick marks:

ticks=np.arange(0,15,1)

ax.set_xticks(ticks)

ax.set_yticks(ticks)

ax.set_xticklabels(names, rotation =' 90')

ax.set_yticklabels(names)

After we've set some of the properties, we can ask for the plot to use tight_layout().
This will help us see all the details of the plot and labels. If we do not use tight_
layout(), we'll sometimes have some labels that will not be visible in our graphs:

plt.tight_layout()

plt.savefig('Correlation_graph.png',dpi = 300)

plt.show()

304 Using Computational Thinking and Python in Statistical Analysis

In the preceding snippet, we also created a save file and defined the figure's size. Finally,
we asked the algorithm to show us the correlations. The following screenshot shows us the
result of the preceding code:

Figure 14.12 – Correlations plot for housing data

As you can see, we just created a correlation matrix using Python. And it's a pretty great
matrix. But what is a correlation matrix? A correlation matrix looks at all the values in our
DataFrame and then calculates how closely they are correlated, giving a value between
-1 and 1. The closer the value is to 1, the more correlated the values are. Each value is
compared to itself, which is a perfect correlation, of course, and seen as the diagonal in
our matrix.

Processing, analyzing, and summarizing data using visualizations 305

The rest of the graph, where all the values are compared to each other, has to be looked at
more closely. The closer to the yellow color, the closer the values are correlated. So, take
a look at the y-axis sqft_above value and the corresponding value for sqft_living on the
x axis. That value is close to the yellow value of 1, but not quite. We've highlighted those
values in the following screenshot:

Figure 14.13 – Highlighted correlation of sqft_above and sqft_living

There are other values that show some correlation, but not quite strong enough. This plot
helps us then make decisions to maybe take a closer look at that correlation, find more
information about it, and so on.

306 Using Computational Thinking and Python in Statistical Analysis

Now, we can also take a look at a pretty intense plot matrix that's called pair plotting. A
pairs plot shows us the distribution of single variables and the relationships between two
variables. If we ran a pairs plot for the data that is included in our algorithm, we get a
massive graph, as shown in the following screenshot (please note that this plot can take up
to a few minutes to generate because of the amount of data being analyzed and plotted):

Figure 14.14 – Full DataFrame pairs plot

As you can see, this is a fairly intense, hard-to-read, almost-impossible-to-analyze
graph. You'd have to zoom in to each of the paired figures to make some determinations.
It should also be mentioned that it takes time for the algorithm to run and produce this
graphic. It takes some processing power to create something so complex from such a large
dataset!

Processing, analyzing, and summarizing data using visualizations 307

Do we ever want to see a big plot of graphs such as this one? Actually, yes. If we have
a dataset with fewer variables, absolutely! We can also make this more friendly by using
other color schemes, for example. This may make identifying trends easier. But let's be
clear; this isn't very helpful. What we can do is create a pairs plot of some of the variables
we may be interested in. Remember we talked about sqft_living and sqft_above
possibly having a strong positive correlation? We also really do want to compare things
to pricing, right? So, let's create a pairs plot using just sqft_living, pricing, and
sqft_above. Take a look at the relevant code snippet from our file:

coln = ['price','sqft_living','sqft_lot']

sns.pairplot(housing_data[coln], height = 3);

plt.savefig('pairplotting.png',dpi =300)

plt.show()

Now, when we run this part of the algorithm, we get the graph shown in the following
screenshot. This graph provides the correlations for these three values and we can
definitely see some positive correlations happening:

Figure 14.15 – Pairs plot of price, sqft_living, and sqft_above

308 Using Computational Thinking and Python in Statistical Analysis

Notice in particular the graphs that pair sqft_living and sqft_above. The relationship
between those two is fairly linear and positive. This confirms what we observed from
Figure 14.13, where the correlation was closer to 1 than the other variables.

But it would also help to analyze another three variables so that we can see what happens
when the correlation is not strong. We'll keep price and sqft_living so that we are
only changing one of the variables for comparison purposes. Looking at Figure 14.12,
sqft_living and zipcode don't seem to have a strong positive correlation at all. So, let's run
the algorithm again, swapping zipcode with sqft_above. Let's take a look at the result
shown in the following screenshot:

Figure 14.16 – Pairs plot of price, sqft_living, and zipcode

As you can see, sqft_living and zipcode show no correlation at all. They look more like
bar graphs, with no diagonal in sight. Before we move on from these plots, it's worth
mentioning that these pairs plots only provide scatterplots for the compared variables and
histograms for each of the variables in the plots. If we wanted to go deeper, we could look
at other visualization tools, such as those in Seaborn.

Summary 309

We're pausing this analysis here. We've used visualization to understand where our data
has correlations. If we were to take this problem further, we could use the data to create
training models and help us in predictions. Even with the data we have from the graphics,
we can see our correlations and make predictions using that. If we had sqft_living,
we could predict sqft_above, for example, because of their strong correlation.

Python allows us to look at data in a wide variety of ways. That's one of the great assets of
a tool such as this one.

Summary
In this chapter, we've learned about how to work with data in Python and tackled a
housing dataset using some of the concepts we learned about in the chapter. We learned
about the pandas package and how it helps us organize and prepare data. We also learned
about the need to preprocess datasets, especially in very large datasets. We worked
through missing and noisy data, as well as data transformation and the reduction of data.
We also learned how to use visualization, creating plots for our datasets that can aid us in
identifying correlations and trends.

The topics in this chapter are pretty broad, with entire books written about them. But we
felt it important to share some of the capabilities of the Python programming language
before moving on to the next two chapters of the book.

In the next chapters, we will focus entirely on applications, using problem scenarios
and topics to share some exciting applications of Python and computational thinking in
designing algorithms.

15
Applied

Computational
Thinking Problems

In this chapter, we will be providing examples in multiple areas for applications of the
Python programming language and computational thinking. We will be exploring
multiple areas, such as humanities, linguistics, cryptography, and more. We will use
what we've learned so far about computational thinking and the Python programming
language to do the following:

• Analyze historical speeches

• Write stories

• Calculate text readability

• Find the most efficient route

• Implement cryptography

• Implement cybersecurity

• Create a chatbot

312 Applied Computational Thinking Problems

This chapter is unlike the others, as we will be focused exclusively on presenting the
problems and providing algorithmic solutions after evaluating each scenario.

Technical requirements
You will need the latest version of Python installed to run the code in this chapter.

You will need the following libraries and packages installed for Python:

• NLTK

• Cairos

• Pandas

• Matplotlib

• Seaborn

You can find the full source code used in this chapter here: https://github.com/
PacktPublishing/Applied-Computational-Thinking-with-Python/
tree/master/Chapter15

Problem 1 – Using Python to analyze historical
speeches
History is quite fascinating, and there are many reasons why we would look at writing
algorithms to evaluate historical data and contexts.

For this problem, we want to analyze some historical text. In particular, we are going
to take a look at Abraham Lincoln's second inaugural speech. Our goal is to find
some frequencies of words. There are many reasons why we'd want to perform some
straightforward text analysis, especially for historical texts. We may want to compare
them, understand underlying themes, and so on.

For our algorithm, we are going to use a fairly simple design using the nltk package.
Because the installation of some of the components is a bit different to what we've done
so far, we'll provide some information in case your packages have not been installed.

In the Python shell, if you are in the active console, create a new file and import nltk
after installing the main package (using pip install nltk).

https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter15

Problem 1 – Using Python to analyze historical speeches 313

Please note you should not be in the active Shell window. If you see >>> at the beginning
of the line, click the File | New File option and then enter the following code instruction
line for your empty shell:

import nltk

nltk.download()

Notice from the preceding code that you'll also open the downloader in nltk. The
preceding code will bring up a window as shown in the following screenshot (please note
that the nltk library takes approximately 7 MB of memory, while installing the additional
packages will require memory as well, with each ranging from a few KB to 14 to 15 MB):

Figure 15.1 – NLTK Downloader

As you can see, my packages are all installed. If yours are not, select all, and then click the
Download button at the bottom left-hand corner of that window. Once the packages are
installed, you can close the window.

314 Applied Computational Thinking Problems

Because our problem is fairly simple, we'll skip much of the computational thinking
process for this particular section. We are only trying to get frequencies of words used
in the speech. So let's dive directly into the algorithm and see how we'll use the nltk
package to get what we need, including a visual representation of the data:

1. First, we'll need to import nltk and the word_tokenize function. The
word_tokenize function allows us to divide the speech into individual words
and/or punctuation marks. We'll need the speech text. In this case, the speech is
copied into the algorithm. You could potentially import the file into the algorithm
and do it that way.

The sent_tokenize function is short for sentence tokenization. In the same
way as word tokenization breaks down the text by words and punctuation marks,
the sentence tokenization function allows breaking the text into full sentences.
The output would contain sentences in a list separated by commas.

Important Note:
It is important to know that all quotation marks have been escaped using \'
or \", respectively, in order to maintain the original text without creating an
error in our code.

The following algorithm contains everything we need in order to do the analysis
of Abraham Lincoln's second inaugural speech:

ch15_historicalTextAnalysis.py
import nltk

from nltk.tokenize import sent_tokenize, word_tokenize

The entire text of the speech is contained in the GitHub repository file. For length
purposes, we've only included half of that text here. Please note that the output
we'll share after the algorithm and explanations will correspond to the truncated
speech, but the visual plot will include the data from the entire speech. The […],
seen in the following code at the end of the text definition, is simply used to show
that there is additional text that goes there:

text = 'Fellow-Countrymen: At this second appearing
to take the oath of the Presidential office there is
less occasion for an extended address than there was
at the first. Then a statement somewhat in detail of a
course to be pursued seemed fitting and proper. Now,
at the expiration of four years, during which public
declarations have been constantly called forth on every

Problem 1 – Using Python to analyze historical speeches 315

point and phase of the great contest which still absorbs
the attention and engrosses the energies of the nation,
little that is new could be presented. The progress
of our arms, upon which all else chiefly depends, is
as well known to the public as to myself, and it is, I
trust, reasonably satisfactory and encouraging to all.
With high hope for the future, no prediction in regard
to it is ventured. On the occasion corresponding to this
four years ago all thoughts were anxiously directed to
an impending civil war. All dreaded it, all sought to
avert it. While the inaugural address was being delivered
from this place, devoted altogether to saving the Union
without war, urgent agents were in the city seeking to
destroy it without war—seeking to dissolve the Union and
divide effects by negotiation. Both parties deprecated
war, but one of them would make war rather than let the
nation survive, and the other would accept war rather
than let it perish, and the war came. One-eighth of the
whole population were colored slaves, not distributed
generally over the Union, but localized in the southern
part of it. These slaves constituted a peculiar and
powerful interest. All knew that this interest was
somehow the cause of the war. To strengthen, perpetuate,
and extend this interest was the object for which the
insurgents would rend the Union even by war, while the
Government claimed no right to do more than to restrict
the territorial enlargement of it. Neither party expected
for the war the magnitude or the duration which it has
already attained. […]'

2. Now that we've defined the text that we want analyzed, as shown in the preceding
code snippet, we can tell the algorithm that we want to tokenize the text, that is,
we want it divided into words. The algorithm will print out a list that contains each
individual word or punctuation symbol separated by a comma, as shown in the
following code:

tokenized_word = word_tokenize(text)

print(tokenized_word)

316 Applied Computational Thinking Problems

3. After we have our list of words, we want to get the frequency distribution of the
words. To do so, we'll import the package from nltk.probability, as shown in
the following code snippet:

from nltk.probability import FreqDist

fdist = FreqDist(tokenized_word)

print(fdist)

fdist.most_common(2)

4. Once we have the distribution, we'll want a visual plot of this data, so we'll use
matplotlib to create our distribution plot, as shown in the following code
snippet:

import matplotlib.pyplot as plt

fdist.plot(30, cumulative = False)

plt.show()

That's the entire algorithm we'll need. When we run the algorithm, this is what our
output looks like:

['Fellow-Countrymen', ':', 'At', 'this', 'second',
'appearing', 'to', 'take', 'the', 'oath', 'of', 'the',
'Presidential', 'office', 'there', 'is', 'less',
'occasion', 'for', 'an', 'extended', 'address',
'than', 'there', 'was', 'at', 'the', 'first', '.',
'Then', 'a', 'statement', 'somewhat', 'in', 'detail',
'of', 'a', 'course', 'to', 'be', 'pursued', 'seemed',
'fitting', 'and', 'proper', '.', 'Now', ',', 'at',
'the', 'expiration', 'of', 'four', 'years', ',',
'during', 'which', 'public', 'declarations', 'have',
'been', 'constantly', 'called', 'forth', 'on', 'every',
'point', 'and', 'phase', 'of', 'the', 'great', 'contest',
'which', 'still', 'absorbs', 'the', 'attention', 'and',
'engrosses', 'the', 'energies', 'of', 'the', 'nation',
',', 'little', 'that', 'is', 'new', 'could', 'be',
'presented', '.', 'The', 'progress', 'of', 'our',
'arms', ',', 'upon', 'which', 'all', 'else', 'chiefly',
'depends', ',', 'is', 'as', 'well', 'known', 'to', 'the',
'public', 'as', 'to', 'myself', ',', 'and', 'it', 'is',
',', 'I', 'trust', ',', 'reasonably', 'satisfactory',
'and', 'encouraging', 'to', 'all', '.', 'With', 'high',
'hope', 'for', 'the', 'future', ',', 'no', 'prediction',
'in', 'regard', 'to', 'it', 'is', 'ventured', '.', 'On',
'the', 'occasion', 'corresponding', 'to', 'this', 'four',

Problem 1 – Using Python to analyze historical speeches 317

'years', 'ago', 'all', 'thoughts', 'were', 'anxiously',
'directed', 'to', 'an', 'impending', 'civil', 'war',
'.', 'All', 'dreaded', 'it', ',', 'all', 'sought',
'to', 'avert', 'it', '.', 'While', 'the', 'inaugural',
'address', 'was', 'being', 'delivered', 'from', 'this',
'place', ',', 'devoted', 'altogether', 'to', 'saving',
'the', 'Union', 'without', 'war', ',', 'urgent',
'agents', 'were', 'in', 'the', 'city', 'seeking',
'to', 'destroy', 'it', 'without', 'war—seeking',
'to', 'dissolve', 'the', 'Union', 'and', 'divide',
'effects', 'by', 'negotiation', '.', 'Both', 'parties',
'deprecated', 'war', ',', 'but', 'one', 'of', 'them',
'would', 'make', 'war', 'rather', 'than', 'let', 'the',
'nation', 'survive', ',', 'and', 'the', 'other', 'would',
'accept', 'war', 'rather', 'than', 'let', 'it', 'perish',
',', 'and', 'the', 'war', 'came', '.', 'One-eighth',
'of', 'the', 'whole', 'population', 'were', 'colored',
'slaves', ',', 'not', 'distributed', 'generally', 'over',
'the', 'Union', ',', 'but', 'localized', 'in', 'the',
'southern', 'part', 'of', 'it', '.', 'These', 'slaves',
'constituted', 'a', 'peculiar', 'and', 'powerful',
'interest', '.', 'All', 'knew', 'that', 'this',
'interest', 'was', 'somehow', 'the', 'cause', 'of',
'the', 'war', '.', 'To', 'strengthen', ',', 'perpetuate',
',', 'and', 'extend', 'this', 'interest', 'was', 'the',
'object', 'for', 'which', 'the', 'insurgents', 'would',
'rend', 'the', 'Union', 'even', 'by', 'war', ',',
'while', 'the', 'Government', 'claimed', 'no', 'right',
'to', 'do', 'more', 'than', 'to', 'restrict', 'the',
'territorial', 'enlargement', 'of', 'it', '.', 'Neither',
'party', 'expected', 'for', 'the', 'war', 'the',
'magnitude', 'or', 'the', 'duration', 'which', 'it',
'has', 'already', 'attained', '.']

5. Recall that word tokenization only included the truncated text. However,
the frequency information and the plot that follow are for the entire speech. The
ch15_historicalTextAnalysis.py GitHub file includes the full speech:

<FreqDist with 365 samples and 782 outcomes>

318 Applied Computational Thinking Problems

The following screenshot shows the frequency distribution visual plot for this
algorithm:

Figure 15.2 – Frequency distribution plot for Abraham Lincoln's second inaugural address

Once we have this information, we can start to look more closely at the words that
were used most frequently. When working with this kind of analysis, you may want
to consider removing some of the words, such as to, a, and the, as they would be
irrelevant to our analysis. However, words such as years and Union may be relevant
to our analysis.

There are many adjustments that can be made for this algorithm, but for now,
we've managed to at least get a frequency distribution plot for a historical speech. Now,
we'll move on to the next problem.

Problem 2 – Using Python to write stories
Let's look at a fairly simple problem. In this section, we want to create an algorithm
that produces a story based on input from a user. We can make this as simple as we want,
or add some options. But let's dig into what this is.

Problem 2 – Using Python to write stories 319

Defining, decomposing, and planning a story
First of all, what is it we're trying to create? Well, a story. Because of the nature of this
problem, we're going to start in reverse, with a sample of the output we want to achieve,
that is, a sample story. Let's take a look at a quick story generated by our algorithm before
we actually get into the algorithm:

There once was a citizen in the town of Narnia, whose name was
Malena. Malena loved to hang with their trusty dog, King Kong.

You could always see them strolling through the market in the
morning, wearing their favorite blue attire.

The preceding output was created by an algorithm that substituted names, locations,
time of day, pet, and pet name. It's a short story, but this is something that can be used in
much wider applications, such as using input to write social media posts, and filling in
information for things such as invitations, forms, and more.

So let's work backward a bit to write our algorithm. And why did I start at the end this
time? Well, in this case, we know what we want from the end result. You could write
your story. You could have an example of that wedding invitation template you need to
fill in, or the form. Now we have to figure out how to get the input and then output what
we wanted.

From the story shown, here are the things we can get original input for:

• Character name

• Town name

• Type of pet

• Name of pet

• Part of town visited

• Time of day

• Favorite color

When we write our algorithm, we'll need to get all the aforementioned inputs. Let's take
a look at the algorithm found in the ch15_storyTime.py file:

1. We will need inputs from the user, so we want to use a print statement and input
requests that include instructions for what is needed:

print('Help me write a story by answering some questions.
')

320 Applied Computational Thinking Problems

name = input('What name would you like to be known by? ')

location = input('What is your favorite city, real or
imaginary? ')

time = input('Is this happening in the morning or
afternoon? ')

color = input('What is your favorite color? ')

town_spot = input('Are you going to the market, the
library, or the park? ')

pet = input('What kind of pet would you like as your
companion? ')

pet_name = input('What is your pet\'s name? ')

The preceding code snippet grabs all the inputs from the user so we can write
our story.

2. Once we have those, we have to print our story. Notice that we wrote it in simple
terms, using %s so we could replace it with the corresponding inputs. We also used
backslashes so that we can see our code on multiple lines, rather than have it in one
long line:

print('There once was a citizen in the town of %s, whose
name was %s. %s loved to hang \

with their trusty %s, %s.' % (location, name, name, pet,
pet_name))

print('You could always see them strolling through the %s
\

in the %s, wearing their favorite %s attire.' % (town_
spot, time, color))

Let's run that code one more time and see what our story says now:
Help me write a story by answering some questions.

What name would you like to be known by? Azabache

What is your favorite city, real or imaginary? Rincon

Is this happening in the morning or afternoon? afternoon

What is your favorite color? magenta

Are you going to the market, the library, or the park?
library

What kind of pet would you like as your companion? dog

What is your pet's name? Luna

There once was a citizen in the town of Rincon, whose
name was Azabache. Azabache loved to hang with their

Problem 3 – Using Python to calculate text readability 321

trusty dog, Luna.

You could always see them strolling through the library
in the afternoon, wearing their favorite magenta attire.

Notice that details such as character and settings have changed. In an education
learning environment, such a simple algorithm can be a great tool for showing
students how to interact with stories and identify key information in them.

While this is a three-sentence story, these algorithms can be much more complex,
providing an opportunity to write fantastic original stories with user input. If you wanted
to try some of this out, you could even put conditions for which phrases you would use
based on some of the input, such as changing the sentences used based on the length of
the name entered, for example. Have some fun with the code and writing some stories!

Problem 3 – Using Python to calculate text
readability
In this section, we'll look at an application relating to linguistics, specifically the
readability level of any text. We will be using Martin Luther King's I Have a Dream speech
in the code snippets that follow. You can substitute this for any text file, so long as you
change the location of the file and filename to be accurately reflected in the code. The full
code can be found in the ch15_Readability.py file.

Before we get into the code, let's talk first about what we're looking for and why it's
important. Learning about the readability of texts can help us make decisions about
whether or not to include them in a presentation, a school grade level, and much more.
The Flesch-Kincaid score is used to determine readability and was developed in
the 1940s.

Rudolf Flesch created it when working as a consultant with the Associated Press in an
effort to improve the readability of newspapers. Originally called the Flesch Reading
Ease, it was modernized into what is currently used by the US Navy. Rather than getting
a score that then had to be converted into a grade level, the Flesch-Kincaid score now
provides a grade-level score.

While we won't be using the formula, it is important to know the background of what
we're using. The Flesch Reading Ease formula is given by the following:

206.835 − 1.015(total words
total sentences

) − 84.6 (total syllables
total words

)

322 Applied Computational Thinking Problems

The Flesch-Kincaid grade-level formula is given by the following:

The thing about the preceding formulas is that they exist in the readability package
available for Python. If we import the package, we are able to perform a readability
analysis with a fairly simple bit of code.

Let's take a look at the code we'll need in order to perform a readability analysis for the
Martin Luther King speech:

1. Firstly, remember to change the path for your file in the code and then import the
necessary packages for the code:

ch15_readability.py
from readability import Readability

text = open('C:\\...\\ch15_MLK-IHaveADream.txt')

text_up = text.read()

r = Readability(text_up)

flesch_kincaidR = r.flesch_kincaid()

From the preceding code, you'll see that we imported the readability package
into our program. If you need to install the library/package, you can use pip
install readability to do so.

Once we have the requisite libraries, we can open the file we want to analyze. We
also want to tell the algorithm to read the text, which I've called text_up here for
text upload, so I don't forget that I am reading an open file. This is the text we've
opened from the file location in the preceding code. Finally, we ask the program to
analyze the text using the Readability function. Notice that we saved that to r.

2. After we've done all of that, we can print our grade level with the following
code snippet:

print('The text has a grade '+ flesch_kincaidR.grade_
level + ' readability level.')

0.39 (total words
total sentences) + 11.8 (total syllables

total words) − 15.59

Problem 4 – Using Python to find most efficient route 323

When we run our algorithm, our output is fairly simple as well. Take a look at the
following output:

The text has a grade 9 readability level.

Now that you know how to verify the readability of any text, try to perform the analysis on
other types of texts, including poems, stories, speeches, songs, and more.

Problem 4 – Using Python to find most
efficient route
For this problem, when learning about algorithms, we will use a common algorithm—the
Travelling Salesman Problem (TSP). Let's set up the problem itself.

A salesman needs to travel to a set number of cities or locations. Let's say the salesman
has 10 locations to go to. They could go to those 10 locations in a lot of different orders.
Our goal with this algorithm is to create the best possible, most efficient route to hit
those locations.

Note that for this particular scenario, as we will do in the next problem, we'll employ
straightforward analysis by using the four elements of the computational thinking process.

Defining the problem (TSP)
This problem is a little more complex than how it appears initially. Think of it this
way. If we have 10 destinations and we are calculating round-trip permutations to
check the fastest routes, we're left with more than 300,000 possible permutations and
combinations. As a reminder, a permutation takes order into consideration, while
a combination does not.

For example, the numbers 3344 and 3434 are two different permutations. However, they
are only counted as one combination because the order of the numbers does not matter.

But back to our problem. All we need to know is that we want to create an algorithm that
will take us to our destinations in the most efficient way. We have to identify the cities to
be visited and identify the way we'll travel as follows:

• There are five cities in total, namely, New York (NYC), Philadelphia, Baltimore,
Chicago, and Cleveland.

• We will use one vehicle because we're using TSP instead of a vehicle routing
problem (VRP).

• The first city is 0, which is NYC. The distance between NYC and itself is 0.

324 Applied Computational Thinking Problems

Now let's look at the pattern.

Recognizing the pattern (TSP)
For each city, there will be a total of five distances, with the distance to itself equal to 0.
We are going to need an array, or lists, for all the distances for each city. We will need
to create a model in order to access the data in our algorithm. We'll look at that while
designing the algorithm. First, let's talk about generalizing the pattern a bit.

Generalizing (TSP)
For this particular problem, we'll enter the cities manually into the algorithm itself. One
thing you may want to consider is how to get input from a user in order to create the
arrays necessary with the distances.

You could also create a database for the distances between major cities that you can access
from a .csv file so that the data for cities that a person inputs can be found there, which
can then be added to our model. There are many additions to this particular algorithm
and this isn't a problem that can be solved in just one way. For now, we're going to stay
with a defined set of cities so that we can create our algorithm.

As an aside, we have referred to the source code from https://developers.
google.com/optimization/routing/tsp for this problem.

Designing the algorithm (TSP)
It's time to see what we've been talking about. Let's start with NYC and construct that
array first. The other arrays are created in the same way. All distances are in miles and
have been approximated and rounded based on Google Maps data, given as follows:

• Distance from NYC to NYC is 0.

• Distance from NYC to Philadelphia is 95.

• Distance from NYC to Baltimore is 192.

• Distance from NYC to Chicago is 789.

• Distance from NYC to Cleveland is 462.

https://developers.google.com/optimization/routing/tsp
https://developers.google.com/optimization/routing/tsp

Problem 4 – Using Python to find most efficient route 325

The following table shows the distances from each city to each other and itself:

Table 15.1 – Distances from one city to another

So, as you can in the preceding table, if we were to write these distances as an array,
we would use the following code:

[0, 95, 192, 789, 462]

For Philadelphia, we would have the following array:

[95, 0, 105, 759, 431]

For Baltimore, we would have the following array:

[192, 105, 0, 701, 374]

For Chicago, we would have the following array:

[789, 759, 701, 0, 344]

And finally, for Cleveland, we would have the following array:

[462, 431, 374, 344, 0]

Note that we will give indexes to each of the cities in order to identify them. NYC is
0, Philadelphia is 1, Baltimore is 2, Chicago is 3, and Cleveland is 4. Let's see what the
algorithm looks like for this problem (note that the OR-Tools library is used to optimize
vehicle routes, linear programming, constraint programming, and more):

1. First, let's start by importing the packages and libraries we'll need. The full file for
this algorithm is ch15_travel.py and available on GitHub:

from ortools.constraint_solver import routing_enums_pb2

from ortools.constraint_solver import pywrapcp

326 Applied Computational Thinking Problems

Remember that this algorithm would need to get a new distance matrix if you are
planning to visit more cities and/or different cities. That is the only piece of the code
you'd need to alter. The snippet of code that you will need to adjust each time is the
matrix under create_data_model(), as shown in the following code snippet:

#Create data model.

def create_data_model():

 data = {}

 data['distance_matrix'] = [

 [0, 95, 192, 789, 462],

 [95, 0, 105, 759, 431],

 [192, 105, 0, 701, 374],

 [789, 759, 701, 0, 344],

 [462, 431, 374, 344, 0],

]

 data['num_vehicles'] = 1

 data['depot'] = 0

 return data

2. After we've defined our data model, we'll need to print a solution. The following
function provides that information:

#Provide solution as output - print to console

def print_solution(manager, routing, solution):

 print('Objective: {} miles'.format(solution.
ObjectiveValue()))

 index = routing.Start(0)

 plan_output = 'Route for vehicle 0:\n'

 route_distance = 0

 while not routing.IsEnd(index):

 plan_output += ' {} ->'.format(manager.
IndexToNode(index))

 previous_index = index

 index = solution.Value(routing.NextVar(index))

 route_distance += routing.
GetArcCostForVehicle(previous_index, index, 0)

 plan_output += ' {}\n'.format(manager.
IndexToNode(index))

 print(plan_output)

Problem 4 – Using Python to find most efficient route 327

 plan_output += 'Route distance: {}miles\n'.
format(route_distance)

As you can see from the preceding code, we are creating a function so that we can
print the solutions based on our arrays and the distances in those arrays. Recall that
you will identify the point of origin, that is, the city you're leaving from. Then we
run the algorithm to gather the information and create our print statement.

3. Finally, we'll need to define our main() function in order to run our algorithm.
The main() function tells the algorithm to go ahead and create that data model
we had defined, and then store it as data. We then create the routing model to find
our solution. Take a look at the following code snippet:

def main():

 data = create_data_model()

 manager = pywrapcp.
RoutingIndexManager(len(data['distance_matrix']),

 data['num_
vehicles'], data['depot'])

 # Create Routing Model.

 routing = pywrapcp.RoutingModel(manager)

 def distance_callback(from_index, to_index):

 """Returns the distance between the two nodes."""

 # Convert from routing variable Index to distance
matrix NodeIndex.

 from_node = manager.IndexToNode(from_index)

 to_node = manager.IndexToNode(to_index)

 return data['distance_matrix'][from_node][to_
node]

 transit_callback_index = routing.
RegisterTransitCallback(distance_callback)

 routing.SetArcCostEvaluatorOfAllVehicles(transit_
callback_index)

 search_parameters = pywrapcp.
DefaultRoutingSearchParameters()

328 Applied Computational Thinking Problems

 search_parameters.first_solution_strategy = (

 routing_enums_pb2.FirstSolutionStrategy.PATH_
CHEAPEST_ARC)

 solution = routing.SolveWithParameters(search_
parameters)

 if solution:

 print_solution(manager, routing, solution)

if __name__ == '__main__':

 main()

The preceding code shows how we define our main() function. As a note,
a main() function can be named anything we want. When using multiple
functions, we sometimes use main() to identify the function that will be
outputting what we originally wanted from the algorithm. For this problem,
we're creating a main() function that will identify the best route for our travels.

4. Now let's take a look at what we get for our output when we run this code. The code
provides us with the Objective total of miles and the route we should take for the
trip. Here's the output:

Objective: 1707 miles

Route for vehicle 0:

 0 -> 1 -> 2 -> 4 -> 3 -> 0

As you can see, our trip from NYC and going back to NYC would be most efficient
if we followed the route in this order: NYC | Philadelphia | Baltimore | Cleveland |
Chicago | NYC.

This is not the only approach for the travel problem. It is also not necessarily the most
user-friendly approach if we wanted to run this multiple times a day, for example, for
different travelers. To do that, you'd want to automate a lot more of this, as mentioned
earlier in the example. Some things you might consider are as follows:

• Being able to input cities

• Having a calculator that grabs information to determine distances

• Using an automated process for creating the distance matrix

But for now, you've seen a TSP in action! We will look at a new problem in the next section.

Problem 5 – Using Python for cryptography 329

Problem 5 – Using Python for cryptography
Cryptography is what we use to code and decode messages. We used a simple Caesar
cipher in Chapter 9, Understanding Input and Output to Design a Solution Algorithm. For
this problem, we're going to use some of the packages available in Python to encrypt and
decode information.

Note that for this particular scenario, we'll use the straightforward analysis from using the
four elements of the computational thinking process. While we don't always follow them
exactly, this particular problem lends itself to a fairly straightforward use.

Defining the problem (cryptography)
You are working on a classified project and need to encrypt your information to maintain
its safety.

Recognizing the pattern (cryptography)
Python has a cryptography package that can be installed, much like when we installed
other libraries, such as Pandas and NumPy. In our problem, one of the main things
we need to know is that we may need to continue to encrypt messages. We may also want
to decode messages that we receive, but we are going to focus on the encryption side of
things first.

Generalizing (cryptography)
When we design our algorithm, we'll want something we can continue to use throughout
the life of our project with little effort. That is, any time we want to encrypt a new message,
we can run the algorithm and input the message rather than add the message itself to the
algorithm body every time. This is the generalized pattern for our particular problem.
That means we're ready to design.

Designing the algorithm (cryptography)
To write our algorithm, let's first take a look at what we'll need to do:

1. Define the letters.

2. Change all the letters to lowercase to run our algorithm.

3. Define the required functions—encryption, decoding, and main.

4. Call the cryptography main function.

330 Applied Computational Thinking Problems

Tip:
The full algorithm for this problem can be found in the ch15_
cryptographyA.py file.

We will start designing our algorithm by following these steps:

1. Let's begin by defining our letters. The following code snippet defines our letters,
and then renders each letter in lowercase:

LETTERS =
'ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ'

LETTERS = LETTERS.lower()

2. Next, we define our encryption function. This function will take two
arguments—message and key. The message function will be user-defined,
which will be done in the main function. For now, we'll use an empty message
by adding empty quotes ('') as the definition of the encryptedM variable,
as shown in the following code snippet:

def encrypt(message, key):

 encryptedM = ''

 for letts in message:

 if letts in LETTERS:

 num = LETTERS.find(letts)

 num += key

 encryptedM += LETTERS[num]

 return encryptedM

Notice that we iterate over the letters in the message we want to encrypt, and then
we use the key that the user defines in the main function and encrypt the message.
This function then returns the encrypted message.

But why haven't we defined the main function yet if that's where we are getting
the inputs? Because the main function will require the other two functions to
either encrypt or decode the message. So bear with us; we'll get to that main
function soon.

Problem 5 – Using Python for cryptography 331

3. Now let's take a look at the decoding function. This is what we'll use when we have
an encrypted message and want to know what the original message was:

def decode(message, key):

 decodedM = ''

 for chars in message:

 if chars in LETTERS:

 num = LETTERS.find(chars)

 num -= key

 decodedM += LETTERS[num]

 return decodedM

The preceding code shows the function that we'll use to decode our messages.
It uses the characters in the message and the encryption key to then decode the
message. Note that you cannot decode a message if you don't have the original key,
unless you have the time to sit and try each one of the keys, that is.

4. Finally, we'll need that main function we keep referring to. This is the function
that takes all the inputs needed in order for this algorithm to run. Here are the
three things necessary for it to run correctly—the message to be encrypted
or decoded; the key, which can be any number in the range 1 to 26; and whether
we are encrypting or decoding.

Here is the main function:
def main():

 message = input('What message do you need to encrypt
or decrypt? ')

 key = int(input('Enter the key, numbered 1-26: '))

 choice = input('Do you want to encrypt or decode?
Type E for encrypt or D for decode: ')

 if choice.lower().startswith('e'):

 print(encrypt(message, key))

 else:

 print(decode(message, key))

if __name__ == '__main__':

 main()

332 Applied Computational Thinking Problems

Notice from the preceding code that we defined a main function. At the end of
the code, we called that function. Don't forget to call that main function in the
algorithm! That's how you get the algorithm to run.

Here is a sample output when we try to encrypt the input message, the name of the
dog is King Kong, using a key of 9 to encrypt the message:

What message do you need to encrypt or decrypt? the name of the
dog is King Kong

Enter the key, numbered 1-26: 9

Do you want to encrypt or decode? Type E for encrypt or D for
decode: E

cqnwjvnxocqnmxprbrwpxwp

As you can see, we obtain the encrypted text, cqnwjvnxocqnmxprbrwpxwp, as the
cipher text, and now we've created an algorithm that can encrypt or decode any message.
Let's now move on to a new problem.

Problem 6 – Using Python in cybersecurity
For this problem, we've decided to perform a fairly short cybersecurity check. First,
let's talk about cybersecurity. The market for cybersecurity is expected to grow by 10% by
2027, according to a Grand View Research report.

Translating that to the job market is a little tricky. Currently in the United States, for
example, there are more cybersecurity needs for the market than people or jobs available.
That job market growth is expected to be slightly above 30% between 2018 and 2028. So
learning a bit about cybersecurity and cryptography won't hurt.

For this particular problem, we are going to explore a few things. First, let's talk about
hashing. In cybersecurity, hashing means those really long strings of numbers and
letters that replace things such as passwords. For example, if you entered a password of
password1 (please don't do that, never use password as a password), the hashing
process would replace it with something that looks more like this:

27438d623d9e09d7b0f8083b9178b5bb8ff8bc321fee518af
4466f6aadb68a8f:100133bfdbff492cbc8f5d17af46adab

When we are creating cryptography algorithms, we have to add random data, which
we call salts. Salts just provide additional input and help us make passwords more secure
when storing them.

Problem 6 – Using Python in cybersecurity 333

When we use hashing in Python, we can use the uuid library. UUID stands for Universal
Unique Identifier. The uuid library is used when we want to generate random, 128-bit
objects as IDs. But what are we really talking about? Let's take a look at the algorithm
found in the ch15_hashing.py file:

1. We will import libraries first:

import uuid

import hashlib

We are importing two libraries that will allow us to save our passwords using salting
and hashing.

2. In the next code snippet from the file, we define the function to hash our password:

def hash_pwd(password):

 salt = uuid.uuid4().hex

 return hashlib.sha1(salt.encode() + password.
encode()).hexdigest() + ':' + salt

We salted the password using our uuid package, and then returned the hash using
the secure hash algorithm 1, sha1. This is only one of the algorithms we can use.
We could have used others, such as SHA-256, SHA-384, and more. The sha1 hash
has an output size of 160, while sha256 has an output size of 256. Both sha1 and
sha256 have block sizes of 512 bits, while sha384 has a block size of 1,024 bits.

All of this becomes relevant when choosing the hash we'll use, how secure they are,
and so on. We used sha1 here more for nostalgia, but it is not as secure as sha256
and sha384. When attacked, sha1 will fail against a prolonged attack. The other
two will hold out for longer, but are still not the best ones. Hashes such as shake128
and shake256 have more success against such attacks.

3. Let's now look at the check function. We always want to confirm a password by
asking for it to be entered twice. The following snippet of code defines what the
algorithm will do when it receives the second password:

def check_pwd(hashed_pwd, user_pwd):

 password, salt = hashed_pwd.split(':')

 return password == hashlib.sha1(salt.encode() + user_
pwd.encode()).hexdigest()

334 Applied Computational Thinking Problems

4. Now let's ask for some input. First, we'll ask for the password. Because we're curious
about what the program is doing, we'll print the hashed password, but you can omit
that line when we are building this into a site or other application. After that, we ask
to verify the password and provide output for the user so they know whether they
match, in which case, we'd probably want them to try again. For now, this algorithm
either confirms it or lets the user know that it is now confirmed:

new_pwd = input('Enter new password: ')

hashed_pwd = hash_pwd(new_pwd)

print('Hashed password: ' + hashed_pwd)

confirm_pwd = input('Confirm password: ')

if check_pwd(hashed_pwd, confirm_pwd):

 print('Confirmed!')

else:

 print('Please try again')

After running the program, we get the following output:

Figure 15.3 – Output for a salted and hashed password confirmation
As you can see from the preceding screenshot, the password was confirmed by the
system.

5. Now let's see what happens when we enter two different passwords. Let's take a look
at the following screenshot for that:

Figure 15.4 – Output for a salted and hashed password with confirmation fail
As you can see, the program asks the user to try again. However, the algorithm
doesn't provide a way to do that unless the process is restarted. We can let it live like
that or we can add conditions so that the program runs one more time, or two more
times, or an infinite number of times, until a confirmation is reached.

Problem 6 – Using Python in cybersecurity 335

6. Now let's take a look at what happens if we run the algorithm using sha256 instead
of sha1. The following screenshot shows the result when a password is confirmed
using sha256:

Figure 15.5 – Output when sha1 is replaced with sha256 in the algorithm for confirming a password
Notice that the hash has a longer length as regards the sha256 algorithm. When
we are working with cryptography, random and long are always helpful. It is easier
to crack a password that is not random, such as password or mycat, than it is to
crack a password that is very long and contains random numbers and letters. That's
why we try to store data in ways that safeguard it against attacks.

7. Let's take a look at what we could do to provide one more chance for someone
to enter the password. At the end of the algorithm, let's add some code after the
last line:

 new_pwd = input('Enter new password: ')

 hashed_pwd = hash_pwd(new_pwd)

 print('Hashed password: ' + hashed_pwd)

 confirm_pwd = input('Confirm password: ')

 if check_pwd(hashed_pwd, confirm_pwd):

 print('Confirmed!')

 else:

 print('Please try again later')

Notice that the last statement in our preceding snippet states 'Please try
again later'. This lets users know that if they want to save a password, they'll
have to start the process again. The algorithm has, at that point, stopped.

336 Applied Computational Thinking Problems

8. If we place the preceding code after our else, print() statement, then the
algorithm will run one more time. The following screenshot shows the output when
a user tries a second time:

Figure 15.6 – Output after running an algorithm with an incorrect match first

Before we move on from this example, notice that the hashed passwords provided
are different even though our new password entered was test on both occasions.
As we mentioned, the hashed password is created each time. Otherwise, everyone
would know what the passwords were stored because test would be the same so
long as we'd used the same hash, in this case, sha256.

There is a lot more to explore in cybersecurity and cryptography. This is just a taste of how
we can encrypt information.

Problem 7 – Using Python to create a chatbot
It's time to create a simple chatbot. You've probably interacted with at least a dozen of
these chatbots in the last few years. When you go to some websites, you might get a person
who wants to chat with you and asks you a few simple questions, such as how you're
doing, and what they can help you with. For most of those sites, the person is not a person,
but a chatbot.

In some instances, the chatbots will then direct you to an actual human being. But most
of the time, they'll just answer your questions by pointing you in the direction of the
available answers on their website.

We're going to create something like those chatbots here. There are some components
we'll need before we get started. One of them is an intents file. That file, which should
be a .json file, contains the greetings and responses that the bot will be using and/or
responding to. Here's a sample of what the intents content looks like:

{"intents": [

 {"tag": "greeting",

 "patterns": ["Hi", "How are you", "Hello?",

Problem 7 – Using Python to create a chatbot 337

"Welcome!", "Hello"],

 "responses": ["Hello! Thank you for visiting our site!
", "Welcome back!", "Hello, how can I help you?", "What can I
do for you? "],

 "context_set": ""

 },

 {"tag": "goodbye",

 "patterns": ["Bye", "See you later", "Goodbye"],

 "responses": ["See you later, thanks for visiting",
"Thank you and have a wonderful day!", "Bye! See you soon!"]

 }

]

}

As you can see, this is just a group of possible responses. The more data we give the
.json file, the more robust and accurate our bot will be.

We should note that the intents.json file will need to be edited in a JSON Editor.
There is an online editor you can use at https://jsoneditoronline.org where
you can create your own, or edit an existing, file.

Why would we need a bot? There are a wide variety of uses for something like this, from
creating and posting messages to social media to providing a customer with a bot that asks
whether they require assistance as they visit a web page, for example. These are only some
of the things we can do with a chatbot.

Now let's take a look at an algorithm that creates a chatbot. The full file can be found
in the repository. We've commented and described what goes on in some of the sections
in snippets:

1. Let's start by importing the libraries here:

ch15_chatBot.py
import nltk

import json

import pickle

import numpy as np

nltk.download('punkt')

nltk.download('wordnet')

https://jsoneditoronline.org

338 Applied Computational Thinking Problems

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

From the preceding code, note that you do not have to download the nltk modules
each time. However, it won't hurt to have this code. The system won't install
multiple copies each time; it will just identify that they are there and not install
them a second time.

2. Let's continue grabbing what we need from our libraries and packages:

from keras.models import Sequential

from keras.optimizers import SGD

from keras.layers import Activation, Dense, Dropout

import random

3. Now that we have what we need, we have to look at our .json file. That file
contains those intents, as mentioned earlier in this problem. We'll need to not
only open that file, but also divide the components and sort them in ways that our
algorithm can understand. Take a look at the following code snippet:

#Upload intents file and create our lists

words=[]

classes = []

doc = []

ignore_words = ['?', '!', ',', '.']

data_words = open(r'C:\...\intents.json').read()

intents = json.loads(data_words)

Remember that the program won't run unless you specify the right location for the
file you are trying to access, in this case, the .json file. Also notice this time that
we are opening it in a slightly different manner, as shown in the preceding snippet.
Opening the file like this, which is not the same as when we open .csv files with
Pandas, means we do not need to use the double \\ in the paths.

4. Now let's tell the algorithm what to do with that file:

for intent in intents['intents']:

 for pattern in intent['patterns']:

 #Tokenize all the words (separate them)

 w = nltk.word_tokenize(pattern)

 words.extend(w)

Problem 7 – Using Python to create a chatbot 339

 #Add all the words into doc

 doc.append((w, intent['tag']))

 #Add the classes

 if intent['tag'] not in classes:

 classes.append(intent['tag'])

print(doc)

Here, we are tokenizing our information, that is, we're breaking down everything
into words and then adding them to lists. This is what makes it possible to process
the information. After we split them up, we are going to group them by what the
words mean.

5. The words are then sorted, as can be seen in the following code snippet:

#lemmatization

words = [lemmatizer.lemmatize(w.lower()) for w in words
if w not in ignore_words]

words = sorted(list(set(words)))

classes = sorted(list(set(classes)))

pickle.dump(words,open('words.pkl','wb'))

pickle.dump(classes,open('classes.pkl','wb'))

Notice in the preceding code that we used pickle(). Pickle is a method in Python
that we can use to serialize data (or deserialize it). The method is used to then
replace current file data so that it can be used as converted.

6. Now that we have done all of that, we need to create our training model. We won't
go through all the sections of that process here, but the entire code can be found
in the GitHub repository file. Remember that you first train, then create, and then
compile the model.

Once we have run through that process, we save the model so that we can use it.
But now let's look at the chatbot functions:

#Define chatbot functions

def clean_up_sentence(sentence):

 sentence_words = nltk.word_tokenize(sentence)

 sentence_words = [lemmatizer.lemmatize(word.lower())
for word in sentence_words]

 return sentence_words

340 Applied Computational Thinking Problems

def bow(sentence, words, show_details=True):

 sentence_words = clean_up_sentence(sentence)

 bag = [0]*len(words)

 for s in sentence_words:

 for i,w in enumerate(words):

 if w == s:

 bag[i] = 1

 return(np.array(bag))

def predict_class(sentence, model):

 p = bow(sentence, words,show_details=False)

 res = model.predict(np.array([p]))[0]

 ERROR_THRESHOLD = 0.25

 results = [[i,r] for i,r in enumerate(res) if
r>ERROR_THRESHOLD]

 results.sort(key=lambda x: x[1], reverse=True)

 return_list = []

 for r in results:

 return_list.append({"intent": classes[r[0]],
"probability": str(r[1])})

 return return_list

The first three functions work to create responses for the chatbot and also make
predictions. Those classes will matter for how we get those responses from our
bot. Let's think about it this way—if I say hello, I wouldn't want the chatbot to say
goodbye. That would be rude. But remember that our bot is only as good as our
training is. So if we don't have enough in the .json file and do not train the model
correctly, the bot will be fairly useless.

7. Now let's define how we get the responses:

def getResponse(ints, intents_json):

 tag = ints[0]['intent']

 list_of_intents = intents_json['intents']

 for i in list_of_intents:

 if(i['tag']== tag):

 result = random.choice(i['responses'])

 break

 return result

Problem 7 – Using Python to create a chatbot 341

def chatbot_response(msg):

 ints = predict_class(msg, model)

 res = getResponse(ints, intents)

 return res

As you can see from the preceding code snippet, the bot will craft a response and
return it. We'll be calling those things in the next few pieces of code in our file.

8. But we'll skip that here and go into the look of our chatbot:

base = Tk()

base.title("Chat with Customer Service")

base.geometry("400x500")

base.resizable(width=FALSE, height=FALSE)

Notice that we established some critical information in the preceding snippet. We
established the size of the window and blocked it from being resized.

9. In the next code snippet, we'll establish the background, add scrollbar, and
establish the look of the Send button:

#Create chatbot window

ChatLog = Text(base, bd=6, bg="white", height="8",
width="70", font="Calibri")

ChatLog.config(state=DISABLED)

#Scrollbar

scrollbar = Scrollbar(base, command=ChatLog.yview,
cursor="arrow")

#Create Send button

SendButton = Button(base, font=("Calibri",12,'bold'),
text="Send", width="15", height=5,

 bd=0, bg="pink",
activebackground="light green",fg='black',

 command= send)

EntryBox = Text(base, bd=0, bg="white",width="29",
height="5", font="Arial")

scrollbar.place(x=376,y=6, height=386)

ChatLog.place(x=6,y=6, height=386, width=370)

EntryBox.place(x=128, y=401, height=90, width=265)

342 Applied Computational Thinking Problems

SendButton.place(x=6, y=401, height=90)

base.mainloop()

So this is it, in a nutshell. We created a chatbot! But what does it look like when it
runs? Take a look at the output:

Figure 15.7 – The chatbot window
Notice our components, the scrollbar on the left, the pink Send button, and the
title of our chatbot. And notice too that the maximize button is grayed out. That's
because we said we don't want the window resized.

10. In addition, when we click the Send button, we want the user to know whether it
was clicked. Otherwise, you could click it multiple times if you are unsure. That's
why the active background color is changed in the code. The following screenshot
shows what the button looks like when active:

Figure 15.8 – Active Send button

Problem 7 – Using Python to create a chatbot 343

Many chatbots have features like this one so that we avoid errors with the code.

Once we've said hello, the bot will respond. Before we move away from this
problem, let's take a look at a quick conversation with the chatbot in the following
screenshot:

Figure 15.9 – The chatbot window with responses
As you can see, a few lines of code and a file can be used to create an interactive
experience with a chatbot.

Feel free to play around with the code to add some flair, create a different intents.
json file, and make it more relevant to what you need.

344 Applied Computational Thinking Problems

Summary
In this chapter, we've had a chance to explore Python in a few but very different
applications while looking at actual problems.

In previous chapters, we learned about the computational thinking process, along with
the elements of decomposition, pattern recognition, pattern generalization, and algorithm
design, which make the algorithms make sense. When we tackle problems from clients
or just while creating a script as a hobby, we have to go through the process necessary to
define what we're creating with our algorithm. This critical process will ensure that we are
designing the best possible algorithms we can.

In this chapter, we learned how to read from files, upload files, create ciphers and
decoders, use algorithms to write stories with user input, and develop the most effective
travel plan when given the cities we'll visit. In addition, we also created a basic chatbot,
which can interact and adapt based on the user input.

In the next chapter, we will continue our exploration of Python and computational
thinking with additional application problems in data analysis in scientific applications,
housing, stock market analyses, and more.

16
Advanced Applied

Computational
Thinking Problems

In this chapter, we will continue providing examples in multiple areas for applications of
the Python programming language and computational thinking. We will be exploring
multiple areas, such as geometric tessellations, creating models of housing data, creating
electric fields, analyzing genetic data, analyzing stocks, creating a convolutional
neural network (CNN), and more. We will use what we've learned so far in relation to
computational thinking and the Python programming language to do the following:

• Create tessellations

• Analyze biological data

• Analyze data for specific populations

• Create models of housing data

• Create electric field lines

• Analyze generic data

346 Advanced Applied Computational Thinking Problems

• Analyze stocks

• Create a convolutional neural network (CNN)

After reading this chapter, you'll have learned how to perform various different analyses
in working with data, creating tables and graphs that help to analyze existing data, as well
as create training and testing models to help predict outcomes based on existing large
datasets.

Technical requirements
You will need the latest version of Python installed to run the code in this chapter.

You will need the following libraries and packages installed for Python:

• NLTK

• Cairos

• Pandas

• Matplotlib

• Seaborn

You can find the full source code used in this chapter here: https://github.com/
PacktPublishing/Applied-Computational-Thinking-with-Python/
tree/master/Chapter16

Problem 1 – Using Python to create
tessellations
In this section, we are going to provide an example using the cairo library for Python.
We are going to create a tessellation, more specifically, a sample of a Penrose tiling.
Because this is a straightforward problem, we are going to define our parameters using the
computational thinking process, but not adhere to it precisely.

First, let's talk about the cairo library. Once the pip install cairo command is
successful, you'll need to perform one more step to include all the components needed.
Use pip install pycairo to add the necessary components. The cairo and
pycairo packages are graphics libraries that work with Python. For more information,
you can visit their web page: https://cairographics.org/pycairo.

https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Applied-Computational-Thinking-with-Python/tree/master/Chapter16
https://cairographics.org/pycairo

Problem 1 – Using Python to create tessellations 347

Now let's define some things. A tessellation is a tiling that uses shapes that do not
overlap to create patterns. Tessellations are often explored in geometry courses.
For our example, we will create a Penrose tiling pattern using two triangles. We will
also get to define our space and the number of sub-divisions we want the shapes to
undergo. The more sub-divisions, the smaller the pattern in the space defined. Let's take
a look at the algorithm (the file ch16_tessellation.py contains the full algorithm
discussed here0:

1. The first thing we'll do is import the necessary packages and libraries:

ch16_tessellation.py
import math

import cmath

import cairo

2. Next, we want to define our canvas and the number of sub-divisions. Note that
we chose 4 for our example. In Figure 16.1, you'll see the example from this snippet
as well as two additional examples changing the sub-divisions:

#Define the configuration of the image.

canvas_size = (500, 500)

numberSubdivisions = 4

3. For the tessellation, we need to define the Golden Ratio.

The golden ratio is also known as the golden mean or divine proportion (among
other names). The ratio is approximately 1.618. As an example, if we were talking
about a line segment divided into two parts, then the length of the larger segment
divided by the length of the smaller segment would be equal to the sum of the

segments divided by the larger segment: AB =
A + B
A . For the tessellation, we'll need

to define that golden ratio.

Take a look at the following code snippet:
#Define the Golden Ratio - gr

gr = (1 + math.sqrt(5)) / 2

4. Now we use functions to define what happens when our triangles sub-divide:

def subdivide(triangles):

 result = []

348 Advanced Applied Computational Thinking Problems

 for color, A, B, C in triangles:

 if color == 0:

 P = A + (B - A) / gr

 result += [(0, C, P, B), (1, P, C, A)]

 else:

 Q = B + (A - B) / gr

 R = B + (C - B) / gr

 result += [(1, R, C, A), (1, Q, R, B), (0, R,
Q, A)]

 return result

In the preceding code, we defined the function to sub-divide the triangles. The
function contains a conditional statement to identify the color of the triangles prior
to finding the ratio.

5. To create the wheel of the triangles, we need to append the triangles to a group.
Because Python is an object-oriented programming language, we can easily do that
by creating an empty list and then appending the shapes using loops:

#Wheel of teal triangles

triangles = []

for i in range(10):

 B = cmath.rect(1, (2*i - 1) * math.pi / 10)

 C = cmath.rect(1, (2*i + 1) * math.pi / 10)

 if i % 2 == 0:

 B, C = C, B # Make sure to mirror every second
triangle

 triangles.append((0, 0j, B, C))

for i in range(numberSubdivisions):

 triangles = subdivide(triangles)

6. Now we have to prepare the canvas we'll use for our tessellation. Notice that we use
the cairo functions to define the parameters using the variables we defined in the
beginning of the algorithm. Here, we use canvas_size:

surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, canvas_
size[0], canvas_size[1])

cr = cairo.Context(surface)

cr.translate(canvas_size[0] / 2.0, canvas_size[1] / 2.0)

Problem 1 – Using Python to create tessellations 349

wheelRadius = 1.2 * math.sqrt((canvas_size[0] / 2.0) ** 2
+ (canvas_size[1] / 2.0) ** 2)

cr.scale(wheelRadius, wheelRadius)

7. Now we have to define the two triangles we'll be using. In this case, our triangles are
teal and purple, but you can change the RGB values in them, that is, if you'd like to
test different colors:

#Define the teal triangles

for color, A, B, C in triangles:

 if color == 0:

 cr.move_to(A.real, A.imag)

 cr.line_to(B.real, B.imag)

 cr.line_to(C.real, C.imag)

 cr.close_path()

cr.set_source_rgb(.2, .8, .8)

cr.fill()

#Define the purple triangles

for color, A, B, C in triangles:

 if color == 1:

 cr.move_to(A.real, A.imag)

 cr.line_to(B.real, B.imag)

 cr.line_to(C.real, C.imag)

 cr.close_path()

cr.set_source_rgb(0.7, 0, 0.7)

cr.fill()

color, A, B, C = triangles[0]

cr.set_line_width(abs(B - A) / 10.0)

cr.set_line_join(cairo.LINE_JOIN_ROUND)

The preceding code creates the teal triangles and the purple triangles. Each is
defined with the RGB values and created with paths and lines.

350 Advanced Applied Computational Thinking Problems

8. The rotated triangles make a tile pattern, that is, our tessellation. The tiles are
also separated by a border. The color of the border is also defined in the loop
that follows:

#Triangle borders

for color, A, B, C in triangles:

 cr.move_to(C.real, C.imag)

 cr.line_to(A.real, A.imag)

 cr.line_to(B.real, B.imag)

cr.set_source_rgb(0.3, 0.5, 0.3)

cr.stroke()

9. Finally, we want the algorithm to create an image file with our tessellation:

surface.write_to_png('tessellation.png')

The following screenshot shows three variations using different numbers of
sub-divisions for our algorithm:

Figure 16.1 – Sample tessellations

As you can see from the preceding images, the larger the number of sub-divisions,
the smaller the tile pattern becomes to fit into our defined canvas size.

As you play with the algorithm, consider changing the canvas size, the sub-divisions,
and the colors. If you want an additional challenge, try changing the triangle pattern to
another polygon.

Problem 2 – Using Python in biological data analysis 351

Problem 2 – Using Python in biological data
analysis
For this particular problem, we'll be using the Breast_cancer_data.csv file, which
can be found on Kaggle (https://www.kaggle.com/nsaravana/breast-
cancer?select=breast-cancer.csv). The file has also been uploaded to the
book's GitHub repository.

When looking at data, sometimes we want to make comparisons with the data we
currently have, or we want to use it for predictions in machine learning. In this case,
we're going to look at how we can present another type of plot, the scatterplot, using two
specific values of columns in our dataset.

Let's imagine you received this data and already determined that your mean perimeter
and mean textures are better predictors than the other values in the columns. Your
goal now is to create an algorithm that will analyze the values for those two columns by
comparing them using a scatterplot. Our goal is only to get that scatterplot. For additional
analysis and machine learning applications, feel free to explore Chapter 13, Using
Classification and Clusters, and Chapter 14, Using Computational Thinking and Python in
Statistical Analyses, for additional help.

The full code for this problem can be found in the file ch16_BreastCancerSample.
py. We can now start to design our algorithm:

1. We begin as we normally do with data, importing the libraries we'll use. Note that
we are using two display libraries here, the matplotlib and seaborn libraries.
This is the first time we'll use seaborn. We are using seaborn because the
additional work, such as finding regression lines, is handled easily with the help of
this library:

#Import libraries needed

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

%matplotlib inline

2. Now we're going to find the .csv file. Remember that you can always establish the
directory first. Otherwise, make sure you include the full location of the file. Since
our directories are different, make sure you change that before running the file:

#Get data set. Remember to check your directory and/or
add the full location of the file.

https://www.kaggle.com/nsaravana/breast-cancer?select=breast-cancer.csv
https://www.kaggle.com/nsaravana/breast-cancer?select=breast-cancer.csv

352 Advanced Applied Computational Thinking Problems

dataset = pd.read_csv('C:\\... \\breast-cancer.csv')

dataset.head()

dataset.isnull().sum()

Notice the dataset.head() command in the algorithm. If we run the code up
until that point only, then we get the following output:

Figure 16.2 – Table showing the heading values
The dataset.isnull().sum() command helps us see whether we have empty
data points or values.

3. If we have many null points, we can clean the dataset before we start the analysis.
This data is clean, as can be seen from the following output if we run the program
up until dataset.isnull().sum(), as can be seen in the following screenshot:

Figure 16.3 – Output of the null check

4. Since there are no missing values, as seen in the preceding screenshot, we're going
to continue to our next snippet, where we'll create the count variable for diagnosis:

#Create count variable for diagnosis

count = dataset.diagnosis.value_counts()

count

The count variable is created in the preceding snippet, meaning we can create a bar
graph using the values of the diagnosis, whether it was malignant or benign.

Problem 2 – Using Python in biological data analysis 353

5. The following code snippet creates that bar graph and shows us the resulting output:

#Create bargraph of the diagnosis values

count.plot(kind = 'bar')

plt.title('Tumor distribution (malignant: 1, benign: 0)')

plt.xlabel('Diagnosis')

plt.ylabel('count')

plt.show()

Take a look at the following screenshot, which shows the bar graph using the
diagnosis values. As you can see, the bar graph shows the count of malignant
tumors versus benign tumors:

Figure 16.4 – Malignant versus benign diagnosis bar graph

Now that we have that information and the bar graph, we can start looking at other
combinations and comparisons using the values from our dataset.

6. You can run a different analysis to see which are more relevant, but for now, we are
just going to use the perimeter mean and texture mean to create our scatterplot. The
following code snippet shows how to create those using the seaborn library:

y_target = dataset['diagnosis']

dataset.columns.values

dataset['target'] = dataset['diagnosis'].
map({0:'B',1:'M'})

#Create scatterplot of mean perimeter and mean texture

354 Advanced Applied Computational Thinking Problems

sns.scatterplot(x = 'perimeter_mean', y = 'texture_mean',
data = dataset, hue = 'diagnosis', palette = 'bright');

Once we have created our scatterplot, the algorithm will return the following
output, which shows the mean perimeter scatterplot compared with the mean
texture scatterplot:

Figure 16.5 – Mean perimeter versus mean texture scatterplot

We are going to pause here for this data analysis. However, please note that you can take
this example much further. In fact, you can find multiple applications and analyses done
in Kaggle with this particular dataset and how some developers and coders incorporated
machine learning in order to make predictions. The world of bioinformatics is wide and
data science applications are continuing to grow. The use of Python in these problems is
helpful due to its ease of use and applicable libraries.

Problem 3 – Using Python to analyze data for
specific populations
For this section, we'll state our problem this way—the year is 2020 and the world is
overwhelmed by a pandemic due to the SARS-COV-19 virus, also known as coronavirus
or COVID-19. The data is available widely and we are trying to look at what's happening
in a specific location, in particular, how the number of deaths are growing for that
location. We find the New York Times GitHub repository, which contains the COVID-19
data, and download the master data, which is updated daily. Let's look at what we need to
do and how we find it.

Problem 3 – Using Python to analyze data for specific populations 355

Defining the specific problem to analyze and identify
the population
This problem is broad. Too broad! So let's first look at 1 location and for only 1 month. For
example, let's choose Puerto Rico and the month of October. From the master .csv file,
we've pulled only the data specific for Puerto Rico and added it to our repository. Again,
the master can be found in the New York Times, covid-19-data repository, and you can
perform multiple analyses using the full data, a specific state, or even a specific county.

For now, we're going to concentrate on creating a visual for the data for deaths specific
to Puerto Rico in October 2020. From just looking at the data, we see that the deaths are
rising. Take a look at the following screenshot:

Figure 16.6 – Data for the first 20 days of October 2020 in Puerto Rico

As you can see from the preceding screenshot, the deaths column continues to rise,
as does the number of cases, which we will take a look at a little later in this problem.

356 Advanced Applied Computational Thinking Problems

While data read in a table format can be helpful, a visual representation is critical if
we were to present this information, especially if we want to identify trends and influence
policy changes. So let's take a look at how we'd create a scatterplot for this particular data.
The full file can be found in ch16_CovidPR.py:

1. As always when working with data, we need to make sure we import the libraries
we'll be using:

import pandas as pd

import matplotlib.pyplot as plt

2. Next, we'll need to get our file. Remember, there are multiple ways to do this.
You can give Python the full location of your file or you can first identify the
directory and only provide the filename. Please make sure you change the location
of the .csv file you'll be using before running the program:

df = pd.read_csv('C:\\...\\us-PuertoRico.csv')

3. After identifying the file, we'll just create a simple scatterplot using the dates as
our x-axis, and the deaths as our y-axis. The next few commands in this code
snippet are done to make it easier to read the chart, such as the y-axis label, the
rotation of the x-tick marks, and the title of the chart. The x-tick marks are the
division marks for the horizontal axis, or x-axis. You can see the x-tick marks and
the labels in Figure 16.6:

plt.scatter(df['date'], df['deaths'])

plt.xticks(rotation = 90)

plt.title('Deaths per day during October 2020 due to
COVID19 in Puerto Rico')

plt.ylabel('Number of Deaths')

fig.tight_layout()

plt.show()

plt.savefig('COVID_PR.png')

As you can see from the preceding code snippet, we also created an image file for
us to use later, if needed. The chart will show on our screen, as can be seen in the
following screenshot:

Problem 3 – Using Python to analyze data for specific populations 357

Figure 16.7 – Deaths per day during October 2020 due to COVID-19 in Puerto Rico
This is a helpful chart to see that the number of deaths is increasing at a steady pace.
There are more things we can do, such as try to determine the regression, which is
another functionality we can do with Python using the numpy library, which
you are welcome to work out!

For now, we're going to take a look at the cases by date. The code is the same as
previously, except that our y-axis and title will be different. The full code can be found
in the ch16_CovidPR_2 file. As the code is very similar, we are not sharing it here.
However, our resulting graph can be seen in the following screenshot:

Figure 16.8 – Cases per day during October 2020 due to COVID-19 in Puerto Rico

358 Advanced Applied Computational Thinking Problems

As you can see from the preceding screenshot, the number of cases has continued to rise
each day in Puerto Rico. There are multiple things we could do with these two graphs;
analyzing their regressions, verifying additional trends by looking at other monthly data,
and so on. You've now seen how to create a simple plot to display the data based on your
.csv file; the rest is up to you. We will look at a new problem in the next section.

Problem 4 – Using Python to create models of
housing data
Let's take a look at a problem where we want to display trends and information about
the housing market in Brooklyn, New York. The dataset includes information from the
NYC Housing Sales Data for 2003-2017. The dataset used has the information merged
in a usable format and can be found on Kaggle here (https://www.kaggle.com/
tianhwu/brooklynhomes2003to2017). In addition, a copy of the .csv file can be
found in the GitHub repository under the name brooklyn_sales_map.csv.

Defining the problem
We have a large data file for this particular problem. We can look at information by
neighborhood, sale prices by year, compare the year built to the neighborhood to find
trends, history, and so on. We could spend hours, days, and weeks just on this one dataset.
So let's try to focus our energy into what we are going to accomplish with this example.
For this, we're going to create two visual models. The first is a horizontal bar graph of
housing percentages in a sale range according to the year of sale. The second is a bar graph
that shows the price range by the neighborhoods where houses were sold.

The horizontal bar graph can help display the data in a much clearer way so that we can
see house price ranges and whether there are significant changes. The vertical bar graph
can show us those same price ranges by neighborhood, so we can see whether there are
significant changes depending on the neighborhoods where the houses were sold.

https://www.kaggle.com/tianhwu/brooklynhomes2003to2017
https://www.kaggle.com/tianhwu/brooklynhomes2003to2017

Problem 4 – Using Python to create models of housing data 359

Algorithm and visual representations of data
Let's take a look at the code snippet. The full file can be found in the GitHub repository
under ch16_housingBrooklyn.py. As usual, don't forget to update the file location
in the file before trying to run the program:

1. For this particular program, we'll need the pandas and matplotlib libraries,
so we need to import them:

import pandas as pd

import matplotlib.pyplot as plt

2. Next, we need to read our file. This is where you'll need to update this code in order
to run it from your machine:

df = pd.read_csv('C:\\...\\brooklyn_sales_map.csv')

3. Now we're going to create our bins. These are our range of values and we'll call
them when we are creating the charts, as you can see under df['price_range']
within the following few lines of code:

bins = [-100000000,20000,40000,60000,80000,100000,1000000
,10000000,500000000]

ranges_prices = ['$0-$200k','$200k-$400k','$400k-
$600k','$600k-$800k','$800k-$1mlln','$1mlln-
$10mlln','$10mlln-$100mlln','$100mlln-$500mlln']

df['price_range'] = pd.cut(df['sale_price'], bins = bins,
labels = ranges_prices)

4. Now we're going to define a function, where we are going to convert some of the
data. Notice that we run that function on each of the years from the dataset to find
our percent total, which we'll use later on for housing_df:

def convert(year):

 return df[df['year_of_sale'] == year].groupby('price_
range').size()

percent_total = [x/sum(x)*100 for x in [convert(2003),
convert(2004),convert(2005),convert(2006),
convert(2007),convert(2008),convert(2009),convert(2010),
convert(2011),convert(2012),convert(2013),convert(2014),
convert(2015),convert(2016),convert(2017)]]

year_names = list(range(2003,2018))

360 Advanced Applied Computational Thinking Problems

housing_df = pd.DataFrame(percent_total, index = year_
names)

ax_two = housing_df.plot(kind = 'barh', stacked = True,
width = 0.9, cmap = 'Spectral')

plt.legend(bbox_to_anchor = (1.45, 1), loc='upper right')

ax_two.set_xlabel('Percentages', fontname='Arial',
fontsize = 12)

ax_two.set_ylabel('Years', fontname='Arial', fontsize =
12)

ax_two.set_title('Housing Sale ')

The preceding snippet helps us to create the first of the two models. This one is
a horizontal bar graph. We labeled all the axes and the graph, and then, in the next
line shown in the preceding code snippet, we also defined the color map we'll use
for this graph, in this case, 'Spectral'. You can play with the color mappings
available for easier reading. Take a look at our first graph, shown as follows:

Figure 16.9 – Housing sales in Brooklyn by year
Notice that we use percentages in the preceding screenshot. This allows us to show
how much of the sales were in each price range, but it does not show us the actual
number of sales in each price range. Those two things are quite different. Here,
we are looking for trends. The percentage of sales that were higher than $1,000,000
has consistently increased after a slight dip from 2008 to 2009. In 2017, a much
larger percentage of sales was above that price point than in 2003.

Problem 4 – Using Python to create models of housing data 361

But that's total sales. If we were only looking at this graph without looking at the
numbers as well, we wouldn't know whether fewer houses were sold in total in 2017,
for example. Again, the important thing to note here is that this graph is extremely
helpful for understanding the share of housing selling under each price range, but
that's all this graph really gives us. Now let's look at the remaining code from our file.

5. In this next snippet, we create our second graph, which uses our information to
produce a vertical bar graph with the percentages within each price range for each
neighborhood:

df.groupby(['neighborhood','price_range']).size().
unstack().plot.bar(stacked = True, cmap = 'rainbow')

plt.legend(bbox_to_anchor = (1.45, 1), loc = 'upper
right')

plt.title('Pricing by Neighborhoods in Brooklyn from 2003
to 2017')

plt.ylabel('Price Range')

plt.xticks(fontsize = 6)

This graph shows us the price range in each neighborhood using a bar graph.
Let's take a look at our second graph in the following screenshot:

Figure 16.10 – Pricing by neighborhoods in Brooklyn from 2003-2017

362 Advanced Applied Computational Thinking Problems

As you can see from the preceding screenshot, we get some important information
that is additional or more detailed than that in Figure 16.1. In this case, the data is
provided by neighborhood and the breakdown is provided by price range in those
neighborhoods.

When we look at a large dataset, we can create multiple different models and even use
them to predict values moving forward. Take a look at the data available in the .csv file
and try to create some different representations using other data, such as commercial
versus residential sales, tax class breakdowns, and more.

Problem 5 – Using Python to create electric
field lines
In this section, let's look at some applications of Python for engineering and, in particular,
physics. We are going to be creating an electric field lines plot. Why would we want
to create that kind of plot and what exactly is it? An electric field happens when there is
an electric charge. We use vectors to show these electric fields for every point in space.
In physics, an electric field is an electric force per unit charge. Take a look at what that
field looks like for a positive point charge and a negative point charge, as shown in the
following diagram:

Figure 16.11 – Electric field sample

As you can see, an electric field line will begin at the charge or end at the charge. If it
begins at the charge, it is positive, while it if ends at the charge, it is negative, as can be
seen in the preceding screenshot. There are a fewer number of lines for a lesser charge and
more lines for a larger charge. In addition, the lines will be closer for a larger charge than
for a smaller charge.

Problem 5 – Using Python to create electric field lines 363

For our problem, we want to create an electric field lines plot for any number of charges.
So let's take a look at what that would look like in the following code file. Note that
we've broken the code down to explain various sections, but the full file can be found
in the GitHub repository:

1. As usual, first, we'll begin by importing the necessary libraries:

ch16_electricFieldLines.py
import numpy as np

import matplotlib.pyplot as plt

import random

2. Then, we'll set up our x and y axes by defining some variables:

np.seterr(divide='ignore', invalid='ignore')

#Define the size of the electric field lines grid

N = 20

M = 25

#Set the x and y coordinates

x_coor = np.arange(0, M, 1)

y_coor = np.arange(0, N, 1)

x_coor, y_coor = np.meshgrid(x_coor, y_coor)

E_x = np.zeros((N, M))

E_y = np.zeros((N, M))

In the preceding code snippet, we work on defining our grid and setting up the
coordinates. Then we create the mesh grid. The meshgrid() function returns
matrices of coordinates from vector coordinates.

3. After we have set our coordinates and set our mesh grid, we can start defining what
happens with our charges. First, we'll need to identify how many charges will be
plotted:

#Set the number of total charges to plot

nq = 8

#Create empty lists to store coordinates of charges

qq = [[], []]

364 Advanced Applied Computational Thinking Problems

for dummy in range(nq):

 q = random.choice([-1, 1])

 q_x, q_y = random.randrange(1, N), random.
randrange(1, M)

 qq[0].append(q_y)

 qq[1].append(q_x)

 for i in range(N):

 for j in range(M):

 denom = ((i - q_x) ** 2 + (j - q_y) ** 2) **
1.5

 if denom != 0:

 E_x[i, j] += q * (j - q_y) / denom

 E_y[i, j] += q * (i - q_x) / denom

As you can see from the preceding snippet of code, after we identified the number
of charges, we created two empty lists. Then we added coordinates to those lists
based on the number of charges using nested for loops.

4. After we do the necessary math to get our coordinates and vectors, we can then go
ahead and plot our electric field lines graph. We'll use a quiver plot, which is
a matplotlib graphic we can use for creating vector fields:

C = np.hypot(E_x, E_y)

E = (E_x ** 2 + E_y ** 2) ** .5

E_x = E_x / E

E_y = E_y / E

plt.figure(figsize=(12, 8))

#Plot charges

plt.plot(*qq, 'ms')

#Create 2D array

rr = plt.quiver(x_coor, y_coor, E_x, E_y, C,
pivot='middle')

cbar = plt.colorbar()

cbar.ax.set_ylabel('Magnitude')

#Label graph

Problem 5 – Using Python to create electric field lines 365

plt.title('Electric Field Lines in Python')

plt.axis('equal')

plt.axis('off')

plt.show()

It's important to always add labels to our graphs and plots, as this will make the
information more readable, especially for those who do not know what the code
behind this means or what the graphs and plots represent. When we run our code
snippet, we get the following output:

Figure 16.12 – Electric field lines for eight charges

366 Advanced Applied Computational Thinking Problems

As you can see in our plot, there are positive and negative charges. Take a look at the
bottom right-hand corner charge in the graph. That charge is negative, as the arrows
are pointing toward the charge. The left-most charge, which has been zoomed-in,
shown as follows, shows a positive charge, as the arrows are pointing away from
the charge:

Figure 16.13 – Zoomed positive charge

5. Let's take a look at one final graphic, shown in the following screenshot, with an
electric field lines plot that has three charges:

Figure 16.14 – Electric field lines with three charges
As you can see, this particular plot contains two positive charges and one negative
charge. If we ran this again, we may get three positive charges, for example, as each
time we run the algorithm, we get a new representation with random values for
positive and negative charges.

Problem 6 – Using Python to analyze genetic data 367

These kinds of fields and learning how to use vectors and quiver plots can help us
represent a lot of information. In the case of electric field lines, we can learn a lot about
the charges, direction, and the strength of those charges with a simple visual plot.

Take a look at the code snippet in the GitHub repository and try changing some of the
parameters, such as the size of the plot and the number of charges. The more practice you
get with these plots and altering some of the parameters, the easier they become to create.

Problem 6 – Using Python to analyze genetic
data
Let's shift focus to looking at a larger dataset. You're working with laboratory mice and get
data for trisomy mice and protein expressions in these mice. We've truncated some of the
data from the public domain file in Kaggle for this due to its huge size. We're only focusing
on six protein expressions for the mice and again, only the trisomy (Down syndrome)
mice in the study. The full file can be found in Kaggle at https://www.kaggle.com/
ruslankl/mice-protein-expression. The truncated file can be found in our
GitHub repository.

Let's say you don't know where to start with this data. What should you even be looking
at? Well, that's often the first thing we encounter in data science. We don't always get to
be part of the study design or data collection. Many times, we receive large data files and
need to figure out what to look for, how to tackle the problem, whatever we decide the
problem is, and how to display the information in the best possible way.

Also, this is your reminder to change the location of the file before you attempt to run this
program. This very simple program can be found in the ch16_pairplots.py file.
Let's begin with the algorithm:

1. The seaborn library can help us a bit just to get us started. We can create
pairplot(), which will correlate the numerical data in the .csv file using
histograms and scatterplots. It's kind of like a fantastic magic trick. We can use
two lines of code to see what we see. Take a look at the two lines that are needed
to generate Figure 16.7 (note that there's actually four lines of code, but I'm not
counting the two lines I'm using to import my libraries):

import seaborn as sns

import pandas as pd

df = pd.read_csv('C:\\...\\Data_Cortex_Nuclear.csv')

sns.pairplot(df, hue = 'Treatment')

https://www.kaggle.com/ruslankl/mice-protein-expression
https://www.kaggle.com/ruslankl/mice-protein-expression

368 Advanced Applied Computational Thinking Problems

Be patient when you run this program. The algorithm may be simple, but what it's
doing in the background isn't so simple. Take a look at the following screenshot to
see our pairplot:

Figure 16.15 – Pairplot of protein expressions in trisomy mice with the treatment variable
Notice that our data has two colors based on the treatment, which is an injection
of memantine or saline, respectively. From the plots, we can see that some of the
proteins seem to have a higher correlation than others. Let's pause on that for
a second.

2. Let's now say that our goal wasn't to check on the expression based on the
treatment, but rather the class. Then we can run the code, but first we change the
hue to class in our algorithm. The result is shown as follows:

Problem 6 – Using Python to analyze genetic data 369

Figure 16.16 - Pairplot of protein expressions in trisomy mice with the class variable
Notice that the plots are extremely similar. Where the plots do differ, however, is in
the identification of where each of the points lies based on another characteristic.
For example, in the class variable chart, we have four colors because there are
four classes of mice in our particular dataset.

They are, namely, t-CS-s, which refers to the mice stimulated to learn (shock) and
injected with saline; t-CS-m, which refers to the mice stimulated to learn (shock)
and injected with memantine; t-SC-s, which refers to mice not stimulated to learn
and injected with saline; and t-SC-m, which refers to mice not stimulated to learn
and injected with memantine.

370 Advanced Applied Computational Thinking Problems

Looking at our correlations, we can see that there are strong positive correlations between
many of the proteins, such as NR2A_N and BDNF_N. Whether or not that's relevant,
whether it matters in our study, and whether it's not significant is something that we'd
have to take into consideration if this were our study. Once we see the plots, we can then
choose to explore the information further.

Another type of plot that can be helpful when looking at this dataset is the boxplot.
We can use the boxplot to see the protein expression level by class for a protein we want
to look at more closely. Let's take the NR2A_N protein. Using the seaborn boxplot, we
can create a plot for this particular protein using the code in the ch16_boxplot.py file.
As always, check the file location first:

import pandas as pd

import scipy.stats as stats

import matplotlib.pyplot as plt

import seaborn as sns

df = pd.read_csv('C:\\...\\Data_Cortex_Nuclear.csv')

protein = df[['NR2A_N', 'class']].dropna()

sns.boxplot(x='class', y='NR2A_N', data = protein)

plt.show

In the preceding code, we identify the things we want to compare, which, in this case, are
the protein and the class. We'll then create the boxplot using our seaborn library, which
can be seen as follows:

Figure 16.17 – Boxplot of the NR2A_N protein expression by class

Problem 7 – Using Python to analyze stocks 371

As you can see from the graph, the distributions for our trisomy mice vary by class, with
the mice that were not stimulated to learn and injected with saline showing a wider range
in the expression of this protein. Let's try changing that protein to one of our others in
the dataset, that is, the ITSN1_N protein. The following screenshot shows the resulting
boxplot:

Figure 16.18 – Boxplot of the ITSN1_N protein expression by class

In this particular boxplot, we can identify outliers in the t-CS-m and t-SC-m classes, that
is, both mice classes that were injected with memantine. That may tell us to seek more
information about any relationship between the memantine injections and that particular
protein. If we were to look at non-trisomy mice, would these spreads of data (range) hold for
that protein if the other elements were the same? Those are some of the things we would ask
ourselves in looking at datasets such as this one.

If you remember, the computational thinking process is rarely a straight line. If we identify
things we want to consider in our algorithm, we don't just leave our algorithm alone and
decide it was already done, so we won't change it. We go back to identify what we need
again, make the necessary changes to our design, and create our algorithm again. That's
more closely what happens when we are dealing with larger datasets. We look at some
initial visualizations, maybe create a few different types of plots, run some statistical
analysis, and then decide where to go next with the data. This is just a glimpse into what is
possible with Python.

Problem 7 – Using Python to analyze stocks
Time to play with some stocks. You can access a lot of data through Quandl, which allows
for the use of a free API for educational uses. There are also premium datasets available.
We're sticking to educational purposes, so that should be enough for our requirements.

372 Advanced Applied Computational Thinking Problems

In this problem, we're going to learn how to pull data from Quandl and look at the
VZ stock prices. VZ is the code for Verizon stock prices. We're going to use them to
predict the prices using quandl, which is a package for Python in addition to being
a website full of useful information. Let's take a look at how we grab the information
we want. The full code, minus the API key, can be found in our repository under the
ch16_stockAnalysis.py file:

1. Let's take a look at how we can import the data. You'll need your own API for this.
If you want to check another stock, say for AMZN, you'd substitute 'EOD/VZ' with
'WIKI/AMZ', for example. AMZN is the code for Amazon stock. But let's take
a look at our VZ set:

import quandl

import numpy as np

from sklearn.linear_model import LinearRegression

from sklearn.svm import SVR

from sklearn.model_selection import train_test_split

#Get data from Quandl. Note that you'll need your own API
to substitute in the api.key below.

quandl.ApiConfig.api_key = '…'

VZ = quandl.get('EOD/VZ')

print(VZ.head())

When we run the preceding code, we get the table for the first five values in our
dataset. The following screenshot shows our table of values:

Figure 16.19 – EOD/VZ stock table

Problem 7 – Using Python to analyze stocks 373

2. Now say we only wanted to focus on the adjusted close value in order to later make
predictions. Then we can use the following code snippet to do so:

#Grab the Adj_Close column

VZ = VZ[['Adj_Close']]

print(VZ.head())

After running the preceding code, our adjusted table can be seen as follows:

Figure 16.20 – EOD/VZ adjusted close stock value table

Now that we've learned to pull current data, we're going to now work with a dataset that
we've placed in the GitHub repository so that we can ensure that you are able to replicate
the results. You can then try to do this for current data using the Quandl API.

Let's take a look at the dataset with the filename VZ.csv. This contains the same data for
VZ from 1983 to April 2020. What do we want from this dataset? We want to make some
predictions. So let's build that model.

Note that the code is fairly large, so the file with everything you need (minus the file
location on line 15, which you'll need to add), is in ch16_predictionsModel.py.
But let's take a look at some of the snippets of code from that file:

1. The following code snippet will create a plot for our existing data in the dataset.
It selects the Date column from the file and sets that as the index value. Then
it creates a figure and adds the labels for the graph and axes:

VZ["Date"]=pd.to_datetime(VZ.Date,format="%Y-%m-%d")

VZ.index=VZ['Date']

plt.figure(figsize=(16,8))

plt.plot(VZ["Close"],label='Close price history')

plt.title('Closing price over time', fontsize = 20)

plt.xlabel('Time', fontsize = 15)

plt.ylabel('Closing price', fontsize = 15)

plt.show()

374 Advanced Applied Computational Thinking Problems

We're not looking at a model yet. We haven't defined our training data. We're just
looking at what happened to our stock prices from 1983 to 2020, shown as follows.
Note that the first tick mark label states 1984. Our data can be seen to start just
slightly before 1984. The tick marks are every 4 years since 1980, as shown:

Figure 16.21 – Closing price over time for VZ stock

Notice from the preceding chart that stock prices are not linear in any way. They
rise, fall, and rise again. A predictive model will require a lot of data in order for us
to prepare the best predictions possible. Our dataset has 9,166 rows of data. That's
going to come in handy in a second.

2. Let's take a look at another snippet of code that we'll be using:

VZ3=VZ2.values

train_data=VZ3[0:750,:]

valid_data=VZ3[750:,:]

VZ2.index=VZ2.Date

VZ2.drop("Date",axis=1,inplace=True)

scaler=MinMaxScaler(feature_range=(0,1))

scaled_data=scaler.fit_transform(VZ2)

x_train_data,y_train_data=[],[]

for i in range(60,len(train_data)):

 x_train_data.append(scaled_data[i-60:i,0])

Problem 7 – Using Python to analyze stocks 375

 y_train_data.append(scaled_data[i,0])

x_train_data,y_train_data=np.array(x_train_data),np.
array(y_train_data)

x_train_data=np.reshape(x_train_data,(x_train_data.
shape[0],x_train_data.shape[1],1))

Notice the 750 value in the train_data=VZ3[0:750,:] line of code. That
means I'm using just the first 750 rows of 9,166 possible rows of data to train my
model. This isn't so great.

Let's take a look at the following screenshot, which shows the results when we run
this prediction model. Note that we did choose to copy the original information
into our graphic. Python will point that out as a possible thing we want to fix. That's
up to you to do so. For now, having the original data available as overlaid for our
graph provides us with a great visual for comparison purposes as regards our model:

Figure 16.22 – Closing price predictions

As you can see in the preceding graphic, shown in orange here, we have the original,
copied values. The green shows the predictions made by our model. They're not
terrible, but they're not as tight as they could be.

376 Advanced Applied Computational Thinking Problems

3. Let's see what happens when we use 7,500 rows of data instead, which is roughly
82% of the data available. As a note, the file in the GitHub repository uses the value
of 7,500, but feel free to change and adjust those so you can test the accuracy of your
model. The following graph shows our results:

Figure 16.23 – Prediction model using 7,500 rows of data

Notice how much closer the real lines and the prediction lines are in this model.
That's because the more data we have to train our model with, the better our
predictions will become.

Before we move on from this example, note that we did not cover the entirety of the code
file here. Some of the code has been discussed in other areas of this book, so we focused
on the parts of the algorithm that were new and critical to the algorithm solution due to
the complexity of the algorithm. The final piece of that code file does use a Long
Short-Term Memory (LSTM) model. An LSTM model is a type of artificial recurrent
neural network. We use this model in machine learning to create deep learning models.

Will our models actually predict the price of the stock? No. Otherwise, we'd all have an
easier time with the market. But models can get really good at predicting not the price,
but whether or not the price will go up or down.

Problem 8 – Using Python to create a convolutional neural network (CNN) 377

Problem 8 – Using Python to create
a convolutional neural network (CNN)
In this section, we're going to take a look at a problem that uses artificial intelligence
(AI). More specifically, we're going to work on creating a convolutional neural network,
or CNN. So what is a CNN? A CNN is a Deep Learning algorithm. CNNs take images
as input. The image is then processed and given importance based on predetermined
conditions that will help us differentiate and classify the images.

The following diagram illustrates the process involved in the convolutional neural
network:

Figure 16.24 – Convolutional neural network process

The CNN is created in order to simplify how we categorize the images without sacrificing
accuracy in terms of the predictions we want to be able to get from our image analyses.
It's like if we were applying a filter. Once we apply the filter, we can see the characteristics.
The preceding diagram shows a simplified schematic for this process.

The problem we're going to be diving into is handwriting training and analysis. Thinking
about the computational thinking process, what we're really trying to do is analyze
handwriting as accurately as possible. To do so, we analyze hundreds or thousands of
images to create and train our model. The more images we use, the more accurate our
model will be.

For our model, we're going to use a dataset that contains 70,000 images. The first 60,000
images are used for training, while we'll use the other 10,000 for testing. The full code
can be found in the ch16_CNN_mnist.py file. We'll take a look at some of the snippets
from that code and also use some adjustments to show additional components. You can
run the file in the GitHub repository without making changes as long as you have all the
necessary libraries and packages installed.

378 Advanced Applied Computational Thinking Problems

Let's start designing the model:

1. Let's first take a look at a snippet of code that will upload the dataset, and then show
the first item in the dataset:

from keras.datasets import mnist

#Grab the testing and training data from existing dataset

(X_train, y_train), (X_test, y_test) = mnist.load_data()

import matplotlib.pyplot as plt

#Take a look at the first item in the dataset

plt.imshow(X_train[0], cmap='Greys')

We used the index 0 in the training set to see that first image. The cmap property
will make the colormap gray. You can adapt that and adjust it, as needed. As a
side note, for those who have trouble seeing color or have particular color needs,
changing the colormap can make a significant difference to how the images are
perceived. Let's take a look at that first image in the following screenshot:

Figure 16.25 – First image in the MNIST training set
As you can see from the preceding screenshot, this is a handwriting sample, most
likely of the number 5. We can run the program a few more times with different
indexes to see some other samples in our dataset. The following screenshot shows
some of those samples and their corresponding indexes:

Problem 8 – Using Python to create a convolutional neural network (CNN) 379

Figure 16.26 – Sample images in the dataset by index
The data we are using is not quantitative, it is qualitative. We are looking at images,
so we are in need of a process that can analyze those images. To do so, we use
One-Hot encoding, which replaces integer encoded variables with new binary
variables.

2. Now that we've looked at what we're working with, let's reshape and encode our
model using the following code snippet. As a reminder, the full code can be found
in the repository, but some of the components will be slightly different (such as our
file will not be testing the images in the dataset):

#Reshape the model

X_train = X_train.reshape(60000,28,28,1)

X_test = X_test.reshape(10000,28,28,1)

from keras.utils import to_categorical

#Use One-Hot encoding

y_train = to_categorical(y_train)

y_test = to_categorical(y_test)

y_train[0]

As you can see, we are dividing the images into training and test sets. Then
we encode them.

3. Once we have performed one-hot encoding, we can create our model:

#Creating the model

from keras.models import Sequential

from keras.layers import Dense, Conv2D, Flatten

model = Sequential()

model.add(Conv2D(64, kernel_size=3, activation='relu',
input_shape=(28,28,1)))

model.add(Conv2D(32, kernel_size=3, activation='relu'))

380 Advanced Applied Computational Thinking Problems

model.add(Flatten())

model.add(Dense(10, activation='softmax'))

#Compile the model

model.compile(optimizer='adam', loss='categorical_
crossentropy', metrics=['accuracy'])

In the preceding code snippet, we used a softmax function. The softmax
function is sometimes referred to as a normalized exponential function. We use it to
normalize the output.

4. Now let's train the model. We're going to first fit the model and then validate the
data. Take a look at this code snippet:

#train the model

model.fit(X_train, y_train, validation_data=(X_test, y_
test), epochs=3)

So here's one of the great things about training and testing. That is, when
we understand and practice with them, we realize it takes just a few lines of code
to do some pretty amazing things. The preceding two lines of code (the third is
a comment) will make some great things happen and allow our algorithm to test
other images.

5. Now we can predict the images in the dataset. We'll start with the last four, because
everyone starts with the same four numbers, so I want to start backward this
time. As a note, be patient. There are thousands of images to get through in this
algorithm. While the epochs are running, you'll have a clock that will tell you how
long until the information is processed. For this particular algorithm, it takes just
a few minutes. Let's take a look at the snippet of code we'll need in order to run that
prediction:

#Predict last 4 images

model.predict(X_test[9996:])

When we run this code, we get a pretty intense array of numbers. Take a look at the
following screenshot. We have highlighted a key piece of the code for discussion:

Problem 8 – Using Python to create a convolutional neural network (CNN) 381

Figure 16.27 – Model predictions for the CNN image
So, I can tell you that the first number predicted is 3. How would we know that
the number represents 3? Because each list represents the digits 0 to 9. So imagine
replacing the first list with [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. So if we think of this as indexes,
the number with the 01 (which is highlighted in the preceding screenshot) at the
end of the number is in index 3, which is the number 3. So our numbers are 3, 4, 5,
and 6.

6. But do you trust the model? We can just go ahead and return to that snippet of code
at the beginning of this discussion and print our results. Remember to change the
code slightly to print your test images, and not the training images, as shown in the
following code snippet:

plt.imshow(X_test[9996], cmap='Greys')

When running the code, remember you will need to run it for each of the indexes to
see the images. The following screenshot shows the images for each of the relevant
indexes of the test images:

Figure 16.28 – Testing data verification images
As you can see, our model predicted the correct values for each of the handwritten
number images in those indexes.

382 Advanced Applied Computational Thinking Problems

Before we close this discussion, it would be important to note that these models are used
fairly extensively right now in websites to verify whether a visitor to the site is human
or a bot. Some websites will have a CAPTCHA, which sometimes provides handwritten
letters that the user must identify to be allowed to proceed. Those CAPTCHAs often use
deep learning as well. The applications of CNNs and these kinds of models are endless.

Summary
In this chapter, we were able to explore more topics in computational thinking, especially
in dealing with data and deep learning, using the Python programming language. We
learned how to create pairplots in order to determine the relationship between variables
in a dataset. We also learned how to produce various types of plots to visually represent
our datasets. We also learned how to create electric field lines using Python. In short, we
applied what we'd learned throughout the previous chapters and extended our knowledge
while working in applied problems.

And that's really what this book sought to do: Show a wide variety of Python applications
while looking at real problems in context. Did we cover everything Python can do? That's
fairly impossible, as Python capabilities continue to grow because of its ease of use, how
easy it is to learn, and how many applications continue to be added because of its open
source nature. Hopefully, you got to work with some new scripts, learned about some
of the functions and capabilities you still hadn't explored, and enjoyed exploring these
scenarios.

Will we ever be able to say that we've created the perfect algorithm? We, the authors of this
book, don't think so. And the reason is that we are always thinking about ways to improve.
We always question additional applications. We always want to make them more efficient.
And that's really what computational thinking helps us do. We can analyze, design, test,
go back, and see whether we did what we wanted, and then refine, redesign, perform tests,
and repeat.

Hopefully, after this chapter, you've had a chance to practice and learn about more of
Python's capabilities. And hopefully, having read this book, you've had the opportunity
to learn about the importance of computational thinking in programming. Thank you for
joining us on this journey!

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Modern Computer Architecture and Organization

Jim Ledin

ISBN: 978-1-83898-439-7

• Get to grips with transistor technology and digital circuit principles

• Discover the functional elements of computer processors

• Understand pipelining and superscalar execution

• Work with floating-point data formats

• Understand the purpose and operation of the supervisor mode

• Implement a complete RISC-V processor in a low-cost FPGA

https://www.packtpub.com/product/modern-computer-architecture-and-organization/9781838984397

384 Other Books You May Enjoy

• Explore the techniques used in virtual machine implementation

• Write a quantum computing program and run it on a quantum computer

40 Algorithms Every Programmer Should Know

Imran Ahmad

ISBN: 978-1-78980-121-7

• Explore existing data structures and algorithms found in Python libraries

• Implement graph algorithms for fraud detection using network analysis

• Work with machine learning algorithms to cluster similar tweets and process
Twitter data in real time

• Predict the weather using supervised learning algorithms

• Use neural networks for object detection

• Create a recommendation engine that suggests relevant movies to subscribers

• Implement foolproof security using symmetric and asymmetric encryption on
Google Cloud Platform (GCP)

https://www.packtpub.com/product/40-algorithms-every-programmer-should-know/9781789801217

 385

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
abstract data types (ADT)

about 24, 25
array 25
dynamic arrays 25
linked list 25
queue 25
stack 25

abstraction 31, 34, 88
Adam optimization algorithm 275
additional problems,

computational thinking
about 38
budget, planning 39
savings and interest 40-42

algorithm
about 8, 9, 46
analyzing 56
debugging 136-139
defining 46
designing 50, 51
solutions, redefining 144, 145
solutions, refining 144, 145

algorithm analysis
states and capitals 57-59
terminating or not terminating 60, 61

algorithm, characteristics
about 46
clear and unambiguous 47
feasible 50
finiteness 48, 49
inputs and outputs 47
language-independent 50

algorithm design
about 9 , 61, 88
errors, identifying in 128

algorithm, problems
about 51-56
mathematical algorithm 51
Python algorithm 51-53

algorithms designing problems
decomposing, with Python

functionalities 221-228
defining 220
generalizing 228-232
Python algorithms, planning

for 228-232
Python, using 220

algorithm, writing
about 92
changes, making to cost 93-96
dictionary, building 92, 93

388 Index

inputs, giving 92, 93
personalization, adding 96-98

American Standard Code for
Information Exchange (ASCII) 7

analog data 14
analog signal, key elements

amplitude 15
frequency 15
period 15
phase shift 15

and operator 78, 79
Apple Inc. 22
application software 18-20
areas, computing

algorithms 20
architecture 20
programming languages 20
theory 20

array 245
Artificial Intelligence (AI) 186
artificial learning 46
artificial neural networks 264, 275
automata theory 16

B
Balanced Iterative Reducing and

Clustering using Hierarchies
(BIRCH) 278

bar chart plot 253
base-10

converting, from binary 6
converting, to binary 6, 7

big data 285
binary

converting, from base-10 6, 7
converting, to base-10 6

binary cross-entropy 275

binary cross-entropy model 275
binary data 4
binary digit (bit) 4, 10
binary system

learning 4, 5
bioinformatics 13
biological data analysis

Python, using 351-354
book library

creating 178, 179
Boolean 25
Boolean logic and operators

and operator 78, 79
not operator 80, 81
or operator 79, 80
using 76, 77

boxplots 301
byte 10

C
C# 22
C++ 22
Caesar cipher

building 191, 192
characters (char) 13, 25
child class 177
C languages 22
coding theory

about 10
cryptography 12
data compression 10, 11
error correction 11

Comma-Separated Values
(CSV) values 268

complex instruction set
computer (CISC) 21

Index 389

computational biology 13
computational geometry 17
computational number theory 17
computational thinking

about 28-30
elements 29, 30

computer architecture
about 20
Instruction Set Architecture (ISA) 21

computers
learning 4, 5

computer science
defining 4

computing
about 20
computer architecture 20
programming languages 22, 23

conclusion 70
conditionals

using 208-211
conditional statements

about 70, 71, 201
if-elif-else statement 73, 74
if-else statement 72
if statement 71

confirmation statements 215
control flow

defining 200
tools 200

control variables 241
convolutional neural network (CNN) 377

creating, Python used 377-382
correlation matrix 304
Cortana 186
cryptography 10, 12, 329
cycles per instruction (CIP) 21

D
data

about 169
analyzing, visualizations used 297
handling, in Python 171-173
processing, visualizations used 297-309
summarizing, visualizations

used 297-309
testing 262
training 262

data analysis
about 284
libraries, using 255
Python, using 249-255
uses 284

data cleaning
about 290
missing data, working with 290-293
noisy data, working with 290-296

data clustering
BIRCH algorithm, using 278, 279
implementing 276, 277
K-means clustering algorithm,

using 280, 281
data compression 10, 11
data example

classifying 266-271
data libraries

installing 243-245
Matplotlib, using 248, 249
NumPy, using 245-247
pandas, using 245-247
using, in Python 242

data mining 263
data plotting

libraries, using 255

390 Index

data plotting and analysis
Scikit-Learn library, using 255-260
SciPy library, using 255-259
Seaborn library, using 255

data preprocessing
about 290
data cleaning 290
data, transforming 296

data processing
data reduction 296, 297

data science 241
data storage ways, in pandas

DataFrames 285
series 285

data structures
about 13, 14, 24, 25
learning 24

data, transforming
attribute selection 296
concept hierarchy 296
normalization 296

data types
about 24
learning 24

decomposition
about 9, 33, 61
problems 33

deductive reasoning
about 64, 70
applying 69
nested statements 74, 76

Deep Learning algorithm 377
delays

and Python 122-124
dependent variables 241
design thinking model

about 110
define 110

empathize 110
ideate 111
prototype 111
test 111

design thinking process
stages 29

dictionaries
about 154
defining 154-157
using 154-157
working with 153

digital signal 14-16
Down syndrome 367
dtypes 286

E
electric field lines

creating, with Python 362-366
electric field lines plot 362
else if (elif) 71-73
else statement 37
encryption 12
error correction 10, 11
Error Correction Code (ECC) 12
error matrix 275
errors

identifying, in algorithm design 128
even numbers

printing 140-143
experimental data

defining 240-242

Index 391

F
feasible 50
files

about 169
handling, in Python 169, 170

finiteness 48
Firefox 20
firing up 266
Flesch-Kincaid score 321
Flesch Reading Ease formula 321
flowchart

converting, to algorithm 92
for loops

using 205-208
formal language theory 16
for statements

using 201
functionalities, Scikit-Learn library

classification 259
clustering 259
model-selection 259
preprocessing 259
regression 259

functions
about 212-217
using 164
working with 166-169

G
game problem

analyzing 100-106
generalization 35
genetic data

analyzing, with Python 367-371
gigabytes 10
Golden Ratio 347

Google 20
Google Chrome 20
gradient descent model 275
Graphical User Interface (GUI) 243
grouping 264
guessing game

building 194-197

H
hamming code 12
hashing 332
housing data model

algorithm and visual representations
of data 359-362

creating, Python used 358
problem, defining 358

Hypertext Preprocessor 23
hypothesis 70

I
if-elif-else statement 73, 74
if-elif statement 37
if-else statement 72
if statements

about 71
using 201

independent variables 241
inductive reasoning

about 64
applying 65
sample problem, solving 65-69

infeasible 50
information

organizing 180, 181
information theory 14, 15

392 Index

inheritance
using 182-184

input
about 36
defining 186-189
in computational thinking 190

input devices
joy stick 186
keyboard 186
microphone 186
mouse 186

inputs 47
Instruction Set Architecture (ISA) 21
iteration

about 169
using, in algorithms 173-175

J
Java 23
JavaScript 23
JSON Editor

URL 337
Jupyter 269

K
kilobytes 10
Kivy 243

L
labels 263
language-independent 50
library 243
lists

about 154
defining 157-164

using 157-164
working with 153

logical operator 65
logical reasoning

about 64
importance 64
inductive reasoning, applying 65
types 64

logical reasoning, types
inductive reasoning 65

logic errors
about 133, 134
identifying 81-85

logistic regression 275
Long Short-Term Memory (LSTM) 376
loops and math problem 181, 182
loss function 275

M
Machine learning (ML) 262
Makey Makey 23
marketing survey problem

solution, designing 111, 112
Mastermind 194
mathematical algorithms

about 31
designing 35-38

mathematical built-in functions, Python
abs() function 151
eval() function 151
max() function 152
min() function 153
sum() function 153

Matplotlib
using 247, 248

maximums
finding 193, 194

Index 393

megabytes 10
Microsoft (Office) 20
min-max normalization 296
missing data

about 290
working with 290-293

MIT Media Lab 23
modulo operator (mod) 78

N
nested if statements

about 74-76
using 201-205

neural network 262
noisy data

about 290
binning method 293
clustering method 293
regression method 293
working with 293

Not a Number (NaN) 301
not operator 80, 81
number theory 17
NumPy 285 , 329

O
Object-Oriented Programming

(OOP) 175-177
One-Hot encoding 379
online store, building

about 88
assumptions, making 89
considerations 89
dictionary, building 89, 90

open source 243
Opera 20

operating system (OS) 18, 250
optimization models

Adam optimization algorithm 275
binary cross-entropy model 275
confusion matrix model 275
defining 275
gradient descent model 275

order 215
or operator 79, 80
OR-Tools library 325
output

about 47
defining 186-189
in computational thinking 190

P
pairs plot 306
pandas

DataFrames, working with 289
defining 285
series, working with 286-289
using 286

parent class 177
Parentheses, Exponents, Multiplication/

Division, and Addition/
Subtraction (PEMDAS) 50

parity bit 12
pattern 31
pattern generalization

about 34, 35, 61
abstraction 9

pattern recognition 9, 33, 61
Penrose tiling 346
Pima Indians Diabetes Database 266
pip installer 243
pizza order problem

solutions, creating 118-122

394 Index

prediction error 275
primitive data types

about 24
Boolean 24
byte 24
char 24
double 24
float 24
int 24
long 24
short 24

problem, computational thinking
conditions 30,-32

problem decomposition 88
problem, pattern recognition

generalization 34
mathematical algorithms 34

problem recognition 88
problems

analyzing 99, 100
decomposing 90, 91
definitions 88

programming languages
about 22, 23
C# 22
C++ 22
C languages 22
Java 23
JavaScript 23
PHP 23
Python 22
Ruby 22
Scratch 23
SQL 23
Swift 22

Pygame 243
Pyglet 243
PyQt 243

PySimpleGUI 243
Python

about 150, 151
built-in reference functions 150
chatbot, creating 336-343
data libraries, using 243
data selection 284
delays 122-124
efficient route, finding 323
features 150
historical speeches, analyzing 312-318
mathematical built-in

functions 151, 153
stories, writing 318
text readability, calculating 321-323
used, for analyzing genetic data 367-371
used, for analyzing stocks 371-376
used, for creating convolutional

neural network (CNN) 377-382
used, for creating electric

field lines 362-367
used, for creating housing

data models 358
used, for creating tessellations 346-350
used, for data analysis 249-255
used, for data analysis for

specific population 354
used, for defining specific

problem 355-358
used, for population

identification 355-358
used, to define algorithm

designing problems 220
using, in biological data

analysis 351-354
using, in cybersecurity 332-336

Python 3.6 136
Python 3.7 136

Index 395

Python 3.9 243
Python algorithms

designing 232-236
planning, for generalizing algorithm

designing problems 228-232
testing 232-236

Python Debugger 136
Python, for cryptography

algorithm, designing 329-332
generalizing 329
pattern, recognizing 329
problem, defining 329
using 329

Python functionalities
used, to decompose algorithm

designing problems 221-228
Python variables

about 52
rules 52

Q
Quandl 371
Quick Response (QR) code 12

R
Random Access Memory (RAM) 11
range

using 205-208
range() function

using 201
Rectified Linear Unit (ReLU) 265
reduced instruction set

computer (RISC) 21
reliable 242
Ruby 22

S
Safari 20
salts 332
SARS-COV-19 virus 354
scatterplot 351
Scikit-Learn library

using 255-275
SciPy library

using 255-259
Scratch 23
Seaborn library

about 308
using 255-258

sets 154
sha256 333
sha384 333
shake128 333
shake256 333
Sigmoid function 265
Siri 186
solutions

creating 117
designing 110, 111
diagramming 112-117

Spyder
about 269
Python variable explorer 299

Spyder environment 268
STEM 241
stochastic optimization 275
stocks

analyzing, with Python 371-376
stories

decomposing 319, 320
defining 319, 320
planning 319, 320

structured query language (SQL) 23

396 Index

supervised learning
about 263
classification 264
regression 264

Swift 22
Swift 2.2 22
symbolic computation 16
syntax errors

about 129, 132
brackets, using 130, 131
colons, using 129, 130
nested parentheses, using 130, 132

synthetic cluster 276
system's software

about 18
application software 19, 20
learning 18
operating systems 19

T
tanh 265
terabytes 10
tessellations

about 347
creating, with Python 346-350

theoretical computer science
about 8
algorithm 8, 9
automata theory 16
coding theory 10
computational biology 13
computational geometry 17
computational number theory 17
data structures 13, 14
formal language theory 16
information theory 14, 15
symbolic computation 16

tkinter 243
traceback error 137
training dataset 262
Travelling Salesman Problem (TSP)

about 323
algorithm, designing 324-328
defining 323
generalizing 324
pattern, recognizing 324

trisomy mice 367
tuples 154

U
Universal Unique Identifier (UUID) 333
unsupervised learning

about 263
clustering 264

V
valid 242
variable explorer 268
variables

combining 165
using 164
using, in Python 164, 165

vehicle routing problem (VRP) 323
visualizations

used, for data analyzing 298-308
used, for data processing 298-308
used, for data summarizing 297-308

W
while loop

using 208-211

	Cover
	Title Page
	Copyright and Credits
	Dedicated
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1:
Introduction to Computational Thinking
	Chapter 1: Fundamentals of Computer Science
	Technical requirements
	Introduction to computer science
	Learning about computers and the binary system

	Understanding theoretical computer science
	Algorithms
	Coding theory
	Computational biology
	Data structures
	Information theory
	Automata theory
	Formal language theory
	Symbolic computation
	Computational geometry
	Computational number theory

	Learning about a system's software
	Operating systems
	Application software

	Understanding computing
	Architecture
	Programming languages

	Learning about data types and structures
	Data types
	Data structures

	Summary

	Chapter 2: Elements of Computational Thinking
	Technical requirements
	Understanding computational thinking
	Problem 1 - Conditions

	Decomposing problems
	Recognizing patterns
	Problem 2 - Mathematical algorithms and generalization

	Generalizing patterns
	Designing algorithms
	Additional problems
	Problem 2 - Children's soccer party
	Problem 3 - Savings and interest

	Summary

	Chapter 3: Understanding Algorithms and Algorithmic Thinking
	Technical requirements
	Defining algorithms in depth
	Algorithms should be clear and unambiguous
	Algorithms should have inputs and outputs that are well defined
	Algorithms should have finiteness
	Algorithms have to be feasible
	Algorithms are language-independent

	Designing algorithms
	Problem 1 – An office lunch
	Problem 2 – A catering company

	Analyzing algorithms
	Algorithm analysis 1 – States and capitals
	Algorithm analysis 2 – Terminating or not terminating?

	Summary

	Chapter 4: Understanding Logical Reasoning
	Technical requirements
	Understanding the importance of logical reasoning
	Applying inductive reasoning
	Applying deductive reasoning

	Using Boolean logic and operators
	The and operator
	The or operator
	The not operator

	Identifying logic errors
	Summary

	Chapter 5: Exploring Problem Analysis
	Technical requirements
	Understanding the problem definitions
	Problem 5A – Building an online store

	Learning to decompose problems
	Converting the flowchart into an algorithm

	Analyzing problems
	Problem 5B – Analyzing a simple game problem

	Summary

	Chapter 6: Designing Solutions and Solution Processes
	Technical requirements
	Designing solutions
	Problem 1 - A marketing survey

	Diagramming solutions
	Creating solutions
	Problem 2 - Pizza order
	Problem 3 - Delays and Python

	Summary

	Chapter 7: Identifying Challenges within Solutions
	Technical requirements
	Identifying errors in algorithm design
	Syntax errors
	Errors in logic

	Debugging algorithms
	Comparing solutions
	Problem 1 - Printing even numbers

	Refining and redefining solutions
	Summary

	Section 2:
Applying Python and Computational Thinking
	Chapter 8: Introduction to Python
	Technical requirements
	Introducing Python
	Mathematical built-in functions

	Working with dictionaries and lists
	Defining and using dictionaries
	Defining and using lists

	Using variables and functions
	Variables in Python
	Working with functions

	Learning about files, data, and iteration
	Handling files in Python
	Data in Python
	Using iteration in algorithms

	Using object-oriented programming
	Problem 1 - Creating a book library
	Problem 2 - Organizing information
	Problem 3 - Loops and math
	Using inheritance

	Summary

	Chapter 9: Understanding Input and Output to Design a Solution Algorithm
	Technical requirements
	Defining input and output
	Understanding input and output in computational thinking
	Problem 1 – Building a Caesar cipher
	Problem 2 – Finding maximums
	Problem 3 – Building a guessing game

	Summary

	Chapter 10: Control Flow
	Technical requirements
	Defining control flow and its tools
	Using if, for, and range() and other control flow statements
	Using nested if statements
	Using for loops and range

	Using other loops and conditionals
	Revisiting functions
	Summary

	Chapter 11: Using Computational Thinking and Python in Simple Challenges
	Technical requirements
	Defining the problem and Python
	Decomposing the problem and using Python functionalities

	Generalizing the problem and planning Python algorithms
	Designing and testing the algorithm
	Summary

	Section 3:
Data Processing, Analysis, and Applications Using Computational Thinking and Python
	Chapter 12: Using Python in Experimental and Data Analysis Problems
	Technical requirements
	Defining experimental data
	Using data libraries in Python
	Installing libraries
	Using NumPy and pandas
	Using Matplotlib

	Understanding data analysis with Python
	Using additional libraries for plotting and analysis
	Using the Seaborn library
	Using the SciPy library
	Using the Scikit-Learn library

	Summary

	Chapter 13: Using Classification and Clusters
	Technical requirements
	Data training and testing
	Classifying data example
	Using the Scikit-Learn library
	Defining optimization models

	Implementing data clustering
	Using the BIRCH algorithm
	Using the K-means clustering algorithm

	Summary

	Chapter 14: Using Computational Thinking and Python in Statistical Analysis
	Technical requirements
	Defining the problem and Python data selection
	Defining pandas
	Determining when to use pandas

	Preprocessing data
	Data cleaning
	Transforming data
	Reducing data

	Processing, analyzing, and summarizing data using visualizations
	Processing data
	Analyzing and summarizing data
	Using data visualization

	Summary

	Chapter 15: Applied Computational Thinking Problems
	Technical requirements
	Problem 1 – Using Python to analyze historical speeches
	Problem 2 – Using Python to write stories
	Defining, decomposing, and planning a story

	Problem 3 – Using Python to calculate text readability
	Problem 4 – Using Python to find most efficient route
	Defining the problem (TSP)
	Recognizing the pattern (TSP)
	Generalizing (TSP)
	Designing the algorithm (TSP)

	Problem 5 – Using Python for cryptography
	Defining the problem (cryptography)
	Recognizing the pattern (cryptography)
	Generalizing (cryptography)
	Designing the algorithm (cryptography)

	Problem 6 – Using Python in cybersecurity
	Problem 7 – Using Python to create a chatbot
	Summary

	Chapter 16: Advanced Applied Computational Thinking Problems
	Technical requirements
	Problem 1 – Using Python to create tessellations
	Problem 2 – Using Python in biological data analysis
	Problem 3 – Using Python to analyze data for specific populations
	Defining the specific problem to analyze and identify the population

	Problem 4 – Using Python to create models of housing data
	Defining the problem
	Algorithm and visual representations of data

	Problem 5 – Using Python to create electric field lines
	Problem 6 – Using Python to analyze genetic data
	Problem 7 – Using Python to analyze stocks
	Problem 8 – Using Python to create
a convolutional neural network (CNN)
	Summary

	Other Books You May Enjoy
	Index

